xref: /openbmc/linux/block/blk-mq.c (revision c1081002)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!mi->part->bd_partno || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	blk_mq_wait_quiesce_done(set);
287 	mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290 
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 	struct request_queue *q;
294 
295 	mutex_lock(&set->tag_list_lock);
296 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 		if (!blk_queue_skip_tagset_quiesce(q))
298 			blk_mq_unquiesce_queue(q);
299 	}
300 	mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303 
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 	struct blk_mq_hw_ctx *hctx;
307 	unsigned long i;
308 
309 	queue_for_each_hw_ctx(q, hctx, i)
310 		if (blk_mq_hw_queue_mapped(hctx))
311 			blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313 
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 	memset(rq, 0, sizeof(*rq));
317 
318 	INIT_LIST_HEAD(&rq->queuelist);
319 	rq->q = q;
320 	rq->__sector = (sector_t) -1;
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->tag = BLK_MQ_NO_TAG;
324 	rq->internal_tag = BLK_MQ_NO_TAG;
325 	rq->start_time_ns = ktime_get_ns();
326 	rq->part = NULL;
327 	blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330 
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334 	if (blk_mq_need_time_stamp(rq))
335 		rq->start_time_ns = ktime_get_ns();
336 	else
337 		rq->start_time_ns = 0;
338 
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 	if (blk_queue_rq_alloc_time(rq->q))
341 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 	else
343 		rq->alloc_time_ns = 0;
344 #endif
345 }
346 
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 		struct blk_mq_tags *tags, unsigned int tag)
349 {
350 	struct blk_mq_ctx *ctx = data->ctx;
351 	struct blk_mq_hw_ctx *hctx = data->hctx;
352 	struct request_queue *q = data->q;
353 	struct request *rq = tags->static_rqs[tag];
354 
355 	rq->q = q;
356 	rq->mq_ctx = ctx;
357 	rq->mq_hctx = hctx;
358 	rq->cmd_flags = data->cmd_flags;
359 
360 	if (data->flags & BLK_MQ_REQ_PM)
361 		data->rq_flags |= RQF_PM;
362 	if (blk_queue_io_stat(q))
363 		data->rq_flags |= RQF_IO_STAT;
364 	rq->rq_flags = data->rq_flags;
365 
366 	if (data->rq_flags & RQF_SCHED_TAGS) {
367 		rq->tag = BLK_MQ_NO_TAG;
368 		rq->internal_tag = tag;
369 	} else {
370 		rq->tag = tag;
371 		rq->internal_tag = BLK_MQ_NO_TAG;
372 	}
373 	rq->timeout = 0;
374 
375 	rq->part = NULL;
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_USE_SCHED) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (e->type->ops.prepare_request)
398 			e->type->ops.prepare_request(rq);
399 	}
400 
401 	return rq;
402 }
403 
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407 	unsigned int tag, tag_offset;
408 	struct blk_mq_tags *tags;
409 	struct request *rq;
410 	unsigned long tag_mask;
411 	int i, nr = 0;
412 
413 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 	if (unlikely(!tag_mask))
415 		return NULL;
416 
417 	tags = blk_mq_tags_from_data(data);
418 	for (i = 0; tag_mask; i++) {
419 		if (!(tag_mask & (1UL << i)))
420 			continue;
421 		tag = tag_offset + i;
422 		prefetch(tags->static_rqs[tag]);
423 		tag_mask &= ~(1UL << i);
424 		rq = blk_mq_rq_ctx_init(data, tags, tag);
425 		rq_list_add(data->cached_rq, rq);
426 		nr++;
427 	}
428 	/* caller already holds a reference, add for remainder */
429 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
430 	data->nr_tags -= nr;
431 
432 	return rq_list_pop(data->cached_rq);
433 }
434 
435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
436 {
437 	struct request_queue *q = data->q;
438 	u64 alloc_time_ns = 0;
439 	struct request *rq;
440 	unsigned int tag;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = ktime_get_ns();
445 
446 	if (data->cmd_flags & REQ_NOWAIT)
447 		data->flags |= BLK_MQ_REQ_NOWAIT;
448 
449 	if (q->elevator) {
450 		/*
451 		 * All requests use scheduler tags when an I/O scheduler is
452 		 * enabled for the queue.
453 		 */
454 		data->rq_flags |= RQF_SCHED_TAGS;
455 
456 		/*
457 		 * Flush/passthrough requests are special and go directly to the
458 		 * dispatch list.
459 		 */
460 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
461 		    !blk_op_is_passthrough(data->cmd_flags)) {
462 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
463 
464 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
465 
466 			data->rq_flags |= RQF_USE_SCHED;
467 			if (ops->limit_depth)
468 				ops->limit_depth(data->cmd_flags, data);
469 		}
470 	}
471 
472 retry:
473 	data->ctx = blk_mq_get_ctx(q);
474 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
475 	if (!(data->rq_flags & RQF_SCHED_TAGS))
476 		blk_mq_tag_busy(data->hctx);
477 
478 	if (data->flags & BLK_MQ_REQ_RESERVED)
479 		data->rq_flags |= RQF_RESV;
480 
481 	/*
482 	 * Try batched alloc if we want more than 1 tag.
483 	 */
484 	if (data->nr_tags > 1) {
485 		rq = __blk_mq_alloc_requests_batch(data);
486 		if (rq) {
487 			blk_mq_rq_time_init(rq, alloc_time_ns);
488 			return rq;
489 		}
490 		data->nr_tags = 1;
491 	}
492 
493 	/*
494 	 * Waiting allocations only fail because of an inactive hctx.  In that
495 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
496 	 * should have migrated us to an online CPU by now.
497 	 */
498 	tag = blk_mq_get_tag(data);
499 	if (tag == BLK_MQ_NO_TAG) {
500 		if (data->flags & BLK_MQ_REQ_NOWAIT)
501 			return NULL;
502 		/*
503 		 * Give up the CPU and sleep for a random short time to
504 		 * ensure that thread using a realtime scheduling class
505 		 * are migrated off the CPU, and thus off the hctx that
506 		 * is going away.
507 		 */
508 		msleep(3);
509 		goto retry;
510 	}
511 
512 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
513 	blk_mq_rq_time_init(rq, alloc_time_ns);
514 	return rq;
515 }
516 
517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
518 					    struct blk_plug *plug,
519 					    blk_opf_t opf,
520 					    blk_mq_req_flags_t flags)
521 {
522 	struct blk_mq_alloc_data data = {
523 		.q		= q,
524 		.flags		= flags,
525 		.cmd_flags	= opf,
526 		.nr_tags	= plug->nr_ios,
527 		.cached_rq	= &plug->cached_rq,
528 	};
529 	struct request *rq;
530 
531 	if (blk_queue_enter(q, flags))
532 		return NULL;
533 
534 	plug->nr_ios = 1;
535 
536 	rq = __blk_mq_alloc_requests(&data);
537 	if (unlikely(!rq))
538 		blk_queue_exit(q);
539 	return rq;
540 }
541 
542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
543 						   blk_opf_t opf,
544 						   blk_mq_req_flags_t flags)
545 {
546 	struct blk_plug *plug = current->plug;
547 	struct request *rq;
548 
549 	if (!plug)
550 		return NULL;
551 
552 	if (rq_list_empty(plug->cached_rq)) {
553 		if (plug->nr_ios == 1)
554 			return NULL;
555 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
556 		if (!rq)
557 			return NULL;
558 	} else {
559 		rq = rq_list_peek(&plug->cached_rq);
560 		if (!rq || rq->q != q)
561 			return NULL;
562 
563 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
564 			return NULL;
565 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
566 			return NULL;
567 
568 		plug->cached_rq = rq_list_next(rq);
569 		blk_mq_rq_time_init(rq, 0);
570 	}
571 
572 	rq->cmd_flags = opf;
573 	INIT_LIST_HEAD(&rq->queuelist);
574 	return rq;
575 }
576 
577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
578 		blk_mq_req_flags_t flags)
579 {
580 	struct request *rq;
581 
582 	rq = blk_mq_alloc_cached_request(q, opf, flags);
583 	if (!rq) {
584 		struct blk_mq_alloc_data data = {
585 			.q		= q,
586 			.flags		= flags,
587 			.cmd_flags	= opf,
588 			.nr_tags	= 1,
589 		};
590 		int ret;
591 
592 		ret = blk_queue_enter(q, flags);
593 		if (ret)
594 			return ERR_PTR(ret);
595 
596 		rq = __blk_mq_alloc_requests(&data);
597 		if (!rq)
598 			goto out_queue_exit;
599 	}
600 	rq->__data_len = 0;
601 	rq->__sector = (sector_t) -1;
602 	rq->bio = rq->biotail = NULL;
603 	return rq;
604 out_queue_exit:
605 	blk_queue_exit(q);
606 	return ERR_PTR(-EWOULDBLOCK);
607 }
608 EXPORT_SYMBOL(blk_mq_alloc_request);
609 
610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
611 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
612 {
613 	struct blk_mq_alloc_data data = {
614 		.q		= q,
615 		.flags		= flags,
616 		.cmd_flags	= opf,
617 		.nr_tags	= 1,
618 	};
619 	u64 alloc_time_ns = 0;
620 	struct request *rq;
621 	unsigned int cpu;
622 	unsigned int tag;
623 	int ret;
624 
625 	/* alloc_time includes depth and tag waits */
626 	if (blk_queue_rq_alloc_time(q))
627 		alloc_time_ns = ktime_get_ns();
628 
629 	/*
630 	 * If the tag allocator sleeps we could get an allocation for a
631 	 * different hardware context.  No need to complicate the low level
632 	 * allocator for this for the rare use case of a command tied to
633 	 * a specific queue.
634 	 */
635 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
636 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
637 		return ERR_PTR(-EINVAL);
638 
639 	if (hctx_idx >= q->nr_hw_queues)
640 		return ERR_PTR(-EIO);
641 
642 	ret = blk_queue_enter(q, flags);
643 	if (ret)
644 		return ERR_PTR(ret);
645 
646 	/*
647 	 * Check if the hardware context is actually mapped to anything.
648 	 * If not tell the caller that it should skip this queue.
649 	 */
650 	ret = -EXDEV;
651 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
652 	if (!blk_mq_hw_queue_mapped(data.hctx))
653 		goto out_queue_exit;
654 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
655 	if (cpu >= nr_cpu_ids)
656 		goto out_queue_exit;
657 	data.ctx = __blk_mq_get_ctx(q, cpu);
658 
659 	if (q->elevator)
660 		data.rq_flags |= RQF_SCHED_TAGS;
661 	else
662 		blk_mq_tag_busy(data.hctx);
663 
664 	if (flags & BLK_MQ_REQ_RESERVED)
665 		data.rq_flags |= RQF_RESV;
666 
667 	ret = -EWOULDBLOCK;
668 	tag = blk_mq_get_tag(&data);
669 	if (tag == BLK_MQ_NO_TAG)
670 		goto out_queue_exit;
671 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
672 	blk_mq_rq_time_init(rq, alloc_time_ns);
673 	rq->__data_len = 0;
674 	rq->__sector = (sector_t) -1;
675 	rq->bio = rq->biotail = NULL;
676 	return rq;
677 
678 out_queue_exit:
679 	blk_queue_exit(q);
680 	return ERR_PTR(ret);
681 }
682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
683 
684 static void blk_mq_finish_request(struct request *rq)
685 {
686 	struct request_queue *q = rq->q;
687 
688 	if (rq->rq_flags & RQF_USE_SCHED) {
689 		q->elevator->type->ops.finish_request(rq);
690 		/*
691 		 * For postflush request that may need to be
692 		 * completed twice, we should clear this flag
693 		 * to avoid double finish_request() on the rq.
694 		 */
695 		rq->rq_flags &= ~RQF_USE_SCHED;
696 	}
697 }
698 
699 static void __blk_mq_free_request(struct request *rq)
700 {
701 	struct request_queue *q = rq->q;
702 	struct blk_mq_ctx *ctx = rq->mq_ctx;
703 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
704 	const int sched_tag = rq->internal_tag;
705 
706 	blk_crypto_free_request(rq);
707 	blk_pm_mark_last_busy(rq);
708 	rq->mq_hctx = NULL;
709 
710 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
711 		__blk_mq_dec_active_requests(hctx);
712 
713 	if (rq->tag != BLK_MQ_NO_TAG)
714 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
715 	if (sched_tag != BLK_MQ_NO_TAG)
716 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
717 	blk_mq_sched_restart(hctx);
718 	blk_queue_exit(q);
719 }
720 
721 void blk_mq_free_request(struct request *rq)
722 {
723 	struct request_queue *q = rq->q;
724 
725 	blk_mq_finish_request(rq);
726 
727 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
728 		laptop_io_completion(q->disk->bdi);
729 
730 	rq_qos_done(q, rq);
731 
732 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
733 	if (req_ref_put_and_test(rq))
734 		__blk_mq_free_request(rq);
735 }
736 EXPORT_SYMBOL_GPL(blk_mq_free_request);
737 
738 void blk_mq_free_plug_rqs(struct blk_plug *plug)
739 {
740 	struct request *rq;
741 
742 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
743 		blk_mq_free_request(rq);
744 }
745 
746 void blk_dump_rq_flags(struct request *rq, char *msg)
747 {
748 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
749 		rq->q->disk ? rq->q->disk->disk_name : "?",
750 		(__force unsigned long long) rq->cmd_flags);
751 
752 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
753 	       (unsigned long long)blk_rq_pos(rq),
754 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
755 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
756 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
757 }
758 EXPORT_SYMBOL(blk_dump_rq_flags);
759 
760 static void req_bio_endio(struct request *rq, struct bio *bio,
761 			  unsigned int nbytes, blk_status_t error)
762 {
763 	if (unlikely(error)) {
764 		bio->bi_status = error;
765 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
766 		/*
767 		 * Partial zone append completions cannot be supported as the
768 		 * BIO fragments may end up not being written sequentially.
769 		 */
770 		if (bio->bi_iter.bi_size != nbytes)
771 			bio->bi_status = BLK_STS_IOERR;
772 		else
773 			bio->bi_iter.bi_sector = rq->__sector;
774 	}
775 
776 	bio_advance(bio, nbytes);
777 
778 	if (unlikely(rq->rq_flags & RQF_QUIET))
779 		bio_set_flag(bio, BIO_QUIET);
780 	/* don't actually finish bio if it's part of flush sequence */
781 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
782 		bio_endio(bio);
783 }
784 
785 static void blk_account_io_completion(struct request *req, unsigned int bytes)
786 {
787 	if (req->part && blk_do_io_stat(req)) {
788 		const int sgrp = op_stat_group(req_op(req));
789 
790 		part_stat_lock();
791 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
792 		part_stat_unlock();
793 	}
794 }
795 
796 static void blk_print_req_error(struct request *req, blk_status_t status)
797 {
798 	printk_ratelimited(KERN_ERR
799 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
800 		"phys_seg %u prio class %u\n",
801 		blk_status_to_str(status),
802 		req->q->disk ? req->q->disk->disk_name : "?",
803 		blk_rq_pos(req), (__force u32)req_op(req),
804 		blk_op_str(req_op(req)),
805 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
806 		req->nr_phys_segments,
807 		IOPRIO_PRIO_CLASS(req->ioprio));
808 }
809 
810 /*
811  * Fully end IO on a request. Does not support partial completions, or
812  * errors.
813  */
814 static void blk_complete_request(struct request *req)
815 {
816 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
817 	int total_bytes = blk_rq_bytes(req);
818 	struct bio *bio = req->bio;
819 
820 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
821 
822 	if (!bio)
823 		return;
824 
825 #ifdef CONFIG_BLK_DEV_INTEGRITY
826 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
827 		req->q->integrity.profile->complete_fn(req, total_bytes);
828 #endif
829 
830 	/*
831 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
832 	 * bio_endio().  Therefore, the keyslot must be released before that.
833 	 */
834 	blk_crypto_rq_put_keyslot(req);
835 
836 	blk_account_io_completion(req, total_bytes);
837 
838 	do {
839 		struct bio *next = bio->bi_next;
840 
841 		/* Completion has already been traced */
842 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
843 
844 		if (req_op(req) == REQ_OP_ZONE_APPEND)
845 			bio->bi_iter.bi_sector = req->__sector;
846 
847 		if (!is_flush)
848 			bio_endio(bio);
849 		bio = next;
850 	} while (bio);
851 
852 	/*
853 	 * Reset counters so that the request stacking driver
854 	 * can find how many bytes remain in the request
855 	 * later.
856 	 */
857 	if (!req->end_io) {
858 		req->bio = NULL;
859 		req->__data_len = 0;
860 	}
861 }
862 
863 /**
864  * blk_update_request - Complete multiple bytes without completing the request
865  * @req:      the request being processed
866  * @error:    block status code
867  * @nr_bytes: number of bytes to complete for @req
868  *
869  * Description:
870  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
871  *     the request structure even if @req doesn't have leftover.
872  *     If @req has leftover, sets it up for the next range of segments.
873  *
874  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
875  *     %false return from this function.
876  *
877  * Note:
878  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
879  *      except in the consistency check at the end of this function.
880  *
881  * Return:
882  *     %false - this request doesn't have any more data
883  *     %true  - this request has more data
884  **/
885 bool blk_update_request(struct request *req, blk_status_t error,
886 		unsigned int nr_bytes)
887 {
888 	int total_bytes;
889 
890 	trace_block_rq_complete(req, error, nr_bytes);
891 
892 	if (!req->bio)
893 		return false;
894 
895 #ifdef CONFIG_BLK_DEV_INTEGRITY
896 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
897 	    error == BLK_STS_OK)
898 		req->q->integrity.profile->complete_fn(req, nr_bytes);
899 #endif
900 
901 	/*
902 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
903 	 * bio_endio().  Therefore, the keyslot must be released before that.
904 	 */
905 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
906 		__blk_crypto_rq_put_keyslot(req);
907 
908 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
909 		     !(req->rq_flags & RQF_QUIET)) &&
910 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
911 		blk_print_req_error(req, error);
912 		trace_block_rq_error(req, error, nr_bytes);
913 	}
914 
915 	blk_account_io_completion(req, nr_bytes);
916 
917 	total_bytes = 0;
918 	while (req->bio) {
919 		struct bio *bio = req->bio;
920 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921 
922 		if (bio_bytes == bio->bi_iter.bi_size)
923 			req->bio = bio->bi_next;
924 
925 		/* Completion has already been traced */
926 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927 		req_bio_endio(req, bio, bio_bytes, error);
928 
929 		total_bytes += bio_bytes;
930 		nr_bytes -= bio_bytes;
931 
932 		if (!nr_bytes)
933 			break;
934 	}
935 
936 	/*
937 	 * completely done
938 	 */
939 	if (!req->bio) {
940 		/*
941 		 * Reset counters so that the request stacking driver
942 		 * can find how many bytes remain in the request
943 		 * later.
944 		 */
945 		req->__data_len = 0;
946 		return false;
947 	}
948 
949 	req->__data_len -= total_bytes;
950 
951 	/* update sector only for requests with clear definition of sector */
952 	if (!blk_rq_is_passthrough(req))
953 		req->__sector += total_bytes >> 9;
954 
955 	/* mixed attributes always follow the first bio */
956 	if (req->rq_flags & RQF_MIXED_MERGE) {
957 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
958 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959 	}
960 
961 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962 		/*
963 		 * If total number of sectors is less than the first segment
964 		 * size, something has gone terribly wrong.
965 		 */
966 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967 			blk_dump_rq_flags(req, "request botched");
968 			req->__data_len = blk_rq_cur_bytes(req);
969 		}
970 
971 		/* recalculate the number of segments */
972 		req->nr_phys_segments = blk_recalc_rq_segments(req);
973 	}
974 
975 	return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978 
979 static inline void blk_account_io_done(struct request *req, u64 now)
980 {
981 	trace_block_io_done(req);
982 
983 	/*
984 	 * Account IO completion.  flush_rq isn't accounted as a
985 	 * normal IO on queueing nor completion.  Accounting the
986 	 * containing request is enough.
987 	 */
988 	if (blk_do_io_stat(req) && req->part &&
989 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
990 		const int sgrp = op_stat_group(req_op(req));
991 
992 		part_stat_lock();
993 		update_io_ticks(req->part, jiffies, true);
994 		part_stat_inc(req->part, ios[sgrp]);
995 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
996 		part_stat_unlock();
997 	}
998 }
999 
1000 static inline void blk_account_io_start(struct request *req)
1001 {
1002 	trace_block_io_start(req);
1003 
1004 	if (blk_do_io_stat(req)) {
1005 		/*
1006 		 * All non-passthrough requests are created from a bio with one
1007 		 * exception: when a flush command that is part of a flush sequence
1008 		 * generated by the state machine in blk-flush.c is cloned onto the
1009 		 * lower device by dm-multipath we can get here without a bio.
1010 		 */
1011 		if (req->bio)
1012 			req->part = req->bio->bi_bdev;
1013 		else
1014 			req->part = req->q->disk->part0;
1015 
1016 		part_stat_lock();
1017 		update_io_ticks(req->part, jiffies, false);
1018 		part_stat_unlock();
1019 	}
1020 }
1021 
1022 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1023 {
1024 	if (rq->rq_flags & RQF_STATS)
1025 		blk_stat_add(rq, now);
1026 
1027 	blk_mq_sched_completed_request(rq, now);
1028 	blk_account_io_done(rq, now);
1029 }
1030 
1031 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1032 {
1033 	if (blk_mq_need_time_stamp(rq))
1034 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1035 
1036 	blk_mq_finish_request(rq);
1037 
1038 	if (rq->end_io) {
1039 		rq_qos_done(rq->q, rq);
1040 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1041 			blk_mq_free_request(rq);
1042 	} else {
1043 		blk_mq_free_request(rq);
1044 	}
1045 }
1046 EXPORT_SYMBOL(__blk_mq_end_request);
1047 
1048 void blk_mq_end_request(struct request *rq, blk_status_t error)
1049 {
1050 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1051 		BUG();
1052 	__blk_mq_end_request(rq, error);
1053 }
1054 EXPORT_SYMBOL(blk_mq_end_request);
1055 
1056 #define TAG_COMP_BATCH		32
1057 
1058 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1059 					  int *tag_array, int nr_tags)
1060 {
1061 	struct request_queue *q = hctx->queue;
1062 
1063 	/*
1064 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1065 	 * update hctx->nr_active in batch
1066 	 */
1067 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1068 		__blk_mq_sub_active_requests(hctx, nr_tags);
1069 
1070 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1071 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1072 }
1073 
1074 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1075 {
1076 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1077 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1078 	struct request *rq;
1079 	u64 now = 0;
1080 
1081 	if (iob->need_ts)
1082 		now = ktime_get_ns();
1083 
1084 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1085 		prefetch(rq->bio);
1086 		prefetch(rq->rq_next);
1087 
1088 		blk_complete_request(rq);
1089 		if (iob->need_ts)
1090 			__blk_mq_end_request_acct(rq, now);
1091 
1092 		blk_mq_finish_request(rq);
1093 
1094 		rq_qos_done(rq->q, rq);
1095 
1096 		/*
1097 		 * If end_io handler returns NONE, then it still has
1098 		 * ownership of the request.
1099 		 */
1100 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1101 			continue;
1102 
1103 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1104 		if (!req_ref_put_and_test(rq))
1105 			continue;
1106 
1107 		blk_crypto_free_request(rq);
1108 		blk_pm_mark_last_busy(rq);
1109 
1110 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1111 			if (cur_hctx)
1112 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1113 			nr_tags = 0;
1114 			cur_hctx = rq->mq_hctx;
1115 		}
1116 		tags[nr_tags++] = rq->tag;
1117 	}
1118 
1119 	if (nr_tags)
1120 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1121 }
1122 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1123 
1124 static void blk_complete_reqs(struct llist_head *list)
1125 {
1126 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1127 	struct request *rq, *next;
1128 
1129 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1130 		rq->q->mq_ops->complete(rq);
1131 }
1132 
1133 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1134 {
1135 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1136 }
1137 
1138 static int blk_softirq_cpu_dead(unsigned int cpu)
1139 {
1140 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1141 	return 0;
1142 }
1143 
1144 static void __blk_mq_complete_request_remote(void *data)
1145 {
1146 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1147 }
1148 
1149 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1150 {
1151 	int cpu = raw_smp_processor_id();
1152 
1153 	if (!IS_ENABLED(CONFIG_SMP) ||
1154 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1155 		return false;
1156 	/*
1157 	 * With force threaded interrupts enabled, raising softirq from an SMP
1158 	 * function call will always result in waking the ksoftirqd thread.
1159 	 * This is probably worse than completing the request on a different
1160 	 * cache domain.
1161 	 */
1162 	if (force_irqthreads())
1163 		return false;
1164 
1165 	/* same CPU or cache domain?  Complete locally */
1166 	if (cpu == rq->mq_ctx->cpu ||
1167 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1168 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1169 		return false;
1170 
1171 	/* don't try to IPI to an offline CPU */
1172 	return cpu_online(rq->mq_ctx->cpu);
1173 }
1174 
1175 static void blk_mq_complete_send_ipi(struct request *rq)
1176 {
1177 	struct llist_head *list;
1178 	unsigned int cpu;
1179 
1180 	cpu = rq->mq_ctx->cpu;
1181 	list = &per_cpu(blk_cpu_done, cpu);
1182 	if (llist_add(&rq->ipi_list, list)) {
1183 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1184 		smp_call_function_single_async(cpu, &rq->csd);
1185 	}
1186 }
1187 
1188 static void blk_mq_raise_softirq(struct request *rq)
1189 {
1190 	struct llist_head *list;
1191 
1192 	preempt_disable();
1193 	list = this_cpu_ptr(&blk_cpu_done);
1194 	if (llist_add(&rq->ipi_list, list))
1195 		raise_softirq(BLOCK_SOFTIRQ);
1196 	preempt_enable();
1197 }
1198 
1199 bool blk_mq_complete_request_remote(struct request *rq)
1200 {
1201 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1202 
1203 	/*
1204 	 * For request which hctx has only one ctx mapping,
1205 	 * or a polled request, always complete locally,
1206 	 * it's pointless to redirect the completion.
1207 	 */
1208 	if ((rq->mq_hctx->nr_ctx == 1 &&
1209 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1210 	     rq->cmd_flags & REQ_POLLED)
1211 		return false;
1212 
1213 	if (blk_mq_complete_need_ipi(rq)) {
1214 		blk_mq_complete_send_ipi(rq);
1215 		return true;
1216 	}
1217 
1218 	if (rq->q->nr_hw_queues == 1) {
1219 		blk_mq_raise_softirq(rq);
1220 		return true;
1221 	}
1222 	return false;
1223 }
1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225 
1226 /**
1227  * blk_mq_complete_request - end I/O on a request
1228  * @rq:		the request being processed
1229  *
1230  * Description:
1231  *	Complete a request by scheduling the ->complete_rq operation.
1232  **/
1233 void blk_mq_complete_request(struct request *rq)
1234 {
1235 	if (!blk_mq_complete_request_remote(rq))
1236 		rq->q->mq_ops->complete(rq);
1237 }
1238 EXPORT_SYMBOL(blk_mq_complete_request);
1239 
1240 /**
1241  * blk_mq_start_request - Start processing a request
1242  * @rq: Pointer to request to be started
1243  *
1244  * Function used by device drivers to notify the block layer that a request
1245  * is going to be processed now, so blk layer can do proper initializations
1246  * such as starting the timeout timer.
1247  */
1248 void blk_mq_start_request(struct request *rq)
1249 {
1250 	struct request_queue *q = rq->q;
1251 
1252 	trace_block_rq_issue(rq);
1253 
1254 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255 		rq->io_start_time_ns = ktime_get_ns();
1256 		rq->stats_sectors = blk_rq_sectors(rq);
1257 		rq->rq_flags |= RQF_STATS;
1258 		rq_qos_issue(q, rq);
1259 	}
1260 
1261 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262 
1263 	blk_add_timer(rq);
1264 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265 
1266 #ifdef CONFIG_BLK_DEV_INTEGRITY
1267 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268 		q->integrity.profile->prepare_fn(rq);
1269 #endif
1270 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1272 }
1273 EXPORT_SYMBOL(blk_mq_start_request);
1274 
1275 /*
1276  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277  * queues. This is important for md arrays to benefit from merging
1278  * requests.
1279  */
1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281 {
1282 	if (plug->multiple_queues)
1283 		return BLK_MAX_REQUEST_COUNT * 2;
1284 	return BLK_MAX_REQUEST_COUNT;
1285 }
1286 
1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288 {
1289 	struct request *last = rq_list_peek(&plug->mq_list);
1290 
1291 	if (!plug->rq_count) {
1292 		trace_block_plug(rq->q);
1293 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294 		   (!blk_queue_nomerges(rq->q) &&
1295 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296 		blk_mq_flush_plug_list(plug, false);
1297 		last = NULL;
1298 		trace_block_plug(rq->q);
1299 	}
1300 
1301 	if (!plug->multiple_queues && last && last->q != rq->q)
1302 		plug->multiple_queues = true;
1303 	/*
1304 	 * Any request allocated from sched tags can't be issued to
1305 	 * ->queue_rqs() directly
1306 	 */
1307 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1308 		plug->has_elevator = true;
1309 	rq->rq_next = NULL;
1310 	rq_list_add(&plug->mq_list, rq);
1311 	plug->rq_count++;
1312 }
1313 
1314 /**
1315  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1316  * @rq:		request to insert
1317  * @at_head:    insert request at head or tail of queue
1318  *
1319  * Description:
1320  *    Insert a fully prepared request at the back of the I/O scheduler queue
1321  *    for execution.  Don't wait for completion.
1322  *
1323  * Note:
1324  *    This function will invoke @done directly if the queue is dead.
1325  */
1326 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1327 {
1328 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1329 
1330 	WARN_ON(irqs_disabled());
1331 	WARN_ON(!blk_rq_is_passthrough(rq));
1332 
1333 	blk_account_io_start(rq);
1334 
1335 	/*
1336 	 * As plugging can be enabled for passthrough requests on a zoned
1337 	 * device, directly accessing the plug instead of using blk_mq_plug()
1338 	 * should not have any consequences.
1339 	 */
1340 	if (current->plug && !at_head) {
1341 		blk_add_rq_to_plug(current->plug, rq);
1342 		return;
1343 	}
1344 
1345 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1346 	blk_mq_run_hw_queue(hctx, false);
1347 }
1348 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1349 
1350 struct blk_rq_wait {
1351 	struct completion done;
1352 	blk_status_t ret;
1353 };
1354 
1355 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1356 {
1357 	struct blk_rq_wait *wait = rq->end_io_data;
1358 
1359 	wait->ret = ret;
1360 	complete(&wait->done);
1361 	return RQ_END_IO_NONE;
1362 }
1363 
1364 bool blk_rq_is_poll(struct request *rq)
1365 {
1366 	if (!rq->mq_hctx)
1367 		return false;
1368 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1369 		return false;
1370 	return true;
1371 }
1372 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1373 
1374 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1375 {
1376 	do {
1377 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1378 		cond_resched();
1379 	} while (!completion_done(wait));
1380 }
1381 
1382 /**
1383  * blk_execute_rq - insert a request into queue for execution
1384  * @rq:		request to insert
1385  * @at_head:    insert request at head or tail of queue
1386  *
1387  * Description:
1388  *    Insert a fully prepared request at the back of the I/O scheduler queue
1389  *    for execution and wait for completion.
1390  * Return: The blk_status_t result provided to blk_mq_end_request().
1391  */
1392 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1393 {
1394 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1395 	struct blk_rq_wait wait = {
1396 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1397 	};
1398 
1399 	WARN_ON(irqs_disabled());
1400 	WARN_ON(!blk_rq_is_passthrough(rq));
1401 
1402 	rq->end_io_data = &wait;
1403 	rq->end_io = blk_end_sync_rq;
1404 
1405 	blk_account_io_start(rq);
1406 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1407 	blk_mq_run_hw_queue(hctx, false);
1408 
1409 	if (blk_rq_is_poll(rq)) {
1410 		blk_rq_poll_completion(rq, &wait.done);
1411 	} else {
1412 		/*
1413 		 * Prevent hang_check timer from firing at us during very long
1414 		 * I/O
1415 		 */
1416 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1417 
1418 		if (hang_check)
1419 			while (!wait_for_completion_io_timeout(&wait.done,
1420 					hang_check * (HZ/2)))
1421 				;
1422 		else
1423 			wait_for_completion_io(&wait.done);
1424 	}
1425 
1426 	return wait.ret;
1427 }
1428 EXPORT_SYMBOL(blk_execute_rq);
1429 
1430 static void __blk_mq_requeue_request(struct request *rq)
1431 {
1432 	struct request_queue *q = rq->q;
1433 
1434 	blk_mq_put_driver_tag(rq);
1435 
1436 	trace_block_rq_requeue(rq);
1437 	rq_qos_requeue(q, rq);
1438 
1439 	if (blk_mq_request_started(rq)) {
1440 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1441 		rq->rq_flags &= ~RQF_TIMED_OUT;
1442 	}
1443 }
1444 
1445 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1446 {
1447 	struct request_queue *q = rq->q;
1448 	unsigned long flags;
1449 
1450 	__blk_mq_requeue_request(rq);
1451 
1452 	/* this request will be re-inserted to io scheduler queue */
1453 	blk_mq_sched_requeue_request(rq);
1454 
1455 	spin_lock_irqsave(&q->requeue_lock, flags);
1456 	list_add_tail(&rq->queuelist, &q->requeue_list);
1457 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1458 
1459 	if (kick_requeue_list)
1460 		blk_mq_kick_requeue_list(q);
1461 }
1462 EXPORT_SYMBOL(blk_mq_requeue_request);
1463 
1464 static void blk_mq_requeue_work(struct work_struct *work)
1465 {
1466 	struct request_queue *q =
1467 		container_of(work, struct request_queue, requeue_work.work);
1468 	LIST_HEAD(rq_list);
1469 	LIST_HEAD(flush_list);
1470 	struct request *rq;
1471 
1472 	spin_lock_irq(&q->requeue_lock);
1473 	list_splice_init(&q->requeue_list, &rq_list);
1474 	list_splice_init(&q->flush_list, &flush_list);
1475 	spin_unlock_irq(&q->requeue_lock);
1476 
1477 	while (!list_empty(&rq_list)) {
1478 		rq = list_entry(rq_list.next, struct request, queuelist);
1479 		/*
1480 		 * If RQF_DONTPREP ist set, the request has been started by the
1481 		 * driver already and might have driver-specific data allocated
1482 		 * already.  Insert it into the hctx dispatch list to avoid
1483 		 * block layer merges for the request.
1484 		 */
1485 		if (rq->rq_flags & RQF_DONTPREP) {
1486 			list_del_init(&rq->queuelist);
1487 			blk_mq_request_bypass_insert(rq, 0);
1488 		} else {
1489 			list_del_init(&rq->queuelist);
1490 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1491 		}
1492 	}
1493 
1494 	while (!list_empty(&flush_list)) {
1495 		rq = list_entry(flush_list.next, struct request, queuelist);
1496 		list_del_init(&rq->queuelist);
1497 		blk_mq_insert_request(rq, 0);
1498 	}
1499 
1500 	blk_mq_run_hw_queues(q, false);
1501 }
1502 
1503 void blk_mq_kick_requeue_list(struct request_queue *q)
1504 {
1505 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1506 }
1507 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1508 
1509 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1510 				    unsigned long msecs)
1511 {
1512 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1513 				    msecs_to_jiffies(msecs));
1514 }
1515 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1516 
1517 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1518 {
1519 	/*
1520 	 * If we find a request that isn't idle we know the queue is busy
1521 	 * as it's checked in the iter.
1522 	 * Return false to stop the iteration.
1523 	 */
1524 	if (blk_mq_request_started(rq)) {
1525 		bool *busy = priv;
1526 
1527 		*busy = true;
1528 		return false;
1529 	}
1530 
1531 	return true;
1532 }
1533 
1534 bool blk_mq_queue_inflight(struct request_queue *q)
1535 {
1536 	bool busy = false;
1537 
1538 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1539 	return busy;
1540 }
1541 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1542 
1543 static void blk_mq_rq_timed_out(struct request *req)
1544 {
1545 	req->rq_flags |= RQF_TIMED_OUT;
1546 	if (req->q->mq_ops->timeout) {
1547 		enum blk_eh_timer_return ret;
1548 
1549 		ret = req->q->mq_ops->timeout(req);
1550 		if (ret == BLK_EH_DONE)
1551 			return;
1552 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1553 	}
1554 
1555 	blk_add_timer(req);
1556 }
1557 
1558 struct blk_expired_data {
1559 	bool has_timedout_rq;
1560 	unsigned long next;
1561 	unsigned long timeout_start;
1562 };
1563 
1564 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1565 {
1566 	unsigned long deadline;
1567 
1568 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1569 		return false;
1570 	if (rq->rq_flags & RQF_TIMED_OUT)
1571 		return false;
1572 
1573 	deadline = READ_ONCE(rq->deadline);
1574 	if (time_after_eq(expired->timeout_start, deadline))
1575 		return true;
1576 
1577 	if (expired->next == 0)
1578 		expired->next = deadline;
1579 	else if (time_after(expired->next, deadline))
1580 		expired->next = deadline;
1581 	return false;
1582 }
1583 
1584 void blk_mq_put_rq_ref(struct request *rq)
1585 {
1586 	if (is_flush_rq(rq)) {
1587 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1588 			blk_mq_free_request(rq);
1589 	} else if (req_ref_put_and_test(rq)) {
1590 		__blk_mq_free_request(rq);
1591 	}
1592 }
1593 
1594 static bool blk_mq_check_expired(struct request *rq, void *priv)
1595 {
1596 	struct blk_expired_data *expired = priv;
1597 
1598 	/*
1599 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1600 	 * be reallocated underneath the timeout handler's processing, then
1601 	 * the expire check is reliable. If the request is not expired, then
1602 	 * it was completed and reallocated as a new request after returning
1603 	 * from blk_mq_check_expired().
1604 	 */
1605 	if (blk_mq_req_expired(rq, expired)) {
1606 		expired->has_timedout_rq = true;
1607 		return false;
1608 	}
1609 	return true;
1610 }
1611 
1612 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1613 {
1614 	struct blk_expired_data *expired = priv;
1615 
1616 	if (blk_mq_req_expired(rq, expired))
1617 		blk_mq_rq_timed_out(rq);
1618 	return true;
1619 }
1620 
1621 static void blk_mq_timeout_work(struct work_struct *work)
1622 {
1623 	struct request_queue *q =
1624 		container_of(work, struct request_queue, timeout_work);
1625 	struct blk_expired_data expired = {
1626 		.timeout_start = jiffies,
1627 	};
1628 	struct blk_mq_hw_ctx *hctx;
1629 	unsigned long i;
1630 
1631 	/* A deadlock might occur if a request is stuck requiring a
1632 	 * timeout at the same time a queue freeze is waiting
1633 	 * completion, since the timeout code would not be able to
1634 	 * acquire the queue reference here.
1635 	 *
1636 	 * That's why we don't use blk_queue_enter here; instead, we use
1637 	 * percpu_ref_tryget directly, because we need to be able to
1638 	 * obtain a reference even in the short window between the queue
1639 	 * starting to freeze, by dropping the first reference in
1640 	 * blk_freeze_queue_start, and the moment the last request is
1641 	 * consumed, marked by the instant q_usage_counter reaches
1642 	 * zero.
1643 	 */
1644 	if (!percpu_ref_tryget(&q->q_usage_counter))
1645 		return;
1646 
1647 	/* check if there is any timed-out request */
1648 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1649 	if (expired.has_timedout_rq) {
1650 		/*
1651 		 * Before walking tags, we must ensure any submit started
1652 		 * before the current time has finished. Since the submit
1653 		 * uses srcu or rcu, wait for a synchronization point to
1654 		 * ensure all running submits have finished
1655 		 */
1656 		blk_mq_wait_quiesce_done(q->tag_set);
1657 
1658 		expired.next = 0;
1659 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1660 	}
1661 
1662 	if (expired.next != 0) {
1663 		mod_timer(&q->timeout, expired.next);
1664 	} else {
1665 		/*
1666 		 * Request timeouts are handled as a forward rolling timer. If
1667 		 * we end up here it means that no requests are pending and
1668 		 * also that no request has been pending for a while. Mark
1669 		 * each hctx as idle.
1670 		 */
1671 		queue_for_each_hw_ctx(q, hctx, i) {
1672 			/* the hctx may be unmapped, so check it here */
1673 			if (blk_mq_hw_queue_mapped(hctx))
1674 				blk_mq_tag_idle(hctx);
1675 		}
1676 	}
1677 	blk_queue_exit(q);
1678 }
1679 
1680 struct flush_busy_ctx_data {
1681 	struct blk_mq_hw_ctx *hctx;
1682 	struct list_head *list;
1683 };
1684 
1685 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1686 {
1687 	struct flush_busy_ctx_data *flush_data = data;
1688 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1689 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1690 	enum hctx_type type = hctx->type;
1691 
1692 	spin_lock(&ctx->lock);
1693 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1694 	sbitmap_clear_bit(sb, bitnr);
1695 	spin_unlock(&ctx->lock);
1696 	return true;
1697 }
1698 
1699 /*
1700  * Process software queues that have been marked busy, splicing them
1701  * to the for-dispatch
1702  */
1703 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1704 {
1705 	struct flush_busy_ctx_data data = {
1706 		.hctx = hctx,
1707 		.list = list,
1708 	};
1709 
1710 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1711 }
1712 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1713 
1714 struct dispatch_rq_data {
1715 	struct blk_mq_hw_ctx *hctx;
1716 	struct request *rq;
1717 };
1718 
1719 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1720 		void *data)
1721 {
1722 	struct dispatch_rq_data *dispatch_data = data;
1723 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1724 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1725 	enum hctx_type type = hctx->type;
1726 
1727 	spin_lock(&ctx->lock);
1728 	if (!list_empty(&ctx->rq_lists[type])) {
1729 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1730 		list_del_init(&dispatch_data->rq->queuelist);
1731 		if (list_empty(&ctx->rq_lists[type]))
1732 			sbitmap_clear_bit(sb, bitnr);
1733 	}
1734 	spin_unlock(&ctx->lock);
1735 
1736 	return !dispatch_data->rq;
1737 }
1738 
1739 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1740 					struct blk_mq_ctx *start)
1741 {
1742 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1743 	struct dispatch_rq_data data = {
1744 		.hctx = hctx,
1745 		.rq   = NULL,
1746 	};
1747 
1748 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1749 			       dispatch_rq_from_ctx, &data);
1750 
1751 	return data.rq;
1752 }
1753 
1754 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1755 {
1756 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1757 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1758 	int tag;
1759 
1760 	blk_mq_tag_busy(rq->mq_hctx);
1761 
1762 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1763 		bt = &rq->mq_hctx->tags->breserved_tags;
1764 		tag_offset = 0;
1765 	} else {
1766 		if (!hctx_may_queue(rq->mq_hctx, bt))
1767 			return false;
1768 	}
1769 
1770 	tag = __sbitmap_queue_get(bt);
1771 	if (tag == BLK_MQ_NO_TAG)
1772 		return false;
1773 
1774 	rq->tag = tag + tag_offset;
1775 	return true;
1776 }
1777 
1778 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1779 {
1780 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1781 		return false;
1782 
1783 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1784 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1785 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1786 		__blk_mq_inc_active_requests(hctx);
1787 	}
1788 	hctx->tags->rqs[rq->tag] = rq;
1789 	return true;
1790 }
1791 
1792 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1793 				int flags, void *key)
1794 {
1795 	struct blk_mq_hw_ctx *hctx;
1796 
1797 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1798 
1799 	spin_lock(&hctx->dispatch_wait_lock);
1800 	if (!list_empty(&wait->entry)) {
1801 		struct sbitmap_queue *sbq;
1802 
1803 		list_del_init(&wait->entry);
1804 		sbq = &hctx->tags->bitmap_tags;
1805 		atomic_dec(&sbq->ws_active);
1806 	}
1807 	spin_unlock(&hctx->dispatch_wait_lock);
1808 
1809 	blk_mq_run_hw_queue(hctx, true);
1810 	return 1;
1811 }
1812 
1813 /*
1814  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1815  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1816  * restart. For both cases, take care to check the condition again after
1817  * marking us as waiting.
1818  */
1819 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1820 				 struct request *rq)
1821 {
1822 	struct sbitmap_queue *sbq;
1823 	struct wait_queue_head *wq;
1824 	wait_queue_entry_t *wait;
1825 	bool ret;
1826 
1827 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1828 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1829 		blk_mq_sched_mark_restart_hctx(hctx);
1830 
1831 		/*
1832 		 * It's possible that a tag was freed in the window between the
1833 		 * allocation failure and adding the hardware queue to the wait
1834 		 * queue.
1835 		 *
1836 		 * Don't clear RESTART here, someone else could have set it.
1837 		 * At most this will cost an extra queue run.
1838 		 */
1839 		return blk_mq_get_driver_tag(rq);
1840 	}
1841 
1842 	wait = &hctx->dispatch_wait;
1843 	if (!list_empty_careful(&wait->entry))
1844 		return false;
1845 
1846 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1847 		sbq = &hctx->tags->breserved_tags;
1848 	else
1849 		sbq = &hctx->tags->bitmap_tags;
1850 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1851 
1852 	spin_lock_irq(&wq->lock);
1853 	spin_lock(&hctx->dispatch_wait_lock);
1854 	if (!list_empty(&wait->entry)) {
1855 		spin_unlock(&hctx->dispatch_wait_lock);
1856 		spin_unlock_irq(&wq->lock);
1857 		return false;
1858 	}
1859 
1860 	atomic_inc(&sbq->ws_active);
1861 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1862 	__add_wait_queue(wq, wait);
1863 
1864 	/*
1865 	 * It's possible that a tag was freed in the window between the
1866 	 * allocation failure and adding the hardware queue to the wait
1867 	 * queue.
1868 	 */
1869 	ret = blk_mq_get_driver_tag(rq);
1870 	if (!ret) {
1871 		spin_unlock(&hctx->dispatch_wait_lock);
1872 		spin_unlock_irq(&wq->lock);
1873 		return false;
1874 	}
1875 
1876 	/*
1877 	 * We got a tag, remove ourselves from the wait queue to ensure
1878 	 * someone else gets the wakeup.
1879 	 */
1880 	list_del_init(&wait->entry);
1881 	atomic_dec(&sbq->ws_active);
1882 	spin_unlock(&hctx->dispatch_wait_lock);
1883 	spin_unlock_irq(&wq->lock);
1884 
1885 	return true;
1886 }
1887 
1888 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1890 /*
1891  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1892  * - EWMA is one simple way to compute running average value
1893  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1894  * - take 4 as factor for avoiding to get too small(0) result, and this
1895  *   factor doesn't matter because EWMA decreases exponentially
1896  */
1897 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1898 {
1899 	unsigned int ewma;
1900 
1901 	ewma = hctx->dispatch_busy;
1902 
1903 	if (!ewma && !busy)
1904 		return;
1905 
1906 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1907 	if (busy)
1908 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1909 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1910 
1911 	hctx->dispatch_busy = ewma;
1912 }
1913 
1914 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1915 
1916 static void blk_mq_handle_dev_resource(struct request *rq,
1917 				       struct list_head *list)
1918 {
1919 	list_add(&rq->queuelist, list);
1920 	__blk_mq_requeue_request(rq);
1921 }
1922 
1923 static void blk_mq_handle_zone_resource(struct request *rq,
1924 					struct list_head *zone_list)
1925 {
1926 	/*
1927 	 * If we end up here it is because we cannot dispatch a request to a
1928 	 * specific zone due to LLD level zone-write locking or other zone
1929 	 * related resource not being available. In this case, set the request
1930 	 * aside in zone_list for retrying it later.
1931 	 */
1932 	list_add(&rq->queuelist, zone_list);
1933 	__blk_mq_requeue_request(rq);
1934 }
1935 
1936 enum prep_dispatch {
1937 	PREP_DISPATCH_OK,
1938 	PREP_DISPATCH_NO_TAG,
1939 	PREP_DISPATCH_NO_BUDGET,
1940 };
1941 
1942 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1943 						  bool need_budget)
1944 {
1945 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1946 	int budget_token = -1;
1947 
1948 	if (need_budget) {
1949 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1950 		if (budget_token < 0) {
1951 			blk_mq_put_driver_tag(rq);
1952 			return PREP_DISPATCH_NO_BUDGET;
1953 		}
1954 		blk_mq_set_rq_budget_token(rq, budget_token);
1955 	}
1956 
1957 	if (!blk_mq_get_driver_tag(rq)) {
1958 		/*
1959 		 * The initial allocation attempt failed, so we need to
1960 		 * rerun the hardware queue when a tag is freed. The
1961 		 * waitqueue takes care of that. If the queue is run
1962 		 * before we add this entry back on the dispatch list,
1963 		 * we'll re-run it below.
1964 		 */
1965 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1966 			/*
1967 			 * All budgets not got from this function will be put
1968 			 * together during handling partial dispatch
1969 			 */
1970 			if (need_budget)
1971 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1972 			return PREP_DISPATCH_NO_TAG;
1973 		}
1974 	}
1975 
1976 	return PREP_DISPATCH_OK;
1977 }
1978 
1979 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1980 static void blk_mq_release_budgets(struct request_queue *q,
1981 		struct list_head *list)
1982 {
1983 	struct request *rq;
1984 
1985 	list_for_each_entry(rq, list, queuelist) {
1986 		int budget_token = blk_mq_get_rq_budget_token(rq);
1987 
1988 		if (budget_token >= 0)
1989 			blk_mq_put_dispatch_budget(q, budget_token);
1990 	}
1991 }
1992 
1993 /*
1994  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1995  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1996  * details)
1997  * Attention, we should explicitly call this in unusual cases:
1998  *  1) did not queue everything initially scheduled to queue
1999  *  2) the last attempt to queue a request failed
2000  */
2001 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2002 			      bool from_schedule)
2003 {
2004 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2005 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2006 		hctx->queue->mq_ops->commit_rqs(hctx);
2007 	}
2008 }
2009 
2010 /*
2011  * Returns true if we did some work AND can potentially do more.
2012  */
2013 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2014 			     unsigned int nr_budgets)
2015 {
2016 	enum prep_dispatch prep;
2017 	struct request_queue *q = hctx->queue;
2018 	struct request *rq;
2019 	int queued;
2020 	blk_status_t ret = BLK_STS_OK;
2021 	LIST_HEAD(zone_list);
2022 	bool needs_resource = false;
2023 
2024 	if (list_empty(list))
2025 		return false;
2026 
2027 	/*
2028 	 * Now process all the entries, sending them to the driver.
2029 	 */
2030 	queued = 0;
2031 	do {
2032 		struct blk_mq_queue_data bd;
2033 
2034 		rq = list_first_entry(list, struct request, queuelist);
2035 
2036 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2037 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2038 		if (prep != PREP_DISPATCH_OK)
2039 			break;
2040 
2041 		list_del_init(&rq->queuelist);
2042 
2043 		bd.rq = rq;
2044 		bd.last = list_empty(list);
2045 
2046 		/*
2047 		 * once the request is queued to lld, no need to cover the
2048 		 * budget any more
2049 		 */
2050 		if (nr_budgets)
2051 			nr_budgets--;
2052 		ret = q->mq_ops->queue_rq(hctx, &bd);
2053 		switch (ret) {
2054 		case BLK_STS_OK:
2055 			queued++;
2056 			break;
2057 		case BLK_STS_RESOURCE:
2058 			needs_resource = true;
2059 			fallthrough;
2060 		case BLK_STS_DEV_RESOURCE:
2061 			blk_mq_handle_dev_resource(rq, list);
2062 			goto out;
2063 		case BLK_STS_ZONE_RESOURCE:
2064 			/*
2065 			 * Move the request to zone_list and keep going through
2066 			 * the dispatch list to find more requests the drive can
2067 			 * accept.
2068 			 */
2069 			blk_mq_handle_zone_resource(rq, &zone_list);
2070 			needs_resource = true;
2071 			break;
2072 		default:
2073 			blk_mq_end_request(rq, ret);
2074 		}
2075 	} while (!list_empty(list));
2076 out:
2077 	if (!list_empty(&zone_list))
2078 		list_splice_tail_init(&zone_list, list);
2079 
2080 	/* If we didn't flush the entire list, we could have told the driver
2081 	 * there was more coming, but that turned out to be a lie.
2082 	 */
2083 	if (!list_empty(list) || ret != BLK_STS_OK)
2084 		blk_mq_commit_rqs(hctx, queued, false);
2085 
2086 	/*
2087 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2088 	 * that is where we will continue on next queue run.
2089 	 */
2090 	if (!list_empty(list)) {
2091 		bool needs_restart;
2092 		/* For non-shared tags, the RESTART check will suffice */
2093 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2094 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2095 			blk_mq_is_shared_tags(hctx->flags));
2096 
2097 		if (nr_budgets)
2098 			blk_mq_release_budgets(q, list);
2099 
2100 		spin_lock(&hctx->lock);
2101 		list_splice_tail_init(list, &hctx->dispatch);
2102 		spin_unlock(&hctx->lock);
2103 
2104 		/*
2105 		 * Order adding requests to hctx->dispatch and checking
2106 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2107 		 * in blk_mq_sched_restart(). Avoid restart code path to
2108 		 * miss the new added requests to hctx->dispatch, meantime
2109 		 * SCHED_RESTART is observed here.
2110 		 */
2111 		smp_mb();
2112 
2113 		/*
2114 		 * If SCHED_RESTART was set by the caller of this function and
2115 		 * it is no longer set that means that it was cleared by another
2116 		 * thread and hence that a queue rerun is needed.
2117 		 *
2118 		 * If 'no_tag' is set, that means that we failed getting
2119 		 * a driver tag with an I/O scheduler attached. If our dispatch
2120 		 * waitqueue is no longer active, ensure that we run the queue
2121 		 * AFTER adding our entries back to the list.
2122 		 *
2123 		 * If no I/O scheduler has been configured it is possible that
2124 		 * the hardware queue got stopped and restarted before requests
2125 		 * were pushed back onto the dispatch list. Rerun the queue to
2126 		 * avoid starvation. Notes:
2127 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2128 		 *   been stopped before rerunning a queue.
2129 		 * - Some but not all block drivers stop a queue before
2130 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2131 		 *   and dm-rq.
2132 		 *
2133 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2134 		 * bit is set, run queue after a delay to avoid IO stalls
2135 		 * that could otherwise occur if the queue is idle.  We'll do
2136 		 * similar if we couldn't get budget or couldn't lock a zone
2137 		 * and SCHED_RESTART is set.
2138 		 */
2139 		needs_restart = blk_mq_sched_needs_restart(hctx);
2140 		if (prep == PREP_DISPATCH_NO_BUDGET)
2141 			needs_resource = true;
2142 		if (!needs_restart ||
2143 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2144 			blk_mq_run_hw_queue(hctx, true);
2145 		else if (needs_resource)
2146 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2147 
2148 		blk_mq_update_dispatch_busy(hctx, true);
2149 		return false;
2150 	}
2151 
2152 	blk_mq_update_dispatch_busy(hctx, false);
2153 	return true;
2154 }
2155 
2156 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2157 {
2158 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2159 
2160 	if (cpu >= nr_cpu_ids)
2161 		cpu = cpumask_first(hctx->cpumask);
2162 	return cpu;
2163 }
2164 
2165 /*
2166  * It'd be great if the workqueue API had a way to pass
2167  * in a mask and had some smarts for more clever placement.
2168  * For now we just round-robin here, switching for every
2169  * BLK_MQ_CPU_WORK_BATCH queued items.
2170  */
2171 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2172 {
2173 	bool tried = false;
2174 	int next_cpu = hctx->next_cpu;
2175 
2176 	if (hctx->queue->nr_hw_queues == 1)
2177 		return WORK_CPU_UNBOUND;
2178 
2179 	if (--hctx->next_cpu_batch <= 0) {
2180 select_cpu:
2181 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2182 				cpu_online_mask);
2183 		if (next_cpu >= nr_cpu_ids)
2184 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2185 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2186 	}
2187 
2188 	/*
2189 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2190 	 * and it should only happen in the path of handling CPU DEAD.
2191 	 */
2192 	if (!cpu_online(next_cpu)) {
2193 		if (!tried) {
2194 			tried = true;
2195 			goto select_cpu;
2196 		}
2197 
2198 		/*
2199 		 * Make sure to re-select CPU next time once after CPUs
2200 		 * in hctx->cpumask become online again.
2201 		 */
2202 		hctx->next_cpu = next_cpu;
2203 		hctx->next_cpu_batch = 1;
2204 		return WORK_CPU_UNBOUND;
2205 	}
2206 
2207 	hctx->next_cpu = next_cpu;
2208 	return next_cpu;
2209 }
2210 
2211 /**
2212  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2213  * @hctx: Pointer to the hardware queue to run.
2214  * @msecs: Milliseconds of delay to wait before running the queue.
2215  *
2216  * Run a hardware queue asynchronously with a delay of @msecs.
2217  */
2218 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2219 {
2220 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2221 		return;
2222 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2223 				    msecs_to_jiffies(msecs));
2224 }
2225 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2226 
2227 /**
2228  * blk_mq_run_hw_queue - Start to run a hardware queue.
2229  * @hctx: Pointer to the hardware queue to run.
2230  * @async: If we want to run the queue asynchronously.
2231  *
2232  * Check if the request queue is not in a quiesced state and if there are
2233  * pending requests to be sent. If this is true, run the queue to send requests
2234  * to hardware.
2235  */
2236 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2237 {
2238 	bool need_run;
2239 
2240 	/*
2241 	 * We can't run the queue inline with interrupts disabled.
2242 	 */
2243 	WARN_ON_ONCE(!async && in_interrupt());
2244 
2245 	/*
2246 	 * When queue is quiesced, we may be switching io scheduler, or
2247 	 * updating nr_hw_queues, or other things, and we can't run queue
2248 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2249 	 *
2250 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2251 	 * quiesced.
2252 	 */
2253 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2254 		need_run = !blk_queue_quiesced(hctx->queue) &&
2255 		blk_mq_hctx_has_pending(hctx));
2256 
2257 	if (!need_run)
2258 		return;
2259 
2260 	if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2261 	    !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2262 		blk_mq_delay_run_hw_queue(hctx, 0);
2263 		return;
2264 	}
2265 
2266 	blk_mq_run_dispatch_ops(hctx->queue,
2267 				blk_mq_sched_dispatch_requests(hctx));
2268 }
2269 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2270 
2271 /*
2272  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2273  * scheduler.
2274  */
2275 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2276 {
2277 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2278 	/*
2279 	 * If the IO scheduler does not respect hardware queues when
2280 	 * dispatching, we just don't bother with multiple HW queues and
2281 	 * dispatch from hctx for the current CPU since running multiple queues
2282 	 * just causes lock contention inside the scheduler and pointless cache
2283 	 * bouncing.
2284 	 */
2285 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2286 
2287 	if (!blk_mq_hctx_stopped(hctx))
2288 		return hctx;
2289 	return NULL;
2290 }
2291 
2292 /**
2293  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2294  * @q: Pointer to the request queue to run.
2295  * @async: If we want to run the queue asynchronously.
2296  */
2297 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2298 {
2299 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2300 	unsigned long i;
2301 
2302 	sq_hctx = NULL;
2303 	if (blk_queue_sq_sched(q))
2304 		sq_hctx = blk_mq_get_sq_hctx(q);
2305 	queue_for_each_hw_ctx(q, hctx, i) {
2306 		if (blk_mq_hctx_stopped(hctx))
2307 			continue;
2308 		/*
2309 		 * Dispatch from this hctx either if there's no hctx preferred
2310 		 * by IO scheduler or if it has requests that bypass the
2311 		 * scheduler.
2312 		 */
2313 		if (!sq_hctx || sq_hctx == hctx ||
2314 		    !list_empty_careful(&hctx->dispatch))
2315 			blk_mq_run_hw_queue(hctx, async);
2316 	}
2317 }
2318 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2319 
2320 /**
2321  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2322  * @q: Pointer to the request queue to run.
2323  * @msecs: Milliseconds of delay to wait before running the queues.
2324  */
2325 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2326 {
2327 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2328 	unsigned long i;
2329 
2330 	sq_hctx = NULL;
2331 	if (blk_queue_sq_sched(q))
2332 		sq_hctx = blk_mq_get_sq_hctx(q);
2333 	queue_for_each_hw_ctx(q, hctx, i) {
2334 		if (blk_mq_hctx_stopped(hctx))
2335 			continue;
2336 		/*
2337 		 * If there is already a run_work pending, leave the
2338 		 * pending delay untouched. Otherwise, a hctx can stall
2339 		 * if another hctx is re-delaying the other's work
2340 		 * before the work executes.
2341 		 */
2342 		if (delayed_work_pending(&hctx->run_work))
2343 			continue;
2344 		/*
2345 		 * Dispatch from this hctx either if there's no hctx preferred
2346 		 * by IO scheduler or if it has requests that bypass the
2347 		 * scheduler.
2348 		 */
2349 		if (!sq_hctx || sq_hctx == hctx ||
2350 		    !list_empty_careful(&hctx->dispatch))
2351 			blk_mq_delay_run_hw_queue(hctx, msecs);
2352 	}
2353 }
2354 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2355 
2356 /*
2357  * This function is often used for pausing .queue_rq() by driver when
2358  * there isn't enough resource or some conditions aren't satisfied, and
2359  * BLK_STS_RESOURCE is usually returned.
2360  *
2361  * We do not guarantee that dispatch can be drained or blocked
2362  * after blk_mq_stop_hw_queue() returns. Please use
2363  * blk_mq_quiesce_queue() for that requirement.
2364  */
2365 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2366 {
2367 	cancel_delayed_work(&hctx->run_work);
2368 
2369 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2370 }
2371 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2372 
2373 /*
2374  * This function is often used for pausing .queue_rq() by driver when
2375  * there isn't enough resource or some conditions aren't satisfied, and
2376  * BLK_STS_RESOURCE is usually returned.
2377  *
2378  * We do not guarantee that dispatch can be drained or blocked
2379  * after blk_mq_stop_hw_queues() returns. Please use
2380  * blk_mq_quiesce_queue() for that requirement.
2381  */
2382 void blk_mq_stop_hw_queues(struct request_queue *q)
2383 {
2384 	struct blk_mq_hw_ctx *hctx;
2385 	unsigned long i;
2386 
2387 	queue_for_each_hw_ctx(q, hctx, i)
2388 		blk_mq_stop_hw_queue(hctx);
2389 }
2390 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2391 
2392 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2393 {
2394 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2395 
2396 	blk_mq_run_hw_queue(hctx, false);
2397 }
2398 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2399 
2400 void blk_mq_start_hw_queues(struct request_queue *q)
2401 {
2402 	struct blk_mq_hw_ctx *hctx;
2403 	unsigned long i;
2404 
2405 	queue_for_each_hw_ctx(q, hctx, i)
2406 		blk_mq_start_hw_queue(hctx);
2407 }
2408 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2409 
2410 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2411 {
2412 	if (!blk_mq_hctx_stopped(hctx))
2413 		return;
2414 
2415 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2416 	blk_mq_run_hw_queue(hctx, async);
2417 }
2418 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2419 
2420 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2421 {
2422 	struct blk_mq_hw_ctx *hctx;
2423 	unsigned long i;
2424 
2425 	queue_for_each_hw_ctx(q, hctx, i)
2426 		blk_mq_start_stopped_hw_queue(hctx, async);
2427 }
2428 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2429 
2430 static void blk_mq_run_work_fn(struct work_struct *work)
2431 {
2432 	struct blk_mq_hw_ctx *hctx =
2433 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2434 
2435 	blk_mq_run_dispatch_ops(hctx->queue,
2436 				blk_mq_sched_dispatch_requests(hctx));
2437 }
2438 
2439 /**
2440  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2441  * @rq: Pointer to request to be inserted.
2442  * @flags: BLK_MQ_INSERT_*
2443  *
2444  * Should only be used carefully, when the caller knows we want to
2445  * bypass a potential IO scheduler on the target device.
2446  */
2447 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2448 {
2449 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2450 
2451 	spin_lock(&hctx->lock);
2452 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2453 		list_add(&rq->queuelist, &hctx->dispatch);
2454 	else
2455 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2456 	spin_unlock(&hctx->lock);
2457 }
2458 
2459 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2460 		struct blk_mq_ctx *ctx, struct list_head *list,
2461 		bool run_queue_async)
2462 {
2463 	struct request *rq;
2464 	enum hctx_type type = hctx->type;
2465 
2466 	/*
2467 	 * Try to issue requests directly if the hw queue isn't busy to save an
2468 	 * extra enqueue & dequeue to the sw queue.
2469 	 */
2470 	if (!hctx->dispatch_busy && !run_queue_async) {
2471 		blk_mq_run_dispatch_ops(hctx->queue,
2472 			blk_mq_try_issue_list_directly(hctx, list));
2473 		if (list_empty(list))
2474 			goto out;
2475 	}
2476 
2477 	/*
2478 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2479 	 * offline now
2480 	 */
2481 	list_for_each_entry(rq, list, queuelist) {
2482 		BUG_ON(rq->mq_ctx != ctx);
2483 		trace_block_rq_insert(rq);
2484 	}
2485 
2486 	spin_lock(&ctx->lock);
2487 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2488 	blk_mq_hctx_mark_pending(hctx, ctx);
2489 	spin_unlock(&ctx->lock);
2490 out:
2491 	blk_mq_run_hw_queue(hctx, run_queue_async);
2492 }
2493 
2494 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2495 {
2496 	struct request_queue *q = rq->q;
2497 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2498 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2499 
2500 	if (blk_rq_is_passthrough(rq)) {
2501 		/*
2502 		 * Passthrough request have to be added to hctx->dispatch
2503 		 * directly.  The device may be in a situation where it can't
2504 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2505 		 * them, which gets them added to hctx->dispatch.
2506 		 *
2507 		 * If a passthrough request is required to unblock the queues,
2508 		 * and it is added to the scheduler queue, there is no chance to
2509 		 * dispatch it given we prioritize requests in hctx->dispatch.
2510 		 */
2511 		blk_mq_request_bypass_insert(rq, flags);
2512 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2513 		/*
2514 		 * Firstly normal IO request is inserted to scheduler queue or
2515 		 * sw queue, meantime we add flush request to dispatch queue(
2516 		 * hctx->dispatch) directly and there is at most one in-flight
2517 		 * flush request for each hw queue, so it doesn't matter to add
2518 		 * flush request to tail or front of the dispatch queue.
2519 		 *
2520 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2521 		 * command, and queueing it will fail when there is any
2522 		 * in-flight normal IO request(NCQ command). When adding flush
2523 		 * rq to the front of hctx->dispatch, it is easier to introduce
2524 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2525 		 * compared with adding to the tail of dispatch queue, then
2526 		 * chance of flush merge is increased, and less flush requests
2527 		 * will be issued to controller. It is observed that ~10% time
2528 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2529 		 * drive when adding flush rq to the front of hctx->dispatch.
2530 		 *
2531 		 * Simply queue flush rq to the front of hctx->dispatch so that
2532 		 * intensive flush workloads can benefit in case of NCQ HW.
2533 		 */
2534 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2535 	} else if (q->elevator) {
2536 		LIST_HEAD(list);
2537 
2538 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2539 
2540 		list_add(&rq->queuelist, &list);
2541 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2542 	} else {
2543 		trace_block_rq_insert(rq);
2544 
2545 		spin_lock(&ctx->lock);
2546 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2547 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2548 		else
2549 			list_add_tail(&rq->queuelist,
2550 				      &ctx->rq_lists[hctx->type]);
2551 		blk_mq_hctx_mark_pending(hctx, ctx);
2552 		spin_unlock(&ctx->lock);
2553 	}
2554 }
2555 
2556 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2557 		unsigned int nr_segs)
2558 {
2559 	int err;
2560 
2561 	if (bio->bi_opf & REQ_RAHEAD)
2562 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2563 
2564 	rq->__sector = bio->bi_iter.bi_sector;
2565 	blk_rq_bio_prep(rq, bio, nr_segs);
2566 
2567 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2568 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2569 	WARN_ON_ONCE(err);
2570 
2571 	blk_account_io_start(rq);
2572 }
2573 
2574 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2575 					    struct request *rq, bool last)
2576 {
2577 	struct request_queue *q = rq->q;
2578 	struct blk_mq_queue_data bd = {
2579 		.rq = rq,
2580 		.last = last,
2581 	};
2582 	blk_status_t ret;
2583 
2584 	/*
2585 	 * For OK queue, we are done. For error, caller may kill it.
2586 	 * Any other error (busy), just add it to our list as we
2587 	 * previously would have done.
2588 	 */
2589 	ret = q->mq_ops->queue_rq(hctx, &bd);
2590 	switch (ret) {
2591 	case BLK_STS_OK:
2592 		blk_mq_update_dispatch_busy(hctx, false);
2593 		break;
2594 	case BLK_STS_RESOURCE:
2595 	case BLK_STS_DEV_RESOURCE:
2596 		blk_mq_update_dispatch_busy(hctx, true);
2597 		__blk_mq_requeue_request(rq);
2598 		break;
2599 	default:
2600 		blk_mq_update_dispatch_busy(hctx, false);
2601 		break;
2602 	}
2603 
2604 	return ret;
2605 }
2606 
2607 static bool blk_mq_get_budget_and_tag(struct request *rq)
2608 {
2609 	int budget_token;
2610 
2611 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2612 	if (budget_token < 0)
2613 		return false;
2614 	blk_mq_set_rq_budget_token(rq, budget_token);
2615 	if (!blk_mq_get_driver_tag(rq)) {
2616 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2617 		return false;
2618 	}
2619 	return true;
2620 }
2621 
2622 /**
2623  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2624  * @hctx: Pointer of the associated hardware queue.
2625  * @rq: Pointer to request to be sent.
2626  *
2627  * If the device has enough resources to accept a new request now, send the
2628  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2629  * we can try send it another time in the future. Requests inserted at this
2630  * queue have higher priority.
2631  */
2632 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2633 		struct request *rq)
2634 {
2635 	blk_status_t ret;
2636 
2637 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2638 		blk_mq_insert_request(rq, 0);
2639 		return;
2640 	}
2641 
2642 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2643 		blk_mq_insert_request(rq, 0);
2644 		blk_mq_run_hw_queue(hctx, false);
2645 		return;
2646 	}
2647 
2648 	ret = __blk_mq_issue_directly(hctx, rq, true);
2649 	switch (ret) {
2650 	case BLK_STS_OK:
2651 		break;
2652 	case BLK_STS_RESOURCE:
2653 	case BLK_STS_DEV_RESOURCE:
2654 		blk_mq_request_bypass_insert(rq, 0);
2655 		blk_mq_run_hw_queue(hctx, false);
2656 		break;
2657 	default:
2658 		blk_mq_end_request(rq, ret);
2659 		break;
2660 	}
2661 }
2662 
2663 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2664 {
2665 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2666 
2667 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2668 		blk_mq_insert_request(rq, 0);
2669 		return BLK_STS_OK;
2670 	}
2671 
2672 	if (!blk_mq_get_budget_and_tag(rq))
2673 		return BLK_STS_RESOURCE;
2674 	return __blk_mq_issue_directly(hctx, rq, last);
2675 }
2676 
2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2678 {
2679 	struct blk_mq_hw_ctx *hctx = NULL;
2680 	struct request *rq;
2681 	int queued = 0;
2682 	blk_status_t ret = BLK_STS_OK;
2683 
2684 	while ((rq = rq_list_pop(&plug->mq_list))) {
2685 		bool last = rq_list_empty(plug->mq_list);
2686 
2687 		if (hctx != rq->mq_hctx) {
2688 			if (hctx) {
2689 				blk_mq_commit_rqs(hctx, queued, false);
2690 				queued = 0;
2691 			}
2692 			hctx = rq->mq_hctx;
2693 		}
2694 
2695 		ret = blk_mq_request_issue_directly(rq, last);
2696 		switch (ret) {
2697 		case BLK_STS_OK:
2698 			queued++;
2699 			break;
2700 		case BLK_STS_RESOURCE:
2701 		case BLK_STS_DEV_RESOURCE:
2702 			blk_mq_request_bypass_insert(rq, 0);
2703 			blk_mq_run_hw_queue(hctx, false);
2704 			goto out;
2705 		default:
2706 			blk_mq_end_request(rq, ret);
2707 			break;
2708 		}
2709 	}
2710 
2711 out:
2712 	if (ret != BLK_STS_OK)
2713 		blk_mq_commit_rqs(hctx, queued, false);
2714 }
2715 
2716 static void __blk_mq_flush_plug_list(struct request_queue *q,
2717 				     struct blk_plug *plug)
2718 {
2719 	if (blk_queue_quiesced(q))
2720 		return;
2721 	q->mq_ops->queue_rqs(&plug->mq_list);
2722 }
2723 
2724 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2725 {
2726 	struct blk_mq_hw_ctx *this_hctx = NULL;
2727 	struct blk_mq_ctx *this_ctx = NULL;
2728 	struct request *requeue_list = NULL;
2729 	struct request **requeue_lastp = &requeue_list;
2730 	unsigned int depth = 0;
2731 	bool is_passthrough = false;
2732 	LIST_HEAD(list);
2733 
2734 	do {
2735 		struct request *rq = rq_list_pop(&plug->mq_list);
2736 
2737 		if (!this_hctx) {
2738 			this_hctx = rq->mq_hctx;
2739 			this_ctx = rq->mq_ctx;
2740 			is_passthrough = blk_rq_is_passthrough(rq);
2741 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2742 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2743 			rq_list_add_tail(&requeue_lastp, rq);
2744 			continue;
2745 		}
2746 		list_add(&rq->queuelist, &list);
2747 		depth++;
2748 	} while (!rq_list_empty(plug->mq_list));
2749 
2750 	plug->mq_list = requeue_list;
2751 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2752 
2753 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2754 	/* passthrough requests should never be issued to the I/O scheduler */
2755 	if (is_passthrough) {
2756 		spin_lock(&this_hctx->lock);
2757 		list_splice_tail_init(&list, &this_hctx->dispatch);
2758 		spin_unlock(&this_hctx->lock);
2759 		blk_mq_run_hw_queue(this_hctx, from_sched);
2760 	} else if (this_hctx->queue->elevator) {
2761 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2762 				&list, 0);
2763 		blk_mq_run_hw_queue(this_hctx, from_sched);
2764 	} else {
2765 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2766 	}
2767 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2768 }
2769 
2770 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2771 {
2772 	struct request *rq;
2773 
2774 	/*
2775 	 * We may have been called recursively midway through handling
2776 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2777 	 * To avoid mq_list changing under our feet, clear rq_count early and
2778 	 * bail out specifically if rq_count is 0 rather than checking
2779 	 * whether the mq_list is empty.
2780 	 */
2781 	if (plug->rq_count == 0)
2782 		return;
2783 	plug->rq_count = 0;
2784 
2785 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2786 		struct request_queue *q;
2787 
2788 		rq = rq_list_peek(&plug->mq_list);
2789 		q = rq->q;
2790 
2791 		/*
2792 		 * Peek first request and see if we have a ->queue_rqs() hook.
2793 		 * If we do, we can dispatch the whole plug list in one go. We
2794 		 * already know at this point that all requests belong to the
2795 		 * same queue, caller must ensure that's the case.
2796 		 *
2797 		 * Since we pass off the full list to the driver at this point,
2798 		 * we do not increment the active request count for the queue.
2799 		 * Bypass shared tags for now because of that.
2800 		 */
2801 		if (q->mq_ops->queue_rqs &&
2802 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2803 			blk_mq_run_dispatch_ops(q,
2804 				__blk_mq_flush_plug_list(q, plug));
2805 			if (rq_list_empty(plug->mq_list))
2806 				return;
2807 		}
2808 
2809 		blk_mq_run_dispatch_ops(q,
2810 				blk_mq_plug_issue_direct(plug));
2811 		if (rq_list_empty(plug->mq_list))
2812 			return;
2813 	}
2814 
2815 	do {
2816 		blk_mq_dispatch_plug_list(plug, from_schedule);
2817 	} while (!rq_list_empty(plug->mq_list));
2818 }
2819 
2820 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2821 		struct list_head *list)
2822 {
2823 	int queued = 0;
2824 	blk_status_t ret = BLK_STS_OK;
2825 
2826 	while (!list_empty(list)) {
2827 		struct request *rq = list_first_entry(list, struct request,
2828 				queuelist);
2829 
2830 		list_del_init(&rq->queuelist);
2831 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2832 		switch (ret) {
2833 		case BLK_STS_OK:
2834 			queued++;
2835 			break;
2836 		case BLK_STS_RESOURCE:
2837 		case BLK_STS_DEV_RESOURCE:
2838 			blk_mq_request_bypass_insert(rq, 0);
2839 			if (list_empty(list))
2840 				blk_mq_run_hw_queue(hctx, false);
2841 			goto out;
2842 		default:
2843 			blk_mq_end_request(rq, ret);
2844 			break;
2845 		}
2846 	}
2847 
2848 out:
2849 	if (ret != BLK_STS_OK)
2850 		blk_mq_commit_rqs(hctx, queued, false);
2851 }
2852 
2853 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2854 				     struct bio *bio, unsigned int nr_segs)
2855 {
2856 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2857 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2858 			return true;
2859 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2860 			return true;
2861 	}
2862 	return false;
2863 }
2864 
2865 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2866 					       struct blk_plug *plug,
2867 					       struct bio *bio,
2868 					       unsigned int nsegs)
2869 {
2870 	struct blk_mq_alloc_data data = {
2871 		.q		= q,
2872 		.nr_tags	= 1,
2873 		.cmd_flags	= bio->bi_opf,
2874 	};
2875 	struct request *rq;
2876 
2877 	if (unlikely(bio_queue_enter(bio)))
2878 		return NULL;
2879 
2880 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2881 		goto queue_exit;
2882 
2883 	rq_qos_throttle(q, bio);
2884 
2885 	if (plug) {
2886 		data.nr_tags = plug->nr_ios;
2887 		plug->nr_ios = 1;
2888 		data.cached_rq = &plug->cached_rq;
2889 	}
2890 
2891 	rq = __blk_mq_alloc_requests(&data);
2892 	if (rq)
2893 		return rq;
2894 	rq_qos_cleanup(q, bio);
2895 	if (bio->bi_opf & REQ_NOWAIT)
2896 		bio_wouldblock_error(bio);
2897 queue_exit:
2898 	blk_queue_exit(q);
2899 	return NULL;
2900 }
2901 
2902 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2903 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2904 {
2905 	struct request *rq;
2906 	enum hctx_type type, hctx_type;
2907 
2908 	if (!plug)
2909 		return NULL;
2910 	rq = rq_list_peek(&plug->cached_rq);
2911 	if (!rq || rq->q != q)
2912 		return NULL;
2913 
2914 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2915 		*bio = NULL;
2916 		return NULL;
2917 	}
2918 
2919 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2920 	hctx_type = rq->mq_hctx->type;
2921 	if (type != hctx_type &&
2922 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2923 		return NULL;
2924 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2925 		return NULL;
2926 
2927 	/*
2928 	 * If any qos ->throttle() end up blocking, we will have flushed the
2929 	 * plug and hence killed the cached_rq list as well. Pop this entry
2930 	 * before we throttle.
2931 	 */
2932 	plug->cached_rq = rq_list_next(rq);
2933 	rq_qos_throttle(q, *bio);
2934 
2935 	blk_mq_rq_time_init(rq, 0);
2936 	rq->cmd_flags = (*bio)->bi_opf;
2937 	INIT_LIST_HEAD(&rq->queuelist);
2938 	return rq;
2939 }
2940 
2941 static void bio_set_ioprio(struct bio *bio)
2942 {
2943 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2944 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2945 		bio->bi_ioprio = get_current_ioprio();
2946 	blkcg_set_ioprio(bio);
2947 }
2948 
2949 /**
2950  * blk_mq_submit_bio - Create and send a request to block device.
2951  * @bio: Bio pointer.
2952  *
2953  * Builds up a request structure from @q and @bio and send to the device. The
2954  * request may not be queued directly to hardware if:
2955  * * This request can be merged with another one
2956  * * We want to place request at plug queue for possible future merging
2957  * * There is an IO scheduler active at this queue
2958  *
2959  * It will not queue the request if there is an error with the bio, or at the
2960  * request creation.
2961  */
2962 void blk_mq_submit_bio(struct bio *bio)
2963 {
2964 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2965 	struct blk_plug *plug = blk_mq_plug(bio);
2966 	const int is_sync = op_is_sync(bio->bi_opf);
2967 	struct blk_mq_hw_ctx *hctx;
2968 	struct request *rq;
2969 	unsigned int nr_segs = 1;
2970 	blk_status_t ret;
2971 
2972 	bio = blk_queue_bounce(bio, q);
2973 	if (bio_may_exceed_limits(bio, &q->limits)) {
2974 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2975 		if (!bio)
2976 			return;
2977 	}
2978 
2979 	if (!bio_integrity_prep(bio))
2980 		return;
2981 
2982 	bio_set_ioprio(bio);
2983 
2984 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2985 	if (!rq) {
2986 		if (!bio)
2987 			return;
2988 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2989 		if (unlikely(!rq))
2990 			return;
2991 	}
2992 
2993 	trace_block_getrq(bio);
2994 
2995 	rq_qos_track(q, rq, bio);
2996 
2997 	blk_mq_bio_to_request(rq, bio, nr_segs);
2998 
2999 	ret = blk_crypto_rq_get_keyslot(rq);
3000 	if (ret != BLK_STS_OK) {
3001 		bio->bi_status = ret;
3002 		bio_endio(bio);
3003 		blk_mq_free_request(rq);
3004 		return;
3005 	}
3006 
3007 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3008 		return;
3009 
3010 	if (plug) {
3011 		blk_add_rq_to_plug(plug, rq);
3012 		return;
3013 	}
3014 
3015 	hctx = rq->mq_hctx;
3016 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3017 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3018 		blk_mq_insert_request(rq, 0);
3019 		blk_mq_run_hw_queue(hctx, true);
3020 	} else {
3021 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3022 	}
3023 }
3024 
3025 #ifdef CONFIG_BLK_MQ_STACKING
3026 /**
3027  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3028  * @rq: the request being queued
3029  */
3030 blk_status_t blk_insert_cloned_request(struct request *rq)
3031 {
3032 	struct request_queue *q = rq->q;
3033 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3034 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3035 	blk_status_t ret;
3036 
3037 	if (blk_rq_sectors(rq) > max_sectors) {
3038 		/*
3039 		 * SCSI device does not have a good way to return if
3040 		 * Write Same/Zero is actually supported. If a device rejects
3041 		 * a non-read/write command (discard, write same,etc.) the
3042 		 * low-level device driver will set the relevant queue limit to
3043 		 * 0 to prevent blk-lib from issuing more of the offending
3044 		 * operations. Commands queued prior to the queue limit being
3045 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3046 		 * errors being propagated to upper layers.
3047 		 */
3048 		if (max_sectors == 0)
3049 			return BLK_STS_NOTSUPP;
3050 
3051 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3052 			__func__, blk_rq_sectors(rq), max_sectors);
3053 		return BLK_STS_IOERR;
3054 	}
3055 
3056 	/*
3057 	 * The queue settings related to segment counting may differ from the
3058 	 * original queue.
3059 	 */
3060 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3061 	if (rq->nr_phys_segments > max_segments) {
3062 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3063 			__func__, rq->nr_phys_segments, max_segments);
3064 		return BLK_STS_IOERR;
3065 	}
3066 
3067 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3068 		return BLK_STS_IOERR;
3069 
3070 	ret = blk_crypto_rq_get_keyslot(rq);
3071 	if (ret != BLK_STS_OK)
3072 		return ret;
3073 
3074 	blk_account_io_start(rq);
3075 
3076 	/*
3077 	 * Since we have a scheduler attached on the top device,
3078 	 * bypass a potential scheduler on the bottom device for
3079 	 * insert.
3080 	 */
3081 	blk_mq_run_dispatch_ops(q,
3082 			ret = blk_mq_request_issue_directly(rq, true));
3083 	if (ret)
3084 		blk_account_io_done(rq, ktime_get_ns());
3085 	return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3088 
3089 /**
3090  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3091  * @rq: the clone request to be cleaned up
3092  *
3093  * Description:
3094  *     Free all bios in @rq for a cloned request.
3095  */
3096 void blk_rq_unprep_clone(struct request *rq)
3097 {
3098 	struct bio *bio;
3099 
3100 	while ((bio = rq->bio) != NULL) {
3101 		rq->bio = bio->bi_next;
3102 
3103 		bio_put(bio);
3104 	}
3105 }
3106 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3107 
3108 /**
3109  * blk_rq_prep_clone - Helper function to setup clone request
3110  * @rq: the request to be setup
3111  * @rq_src: original request to be cloned
3112  * @bs: bio_set that bios for clone are allocated from
3113  * @gfp_mask: memory allocation mask for bio
3114  * @bio_ctr: setup function to be called for each clone bio.
3115  *           Returns %0 for success, non %0 for failure.
3116  * @data: private data to be passed to @bio_ctr
3117  *
3118  * Description:
3119  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3120  *     Also, pages which the original bios are pointing to are not copied
3121  *     and the cloned bios just point same pages.
3122  *     So cloned bios must be completed before original bios, which means
3123  *     the caller must complete @rq before @rq_src.
3124  */
3125 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3126 		      struct bio_set *bs, gfp_t gfp_mask,
3127 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3128 		      void *data)
3129 {
3130 	struct bio *bio, *bio_src;
3131 
3132 	if (!bs)
3133 		bs = &fs_bio_set;
3134 
3135 	__rq_for_each_bio(bio_src, rq_src) {
3136 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3137 				      bs);
3138 		if (!bio)
3139 			goto free_and_out;
3140 
3141 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3142 			goto free_and_out;
3143 
3144 		if (rq->bio) {
3145 			rq->biotail->bi_next = bio;
3146 			rq->biotail = bio;
3147 		} else {
3148 			rq->bio = rq->biotail = bio;
3149 		}
3150 		bio = NULL;
3151 	}
3152 
3153 	/* Copy attributes of the original request to the clone request. */
3154 	rq->__sector = blk_rq_pos(rq_src);
3155 	rq->__data_len = blk_rq_bytes(rq_src);
3156 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3157 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3158 		rq->special_vec = rq_src->special_vec;
3159 	}
3160 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3161 	rq->ioprio = rq_src->ioprio;
3162 
3163 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3164 		goto free_and_out;
3165 
3166 	return 0;
3167 
3168 free_and_out:
3169 	if (bio)
3170 		bio_put(bio);
3171 	blk_rq_unprep_clone(rq);
3172 
3173 	return -ENOMEM;
3174 }
3175 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3176 #endif /* CONFIG_BLK_MQ_STACKING */
3177 
3178 /*
3179  * Steal bios from a request and add them to a bio list.
3180  * The request must not have been partially completed before.
3181  */
3182 void blk_steal_bios(struct bio_list *list, struct request *rq)
3183 {
3184 	if (rq->bio) {
3185 		if (list->tail)
3186 			list->tail->bi_next = rq->bio;
3187 		else
3188 			list->head = rq->bio;
3189 		list->tail = rq->biotail;
3190 
3191 		rq->bio = NULL;
3192 		rq->biotail = NULL;
3193 	}
3194 
3195 	rq->__data_len = 0;
3196 }
3197 EXPORT_SYMBOL_GPL(blk_steal_bios);
3198 
3199 static size_t order_to_size(unsigned int order)
3200 {
3201 	return (size_t)PAGE_SIZE << order;
3202 }
3203 
3204 /* called before freeing request pool in @tags */
3205 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3206 				    struct blk_mq_tags *tags)
3207 {
3208 	struct page *page;
3209 	unsigned long flags;
3210 
3211 	/*
3212 	 * There is no need to clear mapping if driver tags is not initialized
3213 	 * or the mapping belongs to the driver tags.
3214 	 */
3215 	if (!drv_tags || drv_tags == tags)
3216 		return;
3217 
3218 	list_for_each_entry(page, &tags->page_list, lru) {
3219 		unsigned long start = (unsigned long)page_address(page);
3220 		unsigned long end = start + order_to_size(page->private);
3221 		int i;
3222 
3223 		for (i = 0; i < drv_tags->nr_tags; i++) {
3224 			struct request *rq = drv_tags->rqs[i];
3225 			unsigned long rq_addr = (unsigned long)rq;
3226 
3227 			if (rq_addr >= start && rq_addr < end) {
3228 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3229 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3230 			}
3231 		}
3232 	}
3233 
3234 	/*
3235 	 * Wait until all pending iteration is done.
3236 	 *
3237 	 * Request reference is cleared and it is guaranteed to be observed
3238 	 * after the ->lock is released.
3239 	 */
3240 	spin_lock_irqsave(&drv_tags->lock, flags);
3241 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3242 }
3243 
3244 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3245 		     unsigned int hctx_idx)
3246 {
3247 	struct blk_mq_tags *drv_tags;
3248 	struct page *page;
3249 
3250 	if (list_empty(&tags->page_list))
3251 		return;
3252 
3253 	if (blk_mq_is_shared_tags(set->flags))
3254 		drv_tags = set->shared_tags;
3255 	else
3256 		drv_tags = set->tags[hctx_idx];
3257 
3258 	if (tags->static_rqs && set->ops->exit_request) {
3259 		int i;
3260 
3261 		for (i = 0; i < tags->nr_tags; i++) {
3262 			struct request *rq = tags->static_rqs[i];
3263 
3264 			if (!rq)
3265 				continue;
3266 			set->ops->exit_request(set, rq, hctx_idx);
3267 			tags->static_rqs[i] = NULL;
3268 		}
3269 	}
3270 
3271 	blk_mq_clear_rq_mapping(drv_tags, tags);
3272 
3273 	while (!list_empty(&tags->page_list)) {
3274 		page = list_first_entry(&tags->page_list, struct page, lru);
3275 		list_del_init(&page->lru);
3276 		/*
3277 		 * Remove kmemleak object previously allocated in
3278 		 * blk_mq_alloc_rqs().
3279 		 */
3280 		kmemleak_free(page_address(page));
3281 		__free_pages(page, page->private);
3282 	}
3283 }
3284 
3285 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3286 {
3287 	kfree(tags->rqs);
3288 	tags->rqs = NULL;
3289 	kfree(tags->static_rqs);
3290 	tags->static_rqs = NULL;
3291 
3292 	blk_mq_free_tags(tags);
3293 }
3294 
3295 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3296 		unsigned int hctx_idx)
3297 {
3298 	int i;
3299 
3300 	for (i = 0; i < set->nr_maps; i++) {
3301 		unsigned int start = set->map[i].queue_offset;
3302 		unsigned int end = start + set->map[i].nr_queues;
3303 
3304 		if (hctx_idx >= start && hctx_idx < end)
3305 			break;
3306 	}
3307 
3308 	if (i >= set->nr_maps)
3309 		i = HCTX_TYPE_DEFAULT;
3310 
3311 	return i;
3312 }
3313 
3314 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3315 		unsigned int hctx_idx)
3316 {
3317 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3318 
3319 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3320 }
3321 
3322 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3323 					       unsigned int hctx_idx,
3324 					       unsigned int nr_tags,
3325 					       unsigned int reserved_tags)
3326 {
3327 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3328 	struct blk_mq_tags *tags;
3329 
3330 	if (node == NUMA_NO_NODE)
3331 		node = set->numa_node;
3332 
3333 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3334 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3335 	if (!tags)
3336 		return NULL;
3337 
3338 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3339 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3340 				 node);
3341 	if (!tags->rqs)
3342 		goto err_free_tags;
3343 
3344 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3345 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3346 					node);
3347 	if (!tags->static_rqs)
3348 		goto err_free_rqs;
3349 
3350 	return tags;
3351 
3352 err_free_rqs:
3353 	kfree(tags->rqs);
3354 err_free_tags:
3355 	blk_mq_free_tags(tags);
3356 	return NULL;
3357 }
3358 
3359 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3360 			       unsigned int hctx_idx, int node)
3361 {
3362 	int ret;
3363 
3364 	if (set->ops->init_request) {
3365 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3366 		if (ret)
3367 			return ret;
3368 	}
3369 
3370 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3371 	return 0;
3372 }
3373 
3374 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3375 			    struct blk_mq_tags *tags,
3376 			    unsigned int hctx_idx, unsigned int depth)
3377 {
3378 	unsigned int i, j, entries_per_page, max_order = 4;
3379 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3380 	size_t rq_size, left;
3381 
3382 	if (node == NUMA_NO_NODE)
3383 		node = set->numa_node;
3384 
3385 	INIT_LIST_HEAD(&tags->page_list);
3386 
3387 	/*
3388 	 * rq_size is the size of the request plus driver payload, rounded
3389 	 * to the cacheline size
3390 	 */
3391 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3392 				cache_line_size());
3393 	left = rq_size * depth;
3394 
3395 	for (i = 0; i < depth; ) {
3396 		int this_order = max_order;
3397 		struct page *page;
3398 		int to_do;
3399 		void *p;
3400 
3401 		while (this_order && left < order_to_size(this_order - 1))
3402 			this_order--;
3403 
3404 		do {
3405 			page = alloc_pages_node(node,
3406 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3407 				this_order);
3408 			if (page)
3409 				break;
3410 			if (!this_order--)
3411 				break;
3412 			if (order_to_size(this_order) < rq_size)
3413 				break;
3414 		} while (1);
3415 
3416 		if (!page)
3417 			goto fail;
3418 
3419 		page->private = this_order;
3420 		list_add_tail(&page->lru, &tags->page_list);
3421 
3422 		p = page_address(page);
3423 		/*
3424 		 * Allow kmemleak to scan these pages as they contain pointers
3425 		 * to additional allocations like via ops->init_request().
3426 		 */
3427 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3428 		entries_per_page = order_to_size(this_order) / rq_size;
3429 		to_do = min(entries_per_page, depth - i);
3430 		left -= to_do * rq_size;
3431 		for (j = 0; j < to_do; j++) {
3432 			struct request *rq = p;
3433 
3434 			tags->static_rqs[i] = rq;
3435 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3436 				tags->static_rqs[i] = NULL;
3437 				goto fail;
3438 			}
3439 
3440 			p += rq_size;
3441 			i++;
3442 		}
3443 	}
3444 	return 0;
3445 
3446 fail:
3447 	blk_mq_free_rqs(set, tags, hctx_idx);
3448 	return -ENOMEM;
3449 }
3450 
3451 struct rq_iter_data {
3452 	struct blk_mq_hw_ctx *hctx;
3453 	bool has_rq;
3454 };
3455 
3456 static bool blk_mq_has_request(struct request *rq, void *data)
3457 {
3458 	struct rq_iter_data *iter_data = data;
3459 
3460 	if (rq->mq_hctx != iter_data->hctx)
3461 		return true;
3462 	iter_data->has_rq = true;
3463 	return false;
3464 }
3465 
3466 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3467 {
3468 	struct blk_mq_tags *tags = hctx->sched_tags ?
3469 			hctx->sched_tags : hctx->tags;
3470 	struct rq_iter_data data = {
3471 		.hctx	= hctx,
3472 	};
3473 
3474 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3475 	return data.has_rq;
3476 }
3477 
3478 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3479 		struct blk_mq_hw_ctx *hctx)
3480 {
3481 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3482 		return false;
3483 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3484 		return false;
3485 	return true;
3486 }
3487 
3488 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3489 {
3490 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3491 			struct blk_mq_hw_ctx, cpuhp_online);
3492 
3493 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3494 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3495 		return 0;
3496 
3497 	/*
3498 	 * Prevent new request from being allocated on the current hctx.
3499 	 *
3500 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3501 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3502 	 * seen once we return from the tag allocator.
3503 	 */
3504 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3505 	smp_mb__after_atomic();
3506 
3507 	/*
3508 	 * Try to grab a reference to the queue and wait for any outstanding
3509 	 * requests.  If we could not grab a reference the queue has been
3510 	 * frozen and there are no requests.
3511 	 */
3512 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3513 		while (blk_mq_hctx_has_requests(hctx))
3514 			msleep(5);
3515 		percpu_ref_put(&hctx->queue->q_usage_counter);
3516 	}
3517 
3518 	return 0;
3519 }
3520 
3521 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3522 {
3523 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3524 			struct blk_mq_hw_ctx, cpuhp_online);
3525 
3526 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3527 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3528 	return 0;
3529 }
3530 
3531 /*
3532  * 'cpu' is going away. splice any existing rq_list entries from this
3533  * software queue to the hw queue dispatch list, and ensure that it
3534  * gets run.
3535  */
3536 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3537 {
3538 	struct blk_mq_hw_ctx *hctx;
3539 	struct blk_mq_ctx *ctx;
3540 	LIST_HEAD(tmp);
3541 	enum hctx_type type;
3542 
3543 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3544 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3545 		return 0;
3546 
3547 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3548 	type = hctx->type;
3549 
3550 	spin_lock(&ctx->lock);
3551 	if (!list_empty(&ctx->rq_lists[type])) {
3552 		list_splice_init(&ctx->rq_lists[type], &tmp);
3553 		blk_mq_hctx_clear_pending(hctx, ctx);
3554 	}
3555 	spin_unlock(&ctx->lock);
3556 
3557 	if (list_empty(&tmp))
3558 		return 0;
3559 
3560 	spin_lock(&hctx->lock);
3561 	list_splice_tail_init(&tmp, &hctx->dispatch);
3562 	spin_unlock(&hctx->lock);
3563 
3564 	blk_mq_run_hw_queue(hctx, true);
3565 	return 0;
3566 }
3567 
3568 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3569 {
3570 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3571 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3572 						    &hctx->cpuhp_online);
3573 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3574 					    &hctx->cpuhp_dead);
3575 }
3576 
3577 /*
3578  * Before freeing hw queue, clearing the flush request reference in
3579  * tags->rqs[] for avoiding potential UAF.
3580  */
3581 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3582 		unsigned int queue_depth, struct request *flush_rq)
3583 {
3584 	int i;
3585 	unsigned long flags;
3586 
3587 	/* The hw queue may not be mapped yet */
3588 	if (!tags)
3589 		return;
3590 
3591 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3592 
3593 	for (i = 0; i < queue_depth; i++)
3594 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3595 
3596 	/*
3597 	 * Wait until all pending iteration is done.
3598 	 *
3599 	 * Request reference is cleared and it is guaranteed to be observed
3600 	 * after the ->lock is released.
3601 	 */
3602 	spin_lock_irqsave(&tags->lock, flags);
3603 	spin_unlock_irqrestore(&tags->lock, flags);
3604 }
3605 
3606 /* hctx->ctxs will be freed in queue's release handler */
3607 static void blk_mq_exit_hctx(struct request_queue *q,
3608 		struct blk_mq_tag_set *set,
3609 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3610 {
3611 	struct request *flush_rq = hctx->fq->flush_rq;
3612 
3613 	if (blk_mq_hw_queue_mapped(hctx))
3614 		blk_mq_tag_idle(hctx);
3615 
3616 	if (blk_queue_init_done(q))
3617 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3618 				set->queue_depth, flush_rq);
3619 	if (set->ops->exit_request)
3620 		set->ops->exit_request(set, flush_rq, hctx_idx);
3621 
3622 	if (set->ops->exit_hctx)
3623 		set->ops->exit_hctx(hctx, hctx_idx);
3624 
3625 	blk_mq_remove_cpuhp(hctx);
3626 
3627 	xa_erase(&q->hctx_table, hctx_idx);
3628 
3629 	spin_lock(&q->unused_hctx_lock);
3630 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3631 	spin_unlock(&q->unused_hctx_lock);
3632 }
3633 
3634 static void blk_mq_exit_hw_queues(struct request_queue *q,
3635 		struct blk_mq_tag_set *set, int nr_queue)
3636 {
3637 	struct blk_mq_hw_ctx *hctx;
3638 	unsigned long i;
3639 
3640 	queue_for_each_hw_ctx(q, hctx, i) {
3641 		if (i == nr_queue)
3642 			break;
3643 		blk_mq_exit_hctx(q, set, hctx, i);
3644 	}
3645 }
3646 
3647 static int blk_mq_init_hctx(struct request_queue *q,
3648 		struct blk_mq_tag_set *set,
3649 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3650 {
3651 	hctx->queue_num = hctx_idx;
3652 
3653 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3654 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3655 				&hctx->cpuhp_online);
3656 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3657 
3658 	hctx->tags = set->tags[hctx_idx];
3659 
3660 	if (set->ops->init_hctx &&
3661 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3662 		goto unregister_cpu_notifier;
3663 
3664 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3665 				hctx->numa_node))
3666 		goto exit_hctx;
3667 
3668 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3669 		goto exit_flush_rq;
3670 
3671 	return 0;
3672 
3673  exit_flush_rq:
3674 	if (set->ops->exit_request)
3675 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3676  exit_hctx:
3677 	if (set->ops->exit_hctx)
3678 		set->ops->exit_hctx(hctx, hctx_idx);
3679  unregister_cpu_notifier:
3680 	blk_mq_remove_cpuhp(hctx);
3681 	return -1;
3682 }
3683 
3684 static struct blk_mq_hw_ctx *
3685 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3686 		int node)
3687 {
3688 	struct blk_mq_hw_ctx *hctx;
3689 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3690 
3691 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3692 	if (!hctx)
3693 		goto fail_alloc_hctx;
3694 
3695 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3696 		goto free_hctx;
3697 
3698 	atomic_set(&hctx->nr_active, 0);
3699 	if (node == NUMA_NO_NODE)
3700 		node = set->numa_node;
3701 	hctx->numa_node = node;
3702 
3703 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3704 	spin_lock_init(&hctx->lock);
3705 	INIT_LIST_HEAD(&hctx->dispatch);
3706 	hctx->queue = q;
3707 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3708 
3709 	INIT_LIST_HEAD(&hctx->hctx_list);
3710 
3711 	/*
3712 	 * Allocate space for all possible cpus to avoid allocation at
3713 	 * runtime
3714 	 */
3715 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3716 			gfp, node);
3717 	if (!hctx->ctxs)
3718 		goto free_cpumask;
3719 
3720 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3721 				gfp, node, false, false))
3722 		goto free_ctxs;
3723 	hctx->nr_ctx = 0;
3724 
3725 	spin_lock_init(&hctx->dispatch_wait_lock);
3726 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3727 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3728 
3729 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3730 	if (!hctx->fq)
3731 		goto free_bitmap;
3732 
3733 	blk_mq_hctx_kobj_init(hctx);
3734 
3735 	return hctx;
3736 
3737  free_bitmap:
3738 	sbitmap_free(&hctx->ctx_map);
3739  free_ctxs:
3740 	kfree(hctx->ctxs);
3741  free_cpumask:
3742 	free_cpumask_var(hctx->cpumask);
3743  free_hctx:
3744 	kfree(hctx);
3745  fail_alloc_hctx:
3746 	return NULL;
3747 }
3748 
3749 static void blk_mq_init_cpu_queues(struct request_queue *q,
3750 				   unsigned int nr_hw_queues)
3751 {
3752 	struct blk_mq_tag_set *set = q->tag_set;
3753 	unsigned int i, j;
3754 
3755 	for_each_possible_cpu(i) {
3756 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3757 		struct blk_mq_hw_ctx *hctx;
3758 		int k;
3759 
3760 		__ctx->cpu = i;
3761 		spin_lock_init(&__ctx->lock);
3762 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3763 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3764 
3765 		__ctx->queue = q;
3766 
3767 		/*
3768 		 * Set local node, IFF we have more than one hw queue. If
3769 		 * not, we remain on the home node of the device
3770 		 */
3771 		for (j = 0; j < set->nr_maps; j++) {
3772 			hctx = blk_mq_map_queue_type(q, j, i);
3773 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3774 				hctx->numa_node = cpu_to_node(i);
3775 		}
3776 	}
3777 }
3778 
3779 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3780 					     unsigned int hctx_idx,
3781 					     unsigned int depth)
3782 {
3783 	struct blk_mq_tags *tags;
3784 	int ret;
3785 
3786 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3787 	if (!tags)
3788 		return NULL;
3789 
3790 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3791 	if (ret) {
3792 		blk_mq_free_rq_map(tags);
3793 		return NULL;
3794 	}
3795 
3796 	return tags;
3797 }
3798 
3799 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3800 				       int hctx_idx)
3801 {
3802 	if (blk_mq_is_shared_tags(set->flags)) {
3803 		set->tags[hctx_idx] = set->shared_tags;
3804 
3805 		return true;
3806 	}
3807 
3808 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3809 						       set->queue_depth);
3810 
3811 	return set->tags[hctx_idx];
3812 }
3813 
3814 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3815 			     struct blk_mq_tags *tags,
3816 			     unsigned int hctx_idx)
3817 {
3818 	if (tags) {
3819 		blk_mq_free_rqs(set, tags, hctx_idx);
3820 		blk_mq_free_rq_map(tags);
3821 	}
3822 }
3823 
3824 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3825 				      unsigned int hctx_idx)
3826 {
3827 	if (!blk_mq_is_shared_tags(set->flags))
3828 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3829 
3830 	set->tags[hctx_idx] = NULL;
3831 }
3832 
3833 static void blk_mq_map_swqueue(struct request_queue *q)
3834 {
3835 	unsigned int j, hctx_idx;
3836 	unsigned long i;
3837 	struct blk_mq_hw_ctx *hctx;
3838 	struct blk_mq_ctx *ctx;
3839 	struct blk_mq_tag_set *set = q->tag_set;
3840 
3841 	queue_for_each_hw_ctx(q, hctx, i) {
3842 		cpumask_clear(hctx->cpumask);
3843 		hctx->nr_ctx = 0;
3844 		hctx->dispatch_from = NULL;
3845 	}
3846 
3847 	/*
3848 	 * Map software to hardware queues.
3849 	 *
3850 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3851 	 */
3852 	for_each_possible_cpu(i) {
3853 
3854 		ctx = per_cpu_ptr(q->queue_ctx, i);
3855 		for (j = 0; j < set->nr_maps; j++) {
3856 			if (!set->map[j].nr_queues) {
3857 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3858 						HCTX_TYPE_DEFAULT, i);
3859 				continue;
3860 			}
3861 			hctx_idx = set->map[j].mq_map[i];
3862 			/* unmapped hw queue can be remapped after CPU topo changed */
3863 			if (!set->tags[hctx_idx] &&
3864 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3865 				/*
3866 				 * If tags initialization fail for some hctx,
3867 				 * that hctx won't be brought online.  In this
3868 				 * case, remap the current ctx to hctx[0] which
3869 				 * is guaranteed to always have tags allocated
3870 				 */
3871 				set->map[j].mq_map[i] = 0;
3872 			}
3873 
3874 			hctx = blk_mq_map_queue_type(q, j, i);
3875 			ctx->hctxs[j] = hctx;
3876 			/*
3877 			 * If the CPU is already set in the mask, then we've
3878 			 * mapped this one already. This can happen if
3879 			 * devices share queues across queue maps.
3880 			 */
3881 			if (cpumask_test_cpu(i, hctx->cpumask))
3882 				continue;
3883 
3884 			cpumask_set_cpu(i, hctx->cpumask);
3885 			hctx->type = j;
3886 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3887 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3888 
3889 			/*
3890 			 * If the nr_ctx type overflows, we have exceeded the
3891 			 * amount of sw queues we can support.
3892 			 */
3893 			BUG_ON(!hctx->nr_ctx);
3894 		}
3895 
3896 		for (; j < HCTX_MAX_TYPES; j++)
3897 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3898 					HCTX_TYPE_DEFAULT, i);
3899 	}
3900 
3901 	queue_for_each_hw_ctx(q, hctx, i) {
3902 		/*
3903 		 * If no software queues are mapped to this hardware queue,
3904 		 * disable it and free the request entries.
3905 		 */
3906 		if (!hctx->nr_ctx) {
3907 			/* Never unmap queue 0.  We need it as a
3908 			 * fallback in case of a new remap fails
3909 			 * allocation
3910 			 */
3911 			if (i)
3912 				__blk_mq_free_map_and_rqs(set, i);
3913 
3914 			hctx->tags = NULL;
3915 			continue;
3916 		}
3917 
3918 		hctx->tags = set->tags[i];
3919 		WARN_ON(!hctx->tags);
3920 
3921 		/*
3922 		 * Set the map size to the number of mapped software queues.
3923 		 * This is more accurate and more efficient than looping
3924 		 * over all possibly mapped software queues.
3925 		 */
3926 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3927 
3928 		/*
3929 		 * Initialize batch roundrobin counts
3930 		 */
3931 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3932 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3933 	}
3934 }
3935 
3936 /*
3937  * Caller needs to ensure that we're either frozen/quiesced, or that
3938  * the queue isn't live yet.
3939  */
3940 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3941 {
3942 	struct blk_mq_hw_ctx *hctx;
3943 	unsigned long i;
3944 
3945 	queue_for_each_hw_ctx(q, hctx, i) {
3946 		if (shared) {
3947 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3948 		} else {
3949 			blk_mq_tag_idle(hctx);
3950 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3951 		}
3952 	}
3953 }
3954 
3955 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3956 					 bool shared)
3957 {
3958 	struct request_queue *q;
3959 
3960 	lockdep_assert_held(&set->tag_list_lock);
3961 
3962 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3963 		blk_mq_freeze_queue(q);
3964 		queue_set_hctx_shared(q, shared);
3965 		blk_mq_unfreeze_queue(q);
3966 	}
3967 }
3968 
3969 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3970 {
3971 	struct blk_mq_tag_set *set = q->tag_set;
3972 
3973 	mutex_lock(&set->tag_list_lock);
3974 	list_del(&q->tag_set_list);
3975 	if (list_is_singular(&set->tag_list)) {
3976 		/* just transitioned to unshared */
3977 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3978 		/* update existing queue */
3979 		blk_mq_update_tag_set_shared(set, false);
3980 	}
3981 	mutex_unlock(&set->tag_list_lock);
3982 	INIT_LIST_HEAD(&q->tag_set_list);
3983 }
3984 
3985 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3986 				     struct request_queue *q)
3987 {
3988 	mutex_lock(&set->tag_list_lock);
3989 
3990 	/*
3991 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3992 	 */
3993 	if (!list_empty(&set->tag_list) &&
3994 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3995 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3996 		/* update existing queue */
3997 		blk_mq_update_tag_set_shared(set, true);
3998 	}
3999 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4000 		queue_set_hctx_shared(q, true);
4001 	list_add_tail(&q->tag_set_list, &set->tag_list);
4002 
4003 	mutex_unlock(&set->tag_list_lock);
4004 }
4005 
4006 /* All allocations will be freed in release handler of q->mq_kobj */
4007 static int blk_mq_alloc_ctxs(struct request_queue *q)
4008 {
4009 	struct blk_mq_ctxs *ctxs;
4010 	int cpu;
4011 
4012 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4013 	if (!ctxs)
4014 		return -ENOMEM;
4015 
4016 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4017 	if (!ctxs->queue_ctx)
4018 		goto fail;
4019 
4020 	for_each_possible_cpu(cpu) {
4021 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4022 		ctx->ctxs = ctxs;
4023 	}
4024 
4025 	q->mq_kobj = &ctxs->kobj;
4026 	q->queue_ctx = ctxs->queue_ctx;
4027 
4028 	return 0;
4029  fail:
4030 	kfree(ctxs);
4031 	return -ENOMEM;
4032 }
4033 
4034 /*
4035  * It is the actual release handler for mq, but we do it from
4036  * request queue's release handler for avoiding use-after-free
4037  * and headache because q->mq_kobj shouldn't have been introduced,
4038  * but we can't group ctx/kctx kobj without it.
4039  */
4040 void blk_mq_release(struct request_queue *q)
4041 {
4042 	struct blk_mq_hw_ctx *hctx, *next;
4043 	unsigned long i;
4044 
4045 	queue_for_each_hw_ctx(q, hctx, i)
4046 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4047 
4048 	/* all hctx are in .unused_hctx_list now */
4049 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4050 		list_del_init(&hctx->hctx_list);
4051 		kobject_put(&hctx->kobj);
4052 	}
4053 
4054 	xa_destroy(&q->hctx_table);
4055 
4056 	/*
4057 	 * release .mq_kobj and sw queue's kobject now because
4058 	 * both share lifetime with request queue.
4059 	 */
4060 	blk_mq_sysfs_deinit(q);
4061 }
4062 
4063 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4064 		void *queuedata)
4065 {
4066 	struct request_queue *q;
4067 	int ret;
4068 
4069 	q = blk_alloc_queue(set->numa_node);
4070 	if (!q)
4071 		return ERR_PTR(-ENOMEM);
4072 	q->queuedata = queuedata;
4073 	ret = blk_mq_init_allocated_queue(set, q);
4074 	if (ret) {
4075 		blk_put_queue(q);
4076 		return ERR_PTR(ret);
4077 	}
4078 	return q;
4079 }
4080 
4081 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4082 {
4083 	return blk_mq_init_queue_data(set, NULL);
4084 }
4085 EXPORT_SYMBOL(blk_mq_init_queue);
4086 
4087 /**
4088  * blk_mq_destroy_queue - shutdown a request queue
4089  * @q: request queue to shutdown
4090  *
4091  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4092  * requests will be failed with -ENODEV. The caller is responsible for dropping
4093  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4094  *
4095  * Context: can sleep
4096  */
4097 void blk_mq_destroy_queue(struct request_queue *q)
4098 {
4099 	WARN_ON_ONCE(!queue_is_mq(q));
4100 	WARN_ON_ONCE(blk_queue_registered(q));
4101 
4102 	might_sleep();
4103 
4104 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4105 	blk_queue_start_drain(q);
4106 	blk_mq_freeze_queue_wait(q);
4107 
4108 	blk_sync_queue(q);
4109 	blk_mq_cancel_work_sync(q);
4110 	blk_mq_exit_queue(q);
4111 }
4112 EXPORT_SYMBOL(blk_mq_destroy_queue);
4113 
4114 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4115 		struct lock_class_key *lkclass)
4116 {
4117 	struct request_queue *q;
4118 	struct gendisk *disk;
4119 
4120 	q = blk_mq_init_queue_data(set, queuedata);
4121 	if (IS_ERR(q))
4122 		return ERR_CAST(q);
4123 
4124 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4125 	if (!disk) {
4126 		blk_mq_destroy_queue(q);
4127 		blk_put_queue(q);
4128 		return ERR_PTR(-ENOMEM);
4129 	}
4130 	set_bit(GD_OWNS_QUEUE, &disk->state);
4131 	return disk;
4132 }
4133 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4134 
4135 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4136 		struct lock_class_key *lkclass)
4137 {
4138 	struct gendisk *disk;
4139 
4140 	if (!blk_get_queue(q))
4141 		return NULL;
4142 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4143 	if (!disk)
4144 		blk_put_queue(q);
4145 	return disk;
4146 }
4147 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4148 
4149 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4150 		struct blk_mq_tag_set *set, struct request_queue *q,
4151 		int hctx_idx, int node)
4152 {
4153 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4154 
4155 	/* reuse dead hctx first */
4156 	spin_lock(&q->unused_hctx_lock);
4157 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4158 		if (tmp->numa_node == node) {
4159 			hctx = tmp;
4160 			break;
4161 		}
4162 	}
4163 	if (hctx)
4164 		list_del_init(&hctx->hctx_list);
4165 	spin_unlock(&q->unused_hctx_lock);
4166 
4167 	if (!hctx)
4168 		hctx = blk_mq_alloc_hctx(q, set, node);
4169 	if (!hctx)
4170 		goto fail;
4171 
4172 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4173 		goto free_hctx;
4174 
4175 	return hctx;
4176 
4177  free_hctx:
4178 	kobject_put(&hctx->kobj);
4179  fail:
4180 	return NULL;
4181 }
4182 
4183 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4184 						struct request_queue *q)
4185 {
4186 	struct blk_mq_hw_ctx *hctx;
4187 	unsigned long i, j;
4188 
4189 	/* protect against switching io scheduler  */
4190 	mutex_lock(&q->sysfs_lock);
4191 	for (i = 0; i < set->nr_hw_queues; i++) {
4192 		int old_node;
4193 		int node = blk_mq_get_hctx_node(set, i);
4194 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4195 
4196 		if (old_hctx) {
4197 			old_node = old_hctx->numa_node;
4198 			blk_mq_exit_hctx(q, set, old_hctx, i);
4199 		}
4200 
4201 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4202 			if (!old_hctx)
4203 				break;
4204 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4205 					node, old_node);
4206 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4207 			WARN_ON_ONCE(!hctx);
4208 		}
4209 	}
4210 	/*
4211 	 * Increasing nr_hw_queues fails. Free the newly allocated
4212 	 * hctxs and keep the previous q->nr_hw_queues.
4213 	 */
4214 	if (i != set->nr_hw_queues) {
4215 		j = q->nr_hw_queues;
4216 	} else {
4217 		j = i;
4218 		q->nr_hw_queues = set->nr_hw_queues;
4219 	}
4220 
4221 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4222 		blk_mq_exit_hctx(q, set, hctx, j);
4223 	mutex_unlock(&q->sysfs_lock);
4224 }
4225 
4226 static void blk_mq_update_poll_flag(struct request_queue *q)
4227 {
4228 	struct blk_mq_tag_set *set = q->tag_set;
4229 
4230 	if (set->nr_maps > HCTX_TYPE_POLL &&
4231 	    set->map[HCTX_TYPE_POLL].nr_queues)
4232 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4233 	else
4234 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4235 }
4236 
4237 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4238 		struct request_queue *q)
4239 {
4240 	/* mark the queue as mq asap */
4241 	q->mq_ops = set->ops;
4242 
4243 	if (blk_mq_alloc_ctxs(q))
4244 		goto err_exit;
4245 
4246 	/* init q->mq_kobj and sw queues' kobjects */
4247 	blk_mq_sysfs_init(q);
4248 
4249 	INIT_LIST_HEAD(&q->unused_hctx_list);
4250 	spin_lock_init(&q->unused_hctx_lock);
4251 
4252 	xa_init(&q->hctx_table);
4253 
4254 	blk_mq_realloc_hw_ctxs(set, q);
4255 	if (!q->nr_hw_queues)
4256 		goto err_hctxs;
4257 
4258 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4259 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4260 
4261 	q->tag_set = set;
4262 
4263 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4264 	blk_mq_update_poll_flag(q);
4265 
4266 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4267 	INIT_LIST_HEAD(&q->flush_list);
4268 	INIT_LIST_HEAD(&q->requeue_list);
4269 	spin_lock_init(&q->requeue_lock);
4270 
4271 	q->nr_requests = set->queue_depth;
4272 
4273 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4274 	blk_mq_add_queue_tag_set(set, q);
4275 	blk_mq_map_swqueue(q);
4276 	return 0;
4277 
4278 err_hctxs:
4279 	blk_mq_release(q);
4280 err_exit:
4281 	q->mq_ops = NULL;
4282 	return -ENOMEM;
4283 }
4284 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4285 
4286 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4287 void blk_mq_exit_queue(struct request_queue *q)
4288 {
4289 	struct blk_mq_tag_set *set = q->tag_set;
4290 
4291 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4292 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4293 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4294 	blk_mq_del_queue_tag_set(q);
4295 }
4296 
4297 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4298 {
4299 	int i;
4300 
4301 	if (blk_mq_is_shared_tags(set->flags)) {
4302 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4303 						BLK_MQ_NO_HCTX_IDX,
4304 						set->queue_depth);
4305 		if (!set->shared_tags)
4306 			return -ENOMEM;
4307 	}
4308 
4309 	for (i = 0; i < set->nr_hw_queues; i++) {
4310 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4311 			goto out_unwind;
4312 		cond_resched();
4313 	}
4314 
4315 	return 0;
4316 
4317 out_unwind:
4318 	while (--i >= 0)
4319 		__blk_mq_free_map_and_rqs(set, i);
4320 
4321 	if (blk_mq_is_shared_tags(set->flags)) {
4322 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4323 					BLK_MQ_NO_HCTX_IDX);
4324 	}
4325 
4326 	return -ENOMEM;
4327 }
4328 
4329 /*
4330  * Allocate the request maps associated with this tag_set. Note that this
4331  * may reduce the depth asked for, if memory is tight. set->queue_depth
4332  * will be updated to reflect the allocated depth.
4333  */
4334 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4335 {
4336 	unsigned int depth;
4337 	int err;
4338 
4339 	depth = set->queue_depth;
4340 	do {
4341 		err = __blk_mq_alloc_rq_maps(set);
4342 		if (!err)
4343 			break;
4344 
4345 		set->queue_depth >>= 1;
4346 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4347 			err = -ENOMEM;
4348 			break;
4349 		}
4350 	} while (set->queue_depth);
4351 
4352 	if (!set->queue_depth || err) {
4353 		pr_err("blk-mq: failed to allocate request map\n");
4354 		return -ENOMEM;
4355 	}
4356 
4357 	if (depth != set->queue_depth)
4358 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4359 						depth, set->queue_depth);
4360 
4361 	return 0;
4362 }
4363 
4364 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4365 {
4366 	/*
4367 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4368 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4369 	 * number of hardware queues.
4370 	 */
4371 	if (set->nr_maps == 1)
4372 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4373 
4374 	if (set->ops->map_queues && !is_kdump_kernel()) {
4375 		int i;
4376 
4377 		/*
4378 		 * transport .map_queues is usually done in the following
4379 		 * way:
4380 		 *
4381 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4382 		 * 	mask = get_cpu_mask(queue)
4383 		 * 	for_each_cpu(cpu, mask)
4384 		 * 		set->map[x].mq_map[cpu] = queue;
4385 		 * }
4386 		 *
4387 		 * When we need to remap, the table has to be cleared for
4388 		 * killing stale mapping since one CPU may not be mapped
4389 		 * to any hw queue.
4390 		 */
4391 		for (i = 0; i < set->nr_maps; i++)
4392 			blk_mq_clear_mq_map(&set->map[i]);
4393 
4394 		set->ops->map_queues(set);
4395 	} else {
4396 		BUG_ON(set->nr_maps > 1);
4397 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4398 	}
4399 }
4400 
4401 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4402 				       int new_nr_hw_queues)
4403 {
4404 	struct blk_mq_tags **new_tags;
4405 
4406 	if (set->nr_hw_queues >= new_nr_hw_queues)
4407 		goto done;
4408 
4409 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4410 				GFP_KERNEL, set->numa_node);
4411 	if (!new_tags)
4412 		return -ENOMEM;
4413 
4414 	if (set->tags)
4415 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4416 		       sizeof(*set->tags));
4417 	kfree(set->tags);
4418 	set->tags = new_tags;
4419 done:
4420 	set->nr_hw_queues = new_nr_hw_queues;
4421 	return 0;
4422 }
4423 
4424 /*
4425  * Alloc a tag set to be associated with one or more request queues.
4426  * May fail with EINVAL for various error conditions. May adjust the
4427  * requested depth down, if it's too large. In that case, the set
4428  * value will be stored in set->queue_depth.
4429  */
4430 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4431 {
4432 	int i, ret;
4433 
4434 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4435 
4436 	if (!set->nr_hw_queues)
4437 		return -EINVAL;
4438 	if (!set->queue_depth)
4439 		return -EINVAL;
4440 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4441 		return -EINVAL;
4442 
4443 	if (!set->ops->queue_rq)
4444 		return -EINVAL;
4445 
4446 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4447 		return -EINVAL;
4448 
4449 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4450 		pr_info("blk-mq: reduced tag depth to %u\n",
4451 			BLK_MQ_MAX_DEPTH);
4452 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4453 	}
4454 
4455 	if (!set->nr_maps)
4456 		set->nr_maps = 1;
4457 	else if (set->nr_maps > HCTX_MAX_TYPES)
4458 		return -EINVAL;
4459 
4460 	/*
4461 	 * If a crashdump is active, then we are potentially in a very
4462 	 * memory constrained environment. Limit us to 1 queue and
4463 	 * 64 tags to prevent using too much memory.
4464 	 */
4465 	if (is_kdump_kernel()) {
4466 		set->nr_hw_queues = 1;
4467 		set->nr_maps = 1;
4468 		set->queue_depth = min(64U, set->queue_depth);
4469 	}
4470 	/*
4471 	 * There is no use for more h/w queues than cpus if we just have
4472 	 * a single map
4473 	 */
4474 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4475 		set->nr_hw_queues = nr_cpu_ids;
4476 
4477 	if (set->flags & BLK_MQ_F_BLOCKING) {
4478 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4479 		if (!set->srcu)
4480 			return -ENOMEM;
4481 		ret = init_srcu_struct(set->srcu);
4482 		if (ret)
4483 			goto out_free_srcu;
4484 	}
4485 
4486 	ret = -ENOMEM;
4487 	set->tags = kcalloc_node(set->nr_hw_queues,
4488 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4489 				 set->numa_node);
4490 	if (!set->tags)
4491 		goto out_cleanup_srcu;
4492 
4493 	for (i = 0; i < set->nr_maps; i++) {
4494 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4495 						  sizeof(set->map[i].mq_map[0]),
4496 						  GFP_KERNEL, set->numa_node);
4497 		if (!set->map[i].mq_map)
4498 			goto out_free_mq_map;
4499 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4500 	}
4501 
4502 	blk_mq_update_queue_map(set);
4503 
4504 	ret = blk_mq_alloc_set_map_and_rqs(set);
4505 	if (ret)
4506 		goto out_free_mq_map;
4507 
4508 	mutex_init(&set->tag_list_lock);
4509 	INIT_LIST_HEAD(&set->tag_list);
4510 
4511 	return 0;
4512 
4513 out_free_mq_map:
4514 	for (i = 0; i < set->nr_maps; i++) {
4515 		kfree(set->map[i].mq_map);
4516 		set->map[i].mq_map = NULL;
4517 	}
4518 	kfree(set->tags);
4519 	set->tags = NULL;
4520 out_cleanup_srcu:
4521 	if (set->flags & BLK_MQ_F_BLOCKING)
4522 		cleanup_srcu_struct(set->srcu);
4523 out_free_srcu:
4524 	if (set->flags & BLK_MQ_F_BLOCKING)
4525 		kfree(set->srcu);
4526 	return ret;
4527 }
4528 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4529 
4530 /* allocate and initialize a tagset for a simple single-queue device */
4531 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4532 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4533 		unsigned int set_flags)
4534 {
4535 	memset(set, 0, sizeof(*set));
4536 	set->ops = ops;
4537 	set->nr_hw_queues = 1;
4538 	set->nr_maps = 1;
4539 	set->queue_depth = queue_depth;
4540 	set->numa_node = NUMA_NO_NODE;
4541 	set->flags = set_flags;
4542 	return blk_mq_alloc_tag_set(set);
4543 }
4544 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4545 
4546 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4547 {
4548 	int i, j;
4549 
4550 	for (i = 0; i < set->nr_hw_queues; i++)
4551 		__blk_mq_free_map_and_rqs(set, i);
4552 
4553 	if (blk_mq_is_shared_tags(set->flags)) {
4554 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4555 					BLK_MQ_NO_HCTX_IDX);
4556 	}
4557 
4558 	for (j = 0; j < set->nr_maps; j++) {
4559 		kfree(set->map[j].mq_map);
4560 		set->map[j].mq_map = NULL;
4561 	}
4562 
4563 	kfree(set->tags);
4564 	set->tags = NULL;
4565 	if (set->flags & BLK_MQ_F_BLOCKING) {
4566 		cleanup_srcu_struct(set->srcu);
4567 		kfree(set->srcu);
4568 	}
4569 }
4570 EXPORT_SYMBOL(blk_mq_free_tag_set);
4571 
4572 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4573 {
4574 	struct blk_mq_tag_set *set = q->tag_set;
4575 	struct blk_mq_hw_ctx *hctx;
4576 	int ret;
4577 	unsigned long i;
4578 
4579 	if (!set)
4580 		return -EINVAL;
4581 
4582 	if (q->nr_requests == nr)
4583 		return 0;
4584 
4585 	blk_mq_freeze_queue(q);
4586 	blk_mq_quiesce_queue(q);
4587 
4588 	ret = 0;
4589 	queue_for_each_hw_ctx(q, hctx, i) {
4590 		if (!hctx->tags)
4591 			continue;
4592 		/*
4593 		 * If we're using an MQ scheduler, just update the scheduler
4594 		 * queue depth. This is similar to what the old code would do.
4595 		 */
4596 		if (hctx->sched_tags) {
4597 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4598 						      nr, true);
4599 		} else {
4600 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4601 						      false);
4602 		}
4603 		if (ret)
4604 			break;
4605 		if (q->elevator && q->elevator->type->ops.depth_updated)
4606 			q->elevator->type->ops.depth_updated(hctx);
4607 	}
4608 	if (!ret) {
4609 		q->nr_requests = nr;
4610 		if (blk_mq_is_shared_tags(set->flags)) {
4611 			if (q->elevator)
4612 				blk_mq_tag_update_sched_shared_tags(q);
4613 			else
4614 				blk_mq_tag_resize_shared_tags(set, nr);
4615 		}
4616 	}
4617 
4618 	blk_mq_unquiesce_queue(q);
4619 	blk_mq_unfreeze_queue(q);
4620 
4621 	return ret;
4622 }
4623 
4624 /*
4625  * request_queue and elevator_type pair.
4626  * It is just used by __blk_mq_update_nr_hw_queues to cache
4627  * the elevator_type associated with a request_queue.
4628  */
4629 struct blk_mq_qe_pair {
4630 	struct list_head node;
4631 	struct request_queue *q;
4632 	struct elevator_type *type;
4633 };
4634 
4635 /*
4636  * Cache the elevator_type in qe pair list and switch the
4637  * io scheduler to 'none'
4638  */
4639 static bool blk_mq_elv_switch_none(struct list_head *head,
4640 		struct request_queue *q)
4641 {
4642 	struct blk_mq_qe_pair *qe;
4643 
4644 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4645 	if (!qe)
4646 		return false;
4647 
4648 	/* q->elevator needs protection from ->sysfs_lock */
4649 	mutex_lock(&q->sysfs_lock);
4650 
4651 	/* the check has to be done with holding sysfs_lock */
4652 	if (!q->elevator) {
4653 		kfree(qe);
4654 		goto unlock;
4655 	}
4656 
4657 	INIT_LIST_HEAD(&qe->node);
4658 	qe->q = q;
4659 	qe->type = q->elevator->type;
4660 	/* keep a reference to the elevator module as we'll switch back */
4661 	__elevator_get(qe->type);
4662 	list_add(&qe->node, head);
4663 	elevator_disable(q);
4664 unlock:
4665 	mutex_unlock(&q->sysfs_lock);
4666 
4667 	return true;
4668 }
4669 
4670 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4671 						struct request_queue *q)
4672 {
4673 	struct blk_mq_qe_pair *qe;
4674 
4675 	list_for_each_entry(qe, head, node)
4676 		if (qe->q == q)
4677 			return qe;
4678 
4679 	return NULL;
4680 }
4681 
4682 static void blk_mq_elv_switch_back(struct list_head *head,
4683 				  struct request_queue *q)
4684 {
4685 	struct blk_mq_qe_pair *qe;
4686 	struct elevator_type *t;
4687 
4688 	qe = blk_lookup_qe_pair(head, q);
4689 	if (!qe)
4690 		return;
4691 	t = qe->type;
4692 	list_del(&qe->node);
4693 	kfree(qe);
4694 
4695 	mutex_lock(&q->sysfs_lock);
4696 	elevator_switch(q, t);
4697 	/* drop the reference acquired in blk_mq_elv_switch_none */
4698 	elevator_put(t);
4699 	mutex_unlock(&q->sysfs_lock);
4700 }
4701 
4702 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4703 							int nr_hw_queues)
4704 {
4705 	struct request_queue *q;
4706 	LIST_HEAD(head);
4707 	int prev_nr_hw_queues;
4708 
4709 	lockdep_assert_held(&set->tag_list_lock);
4710 
4711 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4712 		nr_hw_queues = nr_cpu_ids;
4713 	if (nr_hw_queues < 1)
4714 		return;
4715 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4716 		return;
4717 
4718 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4719 		blk_mq_freeze_queue(q);
4720 	/*
4721 	 * Switch IO scheduler to 'none', cleaning up the data associated
4722 	 * with the previous scheduler. We will switch back once we are done
4723 	 * updating the new sw to hw queue mappings.
4724 	 */
4725 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4726 		if (!blk_mq_elv_switch_none(&head, q))
4727 			goto switch_back;
4728 
4729 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4730 		blk_mq_debugfs_unregister_hctxs(q);
4731 		blk_mq_sysfs_unregister_hctxs(q);
4732 	}
4733 
4734 	prev_nr_hw_queues = set->nr_hw_queues;
4735 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4736 		goto reregister;
4737 
4738 fallback:
4739 	blk_mq_update_queue_map(set);
4740 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4741 		blk_mq_realloc_hw_ctxs(set, q);
4742 		blk_mq_update_poll_flag(q);
4743 		if (q->nr_hw_queues != set->nr_hw_queues) {
4744 			int i = prev_nr_hw_queues;
4745 
4746 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4747 					nr_hw_queues, prev_nr_hw_queues);
4748 			for (; i < set->nr_hw_queues; i++)
4749 				__blk_mq_free_map_and_rqs(set, i);
4750 
4751 			set->nr_hw_queues = prev_nr_hw_queues;
4752 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4753 			goto fallback;
4754 		}
4755 		blk_mq_map_swqueue(q);
4756 	}
4757 
4758 reregister:
4759 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4760 		blk_mq_sysfs_register_hctxs(q);
4761 		blk_mq_debugfs_register_hctxs(q);
4762 	}
4763 
4764 switch_back:
4765 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4766 		blk_mq_elv_switch_back(&head, q);
4767 
4768 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4769 		blk_mq_unfreeze_queue(q);
4770 }
4771 
4772 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4773 {
4774 	mutex_lock(&set->tag_list_lock);
4775 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4776 	mutex_unlock(&set->tag_list_lock);
4777 }
4778 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4779 
4780 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4781 			 struct io_comp_batch *iob, unsigned int flags)
4782 {
4783 	long state = get_current_state();
4784 	int ret;
4785 
4786 	do {
4787 		ret = q->mq_ops->poll(hctx, iob);
4788 		if (ret > 0) {
4789 			__set_current_state(TASK_RUNNING);
4790 			return ret;
4791 		}
4792 
4793 		if (signal_pending_state(state, current))
4794 			__set_current_state(TASK_RUNNING);
4795 		if (task_is_running(current))
4796 			return 1;
4797 
4798 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4799 			break;
4800 		cpu_relax();
4801 	} while (!need_resched());
4802 
4803 	__set_current_state(TASK_RUNNING);
4804 	return 0;
4805 }
4806 
4807 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4808 		struct io_comp_batch *iob, unsigned int flags)
4809 {
4810 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4811 
4812 	return blk_hctx_poll(q, hctx, iob, flags);
4813 }
4814 
4815 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4816 		unsigned int poll_flags)
4817 {
4818 	struct request_queue *q = rq->q;
4819 	int ret;
4820 
4821 	if (!blk_rq_is_poll(rq))
4822 		return 0;
4823 	if (!percpu_ref_tryget(&q->q_usage_counter))
4824 		return 0;
4825 
4826 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4827 	blk_queue_exit(q);
4828 
4829 	return ret;
4830 }
4831 EXPORT_SYMBOL_GPL(blk_rq_poll);
4832 
4833 unsigned int blk_mq_rq_cpu(struct request *rq)
4834 {
4835 	return rq->mq_ctx->cpu;
4836 }
4837 EXPORT_SYMBOL(blk_mq_rq_cpu);
4838 
4839 void blk_mq_cancel_work_sync(struct request_queue *q)
4840 {
4841 	struct blk_mq_hw_ctx *hctx;
4842 	unsigned long i;
4843 
4844 	cancel_delayed_work_sync(&q->requeue_work);
4845 
4846 	queue_for_each_hw_ctx(q, hctx, i)
4847 		cancel_delayed_work_sync(&hctx->run_work);
4848 }
4849 
4850 static int __init blk_mq_init(void)
4851 {
4852 	int i;
4853 
4854 	for_each_possible_cpu(i)
4855 		init_llist_head(&per_cpu(blk_cpu_done, i));
4856 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4857 
4858 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4859 				  "block/softirq:dead", NULL,
4860 				  blk_softirq_cpu_dead);
4861 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4862 				blk_mq_hctx_notify_dead);
4863 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4864 				blk_mq_hctx_notify_online,
4865 				blk_mq_hctx_notify_offline);
4866 	return 0;
4867 }
4868 subsys_initcall(blk_mq_init);
4869