xref: /openbmc/linux/block/blk-mq.c (revision bc5aa3a0)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, int op,
163 			       unsigned int op_flags)
164 {
165 	if (blk_queue_io_stat(q))
166 		op_flags |= REQ_IO_STAT;
167 
168 	INIT_LIST_HEAD(&rq->queuelist);
169 	/* csd/requeue_work/fifo_time is initialized before use */
170 	rq->q = q;
171 	rq->mq_ctx = ctx;
172 	req_set_op_attrs(rq, op, op_flags);
173 	/* do not touch atomic flags, it needs atomic ops against the timer */
174 	rq->cpu = -1;
175 	INIT_HLIST_NODE(&rq->hash);
176 	RB_CLEAR_NODE(&rq->rb_node);
177 	rq->rq_disk = NULL;
178 	rq->part = NULL;
179 	rq->start_time = jiffies;
180 #ifdef CONFIG_BLK_CGROUP
181 	rq->rl = NULL;
182 	set_start_time_ns(rq);
183 	rq->io_start_time_ns = 0;
184 #endif
185 	rq->nr_phys_segments = 0;
186 #if defined(CONFIG_BLK_DEV_INTEGRITY)
187 	rq->nr_integrity_segments = 0;
188 #endif
189 	rq->special = NULL;
190 	/* tag was already set */
191 	rq->errors = 0;
192 
193 	rq->cmd = rq->__cmd;
194 
195 	rq->extra_len = 0;
196 	rq->sense_len = 0;
197 	rq->resid_len = 0;
198 	rq->sense = NULL;
199 
200 	INIT_LIST_HEAD(&rq->timeout_list);
201 	rq->timeout = 0;
202 
203 	rq->end_io = NULL;
204 	rq->end_io_data = NULL;
205 	rq->next_rq = NULL;
206 
207 	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
208 }
209 
210 static struct request *
211 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 {
213 	struct request *rq;
214 	unsigned int tag;
215 
216 	tag = blk_mq_get_tag(data);
217 	if (tag != BLK_MQ_TAG_FAIL) {
218 		rq = data->hctx->tags->rqs[tag];
219 
220 		if (blk_mq_tag_busy(data->hctx)) {
221 			rq->cmd_flags = REQ_MQ_INFLIGHT;
222 			atomic_inc(&data->hctx->nr_active);
223 		}
224 
225 		rq->tag = tag;
226 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 		return rq;
228 	}
229 
230 	return NULL;
231 }
232 
233 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
234 		unsigned int flags)
235 {
236 	struct blk_mq_ctx *ctx;
237 	struct blk_mq_hw_ctx *hctx;
238 	struct request *rq;
239 	struct blk_mq_alloc_data alloc_data;
240 	int ret;
241 
242 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 	if (ret)
244 		return ERR_PTR(ret);
245 
246 	ctx = blk_mq_get_ctx(q);
247 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
248 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249 
250 	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251 	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 		__blk_mq_run_hw_queue(hctx);
253 		blk_mq_put_ctx(ctx);
254 
255 		ctx = blk_mq_get_ctx(q);
256 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258 		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
259 		ctx = alloc_data.ctx;
260 	}
261 	blk_mq_put_ctx(ctx);
262 	if (!rq) {
263 		blk_queue_exit(q);
264 		return ERR_PTR(-EWOULDBLOCK);
265 	}
266 
267 	rq->__data_len = 0;
268 	rq->__sector = (sector_t) -1;
269 	rq->bio = rq->biotail = NULL;
270 	return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273 
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 		unsigned int flags, unsigned int hctx_idx)
276 {
277 	struct blk_mq_hw_ctx *hctx;
278 	struct blk_mq_ctx *ctx;
279 	struct request *rq;
280 	struct blk_mq_alloc_data alloc_data;
281 	int ret;
282 
283 	/*
284 	 * If the tag allocator sleeps we could get an allocation for a
285 	 * different hardware context.  No need to complicate the low level
286 	 * allocator for this for the rare use case of a command tied to
287 	 * a specific queue.
288 	 */
289 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 		return ERR_PTR(-EINVAL);
291 
292 	if (hctx_idx >= q->nr_hw_queues)
293 		return ERR_PTR(-EIO);
294 
295 	ret = blk_queue_enter(q, true);
296 	if (ret)
297 		return ERR_PTR(ret);
298 
299 	hctx = q->queue_hw_ctx[hctx_idx];
300 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
301 
302 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
303 	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
304 	if (!rq) {
305 		blk_queue_exit(q);
306 		return ERR_PTR(-EWOULDBLOCK);
307 	}
308 
309 	return rq;
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
312 
313 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
314 				  struct blk_mq_ctx *ctx, struct request *rq)
315 {
316 	const int tag = rq->tag;
317 	struct request_queue *q = rq->q;
318 
319 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
320 		atomic_dec(&hctx->nr_active);
321 	rq->cmd_flags = 0;
322 
323 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
324 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
325 	blk_queue_exit(q);
326 }
327 
328 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
329 {
330 	struct blk_mq_ctx *ctx = rq->mq_ctx;
331 
332 	ctx->rq_completed[rq_is_sync(rq)]++;
333 	__blk_mq_free_request(hctx, ctx, rq);
334 
335 }
336 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
337 
338 void blk_mq_free_request(struct request *rq)
339 {
340 	struct blk_mq_hw_ctx *hctx;
341 	struct request_queue *q = rq->q;
342 
343 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
344 	blk_mq_free_hctx_request(hctx, rq);
345 }
346 EXPORT_SYMBOL_GPL(blk_mq_free_request);
347 
348 inline void __blk_mq_end_request(struct request *rq, int error)
349 {
350 	blk_account_io_done(rq);
351 
352 	if (rq->end_io) {
353 		rq->end_io(rq, error);
354 	} else {
355 		if (unlikely(blk_bidi_rq(rq)))
356 			blk_mq_free_request(rq->next_rq);
357 		blk_mq_free_request(rq);
358 	}
359 }
360 EXPORT_SYMBOL(__blk_mq_end_request);
361 
362 void blk_mq_end_request(struct request *rq, int error)
363 {
364 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
365 		BUG();
366 	__blk_mq_end_request(rq, error);
367 }
368 EXPORT_SYMBOL(blk_mq_end_request);
369 
370 static void __blk_mq_complete_request_remote(void *data)
371 {
372 	struct request *rq = data;
373 
374 	rq->q->softirq_done_fn(rq);
375 }
376 
377 static void blk_mq_ipi_complete_request(struct request *rq)
378 {
379 	struct blk_mq_ctx *ctx = rq->mq_ctx;
380 	bool shared = false;
381 	int cpu;
382 
383 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
384 		rq->q->softirq_done_fn(rq);
385 		return;
386 	}
387 
388 	cpu = get_cpu();
389 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
390 		shared = cpus_share_cache(cpu, ctx->cpu);
391 
392 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
393 		rq->csd.func = __blk_mq_complete_request_remote;
394 		rq->csd.info = rq;
395 		rq->csd.flags = 0;
396 		smp_call_function_single_async(ctx->cpu, &rq->csd);
397 	} else {
398 		rq->q->softirq_done_fn(rq);
399 	}
400 	put_cpu();
401 }
402 
403 static void __blk_mq_complete_request(struct request *rq)
404 {
405 	struct request_queue *q = rq->q;
406 
407 	if (!q->softirq_done_fn)
408 		blk_mq_end_request(rq, rq->errors);
409 	else
410 		blk_mq_ipi_complete_request(rq);
411 }
412 
413 /**
414  * blk_mq_complete_request - end I/O on a request
415  * @rq:		the request being processed
416  *
417  * Description:
418  *	Ends all I/O on a request. It does not handle partial completions.
419  *	The actual completion happens out-of-order, through a IPI handler.
420  **/
421 void blk_mq_complete_request(struct request *rq, int error)
422 {
423 	struct request_queue *q = rq->q;
424 
425 	if (unlikely(blk_should_fake_timeout(q)))
426 		return;
427 	if (!blk_mark_rq_complete(rq)) {
428 		rq->errors = error;
429 		__blk_mq_complete_request(rq);
430 	}
431 }
432 EXPORT_SYMBOL(blk_mq_complete_request);
433 
434 int blk_mq_request_started(struct request *rq)
435 {
436 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
437 }
438 EXPORT_SYMBOL_GPL(blk_mq_request_started);
439 
440 void blk_mq_start_request(struct request *rq)
441 {
442 	struct request_queue *q = rq->q;
443 
444 	trace_block_rq_issue(q, rq);
445 
446 	rq->resid_len = blk_rq_bytes(rq);
447 	if (unlikely(blk_bidi_rq(rq)))
448 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
449 
450 	blk_add_timer(rq);
451 
452 	/*
453 	 * Ensure that ->deadline is visible before set the started
454 	 * flag and clear the completed flag.
455 	 */
456 	smp_mb__before_atomic();
457 
458 	/*
459 	 * Mark us as started and clear complete. Complete might have been
460 	 * set if requeue raced with timeout, which then marked it as
461 	 * complete. So be sure to clear complete again when we start
462 	 * the request, otherwise we'll ignore the completion event.
463 	 */
464 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
465 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
466 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
467 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
468 
469 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
470 		/*
471 		 * Make sure space for the drain appears.  We know we can do
472 		 * this because max_hw_segments has been adjusted to be one
473 		 * fewer than the device can handle.
474 		 */
475 		rq->nr_phys_segments++;
476 	}
477 }
478 EXPORT_SYMBOL(blk_mq_start_request);
479 
480 static void __blk_mq_requeue_request(struct request *rq)
481 {
482 	struct request_queue *q = rq->q;
483 
484 	trace_block_rq_requeue(q, rq);
485 
486 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
487 		if (q->dma_drain_size && blk_rq_bytes(rq))
488 			rq->nr_phys_segments--;
489 	}
490 }
491 
492 void blk_mq_requeue_request(struct request *rq)
493 {
494 	__blk_mq_requeue_request(rq);
495 
496 	BUG_ON(blk_queued_rq(rq));
497 	blk_mq_add_to_requeue_list(rq, true);
498 }
499 EXPORT_SYMBOL(blk_mq_requeue_request);
500 
501 static void blk_mq_requeue_work(struct work_struct *work)
502 {
503 	struct request_queue *q =
504 		container_of(work, struct request_queue, requeue_work);
505 	LIST_HEAD(rq_list);
506 	struct request *rq, *next;
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&q->requeue_lock, flags);
510 	list_splice_init(&q->requeue_list, &rq_list);
511 	spin_unlock_irqrestore(&q->requeue_lock, flags);
512 
513 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
514 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
515 			continue;
516 
517 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
518 		list_del_init(&rq->queuelist);
519 		blk_mq_insert_request(rq, true, false, false);
520 	}
521 
522 	while (!list_empty(&rq_list)) {
523 		rq = list_entry(rq_list.next, struct request, queuelist);
524 		list_del_init(&rq->queuelist);
525 		blk_mq_insert_request(rq, false, false, false);
526 	}
527 
528 	/*
529 	 * Use the start variant of queue running here, so that running
530 	 * the requeue work will kick stopped queues.
531 	 */
532 	blk_mq_start_hw_queues(q);
533 }
534 
535 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
536 {
537 	struct request_queue *q = rq->q;
538 	unsigned long flags;
539 
540 	/*
541 	 * We abuse this flag that is otherwise used by the I/O scheduler to
542 	 * request head insertation from the workqueue.
543 	 */
544 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
545 
546 	spin_lock_irqsave(&q->requeue_lock, flags);
547 	if (at_head) {
548 		rq->cmd_flags |= REQ_SOFTBARRIER;
549 		list_add(&rq->queuelist, &q->requeue_list);
550 	} else {
551 		list_add_tail(&rq->queuelist, &q->requeue_list);
552 	}
553 	spin_unlock_irqrestore(&q->requeue_lock, flags);
554 }
555 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
556 
557 void blk_mq_cancel_requeue_work(struct request_queue *q)
558 {
559 	cancel_work_sync(&q->requeue_work);
560 }
561 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
562 
563 void blk_mq_kick_requeue_list(struct request_queue *q)
564 {
565 	kblockd_schedule_work(&q->requeue_work);
566 }
567 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
568 
569 void blk_mq_abort_requeue_list(struct request_queue *q)
570 {
571 	unsigned long flags;
572 	LIST_HEAD(rq_list);
573 
574 	spin_lock_irqsave(&q->requeue_lock, flags);
575 	list_splice_init(&q->requeue_list, &rq_list);
576 	spin_unlock_irqrestore(&q->requeue_lock, flags);
577 
578 	while (!list_empty(&rq_list)) {
579 		struct request *rq;
580 
581 		rq = list_first_entry(&rq_list, struct request, queuelist);
582 		list_del_init(&rq->queuelist);
583 		rq->errors = -EIO;
584 		blk_mq_end_request(rq, rq->errors);
585 	}
586 }
587 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
588 
589 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
590 {
591 	if (tag < tags->nr_tags)
592 		return tags->rqs[tag];
593 
594 	return NULL;
595 }
596 EXPORT_SYMBOL(blk_mq_tag_to_rq);
597 
598 struct blk_mq_timeout_data {
599 	unsigned long next;
600 	unsigned int next_set;
601 };
602 
603 void blk_mq_rq_timed_out(struct request *req, bool reserved)
604 {
605 	struct blk_mq_ops *ops = req->q->mq_ops;
606 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
607 
608 	/*
609 	 * We know that complete is set at this point. If STARTED isn't set
610 	 * anymore, then the request isn't active and the "timeout" should
611 	 * just be ignored. This can happen due to the bitflag ordering.
612 	 * Timeout first checks if STARTED is set, and if it is, assumes
613 	 * the request is active. But if we race with completion, then
614 	 * we both flags will get cleared. So check here again, and ignore
615 	 * a timeout event with a request that isn't active.
616 	 */
617 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
618 		return;
619 
620 	if (ops->timeout)
621 		ret = ops->timeout(req, reserved);
622 
623 	switch (ret) {
624 	case BLK_EH_HANDLED:
625 		__blk_mq_complete_request(req);
626 		break;
627 	case BLK_EH_RESET_TIMER:
628 		blk_add_timer(req);
629 		blk_clear_rq_complete(req);
630 		break;
631 	case BLK_EH_NOT_HANDLED:
632 		break;
633 	default:
634 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
635 		break;
636 	}
637 }
638 
639 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
640 		struct request *rq, void *priv, bool reserved)
641 {
642 	struct blk_mq_timeout_data *data = priv;
643 
644 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
645 		/*
646 		 * If a request wasn't started before the queue was
647 		 * marked dying, kill it here or it'll go unnoticed.
648 		 */
649 		if (unlikely(blk_queue_dying(rq->q))) {
650 			rq->errors = -EIO;
651 			blk_mq_end_request(rq, rq->errors);
652 		}
653 		return;
654 	}
655 
656 	if (time_after_eq(jiffies, rq->deadline)) {
657 		if (!blk_mark_rq_complete(rq))
658 			blk_mq_rq_timed_out(rq, reserved);
659 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
660 		data->next = rq->deadline;
661 		data->next_set = 1;
662 	}
663 }
664 
665 static void blk_mq_timeout_work(struct work_struct *work)
666 {
667 	struct request_queue *q =
668 		container_of(work, struct request_queue, timeout_work);
669 	struct blk_mq_timeout_data data = {
670 		.next		= 0,
671 		.next_set	= 0,
672 	};
673 	int i;
674 
675 	/* A deadlock might occur if a request is stuck requiring a
676 	 * timeout at the same time a queue freeze is waiting
677 	 * completion, since the timeout code would not be able to
678 	 * acquire the queue reference here.
679 	 *
680 	 * That's why we don't use blk_queue_enter here; instead, we use
681 	 * percpu_ref_tryget directly, because we need to be able to
682 	 * obtain a reference even in the short window between the queue
683 	 * starting to freeze, by dropping the first reference in
684 	 * blk_mq_freeze_queue_start, and the moment the last request is
685 	 * consumed, marked by the instant q_usage_counter reaches
686 	 * zero.
687 	 */
688 	if (!percpu_ref_tryget(&q->q_usage_counter))
689 		return;
690 
691 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
692 
693 	if (data.next_set) {
694 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
695 		mod_timer(&q->timeout, data.next);
696 	} else {
697 		struct blk_mq_hw_ctx *hctx;
698 
699 		queue_for_each_hw_ctx(q, hctx, i) {
700 			/* the hctx may be unmapped, so check it here */
701 			if (blk_mq_hw_queue_mapped(hctx))
702 				blk_mq_tag_idle(hctx);
703 		}
704 	}
705 	blk_queue_exit(q);
706 }
707 
708 /*
709  * Reverse check our software queue for entries that we could potentially
710  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
711  * too much time checking for merges.
712  */
713 static bool blk_mq_attempt_merge(struct request_queue *q,
714 				 struct blk_mq_ctx *ctx, struct bio *bio)
715 {
716 	struct request *rq;
717 	int checked = 8;
718 
719 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
720 		int el_ret;
721 
722 		if (!checked--)
723 			break;
724 
725 		if (!blk_rq_merge_ok(rq, bio))
726 			continue;
727 
728 		el_ret = blk_try_merge(rq, bio);
729 		if (el_ret == ELEVATOR_BACK_MERGE) {
730 			if (bio_attempt_back_merge(q, rq, bio)) {
731 				ctx->rq_merged++;
732 				return true;
733 			}
734 			break;
735 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
736 			if (bio_attempt_front_merge(q, rq, bio)) {
737 				ctx->rq_merged++;
738 				return true;
739 			}
740 			break;
741 		}
742 	}
743 
744 	return false;
745 }
746 
747 /*
748  * Process software queues that have been marked busy, splicing them
749  * to the for-dispatch
750  */
751 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
752 {
753 	struct blk_mq_ctx *ctx;
754 	int i;
755 
756 	for (i = 0; i < hctx->ctx_map.size; i++) {
757 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
758 		unsigned int off, bit;
759 
760 		if (!bm->word)
761 			continue;
762 
763 		bit = 0;
764 		off = i * hctx->ctx_map.bits_per_word;
765 		do {
766 			bit = find_next_bit(&bm->word, bm->depth, bit);
767 			if (bit >= bm->depth)
768 				break;
769 
770 			ctx = hctx->ctxs[bit + off];
771 			clear_bit(bit, &bm->word);
772 			spin_lock(&ctx->lock);
773 			list_splice_tail_init(&ctx->rq_list, list);
774 			spin_unlock(&ctx->lock);
775 
776 			bit++;
777 		} while (1);
778 	}
779 }
780 
781 /*
782  * Run this hardware queue, pulling any software queues mapped to it in.
783  * Note that this function currently has various problems around ordering
784  * of IO. In particular, we'd like FIFO behaviour on handling existing
785  * items on the hctx->dispatch list. Ignore that for now.
786  */
787 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
788 {
789 	struct request_queue *q = hctx->queue;
790 	struct request *rq;
791 	LIST_HEAD(rq_list);
792 	LIST_HEAD(driver_list);
793 	struct list_head *dptr;
794 	int queued;
795 
796 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
797 		return;
798 
799 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
800 		cpu_online(hctx->next_cpu));
801 
802 	hctx->run++;
803 
804 	/*
805 	 * Touch any software queue that has pending entries.
806 	 */
807 	flush_busy_ctxs(hctx, &rq_list);
808 
809 	/*
810 	 * If we have previous entries on our dispatch list, grab them
811 	 * and stuff them at the front for more fair dispatch.
812 	 */
813 	if (!list_empty_careful(&hctx->dispatch)) {
814 		spin_lock(&hctx->lock);
815 		if (!list_empty(&hctx->dispatch))
816 			list_splice_init(&hctx->dispatch, &rq_list);
817 		spin_unlock(&hctx->lock);
818 	}
819 
820 	/*
821 	 * Start off with dptr being NULL, so we start the first request
822 	 * immediately, even if we have more pending.
823 	 */
824 	dptr = NULL;
825 
826 	/*
827 	 * Now process all the entries, sending them to the driver.
828 	 */
829 	queued = 0;
830 	while (!list_empty(&rq_list)) {
831 		struct blk_mq_queue_data bd;
832 		int ret;
833 
834 		rq = list_first_entry(&rq_list, struct request, queuelist);
835 		list_del_init(&rq->queuelist);
836 
837 		bd.rq = rq;
838 		bd.list = dptr;
839 		bd.last = list_empty(&rq_list);
840 
841 		ret = q->mq_ops->queue_rq(hctx, &bd);
842 		switch (ret) {
843 		case BLK_MQ_RQ_QUEUE_OK:
844 			queued++;
845 			break;
846 		case BLK_MQ_RQ_QUEUE_BUSY:
847 			list_add(&rq->queuelist, &rq_list);
848 			__blk_mq_requeue_request(rq);
849 			break;
850 		default:
851 			pr_err("blk-mq: bad return on queue: %d\n", ret);
852 		case BLK_MQ_RQ_QUEUE_ERROR:
853 			rq->errors = -EIO;
854 			blk_mq_end_request(rq, rq->errors);
855 			break;
856 		}
857 
858 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
859 			break;
860 
861 		/*
862 		 * We've done the first request. If we have more than 1
863 		 * left in the list, set dptr to defer issue.
864 		 */
865 		if (!dptr && rq_list.next != rq_list.prev)
866 			dptr = &driver_list;
867 	}
868 
869 	if (!queued)
870 		hctx->dispatched[0]++;
871 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
872 		hctx->dispatched[ilog2(queued) + 1]++;
873 
874 	/*
875 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
876 	 * that is where we will continue on next queue run.
877 	 */
878 	if (!list_empty(&rq_list)) {
879 		spin_lock(&hctx->lock);
880 		list_splice(&rq_list, &hctx->dispatch);
881 		spin_unlock(&hctx->lock);
882 		/*
883 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
884 		 * it's possible the queue is stopped and restarted again
885 		 * before this. Queue restart will dispatch requests. And since
886 		 * requests in rq_list aren't added into hctx->dispatch yet,
887 		 * the requests in rq_list might get lost.
888 		 *
889 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
890 		 **/
891 		blk_mq_run_hw_queue(hctx, true);
892 	}
893 }
894 
895 /*
896  * It'd be great if the workqueue API had a way to pass
897  * in a mask and had some smarts for more clever placement.
898  * For now we just round-robin here, switching for every
899  * BLK_MQ_CPU_WORK_BATCH queued items.
900  */
901 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
902 {
903 	if (hctx->queue->nr_hw_queues == 1)
904 		return WORK_CPU_UNBOUND;
905 
906 	if (--hctx->next_cpu_batch <= 0) {
907 		int cpu = hctx->next_cpu, next_cpu;
908 
909 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
910 		if (next_cpu >= nr_cpu_ids)
911 			next_cpu = cpumask_first(hctx->cpumask);
912 
913 		hctx->next_cpu = next_cpu;
914 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
915 
916 		return cpu;
917 	}
918 
919 	return hctx->next_cpu;
920 }
921 
922 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
923 {
924 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
925 	    !blk_mq_hw_queue_mapped(hctx)))
926 		return;
927 
928 	if (!async) {
929 		int cpu = get_cpu();
930 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
931 			__blk_mq_run_hw_queue(hctx);
932 			put_cpu();
933 			return;
934 		}
935 
936 		put_cpu();
937 	}
938 
939 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
940 			&hctx->run_work, 0);
941 }
942 
943 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
944 {
945 	struct blk_mq_hw_ctx *hctx;
946 	int i;
947 
948 	queue_for_each_hw_ctx(q, hctx, i) {
949 		if ((!blk_mq_hctx_has_pending(hctx) &&
950 		    list_empty_careful(&hctx->dispatch)) ||
951 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
952 			continue;
953 
954 		blk_mq_run_hw_queue(hctx, async);
955 	}
956 }
957 EXPORT_SYMBOL(blk_mq_run_hw_queues);
958 
959 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
960 {
961 	cancel_delayed_work(&hctx->run_work);
962 	cancel_delayed_work(&hctx->delay_work);
963 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
964 }
965 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
966 
967 void blk_mq_stop_hw_queues(struct request_queue *q)
968 {
969 	struct blk_mq_hw_ctx *hctx;
970 	int i;
971 
972 	queue_for_each_hw_ctx(q, hctx, i)
973 		blk_mq_stop_hw_queue(hctx);
974 }
975 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
976 
977 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
978 {
979 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
980 
981 	blk_mq_run_hw_queue(hctx, false);
982 }
983 EXPORT_SYMBOL(blk_mq_start_hw_queue);
984 
985 void blk_mq_start_hw_queues(struct request_queue *q)
986 {
987 	struct blk_mq_hw_ctx *hctx;
988 	int i;
989 
990 	queue_for_each_hw_ctx(q, hctx, i)
991 		blk_mq_start_hw_queue(hctx);
992 }
993 EXPORT_SYMBOL(blk_mq_start_hw_queues);
994 
995 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
996 {
997 	struct blk_mq_hw_ctx *hctx;
998 	int i;
999 
1000 	queue_for_each_hw_ctx(q, hctx, i) {
1001 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1002 			continue;
1003 
1004 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1005 		blk_mq_run_hw_queue(hctx, async);
1006 	}
1007 }
1008 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1009 
1010 static void blk_mq_run_work_fn(struct work_struct *work)
1011 {
1012 	struct blk_mq_hw_ctx *hctx;
1013 
1014 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1015 
1016 	__blk_mq_run_hw_queue(hctx);
1017 }
1018 
1019 static void blk_mq_delay_work_fn(struct work_struct *work)
1020 {
1021 	struct blk_mq_hw_ctx *hctx;
1022 
1023 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1024 
1025 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1026 		__blk_mq_run_hw_queue(hctx);
1027 }
1028 
1029 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1030 {
1031 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1032 		return;
1033 
1034 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1035 			&hctx->delay_work, msecs_to_jiffies(msecs));
1036 }
1037 EXPORT_SYMBOL(blk_mq_delay_queue);
1038 
1039 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1040 					    struct request *rq,
1041 					    bool at_head)
1042 {
1043 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1044 
1045 	trace_block_rq_insert(hctx->queue, rq);
1046 
1047 	if (at_head)
1048 		list_add(&rq->queuelist, &ctx->rq_list);
1049 	else
1050 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1051 }
1052 
1053 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1054 				    struct request *rq, bool at_head)
1055 {
1056 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1057 
1058 	__blk_mq_insert_req_list(hctx, rq, at_head);
1059 	blk_mq_hctx_mark_pending(hctx, ctx);
1060 }
1061 
1062 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1063 			   bool async)
1064 {
1065 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1066 	struct request_queue *q = rq->q;
1067 	struct blk_mq_hw_ctx *hctx;
1068 
1069 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1070 
1071 	spin_lock(&ctx->lock);
1072 	__blk_mq_insert_request(hctx, rq, at_head);
1073 	spin_unlock(&ctx->lock);
1074 
1075 	if (run_queue)
1076 		blk_mq_run_hw_queue(hctx, async);
1077 }
1078 
1079 static void blk_mq_insert_requests(struct request_queue *q,
1080 				     struct blk_mq_ctx *ctx,
1081 				     struct list_head *list,
1082 				     int depth,
1083 				     bool from_schedule)
1084 
1085 {
1086 	struct blk_mq_hw_ctx *hctx;
1087 
1088 	trace_block_unplug(q, depth, !from_schedule);
1089 
1090 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1091 
1092 	/*
1093 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1094 	 * offline now
1095 	 */
1096 	spin_lock(&ctx->lock);
1097 	while (!list_empty(list)) {
1098 		struct request *rq;
1099 
1100 		rq = list_first_entry(list, struct request, queuelist);
1101 		BUG_ON(rq->mq_ctx != ctx);
1102 		list_del_init(&rq->queuelist);
1103 		__blk_mq_insert_req_list(hctx, rq, false);
1104 	}
1105 	blk_mq_hctx_mark_pending(hctx, ctx);
1106 	spin_unlock(&ctx->lock);
1107 
1108 	blk_mq_run_hw_queue(hctx, from_schedule);
1109 }
1110 
1111 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1112 {
1113 	struct request *rqa = container_of(a, struct request, queuelist);
1114 	struct request *rqb = container_of(b, struct request, queuelist);
1115 
1116 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1117 		 (rqa->mq_ctx == rqb->mq_ctx &&
1118 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1119 }
1120 
1121 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1122 {
1123 	struct blk_mq_ctx *this_ctx;
1124 	struct request_queue *this_q;
1125 	struct request *rq;
1126 	LIST_HEAD(list);
1127 	LIST_HEAD(ctx_list);
1128 	unsigned int depth;
1129 
1130 	list_splice_init(&plug->mq_list, &list);
1131 
1132 	list_sort(NULL, &list, plug_ctx_cmp);
1133 
1134 	this_q = NULL;
1135 	this_ctx = NULL;
1136 	depth = 0;
1137 
1138 	while (!list_empty(&list)) {
1139 		rq = list_entry_rq(list.next);
1140 		list_del_init(&rq->queuelist);
1141 		BUG_ON(!rq->q);
1142 		if (rq->mq_ctx != this_ctx) {
1143 			if (this_ctx) {
1144 				blk_mq_insert_requests(this_q, this_ctx,
1145 							&ctx_list, depth,
1146 							from_schedule);
1147 			}
1148 
1149 			this_ctx = rq->mq_ctx;
1150 			this_q = rq->q;
1151 			depth = 0;
1152 		}
1153 
1154 		depth++;
1155 		list_add_tail(&rq->queuelist, &ctx_list);
1156 	}
1157 
1158 	/*
1159 	 * If 'this_ctx' is set, we know we have entries to complete
1160 	 * on 'ctx_list'. Do those.
1161 	 */
1162 	if (this_ctx) {
1163 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1164 				       from_schedule);
1165 	}
1166 }
1167 
1168 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1169 {
1170 	init_request_from_bio(rq, bio);
1171 
1172 	blk_account_io_start(rq, 1);
1173 }
1174 
1175 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1176 {
1177 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1178 		!blk_queue_nomerges(hctx->queue);
1179 }
1180 
1181 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1182 					 struct blk_mq_ctx *ctx,
1183 					 struct request *rq, struct bio *bio)
1184 {
1185 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1186 		blk_mq_bio_to_request(rq, bio);
1187 		spin_lock(&ctx->lock);
1188 insert_rq:
1189 		__blk_mq_insert_request(hctx, rq, false);
1190 		spin_unlock(&ctx->lock);
1191 		return false;
1192 	} else {
1193 		struct request_queue *q = hctx->queue;
1194 
1195 		spin_lock(&ctx->lock);
1196 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1197 			blk_mq_bio_to_request(rq, bio);
1198 			goto insert_rq;
1199 		}
1200 
1201 		spin_unlock(&ctx->lock);
1202 		__blk_mq_free_request(hctx, ctx, rq);
1203 		return true;
1204 	}
1205 }
1206 
1207 struct blk_map_ctx {
1208 	struct blk_mq_hw_ctx *hctx;
1209 	struct blk_mq_ctx *ctx;
1210 };
1211 
1212 static struct request *blk_mq_map_request(struct request_queue *q,
1213 					  struct bio *bio,
1214 					  struct blk_map_ctx *data)
1215 {
1216 	struct blk_mq_hw_ctx *hctx;
1217 	struct blk_mq_ctx *ctx;
1218 	struct request *rq;
1219 	int op = bio_data_dir(bio);
1220 	int op_flags = 0;
1221 	struct blk_mq_alloc_data alloc_data;
1222 
1223 	blk_queue_enter_live(q);
1224 	ctx = blk_mq_get_ctx(q);
1225 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1226 
1227 	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1228 		op_flags |= REQ_SYNC;
1229 
1230 	trace_block_getrq(q, bio, op);
1231 	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1232 	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1233 	if (unlikely(!rq)) {
1234 		__blk_mq_run_hw_queue(hctx);
1235 		blk_mq_put_ctx(ctx);
1236 		trace_block_sleeprq(q, bio, op);
1237 
1238 		ctx = blk_mq_get_ctx(q);
1239 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1240 		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1241 		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1242 		ctx = alloc_data.ctx;
1243 		hctx = alloc_data.hctx;
1244 	}
1245 
1246 	hctx->queued++;
1247 	data->hctx = hctx;
1248 	data->ctx = ctx;
1249 	return rq;
1250 }
1251 
1252 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1253 {
1254 	int ret;
1255 	struct request_queue *q = rq->q;
1256 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1257 			rq->mq_ctx->cpu);
1258 	struct blk_mq_queue_data bd = {
1259 		.rq = rq,
1260 		.list = NULL,
1261 		.last = 1
1262 	};
1263 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1264 
1265 	/*
1266 	 * For OK queue, we are done. For error, kill it. Any other
1267 	 * error (busy), just add it to our list as we previously
1268 	 * would have done
1269 	 */
1270 	ret = q->mq_ops->queue_rq(hctx, &bd);
1271 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1272 		*cookie = new_cookie;
1273 		return 0;
1274 	}
1275 
1276 	__blk_mq_requeue_request(rq);
1277 
1278 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1279 		*cookie = BLK_QC_T_NONE;
1280 		rq->errors = -EIO;
1281 		blk_mq_end_request(rq, rq->errors);
1282 		return 0;
1283 	}
1284 
1285 	return -1;
1286 }
1287 
1288 /*
1289  * Multiple hardware queue variant. This will not use per-process plugs,
1290  * but will attempt to bypass the hctx queueing if we can go straight to
1291  * hardware for SYNC IO.
1292  */
1293 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1294 {
1295 	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1296 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1297 	struct blk_map_ctx data;
1298 	struct request *rq;
1299 	unsigned int request_count = 0;
1300 	struct blk_plug *plug;
1301 	struct request *same_queue_rq = NULL;
1302 	blk_qc_t cookie;
1303 
1304 	blk_queue_bounce(q, &bio);
1305 
1306 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1307 		bio_io_error(bio);
1308 		return BLK_QC_T_NONE;
1309 	}
1310 
1311 	blk_queue_split(q, &bio, q->bio_split);
1312 
1313 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1314 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1315 		return BLK_QC_T_NONE;
1316 
1317 	rq = blk_mq_map_request(q, bio, &data);
1318 	if (unlikely(!rq))
1319 		return BLK_QC_T_NONE;
1320 
1321 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1322 
1323 	if (unlikely(is_flush_fua)) {
1324 		blk_mq_bio_to_request(rq, bio);
1325 		blk_insert_flush(rq);
1326 		goto run_queue;
1327 	}
1328 
1329 	plug = current->plug;
1330 	/*
1331 	 * If the driver supports defer issued based on 'last', then
1332 	 * queue it up like normal since we can potentially save some
1333 	 * CPU this way.
1334 	 */
1335 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1336 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1337 		struct request *old_rq = NULL;
1338 
1339 		blk_mq_bio_to_request(rq, bio);
1340 
1341 		/*
1342 		 * We do limited pluging. If the bio can be merged, do that.
1343 		 * Otherwise the existing request in the plug list will be
1344 		 * issued. So the plug list will have one request at most
1345 		 */
1346 		if (plug) {
1347 			/*
1348 			 * The plug list might get flushed before this. If that
1349 			 * happens, same_queue_rq is invalid and plug list is
1350 			 * empty
1351 			 */
1352 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1353 				old_rq = same_queue_rq;
1354 				list_del_init(&old_rq->queuelist);
1355 			}
1356 			list_add_tail(&rq->queuelist, &plug->mq_list);
1357 		} else /* is_sync */
1358 			old_rq = rq;
1359 		blk_mq_put_ctx(data.ctx);
1360 		if (!old_rq)
1361 			goto done;
1362 		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1363 			goto done;
1364 		blk_mq_insert_request(old_rq, false, true, true);
1365 		goto done;
1366 	}
1367 
1368 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1369 		/*
1370 		 * For a SYNC request, send it to the hardware immediately. For
1371 		 * an ASYNC request, just ensure that we run it later on. The
1372 		 * latter allows for merging opportunities and more efficient
1373 		 * dispatching.
1374 		 */
1375 run_queue:
1376 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1377 	}
1378 	blk_mq_put_ctx(data.ctx);
1379 done:
1380 	return cookie;
1381 }
1382 
1383 /*
1384  * Single hardware queue variant. This will attempt to use any per-process
1385  * plug for merging and IO deferral.
1386  */
1387 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1388 {
1389 	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1390 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1391 	struct blk_plug *plug;
1392 	unsigned int request_count = 0;
1393 	struct blk_map_ctx data;
1394 	struct request *rq;
1395 	blk_qc_t cookie;
1396 
1397 	blk_queue_bounce(q, &bio);
1398 
1399 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1400 		bio_io_error(bio);
1401 		return BLK_QC_T_NONE;
1402 	}
1403 
1404 	blk_queue_split(q, &bio, q->bio_split);
1405 
1406 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1407 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1408 			return BLK_QC_T_NONE;
1409 	} else
1410 		request_count = blk_plug_queued_count(q);
1411 
1412 	rq = blk_mq_map_request(q, bio, &data);
1413 	if (unlikely(!rq))
1414 		return BLK_QC_T_NONE;
1415 
1416 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1417 
1418 	if (unlikely(is_flush_fua)) {
1419 		blk_mq_bio_to_request(rq, bio);
1420 		blk_insert_flush(rq);
1421 		goto run_queue;
1422 	}
1423 
1424 	/*
1425 	 * A task plug currently exists. Since this is completely lockless,
1426 	 * utilize that to temporarily store requests until the task is
1427 	 * either done or scheduled away.
1428 	 */
1429 	plug = current->plug;
1430 	if (plug) {
1431 		blk_mq_bio_to_request(rq, bio);
1432 		if (!request_count)
1433 			trace_block_plug(q);
1434 
1435 		blk_mq_put_ctx(data.ctx);
1436 
1437 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1438 			blk_flush_plug_list(plug, false);
1439 			trace_block_plug(q);
1440 		}
1441 
1442 		list_add_tail(&rq->queuelist, &plug->mq_list);
1443 		return cookie;
1444 	}
1445 
1446 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1447 		/*
1448 		 * For a SYNC request, send it to the hardware immediately. For
1449 		 * an ASYNC request, just ensure that we run it later on. The
1450 		 * latter allows for merging opportunities and more efficient
1451 		 * dispatching.
1452 		 */
1453 run_queue:
1454 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1455 	}
1456 
1457 	blk_mq_put_ctx(data.ctx);
1458 	return cookie;
1459 }
1460 
1461 /*
1462  * Default mapping to a software queue, since we use one per CPU.
1463  */
1464 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1465 {
1466 	return q->queue_hw_ctx[q->mq_map[cpu]];
1467 }
1468 EXPORT_SYMBOL(blk_mq_map_queue);
1469 
1470 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1471 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1472 {
1473 	struct page *page;
1474 
1475 	if (tags->rqs && set->ops->exit_request) {
1476 		int i;
1477 
1478 		for (i = 0; i < tags->nr_tags; i++) {
1479 			if (!tags->rqs[i])
1480 				continue;
1481 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1482 						hctx_idx, i);
1483 			tags->rqs[i] = NULL;
1484 		}
1485 	}
1486 
1487 	while (!list_empty(&tags->page_list)) {
1488 		page = list_first_entry(&tags->page_list, struct page, lru);
1489 		list_del_init(&page->lru);
1490 		/*
1491 		 * Remove kmemleak object previously allocated in
1492 		 * blk_mq_init_rq_map().
1493 		 */
1494 		kmemleak_free(page_address(page));
1495 		__free_pages(page, page->private);
1496 	}
1497 
1498 	kfree(tags->rqs);
1499 
1500 	blk_mq_free_tags(tags);
1501 }
1502 
1503 static size_t order_to_size(unsigned int order)
1504 {
1505 	return (size_t)PAGE_SIZE << order;
1506 }
1507 
1508 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1509 		unsigned int hctx_idx)
1510 {
1511 	struct blk_mq_tags *tags;
1512 	unsigned int i, j, entries_per_page, max_order = 4;
1513 	size_t rq_size, left;
1514 
1515 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1516 				set->numa_node,
1517 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1518 	if (!tags)
1519 		return NULL;
1520 
1521 	INIT_LIST_HEAD(&tags->page_list);
1522 
1523 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1524 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1525 				 set->numa_node);
1526 	if (!tags->rqs) {
1527 		blk_mq_free_tags(tags);
1528 		return NULL;
1529 	}
1530 
1531 	/*
1532 	 * rq_size is the size of the request plus driver payload, rounded
1533 	 * to the cacheline size
1534 	 */
1535 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1536 				cache_line_size());
1537 	left = rq_size * set->queue_depth;
1538 
1539 	for (i = 0; i < set->queue_depth; ) {
1540 		int this_order = max_order;
1541 		struct page *page;
1542 		int to_do;
1543 		void *p;
1544 
1545 		while (this_order && left < order_to_size(this_order - 1))
1546 			this_order--;
1547 
1548 		do {
1549 			page = alloc_pages_node(set->numa_node,
1550 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1551 				this_order);
1552 			if (page)
1553 				break;
1554 			if (!this_order--)
1555 				break;
1556 			if (order_to_size(this_order) < rq_size)
1557 				break;
1558 		} while (1);
1559 
1560 		if (!page)
1561 			goto fail;
1562 
1563 		page->private = this_order;
1564 		list_add_tail(&page->lru, &tags->page_list);
1565 
1566 		p = page_address(page);
1567 		/*
1568 		 * Allow kmemleak to scan these pages as they contain pointers
1569 		 * to additional allocations like via ops->init_request().
1570 		 */
1571 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1572 		entries_per_page = order_to_size(this_order) / rq_size;
1573 		to_do = min(entries_per_page, set->queue_depth - i);
1574 		left -= to_do * rq_size;
1575 		for (j = 0; j < to_do; j++) {
1576 			tags->rqs[i] = p;
1577 			if (set->ops->init_request) {
1578 				if (set->ops->init_request(set->driver_data,
1579 						tags->rqs[i], hctx_idx, i,
1580 						set->numa_node)) {
1581 					tags->rqs[i] = NULL;
1582 					goto fail;
1583 				}
1584 			}
1585 
1586 			p += rq_size;
1587 			i++;
1588 		}
1589 	}
1590 	return tags;
1591 
1592 fail:
1593 	blk_mq_free_rq_map(set, tags, hctx_idx);
1594 	return NULL;
1595 }
1596 
1597 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1598 {
1599 	kfree(bitmap->map);
1600 }
1601 
1602 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1603 {
1604 	unsigned int bpw = 8, total, num_maps, i;
1605 
1606 	bitmap->bits_per_word = bpw;
1607 
1608 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1609 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1610 					GFP_KERNEL, node);
1611 	if (!bitmap->map)
1612 		return -ENOMEM;
1613 
1614 	total = nr_cpu_ids;
1615 	for (i = 0; i < num_maps; i++) {
1616 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1617 		total -= bitmap->map[i].depth;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 /*
1624  * 'cpu' is going away. splice any existing rq_list entries from this
1625  * software queue to the hw queue dispatch list, and ensure that it
1626  * gets run.
1627  */
1628 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1629 {
1630 	struct blk_mq_ctx *ctx;
1631 	LIST_HEAD(tmp);
1632 
1633 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1634 
1635 	spin_lock(&ctx->lock);
1636 	if (!list_empty(&ctx->rq_list)) {
1637 		list_splice_init(&ctx->rq_list, &tmp);
1638 		blk_mq_hctx_clear_pending(hctx, ctx);
1639 	}
1640 	spin_unlock(&ctx->lock);
1641 
1642 	if (list_empty(&tmp))
1643 		return NOTIFY_OK;
1644 
1645 	spin_lock(&hctx->lock);
1646 	list_splice_tail_init(&tmp, &hctx->dispatch);
1647 	spin_unlock(&hctx->lock);
1648 
1649 	blk_mq_run_hw_queue(hctx, true);
1650 	return NOTIFY_OK;
1651 }
1652 
1653 static int blk_mq_hctx_notify(void *data, unsigned long action,
1654 			      unsigned int cpu)
1655 {
1656 	struct blk_mq_hw_ctx *hctx = data;
1657 
1658 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1659 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1660 
1661 	/*
1662 	 * In case of CPU online, tags may be reallocated
1663 	 * in blk_mq_map_swqueue() after mapping is updated.
1664 	 */
1665 
1666 	return NOTIFY_OK;
1667 }
1668 
1669 /* hctx->ctxs will be freed in queue's release handler */
1670 static void blk_mq_exit_hctx(struct request_queue *q,
1671 		struct blk_mq_tag_set *set,
1672 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1673 {
1674 	unsigned flush_start_tag = set->queue_depth;
1675 
1676 	blk_mq_tag_idle(hctx);
1677 
1678 	if (set->ops->exit_request)
1679 		set->ops->exit_request(set->driver_data,
1680 				       hctx->fq->flush_rq, hctx_idx,
1681 				       flush_start_tag + hctx_idx);
1682 
1683 	if (set->ops->exit_hctx)
1684 		set->ops->exit_hctx(hctx, hctx_idx);
1685 
1686 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1687 	blk_free_flush_queue(hctx->fq);
1688 	blk_mq_free_bitmap(&hctx->ctx_map);
1689 }
1690 
1691 static void blk_mq_exit_hw_queues(struct request_queue *q,
1692 		struct blk_mq_tag_set *set, int nr_queue)
1693 {
1694 	struct blk_mq_hw_ctx *hctx;
1695 	unsigned int i;
1696 
1697 	queue_for_each_hw_ctx(q, hctx, i) {
1698 		if (i == nr_queue)
1699 			break;
1700 		blk_mq_exit_hctx(q, set, hctx, i);
1701 	}
1702 }
1703 
1704 static void blk_mq_free_hw_queues(struct request_queue *q,
1705 		struct blk_mq_tag_set *set)
1706 {
1707 	struct blk_mq_hw_ctx *hctx;
1708 	unsigned int i;
1709 
1710 	queue_for_each_hw_ctx(q, hctx, i)
1711 		free_cpumask_var(hctx->cpumask);
1712 }
1713 
1714 static int blk_mq_init_hctx(struct request_queue *q,
1715 		struct blk_mq_tag_set *set,
1716 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1717 {
1718 	int node;
1719 	unsigned flush_start_tag = set->queue_depth;
1720 
1721 	node = hctx->numa_node;
1722 	if (node == NUMA_NO_NODE)
1723 		node = hctx->numa_node = set->numa_node;
1724 
1725 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1726 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1727 	spin_lock_init(&hctx->lock);
1728 	INIT_LIST_HEAD(&hctx->dispatch);
1729 	hctx->queue = q;
1730 	hctx->queue_num = hctx_idx;
1731 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1732 
1733 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1734 					blk_mq_hctx_notify, hctx);
1735 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1736 
1737 	hctx->tags = set->tags[hctx_idx];
1738 
1739 	/*
1740 	 * Allocate space for all possible cpus to avoid allocation at
1741 	 * runtime
1742 	 */
1743 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1744 					GFP_KERNEL, node);
1745 	if (!hctx->ctxs)
1746 		goto unregister_cpu_notifier;
1747 
1748 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1749 		goto free_ctxs;
1750 
1751 	hctx->nr_ctx = 0;
1752 
1753 	if (set->ops->init_hctx &&
1754 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1755 		goto free_bitmap;
1756 
1757 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1758 	if (!hctx->fq)
1759 		goto exit_hctx;
1760 
1761 	if (set->ops->init_request &&
1762 	    set->ops->init_request(set->driver_data,
1763 				   hctx->fq->flush_rq, hctx_idx,
1764 				   flush_start_tag + hctx_idx, node))
1765 		goto free_fq;
1766 
1767 	return 0;
1768 
1769  free_fq:
1770 	kfree(hctx->fq);
1771  exit_hctx:
1772 	if (set->ops->exit_hctx)
1773 		set->ops->exit_hctx(hctx, hctx_idx);
1774  free_bitmap:
1775 	blk_mq_free_bitmap(&hctx->ctx_map);
1776  free_ctxs:
1777 	kfree(hctx->ctxs);
1778  unregister_cpu_notifier:
1779 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1780 
1781 	return -1;
1782 }
1783 
1784 static void blk_mq_init_cpu_queues(struct request_queue *q,
1785 				   unsigned int nr_hw_queues)
1786 {
1787 	unsigned int i;
1788 
1789 	for_each_possible_cpu(i) {
1790 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1791 		struct blk_mq_hw_ctx *hctx;
1792 
1793 		memset(__ctx, 0, sizeof(*__ctx));
1794 		__ctx->cpu = i;
1795 		spin_lock_init(&__ctx->lock);
1796 		INIT_LIST_HEAD(&__ctx->rq_list);
1797 		__ctx->queue = q;
1798 
1799 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1800 		if (!cpu_online(i))
1801 			continue;
1802 
1803 		hctx = q->mq_ops->map_queue(q, i);
1804 
1805 		/*
1806 		 * Set local node, IFF we have more than one hw queue. If
1807 		 * not, we remain on the home node of the device
1808 		 */
1809 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1810 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1811 	}
1812 }
1813 
1814 static void blk_mq_map_swqueue(struct request_queue *q,
1815 			       const struct cpumask *online_mask)
1816 {
1817 	unsigned int i;
1818 	struct blk_mq_hw_ctx *hctx;
1819 	struct blk_mq_ctx *ctx;
1820 	struct blk_mq_tag_set *set = q->tag_set;
1821 
1822 	/*
1823 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1824 	 */
1825 	mutex_lock(&q->sysfs_lock);
1826 
1827 	queue_for_each_hw_ctx(q, hctx, i) {
1828 		cpumask_clear(hctx->cpumask);
1829 		hctx->nr_ctx = 0;
1830 	}
1831 
1832 	/*
1833 	 * Map software to hardware queues
1834 	 */
1835 	for_each_possible_cpu(i) {
1836 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1837 		if (!cpumask_test_cpu(i, online_mask))
1838 			continue;
1839 
1840 		ctx = per_cpu_ptr(q->queue_ctx, i);
1841 		hctx = q->mq_ops->map_queue(q, i);
1842 
1843 		cpumask_set_cpu(i, hctx->cpumask);
1844 		ctx->index_hw = hctx->nr_ctx;
1845 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1846 	}
1847 
1848 	mutex_unlock(&q->sysfs_lock);
1849 
1850 	queue_for_each_hw_ctx(q, hctx, i) {
1851 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1852 
1853 		/*
1854 		 * If no software queues are mapped to this hardware queue,
1855 		 * disable it and free the request entries.
1856 		 */
1857 		if (!hctx->nr_ctx) {
1858 			if (set->tags[i]) {
1859 				blk_mq_free_rq_map(set, set->tags[i], i);
1860 				set->tags[i] = NULL;
1861 			}
1862 			hctx->tags = NULL;
1863 			continue;
1864 		}
1865 
1866 		/* unmapped hw queue can be remapped after CPU topo changed */
1867 		if (!set->tags[i])
1868 			set->tags[i] = blk_mq_init_rq_map(set, i);
1869 		hctx->tags = set->tags[i];
1870 		WARN_ON(!hctx->tags);
1871 
1872 		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1873 		/*
1874 		 * Set the map size to the number of mapped software queues.
1875 		 * This is more accurate and more efficient than looping
1876 		 * over all possibly mapped software queues.
1877 		 */
1878 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1879 
1880 		/*
1881 		 * Initialize batch roundrobin counts
1882 		 */
1883 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1884 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1885 	}
1886 }
1887 
1888 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1889 {
1890 	struct blk_mq_hw_ctx *hctx;
1891 	int i;
1892 
1893 	queue_for_each_hw_ctx(q, hctx, i) {
1894 		if (shared)
1895 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1896 		else
1897 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1898 	}
1899 }
1900 
1901 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1902 {
1903 	struct request_queue *q;
1904 
1905 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1906 		blk_mq_freeze_queue(q);
1907 		queue_set_hctx_shared(q, shared);
1908 		blk_mq_unfreeze_queue(q);
1909 	}
1910 }
1911 
1912 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1913 {
1914 	struct blk_mq_tag_set *set = q->tag_set;
1915 
1916 	mutex_lock(&set->tag_list_lock);
1917 	list_del_init(&q->tag_set_list);
1918 	if (list_is_singular(&set->tag_list)) {
1919 		/* just transitioned to unshared */
1920 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1921 		/* update existing queue */
1922 		blk_mq_update_tag_set_depth(set, false);
1923 	}
1924 	mutex_unlock(&set->tag_list_lock);
1925 }
1926 
1927 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1928 				     struct request_queue *q)
1929 {
1930 	q->tag_set = set;
1931 
1932 	mutex_lock(&set->tag_list_lock);
1933 
1934 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1935 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1936 		set->flags |= BLK_MQ_F_TAG_SHARED;
1937 		/* update existing queue */
1938 		blk_mq_update_tag_set_depth(set, true);
1939 	}
1940 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1941 		queue_set_hctx_shared(q, true);
1942 	list_add_tail(&q->tag_set_list, &set->tag_list);
1943 
1944 	mutex_unlock(&set->tag_list_lock);
1945 }
1946 
1947 /*
1948  * It is the actual release handler for mq, but we do it from
1949  * request queue's release handler for avoiding use-after-free
1950  * and headache because q->mq_kobj shouldn't have been introduced,
1951  * but we can't group ctx/kctx kobj without it.
1952  */
1953 void blk_mq_release(struct request_queue *q)
1954 {
1955 	struct blk_mq_hw_ctx *hctx;
1956 	unsigned int i;
1957 
1958 	/* hctx kobj stays in hctx */
1959 	queue_for_each_hw_ctx(q, hctx, i) {
1960 		if (!hctx)
1961 			continue;
1962 		kfree(hctx->ctxs);
1963 		kfree(hctx);
1964 	}
1965 
1966 	kfree(q->mq_map);
1967 	q->mq_map = NULL;
1968 
1969 	kfree(q->queue_hw_ctx);
1970 
1971 	/* ctx kobj stays in queue_ctx */
1972 	free_percpu(q->queue_ctx);
1973 }
1974 
1975 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1976 {
1977 	struct request_queue *uninit_q, *q;
1978 
1979 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1980 	if (!uninit_q)
1981 		return ERR_PTR(-ENOMEM);
1982 
1983 	q = blk_mq_init_allocated_queue(set, uninit_q);
1984 	if (IS_ERR(q))
1985 		blk_cleanup_queue(uninit_q);
1986 
1987 	return q;
1988 }
1989 EXPORT_SYMBOL(blk_mq_init_queue);
1990 
1991 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1992 						struct request_queue *q)
1993 {
1994 	int i, j;
1995 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1996 
1997 	blk_mq_sysfs_unregister(q);
1998 	for (i = 0; i < set->nr_hw_queues; i++) {
1999 		int node;
2000 
2001 		if (hctxs[i])
2002 			continue;
2003 
2004 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2005 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2006 					GFP_KERNEL, node);
2007 		if (!hctxs[i])
2008 			break;
2009 
2010 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2011 						node)) {
2012 			kfree(hctxs[i]);
2013 			hctxs[i] = NULL;
2014 			break;
2015 		}
2016 
2017 		atomic_set(&hctxs[i]->nr_active, 0);
2018 		hctxs[i]->numa_node = node;
2019 		hctxs[i]->queue_num = i;
2020 
2021 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2022 			free_cpumask_var(hctxs[i]->cpumask);
2023 			kfree(hctxs[i]);
2024 			hctxs[i] = NULL;
2025 			break;
2026 		}
2027 		blk_mq_hctx_kobj_init(hctxs[i]);
2028 	}
2029 	for (j = i; j < q->nr_hw_queues; j++) {
2030 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2031 
2032 		if (hctx) {
2033 			if (hctx->tags) {
2034 				blk_mq_free_rq_map(set, hctx->tags, j);
2035 				set->tags[j] = NULL;
2036 			}
2037 			blk_mq_exit_hctx(q, set, hctx, j);
2038 			free_cpumask_var(hctx->cpumask);
2039 			kobject_put(&hctx->kobj);
2040 			kfree(hctx->ctxs);
2041 			kfree(hctx);
2042 			hctxs[j] = NULL;
2043 
2044 		}
2045 	}
2046 	q->nr_hw_queues = i;
2047 	blk_mq_sysfs_register(q);
2048 }
2049 
2050 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2051 						  struct request_queue *q)
2052 {
2053 	/* mark the queue as mq asap */
2054 	q->mq_ops = set->ops;
2055 
2056 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2057 	if (!q->queue_ctx)
2058 		goto err_exit;
2059 
2060 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2061 						GFP_KERNEL, set->numa_node);
2062 	if (!q->queue_hw_ctx)
2063 		goto err_percpu;
2064 
2065 	q->mq_map = blk_mq_make_queue_map(set);
2066 	if (!q->mq_map)
2067 		goto err_map;
2068 
2069 	blk_mq_realloc_hw_ctxs(set, q);
2070 	if (!q->nr_hw_queues)
2071 		goto err_hctxs;
2072 
2073 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2074 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2075 
2076 	q->nr_queues = nr_cpu_ids;
2077 
2078 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2079 
2080 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2081 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2082 
2083 	q->sg_reserved_size = INT_MAX;
2084 
2085 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2086 	INIT_LIST_HEAD(&q->requeue_list);
2087 	spin_lock_init(&q->requeue_lock);
2088 
2089 	if (q->nr_hw_queues > 1)
2090 		blk_queue_make_request(q, blk_mq_make_request);
2091 	else
2092 		blk_queue_make_request(q, blk_sq_make_request);
2093 
2094 	/*
2095 	 * Do this after blk_queue_make_request() overrides it...
2096 	 */
2097 	q->nr_requests = set->queue_depth;
2098 
2099 	if (set->ops->complete)
2100 		blk_queue_softirq_done(q, set->ops->complete);
2101 
2102 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2103 
2104 	get_online_cpus();
2105 	mutex_lock(&all_q_mutex);
2106 
2107 	list_add_tail(&q->all_q_node, &all_q_list);
2108 	blk_mq_add_queue_tag_set(set, q);
2109 	blk_mq_map_swqueue(q, cpu_online_mask);
2110 
2111 	mutex_unlock(&all_q_mutex);
2112 	put_online_cpus();
2113 
2114 	return q;
2115 
2116 err_hctxs:
2117 	kfree(q->mq_map);
2118 err_map:
2119 	kfree(q->queue_hw_ctx);
2120 err_percpu:
2121 	free_percpu(q->queue_ctx);
2122 err_exit:
2123 	q->mq_ops = NULL;
2124 	return ERR_PTR(-ENOMEM);
2125 }
2126 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2127 
2128 void blk_mq_free_queue(struct request_queue *q)
2129 {
2130 	struct blk_mq_tag_set	*set = q->tag_set;
2131 
2132 	mutex_lock(&all_q_mutex);
2133 	list_del_init(&q->all_q_node);
2134 	mutex_unlock(&all_q_mutex);
2135 
2136 	blk_mq_del_queue_tag_set(q);
2137 
2138 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2139 	blk_mq_free_hw_queues(q, set);
2140 }
2141 
2142 /* Basically redo blk_mq_init_queue with queue frozen */
2143 static void blk_mq_queue_reinit(struct request_queue *q,
2144 				const struct cpumask *online_mask)
2145 {
2146 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2147 
2148 	blk_mq_sysfs_unregister(q);
2149 
2150 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2151 
2152 	/*
2153 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2154 	 * we should change hctx numa_node according to new topology (this
2155 	 * involves free and re-allocate memory, worthy doing?)
2156 	 */
2157 
2158 	blk_mq_map_swqueue(q, online_mask);
2159 
2160 	blk_mq_sysfs_register(q);
2161 }
2162 
2163 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2164 				      unsigned long action, void *hcpu)
2165 {
2166 	struct request_queue *q;
2167 	int cpu = (unsigned long)hcpu;
2168 	/*
2169 	 * New online cpumask which is going to be set in this hotplug event.
2170 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2171 	 * one-by-one and dynamically allocating this could result in a failure.
2172 	 */
2173 	static struct cpumask online_new;
2174 
2175 	/*
2176 	 * Before hotadded cpu starts handling requests, new mappings must
2177 	 * be established.  Otherwise, these requests in hw queue might
2178 	 * never be dispatched.
2179 	 *
2180 	 * For example, there is a single hw queue (hctx) and two CPU queues
2181 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2182 	 *
2183 	 * Now CPU1 is just onlined and a request is inserted into
2184 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2185 	 * still zero.
2186 	 *
2187 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2188 	 * set in pending bitmap and tries to retrieve requests in
2189 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2190 	 * so the request in ctx1->rq_list is ignored.
2191 	 */
2192 	switch (action & ~CPU_TASKS_FROZEN) {
2193 	case CPU_DEAD:
2194 	case CPU_UP_CANCELED:
2195 		cpumask_copy(&online_new, cpu_online_mask);
2196 		break;
2197 	case CPU_UP_PREPARE:
2198 		cpumask_copy(&online_new, cpu_online_mask);
2199 		cpumask_set_cpu(cpu, &online_new);
2200 		break;
2201 	default:
2202 		return NOTIFY_OK;
2203 	}
2204 
2205 	mutex_lock(&all_q_mutex);
2206 
2207 	/*
2208 	 * We need to freeze and reinit all existing queues.  Freezing
2209 	 * involves synchronous wait for an RCU grace period and doing it
2210 	 * one by one may take a long time.  Start freezing all queues in
2211 	 * one swoop and then wait for the completions so that freezing can
2212 	 * take place in parallel.
2213 	 */
2214 	list_for_each_entry(q, &all_q_list, all_q_node)
2215 		blk_mq_freeze_queue_start(q);
2216 	list_for_each_entry(q, &all_q_list, all_q_node) {
2217 		blk_mq_freeze_queue_wait(q);
2218 
2219 		/*
2220 		 * timeout handler can't touch hw queue during the
2221 		 * reinitialization
2222 		 */
2223 		del_timer_sync(&q->timeout);
2224 	}
2225 
2226 	list_for_each_entry(q, &all_q_list, all_q_node)
2227 		blk_mq_queue_reinit(q, &online_new);
2228 
2229 	list_for_each_entry(q, &all_q_list, all_q_node)
2230 		blk_mq_unfreeze_queue(q);
2231 
2232 	mutex_unlock(&all_q_mutex);
2233 	return NOTIFY_OK;
2234 }
2235 
2236 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2237 {
2238 	int i;
2239 
2240 	for (i = 0; i < set->nr_hw_queues; i++) {
2241 		set->tags[i] = blk_mq_init_rq_map(set, i);
2242 		if (!set->tags[i])
2243 			goto out_unwind;
2244 	}
2245 
2246 	return 0;
2247 
2248 out_unwind:
2249 	while (--i >= 0)
2250 		blk_mq_free_rq_map(set, set->tags[i], i);
2251 
2252 	return -ENOMEM;
2253 }
2254 
2255 /*
2256  * Allocate the request maps associated with this tag_set. Note that this
2257  * may reduce the depth asked for, if memory is tight. set->queue_depth
2258  * will be updated to reflect the allocated depth.
2259  */
2260 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2261 {
2262 	unsigned int depth;
2263 	int err;
2264 
2265 	depth = set->queue_depth;
2266 	do {
2267 		err = __blk_mq_alloc_rq_maps(set);
2268 		if (!err)
2269 			break;
2270 
2271 		set->queue_depth >>= 1;
2272 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2273 			err = -ENOMEM;
2274 			break;
2275 		}
2276 	} while (set->queue_depth);
2277 
2278 	if (!set->queue_depth || err) {
2279 		pr_err("blk-mq: failed to allocate request map\n");
2280 		return -ENOMEM;
2281 	}
2282 
2283 	if (depth != set->queue_depth)
2284 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2285 						depth, set->queue_depth);
2286 
2287 	return 0;
2288 }
2289 
2290 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2291 {
2292 	return tags->cpumask;
2293 }
2294 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2295 
2296 /*
2297  * Alloc a tag set to be associated with one or more request queues.
2298  * May fail with EINVAL for various error conditions. May adjust the
2299  * requested depth down, if if it too large. In that case, the set
2300  * value will be stored in set->queue_depth.
2301  */
2302 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2303 {
2304 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2305 
2306 	if (!set->nr_hw_queues)
2307 		return -EINVAL;
2308 	if (!set->queue_depth)
2309 		return -EINVAL;
2310 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2311 		return -EINVAL;
2312 
2313 	if (!set->ops->queue_rq || !set->ops->map_queue)
2314 		return -EINVAL;
2315 
2316 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2317 		pr_info("blk-mq: reduced tag depth to %u\n",
2318 			BLK_MQ_MAX_DEPTH);
2319 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2320 	}
2321 
2322 	/*
2323 	 * If a crashdump is active, then we are potentially in a very
2324 	 * memory constrained environment. Limit us to 1 queue and
2325 	 * 64 tags to prevent using too much memory.
2326 	 */
2327 	if (is_kdump_kernel()) {
2328 		set->nr_hw_queues = 1;
2329 		set->queue_depth = min(64U, set->queue_depth);
2330 	}
2331 	/*
2332 	 * There is no use for more h/w queues than cpus.
2333 	 */
2334 	if (set->nr_hw_queues > nr_cpu_ids)
2335 		set->nr_hw_queues = nr_cpu_ids;
2336 
2337 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2338 				 GFP_KERNEL, set->numa_node);
2339 	if (!set->tags)
2340 		return -ENOMEM;
2341 
2342 	if (blk_mq_alloc_rq_maps(set))
2343 		goto enomem;
2344 
2345 	mutex_init(&set->tag_list_lock);
2346 	INIT_LIST_HEAD(&set->tag_list);
2347 
2348 	return 0;
2349 enomem:
2350 	kfree(set->tags);
2351 	set->tags = NULL;
2352 	return -ENOMEM;
2353 }
2354 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2355 
2356 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2357 {
2358 	int i;
2359 
2360 	for (i = 0; i < nr_cpu_ids; i++) {
2361 		if (set->tags[i])
2362 			blk_mq_free_rq_map(set, set->tags[i], i);
2363 	}
2364 
2365 	kfree(set->tags);
2366 	set->tags = NULL;
2367 }
2368 EXPORT_SYMBOL(blk_mq_free_tag_set);
2369 
2370 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2371 {
2372 	struct blk_mq_tag_set *set = q->tag_set;
2373 	struct blk_mq_hw_ctx *hctx;
2374 	int i, ret;
2375 
2376 	if (!set || nr > set->queue_depth)
2377 		return -EINVAL;
2378 
2379 	ret = 0;
2380 	queue_for_each_hw_ctx(q, hctx, i) {
2381 		if (!hctx->tags)
2382 			continue;
2383 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2384 		if (ret)
2385 			break;
2386 	}
2387 
2388 	if (!ret)
2389 		q->nr_requests = nr;
2390 
2391 	return ret;
2392 }
2393 
2394 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2395 {
2396 	struct request_queue *q;
2397 
2398 	if (nr_hw_queues > nr_cpu_ids)
2399 		nr_hw_queues = nr_cpu_ids;
2400 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2401 		return;
2402 
2403 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2404 		blk_mq_freeze_queue(q);
2405 
2406 	set->nr_hw_queues = nr_hw_queues;
2407 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2408 		blk_mq_realloc_hw_ctxs(set, q);
2409 
2410 		if (q->nr_hw_queues > 1)
2411 			blk_queue_make_request(q, blk_mq_make_request);
2412 		else
2413 			blk_queue_make_request(q, blk_sq_make_request);
2414 
2415 		blk_mq_queue_reinit(q, cpu_online_mask);
2416 	}
2417 
2418 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2419 		blk_mq_unfreeze_queue(q);
2420 }
2421 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2422 
2423 void blk_mq_disable_hotplug(void)
2424 {
2425 	mutex_lock(&all_q_mutex);
2426 }
2427 
2428 void blk_mq_enable_hotplug(void)
2429 {
2430 	mutex_unlock(&all_q_mutex);
2431 }
2432 
2433 static int __init blk_mq_init(void)
2434 {
2435 	blk_mq_cpu_init();
2436 
2437 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2438 
2439 	return 0;
2440 }
2441 subsys_initcall(blk_mq_init);
2442