1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @q: request queue. 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started. 261 */ 262 void blk_mq_wait_quiesce_done(struct request_queue *q) 263 { 264 if (blk_queue_has_srcu(q)) 265 synchronize_srcu(q->srcu); 266 else 267 synchronize_rcu(); 268 } 269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 270 271 /** 272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 273 * @q: request queue. 274 * 275 * Note: this function does not prevent that the struct request end_io() 276 * callback function is invoked. Once this function is returned, we make 277 * sure no dispatch can happen until the queue is unquiesced via 278 * blk_mq_unquiesce_queue(). 279 */ 280 void blk_mq_quiesce_queue(struct request_queue *q) 281 { 282 blk_mq_quiesce_queue_nowait(q); 283 blk_mq_wait_quiesce_done(q); 284 } 285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 286 287 /* 288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 289 * @q: request queue. 290 * 291 * This function recovers queue into the state before quiescing 292 * which is done by blk_mq_quiesce_queue. 293 */ 294 void blk_mq_unquiesce_queue(struct request_queue *q) 295 { 296 unsigned long flags; 297 bool run_queue = false; 298 299 spin_lock_irqsave(&q->queue_lock, flags); 300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 301 ; 302 } else if (!--q->quiesce_depth) { 303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 304 run_queue = true; 305 } 306 spin_unlock_irqrestore(&q->queue_lock, flags); 307 308 /* dispatch requests which are inserted during quiescing */ 309 if (run_queue) 310 blk_mq_run_hw_queues(q, true); 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 313 314 void blk_mq_wake_waiters(struct request_queue *q) 315 { 316 struct blk_mq_hw_ctx *hctx; 317 unsigned long i; 318 319 queue_for_each_hw_ctx(q, hctx, i) 320 if (blk_mq_hw_queue_mapped(hctx)) 321 blk_mq_tag_wakeup_all(hctx->tags, true); 322 } 323 324 void blk_rq_init(struct request_queue *q, struct request *rq) 325 { 326 memset(rq, 0, sizeof(*rq)); 327 328 INIT_LIST_HEAD(&rq->queuelist); 329 rq->q = q; 330 rq->__sector = (sector_t) -1; 331 INIT_HLIST_NODE(&rq->hash); 332 RB_CLEAR_NODE(&rq->rb_node); 333 rq->tag = BLK_MQ_NO_TAG; 334 rq->internal_tag = BLK_MQ_NO_TAG; 335 rq->start_time_ns = ktime_get_ns(); 336 rq->part = NULL; 337 blk_crypto_rq_set_defaults(rq); 338 } 339 EXPORT_SYMBOL(blk_rq_init); 340 341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 343 { 344 struct blk_mq_ctx *ctx = data->ctx; 345 struct blk_mq_hw_ctx *hctx = data->hctx; 346 struct request_queue *q = data->q; 347 struct request *rq = tags->static_rqs[tag]; 348 349 rq->q = q; 350 rq->mq_ctx = ctx; 351 rq->mq_hctx = hctx; 352 rq->cmd_flags = data->cmd_flags; 353 354 if (data->flags & BLK_MQ_REQ_PM) 355 data->rq_flags |= RQF_PM; 356 if (blk_queue_io_stat(q)) 357 data->rq_flags |= RQF_IO_STAT; 358 rq->rq_flags = data->rq_flags; 359 360 if (!(data->rq_flags & RQF_ELV)) { 361 rq->tag = tag; 362 rq->internal_tag = BLK_MQ_NO_TAG; 363 } else { 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = tag; 366 } 367 rq->timeout = 0; 368 369 if (blk_mq_need_time_stamp(rq)) 370 rq->start_time_ns = ktime_get_ns(); 371 else 372 rq->start_time_ns = 0; 373 rq->part = NULL; 374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 375 rq->alloc_time_ns = alloc_time_ns; 376 #endif 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_ELV) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (!op_is_flush(data->cmd_flags) && 399 e->type->ops.prepare_request) { 400 e->type->ops.prepare_request(rq); 401 rq->rq_flags |= RQF_ELVPRIV; 402 } 403 } 404 405 return rq; 406 } 407 408 static inline struct request * 409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 410 u64 alloc_time_ns) 411 { 412 unsigned int tag, tag_offset; 413 struct blk_mq_tags *tags; 414 struct request *rq; 415 unsigned long tag_mask; 416 int i, nr = 0; 417 418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 419 if (unlikely(!tag_mask)) 420 return NULL; 421 422 tags = blk_mq_tags_from_data(data); 423 for (i = 0; tag_mask; i++) { 424 if (!(tag_mask & (1UL << i))) 425 continue; 426 tag = tag_offset + i; 427 prefetch(tags->static_rqs[tag]); 428 tag_mask &= ~(1UL << i); 429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 430 rq_list_add(data->cached_rq, rq); 431 nr++; 432 } 433 /* caller already holds a reference, add for remainder */ 434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 435 data->nr_tags -= nr; 436 437 return rq_list_pop(data->cached_rq); 438 } 439 440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 441 { 442 struct request_queue *q = data->q; 443 u64 alloc_time_ns = 0; 444 struct request *rq; 445 unsigned int tag; 446 447 /* alloc_time includes depth and tag waits */ 448 if (blk_queue_rq_alloc_time(q)) 449 alloc_time_ns = ktime_get_ns(); 450 451 if (data->cmd_flags & REQ_NOWAIT) 452 data->flags |= BLK_MQ_REQ_NOWAIT; 453 454 if (q->elevator) { 455 struct elevator_queue *e = q->elevator; 456 457 data->rq_flags |= RQF_ELV; 458 459 /* 460 * Flush/passthrough requests are special and go directly to the 461 * dispatch list. Don't include reserved tags in the 462 * limiting, as it isn't useful. 463 */ 464 if (!op_is_flush(data->cmd_flags) && 465 !blk_op_is_passthrough(data->cmd_flags) && 466 e->type->ops.limit_depth && 467 !(data->flags & BLK_MQ_REQ_RESERVED)) 468 e->type->ops.limit_depth(data->cmd_flags, data); 469 } 470 471 retry: 472 data->ctx = blk_mq_get_ctx(q); 473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 474 if (!(data->rq_flags & RQF_ELV)) 475 blk_mq_tag_busy(data->hctx); 476 477 if (data->flags & BLK_MQ_REQ_RESERVED) 478 data->rq_flags |= RQF_RESV; 479 480 /* 481 * Try batched alloc if we want more than 1 tag. 482 */ 483 if (data->nr_tags > 1) { 484 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 485 if (rq) 486 return rq; 487 data->nr_tags = 1; 488 } 489 490 /* 491 * Waiting allocations only fail because of an inactive hctx. In that 492 * case just retry the hctx assignment and tag allocation as CPU hotplug 493 * should have migrated us to an online CPU by now. 494 */ 495 tag = blk_mq_get_tag(data); 496 if (tag == BLK_MQ_NO_TAG) { 497 if (data->flags & BLK_MQ_REQ_NOWAIT) 498 return NULL; 499 /* 500 * Give up the CPU and sleep for a random short time to 501 * ensure that thread using a realtime scheduling class 502 * are migrated off the CPU, and thus off the hctx that 503 * is going away. 504 */ 505 msleep(3); 506 goto retry; 507 } 508 509 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 510 alloc_time_ns); 511 } 512 513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 514 blk_mq_req_flags_t flags) 515 { 516 struct blk_mq_alloc_data data = { 517 .q = q, 518 .flags = flags, 519 .cmd_flags = opf, 520 .nr_tags = 1, 521 }; 522 struct request *rq; 523 int ret; 524 525 ret = blk_queue_enter(q, flags); 526 if (ret) 527 return ERR_PTR(ret); 528 529 rq = __blk_mq_alloc_requests(&data); 530 if (!rq) 531 goto out_queue_exit; 532 rq->__data_len = 0; 533 rq->__sector = (sector_t) -1; 534 rq->bio = rq->biotail = NULL; 535 return rq; 536 out_queue_exit: 537 blk_queue_exit(q); 538 return ERR_PTR(-EWOULDBLOCK); 539 } 540 EXPORT_SYMBOL(blk_mq_alloc_request); 541 542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 543 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 544 { 545 struct blk_mq_alloc_data data = { 546 .q = q, 547 .flags = flags, 548 .cmd_flags = opf, 549 .nr_tags = 1, 550 }; 551 u64 alloc_time_ns = 0; 552 unsigned int cpu; 553 unsigned int tag; 554 int ret; 555 556 /* alloc_time includes depth and tag waits */ 557 if (blk_queue_rq_alloc_time(q)) 558 alloc_time_ns = ktime_get_ns(); 559 560 /* 561 * If the tag allocator sleeps we could get an allocation for a 562 * different hardware context. No need to complicate the low level 563 * allocator for this for the rare use case of a command tied to 564 * a specific queue. 565 */ 566 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 567 return ERR_PTR(-EINVAL); 568 569 if (hctx_idx >= q->nr_hw_queues) 570 return ERR_PTR(-EIO); 571 572 ret = blk_queue_enter(q, flags); 573 if (ret) 574 return ERR_PTR(ret); 575 576 /* 577 * Check if the hardware context is actually mapped to anything. 578 * If not tell the caller that it should skip this queue. 579 */ 580 ret = -EXDEV; 581 data.hctx = xa_load(&q->hctx_table, hctx_idx); 582 if (!blk_mq_hw_queue_mapped(data.hctx)) 583 goto out_queue_exit; 584 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 585 if (cpu >= nr_cpu_ids) 586 goto out_queue_exit; 587 data.ctx = __blk_mq_get_ctx(q, cpu); 588 589 if (!q->elevator) 590 blk_mq_tag_busy(data.hctx); 591 else 592 data.rq_flags |= RQF_ELV; 593 594 if (flags & BLK_MQ_REQ_RESERVED) 595 data.rq_flags |= RQF_RESV; 596 597 ret = -EWOULDBLOCK; 598 tag = blk_mq_get_tag(&data); 599 if (tag == BLK_MQ_NO_TAG) 600 goto out_queue_exit; 601 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 602 alloc_time_ns); 603 604 out_queue_exit: 605 blk_queue_exit(q); 606 return ERR_PTR(ret); 607 } 608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 609 610 static void __blk_mq_free_request(struct request *rq) 611 { 612 struct request_queue *q = rq->q; 613 struct blk_mq_ctx *ctx = rq->mq_ctx; 614 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 615 const int sched_tag = rq->internal_tag; 616 617 blk_crypto_free_request(rq); 618 blk_pm_mark_last_busy(rq); 619 rq->mq_hctx = NULL; 620 if (rq->tag != BLK_MQ_NO_TAG) 621 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 622 if (sched_tag != BLK_MQ_NO_TAG) 623 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 624 blk_mq_sched_restart(hctx); 625 blk_queue_exit(q); 626 } 627 628 void blk_mq_free_request(struct request *rq) 629 { 630 struct request_queue *q = rq->q; 631 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 632 633 if ((rq->rq_flags & RQF_ELVPRIV) && 634 q->elevator->type->ops.finish_request) 635 q->elevator->type->ops.finish_request(rq); 636 637 if (rq->rq_flags & RQF_MQ_INFLIGHT) 638 __blk_mq_dec_active_requests(hctx); 639 640 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 641 laptop_io_completion(q->disk->bdi); 642 643 rq_qos_done(q, rq); 644 645 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 646 if (req_ref_put_and_test(rq)) 647 __blk_mq_free_request(rq); 648 } 649 EXPORT_SYMBOL_GPL(blk_mq_free_request); 650 651 void blk_mq_free_plug_rqs(struct blk_plug *plug) 652 { 653 struct request *rq; 654 655 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 656 blk_mq_free_request(rq); 657 } 658 659 void blk_dump_rq_flags(struct request *rq, char *msg) 660 { 661 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 662 rq->q->disk ? rq->q->disk->disk_name : "?", 663 (__force unsigned long long) rq->cmd_flags); 664 665 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 666 (unsigned long long)blk_rq_pos(rq), 667 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 668 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 669 rq->bio, rq->biotail, blk_rq_bytes(rq)); 670 } 671 EXPORT_SYMBOL(blk_dump_rq_flags); 672 673 static void req_bio_endio(struct request *rq, struct bio *bio, 674 unsigned int nbytes, blk_status_t error) 675 { 676 if (unlikely(error)) { 677 bio->bi_status = error; 678 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 679 /* 680 * Partial zone append completions cannot be supported as the 681 * BIO fragments may end up not being written sequentially. 682 */ 683 if (bio->bi_iter.bi_size != nbytes) 684 bio->bi_status = BLK_STS_IOERR; 685 else 686 bio->bi_iter.bi_sector = rq->__sector; 687 } 688 689 bio_advance(bio, nbytes); 690 691 if (unlikely(rq->rq_flags & RQF_QUIET)) 692 bio_set_flag(bio, BIO_QUIET); 693 /* don't actually finish bio if it's part of flush sequence */ 694 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 695 bio_endio(bio); 696 } 697 698 static void blk_account_io_completion(struct request *req, unsigned int bytes) 699 { 700 if (req->part && blk_do_io_stat(req)) { 701 const int sgrp = op_stat_group(req_op(req)); 702 703 part_stat_lock(); 704 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 705 part_stat_unlock(); 706 } 707 } 708 709 static void blk_print_req_error(struct request *req, blk_status_t status) 710 { 711 printk_ratelimited(KERN_ERR 712 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 713 "phys_seg %u prio class %u\n", 714 blk_status_to_str(status), 715 req->q->disk ? req->q->disk->disk_name : "?", 716 blk_rq_pos(req), (__force u32)req_op(req), 717 blk_op_str(req_op(req)), 718 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 719 req->nr_phys_segments, 720 IOPRIO_PRIO_CLASS(req->ioprio)); 721 } 722 723 /* 724 * Fully end IO on a request. Does not support partial completions, or 725 * errors. 726 */ 727 static void blk_complete_request(struct request *req) 728 { 729 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 730 int total_bytes = blk_rq_bytes(req); 731 struct bio *bio = req->bio; 732 733 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 734 735 if (!bio) 736 return; 737 738 #ifdef CONFIG_BLK_DEV_INTEGRITY 739 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 740 req->q->integrity.profile->complete_fn(req, total_bytes); 741 #endif 742 743 blk_account_io_completion(req, total_bytes); 744 745 do { 746 struct bio *next = bio->bi_next; 747 748 /* Completion has already been traced */ 749 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 750 751 if (req_op(req) == REQ_OP_ZONE_APPEND) 752 bio->bi_iter.bi_sector = req->__sector; 753 754 if (!is_flush) 755 bio_endio(bio); 756 bio = next; 757 } while (bio); 758 759 /* 760 * Reset counters so that the request stacking driver 761 * can find how many bytes remain in the request 762 * later. 763 */ 764 req->bio = NULL; 765 req->__data_len = 0; 766 } 767 768 /** 769 * blk_update_request - Complete multiple bytes without completing the request 770 * @req: the request being processed 771 * @error: block status code 772 * @nr_bytes: number of bytes to complete for @req 773 * 774 * Description: 775 * Ends I/O on a number of bytes attached to @req, but doesn't complete 776 * the request structure even if @req doesn't have leftover. 777 * If @req has leftover, sets it up for the next range of segments. 778 * 779 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 780 * %false return from this function. 781 * 782 * Note: 783 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 784 * except in the consistency check at the end of this function. 785 * 786 * Return: 787 * %false - this request doesn't have any more data 788 * %true - this request has more data 789 **/ 790 bool blk_update_request(struct request *req, blk_status_t error, 791 unsigned int nr_bytes) 792 { 793 int total_bytes; 794 795 trace_block_rq_complete(req, error, nr_bytes); 796 797 if (!req->bio) 798 return false; 799 800 #ifdef CONFIG_BLK_DEV_INTEGRITY 801 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 802 error == BLK_STS_OK) 803 req->q->integrity.profile->complete_fn(req, nr_bytes); 804 #endif 805 806 if (unlikely(error && !blk_rq_is_passthrough(req) && 807 !(req->rq_flags & RQF_QUIET)) && 808 !test_bit(GD_DEAD, &req->q->disk->state)) { 809 blk_print_req_error(req, error); 810 trace_block_rq_error(req, error, nr_bytes); 811 } 812 813 blk_account_io_completion(req, nr_bytes); 814 815 total_bytes = 0; 816 while (req->bio) { 817 struct bio *bio = req->bio; 818 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 819 820 if (bio_bytes == bio->bi_iter.bi_size) 821 req->bio = bio->bi_next; 822 823 /* Completion has already been traced */ 824 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 825 req_bio_endio(req, bio, bio_bytes, error); 826 827 total_bytes += bio_bytes; 828 nr_bytes -= bio_bytes; 829 830 if (!nr_bytes) 831 break; 832 } 833 834 /* 835 * completely done 836 */ 837 if (!req->bio) { 838 /* 839 * Reset counters so that the request stacking driver 840 * can find how many bytes remain in the request 841 * later. 842 */ 843 req->__data_len = 0; 844 return false; 845 } 846 847 req->__data_len -= total_bytes; 848 849 /* update sector only for requests with clear definition of sector */ 850 if (!blk_rq_is_passthrough(req)) 851 req->__sector += total_bytes >> 9; 852 853 /* mixed attributes always follow the first bio */ 854 if (req->rq_flags & RQF_MIXED_MERGE) { 855 req->cmd_flags &= ~REQ_FAILFAST_MASK; 856 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 857 } 858 859 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 860 /* 861 * If total number of sectors is less than the first segment 862 * size, something has gone terribly wrong. 863 */ 864 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 865 blk_dump_rq_flags(req, "request botched"); 866 req->__data_len = blk_rq_cur_bytes(req); 867 } 868 869 /* recalculate the number of segments */ 870 req->nr_phys_segments = blk_recalc_rq_segments(req); 871 } 872 873 return true; 874 } 875 EXPORT_SYMBOL_GPL(blk_update_request); 876 877 static void __blk_account_io_done(struct request *req, u64 now) 878 { 879 const int sgrp = op_stat_group(req_op(req)); 880 881 part_stat_lock(); 882 update_io_ticks(req->part, jiffies, true); 883 part_stat_inc(req->part, ios[sgrp]); 884 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 885 part_stat_unlock(); 886 } 887 888 static inline void blk_account_io_done(struct request *req, u64 now) 889 { 890 /* 891 * Account IO completion. flush_rq isn't accounted as a 892 * normal IO on queueing nor completion. Accounting the 893 * containing request is enough. 894 */ 895 if (blk_do_io_stat(req) && req->part && 896 !(req->rq_flags & RQF_FLUSH_SEQ)) 897 __blk_account_io_done(req, now); 898 } 899 900 static void __blk_account_io_start(struct request *rq) 901 { 902 /* 903 * All non-passthrough requests are created from a bio with one 904 * exception: when a flush command that is part of a flush sequence 905 * generated by the state machine in blk-flush.c is cloned onto the 906 * lower device by dm-multipath we can get here without a bio. 907 */ 908 if (rq->bio) 909 rq->part = rq->bio->bi_bdev; 910 else 911 rq->part = rq->q->disk->part0; 912 913 part_stat_lock(); 914 update_io_ticks(rq->part, jiffies, false); 915 part_stat_unlock(); 916 } 917 918 static inline void blk_account_io_start(struct request *req) 919 { 920 if (blk_do_io_stat(req)) 921 __blk_account_io_start(req); 922 } 923 924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 925 { 926 if (rq->rq_flags & RQF_STATS) { 927 blk_mq_poll_stats_start(rq->q); 928 blk_stat_add(rq, now); 929 } 930 931 blk_mq_sched_completed_request(rq, now); 932 blk_account_io_done(rq, now); 933 } 934 935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 936 { 937 if (blk_mq_need_time_stamp(rq)) 938 __blk_mq_end_request_acct(rq, ktime_get_ns()); 939 940 if (rq->end_io) { 941 rq_qos_done(rq->q, rq); 942 rq->end_io(rq, error); 943 } else { 944 blk_mq_free_request(rq); 945 } 946 } 947 EXPORT_SYMBOL(__blk_mq_end_request); 948 949 void blk_mq_end_request(struct request *rq, blk_status_t error) 950 { 951 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 952 BUG(); 953 __blk_mq_end_request(rq, error); 954 } 955 EXPORT_SYMBOL(blk_mq_end_request); 956 957 #define TAG_COMP_BATCH 32 958 959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 960 int *tag_array, int nr_tags) 961 { 962 struct request_queue *q = hctx->queue; 963 964 /* 965 * All requests should have been marked as RQF_MQ_INFLIGHT, so 966 * update hctx->nr_active in batch 967 */ 968 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 969 __blk_mq_sub_active_requests(hctx, nr_tags); 970 971 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 972 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 973 } 974 975 void blk_mq_end_request_batch(struct io_comp_batch *iob) 976 { 977 int tags[TAG_COMP_BATCH], nr_tags = 0; 978 struct blk_mq_hw_ctx *cur_hctx = NULL; 979 struct request *rq; 980 u64 now = 0; 981 982 if (iob->need_ts) 983 now = ktime_get_ns(); 984 985 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 986 prefetch(rq->bio); 987 prefetch(rq->rq_next); 988 989 blk_complete_request(rq); 990 if (iob->need_ts) 991 __blk_mq_end_request_acct(rq, now); 992 993 rq_qos_done(rq->q, rq); 994 995 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 996 if (!req_ref_put_and_test(rq)) 997 continue; 998 999 blk_crypto_free_request(rq); 1000 blk_pm_mark_last_busy(rq); 1001 1002 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1003 if (cur_hctx) 1004 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1005 nr_tags = 0; 1006 cur_hctx = rq->mq_hctx; 1007 } 1008 tags[nr_tags++] = rq->tag; 1009 } 1010 1011 if (nr_tags) 1012 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1013 } 1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1015 1016 static void blk_complete_reqs(struct llist_head *list) 1017 { 1018 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1019 struct request *rq, *next; 1020 1021 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1022 rq->q->mq_ops->complete(rq); 1023 } 1024 1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1026 { 1027 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1028 } 1029 1030 static int blk_softirq_cpu_dead(unsigned int cpu) 1031 { 1032 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1033 return 0; 1034 } 1035 1036 static void __blk_mq_complete_request_remote(void *data) 1037 { 1038 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1039 } 1040 1041 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1042 { 1043 int cpu = raw_smp_processor_id(); 1044 1045 if (!IS_ENABLED(CONFIG_SMP) || 1046 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1047 return false; 1048 /* 1049 * With force threaded interrupts enabled, raising softirq from an SMP 1050 * function call will always result in waking the ksoftirqd thread. 1051 * This is probably worse than completing the request on a different 1052 * cache domain. 1053 */ 1054 if (force_irqthreads()) 1055 return false; 1056 1057 /* same CPU or cache domain? Complete locally */ 1058 if (cpu == rq->mq_ctx->cpu || 1059 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1060 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1061 return false; 1062 1063 /* don't try to IPI to an offline CPU */ 1064 return cpu_online(rq->mq_ctx->cpu); 1065 } 1066 1067 static void blk_mq_complete_send_ipi(struct request *rq) 1068 { 1069 struct llist_head *list; 1070 unsigned int cpu; 1071 1072 cpu = rq->mq_ctx->cpu; 1073 list = &per_cpu(blk_cpu_done, cpu); 1074 if (llist_add(&rq->ipi_list, list)) { 1075 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1076 smp_call_function_single_async(cpu, &rq->csd); 1077 } 1078 } 1079 1080 static void blk_mq_raise_softirq(struct request *rq) 1081 { 1082 struct llist_head *list; 1083 1084 preempt_disable(); 1085 list = this_cpu_ptr(&blk_cpu_done); 1086 if (llist_add(&rq->ipi_list, list)) 1087 raise_softirq(BLOCK_SOFTIRQ); 1088 preempt_enable(); 1089 } 1090 1091 bool blk_mq_complete_request_remote(struct request *rq) 1092 { 1093 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1094 1095 /* 1096 * For a polled request, always complete locally, it's pointless 1097 * to redirect the completion. 1098 */ 1099 if (rq->cmd_flags & REQ_POLLED) 1100 return false; 1101 1102 if (blk_mq_complete_need_ipi(rq)) { 1103 blk_mq_complete_send_ipi(rq); 1104 return true; 1105 } 1106 1107 if (rq->q->nr_hw_queues == 1) { 1108 blk_mq_raise_softirq(rq); 1109 return true; 1110 } 1111 return false; 1112 } 1113 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1114 1115 /** 1116 * blk_mq_complete_request - end I/O on a request 1117 * @rq: the request being processed 1118 * 1119 * Description: 1120 * Complete a request by scheduling the ->complete_rq operation. 1121 **/ 1122 void blk_mq_complete_request(struct request *rq) 1123 { 1124 if (!blk_mq_complete_request_remote(rq)) 1125 rq->q->mq_ops->complete(rq); 1126 } 1127 EXPORT_SYMBOL(blk_mq_complete_request); 1128 1129 /** 1130 * blk_mq_start_request - Start processing a request 1131 * @rq: Pointer to request to be started 1132 * 1133 * Function used by device drivers to notify the block layer that a request 1134 * is going to be processed now, so blk layer can do proper initializations 1135 * such as starting the timeout timer. 1136 */ 1137 void blk_mq_start_request(struct request *rq) 1138 { 1139 struct request_queue *q = rq->q; 1140 1141 trace_block_rq_issue(rq); 1142 1143 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1144 rq->io_start_time_ns = ktime_get_ns(); 1145 rq->stats_sectors = blk_rq_sectors(rq); 1146 rq->rq_flags |= RQF_STATS; 1147 rq_qos_issue(q, rq); 1148 } 1149 1150 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1151 1152 blk_add_timer(rq); 1153 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1154 1155 #ifdef CONFIG_BLK_DEV_INTEGRITY 1156 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1157 q->integrity.profile->prepare_fn(rq); 1158 #endif 1159 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1160 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1161 } 1162 EXPORT_SYMBOL(blk_mq_start_request); 1163 1164 /* 1165 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1166 * queues. This is important for md arrays to benefit from merging 1167 * requests. 1168 */ 1169 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1170 { 1171 if (plug->multiple_queues) 1172 return BLK_MAX_REQUEST_COUNT * 2; 1173 return BLK_MAX_REQUEST_COUNT; 1174 } 1175 1176 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1177 { 1178 struct request *last = rq_list_peek(&plug->mq_list); 1179 1180 if (!plug->rq_count) { 1181 trace_block_plug(rq->q); 1182 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1183 (!blk_queue_nomerges(rq->q) && 1184 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1185 blk_mq_flush_plug_list(plug, false); 1186 trace_block_plug(rq->q); 1187 } 1188 1189 if (!plug->multiple_queues && last && last->q != rq->q) 1190 plug->multiple_queues = true; 1191 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1192 plug->has_elevator = true; 1193 rq->rq_next = NULL; 1194 rq_list_add(&plug->mq_list, rq); 1195 plug->rq_count++; 1196 } 1197 1198 /** 1199 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1200 * @rq: request to insert 1201 * @at_head: insert request at head or tail of queue 1202 * 1203 * Description: 1204 * Insert a fully prepared request at the back of the I/O scheduler queue 1205 * for execution. Don't wait for completion. 1206 * 1207 * Note: 1208 * This function will invoke @done directly if the queue is dead. 1209 */ 1210 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1211 { 1212 WARN_ON(irqs_disabled()); 1213 WARN_ON(!blk_rq_is_passthrough(rq)); 1214 1215 blk_account_io_start(rq); 1216 if (current->plug) 1217 blk_add_rq_to_plug(current->plug, rq); 1218 else 1219 blk_mq_sched_insert_request(rq, at_head, true, false); 1220 } 1221 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1222 1223 struct blk_rq_wait { 1224 struct completion done; 1225 blk_status_t ret; 1226 }; 1227 1228 static void blk_end_sync_rq(struct request *rq, blk_status_t ret) 1229 { 1230 struct blk_rq_wait *wait = rq->end_io_data; 1231 1232 wait->ret = ret; 1233 complete(&wait->done); 1234 } 1235 1236 static bool blk_rq_is_poll(struct request *rq) 1237 { 1238 if (!rq->mq_hctx) 1239 return false; 1240 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1241 return false; 1242 if (WARN_ON_ONCE(!rq->bio)) 1243 return false; 1244 return true; 1245 } 1246 1247 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1248 { 1249 do { 1250 bio_poll(rq->bio, NULL, 0); 1251 cond_resched(); 1252 } while (!completion_done(wait)); 1253 } 1254 1255 /** 1256 * blk_execute_rq - insert a request into queue for execution 1257 * @rq: request to insert 1258 * @at_head: insert request at head or tail of queue 1259 * 1260 * Description: 1261 * Insert a fully prepared request at the back of the I/O scheduler queue 1262 * for execution and wait for completion. 1263 * Return: The blk_status_t result provided to blk_mq_end_request(). 1264 */ 1265 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1266 { 1267 struct blk_rq_wait wait = { 1268 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1269 }; 1270 1271 WARN_ON(irqs_disabled()); 1272 WARN_ON(!blk_rq_is_passthrough(rq)); 1273 1274 rq->end_io_data = &wait; 1275 rq->end_io = blk_end_sync_rq; 1276 1277 blk_account_io_start(rq); 1278 blk_mq_sched_insert_request(rq, at_head, true, false); 1279 1280 if (blk_rq_is_poll(rq)) { 1281 blk_rq_poll_completion(rq, &wait.done); 1282 } else { 1283 /* 1284 * Prevent hang_check timer from firing at us during very long 1285 * I/O 1286 */ 1287 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1288 1289 if (hang_check) 1290 while (!wait_for_completion_io_timeout(&wait.done, 1291 hang_check * (HZ/2))) 1292 ; 1293 else 1294 wait_for_completion_io(&wait.done); 1295 } 1296 1297 return wait.ret; 1298 } 1299 EXPORT_SYMBOL(blk_execute_rq); 1300 1301 static void __blk_mq_requeue_request(struct request *rq) 1302 { 1303 struct request_queue *q = rq->q; 1304 1305 blk_mq_put_driver_tag(rq); 1306 1307 trace_block_rq_requeue(rq); 1308 rq_qos_requeue(q, rq); 1309 1310 if (blk_mq_request_started(rq)) { 1311 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1312 rq->rq_flags &= ~RQF_TIMED_OUT; 1313 } 1314 } 1315 1316 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1317 { 1318 __blk_mq_requeue_request(rq); 1319 1320 /* this request will be re-inserted to io scheduler queue */ 1321 blk_mq_sched_requeue_request(rq); 1322 1323 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1324 } 1325 EXPORT_SYMBOL(blk_mq_requeue_request); 1326 1327 static void blk_mq_requeue_work(struct work_struct *work) 1328 { 1329 struct request_queue *q = 1330 container_of(work, struct request_queue, requeue_work.work); 1331 LIST_HEAD(rq_list); 1332 struct request *rq, *next; 1333 1334 spin_lock_irq(&q->requeue_lock); 1335 list_splice_init(&q->requeue_list, &rq_list); 1336 spin_unlock_irq(&q->requeue_lock); 1337 1338 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1339 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1340 continue; 1341 1342 rq->rq_flags &= ~RQF_SOFTBARRIER; 1343 list_del_init(&rq->queuelist); 1344 /* 1345 * If RQF_DONTPREP, rq has contained some driver specific 1346 * data, so insert it to hctx dispatch list to avoid any 1347 * merge. 1348 */ 1349 if (rq->rq_flags & RQF_DONTPREP) 1350 blk_mq_request_bypass_insert(rq, false, false); 1351 else 1352 blk_mq_sched_insert_request(rq, true, false, false); 1353 } 1354 1355 while (!list_empty(&rq_list)) { 1356 rq = list_entry(rq_list.next, struct request, queuelist); 1357 list_del_init(&rq->queuelist); 1358 blk_mq_sched_insert_request(rq, false, false, false); 1359 } 1360 1361 blk_mq_run_hw_queues(q, false); 1362 } 1363 1364 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1365 bool kick_requeue_list) 1366 { 1367 struct request_queue *q = rq->q; 1368 unsigned long flags; 1369 1370 /* 1371 * We abuse this flag that is otherwise used by the I/O scheduler to 1372 * request head insertion from the workqueue. 1373 */ 1374 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1375 1376 spin_lock_irqsave(&q->requeue_lock, flags); 1377 if (at_head) { 1378 rq->rq_flags |= RQF_SOFTBARRIER; 1379 list_add(&rq->queuelist, &q->requeue_list); 1380 } else { 1381 list_add_tail(&rq->queuelist, &q->requeue_list); 1382 } 1383 spin_unlock_irqrestore(&q->requeue_lock, flags); 1384 1385 if (kick_requeue_list) 1386 blk_mq_kick_requeue_list(q); 1387 } 1388 1389 void blk_mq_kick_requeue_list(struct request_queue *q) 1390 { 1391 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1392 } 1393 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1394 1395 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1396 unsigned long msecs) 1397 { 1398 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1399 msecs_to_jiffies(msecs)); 1400 } 1401 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1402 1403 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1404 { 1405 /* 1406 * If we find a request that isn't idle we know the queue is busy 1407 * as it's checked in the iter. 1408 * Return false to stop the iteration. 1409 */ 1410 if (blk_mq_request_started(rq)) { 1411 bool *busy = priv; 1412 1413 *busy = true; 1414 return false; 1415 } 1416 1417 return true; 1418 } 1419 1420 bool blk_mq_queue_inflight(struct request_queue *q) 1421 { 1422 bool busy = false; 1423 1424 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1425 return busy; 1426 } 1427 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1428 1429 static void blk_mq_rq_timed_out(struct request *req) 1430 { 1431 req->rq_flags |= RQF_TIMED_OUT; 1432 if (req->q->mq_ops->timeout) { 1433 enum blk_eh_timer_return ret; 1434 1435 ret = req->q->mq_ops->timeout(req); 1436 if (ret == BLK_EH_DONE) 1437 return; 1438 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1439 } 1440 1441 blk_add_timer(req); 1442 } 1443 1444 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1445 { 1446 unsigned long deadline; 1447 1448 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1449 return false; 1450 if (rq->rq_flags & RQF_TIMED_OUT) 1451 return false; 1452 1453 deadline = READ_ONCE(rq->deadline); 1454 if (time_after_eq(jiffies, deadline)) 1455 return true; 1456 1457 if (*next == 0) 1458 *next = deadline; 1459 else if (time_after(*next, deadline)) 1460 *next = deadline; 1461 return false; 1462 } 1463 1464 void blk_mq_put_rq_ref(struct request *rq) 1465 { 1466 if (is_flush_rq(rq)) 1467 rq->end_io(rq, 0); 1468 else if (req_ref_put_and_test(rq)) 1469 __blk_mq_free_request(rq); 1470 } 1471 1472 static bool blk_mq_check_expired(struct request *rq, void *priv) 1473 { 1474 unsigned long *next = priv; 1475 1476 /* 1477 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1478 * be reallocated underneath the timeout handler's processing, then 1479 * the expire check is reliable. If the request is not expired, then 1480 * it was completed and reallocated as a new request after returning 1481 * from blk_mq_check_expired(). 1482 */ 1483 if (blk_mq_req_expired(rq, next)) 1484 blk_mq_rq_timed_out(rq); 1485 return true; 1486 } 1487 1488 static void blk_mq_timeout_work(struct work_struct *work) 1489 { 1490 struct request_queue *q = 1491 container_of(work, struct request_queue, timeout_work); 1492 unsigned long next = 0; 1493 struct blk_mq_hw_ctx *hctx; 1494 unsigned long i; 1495 1496 /* A deadlock might occur if a request is stuck requiring a 1497 * timeout at the same time a queue freeze is waiting 1498 * completion, since the timeout code would not be able to 1499 * acquire the queue reference here. 1500 * 1501 * That's why we don't use blk_queue_enter here; instead, we use 1502 * percpu_ref_tryget directly, because we need to be able to 1503 * obtain a reference even in the short window between the queue 1504 * starting to freeze, by dropping the first reference in 1505 * blk_freeze_queue_start, and the moment the last request is 1506 * consumed, marked by the instant q_usage_counter reaches 1507 * zero. 1508 */ 1509 if (!percpu_ref_tryget(&q->q_usage_counter)) 1510 return; 1511 1512 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1513 1514 if (next != 0) { 1515 mod_timer(&q->timeout, next); 1516 } else { 1517 /* 1518 * Request timeouts are handled as a forward rolling timer. If 1519 * we end up here it means that no requests are pending and 1520 * also that no request has been pending for a while. Mark 1521 * each hctx as idle. 1522 */ 1523 queue_for_each_hw_ctx(q, hctx, i) { 1524 /* the hctx may be unmapped, so check it here */ 1525 if (blk_mq_hw_queue_mapped(hctx)) 1526 blk_mq_tag_idle(hctx); 1527 } 1528 } 1529 blk_queue_exit(q); 1530 } 1531 1532 struct flush_busy_ctx_data { 1533 struct blk_mq_hw_ctx *hctx; 1534 struct list_head *list; 1535 }; 1536 1537 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1538 { 1539 struct flush_busy_ctx_data *flush_data = data; 1540 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1541 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1542 enum hctx_type type = hctx->type; 1543 1544 spin_lock(&ctx->lock); 1545 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1546 sbitmap_clear_bit(sb, bitnr); 1547 spin_unlock(&ctx->lock); 1548 return true; 1549 } 1550 1551 /* 1552 * Process software queues that have been marked busy, splicing them 1553 * to the for-dispatch 1554 */ 1555 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1556 { 1557 struct flush_busy_ctx_data data = { 1558 .hctx = hctx, 1559 .list = list, 1560 }; 1561 1562 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1563 } 1564 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1565 1566 struct dispatch_rq_data { 1567 struct blk_mq_hw_ctx *hctx; 1568 struct request *rq; 1569 }; 1570 1571 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1572 void *data) 1573 { 1574 struct dispatch_rq_data *dispatch_data = data; 1575 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1576 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1577 enum hctx_type type = hctx->type; 1578 1579 spin_lock(&ctx->lock); 1580 if (!list_empty(&ctx->rq_lists[type])) { 1581 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1582 list_del_init(&dispatch_data->rq->queuelist); 1583 if (list_empty(&ctx->rq_lists[type])) 1584 sbitmap_clear_bit(sb, bitnr); 1585 } 1586 spin_unlock(&ctx->lock); 1587 1588 return !dispatch_data->rq; 1589 } 1590 1591 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1592 struct blk_mq_ctx *start) 1593 { 1594 unsigned off = start ? start->index_hw[hctx->type] : 0; 1595 struct dispatch_rq_data data = { 1596 .hctx = hctx, 1597 .rq = NULL, 1598 }; 1599 1600 __sbitmap_for_each_set(&hctx->ctx_map, off, 1601 dispatch_rq_from_ctx, &data); 1602 1603 return data.rq; 1604 } 1605 1606 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1607 { 1608 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1609 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1610 int tag; 1611 1612 blk_mq_tag_busy(rq->mq_hctx); 1613 1614 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1615 bt = &rq->mq_hctx->tags->breserved_tags; 1616 tag_offset = 0; 1617 } else { 1618 if (!hctx_may_queue(rq->mq_hctx, bt)) 1619 return false; 1620 } 1621 1622 tag = __sbitmap_queue_get(bt); 1623 if (tag == BLK_MQ_NO_TAG) 1624 return false; 1625 1626 rq->tag = tag + tag_offset; 1627 return true; 1628 } 1629 1630 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1631 { 1632 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1633 return false; 1634 1635 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1636 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1637 rq->rq_flags |= RQF_MQ_INFLIGHT; 1638 __blk_mq_inc_active_requests(hctx); 1639 } 1640 hctx->tags->rqs[rq->tag] = rq; 1641 return true; 1642 } 1643 1644 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1645 int flags, void *key) 1646 { 1647 struct blk_mq_hw_ctx *hctx; 1648 1649 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1650 1651 spin_lock(&hctx->dispatch_wait_lock); 1652 if (!list_empty(&wait->entry)) { 1653 struct sbitmap_queue *sbq; 1654 1655 list_del_init(&wait->entry); 1656 sbq = &hctx->tags->bitmap_tags; 1657 atomic_dec(&sbq->ws_active); 1658 } 1659 spin_unlock(&hctx->dispatch_wait_lock); 1660 1661 blk_mq_run_hw_queue(hctx, true); 1662 return 1; 1663 } 1664 1665 /* 1666 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1667 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1668 * restart. For both cases, take care to check the condition again after 1669 * marking us as waiting. 1670 */ 1671 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1672 struct request *rq) 1673 { 1674 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1675 struct wait_queue_head *wq; 1676 wait_queue_entry_t *wait; 1677 bool ret; 1678 1679 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1680 blk_mq_sched_mark_restart_hctx(hctx); 1681 1682 /* 1683 * It's possible that a tag was freed in the window between the 1684 * allocation failure and adding the hardware queue to the wait 1685 * queue. 1686 * 1687 * Don't clear RESTART here, someone else could have set it. 1688 * At most this will cost an extra queue run. 1689 */ 1690 return blk_mq_get_driver_tag(rq); 1691 } 1692 1693 wait = &hctx->dispatch_wait; 1694 if (!list_empty_careful(&wait->entry)) 1695 return false; 1696 1697 wq = &bt_wait_ptr(sbq, hctx)->wait; 1698 1699 spin_lock_irq(&wq->lock); 1700 spin_lock(&hctx->dispatch_wait_lock); 1701 if (!list_empty(&wait->entry)) { 1702 spin_unlock(&hctx->dispatch_wait_lock); 1703 spin_unlock_irq(&wq->lock); 1704 return false; 1705 } 1706 1707 atomic_inc(&sbq->ws_active); 1708 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1709 __add_wait_queue(wq, wait); 1710 1711 /* 1712 * It's possible that a tag was freed in the window between the 1713 * allocation failure and adding the hardware queue to the wait 1714 * queue. 1715 */ 1716 ret = blk_mq_get_driver_tag(rq); 1717 if (!ret) { 1718 spin_unlock(&hctx->dispatch_wait_lock); 1719 spin_unlock_irq(&wq->lock); 1720 return false; 1721 } 1722 1723 /* 1724 * We got a tag, remove ourselves from the wait queue to ensure 1725 * someone else gets the wakeup. 1726 */ 1727 list_del_init(&wait->entry); 1728 atomic_dec(&sbq->ws_active); 1729 spin_unlock(&hctx->dispatch_wait_lock); 1730 spin_unlock_irq(&wq->lock); 1731 1732 return true; 1733 } 1734 1735 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1736 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1737 /* 1738 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1739 * - EWMA is one simple way to compute running average value 1740 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1741 * - take 4 as factor for avoiding to get too small(0) result, and this 1742 * factor doesn't matter because EWMA decreases exponentially 1743 */ 1744 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1745 { 1746 unsigned int ewma; 1747 1748 ewma = hctx->dispatch_busy; 1749 1750 if (!ewma && !busy) 1751 return; 1752 1753 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1754 if (busy) 1755 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1756 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1757 1758 hctx->dispatch_busy = ewma; 1759 } 1760 1761 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1762 1763 static void blk_mq_handle_dev_resource(struct request *rq, 1764 struct list_head *list) 1765 { 1766 struct request *next = 1767 list_first_entry_or_null(list, struct request, queuelist); 1768 1769 /* 1770 * If an I/O scheduler has been configured and we got a driver tag for 1771 * the next request already, free it. 1772 */ 1773 if (next) 1774 blk_mq_put_driver_tag(next); 1775 1776 list_add(&rq->queuelist, list); 1777 __blk_mq_requeue_request(rq); 1778 } 1779 1780 static void blk_mq_handle_zone_resource(struct request *rq, 1781 struct list_head *zone_list) 1782 { 1783 /* 1784 * If we end up here it is because we cannot dispatch a request to a 1785 * specific zone due to LLD level zone-write locking or other zone 1786 * related resource not being available. In this case, set the request 1787 * aside in zone_list for retrying it later. 1788 */ 1789 list_add(&rq->queuelist, zone_list); 1790 __blk_mq_requeue_request(rq); 1791 } 1792 1793 enum prep_dispatch { 1794 PREP_DISPATCH_OK, 1795 PREP_DISPATCH_NO_TAG, 1796 PREP_DISPATCH_NO_BUDGET, 1797 }; 1798 1799 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1800 bool need_budget) 1801 { 1802 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1803 int budget_token = -1; 1804 1805 if (need_budget) { 1806 budget_token = blk_mq_get_dispatch_budget(rq->q); 1807 if (budget_token < 0) { 1808 blk_mq_put_driver_tag(rq); 1809 return PREP_DISPATCH_NO_BUDGET; 1810 } 1811 blk_mq_set_rq_budget_token(rq, budget_token); 1812 } 1813 1814 if (!blk_mq_get_driver_tag(rq)) { 1815 /* 1816 * The initial allocation attempt failed, so we need to 1817 * rerun the hardware queue when a tag is freed. The 1818 * waitqueue takes care of that. If the queue is run 1819 * before we add this entry back on the dispatch list, 1820 * we'll re-run it below. 1821 */ 1822 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1823 /* 1824 * All budgets not got from this function will be put 1825 * together during handling partial dispatch 1826 */ 1827 if (need_budget) 1828 blk_mq_put_dispatch_budget(rq->q, budget_token); 1829 return PREP_DISPATCH_NO_TAG; 1830 } 1831 } 1832 1833 return PREP_DISPATCH_OK; 1834 } 1835 1836 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1837 static void blk_mq_release_budgets(struct request_queue *q, 1838 struct list_head *list) 1839 { 1840 struct request *rq; 1841 1842 list_for_each_entry(rq, list, queuelist) { 1843 int budget_token = blk_mq_get_rq_budget_token(rq); 1844 1845 if (budget_token >= 0) 1846 blk_mq_put_dispatch_budget(q, budget_token); 1847 } 1848 } 1849 1850 /* 1851 * Returns true if we did some work AND can potentially do more. 1852 */ 1853 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1854 unsigned int nr_budgets) 1855 { 1856 enum prep_dispatch prep; 1857 struct request_queue *q = hctx->queue; 1858 struct request *rq, *nxt; 1859 int errors, queued; 1860 blk_status_t ret = BLK_STS_OK; 1861 LIST_HEAD(zone_list); 1862 bool needs_resource = false; 1863 1864 if (list_empty(list)) 1865 return false; 1866 1867 /* 1868 * Now process all the entries, sending them to the driver. 1869 */ 1870 errors = queued = 0; 1871 do { 1872 struct blk_mq_queue_data bd; 1873 1874 rq = list_first_entry(list, struct request, queuelist); 1875 1876 WARN_ON_ONCE(hctx != rq->mq_hctx); 1877 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1878 if (prep != PREP_DISPATCH_OK) 1879 break; 1880 1881 list_del_init(&rq->queuelist); 1882 1883 bd.rq = rq; 1884 1885 /* 1886 * Flag last if we have no more requests, or if we have more 1887 * but can't assign a driver tag to it. 1888 */ 1889 if (list_empty(list)) 1890 bd.last = true; 1891 else { 1892 nxt = list_first_entry(list, struct request, queuelist); 1893 bd.last = !blk_mq_get_driver_tag(nxt); 1894 } 1895 1896 /* 1897 * once the request is queued to lld, no need to cover the 1898 * budget any more 1899 */ 1900 if (nr_budgets) 1901 nr_budgets--; 1902 ret = q->mq_ops->queue_rq(hctx, &bd); 1903 switch (ret) { 1904 case BLK_STS_OK: 1905 queued++; 1906 break; 1907 case BLK_STS_RESOURCE: 1908 needs_resource = true; 1909 fallthrough; 1910 case BLK_STS_DEV_RESOURCE: 1911 blk_mq_handle_dev_resource(rq, list); 1912 goto out; 1913 case BLK_STS_ZONE_RESOURCE: 1914 /* 1915 * Move the request to zone_list and keep going through 1916 * the dispatch list to find more requests the drive can 1917 * accept. 1918 */ 1919 blk_mq_handle_zone_resource(rq, &zone_list); 1920 needs_resource = true; 1921 break; 1922 default: 1923 errors++; 1924 blk_mq_end_request(rq, ret); 1925 } 1926 } while (!list_empty(list)); 1927 out: 1928 if (!list_empty(&zone_list)) 1929 list_splice_tail_init(&zone_list, list); 1930 1931 /* If we didn't flush the entire list, we could have told the driver 1932 * there was more coming, but that turned out to be a lie. 1933 */ 1934 if ((!list_empty(list) || errors || needs_resource || 1935 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued) 1936 q->mq_ops->commit_rqs(hctx); 1937 /* 1938 * Any items that need requeuing? Stuff them into hctx->dispatch, 1939 * that is where we will continue on next queue run. 1940 */ 1941 if (!list_empty(list)) { 1942 bool needs_restart; 1943 /* For non-shared tags, the RESTART check will suffice */ 1944 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1945 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1946 1947 if (nr_budgets) 1948 blk_mq_release_budgets(q, list); 1949 1950 spin_lock(&hctx->lock); 1951 list_splice_tail_init(list, &hctx->dispatch); 1952 spin_unlock(&hctx->lock); 1953 1954 /* 1955 * Order adding requests to hctx->dispatch and checking 1956 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1957 * in blk_mq_sched_restart(). Avoid restart code path to 1958 * miss the new added requests to hctx->dispatch, meantime 1959 * SCHED_RESTART is observed here. 1960 */ 1961 smp_mb(); 1962 1963 /* 1964 * If SCHED_RESTART was set by the caller of this function and 1965 * it is no longer set that means that it was cleared by another 1966 * thread and hence that a queue rerun is needed. 1967 * 1968 * If 'no_tag' is set, that means that we failed getting 1969 * a driver tag with an I/O scheduler attached. If our dispatch 1970 * waitqueue is no longer active, ensure that we run the queue 1971 * AFTER adding our entries back to the list. 1972 * 1973 * If no I/O scheduler has been configured it is possible that 1974 * the hardware queue got stopped and restarted before requests 1975 * were pushed back onto the dispatch list. Rerun the queue to 1976 * avoid starvation. Notes: 1977 * - blk_mq_run_hw_queue() checks whether or not a queue has 1978 * been stopped before rerunning a queue. 1979 * - Some but not all block drivers stop a queue before 1980 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1981 * and dm-rq. 1982 * 1983 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1984 * bit is set, run queue after a delay to avoid IO stalls 1985 * that could otherwise occur if the queue is idle. We'll do 1986 * similar if we couldn't get budget or couldn't lock a zone 1987 * and SCHED_RESTART is set. 1988 */ 1989 needs_restart = blk_mq_sched_needs_restart(hctx); 1990 if (prep == PREP_DISPATCH_NO_BUDGET) 1991 needs_resource = true; 1992 if (!needs_restart || 1993 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1994 blk_mq_run_hw_queue(hctx, true); 1995 else if (needs_restart && needs_resource) 1996 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1997 1998 blk_mq_update_dispatch_busy(hctx, true); 1999 return false; 2000 } else 2001 blk_mq_update_dispatch_busy(hctx, false); 2002 2003 return (queued + errors) != 0; 2004 } 2005 2006 /** 2007 * __blk_mq_run_hw_queue - Run a hardware queue. 2008 * @hctx: Pointer to the hardware queue to run. 2009 * 2010 * Send pending requests to the hardware. 2011 */ 2012 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2013 { 2014 /* 2015 * We can't run the queue inline with ints disabled. Ensure that 2016 * we catch bad users of this early. 2017 */ 2018 WARN_ON_ONCE(in_interrupt()); 2019 2020 blk_mq_run_dispatch_ops(hctx->queue, 2021 blk_mq_sched_dispatch_requests(hctx)); 2022 } 2023 2024 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2025 { 2026 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2027 2028 if (cpu >= nr_cpu_ids) 2029 cpu = cpumask_first(hctx->cpumask); 2030 return cpu; 2031 } 2032 2033 /* 2034 * It'd be great if the workqueue API had a way to pass 2035 * in a mask and had some smarts for more clever placement. 2036 * For now we just round-robin here, switching for every 2037 * BLK_MQ_CPU_WORK_BATCH queued items. 2038 */ 2039 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2040 { 2041 bool tried = false; 2042 int next_cpu = hctx->next_cpu; 2043 2044 if (hctx->queue->nr_hw_queues == 1) 2045 return WORK_CPU_UNBOUND; 2046 2047 if (--hctx->next_cpu_batch <= 0) { 2048 select_cpu: 2049 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2050 cpu_online_mask); 2051 if (next_cpu >= nr_cpu_ids) 2052 next_cpu = blk_mq_first_mapped_cpu(hctx); 2053 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2054 } 2055 2056 /* 2057 * Do unbound schedule if we can't find a online CPU for this hctx, 2058 * and it should only happen in the path of handling CPU DEAD. 2059 */ 2060 if (!cpu_online(next_cpu)) { 2061 if (!tried) { 2062 tried = true; 2063 goto select_cpu; 2064 } 2065 2066 /* 2067 * Make sure to re-select CPU next time once after CPUs 2068 * in hctx->cpumask become online again. 2069 */ 2070 hctx->next_cpu = next_cpu; 2071 hctx->next_cpu_batch = 1; 2072 return WORK_CPU_UNBOUND; 2073 } 2074 2075 hctx->next_cpu = next_cpu; 2076 return next_cpu; 2077 } 2078 2079 /** 2080 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2081 * @hctx: Pointer to the hardware queue to run. 2082 * @async: If we want to run the queue asynchronously. 2083 * @msecs: Milliseconds of delay to wait before running the queue. 2084 * 2085 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2086 * with a delay of @msecs. 2087 */ 2088 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2089 unsigned long msecs) 2090 { 2091 if (unlikely(blk_mq_hctx_stopped(hctx))) 2092 return; 2093 2094 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2095 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2096 __blk_mq_run_hw_queue(hctx); 2097 return; 2098 } 2099 } 2100 2101 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2102 msecs_to_jiffies(msecs)); 2103 } 2104 2105 /** 2106 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2107 * @hctx: Pointer to the hardware queue to run. 2108 * @msecs: Milliseconds of delay to wait before running the queue. 2109 * 2110 * Run a hardware queue asynchronously with a delay of @msecs. 2111 */ 2112 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2113 { 2114 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2115 } 2116 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2117 2118 /** 2119 * blk_mq_run_hw_queue - Start to run a hardware queue. 2120 * @hctx: Pointer to the hardware queue to run. 2121 * @async: If we want to run the queue asynchronously. 2122 * 2123 * Check if the request queue is not in a quiesced state and if there are 2124 * pending requests to be sent. If this is true, run the queue to send requests 2125 * to hardware. 2126 */ 2127 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2128 { 2129 bool need_run; 2130 2131 /* 2132 * When queue is quiesced, we may be switching io scheduler, or 2133 * updating nr_hw_queues, or other things, and we can't run queue 2134 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2135 * 2136 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2137 * quiesced. 2138 */ 2139 __blk_mq_run_dispatch_ops(hctx->queue, false, 2140 need_run = !blk_queue_quiesced(hctx->queue) && 2141 blk_mq_hctx_has_pending(hctx)); 2142 2143 if (need_run) 2144 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2145 } 2146 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2147 2148 /* 2149 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2150 * scheduler. 2151 */ 2152 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2153 { 2154 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2155 /* 2156 * If the IO scheduler does not respect hardware queues when 2157 * dispatching, we just don't bother with multiple HW queues and 2158 * dispatch from hctx for the current CPU since running multiple queues 2159 * just causes lock contention inside the scheduler and pointless cache 2160 * bouncing. 2161 */ 2162 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2163 2164 if (!blk_mq_hctx_stopped(hctx)) 2165 return hctx; 2166 return NULL; 2167 } 2168 2169 /** 2170 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2171 * @q: Pointer to the request queue to run. 2172 * @async: If we want to run the queue asynchronously. 2173 */ 2174 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2175 { 2176 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2177 unsigned long i; 2178 2179 sq_hctx = NULL; 2180 if (blk_queue_sq_sched(q)) 2181 sq_hctx = blk_mq_get_sq_hctx(q); 2182 queue_for_each_hw_ctx(q, hctx, i) { 2183 if (blk_mq_hctx_stopped(hctx)) 2184 continue; 2185 /* 2186 * Dispatch from this hctx either if there's no hctx preferred 2187 * by IO scheduler or if it has requests that bypass the 2188 * scheduler. 2189 */ 2190 if (!sq_hctx || sq_hctx == hctx || 2191 !list_empty_careful(&hctx->dispatch)) 2192 blk_mq_run_hw_queue(hctx, async); 2193 } 2194 } 2195 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2196 2197 /** 2198 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2199 * @q: Pointer to the request queue to run. 2200 * @msecs: Milliseconds of delay to wait before running the queues. 2201 */ 2202 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2203 { 2204 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2205 unsigned long i; 2206 2207 sq_hctx = NULL; 2208 if (blk_queue_sq_sched(q)) 2209 sq_hctx = blk_mq_get_sq_hctx(q); 2210 queue_for_each_hw_ctx(q, hctx, i) { 2211 if (blk_mq_hctx_stopped(hctx)) 2212 continue; 2213 /* 2214 * If there is already a run_work pending, leave the 2215 * pending delay untouched. Otherwise, a hctx can stall 2216 * if another hctx is re-delaying the other's work 2217 * before the work executes. 2218 */ 2219 if (delayed_work_pending(&hctx->run_work)) 2220 continue; 2221 /* 2222 * Dispatch from this hctx either if there's no hctx preferred 2223 * by IO scheduler or if it has requests that bypass the 2224 * scheduler. 2225 */ 2226 if (!sq_hctx || sq_hctx == hctx || 2227 !list_empty_careful(&hctx->dispatch)) 2228 blk_mq_delay_run_hw_queue(hctx, msecs); 2229 } 2230 } 2231 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2232 2233 /* 2234 * This function is often used for pausing .queue_rq() by driver when 2235 * there isn't enough resource or some conditions aren't satisfied, and 2236 * BLK_STS_RESOURCE is usually returned. 2237 * 2238 * We do not guarantee that dispatch can be drained or blocked 2239 * after blk_mq_stop_hw_queue() returns. Please use 2240 * blk_mq_quiesce_queue() for that requirement. 2241 */ 2242 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2243 { 2244 cancel_delayed_work(&hctx->run_work); 2245 2246 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2247 } 2248 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2249 2250 /* 2251 * This function is often used for pausing .queue_rq() by driver when 2252 * there isn't enough resource or some conditions aren't satisfied, and 2253 * BLK_STS_RESOURCE is usually returned. 2254 * 2255 * We do not guarantee that dispatch can be drained or blocked 2256 * after blk_mq_stop_hw_queues() returns. Please use 2257 * blk_mq_quiesce_queue() for that requirement. 2258 */ 2259 void blk_mq_stop_hw_queues(struct request_queue *q) 2260 { 2261 struct blk_mq_hw_ctx *hctx; 2262 unsigned long i; 2263 2264 queue_for_each_hw_ctx(q, hctx, i) 2265 blk_mq_stop_hw_queue(hctx); 2266 } 2267 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2268 2269 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2270 { 2271 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2272 2273 blk_mq_run_hw_queue(hctx, false); 2274 } 2275 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2276 2277 void blk_mq_start_hw_queues(struct request_queue *q) 2278 { 2279 struct blk_mq_hw_ctx *hctx; 2280 unsigned long i; 2281 2282 queue_for_each_hw_ctx(q, hctx, i) 2283 blk_mq_start_hw_queue(hctx); 2284 } 2285 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2286 2287 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2288 { 2289 if (!blk_mq_hctx_stopped(hctx)) 2290 return; 2291 2292 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2293 blk_mq_run_hw_queue(hctx, async); 2294 } 2295 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2296 2297 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2298 { 2299 struct blk_mq_hw_ctx *hctx; 2300 unsigned long i; 2301 2302 queue_for_each_hw_ctx(q, hctx, i) 2303 blk_mq_start_stopped_hw_queue(hctx, async); 2304 } 2305 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2306 2307 static void blk_mq_run_work_fn(struct work_struct *work) 2308 { 2309 struct blk_mq_hw_ctx *hctx; 2310 2311 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2312 2313 /* 2314 * If we are stopped, don't run the queue. 2315 */ 2316 if (blk_mq_hctx_stopped(hctx)) 2317 return; 2318 2319 __blk_mq_run_hw_queue(hctx); 2320 } 2321 2322 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2323 struct request *rq, 2324 bool at_head) 2325 { 2326 struct blk_mq_ctx *ctx = rq->mq_ctx; 2327 enum hctx_type type = hctx->type; 2328 2329 lockdep_assert_held(&ctx->lock); 2330 2331 trace_block_rq_insert(rq); 2332 2333 if (at_head) 2334 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2335 else 2336 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2337 } 2338 2339 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2340 bool at_head) 2341 { 2342 struct blk_mq_ctx *ctx = rq->mq_ctx; 2343 2344 lockdep_assert_held(&ctx->lock); 2345 2346 __blk_mq_insert_req_list(hctx, rq, at_head); 2347 blk_mq_hctx_mark_pending(hctx, ctx); 2348 } 2349 2350 /** 2351 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2352 * @rq: Pointer to request to be inserted. 2353 * @at_head: true if the request should be inserted at the head of the list. 2354 * @run_queue: If we should run the hardware queue after inserting the request. 2355 * 2356 * Should only be used carefully, when the caller knows we want to 2357 * bypass a potential IO scheduler on the target device. 2358 */ 2359 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2360 bool run_queue) 2361 { 2362 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2363 2364 spin_lock(&hctx->lock); 2365 if (at_head) 2366 list_add(&rq->queuelist, &hctx->dispatch); 2367 else 2368 list_add_tail(&rq->queuelist, &hctx->dispatch); 2369 spin_unlock(&hctx->lock); 2370 2371 if (run_queue) 2372 blk_mq_run_hw_queue(hctx, false); 2373 } 2374 2375 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2376 struct list_head *list) 2377 2378 { 2379 struct request *rq; 2380 enum hctx_type type = hctx->type; 2381 2382 /* 2383 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2384 * offline now 2385 */ 2386 list_for_each_entry(rq, list, queuelist) { 2387 BUG_ON(rq->mq_ctx != ctx); 2388 trace_block_rq_insert(rq); 2389 } 2390 2391 spin_lock(&ctx->lock); 2392 list_splice_tail_init(list, &ctx->rq_lists[type]); 2393 blk_mq_hctx_mark_pending(hctx, ctx); 2394 spin_unlock(&ctx->lock); 2395 } 2396 2397 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2398 bool from_schedule) 2399 { 2400 if (hctx->queue->mq_ops->commit_rqs) { 2401 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2402 hctx->queue->mq_ops->commit_rqs(hctx); 2403 } 2404 *queued = 0; 2405 } 2406 2407 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2408 unsigned int nr_segs) 2409 { 2410 int err; 2411 2412 if (bio->bi_opf & REQ_RAHEAD) 2413 rq->cmd_flags |= REQ_FAILFAST_MASK; 2414 2415 rq->__sector = bio->bi_iter.bi_sector; 2416 blk_rq_bio_prep(rq, bio, nr_segs); 2417 2418 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2419 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2420 WARN_ON_ONCE(err); 2421 2422 blk_account_io_start(rq); 2423 } 2424 2425 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2426 struct request *rq, bool last) 2427 { 2428 struct request_queue *q = rq->q; 2429 struct blk_mq_queue_data bd = { 2430 .rq = rq, 2431 .last = last, 2432 }; 2433 blk_status_t ret; 2434 2435 /* 2436 * For OK queue, we are done. For error, caller may kill it. 2437 * Any other error (busy), just add it to our list as we 2438 * previously would have done. 2439 */ 2440 ret = q->mq_ops->queue_rq(hctx, &bd); 2441 switch (ret) { 2442 case BLK_STS_OK: 2443 blk_mq_update_dispatch_busy(hctx, false); 2444 break; 2445 case BLK_STS_RESOURCE: 2446 case BLK_STS_DEV_RESOURCE: 2447 blk_mq_update_dispatch_busy(hctx, true); 2448 __blk_mq_requeue_request(rq); 2449 break; 2450 default: 2451 blk_mq_update_dispatch_busy(hctx, false); 2452 break; 2453 } 2454 2455 return ret; 2456 } 2457 2458 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2459 struct request *rq, 2460 bool bypass_insert, bool last) 2461 { 2462 struct request_queue *q = rq->q; 2463 bool run_queue = true; 2464 int budget_token; 2465 2466 /* 2467 * RCU or SRCU read lock is needed before checking quiesced flag. 2468 * 2469 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2470 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2471 * and avoid driver to try to dispatch again. 2472 */ 2473 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2474 run_queue = false; 2475 bypass_insert = false; 2476 goto insert; 2477 } 2478 2479 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2480 goto insert; 2481 2482 budget_token = blk_mq_get_dispatch_budget(q); 2483 if (budget_token < 0) 2484 goto insert; 2485 2486 blk_mq_set_rq_budget_token(rq, budget_token); 2487 2488 if (!blk_mq_get_driver_tag(rq)) { 2489 blk_mq_put_dispatch_budget(q, budget_token); 2490 goto insert; 2491 } 2492 2493 return __blk_mq_issue_directly(hctx, rq, last); 2494 insert: 2495 if (bypass_insert) 2496 return BLK_STS_RESOURCE; 2497 2498 blk_mq_sched_insert_request(rq, false, run_queue, false); 2499 2500 return BLK_STS_OK; 2501 } 2502 2503 /** 2504 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2505 * @hctx: Pointer of the associated hardware queue. 2506 * @rq: Pointer to request to be sent. 2507 * 2508 * If the device has enough resources to accept a new request now, send the 2509 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2510 * we can try send it another time in the future. Requests inserted at this 2511 * queue have higher priority. 2512 */ 2513 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2514 struct request *rq) 2515 { 2516 blk_status_t ret = 2517 __blk_mq_try_issue_directly(hctx, rq, false, true); 2518 2519 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2520 blk_mq_request_bypass_insert(rq, false, true); 2521 else if (ret != BLK_STS_OK) 2522 blk_mq_end_request(rq, ret); 2523 } 2524 2525 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2526 { 2527 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2528 } 2529 2530 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2531 { 2532 struct blk_mq_hw_ctx *hctx = NULL; 2533 struct request *rq; 2534 int queued = 0; 2535 int errors = 0; 2536 2537 while ((rq = rq_list_pop(&plug->mq_list))) { 2538 bool last = rq_list_empty(plug->mq_list); 2539 blk_status_t ret; 2540 2541 if (hctx != rq->mq_hctx) { 2542 if (hctx) 2543 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2544 hctx = rq->mq_hctx; 2545 } 2546 2547 ret = blk_mq_request_issue_directly(rq, last); 2548 switch (ret) { 2549 case BLK_STS_OK: 2550 queued++; 2551 break; 2552 case BLK_STS_RESOURCE: 2553 case BLK_STS_DEV_RESOURCE: 2554 blk_mq_request_bypass_insert(rq, false, true); 2555 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2556 return; 2557 default: 2558 blk_mq_end_request(rq, ret); 2559 errors++; 2560 break; 2561 } 2562 } 2563 2564 /* 2565 * If we didn't flush the entire list, we could have told the driver 2566 * there was more coming, but that turned out to be a lie. 2567 */ 2568 if (errors) 2569 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2570 } 2571 2572 static void __blk_mq_flush_plug_list(struct request_queue *q, 2573 struct blk_plug *plug) 2574 { 2575 if (blk_queue_quiesced(q)) 2576 return; 2577 q->mq_ops->queue_rqs(&plug->mq_list); 2578 } 2579 2580 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2581 { 2582 struct blk_mq_hw_ctx *this_hctx = NULL; 2583 struct blk_mq_ctx *this_ctx = NULL; 2584 struct request *requeue_list = NULL; 2585 unsigned int depth = 0; 2586 LIST_HEAD(list); 2587 2588 do { 2589 struct request *rq = rq_list_pop(&plug->mq_list); 2590 2591 if (!this_hctx) { 2592 this_hctx = rq->mq_hctx; 2593 this_ctx = rq->mq_ctx; 2594 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2595 rq_list_add(&requeue_list, rq); 2596 continue; 2597 } 2598 list_add_tail(&rq->queuelist, &list); 2599 depth++; 2600 } while (!rq_list_empty(plug->mq_list)); 2601 2602 plug->mq_list = requeue_list; 2603 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2604 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2605 } 2606 2607 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2608 { 2609 struct request *rq; 2610 2611 if (rq_list_empty(plug->mq_list)) 2612 return; 2613 plug->rq_count = 0; 2614 2615 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2616 struct request_queue *q; 2617 2618 rq = rq_list_peek(&plug->mq_list); 2619 q = rq->q; 2620 2621 /* 2622 * Peek first request and see if we have a ->queue_rqs() hook. 2623 * If we do, we can dispatch the whole plug list in one go. We 2624 * already know at this point that all requests belong to the 2625 * same queue, caller must ensure that's the case. 2626 * 2627 * Since we pass off the full list to the driver at this point, 2628 * we do not increment the active request count for the queue. 2629 * Bypass shared tags for now because of that. 2630 */ 2631 if (q->mq_ops->queue_rqs && 2632 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2633 blk_mq_run_dispatch_ops(q, 2634 __blk_mq_flush_plug_list(q, plug)); 2635 if (rq_list_empty(plug->mq_list)) 2636 return; 2637 } 2638 2639 blk_mq_run_dispatch_ops(q, 2640 blk_mq_plug_issue_direct(plug, false)); 2641 if (rq_list_empty(plug->mq_list)) 2642 return; 2643 } 2644 2645 do { 2646 blk_mq_dispatch_plug_list(plug, from_schedule); 2647 } while (!rq_list_empty(plug->mq_list)); 2648 } 2649 2650 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2651 struct list_head *list) 2652 { 2653 int queued = 0; 2654 int errors = 0; 2655 2656 while (!list_empty(list)) { 2657 blk_status_t ret; 2658 struct request *rq = list_first_entry(list, struct request, 2659 queuelist); 2660 2661 list_del_init(&rq->queuelist); 2662 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2663 if (ret != BLK_STS_OK) { 2664 errors++; 2665 if (ret == BLK_STS_RESOURCE || 2666 ret == BLK_STS_DEV_RESOURCE) { 2667 blk_mq_request_bypass_insert(rq, false, 2668 list_empty(list)); 2669 break; 2670 } 2671 blk_mq_end_request(rq, ret); 2672 } else 2673 queued++; 2674 } 2675 2676 /* 2677 * If we didn't flush the entire list, we could have told 2678 * the driver there was more coming, but that turned out to 2679 * be a lie. 2680 */ 2681 if ((!list_empty(list) || errors) && 2682 hctx->queue->mq_ops->commit_rqs && queued) 2683 hctx->queue->mq_ops->commit_rqs(hctx); 2684 } 2685 2686 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2687 struct bio *bio, unsigned int nr_segs) 2688 { 2689 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2690 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2691 return true; 2692 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2693 return true; 2694 } 2695 return false; 2696 } 2697 2698 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2699 struct blk_plug *plug, 2700 struct bio *bio, 2701 unsigned int nsegs) 2702 { 2703 struct blk_mq_alloc_data data = { 2704 .q = q, 2705 .nr_tags = 1, 2706 .cmd_flags = bio->bi_opf, 2707 }; 2708 struct request *rq; 2709 2710 if (unlikely(bio_queue_enter(bio))) 2711 return NULL; 2712 2713 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2714 goto queue_exit; 2715 2716 rq_qos_throttle(q, bio); 2717 2718 if (plug) { 2719 data.nr_tags = plug->nr_ios; 2720 plug->nr_ios = 1; 2721 data.cached_rq = &plug->cached_rq; 2722 } 2723 2724 rq = __blk_mq_alloc_requests(&data); 2725 if (rq) 2726 return rq; 2727 rq_qos_cleanup(q, bio); 2728 if (bio->bi_opf & REQ_NOWAIT) 2729 bio_wouldblock_error(bio); 2730 queue_exit: 2731 blk_queue_exit(q); 2732 return NULL; 2733 } 2734 2735 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2736 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2737 { 2738 struct request *rq; 2739 2740 if (!plug) 2741 return NULL; 2742 rq = rq_list_peek(&plug->cached_rq); 2743 if (!rq || rq->q != q) 2744 return NULL; 2745 2746 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2747 *bio = NULL; 2748 return NULL; 2749 } 2750 2751 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) 2752 return NULL; 2753 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2754 return NULL; 2755 2756 /* 2757 * If any qos ->throttle() end up blocking, we will have flushed the 2758 * plug and hence killed the cached_rq list as well. Pop this entry 2759 * before we throttle. 2760 */ 2761 plug->cached_rq = rq_list_next(rq); 2762 rq_qos_throttle(q, *bio); 2763 2764 rq->cmd_flags = (*bio)->bi_opf; 2765 INIT_LIST_HEAD(&rq->queuelist); 2766 return rq; 2767 } 2768 2769 static void bio_set_ioprio(struct bio *bio) 2770 { 2771 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2772 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2773 bio->bi_ioprio = get_current_ioprio(); 2774 blkcg_set_ioprio(bio); 2775 } 2776 2777 /** 2778 * blk_mq_submit_bio - Create and send a request to block device. 2779 * @bio: Bio pointer. 2780 * 2781 * Builds up a request structure from @q and @bio and send to the device. The 2782 * request may not be queued directly to hardware if: 2783 * * This request can be merged with another one 2784 * * We want to place request at plug queue for possible future merging 2785 * * There is an IO scheduler active at this queue 2786 * 2787 * It will not queue the request if there is an error with the bio, or at the 2788 * request creation. 2789 */ 2790 void blk_mq_submit_bio(struct bio *bio) 2791 { 2792 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2793 struct blk_plug *plug = blk_mq_plug(bio); 2794 const int is_sync = op_is_sync(bio->bi_opf); 2795 struct request *rq; 2796 unsigned int nr_segs = 1; 2797 blk_status_t ret; 2798 2799 bio = blk_queue_bounce(bio, q); 2800 if (bio_may_exceed_limits(bio, &q->limits)) 2801 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2802 2803 if (!bio_integrity_prep(bio)) 2804 return; 2805 2806 bio_set_ioprio(bio); 2807 2808 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2809 if (!rq) { 2810 if (!bio) 2811 return; 2812 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2813 if (unlikely(!rq)) 2814 return; 2815 } 2816 2817 trace_block_getrq(bio); 2818 2819 rq_qos_track(q, rq, bio); 2820 2821 blk_mq_bio_to_request(rq, bio, nr_segs); 2822 2823 ret = blk_crypto_init_request(rq); 2824 if (ret != BLK_STS_OK) { 2825 bio->bi_status = ret; 2826 bio_endio(bio); 2827 blk_mq_free_request(rq); 2828 return; 2829 } 2830 2831 if (op_is_flush(bio->bi_opf)) { 2832 blk_insert_flush(rq); 2833 return; 2834 } 2835 2836 if (plug) 2837 blk_add_rq_to_plug(plug, rq); 2838 else if ((rq->rq_flags & RQF_ELV) || 2839 (rq->mq_hctx->dispatch_busy && 2840 (q->nr_hw_queues == 1 || !is_sync))) 2841 blk_mq_sched_insert_request(rq, false, true, true); 2842 else 2843 blk_mq_run_dispatch_ops(rq->q, 2844 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2845 } 2846 2847 #ifdef CONFIG_BLK_MQ_STACKING 2848 /** 2849 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2850 * @rq: the request being queued 2851 */ 2852 blk_status_t blk_insert_cloned_request(struct request *rq) 2853 { 2854 struct request_queue *q = rq->q; 2855 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 2856 blk_status_t ret; 2857 2858 if (blk_rq_sectors(rq) > max_sectors) { 2859 /* 2860 * SCSI device does not have a good way to return if 2861 * Write Same/Zero is actually supported. If a device rejects 2862 * a non-read/write command (discard, write same,etc.) the 2863 * low-level device driver will set the relevant queue limit to 2864 * 0 to prevent blk-lib from issuing more of the offending 2865 * operations. Commands queued prior to the queue limit being 2866 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 2867 * errors being propagated to upper layers. 2868 */ 2869 if (max_sectors == 0) 2870 return BLK_STS_NOTSUPP; 2871 2872 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 2873 __func__, blk_rq_sectors(rq), max_sectors); 2874 return BLK_STS_IOERR; 2875 } 2876 2877 /* 2878 * The queue settings related to segment counting may differ from the 2879 * original queue. 2880 */ 2881 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 2882 if (rq->nr_phys_segments > queue_max_segments(q)) { 2883 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 2884 __func__, rq->nr_phys_segments, queue_max_segments(q)); 2885 return BLK_STS_IOERR; 2886 } 2887 2888 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 2889 return BLK_STS_IOERR; 2890 2891 if (blk_crypto_insert_cloned_request(rq)) 2892 return BLK_STS_IOERR; 2893 2894 blk_account_io_start(rq); 2895 2896 /* 2897 * Since we have a scheduler attached on the top device, 2898 * bypass a potential scheduler on the bottom device for 2899 * insert. 2900 */ 2901 blk_mq_run_dispatch_ops(q, 2902 ret = blk_mq_request_issue_directly(rq, true)); 2903 if (ret) 2904 blk_account_io_done(rq, ktime_get_ns()); 2905 return ret; 2906 } 2907 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2908 2909 /** 2910 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2911 * @rq: the clone request to be cleaned up 2912 * 2913 * Description: 2914 * Free all bios in @rq for a cloned request. 2915 */ 2916 void blk_rq_unprep_clone(struct request *rq) 2917 { 2918 struct bio *bio; 2919 2920 while ((bio = rq->bio) != NULL) { 2921 rq->bio = bio->bi_next; 2922 2923 bio_put(bio); 2924 } 2925 } 2926 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2927 2928 /** 2929 * blk_rq_prep_clone - Helper function to setup clone request 2930 * @rq: the request to be setup 2931 * @rq_src: original request to be cloned 2932 * @bs: bio_set that bios for clone are allocated from 2933 * @gfp_mask: memory allocation mask for bio 2934 * @bio_ctr: setup function to be called for each clone bio. 2935 * Returns %0 for success, non %0 for failure. 2936 * @data: private data to be passed to @bio_ctr 2937 * 2938 * Description: 2939 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2940 * Also, pages which the original bios are pointing to are not copied 2941 * and the cloned bios just point same pages. 2942 * So cloned bios must be completed before original bios, which means 2943 * the caller must complete @rq before @rq_src. 2944 */ 2945 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2946 struct bio_set *bs, gfp_t gfp_mask, 2947 int (*bio_ctr)(struct bio *, struct bio *, void *), 2948 void *data) 2949 { 2950 struct bio *bio, *bio_src; 2951 2952 if (!bs) 2953 bs = &fs_bio_set; 2954 2955 __rq_for_each_bio(bio_src, rq_src) { 2956 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 2957 bs); 2958 if (!bio) 2959 goto free_and_out; 2960 2961 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2962 goto free_and_out; 2963 2964 if (rq->bio) { 2965 rq->biotail->bi_next = bio; 2966 rq->biotail = bio; 2967 } else { 2968 rq->bio = rq->biotail = bio; 2969 } 2970 bio = NULL; 2971 } 2972 2973 /* Copy attributes of the original request to the clone request. */ 2974 rq->__sector = blk_rq_pos(rq_src); 2975 rq->__data_len = blk_rq_bytes(rq_src); 2976 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 2977 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 2978 rq->special_vec = rq_src->special_vec; 2979 } 2980 rq->nr_phys_segments = rq_src->nr_phys_segments; 2981 rq->ioprio = rq_src->ioprio; 2982 2983 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 2984 goto free_and_out; 2985 2986 return 0; 2987 2988 free_and_out: 2989 if (bio) 2990 bio_put(bio); 2991 blk_rq_unprep_clone(rq); 2992 2993 return -ENOMEM; 2994 } 2995 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2996 #endif /* CONFIG_BLK_MQ_STACKING */ 2997 2998 /* 2999 * Steal bios from a request and add them to a bio list. 3000 * The request must not have been partially completed before. 3001 */ 3002 void blk_steal_bios(struct bio_list *list, struct request *rq) 3003 { 3004 if (rq->bio) { 3005 if (list->tail) 3006 list->tail->bi_next = rq->bio; 3007 else 3008 list->head = rq->bio; 3009 list->tail = rq->biotail; 3010 3011 rq->bio = NULL; 3012 rq->biotail = NULL; 3013 } 3014 3015 rq->__data_len = 0; 3016 } 3017 EXPORT_SYMBOL_GPL(blk_steal_bios); 3018 3019 static size_t order_to_size(unsigned int order) 3020 { 3021 return (size_t)PAGE_SIZE << order; 3022 } 3023 3024 /* called before freeing request pool in @tags */ 3025 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3026 struct blk_mq_tags *tags) 3027 { 3028 struct page *page; 3029 unsigned long flags; 3030 3031 /* There is no need to clear a driver tags own mapping */ 3032 if (drv_tags == tags) 3033 return; 3034 3035 list_for_each_entry(page, &tags->page_list, lru) { 3036 unsigned long start = (unsigned long)page_address(page); 3037 unsigned long end = start + order_to_size(page->private); 3038 int i; 3039 3040 for (i = 0; i < drv_tags->nr_tags; i++) { 3041 struct request *rq = drv_tags->rqs[i]; 3042 unsigned long rq_addr = (unsigned long)rq; 3043 3044 if (rq_addr >= start && rq_addr < end) { 3045 WARN_ON_ONCE(req_ref_read(rq) != 0); 3046 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3047 } 3048 } 3049 } 3050 3051 /* 3052 * Wait until all pending iteration is done. 3053 * 3054 * Request reference is cleared and it is guaranteed to be observed 3055 * after the ->lock is released. 3056 */ 3057 spin_lock_irqsave(&drv_tags->lock, flags); 3058 spin_unlock_irqrestore(&drv_tags->lock, flags); 3059 } 3060 3061 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3062 unsigned int hctx_idx) 3063 { 3064 struct blk_mq_tags *drv_tags; 3065 struct page *page; 3066 3067 if (list_empty(&tags->page_list)) 3068 return; 3069 3070 if (blk_mq_is_shared_tags(set->flags)) 3071 drv_tags = set->shared_tags; 3072 else 3073 drv_tags = set->tags[hctx_idx]; 3074 3075 if (tags->static_rqs && set->ops->exit_request) { 3076 int i; 3077 3078 for (i = 0; i < tags->nr_tags; i++) { 3079 struct request *rq = tags->static_rqs[i]; 3080 3081 if (!rq) 3082 continue; 3083 set->ops->exit_request(set, rq, hctx_idx); 3084 tags->static_rqs[i] = NULL; 3085 } 3086 } 3087 3088 blk_mq_clear_rq_mapping(drv_tags, tags); 3089 3090 while (!list_empty(&tags->page_list)) { 3091 page = list_first_entry(&tags->page_list, struct page, lru); 3092 list_del_init(&page->lru); 3093 /* 3094 * Remove kmemleak object previously allocated in 3095 * blk_mq_alloc_rqs(). 3096 */ 3097 kmemleak_free(page_address(page)); 3098 __free_pages(page, page->private); 3099 } 3100 } 3101 3102 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3103 { 3104 kfree(tags->rqs); 3105 tags->rqs = NULL; 3106 kfree(tags->static_rqs); 3107 tags->static_rqs = NULL; 3108 3109 blk_mq_free_tags(tags); 3110 } 3111 3112 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3113 unsigned int hctx_idx) 3114 { 3115 int i; 3116 3117 for (i = 0; i < set->nr_maps; i++) { 3118 unsigned int start = set->map[i].queue_offset; 3119 unsigned int end = start + set->map[i].nr_queues; 3120 3121 if (hctx_idx >= start && hctx_idx < end) 3122 break; 3123 } 3124 3125 if (i >= set->nr_maps) 3126 i = HCTX_TYPE_DEFAULT; 3127 3128 return i; 3129 } 3130 3131 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3132 unsigned int hctx_idx) 3133 { 3134 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3135 3136 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3137 } 3138 3139 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3140 unsigned int hctx_idx, 3141 unsigned int nr_tags, 3142 unsigned int reserved_tags) 3143 { 3144 int node = blk_mq_get_hctx_node(set, hctx_idx); 3145 struct blk_mq_tags *tags; 3146 3147 if (node == NUMA_NO_NODE) 3148 node = set->numa_node; 3149 3150 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3151 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3152 if (!tags) 3153 return NULL; 3154 3155 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3156 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3157 node); 3158 if (!tags->rqs) { 3159 blk_mq_free_tags(tags); 3160 return NULL; 3161 } 3162 3163 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3164 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3165 node); 3166 if (!tags->static_rqs) { 3167 kfree(tags->rqs); 3168 blk_mq_free_tags(tags); 3169 return NULL; 3170 } 3171 3172 return tags; 3173 } 3174 3175 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3176 unsigned int hctx_idx, int node) 3177 { 3178 int ret; 3179 3180 if (set->ops->init_request) { 3181 ret = set->ops->init_request(set, rq, hctx_idx, node); 3182 if (ret) 3183 return ret; 3184 } 3185 3186 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3187 return 0; 3188 } 3189 3190 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3191 struct blk_mq_tags *tags, 3192 unsigned int hctx_idx, unsigned int depth) 3193 { 3194 unsigned int i, j, entries_per_page, max_order = 4; 3195 int node = blk_mq_get_hctx_node(set, hctx_idx); 3196 size_t rq_size, left; 3197 3198 if (node == NUMA_NO_NODE) 3199 node = set->numa_node; 3200 3201 INIT_LIST_HEAD(&tags->page_list); 3202 3203 /* 3204 * rq_size is the size of the request plus driver payload, rounded 3205 * to the cacheline size 3206 */ 3207 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3208 cache_line_size()); 3209 left = rq_size * depth; 3210 3211 for (i = 0; i < depth; ) { 3212 int this_order = max_order; 3213 struct page *page; 3214 int to_do; 3215 void *p; 3216 3217 while (this_order && left < order_to_size(this_order - 1)) 3218 this_order--; 3219 3220 do { 3221 page = alloc_pages_node(node, 3222 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3223 this_order); 3224 if (page) 3225 break; 3226 if (!this_order--) 3227 break; 3228 if (order_to_size(this_order) < rq_size) 3229 break; 3230 } while (1); 3231 3232 if (!page) 3233 goto fail; 3234 3235 page->private = this_order; 3236 list_add_tail(&page->lru, &tags->page_list); 3237 3238 p = page_address(page); 3239 /* 3240 * Allow kmemleak to scan these pages as they contain pointers 3241 * to additional allocations like via ops->init_request(). 3242 */ 3243 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3244 entries_per_page = order_to_size(this_order) / rq_size; 3245 to_do = min(entries_per_page, depth - i); 3246 left -= to_do * rq_size; 3247 for (j = 0; j < to_do; j++) { 3248 struct request *rq = p; 3249 3250 tags->static_rqs[i] = rq; 3251 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3252 tags->static_rqs[i] = NULL; 3253 goto fail; 3254 } 3255 3256 p += rq_size; 3257 i++; 3258 } 3259 } 3260 return 0; 3261 3262 fail: 3263 blk_mq_free_rqs(set, tags, hctx_idx); 3264 return -ENOMEM; 3265 } 3266 3267 struct rq_iter_data { 3268 struct blk_mq_hw_ctx *hctx; 3269 bool has_rq; 3270 }; 3271 3272 static bool blk_mq_has_request(struct request *rq, void *data) 3273 { 3274 struct rq_iter_data *iter_data = data; 3275 3276 if (rq->mq_hctx != iter_data->hctx) 3277 return true; 3278 iter_data->has_rq = true; 3279 return false; 3280 } 3281 3282 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3283 { 3284 struct blk_mq_tags *tags = hctx->sched_tags ? 3285 hctx->sched_tags : hctx->tags; 3286 struct rq_iter_data data = { 3287 .hctx = hctx, 3288 }; 3289 3290 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3291 return data.has_rq; 3292 } 3293 3294 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3295 struct blk_mq_hw_ctx *hctx) 3296 { 3297 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3298 return false; 3299 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3300 return false; 3301 return true; 3302 } 3303 3304 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3305 { 3306 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3307 struct blk_mq_hw_ctx, cpuhp_online); 3308 3309 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3310 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3311 return 0; 3312 3313 /* 3314 * Prevent new request from being allocated on the current hctx. 3315 * 3316 * The smp_mb__after_atomic() Pairs with the implied barrier in 3317 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3318 * seen once we return from the tag allocator. 3319 */ 3320 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3321 smp_mb__after_atomic(); 3322 3323 /* 3324 * Try to grab a reference to the queue and wait for any outstanding 3325 * requests. If we could not grab a reference the queue has been 3326 * frozen and there are no requests. 3327 */ 3328 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3329 while (blk_mq_hctx_has_requests(hctx)) 3330 msleep(5); 3331 percpu_ref_put(&hctx->queue->q_usage_counter); 3332 } 3333 3334 return 0; 3335 } 3336 3337 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3338 { 3339 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3340 struct blk_mq_hw_ctx, cpuhp_online); 3341 3342 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3343 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3344 return 0; 3345 } 3346 3347 /* 3348 * 'cpu' is going away. splice any existing rq_list entries from this 3349 * software queue to the hw queue dispatch list, and ensure that it 3350 * gets run. 3351 */ 3352 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3353 { 3354 struct blk_mq_hw_ctx *hctx; 3355 struct blk_mq_ctx *ctx; 3356 LIST_HEAD(tmp); 3357 enum hctx_type type; 3358 3359 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3360 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3361 return 0; 3362 3363 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3364 type = hctx->type; 3365 3366 spin_lock(&ctx->lock); 3367 if (!list_empty(&ctx->rq_lists[type])) { 3368 list_splice_init(&ctx->rq_lists[type], &tmp); 3369 blk_mq_hctx_clear_pending(hctx, ctx); 3370 } 3371 spin_unlock(&ctx->lock); 3372 3373 if (list_empty(&tmp)) 3374 return 0; 3375 3376 spin_lock(&hctx->lock); 3377 list_splice_tail_init(&tmp, &hctx->dispatch); 3378 spin_unlock(&hctx->lock); 3379 3380 blk_mq_run_hw_queue(hctx, true); 3381 return 0; 3382 } 3383 3384 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3385 { 3386 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3387 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3388 &hctx->cpuhp_online); 3389 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3390 &hctx->cpuhp_dead); 3391 } 3392 3393 /* 3394 * Before freeing hw queue, clearing the flush request reference in 3395 * tags->rqs[] for avoiding potential UAF. 3396 */ 3397 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3398 unsigned int queue_depth, struct request *flush_rq) 3399 { 3400 int i; 3401 unsigned long flags; 3402 3403 /* The hw queue may not be mapped yet */ 3404 if (!tags) 3405 return; 3406 3407 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3408 3409 for (i = 0; i < queue_depth; i++) 3410 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3411 3412 /* 3413 * Wait until all pending iteration is done. 3414 * 3415 * Request reference is cleared and it is guaranteed to be observed 3416 * after the ->lock is released. 3417 */ 3418 spin_lock_irqsave(&tags->lock, flags); 3419 spin_unlock_irqrestore(&tags->lock, flags); 3420 } 3421 3422 /* hctx->ctxs will be freed in queue's release handler */ 3423 static void blk_mq_exit_hctx(struct request_queue *q, 3424 struct blk_mq_tag_set *set, 3425 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3426 { 3427 struct request *flush_rq = hctx->fq->flush_rq; 3428 3429 if (blk_mq_hw_queue_mapped(hctx)) 3430 blk_mq_tag_idle(hctx); 3431 3432 if (blk_queue_init_done(q)) 3433 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3434 set->queue_depth, flush_rq); 3435 if (set->ops->exit_request) 3436 set->ops->exit_request(set, flush_rq, hctx_idx); 3437 3438 if (set->ops->exit_hctx) 3439 set->ops->exit_hctx(hctx, hctx_idx); 3440 3441 blk_mq_remove_cpuhp(hctx); 3442 3443 xa_erase(&q->hctx_table, hctx_idx); 3444 3445 spin_lock(&q->unused_hctx_lock); 3446 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3447 spin_unlock(&q->unused_hctx_lock); 3448 } 3449 3450 static void blk_mq_exit_hw_queues(struct request_queue *q, 3451 struct blk_mq_tag_set *set, int nr_queue) 3452 { 3453 struct blk_mq_hw_ctx *hctx; 3454 unsigned long i; 3455 3456 queue_for_each_hw_ctx(q, hctx, i) { 3457 if (i == nr_queue) 3458 break; 3459 blk_mq_exit_hctx(q, set, hctx, i); 3460 } 3461 } 3462 3463 static int blk_mq_init_hctx(struct request_queue *q, 3464 struct blk_mq_tag_set *set, 3465 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3466 { 3467 hctx->queue_num = hctx_idx; 3468 3469 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3470 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3471 &hctx->cpuhp_online); 3472 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3473 3474 hctx->tags = set->tags[hctx_idx]; 3475 3476 if (set->ops->init_hctx && 3477 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3478 goto unregister_cpu_notifier; 3479 3480 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3481 hctx->numa_node)) 3482 goto exit_hctx; 3483 3484 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3485 goto exit_flush_rq; 3486 3487 return 0; 3488 3489 exit_flush_rq: 3490 if (set->ops->exit_request) 3491 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3492 exit_hctx: 3493 if (set->ops->exit_hctx) 3494 set->ops->exit_hctx(hctx, hctx_idx); 3495 unregister_cpu_notifier: 3496 blk_mq_remove_cpuhp(hctx); 3497 return -1; 3498 } 3499 3500 static struct blk_mq_hw_ctx * 3501 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3502 int node) 3503 { 3504 struct blk_mq_hw_ctx *hctx; 3505 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3506 3507 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3508 if (!hctx) 3509 goto fail_alloc_hctx; 3510 3511 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3512 goto free_hctx; 3513 3514 atomic_set(&hctx->nr_active, 0); 3515 if (node == NUMA_NO_NODE) 3516 node = set->numa_node; 3517 hctx->numa_node = node; 3518 3519 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3520 spin_lock_init(&hctx->lock); 3521 INIT_LIST_HEAD(&hctx->dispatch); 3522 hctx->queue = q; 3523 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3524 3525 INIT_LIST_HEAD(&hctx->hctx_list); 3526 3527 /* 3528 * Allocate space for all possible cpus to avoid allocation at 3529 * runtime 3530 */ 3531 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3532 gfp, node); 3533 if (!hctx->ctxs) 3534 goto free_cpumask; 3535 3536 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3537 gfp, node, false, false)) 3538 goto free_ctxs; 3539 hctx->nr_ctx = 0; 3540 3541 spin_lock_init(&hctx->dispatch_wait_lock); 3542 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3543 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3544 3545 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3546 if (!hctx->fq) 3547 goto free_bitmap; 3548 3549 blk_mq_hctx_kobj_init(hctx); 3550 3551 return hctx; 3552 3553 free_bitmap: 3554 sbitmap_free(&hctx->ctx_map); 3555 free_ctxs: 3556 kfree(hctx->ctxs); 3557 free_cpumask: 3558 free_cpumask_var(hctx->cpumask); 3559 free_hctx: 3560 kfree(hctx); 3561 fail_alloc_hctx: 3562 return NULL; 3563 } 3564 3565 static void blk_mq_init_cpu_queues(struct request_queue *q, 3566 unsigned int nr_hw_queues) 3567 { 3568 struct blk_mq_tag_set *set = q->tag_set; 3569 unsigned int i, j; 3570 3571 for_each_possible_cpu(i) { 3572 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3573 struct blk_mq_hw_ctx *hctx; 3574 int k; 3575 3576 __ctx->cpu = i; 3577 spin_lock_init(&__ctx->lock); 3578 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3579 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3580 3581 __ctx->queue = q; 3582 3583 /* 3584 * Set local node, IFF we have more than one hw queue. If 3585 * not, we remain on the home node of the device 3586 */ 3587 for (j = 0; j < set->nr_maps; j++) { 3588 hctx = blk_mq_map_queue_type(q, j, i); 3589 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3590 hctx->numa_node = cpu_to_node(i); 3591 } 3592 } 3593 } 3594 3595 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3596 unsigned int hctx_idx, 3597 unsigned int depth) 3598 { 3599 struct blk_mq_tags *tags; 3600 int ret; 3601 3602 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3603 if (!tags) 3604 return NULL; 3605 3606 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3607 if (ret) { 3608 blk_mq_free_rq_map(tags); 3609 return NULL; 3610 } 3611 3612 return tags; 3613 } 3614 3615 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3616 int hctx_idx) 3617 { 3618 if (blk_mq_is_shared_tags(set->flags)) { 3619 set->tags[hctx_idx] = set->shared_tags; 3620 3621 return true; 3622 } 3623 3624 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3625 set->queue_depth); 3626 3627 return set->tags[hctx_idx]; 3628 } 3629 3630 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3631 struct blk_mq_tags *tags, 3632 unsigned int hctx_idx) 3633 { 3634 if (tags) { 3635 blk_mq_free_rqs(set, tags, hctx_idx); 3636 blk_mq_free_rq_map(tags); 3637 } 3638 } 3639 3640 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3641 unsigned int hctx_idx) 3642 { 3643 if (!blk_mq_is_shared_tags(set->flags)) 3644 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3645 3646 set->tags[hctx_idx] = NULL; 3647 } 3648 3649 static void blk_mq_map_swqueue(struct request_queue *q) 3650 { 3651 unsigned int j, hctx_idx; 3652 unsigned long i; 3653 struct blk_mq_hw_ctx *hctx; 3654 struct blk_mq_ctx *ctx; 3655 struct blk_mq_tag_set *set = q->tag_set; 3656 3657 queue_for_each_hw_ctx(q, hctx, i) { 3658 cpumask_clear(hctx->cpumask); 3659 hctx->nr_ctx = 0; 3660 hctx->dispatch_from = NULL; 3661 } 3662 3663 /* 3664 * Map software to hardware queues. 3665 * 3666 * If the cpu isn't present, the cpu is mapped to first hctx. 3667 */ 3668 for_each_possible_cpu(i) { 3669 3670 ctx = per_cpu_ptr(q->queue_ctx, i); 3671 for (j = 0; j < set->nr_maps; j++) { 3672 if (!set->map[j].nr_queues) { 3673 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3674 HCTX_TYPE_DEFAULT, i); 3675 continue; 3676 } 3677 hctx_idx = set->map[j].mq_map[i]; 3678 /* unmapped hw queue can be remapped after CPU topo changed */ 3679 if (!set->tags[hctx_idx] && 3680 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3681 /* 3682 * If tags initialization fail for some hctx, 3683 * that hctx won't be brought online. In this 3684 * case, remap the current ctx to hctx[0] which 3685 * is guaranteed to always have tags allocated 3686 */ 3687 set->map[j].mq_map[i] = 0; 3688 } 3689 3690 hctx = blk_mq_map_queue_type(q, j, i); 3691 ctx->hctxs[j] = hctx; 3692 /* 3693 * If the CPU is already set in the mask, then we've 3694 * mapped this one already. This can happen if 3695 * devices share queues across queue maps. 3696 */ 3697 if (cpumask_test_cpu(i, hctx->cpumask)) 3698 continue; 3699 3700 cpumask_set_cpu(i, hctx->cpumask); 3701 hctx->type = j; 3702 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3703 hctx->ctxs[hctx->nr_ctx++] = ctx; 3704 3705 /* 3706 * If the nr_ctx type overflows, we have exceeded the 3707 * amount of sw queues we can support. 3708 */ 3709 BUG_ON(!hctx->nr_ctx); 3710 } 3711 3712 for (; j < HCTX_MAX_TYPES; j++) 3713 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3714 HCTX_TYPE_DEFAULT, i); 3715 } 3716 3717 queue_for_each_hw_ctx(q, hctx, i) { 3718 /* 3719 * If no software queues are mapped to this hardware queue, 3720 * disable it and free the request entries. 3721 */ 3722 if (!hctx->nr_ctx) { 3723 /* Never unmap queue 0. We need it as a 3724 * fallback in case of a new remap fails 3725 * allocation 3726 */ 3727 if (i) 3728 __blk_mq_free_map_and_rqs(set, i); 3729 3730 hctx->tags = NULL; 3731 continue; 3732 } 3733 3734 hctx->tags = set->tags[i]; 3735 WARN_ON(!hctx->tags); 3736 3737 /* 3738 * Set the map size to the number of mapped software queues. 3739 * This is more accurate and more efficient than looping 3740 * over all possibly mapped software queues. 3741 */ 3742 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3743 3744 /* 3745 * Initialize batch roundrobin counts 3746 */ 3747 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3748 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3749 } 3750 } 3751 3752 /* 3753 * Caller needs to ensure that we're either frozen/quiesced, or that 3754 * the queue isn't live yet. 3755 */ 3756 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3757 { 3758 struct blk_mq_hw_ctx *hctx; 3759 unsigned long i; 3760 3761 queue_for_each_hw_ctx(q, hctx, i) { 3762 if (shared) { 3763 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3764 } else { 3765 blk_mq_tag_idle(hctx); 3766 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3767 } 3768 } 3769 } 3770 3771 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3772 bool shared) 3773 { 3774 struct request_queue *q; 3775 3776 lockdep_assert_held(&set->tag_list_lock); 3777 3778 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3779 blk_mq_freeze_queue(q); 3780 queue_set_hctx_shared(q, shared); 3781 blk_mq_unfreeze_queue(q); 3782 } 3783 } 3784 3785 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3786 { 3787 struct blk_mq_tag_set *set = q->tag_set; 3788 3789 mutex_lock(&set->tag_list_lock); 3790 list_del(&q->tag_set_list); 3791 if (list_is_singular(&set->tag_list)) { 3792 /* just transitioned to unshared */ 3793 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3794 /* update existing queue */ 3795 blk_mq_update_tag_set_shared(set, false); 3796 } 3797 mutex_unlock(&set->tag_list_lock); 3798 INIT_LIST_HEAD(&q->tag_set_list); 3799 } 3800 3801 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3802 struct request_queue *q) 3803 { 3804 mutex_lock(&set->tag_list_lock); 3805 3806 /* 3807 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3808 */ 3809 if (!list_empty(&set->tag_list) && 3810 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3811 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3812 /* update existing queue */ 3813 blk_mq_update_tag_set_shared(set, true); 3814 } 3815 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3816 queue_set_hctx_shared(q, true); 3817 list_add_tail(&q->tag_set_list, &set->tag_list); 3818 3819 mutex_unlock(&set->tag_list_lock); 3820 } 3821 3822 /* All allocations will be freed in release handler of q->mq_kobj */ 3823 static int blk_mq_alloc_ctxs(struct request_queue *q) 3824 { 3825 struct blk_mq_ctxs *ctxs; 3826 int cpu; 3827 3828 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3829 if (!ctxs) 3830 return -ENOMEM; 3831 3832 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3833 if (!ctxs->queue_ctx) 3834 goto fail; 3835 3836 for_each_possible_cpu(cpu) { 3837 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3838 ctx->ctxs = ctxs; 3839 } 3840 3841 q->mq_kobj = &ctxs->kobj; 3842 q->queue_ctx = ctxs->queue_ctx; 3843 3844 return 0; 3845 fail: 3846 kfree(ctxs); 3847 return -ENOMEM; 3848 } 3849 3850 /* 3851 * It is the actual release handler for mq, but we do it from 3852 * request queue's release handler for avoiding use-after-free 3853 * and headache because q->mq_kobj shouldn't have been introduced, 3854 * but we can't group ctx/kctx kobj without it. 3855 */ 3856 void blk_mq_release(struct request_queue *q) 3857 { 3858 struct blk_mq_hw_ctx *hctx, *next; 3859 unsigned long i; 3860 3861 queue_for_each_hw_ctx(q, hctx, i) 3862 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3863 3864 /* all hctx are in .unused_hctx_list now */ 3865 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3866 list_del_init(&hctx->hctx_list); 3867 kobject_put(&hctx->kobj); 3868 } 3869 3870 xa_destroy(&q->hctx_table); 3871 3872 /* 3873 * release .mq_kobj and sw queue's kobject now because 3874 * both share lifetime with request queue. 3875 */ 3876 blk_mq_sysfs_deinit(q); 3877 } 3878 3879 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3880 void *queuedata) 3881 { 3882 struct request_queue *q; 3883 int ret; 3884 3885 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); 3886 if (!q) 3887 return ERR_PTR(-ENOMEM); 3888 q->queuedata = queuedata; 3889 ret = blk_mq_init_allocated_queue(set, q); 3890 if (ret) { 3891 blk_put_queue(q); 3892 return ERR_PTR(ret); 3893 } 3894 return q; 3895 } 3896 3897 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3898 { 3899 return blk_mq_init_queue_data(set, NULL); 3900 } 3901 EXPORT_SYMBOL(blk_mq_init_queue); 3902 3903 /** 3904 * blk_mq_destroy_queue - shutdown a request queue 3905 * @q: request queue to shutdown 3906 * 3907 * This shuts down a request queue allocated by blk_mq_init_queue() and drops 3908 * the initial reference. All future requests will failed with -ENODEV. 3909 * 3910 * Context: can sleep 3911 */ 3912 void blk_mq_destroy_queue(struct request_queue *q) 3913 { 3914 WARN_ON_ONCE(!queue_is_mq(q)); 3915 WARN_ON_ONCE(blk_queue_registered(q)); 3916 3917 might_sleep(); 3918 3919 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 3920 blk_queue_start_drain(q); 3921 blk_freeze_queue(q); 3922 3923 blk_sync_queue(q); 3924 blk_mq_cancel_work_sync(q); 3925 blk_mq_exit_queue(q); 3926 3927 /* @q is and will stay empty, shutdown and put */ 3928 blk_put_queue(q); 3929 } 3930 EXPORT_SYMBOL(blk_mq_destroy_queue); 3931 3932 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3933 struct lock_class_key *lkclass) 3934 { 3935 struct request_queue *q; 3936 struct gendisk *disk; 3937 3938 q = blk_mq_init_queue_data(set, queuedata); 3939 if (IS_ERR(q)) 3940 return ERR_CAST(q); 3941 3942 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3943 if (!disk) { 3944 blk_mq_destroy_queue(q); 3945 return ERR_PTR(-ENOMEM); 3946 } 3947 set_bit(GD_OWNS_QUEUE, &disk->state); 3948 return disk; 3949 } 3950 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3951 3952 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 3953 struct lock_class_key *lkclass) 3954 { 3955 if (!blk_get_queue(q)) 3956 return NULL; 3957 return __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 3958 } 3959 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 3960 3961 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3962 struct blk_mq_tag_set *set, struct request_queue *q, 3963 int hctx_idx, int node) 3964 { 3965 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3966 3967 /* reuse dead hctx first */ 3968 spin_lock(&q->unused_hctx_lock); 3969 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3970 if (tmp->numa_node == node) { 3971 hctx = tmp; 3972 break; 3973 } 3974 } 3975 if (hctx) 3976 list_del_init(&hctx->hctx_list); 3977 spin_unlock(&q->unused_hctx_lock); 3978 3979 if (!hctx) 3980 hctx = blk_mq_alloc_hctx(q, set, node); 3981 if (!hctx) 3982 goto fail; 3983 3984 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3985 goto free_hctx; 3986 3987 return hctx; 3988 3989 free_hctx: 3990 kobject_put(&hctx->kobj); 3991 fail: 3992 return NULL; 3993 } 3994 3995 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3996 struct request_queue *q) 3997 { 3998 struct blk_mq_hw_ctx *hctx; 3999 unsigned long i, j; 4000 4001 /* protect against switching io scheduler */ 4002 mutex_lock(&q->sysfs_lock); 4003 for (i = 0; i < set->nr_hw_queues; i++) { 4004 int old_node; 4005 int node = blk_mq_get_hctx_node(set, i); 4006 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4007 4008 if (old_hctx) { 4009 old_node = old_hctx->numa_node; 4010 blk_mq_exit_hctx(q, set, old_hctx, i); 4011 } 4012 4013 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4014 if (!old_hctx) 4015 break; 4016 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4017 node, old_node); 4018 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4019 WARN_ON_ONCE(!hctx); 4020 } 4021 } 4022 /* 4023 * Increasing nr_hw_queues fails. Free the newly allocated 4024 * hctxs and keep the previous q->nr_hw_queues. 4025 */ 4026 if (i != set->nr_hw_queues) { 4027 j = q->nr_hw_queues; 4028 } else { 4029 j = i; 4030 q->nr_hw_queues = set->nr_hw_queues; 4031 } 4032 4033 xa_for_each_start(&q->hctx_table, j, hctx, j) 4034 blk_mq_exit_hctx(q, set, hctx, j); 4035 mutex_unlock(&q->sysfs_lock); 4036 } 4037 4038 static void blk_mq_update_poll_flag(struct request_queue *q) 4039 { 4040 struct blk_mq_tag_set *set = q->tag_set; 4041 4042 if (set->nr_maps > HCTX_TYPE_POLL && 4043 set->map[HCTX_TYPE_POLL].nr_queues) 4044 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4045 else 4046 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4047 } 4048 4049 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4050 struct request_queue *q) 4051 { 4052 WARN_ON_ONCE(blk_queue_has_srcu(q) != 4053 !!(set->flags & BLK_MQ_F_BLOCKING)); 4054 4055 /* mark the queue as mq asap */ 4056 q->mq_ops = set->ops; 4057 4058 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4059 blk_mq_poll_stats_bkt, 4060 BLK_MQ_POLL_STATS_BKTS, q); 4061 if (!q->poll_cb) 4062 goto err_exit; 4063 4064 if (blk_mq_alloc_ctxs(q)) 4065 goto err_poll; 4066 4067 /* init q->mq_kobj and sw queues' kobjects */ 4068 blk_mq_sysfs_init(q); 4069 4070 INIT_LIST_HEAD(&q->unused_hctx_list); 4071 spin_lock_init(&q->unused_hctx_lock); 4072 4073 xa_init(&q->hctx_table); 4074 4075 blk_mq_realloc_hw_ctxs(set, q); 4076 if (!q->nr_hw_queues) 4077 goto err_hctxs; 4078 4079 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4080 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4081 4082 q->tag_set = set; 4083 4084 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4085 blk_mq_update_poll_flag(q); 4086 4087 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4088 INIT_LIST_HEAD(&q->requeue_list); 4089 spin_lock_init(&q->requeue_lock); 4090 4091 q->nr_requests = set->queue_depth; 4092 4093 /* 4094 * Default to classic polling 4095 */ 4096 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4097 4098 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4099 blk_mq_add_queue_tag_set(set, q); 4100 blk_mq_map_swqueue(q); 4101 return 0; 4102 4103 err_hctxs: 4104 xa_destroy(&q->hctx_table); 4105 q->nr_hw_queues = 0; 4106 blk_mq_sysfs_deinit(q); 4107 err_poll: 4108 blk_stat_free_callback(q->poll_cb); 4109 q->poll_cb = NULL; 4110 err_exit: 4111 q->mq_ops = NULL; 4112 return -ENOMEM; 4113 } 4114 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4115 4116 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4117 void blk_mq_exit_queue(struct request_queue *q) 4118 { 4119 struct blk_mq_tag_set *set = q->tag_set; 4120 4121 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4122 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4123 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4124 blk_mq_del_queue_tag_set(q); 4125 } 4126 4127 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4128 { 4129 int i; 4130 4131 if (blk_mq_is_shared_tags(set->flags)) { 4132 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4133 BLK_MQ_NO_HCTX_IDX, 4134 set->queue_depth); 4135 if (!set->shared_tags) 4136 return -ENOMEM; 4137 } 4138 4139 for (i = 0; i < set->nr_hw_queues; i++) { 4140 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4141 goto out_unwind; 4142 cond_resched(); 4143 } 4144 4145 return 0; 4146 4147 out_unwind: 4148 while (--i >= 0) 4149 __blk_mq_free_map_and_rqs(set, i); 4150 4151 if (blk_mq_is_shared_tags(set->flags)) { 4152 blk_mq_free_map_and_rqs(set, set->shared_tags, 4153 BLK_MQ_NO_HCTX_IDX); 4154 } 4155 4156 return -ENOMEM; 4157 } 4158 4159 /* 4160 * Allocate the request maps associated with this tag_set. Note that this 4161 * may reduce the depth asked for, if memory is tight. set->queue_depth 4162 * will be updated to reflect the allocated depth. 4163 */ 4164 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4165 { 4166 unsigned int depth; 4167 int err; 4168 4169 depth = set->queue_depth; 4170 do { 4171 err = __blk_mq_alloc_rq_maps(set); 4172 if (!err) 4173 break; 4174 4175 set->queue_depth >>= 1; 4176 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4177 err = -ENOMEM; 4178 break; 4179 } 4180 } while (set->queue_depth); 4181 4182 if (!set->queue_depth || err) { 4183 pr_err("blk-mq: failed to allocate request map\n"); 4184 return -ENOMEM; 4185 } 4186 4187 if (depth != set->queue_depth) 4188 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4189 depth, set->queue_depth); 4190 4191 return 0; 4192 } 4193 4194 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4195 { 4196 /* 4197 * blk_mq_map_queues() and multiple .map_queues() implementations 4198 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4199 * number of hardware queues. 4200 */ 4201 if (set->nr_maps == 1) 4202 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4203 4204 if (set->ops->map_queues && !is_kdump_kernel()) { 4205 int i; 4206 4207 /* 4208 * transport .map_queues is usually done in the following 4209 * way: 4210 * 4211 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4212 * mask = get_cpu_mask(queue) 4213 * for_each_cpu(cpu, mask) 4214 * set->map[x].mq_map[cpu] = queue; 4215 * } 4216 * 4217 * When we need to remap, the table has to be cleared for 4218 * killing stale mapping since one CPU may not be mapped 4219 * to any hw queue. 4220 */ 4221 for (i = 0; i < set->nr_maps; i++) 4222 blk_mq_clear_mq_map(&set->map[i]); 4223 4224 return set->ops->map_queues(set); 4225 } else { 4226 BUG_ON(set->nr_maps > 1); 4227 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4228 } 4229 } 4230 4231 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4232 int cur_nr_hw_queues, int new_nr_hw_queues) 4233 { 4234 struct blk_mq_tags **new_tags; 4235 4236 if (cur_nr_hw_queues >= new_nr_hw_queues) 4237 return 0; 4238 4239 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4240 GFP_KERNEL, set->numa_node); 4241 if (!new_tags) 4242 return -ENOMEM; 4243 4244 if (set->tags) 4245 memcpy(new_tags, set->tags, cur_nr_hw_queues * 4246 sizeof(*set->tags)); 4247 kfree(set->tags); 4248 set->tags = new_tags; 4249 set->nr_hw_queues = new_nr_hw_queues; 4250 4251 return 0; 4252 } 4253 4254 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 4255 int new_nr_hw_queues) 4256 { 4257 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 4258 } 4259 4260 /* 4261 * Alloc a tag set to be associated with one or more request queues. 4262 * May fail with EINVAL for various error conditions. May adjust the 4263 * requested depth down, if it's too large. In that case, the set 4264 * value will be stored in set->queue_depth. 4265 */ 4266 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4267 { 4268 int i, ret; 4269 4270 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4271 4272 if (!set->nr_hw_queues) 4273 return -EINVAL; 4274 if (!set->queue_depth) 4275 return -EINVAL; 4276 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4277 return -EINVAL; 4278 4279 if (!set->ops->queue_rq) 4280 return -EINVAL; 4281 4282 if (!set->ops->get_budget ^ !set->ops->put_budget) 4283 return -EINVAL; 4284 4285 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4286 pr_info("blk-mq: reduced tag depth to %u\n", 4287 BLK_MQ_MAX_DEPTH); 4288 set->queue_depth = BLK_MQ_MAX_DEPTH; 4289 } 4290 4291 if (!set->nr_maps) 4292 set->nr_maps = 1; 4293 else if (set->nr_maps > HCTX_MAX_TYPES) 4294 return -EINVAL; 4295 4296 /* 4297 * If a crashdump is active, then we are potentially in a very 4298 * memory constrained environment. Limit us to 1 queue and 4299 * 64 tags to prevent using too much memory. 4300 */ 4301 if (is_kdump_kernel()) { 4302 set->nr_hw_queues = 1; 4303 set->nr_maps = 1; 4304 set->queue_depth = min(64U, set->queue_depth); 4305 } 4306 /* 4307 * There is no use for more h/w queues than cpus if we just have 4308 * a single map 4309 */ 4310 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4311 set->nr_hw_queues = nr_cpu_ids; 4312 4313 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 4314 return -ENOMEM; 4315 4316 ret = -ENOMEM; 4317 for (i = 0; i < set->nr_maps; i++) { 4318 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4319 sizeof(set->map[i].mq_map[0]), 4320 GFP_KERNEL, set->numa_node); 4321 if (!set->map[i].mq_map) 4322 goto out_free_mq_map; 4323 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4324 } 4325 4326 ret = blk_mq_update_queue_map(set); 4327 if (ret) 4328 goto out_free_mq_map; 4329 4330 ret = blk_mq_alloc_set_map_and_rqs(set); 4331 if (ret) 4332 goto out_free_mq_map; 4333 4334 mutex_init(&set->tag_list_lock); 4335 INIT_LIST_HEAD(&set->tag_list); 4336 4337 return 0; 4338 4339 out_free_mq_map: 4340 for (i = 0; i < set->nr_maps; i++) { 4341 kfree(set->map[i].mq_map); 4342 set->map[i].mq_map = NULL; 4343 } 4344 kfree(set->tags); 4345 set->tags = NULL; 4346 return ret; 4347 } 4348 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4349 4350 /* allocate and initialize a tagset for a simple single-queue device */ 4351 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4352 const struct blk_mq_ops *ops, unsigned int queue_depth, 4353 unsigned int set_flags) 4354 { 4355 memset(set, 0, sizeof(*set)); 4356 set->ops = ops; 4357 set->nr_hw_queues = 1; 4358 set->nr_maps = 1; 4359 set->queue_depth = queue_depth; 4360 set->numa_node = NUMA_NO_NODE; 4361 set->flags = set_flags; 4362 return blk_mq_alloc_tag_set(set); 4363 } 4364 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4365 4366 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4367 { 4368 int i, j; 4369 4370 for (i = 0; i < set->nr_hw_queues; i++) 4371 __blk_mq_free_map_and_rqs(set, i); 4372 4373 if (blk_mq_is_shared_tags(set->flags)) { 4374 blk_mq_free_map_and_rqs(set, set->shared_tags, 4375 BLK_MQ_NO_HCTX_IDX); 4376 } 4377 4378 for (j = 0; j < set->nr_maps; j++) { 4379 kfree(set->map[j].mq_map); 4380 set->map[j].mq_map = NULL; 4381 } 4382 4383 kfree(set->tags); 4384 set->tags = NULL; 4385 } 4386 EXPORT_SYMBOL(blk_mq_free_tag_set); 4387 4388 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4389 { 4390 struct blk_mq_tag_set *set = q->tag_set; 4391 struct blk_mq_hw_ctx *hctx; 4392 int ret; 4393 unsigned long i; 4394 4395 if (!set) 4396 return -EINVAL; 4397 4398 if (q->nr_requests == nr) 4399 return 0; 4400 4401 blk_mq_freeze_queue(q); 4402 blk_mq_quiesce_queue(q); 4403 4404 ret = 0; 4405 queue_for_each_hw_ctx(q, hctx, i) { 4406 if (!hctx->tags) 4407 continue; 4408 /* 4409 * If we're using an MQ scheduler, just update the scheduler 4410 * queue depth. This is similar to what the old code would do. 4411 */ 4412 if (hctx->sched_tags) { 4413 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4414 nr, true); 4415 } else { 4416 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4417 false); 4418 } 4419 if (ret) 4420 break; 4421 if (q->elevator && q->elevator->type->ops.depth_updated) 4422 q->elevator->type->ops.depth_updated(hctx); 4423 } 4424 if (!ret) { 4425 q->nr_requests = nr; 4426 if (blk_mq_is_shared_tags(set->flags)) { 4427 if (q->elevator) 4428 blk_mq_tag_update_sched_shared_tags(q); 4429 else 4430 blk_mq_tag_resize_shared_tags(set, nr); 4431 } 4432 } 4433 4434 blk_mq_unquiesce_queue(q); 4435 blk_mq_unfreeze_queue(q); 4436 4437 return ret; 4438 } 4439 4440 /* 4441 * request_queue and elevator_type pair. 4442 * It is just used by __blk_mq_update_nr_hw_queues to cache 4443 * the elevator_type associated with a request_queue. 4444 */ 4445 struct blk_mq_qe_pair { 4446 struct list_head node; 4447 struct request_queue *q; 4448 struct elevator_type *type; 4449 }; 4450 4451 /* 4452 * Cache the elevator_type in qe pair list and switch the 4453 * io scheduler to 'none' 4454 */ 4455 static bool blk_mq_elv_switch_none(struct list_head *head, 4456 struct request_queue *q) 4457 { 4458 struct blk_mq_qe_pair *qe; 4459 4460 if (!q->elevator) 4461 return true; 4462 4463 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4464 if (!qe) 4465 return false; 4466 4467 /* q->elevator needs protection from ->sysfs_lock */ 4468 mutex_lock(&q->sysfs_lock); 4469 4470 INIT_LIST_HEAD(&qe->node); 4471 qe->q = q; 4472 qe->type = q->elevator->type; 4473 list_add(&qe->node, head); 4474 4475 /* 4476 * After elevator_switch_mq, the previous elevator_queue will be 4477 * released by elevator_release. The reference of the io scheduler 4478 * module get by elevator_get will also be put. So we need to get 4479 * a reference of the io scheduler module here to prevent it to be 4480 * removed. 4481 */ 4482 __module_get(qe->type->elevator_owner); 4483 elevator_switch_mq(q, NULL); 4484 mutex_unlock(&q->sysfs_lock); 4485 4486 return true; 4487 } 4488 4489 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4490 struct request_queue *q) 4491 { 4492 struct blk_mq_qe_pair *qe; 4493 4494 list_for_each_entry(qe, head, node) 4495 if (qe->q == q) 4496 return qe; 4497 4498 return NULL; 4499 } 4500 4501 static void blk_mq_elv_switch_back(struct list_head *head, 4502 struct request_queue *q) 4503 { 4504 struct blk_mq_qe_pair *qe; 4505 struct elevator_type *t; 4506 4507 qe = blk_lookup_qe_pair(head, q); 4508 if (!qe) 4509 return; 4510 t = qe->type; 4511 list_del(&qe->node); 4512 kfree(qe); 4513 4514 mutex_lock(&q->sysfs_lock); 4515 elevator_switch_mq(q, t); 4516 mutex_unlock(&q->sysfs_lock); 4517 } 4518 4519 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4520 int nr_hw_queues) 4521 { 4522 struct request_queue *q; 4523 LIST_HEAD(head); 4524 int prev_nr_hw_queues; 4525 4526 lockdep_assert_held(&set->tag_list_lock); 4527 4528 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4529 nr_hw_queues = nr_cpu_ids; 4530 if (nr_hw_queues < 1) 4531 return; 4532 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4533 return; 4534 4535 list_for_each_entry(q, &set->tag_list, tag_set_list) 4536 blk_mq_freeze_queue(q); 4537 /* 4538 * Switch IO scheduler to 'none', cleaning up the data associated 4539 * with the previous scheduler. We will switch back once we are done 4540 * updating the new sw to hw queue mappings. 4541 */ 4542 list_for_each_entry(q, &set->tag_list, tag_set_list) 4543 if (!blk_mq_elv_switch_none(&head, q)) 4544 goto switch_back; 4545 4546 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4547 blk_mq_debugfs_unregister_hctxs(q); 4548 blk_mq_sysfs_unregister_hctxs(q); 4549 } 4550 4551 prev_nr_hw_queues = set->nr_hw_queues; 4552 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4553 0) 4554 goto reregister; 4555 4556 set->nr_hw_queues = nr_hw_queues; 4557 fallback: 4558 blk_mq_update_queue_map(set); 4559 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4560 blk_mq_realloc_hw_ctxs(set, q); 4561 blk_mq_update_poll_flag(q); 4562 if (q->nr_hw_queues != set->nr_hw_queues) { 4563 int i = prev_nr_hw_queues; 4564 4565 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4566 nr_hw_queues, prev_nr_hw_queues); 4567 for (; i < set->nr_hw_queues; i++) 4568 __blk_mq_free_map_and_rqs(set, i); 4569 4570 set->nr_hw_queues = prev_nr_hw_queues; 4571 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4572 goto fallback; 4573 } 4574 blk_mq_map_swqueue(q); 4575 } 4576 4577 reregister: 4578 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4579 blk_mq_sysfs_register_hctxs(q); 4580 blk_mq_debugfs_register_hctxs(q); 4581 } 4582 4583 switch_back: 4584 list_for_each_entry(q, &set->tag_list, tag_set_list) 4585 blk_mq_elv_switch_back(&head, q); 4586 4587 list_for_each_entry(q, &set->tag_list, tag_set_list) 4588 blk_mq_unfreeze_queue(q); 4589 } 4590 4591 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4592 { 4593 mutex_lock(&set->tag_list_lock); 4594 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4595 mutex_unlock(&set->tag_list_lock); 4596 } 4597 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4598 4599 /* Enable polling stats and return whether they were already enabled. */ 4600 static bool blk_poll_stats_enable(struct request_queue *q) 4601 { 4602 if (q->poll_stat) 4603 return true; 4604 4605 return blk_stats_alloc_enable(q); 4606 } 4607 4608 static void blk_mq_poll_stats_start(struct request_queue *q) 4609 { 4610 /* 4611 * We don't arm the callback if polling stats are not enabled or the 4612 * callback is already active. 4613 */ 4614 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4615 return; 4616 4617 blk_stat_activate_msecs(q->poll_cb, 100); 4618 } 4619 4620 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4621 { 4622 struct request_queue *q = cb->data; 4623 int bucket; 4624 4625 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4626 if (cb->stat[bucket].nr_samples) 4627 q->poll_stat[bucket] = cb->stat[bucket]; 4628 } 4629 } 4630 4631 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4632 struct request *rq) 4633 { 4634 unsigned long ret = 0; 4635 int bucket; 4636 4637 /* 4638 * If stats collection isn't on, don't sleep but turn it on for 4639 * future users 4640 */ 4641 if (!blk_poll_stats_enable(q)) 4642 return 0; 4643 4644 /* 4645 * As an optimistic guess, use half of the mean service time 4646 * for this type of request. We can (and should) make this smarter. 4647 * For instance, if the completion latencies are tight, we can 4648 * get closer than just half the mean. This is especially 4649 * important on devices where the completion latencies are longer 4650 * than ~10 usec. We do use the stats for the relevant IO size 4651 * if available which does lead to better estimates. 4652 */ 4653 bucket = blk_mq_poll_stats_bkt(rq); 4654 if (bucket < 0) 4655 return ret; 4656 4657 if (q->poll_stat[bucket].nr_samples) 4658 ret = (q->poll_stat[bucket].mean + 1) / 2; 4659 4660 return ret; 4661 } 4662 4663 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4664 { 4665 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4666 struct request *rq = blk_qc_to_rq(hctx, qc); 4667 struct hrtimer_sleeper hs; 4668 enum hrtimer_mode mode; 4669 unsigned int nsecs; 4670 ktime_t kt; 4671 4672 /* 4673 * If a request has completed on queue that uses an I/O scheduler, we 4674 * won't get back a request from blk_qc_to_rq. 4675 */ 4676 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4677 return false; 4678 4679 /* 4680 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4681 * 4682 * 0: use half of prev avg 4683 * >0: use this specific value 4684 */ 4685 if (q->poll_nsec > 0) 4686 nsecs = q->poll_nsec; 4687 else 4688 nsecs = blk_mq_poll_nsecs(q, rq); 4689 4690 if (!nsecs) 4691 return false; 4692 4693 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4694 4695 /* 4696 * This will be replaced with the stats tracking code, using 4697 * 'avg_completion_time / 2' as the pre-sleep target. 4698 */ 4699 kt = nsecs; 4700 4701 mode = HRTIMER_MODE_REL; 4702 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4703 hrtimer_set_expires(&hs.timer, kt); 4704 4705 do { 4706 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4707 break; 4708 set_current_state(TASK_UNINTERRUPTIBLE); 4709 hrtimer_sleeper_start_expires(&hs, mode); 4710 if (hs.task) 4711 io_schedule(); 4712 hrtimer_cancel(&hs.timer); 4713 mode = HRTIMER_MODE_ABS; 4714 } while (hs.task && !signal_pending(current)); 4715 4716 __set_current_state(TASK_RUNNING); 4717 destroy_hrtimer_on_stack(&hs.timer); 4718 4719 /* 4720 * If we sleep, have the caller restart the poll loop to reset the 4721 * state. Like for the other success return cases, the caller is 4722 * responsible for checking if the IO completed. If the IO isn't 4723 * complete, we'll get called again and will go straight to the busy 4724 * poll loop. 4725 */ 4726 return true; 4727 } 4728 4729 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4730 struct io_comp_batch *iob, unsigned int flags) 4731 { 4732 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4733 long state = get_current_state(); 4734 int ret; 4735 4736 do { 4737 ret = q->mq_ops->poll(hctx, iob); 4738 if (ret > 0) { 4739 __set_current_state(TASK_RUNNING); 4740 return ret; 4741 } 4742 4743 if (signal_pending_state(state, current)) 4744 __set_current_state(TASK_RUNNING); 4745 if (task_is_running(current)) 4746 return 1; 4747 4748 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4749 break; 4750 cpu_relax(); 4751 } while (!need_resched()); 4752 4753 __set_current_state(TASK_RUNNING); 4754 return 0; 4755 } 4756 4757 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4758 unsigned int flags) 4759 { 4760 if (!(flags & BLK_POLL_NOSLEEP) && 4761 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4762 if (blk_mq_poll_hybrid(q, cookie)) 4763 return 1; 4764 } 4765 return blk_mq_poll_classic(q, cookie, iob, flags); 4766 } 4767 4768 unsigned int blk_mq_rq_cpu(struct request *rq) 4769 { 4770 return rq->mq_ctx->cpu; 4771 } 4772 EXPORT_SYMBOL(blk_mq_rq_cpu); 4773 4774 void blk_mq_cancel_work_sync(struct request_queue *q) 4775 { 4776 if (queue_is_mq(q)) { 4777 struct blk_mq_hw_ctx *hctx; 4778 unsigned long i; 4779 4780 cancel_delayed_work_sync(&q->requeue_work); 4781 4782 queue_for_each_hw_ctx(q, hctx, i) 4783 cancel_delayed_work_sync(&hctx->run_work); 4784 } 4785 } 4786 4787 static int __init blk_mq_init(void) 4788 { 4789 int i; 4790 4791 for_each_possible_cpu(i) 4792 init_llist_head(&per_cpu(blk_cpu_done, i)); 4793 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4794 4795 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4796 "block/softirq:dead", NULL, 4797 blk_softirq_cpu_dead); 4798 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4799 blk_mq_hctx_notify_dead); 4800 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4801 blk_mq_hctx_notify_online, 4802 blk_mq_hctx_notify_offline); 4803 return 0; 4804 } 4805 subsys_initcall(blk_mq_init); 4806