1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include "blk.h" 34 #include "blk-mq.h" 35 #include "blk-mq-debugfs.h" 36 #include "blk-mq-tag.h" 37 #include "blk-pm.h" 38 #include "blk-stat.h" 39 #include "blk-mq-sched.h" 40 #include "blk-rq-qos.h" 41 42 static void blk_mq_poll_stats_start(struct request_queue *q); 43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 44 45 static int blk_mq_poll_stats_bkt(const struct request *rq) 46 { 47 int ddir, bytes, bucket; 48 49 ddir = rq_data_dir(rq); 50 bytes = blk_rq_bytes(rq); 51 52 bucket = ddir + 2*(ilog2(bytes) - 9); 53 54 if (bucket < 0) 55 return -1; 56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 58 59 return bucket; 60 } 61 62 /* 63 * Check if any of the ctx, dispatch list or elevator 64 * have pending work in this hardware queue. 65 */ 66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 67 { 68 return !list_empty_careful(&hctx->dispatch) || 69 sbitmap_any_bit_set(&hctx->ctx_map) || 70 blk_mq_sched_has_work(hctx); 71 } 72 73 /* 74 * Mark this ctx as having pending work in this hardware queue 75 */ 76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 77 struct blk_mq_ctx *ctx) 78 { 79 const int bit = ctx->index_hw[hctx->type]; 80 81 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 82 sbitmap_set_bit(&hctx->ctx_map, bit); 83 } 84 85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 86 struct blk_mq_ctx *ctx) 87 { 88 const int bit = ctx->index_hw[hctx->type]; 89 90 sbitmap_clear_bit(&hctx->ctx_map, bit); 91 } 92 93 struct mq_inflight { 94 struct hd_struct *part; 95 unsigned int *inflight; 96 }; 97 98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 99 struct request *rq, void *priv, 100 bool reserved) 101 { 102 struct mq_inflight *mi = priv; 103 104 /* 105 * index[0] counts the specific partition that was asked for. 106 */ 107 if (rq->part == mi->part) 108 mi->inflight[0]++; 109 110 return true; 111 } 112 113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 114 { 115 unsigned inflight[2]; 116 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 117 118 inflight[0] = inflight[1] = 0; 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 121 return inflight[0]; 122 } 123 124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 125 struct request *rq, void *priv, 126 bool reserved) 127 { 128 struct mq_inflight *mi = priv; 129 130 if (rq->part == mi->part) 131 mi->inflight[rq_data_dir(rq)]++; 132 133 return true; 134 } 135 136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 137 unsigned int inflight[2]) 138 { 139 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 140 141 inflight[0] = inflight[1] = 0; 142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 143 } 144 145 void blk_freeze_queue_start(struct request_queue *q) 146 { 147 mutex_lock(&q->mq_freeze_lock); 148 if (++q->mq_freeze_depth == 1) { 149 percpu_ref_kill(&q->q_usage_counter); 150 mutex_unlock(&q->mq_freeze_lock); 151 if (queue_is_mq(q)) 152 blk_mq_run_hw_queues(q, false); 153 } else { 154 mutex_unlock(&q->mq_freeze_lock); 155 } 156 } 157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 158 159 void blk_mq_freeze_queue_wait(struct request_queue *q) 160 { 161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 162 } 163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 164 165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 166 unsigned long timeout) 167 { 168 return wait_event_timeout(q->mq_freeze_wq, 169 percpu_ref_is_zero(&q->q_usage_counter), 170 timeout); 171 } 172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 173 174 /* 175 * Guarantee no request is in use, so we can change any data structure of 176 * the queue afterward. 177 */ 178 void blk_freeze_queue(struct request_queue *q) 179 { 180 /* 181 * In the !blk_mq case we are only calling this to kill the 182 * q_usage_counter, otherwise this increases the freeze depth 183 * and waits for it to return to zero. For this reason there is 184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 185 * exported to drivers as the only user for unfreeze is blk_mq. 186 */ 187 blk_freeze_queue_start(q); 188 blk_mq_freeze_queue_wait(q); 189 } 190 191 void blk_mq_freeze_queue(struct request_queue *q) 192 { 193 /* 194 * ...just an alias to keep freeze and unfreeze actions balanced 195 * in the blk_mq_* namespace 196 */ 197 blk_freeze_queue(q); 198 } 199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 200 201 void blk_mq_unfreeze_queue(struct request_queue *q) 202 { 203 mutex_lock(&q->mq_freeze_lock); 204 q->mq_freeze_depth--; 205 WARN_ON_ONCE(q->mq_freeze_depth < 0); 206 if (!q->mq_freeze_depth) { 207 percpu_ref_resurrect(&q->q_usage_counter); 208 wake_up_all(&q->mq_freeze_wq); 209 } 210 mutex_unlock(&q->mq_freeze_lock); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 213 214 /* 215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 216 * mpt3sas driver such that this function can be removed. 217 */ 218 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 219 { 220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 221 } 222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 223 224 /** 225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 226 * @q: request queue. 227 * 228 * Note: this function does not prevent that the struct request end_io() 229 * callback function is invoked. Once this function is returned, we make 230 * sure no dispatch can happen until the queue is unquiesced via 231 * blk_mq_unquiesce_queue(). 232 */ 233 void blk_mq_quiesce_queue(struct request_queue *q) 234 { 235 struct blk_mq_hw_ctx *hctx; 236 unsigned int i; 237 bool rcu = false; 238 239 blk_mq_quiesce_queue_nowait(q); 240 241 queue_for_each_hw_ctx(q, hctx, i) { 242 if (hctx->flags & BLK_MQ_F_BLOCKING) 243 synchronize_srcu(hctx->srcu); 244 else 245 rcu = true; 246 } 247 if (rcu) 248 synchronize_rcu(); 249 } 250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 251 252 /* 253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 254 * @q: request queue. 255 * 256 * This function recovers queue into the state before quiescing 257 * which is done by blk_mq_quiesce_queue. 258 */ 259 void blk_mq_unquiesce_queue(struct request_queue *q) 260 { 261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 262 263 /* dispatch requests which are inserted during quiescing */ 264 blk_mq_run_hw_queues(q, true); 265 } 266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 267 268 void blk_mq_wake_waiters(struct request_queue *q) 269 { 270 struct blk_mq_hw_ctx *hctx; 271 unsigned int i; 272 273 queue_for_each_hw_ctx(q, hctx, i) 274 if (blk_mq_hw_queue_mapped(hctx)) 275 blk_mq_tag_wakeup_all(hctx->tags, true); 276 } 277 278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 279 { 280 return blk_mq_has_free_tags(hctx->tags); 281 } 282 EXPORT_SYMBOL(blk_mq_can_queue); 283 284 /* 285 * Only need start/end time stamping if we have stats enabled, or using 286 * an IO scheduler. 287 */ 288 static inline bool blk_mq_need_time_stamp(struct request *rq) 289 { 290 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator; 291 } 292 293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 294 unsigned int tag, unsigned int op) 295 { 296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 297 struct request *rq = tags->static_rqs[tag]; 298 req_flags_t rq_flags = 0; 299 300 if (data->flags & BLK_MQ_REQ_INTERNAL) { 301 rq->tag = -1; 302 rq->internal_tag = tag; 303 } else { 304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 305 rq_flags = RQF_MQ_INFLIGHT; 306 atomic_inc(&data->hctx->nr_active); 307 } 308 rq->tag = tag; 309 rq->internal_tag = -1; 310 data->hctx->tags->rqs[rq->tag] = rq; 311 } 312 313 /* csd/requeue_work/fifo_time is initialized before use */ 314 rq->q = data->q; 315 rq->mq_ctx = data->ctx; 316 rq->mq_hctx = data->hctx; 317 rq->rq_flags = rq_flags; 318 rq->cmd_flags = op; 319 if (data->flags & BLK_MQ_REQ_PREEMPT) 320 rq->rq_flags |= RQF_PREEMPT; 321 if (blk_queue_io_stat(data->q)) 322 rq->rq_flags |= RQF_IO_STAT; 323 INIT_LIST_HEAD(&rq->queuelist); 324 INIT_HLIST_NODE(&rq->hash); 325 RB_CLEAR_NODE(&rq->rb_node); 326 rq->rq_disk = NULL; 327 rq->part = NULL; 328 if (blk_mq_need_time_stamp(rq)) 329 rq->start_time_ns = ktime_get_ns(); 330 else 331 rq->start_time_ns = 0; 332 rq->io_start_time_ns = 0; 333 rq->nr_phys_segments = 0; 334 #if defined(CONFIG_BLK_DEV_INTEGRITY) 335 rq->nr_integrity_segments = 0; 336 #endif 337 /* tag was already set */ 338 rq->extra_len = 0; 339 WRITE_ONCE(rq->deadline, 0); 340 341 rq->timeout = 0; 342 343 rq->end_io = NULL; 344 rq->end_io_data = NULL; 345 346 data->ctx->rq_dispatched[op_is_sync(op)]++; 347 refcount_set(&rq->ref, 1); 348 return rq; 349 } 350 351 static struct request *blk_mq_get_request(struct request_queue *q, 352 struct bio *bio, 353 struct blk_mq_alloc_data *data) 354 { 355 struct elevator_queue *e = q->elevator; 356 struct request *rq; 357 unsigned int tag; 358 bool clear_ctx_on_error = false; 359 360 blk_queue_enter_live(q); 361 data->q = q; 362 if (likely(!data->ctx)) { 363 data->ctx = blk_mq_get_ctx(q); 364 clear_ctx_on_error = true; 365 } 366 if (likely(!data->hctx)) 367 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 368 data->ctx); 369 if (data->cmd_flags & REQ_NOWAIT) 370 data->flags |= BLK_MQ_REQ_NOWAIT; 371 372 if (e) { 373 data->flags |= BLK_MQ_REQ_INTERNAL; 374 375 /* 376 * Flush requests are special and go directly to the 377 * dispatch list. Don't include reserved tags in the 378 * limiting, as it isn't useful. 379 */ 380 if (!op_is_flush(data->cmd_flags) && 381 e->type->ops.limit_depth && 382 !(data->flags & BLK_MQ_REQ_RESERVED)) 383 e->type->ops.limit_depth(data->cmd_flags, data); 384 } else { 385 blk_mq_tag_busy(data->hctx); 386 } 387 388 tag = blk_mq_get_tag(data); 389 if (tag == BLK_MQ_TAG_FAIL) { 390 if (clear_ctx_on_error) 391 data->ctx = NULL; 392 blk_queue_exit(q); 393 return NULL; 394 } 395 396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags); 397 if (!op_is_flush(data->cmd_flags)) { 398 rq->elv.icq = NULL; 399 if (e && e->type->ops.prepare_request) { 400 if (e->type->icq_cache) 401 blk_mq_sched_assign_ioc(rq); 402 403 e->type->ops.prepare_request(rq, bio); 404 rq->rq_flags |= RQF_ELVPRIV; 405 } 406 } 407 data->hctx->queued++; 408 return rq; 409 } 410 411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 412 blk_mq_req_flags_t flags) 413 { 414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 415 struct request *rq; 416 int ret; 417 418 ret = blk_queue_enter(q, flags); 419 if (ret) 420 return ERR_PTR(ret); 421 422 rq = blk_mq_get_request(q, NULL, &alloc_data); 423 blk_queue_exit(q); 424 425 if (!rq) 426 return ERR_PTR(-EWOULDBLOCK); 427 428 rq->__data_len = 0; 429 rq->__sector = (sector_t) -1; 430 rq->bio = rq->biotail = NULL; 431 return rq; 432 } 433 EXPORT_SYMBOL(blk_mq_alloc_request); 434 435 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 436 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 437 { 438 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 439 struct request *rq; 440 unsigned int cpu; 441 int ret; 442 443 /* 444 * If the tag allocator sleeps we could get an allocation for a 445 * different hardware context. No need to complicate the low level 446 * allocator for this for the rare use case of a command tied to 447 * a specific queue. 448 */ 449 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 450 return ERR_PTR(-EINVAL); 451 452 if (hctx_idx >= q->nr_hw_queues) 453 return ERR_PTR(-EIO); 454 455 ret = blk_queue_enter(q, flags); 456 if (ret) 457 return ERR_PTR(ret); 458 459 /* 460 * Check if the hardware context is actually mapped to anything. 461 * If not tell the caller that it should skip this queue. 462 */ 463 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 464 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 465 blk_queue_exit(q); 466 return ERR_PTR(-EXDEV); 467 } 468 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 469 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 470 471 rq = blk_mq_get_request(q, NULL, &alloc_data); 472 blk_queue_exit(q); 473 474 if (!rq) 475 return ERR_PTR(-EWOULDBLOCK); 476 477 return rq; 478 } 479 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 480 481 static void __blk_mq_free_request(struct request *rq) 482 { 483 struct request_queue *q = rq->q; 484 struct blk_mq_ctx *ctx = rq->mq_ctx; 485 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 486 const int sched_tag = rq->internal_tag; 487 488 blk_pm_mark_last_busy(rq); 489 rq->mq_hctx = NULL; 490 if (rq->tag != -1) 491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 492 if (sched_tag != -1) 493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 494 blk_mq_sched_restart(hctx); 495 blk_queue_exit(q); 496 } 497 498 void blk_mq_free_request(struct request *rq) 499 { 500 struct request_queue *q = rq->q; 501 struct elevator_queue *e = q->elevator; 502 struct blk_mq_ctx *ctx = rq->mq_ctx; 503 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 504 505 if (rq->rq_flags & RQF_ELVPRIV) { 506 if (e && e->type->ops.finish_request) 507 e->type->ops.finish_request(rq); 508 if (rq->elv.icq) { 509 put_io_context(rq->elv.icq->ioc); 510 rq->elv.icq = NULL; 511 } 512 } 513 514 ctx->rq_completed[rq_is_sync(rq)]++; 515 if (rq->rq_flags & RQF_MQ_INFLIGHT) 516 atomic_dec(&hctx->nr_active); 517 518 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 519 laptop_io_completion(q->backing_dev_info); 520 521 rq_qos_done(q, rq); 522 523 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 524 if (refcount_dec_and_test(&rq->ref)) 525 __blk_mq_free_request(rq); 526 } 527 EXPORT_SYMBOL_GPL(blk_mq_free_request); 528 529 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 530 { 531 u64 now = 0; 532 533 if (blk_mq_need_time_stamp(rq)) 534 now = ktime_get_ns(); 535 536 if (rq->rq_flags & RQF_STATS) { 537 blk_mq_poll_stats_start(rq->q); 538 blk_stat_add(rq, now); 539 } 540 541 if (rq->internal_tag != -1) 542 blk_mq_sched_completed_request(rq, now); 543 544 blk_account_io_done(rq, now); 545 546 if (rq->end_io) { 547 rq_qos_done(rq->q, rq); 548 rq->end_io(rq, error); 549 } else { 550 blk_mq_free_request(rq); 551 } 552 } 553 EXPORT_SYMBOL(__blk_mq_end_request); 554 555 void blk_mq_end_request(struct request *rq, blk_status_t error) 556 { 557 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 558 BUG(); 559 __blk_mq_end_request(rq, error); 560 } 561 EXPORT_SYMBOL(blk_mq_end_request); 562 563 static void __blk_mq_complete_request_remote(void *data) 564 { 565 struct request *rq = data; 566 struct request_queue *q = rq->q; 567 568 q->mq_ops->complete(rq); 569 } 570 571 static void __blk_mq_complete_request(struct request *rq) 572 { 573 struct blk_mq_ctx *ctx = rq->mq_ctx; 574 struct request_queue *q = rq->q; 575 bool shared = false; 576 int cpu; 577 578 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 579 /* 580 * Most of single queue controllers, there is only one irq vector 581 * for handling IO completion, and the only irq's affinity is set 582 * as all possible CPUs. On most of ARCHs, this affinity means the 583 * irq is handled on one specific CPU. 584 * 585 * So complete IO reqeust in softirq context in case of single queue 586 * for not degrading IO performance by irqsoff latency. 587 */ 588 if (q->nr_hw_queues == 1) { 589 __blk_complete_request(rq); 590 return; 591 } 592 593 /* 594 * For a polled request, always complete locallly, it's pointless 595 * to redirect the completion. 596 */ 597 if ((rq->cmd_flags & REQ_HIPRI) || 598 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 599 q->mq_ops->complete(rq); 600 return; 601 } 602 603 cpu = get_cpu(); 604 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 605 shared = cpus_share_cache(cpu, ctx->cpu); 606 607 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 608 rq->csd.func = __blk_mq_complete_request_remote; 609 rq->csd.info = rq; 610 rq->csd.flags = 0; 611 smp_call_function_single_async(ctx->cpu, &rq->csd); 612 } else { 613 q->mq_ops->complete(rq); 614 } 615 put_cpu(); 616 } 617 618 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 619 __releases(hctx->srcu) 620 { 621 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 622 rcu_read_unlock(); 623 else 624 srcu_read_unlock(hctx->srcu, srcu_idx); 625 } 626 627 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 628 __acquires(hctx->srcu) 629 { 630 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 631 /* shut up gcc false positive */ 632 *srcu_idx = 0; 633 rcu_read_lock(); 634 } else 635 *srcu_idx = srcu_read_lock(hctx->srcu); 636 } 637 638 /** 639 * blk_mq_complete_request - end I/O on a request 640 * @rq: the request being processed 641 * 642 * Description: 643 * Ends all I/O on a request. It does not handle partial completions. 644 * The actual completion happens out-of-order, through a IPI handler. 645 **/ 646 bool blk_mq_complete_request(struct request *rq) 647 { 648 if (unlikely(blk_should_fake_timeout(rq->q))) 649 return false; 650 __blk_mq_complete_request(rq); 651 return true; 652 } 653 EXPORT_SYMBOL(blk_mq_complete_request); 654 655 void blk_mq_complete_request_sync(struct request *rq) 656 { 657 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 658 rq->q->mq_ops->complete(rq); 659 } 660 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync); 661 662 int blk_mq_request_started(struct request *rq) 663 { 664 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 665 } 666 EXPORT_SYMBOL_GPL(blk_mq_request_started); 667 668 void blk_mq_start_request(struct request *rq) 669 { 670 struct request_queue *q = rq->q; 671 672 blk_mq_sched_started_request(rq); 673 674 trace_block_rq_issue(q, rq); 675 676 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 677 rq->io_start_time_ns = ktime_get_ns(); 678 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 679 rq->throtl_size = blk_rq_sectors(rq); 680 #endif 681 rq->rq_flags |= RQF_STATS; 682 rq_qos_issue(q, rq); 683 } 684 685 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 686 687 blk_add_timer(rq); 688 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 689 690 if (q->dma_drain_size && blk_rq_bytes(rq)) { 691 /* 692 * Make sure space for the drain appears. We know we can do 693 * this because max_hw_segments has been adjusted to be one 694 * fewer than the device can handle. 695 */ 696 rq->nr_phys_segments++; 697 } 698 } 699 EXPORT_SYMBOL(blk_mq_start_request); 700 701 static void __blk_mq_requeue_request(struct request *rq) 702 { 703 struct request_queue *q = rq->q; 704 705 blk_mq_put_driver_tag(rq); 706 707 trace_block_rq_requeue(q, rq); 708 rq_qos_requeue(q, rq); 709 710 if (blk_mq_request_started(rq)) { 711 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 712 rq->rq_flags &= ~RQF_TIMED_OUT; 713 if (q->dma_drain_size && blk_rq_bytes(rq)) 714 rq->nr_phys_segments--; 715 } 716 } 717 718 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 719 { 720 __blk_mq_requeue_request(rq); 721 722 /* this request will be re-inserted to io scheduler queue */ 723 blk_mq_sched_requeue_request(rq); 724 725 BUG_ON(!list_empty(&rq->queuelist)); 726 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 727 } 728 EXPORT_SYMBOL(blk_mq_requeue_request); 729 730 static void blk_mq_requeue_work(struct work_struct *work) 731 { 732 struct request_queue *q = 733 container_of(work, struct request_queue, requeue_work.work); 734 LIST_HEAD(rq_list); 735 struct request *rq, *next; 736 737 spin_lock_irq(&q->requeue_lock); 738 list_splice_init(&q->requeue_list, &rq_list); 739 spin_unlock_irq(&q->requeue_lock); 740 741 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 742 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 743 continue; 744 745 rq->rq_flags &= ~RQF_SOFTBARRIER; 746 list_del_init(&rq->queuelist); 747 /* 748 * If RQF_DONTPREP, rq has contained some driver specific 749 * data, so insert it to hctx dispatch list to avoid any 750 * merge. 751 */ 752 if (rq->rq_flags & RQF_DONTPREP) 753 blk_mq_request_bypass_insert(rq, false); 754 else 755 blk_mq_sched_insert_request(rq, true, false, false); 756 } 757 758 while (!list_empty(&rq_list)) { 759 rq = list_entry(rq_list.next, struct request, queuelist); 760 list_del_init(&rq->queuelist); 761 blk_mq_sched_insert_request(rq, false, false, false); 762 } 763 764 blk_mq_run_hw_queues(q, false); 765 } 766 767 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 768 bool kick_requeue_list) 769 { 770 struct request_queue *q = rq->q; 771 unsigned long flags; 772 773 /* 774 * We abuse this flag that is otherwise used by the I/O scheduler to 775 * request head insertion from the workqueue. 776 */ 777 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 778 779 spin_lock_irqsave(&q->requeue_lock, flags); 780 if (at_head) { 781 rq->rq_flags |= RQF_SOFTBARRIER; 782 list_add(&rq->queuelist, &q->requeue_list); 783 } else { 784 list_add_tail(&rq->queuelist, &q->requeue_list); 785 } 786 spin_unlock_irqrestore(&q->requeue_lock, flags); 787 788 if (kick_requeue_list) 789 blk_mq_kick_requeue_list(q); 790 } 791 792 void blk_mq_kick_requeue_list(struct request_queue *q) 793 { 794 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 795 } 796 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 797 798 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 799 unsigned long msecs) 800 { 801 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 802 msecs_to_jiffies(msecs)); 803 } 804 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 805 806 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 807 { 808 if (tag < tags->nr_tags) { 809 prefetch(tags->rqs[tag]); 810 return tags->rqs[tag]; 811 } 812 813 return NULL; 814 } 815 EXPORT_SYMBOL(blk_mq_tag_to_rq); 816 817 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 818 void *priv, bool reserved) 819 { 820 /* 821 * If we find a request that is inflight and the queue matches, 822 * we know the queue is busy. Return false to stop the iteration. 823 */ 824 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 825 bool *busy = priv; 826 827 *busy = true; 828 return false; 829 } 830 831 return true; 832 } 833 834 bool blk_mq_queue_inflight(struct request_queue *q) 835 { 836 bool busy = false; 837 838 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 839 return busy; 840 } 841 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 842 843 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 844 { 845 req->rq_flags |= RQF_TIMED_OUT; 846 if (req->q->mq_ops->timeout) { 847 enum blk_eh_timer_return ret; 848 849 ret = req->q->mq_ops->timeout(req, reserved); 850 if (ret == BLK_EH_DONE) 851 return; 852 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 853 } 854 855 blk_add_timer(req); 856 } 857 858 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 859 { 860 unsigned long deadline; 861 862 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 863 return false; 864 if (rq->rq_flags & RQF_TIMED_OUT) 865 return false; 866 867 deadline = READ_ONCE(rq->deadline); 868 if (time_after_eq(jiffies, deadline)) 869 return true; 870 871 if (*next == 0) 872 *next = deadline; 873 else if (time_after(*next, deadline)) 874 *next = deadline; 875 return false; 876 } 877 878 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 879 struct request *rq, void *priv, bool reserved) 880 { 881 unsigned long *next = priv; 882 883 /* 884 * Just do a quick check if it is expired before locking the request in 885 * so we're not unnecessarilly synchronizing across CPUs. 886 */ 887 if (!blk_mq_req_expired(rq, next)) 888 return true; 889 890 /* 891 * We have reason to believe the request may be expired. Take a 892 * reference on the request to lock this request lifetime into its 893 * currently allocated context to prevent it from being reallocated in 894 * the event the completion by-passes this timeout handler. 895 * 896 * If the reference was already released, then the driver beat the 897 * timeout handler to posting a natural completion. 898 */ 899 if (!refcount_inc_not_zero(&rq->ref)) 900 return true; 901 902 /* 903 * The request is now locked and cannot be reallocated underneath the 904 * timeout handler's processing. Re-verify this exact request is truly 905 * expired; if it is not expired, then the request was completed and 906 * reallocated as a new request. 907 */ 908 if (blk_mq_req_expired(rq, next)) 909 blk_mq_rq_timed_out(rq, reserved); 910 if (refcount_dec_and_test(&rq->ref)) 911 __blk_mq_free_request(rq); 912 913 return true; 914 } 915 916 static void blk_mq_timeout_work(struct work_struct *work) 917 { 918 struct request_queue *q = 919 container_of(work, struct request_queue, timeout_work); 920 unsigned long next = 0; 921 struct blk_mq_hw_ctx *hctx; 922 int i; 923 924 /* A deadlock might occur if a request is stuck requiring a 925 * timeout at the same time a queue freeze is waiting 926 * completion, since the timeout code would not be able to 927 * acquire the queue reference here. 928 * 929 * That's why we don't use blk_queue_enter here; instead, we use 930 * percpu_ref_tryget directly, because we need to be able to 931 * obtain a reference even in the short window between the queue 932 * starting to freeze, by dropping the first reference in 933 * blk_freeze_queue_start, and the moment the last request is 934 * consumed, marked by the instant q_usage_counter reaches 935 * zero. 936 */ 937 if (!percpu_ref_tryget(&q->q_usage_counter)) 938 return; 939 940 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 941 942 if (next != 0) { 943 mod_timer(&q->timeout, next); 944 } else { 945 /* 946 * Request timeouts are handled as a forward rolling timer. If 947 * we end up here it means that no requests are pending and 948 * also that no request has been pending for a while. Mark 949 * each hctx as idle. 950 */ 951 queue_for_each_hw_ctx(q, hctx, i) { 952 /* the hctx may be unmapped, so check it here */ 953 if (blk_mq_hw_queue_mapped(hctx)) 954 blk_mq_tag_idle(hctx); 955 } 956 } 957 blk_queue_exit(q); 958 } 959 960 struct flush_busy_ctx_data { 961 struct blk_mq_hw_ctx *hctx; 962 struct list_head *list; 963 }; 964 965 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 966 { 967 struct flush_busy_ctx_data *flush_data = data; 968 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 969 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 970 enum hctx_type type = hctx->type; 971 972 spin_lock(&ctx->lock); 973 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 974 sbitmap_clear_bit(sb, bitnr); 975 spin_unlock(&ctx->lock); 976 return true; 977 } 978 979 /* 980 * Process software queues that have been marked busy, splicing them 981 * to the for-dispatch 982 */ 983 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 984 { 985 struct flush_busy_ctx_data data = { 986 .hctx = hctx, 987 .list = list, 988 }; 989 990 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 991 } 992 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 993 994 struct dispatch_rq_data { 995 struct blk_mq_hw_ctx *hctx; 996 struct request *rq; 997 }; 998 999 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1000 void *data) 1001 { 1002 struct dispatch_rq_data *dispatch_data = data; 1003 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1004 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1005 enum hctx_type type = hctx->type; 1006 1007 spin_lock(&ctx->lock); 1008 if (!list_empty(&ctx->rq_lists[type])) { 1009 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1010 list_del_init(&dispatch_data->rq->queuelist); 1011 if (list_empty(&ctx->rq_lists[type])) 1012 sbitmap_clear_bit(sb, bitnr); 1013 } 1014 spin_unlock(&ctx->lock); 1015 1016 return !dispatch_data->rq; 1017 } 1018 1019 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1020 struct blk_mq_ctx *start) 1021 { 1022 unsigned off = start ? start->index_hw[hctx->type] : 0; 1023 struct dispatch_rq_data data = { 1024 .hctx = hctx, 1025 .rq = NULL, 1026 }; 1027 1028 __sbitmap_for_each_set(&hctx->ctx_map, off, 1029 dispatch_rq_from_ctx, &data); 1030 1031 return data.rq; 1032 } 1033 1034 static inline unsigned int queued_to_index(unsigned int queued) 1035 { 1036 if (!queued) 1037 return 0; 1038 1039 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1040 } 1041 1042 bool blk_mq_get_driver_tag(struct request *rq) 1043 { 1044 struct blk_mq_alloc_data data = { 1045 .q = rq->q, 1046 .hctx = rq->mq_hctx, 1047 .flags = BLK_MQ_REQ_NOWAIT, 1048 .cmd_flags = rq->cmd_flags, 1049 }; 1050 bool shared; 1051 1052 if (rq->tag != -1) 1053 goto done; 1054 1055 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1056 data.flags |= BLK_MQ_REQ_RESERVED; 1057 1058 shared = blk_mq_tag_busy(data.hctx); 1059 rq->tag = blk_mq_get_tag(&data); 1060 if (rq->tag >= 0) { 1061 if (shared) { 1062 rq->rq_flags |= RQF_MQ_INFLIGHT; 1063 atomic_inc(&data.hctx->nr_active); 1064 } 1065 data.hctx->tags->rqs[rq->tag] = rq; 1066 } 1067 1068 done: 1069 return rq->tag != -1; 1070 } 1071 1072 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1073 int flags, void *key) 1074 { 1075 struct blk_mq_hw_ctx *hctx; 1076 1077 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1078 1079 spin_lock(&hctx->dispatch_wait_lock); 1080 if (!list_empty(&wait->entry)) { 1081 struct sbitmap_queue *sbq; 1082 1083 list_del_init(&wait->entry); 1084 sbq = &hctx->tags->bitmap_tags; 1085 atomic_dec(&sbq->ws_active); 1086 } 1087 spin_unlock(&hctx->dispatch_wait_lock); 1088 1089 blk_mq_run_hw_queue(hctx, true); 1090 return 1; 1091 } 1092 1093 /* 1094 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1095 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1096 * restart. For both cases, take care to check the condition again after 1097 * marking us as waiting. 1098 */ 1099 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1100 struct request *rq) 1101 { 1102 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1103 struct wait_queue_head *wq; 1104 wait_queue_entry_t *wait; 1105 bool ret; 1106 1107 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1108 blk_mq_sched_mark_restart_hctx(hctx); 1109 1110 /* 1111 * It's possible that a tag was freed in the window between the 1112 * allocation failure and adding the hardware queue to the wait 1113 * queue. 1114 * 1115 * Don't clear RESTART here, someone else could have set it. 1116 * At most this will cost an extra queue run. 1117 */ 1118 return blk_mq_get_driver_tag(rq); 1119 } 1120 1121 wait = &hctx->dispatch_wait; 1122 if (!list_empty_careful(&wait->entry)) 1123 return false; 1124 1125 wq = &bt_wait_ptr(sbq, hctx)->wait; 1126 1127 spin_lock_irq(&wq->lock); 1128 spin_lock(&hctx->dispatch_wait_lock); 1129 if (!list_empty(&wait->entry)) { 1130 spin_unlock(&hctx->dispatch_wait_lock); 1131 spin_unlock_irq(&wq->lock); 1132 return false; 1133 } 1134 1135 atomic_inc(&sbq->ws_active); 1136 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1137 __add_wait_queue(wq, wait); 1138 1139 /* 1140 * It's possible that a tag was freed in the window between the 1141 * allocation failure and adding the hardware queue to the wait 1142 * queue. 1143 */ 1144 ret = blk_mq_get_driver_tag(rq); 1145 if (!ret) { 1146 spin_unlock(&hctx->dispatch_wait_lock); 1147 spin_unlock_irq(&wq->lock); 1148 return false; 1149 } 1150 1151 /* 1152 * We got a tag, remove ourselves from the wait queue to ensure 1153 * someone else gets the wakeup. 1154 */ 1155 list_del_init(&wait->entry); 1156 atomic_dec(&sbq->ws_active); 1157 spin_unlock(&hctx->dispatch_wait_lock); 1158 spin_unlock_irq(&wq->lock); 1159 1160 return true; 1161 } 1162 1163 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1164 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1165 /* 1166 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1167 * - EWMA is one simple way to compute running average value 1168 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1169 * - take 4 as factor for avoiding to get too small(0) result, and this 1170 * factor doesn't matter because EWMA decreases exponentially 1171 */ 1172 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1173 { 1174 unsigned int ewma; 1175 1176 if (hctx->queue->elevator) 1177 return; 1178 1179 ewma = hctx->dispatch_busy; 1180 1181 if (!ewma && !busy) 1182 return; 1183 1184 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1185 if (busy) 1186 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1187 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1188 1189 hctx->dispatch_busy = ewma; 1190 } 1191 1192 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1193 1194 /* 1195 * Returns true if we did some work AND can potentially do more. 1196 */ 1197 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1198 bool got_budget) 1199 { 1200 struct blk_mq_hw_ctx *hctx; 1201 struct request *rq, *nxt; 1202 bool no_tag = false; 1203 int errors, queued; 1204 blk_status_t ret = BLK_STS_OK; 1205 1206 if (list_empty(list)) 1207 return false; 1208 1209 WARN_ON(!list_is_singular(list) && got_budget); 1210 1211 /* 1212 * Now process all the entries, sending them to the driver. 1213 */ 1214 errors = queued = 0; 1215 do { 1216 struct blk_mq_queue_data bd; 1217 1218 rq = list_first_entry(list, struct request, queuelist); 1219 1220 hctx = rq->mq_hctx; 1221 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1222 break; 1223 1224 if (!blk_mq_get_driver_tag(rq)) { 1225 /* 1226 * The initial allocation attempt failed, so we need to 1227 * rerun the hardware queue when a tag is freed. The 1228 * waitqueue takes care of that. If the queue is run 1229 * before we add this entry back on the dispatch list, 1230 * we'll re-run it below. 1231 */ 1232 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1233 blk_mq_put_dispatch_budget(hctx); 1234 /* 1235 * For non-shared tags, the RESTART check 1236 * will suffice. 1237 */ 1238 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1239 no_tag = true; 1240 break; 1241 } 1242 } 1243 1244 list_del_init(&rq->queuelist); 1245 1246 bd.rq = rq; 1247 1248 /* 1249 * Flag last if we have no more requests, or if we have more 1250 * but can't assign a driver tag to it. 1251 */ 1252 if (list_empty(list)) 1253 bd.last = true; 1254 else { 1255 nxt = list_first_entry(list, struct request, queuelist); 1256 bd.last = !blk_mq_get_driver_tag(nxt); 1257 } 1258 1259 ret = q->mq_ops->queue_rq(hctx, &bd); 1260 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1261 /* 1262 * If an I/O scheduler has been configured and we got a 1263 * driver tag for the next request already, free it 1264 * again. 1265 */ 1266 if (!list_empty(list)) { 1267 nxt = list_first_entry(list, struct request, queuelist); 1268 blk_mq_put_driver_tag(nxt); 1269 } 1270 list_add(&rq->queuelist, list); 1271 __blk_mq_requeue_request(rq); 1272 break; 1273 } 1274 1275 if (unlikely(ret != BLK_STS_OK)) { 1276 errors++; 1277 blk_mq_end_request(rq, BLK_STS_IOERR); 1278 continue; 1279 } 1280 1281 queued++; 1282 } while (!list_empty(list)); 1283 1284 hctx->dispatched[queued_to_index(queued)]++; 1285 1286 /* 1287 * Any items that need requeuing? Stuff them into hctx->dispatch, 1288 * that is where we will continue on next queue run. 1289 */ 1290 if (!list_empty(list)) { 1291 bool needs_restart; 1292 1293 /* 1294 * If we didn't flush the entire list, we could have told 1295 * the driver there was more coming, but that turned out to 1296 * be a lie. 1297 */ 1298 if (q->mq_ops->commit_rqs) 1299 q->mq_ops->commit_rqs(hctx); 1300 1301 spin_lock(&hctx->lock); 1302 list_splice_init(list, &hctx->dispatch); 1303 spin_unlock(&hctx->lock); 1304 1305 /* 1306 * If SCHED_RESTART was set by the caller of this function and 1307 * it is no longer set that means that it was cleared by another 1308 * thread and hence that a queue rerun is needed. 1309 * 1310 * If 'no_tag' is set, that means that we failed getting 1311 * a driver tag with an I/O scheduler attached. If our dispatch 1312 * waitqueue is no longer active, ensure that we run the queue 1313 * AFTER adding our entries back to the list. 1314 * 1315 * If no I/O scheduler has been configured it is possible that 1316 * the hardware queue got stopped and restarted before requests 1317 * were pushed back onto the dispatch list. Rerun the queue to 1318 * avoid starvation. Notes: 1319 * - blk_mq_run_hw_queue() checks whether or not a queue has 1320 * been stopped before rerunning a queue. 1321 * - Some but not all block drivers stop a queue before 1322 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1323 * and dm-rq. 1324 * 1325 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1326 * bit is set, run queue after a delay to avoid IO stalls 1327 * that could otherwise occur if the queue is idle. 1328 */ 1329 needs_restart = blk_mq_sched_needs_restart(hctx); 1330 if (!needs_restart || 1331 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1332 blk_mq_run_hw_queue(hctx, true); 1333 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1334 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1335 1336 blk_mq_update_dispatch_busy(hctx, true); 1337 return false; 1338 } else 1339 blk_mq_update_dispatch_busy(hctx, false); 1340 1341 /* 1342 * If the host/device is unable to accept more work, inform the 1343 * caller of that. 1344 */ 1345 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1346 return false; 1347 1348 return (queued + errors) != 0; 1349 } 1350 1351 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1352 { 1353 int srcu_idx; 1354 1355 /* 1356 * We should be running this queue from one of the CPUs that 1357 * are mapped to it. 1358 * 1359 * There are at least two related races now between setting 1360 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1361 * __blk_mq_run_hw_queue(): 1362 * 1363 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1364 * but later it becomes online, then this warning is harmless 1365 * at all 1366 * 1367 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1368 * but later it becomes offline, then the warning can't be 1369 * triggered, and we depend on blk-mq timeout handler to 1370 * handle dispatched requests to this hctx 1371 */ 1372 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1373 cpu_online(hctx->next_cpu)) { 1374 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1375 raw_smp_processor_id(), 1376 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1377 dump_stack(); 1378 } 1379 1380 /* 1381 * We can't run the queue inline with ints disabled. Ensure that 1382 * we catch bad users of this early. 1383 */ 1384 WARN_ON_ONCE(in_interrupt()); 1385 1386 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1387 1388 hctx_lock(hctx, &srcu_idx); 1389 blk_mq_sched_dispatch_requests(hctx); 1390 hctx_unlock(hctx, srcu_idx); 1391 } 1392 1393 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1394 { 1395 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1396 1397 if (cpu >= nr_cpu_ids) 1398 cpu = cpumask_first(hctx->cpumask); 1399 return cpu; 1400 } 1401 1402 /* 1403 * It'd be great if the workqueue API had a way to pass 1404 * in a mask and had some smarts for more clever placement. 1405 * For now we just round-robin here, switching for every 1406 * BLK_MQ_CPU_WORK_BATCH queued items. 1407 */ 1408 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1409 { 1410 bool tried = false; 1411 int next_cpu = hctx->next_cpu; 1412 1413 if (hctx->queue->nr_hw_queues == 1) 1414 return WORK_CPU_UNBOUND; 1415 1416 if (--hctx->next_cpu_batch <= 0) { 1417 select_cpu: 1418 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1419 cpu_online_mask); 1420 if (next_cpu >= nr_cpu_ids) 1421 next_cpu = blk_mq_first_mapped_cpu(hctx); 1422 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1423 } 1424 1425 /* 1426 * Do unbound schedule if we can't find a online CPU for this hctx, 1427 * and it should only happen in the path of handling CPU DEAD. 1428 */ 1429 if (!cpu_online(next_cpu)) { 1430 if (!tried) { 1431 tried = true; 1432 goto select_cpu; 1433 } 1434 1435 /* 1436 * Make sure to re-select CPU next time once after CPUs 1437 * in hctx->cpumask become online again. 1438 */ 1439 hctx->next_cpu = next_cpu; 1440 hctx->next_cpu_batch = 1; 1441 return WORK_CPU_UNBOUND; 1442 } 1443 1444 hctx->next_cpu = next_cpu; 1445 return next_cpu; 1446 } 1447 1448 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1449 unsigned long msecs) 1450 { 1451 if (unlikely(blk_mq_hctx_stopped(hctx))) 1452 return; 1453 1454 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1455 int cpu = get_cpu(); 1456 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1457 __blk_mq_run_hw_queue(hctx); 1458 put_cpu(); 1459 return; 1460 } 1461 1462 put_cpu(); 1463 } 1464 1465 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1466 msecs_to_jiffies(msecs)); 1467 } 1468 1469 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1470 { 1471 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1472 } 1473 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1474 1475 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1476 { 1477 int srcu_idx; 1478 bool need_run; 1479 1480 /* 1481 * When queue is quiesced, we may be switching io scheduler, or 1482 * updating nr_hw_queues, or other things, and we can't run queue 1483 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1484 * 1485 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1486 * quiesced. 1487 */ 1488 hctx_lock(hctx, &srcu_idx); 1489 need_run = !blk_queue_quiesced(hctx->queue) && 1490 blk_mq_hctx_has_pending(hctx); 1491 hctx_unlock(hctx, srcu_idx); 1492 1493 if (need_run) { 1494 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1495 return true; 1496 } 1497 1498 return false; 1499 } 1500 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1501 1502 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1503 { 1504 struct blk_mq_hw_ctx *hctx; 1505 int i; 1506 1507 queue_for_each_hw_ctx(q, hctx, i) { 1508 if (blk_mq_hctx_stopped(hctx)) 1509 continue; 1510 1511 blk_mq_run_hw_queue(hctx, async); 1512 } 1513 } 1514 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1515 1516 /** 1517 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1518 * @q: request queue. 1519 * 1520 * The caller is responsible for serializing this function against 1521 * blk_mq_{start,stop}_hw_queue(). 1522 */ 1523 bool blk_mq_queue_stopped(struct request_queue *q) 1524 { 1525 struct blk_mq_hw_ctx *hctx; 1526 int i; 1527 1528 queue_for_each_hw_ctx(q, hctx, i) 1529 if (blk_mq_hctx_stopped(hctx)) 1530 return true; 1531 1532 return false; 1533 } 1534 EXPORT_SYMBOL(blk_mq_queue_stopped); 1535 1536 /* 1537 * This function is often used for pausing .queue_rq() by driver when 1538 * there isn't enough resource or some conditions aren't satisfied, and 1539 * BLK_STS_RESOURCE is usually returned. 1540 * 1541 * We do not guarantee that dispatch can be drained or blocked 1542 * after blk_mq_stop_hw_queue() returns. Please use 1543 * blk_mq_quiesce_queue() for that requirement. 1544 */ 1545 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1546 { 1547 cancel_delayed_work(&hctx->run_work); 1548 1549 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1550 } 1551 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1552 1553 /* 1554 * This function is often used for pausing .queue_rq() by driver when 1555 * there isn't enough resource or some conditions aren't satisfied, and 1556 * BLK_STS_RESOURCE is usually returned. 1557 * 1558 * We do not guarantee that dispatch can be drained or blocked 1559 * after blk_mq_stop_hw_queues() returns. Please use 1560 * blk_mq_quiesce_queue() for that requirement. 1561 */ 1562 void blk_mq_stop_hw_queues(struct request_queue *q) 1563 { 1564 struct blk_mq_hw_ctx *hctx; 1565 int i; 1566 1567 queue_for_each_hw_ctx(q, hctx, i) 1568 blk_mq_stop_hw_queue(hctx); 1569 } 1570 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1571 1572 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1573 { 1574 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1575 1576 blk_mq_run_hw_queue(hctx, false); 1577 } 1578 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1579 1580 void blk_mq_start_hw_queues(struct request_queue *q) 1581 { 1582 struct blk_mq_hw_ctx *hctx; 1583 int i; 1584 1585 queue_for_each_hw_ctx(q, hctx, i) 1586 blk_mq_start_hw_queue(hctx); 1587 } 1588 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1589 1590 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1591 { 1592 if (!blk_mq_hctx_stopped(hctx)) 1593 return; 1594 1595 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1596 blk_mq_run_hw_queue(hctx, async); 1597 } 1598 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1599 1600 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1601 { 1602 struct blk_mq_hw_ctx *hctx; 1603 int i; 1604 1605 queue_for_each_hw_ctx(q, hctx, i) 1606 blk_mq_start_stopped_hw_queue(hctx, async); 1607 } 1608 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1609 1610 static void blk_mq_run_work_fn(struct work_struct *work) 1611 { 1612 struct blk_mq_hw_ctx *hctx; 1613 1614 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1615 1616 /* 1617 * If we are stopped, don't run the queue. 1618 */ 1619 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1620 return; 1621 1622 __blk_mq_run_hw_queue(hctx); 1623 } 1624 1625 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1626 struct request *rq, 1627 bool at_head) 1628 { 1629 struct blk_mq_ctx *ctx = rq->mq_ctx; 1630 enum hctx_type type = hctx->type; 1631 1632 lockdep_assert_held(&ctx->lock); 1633 1634 trace_block_rq_insert(hctx->queue, rq); 1635 1636 if (at_head) 1637 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1638 else 1639 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1640 } 1641 1642 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1643 bool at_head) 1644 { 1645 struct blk_mq_ctx *ctx = rq->mq_ctx; 1646 1647 lockdep_assert_held(&ctx->lock); 1648 1649 __blk_mq_insert_req_list(hctx, rq, at_head); 1650 blk_mq_hctx_mark_pending(hctx, ctx); 1651 } 1652 1653 /* 1654 * Should only be used carefully, when the caller knows we want to 1655 * bypass a potential IO scheduler on the target device. 1656 */ 1657 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1658 { 1659 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1660 1661 spin_lock(&hctx->lock); 1662 list_add_tail(&rq->queuelist, &hctx->dispatch); 1663 spin_unlock(&hctx->lock); 1664 1665 if (run_queue) 1666 blk_mq_run_hw_queue(hctx, false); 1667 } 1668 1669 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1670 struct list_head *list) 1671 1672 { 1673 struct request *rq; 1674 enum hctx_type type = hctx->type; 1675 1676 /* 1677 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1678 * offline now 1679 */ 1680 list_for_each_entry(rq, list, queuelist) { 1681 BUG_ON(rq->mq_ctx != ctx); 1682 trace_block_rq_insert(hctx->queue, rq); 1683 } 1684 1685 spin_lock(&ctx->lock); 1686 list_splice_tail_init(list, &ctx->rq_lists[type]); 1687 blk_mq_hctx_mark_pending(hctx, ctx); 1688 spin_unlock(&ctx->lock); 1689 } 1690 1691 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1692 { 1693 struct request *rqa = container_of(a, struct request, queuelist); 1694 struct request *rqb = container_of(b, struct request, queuelist); 1695 1696 if (rqa->mq_ctx < rqb->mq_ctx) 1697 return -1; 1698 else if (rqa->mq_ctx > rqb->mq_ctx) 1699 return 1; 1700 else if (rqa->mq_hctx < rqb->mq_hctx) 1701 return -1; 1702 else if (rqa->mq_hctx > rqb->mq_hctx) 1703 return 1; 1704 1705 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1706 } 1707 1708 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1709 { 1710 struct blk_mq_hw_ctx *this_hctx; 1711 struct blk_mq_ctx *this_ctx; 1712 struct request_queue *this_q; 1713 struct request *rq; 1714 LIST_HEAD(list); 1715 LIST_HEAD(rq_list); 1716 unsigned int depth; 1717 1718 list_splice_init(&plug->mq_list, &list); 1719 1720 if (plug->rq_count > 2 && plug->multiple_queues) 1721 list_sort(NULL, &list, plug_rq_cmp); 1722 1723 plug->rq_count = 0; 1724 1725 this_q = NULL; 1726 this_hctx = NULL; 1727 this_ctx = NULL; 1728 depth = 0; 1729 1730 while (!list_empty(&list)) { 1731 rq = list_entry_rq(list.next); 1732 list_del_init(&rq->queuelist); 1733 BUG_ON(!rq->q); 1734 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1735 if (this_hctx) { 1736 trace_block_unplug(this_q, depth, !from_schedule); 1737 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1738 &rq_list, 1739 from_schedule); 1740 } 1741 1742 this_q = rq->q; 1743 this_ctx = rq->mq_ctx; 1744 this_hctx = rq->mq_hctx; 1745 depth = 0; 1746 } 1747 1748 depth++; 1749 list_add_tail(&rq->queuelist, &rq_list); 1750 } 1751 1752 /* 1753 * If 'this_hctx' is set, we know we have entries to complete 1754 * on 'rq_list'. Do those. 1755 */ 1756 if (this_hctx) { 1757 trace_block_unplug(this_q, depth, !from_schedule); 1758 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1759 from_schedule); 1760 } 1761 } 1762 1763 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1764 unsigned int nr_segs) 1765 { 1766 if (bio->bi_opf & REQ_RAHEAD) 1767 rq->cmd_flags |= REQ_FAILFAST_MASK; 1768 1769 rq->__sector = bio->bi_iter.bi_sector; 1770 rq->write_hint = bio->bi_write_hint; 1771 blk_rq_bio_prep(rq, bio, nr_segs); 1772 1773 blk_account_io_start(rq, true); 1774 } 1775 1776 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1777 struct request *rq, 1778 blk_qc_t *cookie, bool last) 1779 { 1780 struct request_queue *q = rq->q; 1781 struct blk_mq_queue_data bd = { 1782 .rq = rq, 1783 .last = last, 1784 }; 1785 blk_qc_t new_cookie; 1786 blk_status_t ret; 1787 1788 new_cookie = request_to_qc_t(hctx, rq); 1789 1790 /* 1791 * For OK queue, we are done. For error, caller may kill it. 1792 * Any other error (busy), just add it to our list as we 1793 * previously would have done. 1794 */ 1795 ret = q->mq_ops->queue_rq(hctx, &bd); 1796 switch (ret) { 1797 case BLK_STS_OK: 1798 blk_mq_update_dispatch_busy(hctx, false); 1799 *cookie = new_cookie; 1800 break; 1801 case BLK_STS_RESOURCE: 1802 case BLK_STS_DEV_RESOURCE: 1803 blk_mq_update_dispatch_busy(hctx, true); 1804 __blk_mq_requeue_request(rq); 1805 break; 1806 default: 1807 blk_mq_update_dispatch_busy(hctx, false); 1808 *cookie = BLK_QC_T_NONE; 1809 break; 1810 } 1811 1812 return ret; 1813 } 1814 1815 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1816 struct request *rq, 1817 blk_qc_t *cookie, 1818 bool bypass_insert, bool last) 1819 { 1820 struct request_queue *q = rq->q; 1821 bool run_queue = true; 1822 1823 /* 1824 * RCU or SRCU read lock is needed before checking quiesced flag. 1825 * 1826 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1827 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1828 * and avoid driver to try to dispatch again. 1829 */ 1830 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1831 run_queue = false; 1832 bypass_insert = false; 1833 goto insert; 1834 } 1835 1836 if (q->elevator && !bypass_insert) 1837 goto insert; 1838 1839 if (!blk_mq_get_dispatch_budget(hctx)) 1840 goto insert; 1841 1842 if (!blk_mq_get_driver_tag(rq)) { 1843 blk_mq_put_dispatch_budget(hctx); 1844 goto insert; 1845 } 1846 1847 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1848 insert: 1849 if (bypass_insert) 1850 return BLK_STS_RESOURCE; 1851 1852 blk_mq_request_bypass_insert(rq, run_queue); 1853 return BLK_STS_OK; 1854 } 1855 1856 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1857 struct request *rq, blk_qc_t *cookie) 1858 { 1859 blk_status_t ret; 1860 int srcu_idx; 1861 1862 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1863 1864 hctx_lock(hctx, &srcu_idx); 1865 1866 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1867 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1868 blk_mq_request_bypass_insert(rq, true); 1869 else if (ret != BLK_STS_OK) 1870 blk_mq_end_request(rq, ret); 1871 1872 hctx_unlock(hctx, srcu_idx); 1873 } 1874 1875 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1876 { 1877 blk_status_t ret; 1878 int srcu_idx; 1879 blk_qc_t unused_cookie; 1880 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1881 1882 hctx_lock(hctx, &srcu_idx); 1883 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1884 hctx_unlock(hctx, srcu_idx); 1885 1886 return ret; 1887 } 1888 1889 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1890 struct list_head *list) 1891 { 1892 while (!list_empty(list)) { 1893 blk_status_t ret; 1894 struct request *rq = list_first_entry(list, struct request, 1895 queuelist); 1896 1897 list_del_init(&rq->queuelist); 1898 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1899 if (ret != BLK_STS_OK) { 1900 if (ret == BLK_STS_RESOURCE || 1901 ret == BLK_STS_DEV_RESOURCE) { 1902 blk_mq_request_bypass_insert(rq, 1903 list_empty(list)); 1904 break; 1905 } 1906 blk_mq_end_request(rq, ret); 1907 } 1908 } 1909 1910 /* 1911 * If we didn't flush the entire list, we could have told 1912 * the driver there was more coming, but that turned out to 1913 * be a lie. 1914 */ 1915 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) 1916 hctx->queue->mq_ops->commit_rqs(hctx); 1917 } 1918 1919 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1920 { 1921 list_add_tail(&rq->queuelist, &plug->mq_list); 1922 plug->rq_count++; 1923 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1924 struct request *tmp; 1925 1926 tmp = list_first_entry(&plug->mq_list, struct request, 1927 queuelist); 1928 if (tmp->q != rq->q) 1929 plug->multiple_queues = true; 1930 } 1931 } 1932 1933 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1934 { 1935 const int is_sync = op_is_sync(bio->bi_opf); 1936 const int is_flush_fua = op_is_flush(bio->bi_opf); 1937 struct blk_mq_alloc_data data = { .flags = 0}; 1938 struct request *rq; 1939 struct blk_plug *plug; 1940 struct request *same_queue_rq = NULL; 1941 unsigned int nr_segs; 1942 blk_qc_t cookie; 1943 1944 blk_queue_bounce(q, &bio); 1945 __blk_queue_split(q, &bio, &nr_segs); 1946 1947 if (!bio_integrity_prep(bio)) 1948 return BLK_QC_T_NONE; 1949 1950 if (!is_flush_fua && !blk_queue_nomerges(q) && 1951 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 1952 return BLK_QC_T_NONE; 1953 1954 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 1955 return BLK_QC_T_NONE; 1956 1957 rq_qos_throttle(q, bio); 1958 1959 data.cmd_flags = bio->bi_opf; 1960 rq = blk_mq_get_request(q, bio, &data); 1961 if (unlikely(!rq)) { 1962 rq_qos_cleanup(q, bio); 1963 if (bio->bi_opf & REQ_NOWAIT) 1964 bio_wouldblock_error(bio); 1965 return BLK_QC_T_NONE; 1966 } 1967 1968 trace_block_getrq(q, bio, bio->bi_opf); 1969 1970 rq_qos_track(q, rq, bio); 1971 1972 cookie = request_to_qc_t(data.hctx, rq); 1973 1974 blk_mq_bio_to_request(rq, bio, nr_segs); 1975 1976 plug = blk_mq_plug(q, bio); 1977 if (unlikely(is_flush_fua)) { 1978 /* bypass scheduler for flush rq */ 1979 blk_insert_flush(rq); 1980 blk_mq_run_hw_queue(data.hctx, true); 1981 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1982 /* 1983 * Use plugging if we have a ->commit_rqs() hook as well, as 1984 * we know the driver uses bd->last in a smart fashion. 1985 */ 1986 unsigned int request_count = plug->rq_count; 1987 struct request *last = NULL; 1988 1989 if (!request_count) 1990 trace_block_plug(q); 1991 else 1992 last = list_entry_rq(plug->mq_list.prev); 1993 1994 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1995 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1996 blk_flush_plug_list(plug, false); 1997 trace_block_plug(q); 1998 } 1999 2000 blk_add_rq_to_plug(plug, rq); 2001 } else if (plug && !blk_queue_nomerges(q)) { 2002 /* 2003 * We do limited plugging. If the bio can be merged, do that. 2004 * Otherwise the existing request in the plug list will be 2005 * issued. So the plug list will have one request at most 2006 * The plug list might get flushed before this. If that happens, 2007 * the plug list is empty, and same_queue_rq is invalid. 2008 */ 2009 if (list_empty(&plug->mq_list)) 2010 same_queue_rq = NULL; 2011 if (same_queue_rq) { 2012 list_del_init(&same_queue_rq->queuelist); 2013 plug->rq_count--; 2014 } 2015 blk_add_rq_to_plug(plug, rq); 2016 trace_block_plug(q); 2017 2018 if (same_queue_rq) { 2019 data.hctx = same_queue_rq->mq_hctx; 2020 trace_block_unplug(q, 1, true); 2021 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2022 &cookie); 2023 } 2024 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2025 !data.hctx->dispatch_busy)) { 2026 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2027 } else { 2028 blk_mq_sched_insert_request(rq, false, true, true); 2029 } 2030 2031 return cookie; 2032 } 2033 2034 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2035 unsigned int hctx_idx) 2036 { 2037 struct page *page; 2038 2039 if (tags->rqs && set->ops->exit_request) { 2040 int i; 2041 2042 for (i = 0; i < tags->nr_tags; i++) { 2043 struct request *rq = tags->static_rqs[i]; 2044 2045 if (!rq) 2046 continue; 2047 set->ops->exit_request(set, rq, hctx_idx); 2048 tags->static_rqs[i] = NULL; 2049 } 2050 } 2051 2052 while (!list_empty(&tags->page_list)) { 2053 page = list_first_entry(&tags->page_list, struct page, lru); 2054 list_del_init(&page->lru); 2055 /* 2056 * Remove kmemleak object previously allocated in 2057 * blk_mq_alloc_rqs(). 2058 */ 2059 kmemleak_free(page_address(page)); 2060 __free_pages(page, page->private); 2061 } 2062 } 2063 2064 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2065 { 2066 kfree(tags->rqs); 2067 tags->rqs = NULL; 2068 kfree(tags->static_rqs); 2069 tags->static_rqs = NULL; 2070 2071 blk_mq_free_tags(tags); 2072 } 2073 2074 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2075 unsigned int hctx_idx, 2076 unsigned int nr_tags, 2077 unsigned int reserved_tags) 2078 { 2079 struct blk_mq_tags *tags; 2080 int node; 2081 2082 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2083 if (node == NUMA_NO_NODE) 2084 node = set->numa_node; 2085 2086 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2087 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2088 if (!tags) 2089 return NULL; 2090 2091 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2092 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2093 node); 2094 if (!tags->rqs) { 2095 blk_mq_free_tags(tags); 2096 return NULL; 2097 } 2098 2099 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2100 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2101 node); 2102 if (!tags->static_rqs) { 2103 kfree(tags->rqs); 2104 blk_mq_free_tags(tags); 2105 return NULL; 2106 } 2107 2108 return tags; 2109 } 2110 2111 static size_t order_to_size(unsigned int order) 2112 { 2113 return (size_t)PAGE_SIZE << order; 2114 } 2115 2116 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2117 unsigned int hctx_idx, int node) 2118 { 2119 int ret; 2120 2121 if (set->ops->init_request) { 2122 ret = set->ops->init_request(set, rq, hctx_idx, node); 2123 if (ret) 2124 return ret; 2125 } 2126 2127 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2128 return 0; 2129 } 2130 2131 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2132 unsigned int hctx_idx, unsigned int depth) 2133 { 2134 unsigned int i, j, entries_per_page, max_order = 4; 2135 size_t rq_size, left; 2136 int node; 2137 2138 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2139 if (node == NUMA_NO_NODE) 2140 node = set->numa_node; 2141 2142 INIT_LIST_HEAD(&tags->page_list); 2143 2144 /* 2145 * rq_size is the size of the request plus driver payload, rounded 2146 * to the cacheline size 2147 */ 2148 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2149 cache_line_size()); 2150 left = rq_size * depth; 2151 2152 for (i = 0; i < depth; ) { 2153 int this_order = max_order; 2154 struct page *page; 2155 int to_do; 2156 void *p; 2157 2158 while (this_order && left < order_to_size(this_order - 1)) 2159 this_order--; 2160 2161 do { 2162 page = alloc_pages_node(node, 2163 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2164 this_order); 2165 if (page) 2166 break; 2167 if (!this_order--) 2168 break; 2169 if (order_to_size(this_order) < rq_size) 2170 break; 2171 } while (1); 2172 2173 if (!page) 2174 goto fail; 2175 2176 page->private = this_order; 2177 list_add_tail(&page->lru, &tags->page_list); 2178 2179 p = page_address(page); 2180 /* 2181 * Allow kmemleak to scan these pages as they contain pointers 2182 * to additional allocations like via ops->init_request(). 2183 */ 2184 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2185 entries_per_page = order_to_size(this_order) / rq_size; 2186 to_do = min(entries_per_page, depth - i); 2187 left -= to_do * rq_size; 2188 for (j = 0; j < to_do; j++) { 2189 struct request *rq = p; 2190 2191 tags->static_rqs[i] = rq; 2192 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2193 tags->static_rqs[i] = NULL; 2194 goto fail; 2195 } 2196 2197 p += rq_size; 2198 i++; 2199 } 2200 } 2201 return 0; 2202 2203 fail: 2204 blk_mq_free_rqs(set, tags, hctx_idx); 2205 return -ENOMEM; 2206 } 2207 2208 /* 2209 * 'cpu' is going away. splice any existing rq_list entries from this 2210 * software queue to the hw queue dispatch list, and ensure that it 2211 * gets run. 2212 */ 2213 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2214 { 2215 struct blk_mq_hw_ctx *hctx; 2216 struct blk_mq_ctx *ctx; 2217 LIST_HEAD(tmp); 2218 enum hctx_type type; 2219 2220 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2221 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2222 type = hctx->type; 2223 2224 spin_lock(&ctx->lock); 2225 if (!list_empty(&ctx->rq_lists[type])) { 2226 list_splice_init(&ctx->rq_lists[type], &tmp); 2227 blk_mq_hctx_clear_pending(hctx, ctx); 2228 } 2229 spin_unlock(&ctx->lock); 2230 2231 if (list_empty(&tmp)) 2232 return 0; 2233 2234 spin_lock(&hctx->lock); 2235 list_splice_tail_init(&tmp, &hctx->dispatch); 2236 spin_unlock(&hctx->lock); 2237 2238 blk_mq_run_hw_queue(hctx, true); 2239 return 0; 2240 } 2241 2242 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2243 { 2244 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2245 &hctx->cpuhp_dead); 2246 } 2247 2248 /* hctx->ctxs will be freed in queue's release handler */ 2249 static void blk_mq_exit_hctx(struct request_queue *q, 2250 struct blk_mq_tag_set *set, 2251 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2252 { 2253 if (blk_mq_hw_queue_mapped(hctx)) 2254 blk_mq_tag_idle(hctx); 2255 2256 if (set->ops->exit_request) 2257 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2258 2259 if (set->ops->exit_hctx) 2260 set->ops->exit_hctx(hctx, hctx_idx); 2261 2262 blk_mq_remove_cpuhp(hctx); 2263 2264 spin_lock(&q->unused_hctx_lock); 2265 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2266 spin_unlock(&q->unused_hctx_lock); 2267 } 2268 2269 static void blk_mq_exit_hw_queues(struct request_queue *q, 2270 struct blk_mq_tag_set *set, int nr_queue) 2271 { 2272 struct blk_mq_hw_ctx *hctx; 2273 unsigned int i; 2274 2275 queue_for_each_hw_ctx(q, hctx, i) { 2276 if (i == nr_queue) 2277 break; 2278 blk_mq_debugfs_unregister_hctx(hctx); 2279 blk_mq_exit_hctx(q, set, hctx, i); 2280 } 2281 } 2282 2283 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2284 { 2285 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2286 2287 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2288 __alignof__(struct blk_mq_hw_ctx)) != 2289 sizeof(struct blk_mq_hw_ctx)); 2290 2291 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2292 hw_ctx_size += sizeof(struct srcu_struct); 2293 2294 return hw_ctx_size; 2295 } 2296 2297 static int blk_mq_init_hctx(struct request_queue *q, 2298 struct blk_mq_tag_set *set, 2299 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2300 { 2301 hctx->queue_num = hctx_idx; 2302 2303 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2304 2305 hctx->tags = set->tags[hctx_idx]; 2306 2307 if (set->ops->init_hctx && 2308 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2309 goto unregister_cpu_notifier; 2310 2311 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2312 hctx->numa_node)) 2313 goto exit_hctx; 2314 return 0; 2315 2316 exit_hctx: 2317 if (set->ops->exit_hctx) 2318 set->ops->exit_hctx(hctx, hctx_idx); 2319 unregister_cpu_notifier: 2320 blk_mq_remove_cpuhp(hctx); 2321 return -1; 2322 } 2323 2324 static struct blk_mq_hw_ctx * 2325 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2326 int node) 2327 { 2328 struct blk_mq_hw_ctx *hctx; 2329 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2330 2331 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2332 if (!hctx) 2333 goto fail_alloc_hctx; 2334 2335 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2336 goto free_hctx; 2337 2338 atomic_set(&hctx->nr_active, 0); 2339 if (node == NUMA_NO_NODE) 2340 node = set->numa_node; 2341 hctx->numa_node = node; 2342 2343 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2344 spin_lock_init(&hctx->lock); 2345 INIT_LIST_HEAD(&hctx->dispatch); 2346 hctx->queue = q; 2347 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2348 2349 INIT_LIST_HEAD(&hctx->hctx_list); 2350 2351 /* 2352 * Allocate space for all possible cpus to avoid allocation at 2353 * runtime 2354 */ 2355 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2356 gfp, node); 2357 if (!hctx->ctxs) 2358 goto free_cpumask; 2359 2360 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2361 gfp, node)) 2362 goto free_ctxs; 2363 hctx->nr_ctx = 0; 2364 2365 spin_lock_init(&hctx->dispatch_wait_lock); 2366 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2367 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2368 2369 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2370 gfp); 2371 if (!hctx->fq) 2372 goto free_bitmap; 2373 2374 if (hctx->flags & BLK_MQ_F_BLOCKING) 2375 init_srcu_struct(hctx->srcu); 2376 blk_mq_hctx_kobj_init(hctx); 2377 2378 return hctx; 2379 2380 free_bitmap: 2381 sbitmap_free(&hctx->ctx_map); 2382 free_ctxs: 2383 kfree(hctx->ctxs); 2384 free_cpumask: 2385 free_cpumask_var(hctx->cpumask); 2386 free_hctx: 2387 kfree(hctx); 2388 fail_alloc_hctx: 2389 return NULL; 2390 } 2391 2392 static void blk_mq_init_cpu_queues(struct request_queue *q, 2393 unsigned int nr_hw_queues) 2394 { 2395 struct blk_mq_tag_set *set = q->tag_set; 2396 unsigned int i, j; 2397 2398 for_each_possible_cpu(i) { 2399 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2400 struct blk_mq_hw_ctx *hctx; 2401 int k; 2402 2403 __ctx->cpu = i; 2404 spin_lock_init(&__ctx->lock); 2405 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2406 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2407 2408 __ctx->queue = q; 2409 2410 /* 2411 * Set local node, IFF we have more than one hw queue. If 2412 * not, we remain on the home node of the device 2413 */ 2414 for (j = 0; j < set->nr_maps; j++) { 2415 hctx = blk_mq_map_queue_type(q, j, i); 2416 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2417 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2418 } 2419 } 2420 } 2421 2422 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2423 { 2424 int ret = 0; 2425 2426 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2427 set->queue_depth, set->reserved_tags); 2428 if (!set->tags[hctx_idx]) 2429 return false; 2430 2431 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2432 set->queue_depth); 2433 if (!ret) 2434 return true; 2435 2436 blk_mq_free_rq_map(set->tags[hctx_idx]); 2437 set->tags[hctx_idx] = NULL; 2438 return false; 2439 } 2440 2441 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2442 unsigned int hctx_idx) 2443 { 2444 if (set->tags && set->tags[hctx_idx]) { 2445 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2446 blk_mq_free_rq_map(set->tags[hctx_idx]); 2447 set->tags[hctx_idx] = NULL; 2448 } 2449 } 2450 2451 static void blk_mq_map_swqueue(struct request_queue *q) 2452 { 2453 unsigned int i, j, hctx_idx; 2454 struct blk_mq_hw_ctx *hctx; 2455 struct blk_mq_ctx *ctx; 2456 struct blk_mq_tag_set *set = q->tag_set; 2457 2458 /* 2459 * Avoid others reading imcomplete hctx->cpumask through sysfs 2460 */ 2461 mutex_lock(&q->sysfs_lock); 2462 2463 queue_for_each_hw_ctx(q, hctx, i) { 2464 cpumask_clear(hctx->cpumask); 2465 hctx->nr_ctx = 0; 2466 hctx->dispatch_from = NULL; 2467 } 2468 2469 /* 2470 * Map software to hardware queues. 2471 * 2472 * If the cpu isn't present, the cpu is mapped to first hctx. 2473 */ 2474 for_each_possible_cpu(i) { 2475 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2476 /* unmapped hw queue can be remapped after CPU topo changed */ 2477 if (!set->tags[hctx_idx] && 2478 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2479 /* 2480 * If tags initialization fail for some hctx, 2481 * that hctx won't be brought online. In this 2482 * case, remap the current ctx to hctx[0] which 2483 * is guaranteed to always have tags allocated 2484 */ 2485 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2486 } 2487 2488 ctx = per_cpu_ptr(q->queue_ctx, i); 2489 for (j = 0; j < set->nr_maps; j++) { 2490 if (!set->map[j].nr_queues) { 2491 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2492 HCTX_TYPE_DEFAULT, i); 2493 continue; 2494 } 2495 2496 hctx = blk_mq_map_queue_type(q, j, i); 2497 ctx->hctxs[j] = hctx; 2498 /* 2499 * If the CPU is already set in the mask, then we've 2500 * mapped this one already. This can happen if 2501 * devices share queues across queue maps. 2502 */ 2503 if (cpumask_test_cpu(i, hctx->cpumask)) 2504 continue; 2505 2506 cpumask_set_cpu(i, hctx->cpumask); 2507 hctx->type = j; 2508 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2509 hctx->ctxs[hctx->nr_ctx++] = ctx; 2510 2511 /* 2512 * If the nr_ctx type overflows, we have exceeded the 2513 * amount of sw queues we can support. 2514 */ 2515 BUG_ON(!hctx->nr_ctx); 2516 } 2517 2518 for (; j < HCTX_MAX_TYPES; j++) 2519 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2520 HCTX_TYPE_DEFAULT, i); 2521 } 2522 2523 mutex_unlock(&q->sysfs_lock); 2524 2525 queue_for_each_hw_ctx(q, hctx, i) { 2526 /* 2527 * If no software queues are mapped to this hardware queue, 2528 * disable it and free the request entries. 2529 */ 2530 if (!hctx->nr_ctx) { 2531 /* Never unmap queue 0. We need it as a 2532 * fallback in case of a new remap fails 2533 * allocation 2534 */ 2535 if (i && set->tags[i]) 2536 blk_mq_free_map_and_requests(set, i); 2537 2538 hctx->tags = NULL; 2539 continue; 2540 } 2541 2542 hctx->tags = set->tags[i]; 2543 WARN_ON(!hctx->tags); 2544 2545 /* 2546 * Set the map size to the number of mapped software queues. 2547 * This is more accurate and more efficient than looping 2548 * over all possibly mapped software queues. 2549 */ 2550 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2551 2552 /* 2553 * Initialize batch roundrobin counts 2554 */ 2555 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2556 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2557 } 2558 } 2559 2560 /* 2561 * Caller needs to ensure that we're either frozen/quiesced, or that 2562 * the queue isn't live yet. 2563 */ 2564 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2565 { 2566 struct blk_mq_hw_ctx *hctx; 2567 int i; 2568 2569 queue_for_each_hw_ctx(q, hctx, i) { 2570 if (shared) 2571 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2572 else 2573 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2574 } 2575 } 2576 2577 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2578 bool shared) 2579 { 2580 struct request_queue *q; 2581 2582 lockdep_assert_held(&set->tag_list_lock); 2583 2584 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2585 blk_mq_freeze_queue(q); 2586 queue_set_hctx_shared(q, shared); 2587 blk_mq_unfreeze_queue(q); 2588 } 2589 } 2590 2591 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2592 { 2593 struct blk_mq_tag_set *set = q->tag_set; 2594 2595 mutex_lock(&set->tag_list_lock); 2596 list_del_rcu(&q->tag_set_list); 2597 if (list_is_singular(&set->tag_list)) { 2598 /* just transitioned to unshared */ 2599 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2600 /* update existing queue */ 2601 blk_mq_update_tag_set_depth(set, false); 2602 } 2603 mutex_unlock(&set->tag_list_lock); 2604 INIT_LIST_HEAD(&q->tag_set_list); 2605 } 2606 2607 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2608 struct request_queue *q) 2609 { 2610 mutex_lock(&set->tag_list_lock); 2611 2612 /* 2613 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2614 */ 2615 if (!list_empty(&set->tag_list) && 2616 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2617 set->flags |= BLK_MQ_F_TAG_SHARED; 2618 /* update existing queue */ 2619 blk_mq_update_tag_set_depth(set, true); 2620 } 2621 if (set->flags & BLK_MQ_F_TAG_SHARED) 2622 queue_set_hctx_shared(q, true); 2623 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2624 2625 mutex_unlock(&set->tag_list_lock); 2626 } 2627 2628 /* All allocations will be freed in release handler of q->mq_kobj */ 2629 static int blk_mq_alloc_ctxs(struct request_queue *q) 2630 { 2631 struct blk_mq_ctxs *ctxs; 2632 int cpu; 2633 2634 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2635 if (!ctxs) 2636 return -ENOMEM; 2637 2638 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2639 if (!ctxs->queue_ctx) 2640 goto fail; 2641 2642 for_each_possible_cpu(cpu) { 2643 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2644 ctx->ctxs = ctxs; 2645 } 2646 2647 q->mq_kobj = &ctxs->kobj; 2648 q->queue_ctx = ctxs->queue_ctx; 2649 2650 return 0; 2651 fail: 2652 kfree(ctxs); 2653 return -ENOMEM; 2654 } 2655 2656 /* 2657 * It is the actual release handler for mq, but we do it from 2658 * request queue's release handler for avoiding use-after-free 2659 * and headache because q->mq_kobj shouldn't have been introduced, 2660 * but we can't group ctx/kctx kobj without it. 2661 */ 2662 void blk_mq_release(struct request_queue *q) 2663 { 2664 struct blk_mq_hw_ctx *hctx, *next; 2665 int i; 2666 2667 cancel_delayed_work_sync(&q->requeue_work); 2668 2669 queue_for_each_hw_ctx(q, hctx, i) 2670 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2671 2672 /* all hctx are in .unused_hctx_list now */ 2673 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2674 list_del_init(&hctx->hctx_list); 2675 kobject_put(&hctx->kobj); 2676 } 2677 2678 kfree(q->queue_hw_ctx); 2679 2680 /* 2681 * release .mq_kobj and sw queue's kobject now because 2682 * both share lifetime with request queue. 2683 */ 2684 blk_mq_sysfs_deinit(q); 2685 } 2686 2687 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2688 { 2689 struct request_queue *uninit_q, *q; 2690 2691 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2692 if (!uninit_q) 2693 return ERR_PTR(-ENOMEM); 2694 2695 q = blk_mq_init_allocated_queue(set, uninit_q); 2696 if (IS_ERR(q)) 2697 blk_cleanup_queue(uninit_q); 2698 2699 return q; 2700 } 2701 EXPORT_SYMBOL(blk_mq_init_queue); 2702 2703 /* 2704 * Helper for setting up a queue with mq ops, given queue depth, and 2705 * the passed in mq ops flags. 2706 */ 2707 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2708 const struct blk_mq_ops *ops, 2709 unsigned int queue_depth, 2710 unsigned int set_flags) 2711 { 2712 struct request_queue *q; 2713 int ret; 2714 2715 memset(set, 0, sizeof(*set)); 2716 set->ops = ops; 2717 set->nr_hw_queues = 1; 2718 set->nr_maps = 1; 2719 set->queue_depth = queue_depth; 2720 set->numa_node = NUMA_NO_NODE; 2721 set->flags = set_flags; 2722 2723 ret = blk_mq_alloc_tag_set(set); 2724 if (ret) 2725 return ERR_PTR(ret); 2726 2727 q = blk_mq_init_queue(set); 2728 if (IS_ERR(q)) { 2729 blk_mq_free_tag_set(set); 2730 return q; 2731 } 2732 2733 return q; 2734 } 2735 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2736 2737 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2738 struct blk_mq_tag_set *set, struct request_queue *q, 2739 int hctx_idx, int node) 2740 { 2741 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2742 2743 /* reuse dead hctx first */ 2744 spin_lock(&q->unused_hctx_lock); 2745 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2746 if (tmp->numa_node == node) { 2747 hctx = tmp; 2748 break; 2749 } 2750 } 2751 if (hctx) 2752 list_del_init(&hctx->hctx_list); 2753 spin_unlock(&q->unused_hctx_lock); 2754 2755 if (!hctx) 2756 hctx = blk_mq_alloc_hctx(q, set, node); 2757 if (!hctx) 2758 goto fail; 2759 2760 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2761 goto free_hctx; 2762 2763 return hctx; 2764 2765 free_hctx: 2766 kobject_put(&hctx->kobj); 2767 fail: 2768 return NULL; 2769 } 2770 2771 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2772 struct request_queue *q) 2773 { 2774 int i, j, end; 2775 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2776 2777 /* protect against switching io scheduler */ 2778 mutex_lock(&q->sysfs_lock); 2779 for (i = 0; i < set->nr_hw_queues; i++) { 2780 int node; 2781 struct blk_mq_hw_ctx *hctx; 2782 2783 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2784 /* 2785 * If the hw queue has been mapped to another numa node, 2786 * we need to realloc the hctx. If allocation fails, fallback 2787 * to use the previous one. 2788 */ 2789 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2790 continue; 2791 2792 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2793 if (hctx) { 2794 if (hctxs[i]) 2795 blk_mq_exit_hctx(q, set, hctxs[i], i); 2796 hctxs[i] = hctx; 2797 } else { 2798 if (hctxs[i]) 2799 pr_warn("Allocate new hctx on node %d fails,\ 2800 fallback to previous one on node %d\n", 2801 node, hctxs[i]->numa_node); 2802 else 2803 break; 2804 } 2805 } 2806 /* 2807 * Increasing nr_hw_queues fails. Free the newly allocated 2808 * hctxs and keep the previous q->nr_hw_queues. 2809 */ 2810 if (i != set->nr_hw_queues) { 2811 j = q->nr_hw_queues; 2812 end = i; 2813 } else { 2814 j = i; 2815 end = q->nr_hw_queues; 2816 q->nr_hw_queues = set->nr_hw_queues; 2817 } 2818 2819 for (; j < end; j++) { 2820 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2821 2822 if (hctx) { 2823 if (hctx->tags) 2824 blk_mq_free_map_and_requests(set, j); 2825 blk_mq_exit_hctx(q, set, hctx, j); 2826 hctxs[j] = NULL; 2827 } 2828 } 2829 mutex_unlock(&q->sysfs_lock); 2830 } 2831 2832 /* 2833 * Maximum number of hardware queues we support. For single sets, we'll never 2834 * have more than the CPUs (software queues). For multiple sets, the tag_set 2835 * user may have set ->nr_hw_queues larger. 2836 */ 2837 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2838 { 2839 if (set->nr_maps == 1) 2840 return nr_cpu_ids; 2841 2842 return max(set->nr_hw_queues, nr_cpu_ids); 2843 } 2844 2845 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2846 struct request_queue *q) 2847 { 2848 /* mark the queue as mq asap */ 2849 q->mq_ops = set->ops; 2850 2851 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2852 blk_mq_poll_stats_bkt, 2853 BLK_MQ_POLL_STATS_BKTS, q); 2854 if (!q->poll_cb) 2855 goto err_exit; 2856 2857 if (blk_mq_alloc_ctxs(q)) 2858 goto err_poll; 2859 2860 /* init q->mq_kobj and sw queues' kobjects */ 2861 blk_mq_sysfs_init(q); 2862 2863 q->nr_queues = nr_hw_queues(set); 2864 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2865 GFP_KERNEL, set->numa_node); 2866 if (!q->queue_hw_ctx) 2867 goto err_sys_init; 2868 2869 INIT_LIST_HEAD(&q->unused_hctx_list); 2870 spin_lock_init(&q->unused_hctx_lock); 2871 2872 blk_mq_realloc_hw_ctxs(set, q); 2873 if (!q->nr_hw_queues) 2874 goto err_hctxs; 2875 2876 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2877 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2878 2879 q->tag_set = set; 2880 2881 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2882 if (set->nr_maps > HCTX_TYPE_POLL && 2883 set->map[HCTX_TYPE_POLL].nr_queues) 2884 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2885 2886 q->sg_reserved_size = INT_MAX; 2887 2888 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2889 INIT_LIST_HEAD(&q->requeue_list); 2890 spin_lock_init(&q->requeue_lock); 2891 2892 blk_queue_make_request(q, blk_mq_make_request); 2893 2894 /* 2895 * Do this after blk_queue_make_request() overrides it... 2896 */ 2897 q->nr_requests = set->queue_depth; 2898 2899 /* 2900 * Default to classic polling 2901 */ 2902 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2903 2904 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2905 blk_mq_add_queue_tag_set(set, q); 2906 blk_mq_map_swqueue(q); 2907 2908 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2909 int ret; 2910 2911 ret = elevator_init_mq(q); 2912 if (ret) 2913 return ERR_PTR(ret); 2914 } 2915 2916 return q; 2917 2918 err_hctxs: 2919 kfree(q->queue_hw_ctx); 2920 err_sys_init: 2921 blk_mq_sysfs_deinit(q); 2922 err_poll: 2923 blk_stat_free_callback(q->poll_cb); 2924 q->poll_cb = NULL; 2925 err_exit: 2926 q->mq_ops = NULL; 2927 return ERR_PTR(-ENOMEM); 2928 } 2929 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2930 2931 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2932 void blk_mq_exit_queue(struct request_queue *q) 2933 { 2934 struct blk_mq_tag_set *set = q->tag_set; 2935 2936 blk_mq_del_queue_tag_set(q); 2937 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2938 } 2939 2940 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2941 { 2942 int i; 2943 2944 for (i = 0; i < set->nr_hw_queues; i++) 2945 if (!__blk_mq_alloc_rq_map(set, i)) 2946 goto out_unwind; 2947 2948 return 0; 2949 2950 out_unwind: 2951 while (--i >= 0) 2952 blk_mq_free_rq_map(set->tags[i]); 2953 2954 return -ENOMEM; 2955 } 2956 2957 /* 2958 * Allocate the request maps associated with this tag_set. Note that this 2959 * may reduce the depth asked for, if memory is tight. set->queue_depth 2960 * will be updated to reflect the allocated depth. 2961 */ 2962 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2963 { 2964 unsigned int depth; 2965 int err; 2966 2967 depth = set->queue_depth; 2968 do { 2969 err = __blk_mq_alloc_rq_maps(set); 2970 if (!err) 2971 break; 2972 2973 set->queue_depth >>= 1; 2974 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2975 err = -ENOMEM; 2976 break; 2977 } 2978 } while (set->queue_depth); 2979 2980 if (!set->queue_depth || err) { 2981 pr_err("blk-mq: failed to allocate request map\n"); 2982 return -ENOMEM; 2983 } 2984 2985 if (depth != set->queue_depth) 2986 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2987 depth, set->queue_depth); 2988 2989 return 0; 2990 } 2991 2992 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2993 { 2994 if (set->ops->map_queues && !is_kdump_kernel()) { 2995 int i; 2996 2997 /* 2998 * transport .map_queues is usually done in the following 2999 * way: 3000 * 3001 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3002 * mask = get_cpu_mask(queue) 3003 * for_each_cpu(cpu, mask) 3004 * set->map[x].mq_map[cpu] = queue; 3005 * } 3006 * 3007 * When we need to remap, the table has to be cleared for 3008 * killing stale mapping since one CPU may not be mapped 3009 * to any hw queue. 3010 */ 3011 for (i = 0; i < set->nr_maps; i++) 3012 blk_mq_clear_mq_map(&set->map[i]); 3013 3014 return set->ops->map_queues(set); 3015 } else { 3016 BUG_ON(set->nr_maps > 1); 3017 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3018 } 3019 } 3020 3021 /* 3022 * Alloc a tag set to be associated with one or more request queues. 3023 * May fail with EINVAL for various error conditions. May adjust the 3024 * requested depth down, if it's too large. In that case, the set 3025 * value will be stored in set->queue_depth. 3026 */ 3027 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3028 { 3029 int i, ret; 3030 3031 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3032 3033 if (!set->nr_hw_queues) 3034 return -EINVAL; 3035 if (!set->queue_depth) 3036 return -EINVAL; 3037 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3038 return -EINVAL; 3039 3040 if (!set->ops->queue_rq) 3041 return -EINVAL; 3042 3043 if (!set->ops->get_budget ^ !set->ops->put_budget) 3044 return -EINVAL; 3045 3046 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3047 pr_info("blk-mq: reduced tag depth to %u\n", 3048 BLK_MQ_MAX_DEPTH); 3049 set->queue_depth = BLK_MQ_MAX_DEPTH; 3050 } 3051 3052 if (!set->nr_maps) 3053 set->nr_maps = 1; 3054 else if (set->nr_maps > HCTX_MAX_TYPES) 3055 return -EINVAL; 3056 3057 /* 3058 * If a crashdump is active, then we are potentially in a very 3059 * memory constrained environment. Limit us to 1 queue and 3060 * 64 tags to prevent using too much memory. 3061 */ 3062 if (is_kdump_kernel()) { 3063 set->nr_hw_queues = 1; 3064 set->nr_maps = 1; 3065 set->queue_depth = min(64U, set->queue_depth); 3066 } 3067 /* 3068 * There is no use for more h/w queues than cpus if we just have 3069 * a single map 3070 */ 3071 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3072 set->nr_hw_queues = nr_cpu_ids; 3073 3074 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3075 GFP_KERNEL, set->numa_node); 3076 if (!set->tags) 3077 return -ENOMEM; 3078 3079 ret = -ENOMEM; 3080 for (i = 0; i < set->nr_maps; i++) { 3081 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3082 sizeof(set->map[i].mq_map[0]), 3083 GFP_KERNEL, set->numa_node); 3084 if (!set->map[i].mq_map) 3085 goto out_free_mq_map; 3086 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3087 } 3088 3089 ret = blk_mq_update_queue_map(set); 3090 if (ret) 3091 goto out_free_mq_map; 3092 3093 ret = blk_mq_alloc_rq_maps(set); 3094 if (ret) 3095 goto out_free_mq_map; 3096 3097 mutex_init(&set->tag_list_lock); 3098 INIT_LIST_HEAD(&set->tag_list); 3099 3100 return 0; 3101 3102 out_free_mq_map: 3103 for (i = 0; i < set->nr_maps; i++) { 3104 kfree(set->map[i].mq_map); 3105 set->map[i].mq_map = NULL; 3106 } 3107 kfree(set->tags); 3108 set->tags = NULL; 3109 return ret; 3110 } 3111 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3112 3113 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3114 { 3115 int i, j; 3116 3117 for (i = 0; i < nr_hw_queues(set); i++) 3118 blk_mq_free_map_and_requests(set, i); 3119 3120 for (j = 0; j < set->nr_maps; j++) { 3121 kfree(set->map[j].mq_map); 3122 set->map[j].mq_map = NULL; 3123 } 3124 3125 kfree(set->tags); 3126 set->tags = NULL; 3127 } 3128 EXPORT_SYMBOL(blk_mq_free_tag_set); 3129 3130 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3131 { 3132 struct blk_mq_tag_set *set = q->tag_set; 3133 struct blk_mq_hw_ctx *hctx; 3134 int i, ret; 3135 3136 if (!set) 3137 return -EINVAL; 3138 3139 if (q->nr_requests == nr) 3140 return 0; 3141 3142 blk_mq_freeze_queue(q); 3143 blk_mq_quiesce_queue(q); 3144 3145 ret = 0; 3146 queue_for_each_hw_ctx(q, hctx, i) { 3147 if (!hctx->tags) 3148 continue; 3149 /* 3150 * If we're using an MQ scheduler, just update the scheduler 3151 * queue depth. This is similar to what the old code would do. 3152 */ 3153 if (!hctx->sched_tags) { 3154 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3155 false); 3156 } else { 3157 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3158 nr, true); 3159 } 3160 if (ret) 3161 break; 3162 if (q->elevator && q->elevator->type->ops.depth_updated) 3163 q->elevator->type->ops.depth_updated(hctx); 3164 } 3165 3166 if (!ret) 3167 q->nr_requests = nr; 3168 3169 blk_mq_unquiesce_queue(q); 3170 blk_mq_unfreeze_queue(q); 3171 3172 return ret; 3173 } 3174 3175 /* 3176 * request_queue and elevator_type pair. 3177 * It is just used by __blk_mq_update_nr_hw_queues to cache 3178 * the elevator_type associated with a request_queue. 3179 */ 3180 struct blk_mq_qe_pair { 3181 struct list_head node; 3182 struct request_queue *q; 3183 struct elevator_type *type; 3184 }; 3185 3186 /* 3187 * Cache the elevator_type in qe pair list and switch the 3188 * io scheduler to 'none' 3189 */ 3190 static bool blk_mq_elv_switch_none(struct list_head *head, 3191 struct request_queue *q) 3192 { 3193 struct blk_mq_qe_pair *qe; 3194 3195 if (!q->elevator) 3196 return true; 3197 3198 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3199 if (!qe) 3200 return false; 3201 3202 INIT_LIST_HEAD(&qe->node); 3203 qe->q = q; 3204 qe->type = q->elevator->type; 3205 list_add(&qe->node, head); 3206 3207 mutex_lock(&q->sysfs_lock); 3208 /* 3209 * After elevator_switch_mq, the previous elevator_queue will be 3210 * released by elevator_release. The reference of the io scheduler 3211 * module get by elevator_get will also be put. So we need to get 3212 * a reference of the io scheduler module here to prevent it to be 3213 * removed. 3214 */ 3215 __module_get(qe->type->elevator_owner); 3216 elevator_switch_mq(q, NULL); 3217 mutex_unlock(&q->sysfs_lock); 3218 3219 return true; 3220 } 3221 3222 static void blk_mq_elv_switch_back(struct list_head *head, 3223 struct request_queue *q) 3224 { 3225 struct blk_mq_qe_pair *qe; 3226 struct elevator_type *t = NULL; 3227 3228 list_for_each_entry(qe, head, node) 3229 if (qe->q == q) { 3230 t = qe->type; 3231 break; 3232 } 3233 3234 if (!t) 3235 return; 3236 3237 list_del(&qe->node); 3238 kfree(qe); 3239 3240 mutex_lock(&q->sysfs_lock); 3241 elevator_switch_mq(q, t); 3242 mutex_unlock(&q->sysfs_lock); 3243 } 3244 3245 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3246 int nr_hw_queues) 3247 { 3248 struct request_queue *q; 3249 LIST_HEAD(head); 3250 int prev_nr_hw_queues; 3251 3252 lockdep_assert_held(&set->tag_list_lock); 3253 3254 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3255 nr_hw_queues = nr_cpu_ids; 3256 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3257 return; 3258 3259 list_for_each_entry(q, &set->tag_list, tag_set_list) 3260 blk_mq_freeze_queue(q); 3261 /* 3262 * Sync with blk_mq_queue_tag_busy_iter. 3263 */ 3264 synchronize_rcu(); 3265 /* 3266 * Switch IO scheduler to 'none', cleaning up the data associated 3267 * with the previous scheduler. We will switch back once we are done 3268 * updating the new sw to hw queue mappings. 3269 */ 3270 list_for_each_entry(q, &set->tag_list, tag_set_list) 3271 if (!blk_mq_elv_switch_none(&head, q)) 3272 goto switch_back; 3273 3274 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3275 blk_mq_debugfs_unregister_hctxs(q); 3276 blk_mq_sysfs_unregister(q); 3277 } 3278 3279 prev_nr_hw_queues = set->nr_hw_queues; 3280 set->nr_hw_queues = nr_hw_queues; 3281 blk_mq_update_queue_map(set); 3282 fallback: 3283 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3284 blk_mq_realloc_hw_ctxs(set, q); 3285 if (q->nr_hw_queues != set->nr_hw_queues) { 3286 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3287 nr_hw_queues, prev_nr_hw_queues); 3288 set->nr_hw_queues = prev_nr_hw_queues; 3289 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3290 goto fallback; 3291 } 3292 blk_mq_map_swqueue(q); 3293 } 3294 3295 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3296 blk_mq_sysfs_register(q); 3297 blk_mq_debugfs_register_hctxs(q); 3298 } 3299 3300 switch_back: 3301 list_for_each_entry(q, &set->tag_list, tag_set_list) 3302 blk_mq_elv_switch_back(&head, q); 3303 3304 list_for_each_entry(q, &set->tag_list, tag_set_list) 3305 blk_mq_unfreeze_queue(q); 3306 } 3307 3308 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3309 { 3310 mutex_lock(&set->tag_list_lock); 3311 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3312 mutex_unlock(&set->tag_list_lock); 3313 } 3314 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3315 3316 /* Enable polling stats and return whether they were already enabled. */ 3317 static bool blk_poll_stats_enable(struct request_queue *q) 3318 { 3319 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3320 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3321 return true; 3322 blk_stat_add_callback(q, q->poll_cb); 3323 return false; 3324 } 3325 3326 static void blk_mq_poll_stats_start(struct request_queue *q) 3327 { 3328 /* 3329 * We don't arm the callback if polling stats are not enabled or the 3330 * callback is already active. 3331 */ 3332 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3333 blk_stat_is_active(q->poll_cb)) 3334 return; 3335 3336 blk_stat_activate_msecs(q->poll_cb, 100); 3337 } 3338 3339 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3340 { 3341 struct request_queue *q = cb->data; 3342 int bucket; 3343 3344 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3345 if (cb->stat[bucket].nr_samples) 3346 q->poll_stat[bucket] = cb->stat[bucket]; 3347 } 3348 } 3349 3350 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3351 struct blk_mq_hw_ctx *hctx, 3352 struct request *rq) 3353 { 3354 unsigned long ret = 0; 3355 int bucket; 3356 3357 /* 3358 * If stats collection isn't on, don't sleep but turn it on for 3359 * future users 3360 */ 3361 if (!blk_poll_stats_enable(q)) 3362 return 0; 3363 3364 /* 3365 * As an optimistic guess, use half of the mean service time 3366 * for this type of request. We can (and should) make this smarter. 3367 * For instance, if the completion latencies are tight, we can 3368 * get closer than just half the mean. This is especially 3369 * important on devices where the completion latencies are longer 3370 * than ~10 usec. We do use the stats for the relevant IO size 3371 * if available which does lead to better estimates. 3372 */ 3373 bucket = blk_mq_poll_stats_bkt(rq); 3374 if (bucket < 0) 3375 return ret; 3376 3377 if (q->poll_stat[bucket].nr_samples) 3378 ret = (q->poll_stat[bucket].mean + 1) / 2; 3379 3380 return ret; 3381 } 3382 3383 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3384 struct blk_mq_hw_ctx *hctx, 3385 struct request *rq) 3386 { 3387 struct hrtimer_sleeper hs; 3388 enum hrtimer_mode mode; 3389 unsigned int nsecs; 3390 ktime_t kt; 3391 3392 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3393 return false; 3394 3395 /* 3396 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3397 * 3398 * 0: use half of prev avg 3399 * >0: use this specific value 3400 */ 3401 if (q->poll_nsec > 0) 3402 nsecs = q->poll_nsec; 3403 else 3404 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3405 3406 if (!nsecs) 3407 return false; 3408 3409 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3410 3411 /* 3412 * This will be replaced with the stats tracking code, using 3413 * 'avg_completion_time / 2' as the pre-sleep target. 3414 */ 3415 kt = nsecs; 3416 3417 mode = HRTIMER_MODE_REL; 3418 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3419 hrtimer_set_expires(&hs.timer, kt); 3420 3421 hrtimer_init_sleeper(&hs, current); 3422 do { 3423 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3424 break; 3425 set_current_state(TASK_UNINTERRUPTIBLE); 3426 hrtimer_start_expires(&hs.timer, mode); 3427 if (hs.task) 3428 io_schedule(); 3429 hrtimer_cancel(&hs.timer); 3430 mode = HRTIMER_MODE_ABS; 3431 } while (hs.task && !signal_pending(current)); 3432 3433 __set_current_state(TASK_RUNNING); 3434 destroy_hrtimer_on_stack(&hs.timer); 3435 return true; 3436 } 3437 3438 static bool blk_mq_poll_hybrid(struct request_queue *q, 3439 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3440 { 3441 struct request *rq; 3442 3443 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3444 return false; 3445 3446 if (!blk_qc_t_is_internal(cookie)) 3447 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3448 else { 3449 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3450 /* 3451 * With scheduling, if the request has completed, we'll 3452 * get a NULL return here, as we clear the sched tag when 3453 * that happens. The request still remains valid, like always, 3454 * so we should be safe with just the NULL check. 3455 */ 3456 if (!rq) 3457 return false; 3458 } 3459 3460 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3461 } 3462 3463 /** 3464 * blk_poll - poll for IO completions 3465 * @q: the queue 3466 * @cookie: cookie passed back at IO submission time 3467 * @spin: whether to spin for completions 3468 * 3469 * Description: 3470 * Poll for completions on the passed in queue. Returns number of 3471 * completed entries found. If @spin is true, then blk_poll will continue 3472 * looping until at least one completion is found, unless the task is 3473 * otherwise marked running (or we need to reschedule). 3474 */ 3475 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3476 { 3477 struct blk_mq_hw_ctx *hctx; 3478 long state; 3479 3480 if (!blk_qc_t_valid(cookie) || 3481 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3482 return 0; 3483 3484 if (current->plug) 3485 blk_flush_plug_list(current->plug, false); 3486 3487 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3488 3489 /* 3490 * If we sleep, have the caller restart the poll loop to reset 3491 * the state. Like for the other success return cases, the 3492 * caller is responsible for checking if the IO completed. If 3493 * the IO isn't complete, we'll get called again and will go 3494 * straight to the busy poll loop. 3495 */ 3496 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3497 return 1; 3498 3499 hctx->poll_considered++; 3500 3501 state = current->state; 3502 do { 3503 int ret; 3504 3505 hctx->poll_invoked++; 3506 3507 ret = q->mq_ops->poll(hctx); 3508 if (ret > 0) { 3509 hctx->poll_success++; 3510 __set_current_state(TASK_RUNNING); 3511 return ret; 3512 } 3513 3514 if (signal_pending_state(state, current)) 3515 __set_current_state(TASK_RUNNING); 3516 3517 if (current->state == TASK_RUNNING) 3518 return 1; 3519 if (ret < 0 || !spin) 3520 break; 3521 cpu_relax(); 3522 } while (!need_resched()); 3523 3524 __set_current_state(TASK_RUNNING); 3525 return 0; 3526 } 3527 EXPORT_SYMBOL_GPL(blk_poll); 3528 3529 unsigned int blk_mq_rq_cpu(struct request *rq) 3530 { 3531 return rq->mq_ctx->cpu; 3532 } 3533 EXPORT_SYMBOL(blk_mq_rq_cpu); 3534 3535 static int __init blk_mq_init(void) 3536 { 3537 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3538 blk_mq_hctx_notify_dead); 3539 return 0; 3540 } 3541 subsys_initcall(blk_mq_init); 3542