1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include "blk.h" 34 #include "blk-mq.h" 35 #include "blk-mq-debugfs.h" 36 #include "blk-mq-tag.h" 37 #include "blk-pm.h" 38 #include "blk-stat.h" 39 #include "blk-mq-sched.h" 40 #include "blk-rq-qos.h" 41 42 static void blk_mq_poll_stats_start(struct request_queue *q); 43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 44 45 static int blk_mq_poll_stats_bkt(const struct request *rq) 46 { 47 int ddir, bytes, bucket; 48 49 ddir = rq_data_dir(rq); 50 bytes = blk_rq_bytes(rq); 51 52 bucket = ddir + 2*(ilog2(bytes) - 9); 53 54 if (bucket < 0) 55 return -1; 56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 58 59 return bucket; 60 } 61 62 /* 63 * Check if any of the ctx, dispatch list or elevator 64 * have pending work in this hardware queue. 65 */ 66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 67 { 68 return !list_empty_careful(&hctx->dispatch) || 69 sbitmap_any_bit_set(&hctx->ctx_map) || 70 blk_mq_sched_has_work(hctx); 71 } 72 73 /* 74 * Mark this ctx as having pending work in this hardware queue 75 */ 76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 77 struct blk_mq_ctx *ctx) 78 { 79 const int bit = ctx->index_hw[hctx->type]; 80 81 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 82 sbitmap_set_bit(&hctx->ctx_map, bit); 83 } 84 85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 86 struct blk_mq_ctx *ctx) 87 { 88 const int bit = ctx->index_hw[hctx->type]; 89 90 sbitmap_clear_bit(&hctx->ctx_map, bit); 91 } 92 93 struct mq_inflight { 94 struct hd_struct *part; 95 unsigned int *inflight; 96 }; 97 98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 99 struct request *rq, void *priv, 100 bool reserved) 101 { 102 struct mq_inflight *mi = priv; 103 104 /* 105 * index[0] counts the specific partition that was asked for. 106 */ 107 if (rq->part == mi->part) 108 mi->inflight[0]++; 109 110 return true; 111 } 112 113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 114 { 115 unsigned inflight[2]; 116 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 117 118 inflight[0] = inflight[1] = 0; 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 121 return inflight[0]; 122 } 123 124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 125 struct request *rq, void *priv, 126 bool reserved) 127 { 128 struct mq_inflight *mi = priv; 129 130 if (rq->part == mi->part) 131 mi->inflight[rq_data_dir(rq)]++; 132 133 return true; 134 } 135 136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 137 unsigned int inflight[2]) 138 { 139 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 140 141 inflight[0] = inflight[1] = 0; 142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 143 } 144 145 void blk_freeze_queue_start(struct request_queue *q) 146 { 147 mutex_lock(&q->mq_freeze_lock); 148 if (++q->mq_freeze_depth == 1) { 149 percpu_ref_kill(&q->q_usage_counter); 150 mutex_unlock(&q->mq_freeze_lock); 151 if (queue_is_mq(q)) 152 blk_mq_run_hw_queues(q, false); 153 } else { 154 mutex_unlock(&q->mq_freeze_lock); 155 } 156 } 157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 158 159 void blk_mq_freeze_queue_wait(struct request_queue *q) 160 { 161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 162 } 163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 164 165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 166 unsigned long timeout) 167 { 168 return wait_event_timeout(q->mq_freeze_wq, 169 percpu_ref_is_zero(&q->q_usage_counter), 170 timeout); 171 } 172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 173 174 /* 175 * Guarantee no request is in use, so we can change any data structure of 176 * the queue afterward. 177 */ 178 void blk_freeze_queue(struct request_queue *q) 179 { 180 /* 181 * In the !blk_mq case we are only calling this to kill the 182 * q_usage_counter, otherwise this increases the freeze depth 183 * and waits for it to return to zero. For this reason there is 184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 185 * exported to drivers as the only user for unfreeze is blk_mq. 186 */ 187 blk_freeze_queue_start(q); 188 blk_mq_freeze_queue_wait(q); 189 } 190 191 void blk_mq_freeze_queue(struct request_queue *q) 192 { 193 /* 194 * ...just an alias to keep freeze and unfreeze actions balanced 195 * in the blk_mq_* namespace 196 */ 197 blk_freeze_queue(q); 198 } 199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 200 201 void blk_mq_unfreeze_queue(struct request_queue *q) 202 { 203 mutex_lock(&q->mq_freeze_lock); 204 q->mq_freeze_depth--; 205 WARN_ON_ONCE(q->mq_freeze_depth < 0); 206 if (!q->mq_freeze_depth) { 207 percpu_ref_resurrect(&q->q_usage_counter); 208 wake_up_all(&q->mq_freeze_wq); 209 } 210 mutex_unlock(&q->mq_freeze_lock); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 213 214 /* 215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 216 * mpt3sas driver such that this function can be removed. 217 */ 218 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 219 { 220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 221 } 222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 223 224 /** 225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 226 * @q: request queue. 227 * 228 * Note: this function does not prevent that the struct request end_io() 229 * callback function is invoked. Once this function is returned, we make 230 * sure no dispatch can happen until the queue is unquiesced via 231 * blk_mq_unquiesce_queue(). 232 */ 233 void blk_mq_quiesce_queue(struct request_queue *q) 234 { 235 struct blk_mq_hw_ctx *hctx; 236 unsigned int i; 237 bool rcu = false; 238 239 blk_mq_quiesce_queue_nowait(q); 240 241 queue_for_each_hw_ctx(q, hctx, i) { 242 if (hctx->flags & BLK_MQ_F_BLOCKING) 243 synchronize_srcu(hctx->srcu); 244 else 245 rcu = true; 246 } 247 if (rcu) 248 synchronize_rcu(); 249 } 250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 251 252 /* 253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 254 * @q: request queue. 255 * 256 * This function recovers queue into the state before quiescing 257 * which is done by blk_mq_quiesce_queue. 258 */ 259 void blk_mq_unquiesce_queue(struct request_queue *q) 260 { 261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 262 263 /* dispatch requests which are inserted during quiescing */ 264 blk_mq_run_hw_queues(q, true); 265 } 266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 267 268 void blk_mq_wake_waiters(struct request_queue *q) 269 { 270 struct blk_mq_hw_ctx *hctx; 271 unsigned int i; 272 273 queue_for_each_hw_ctx(q, hctx, i) 274 if (blk_mq_hw_queue_mapped(hctx)) 275 blk_mq_tag_wakeup_all(hctx->tags, true); 276 } 277 278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 279 { 280 return blk_mq_has_free_tags(hctx->tags); 281 } 282 EXPORT_SYMBOL(blk_mq_can_queue); 283 284 /* 285 * Only need start/end time stamping if we have stats enabled, or using 286 * an IO scheduler. 287 */ 288 static inline bool blk_mq_need_time_stamp(struct request *rq) 289 { 290 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator; 291 } 292 293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 294 unsigned int tag, unsigned int op) 295 { 296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 297 struct request *rq = tags->static_rqs[tag]; 298 req_flags_t rq_flags = 0; 299 300 if (data->flags & BLK_MQ_REQ_INTERNAL) { 301 rq->tag = -1; 302 rq->internal_tag = tag; 303 } else { 304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 305 rq_flags = RQF_MQ_INFLIGHT; 306 atomic_inc(&data->hctx->nr_active); 307 } 308 rq->tag = tag; 309 rq->internal_tag = -1; 310 data->hctx->tags->rqs[rq->tag] = rq; 311 } 312 313 /* csd/requeue_work/fifo_time is initialized before use */ 314 rq->q = data->q; 315 rq->mq_ctx = data->ctx; 316 rq->mq_hctx = data->hctx; 317 rq->rq_flags = rq_flags; 318 rq->cmd_flags = op; 319 if (data->flags & BLK_MQ_REQ_PREEMPT) 320 rq->rq_flags |= RQF_PREEMPT; 321 if (blk_queue_io_stat(data->q)) 322 rq->rq_flags |= RQF_IO_STAT; 323 INIT_LIST_HEAD(&rq->queuelist); 324 INIT_HLIST_NODE(&rq->hash); 325 RB_CLEAR_NODE(&rq->rb_node); 326 rq->rq_disk = NULL; 327 rq->part = NULL; 328 if (blk_mq_need_time_stamp(rq)) 329 rq->start_time_ns = ktime_get_ns(); 330 else 331 rq->start_time_ns = 0; 332 rq->io_start_time_ns = 0; 333 rq->nr_phys_segments = 0; 334 #if defined(CONFIG_BLK_DEV_INTEGRITY) 335 rq->nr_integrity_segments = 0; 336 #endif 337 /* tag was already set */ 338 rq->extra_len = 0; 339 WRITE_ONCE(rq->deadline, 0); 340 341 rq->timeout = 0; 342 343 rq->end_io = NULL; 344 rq->end_io_data = NULL; 345 346 data->ctx->rq_dispatched[op_is_sync(op)]++; 347 refcount_set(&rq->ref, 1); 348 return rq; 349 } 350 351 static struct request *blk_mq_get_request(struct request_queue *q, 352 struct bio *bio, 353 struct blk_mq_alloc_data *data) 354 { 355 struct elevator_queue *e = q->elevator; 356 struct request *rq; 357 unsigned int tag; 358 bool clear_ctx_on_error = false; 359 360 blk_queue_enter_live(q); 361 data->q = q; 362 if (likely(!data->ctx)) { 363 data->ctx = blk_mq_get_ctx(q); 364 clear_ctx_on_error = true; 365 } 366 if (likely(!data->hctx)) 367 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 368 data->ctx); 369 if (data->cmd_flags & REQ_NOWAIT) 370 data->flags |= BLK_MQ_REQ_NOWAIT; 371 372 if (e) { 373 data->flags |= BLK_MQ_REQ_INTERNAL; 374 375 /* 376 * Flush requests are special and go directly to the 377 * dispatch list. Don't include reserved tags in the 378 * limiting, as it isn't useful. 379 */ 380 if (!op_is_flush(data->cmd_flags) && 381 e->type->ops.limit_depth && 382 !(data->flags & BLK_MQ_REQ_RESERVED)) 383 e->type->ops.limit_depth(data->cmd_flags, data); 384 } else { 385 blk_mq_tag_busy(data->hctx); 386 } 387 388 tag = blk_mq_get_tag(data); 389 if (tag == BLK_MQ_TAG_FAIL) { 390 if (clear_ctx_on_error) 391 data->ctx = NULL; 392 blk_queue_exit(q); 393 return NULL; 394 } 395 396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags); 397 if (!op_is_flush(data->cmd_flags)) { 398 rq->elv.icq = NULL; 399 if (e && e->type->ops.prepare_request) { 400 if (e->type->icq_cache) 401 blk_mq_sched_assign_ioc(rq); 402 403 e->type->ops.prepare_request(rq, bio); 404 rq->rq_flags |= RQF_ELVPRIV; 405 } 406 } 407 data->hctx->queued++; 408 return rq; 409 } 410 411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 412 blk_mq_req_flags_t flags) 413 { 414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 415 struct request *rq; 416 int ret; 417 418 ret = blk_queue_enter(q, flags); 419 if (ret) 420 return ERR_PTR(ret); 421 422 rq = blk_mq_get_request(q, NULL, &alloc_data); 423 blk_queue_exit(q); 424 425 if (!rq) 426 return ERR_PTR(-EWOULDBLOCK); 427 428 rq->__data_len = 0; 429 rq->__sector = (sector_t) -1; 430 rq->bio = rq->biotail = NULL; 431 return rq; 432 } 433 EXPORT_SYMBOL(blk_mq_alloc_request); 434 435 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 436 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 437 { 438 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 439 struct request *rq; 440 unsigned int cpu; 441 int ret; 442 443 /* 444 * If the tag allocator sleeps we could get an allocation for a 445 * different hardware context. No need to complicate the low level 446 * allocator for this for the rare use case of a command tied to 447 * a specific queue. 448 */ 449 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 450 return ERR_PTR(-EINVAL); 451 452 if (hctx_idx >= q->nr_hw_queues) 453 return ERR_PTR(-EIO); 454 455 ret = blk_queue_enter(q, flags); 456 if (ret) 457 return ERR_PTR(ret); 458 459 /* 460 * Check if the hardware context is actually mapped to anything. 461 * If not tell the caller that it should skip this queue. 462 */ 463 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 464 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 465 blk_queue_exit(q); 466 return ERR_PTR(-EXDEV); 467 } 468 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 469 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 470 471 rq = blk_mq_get_request(q, NULL, &alloc_data); 472 blk_queue_exit(q); 473 474 if (!rq) 475 return ERR_PTR(-EWOULDBLOCK); 476 477 return rq; 478 } 479 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 480 481 static void __blk_mq_free_request(struct request *rq) 482 { 483 struct request_queue *q = rq->q; 484 struct blk_mq_ctx *ctx = rq->mq_ctx; 485 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 486 const int sched_tag = rq->internal_tag; 487 488 blk_pm_mark_last_busy(rq); 489 rq->mq_hctx = NULL; 490 if (rq->tag != -1) 491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 492 if (sched_tag != -1) 493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 494 blk_mq_sched_restart(hctx); 495 blk_queue_exit(q); 496 } 497 498 void blk_mq_free_request(struct request *rq) 499 { 500 struct request_queue *q = rq->q; 501 struct elevator_queue *e = q->elevator; 502 struct blk_mq_ctx *ctx = rq->mq_ctx; 503 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 504 505 if (rq->rq_flags & RQF_ELVPRIV) { 506 if (e && e->type->ops.finish_request) 507 e->type->ops.finish_request(rq); 508 if (rq->elv.icq) { 509 put_io_context(rq->elv.icq->ioc); 510 rq->elv.icq = NULL; 511 } 512 } 513 514 ctx->rq_completed[rq_is_sync(rq)]++; 515 if (rq->rq_flags & RQF_MQ_INFLIGHT) 516 atomic_dec(&hctx->nr_active); 517 518 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 519 laptop_io_completion(q->backing_dev_info); 520 521 rq_qos_done(q, rq); 522 523 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 524 if (refcount_dec_and_test(&rq->ref)) 525 __blk_mq_free_request(rq); 526 } 527 EXPORT_SYMBOL_GPL(blk_mq_free_request); 528 529 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 530 { 531 u64 now = 0; 532 533 if (blk_mq_need_time_stamp(rq)) 534 now = ktime_get_ns(); 535 536 if (rq->rq_flags & RQF_STATS) { 537 blk_mq_poll_stats_start(rq->q); 538 blk_stat_add(rq, now); 539 } 540 541 if (rq->internal_tag != -1) 542 blk_mq_sched_completed_request(rq, now); 543 544 blk_account_io_done(rq, now); 545 546 if (rq->end_io) { 547 rq_qos_done(rq->q, rq); 548 rq->end_io(rq, error); 549 } else { 550 blk_mq_free_request(rq); 551 } 552 } 553 EXPORT_SYMBOL(__blk_mq_end_request); 554 555 void blk_mq_end_request(struct request *rq, blk_status_t error) 556 { 557 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 558 BUG(); 559 __blk_mq_end_request(rq, error); 560 } 561 EXPORT_SYMBOL(blk_mq_end_request); 562 563 static void __blk_mq_complete_request_remote(void *data) 564 { 565 struct request *rq = data; 566 struct request_queue *q = rq->q; 567 568 q->mq_ops->complete(rq); 569 } 570 571 static void __blk_mq_complete_request(struct request *rq) 572 { 573 struct blk_mq_ctx *ctx = rq->mq_ctx; 574 struct request_queue *q = rq->q; 575 bool shared = false; 576 int cpu; 577 578 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 579 /* 580 * Most of single queue controllers, there is only one irq vector 581 * for handling IO completion, and the only irq's affinity is set 582 * as all possible CPUs. On most of ARCHs, this affinity means the 583 * irq is handled on one specific CPU. 584 * 585 * So complete IO reqeust in softirq context in case of single queue 586 * for not degrading IO performance by irqsoff latency. 587 */ 588 if (q->nr_hw_queues == 1) { 589 __blk_complete_request(rq); 590 return; 591 } 592 593 /* 594 * For a polled request, always complete locallly, it's pointless 595 * to redirect the completion. 596 */ 597 if ((rq->cmd_flags & REQ_HIPRI) || 598 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 599 q->mq_ops->complete(rq); 600 return; 601 } 602 603 cpu = get_cpu(); 604 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 605 shared = cpus_share_cache(cpu, ctx->cpu); 606 607 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 608 rq->csd.func = __blk_mq_complete_request_remote; 609 rq->csd.info = rq; 610 rq->csd.flags = 0; 611 smp_call_function_single_async(ctx->cpu, &rq->csd); 612 } else { 613 q->mq_ops->complete(rq); 614 } 615 put_cpu(); 616 } 617 618 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 619 __releases(hctx->srcu) 620 { 621 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 622 rcu_read_unlock(); 623 else 624 srcu_read_unlock(hctx->srcu, srcu_idx); 625 } 626 627 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 628 __acquires(hctx->srcu) 629 { 630 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 631 /* shut up gcc false positive */ 632 *srcu_idx = 0; 633 rcu_read_lock(); 634 } else 635 *srcu_idx = srcu_read_lock(hctx->srcu); 636 } 637 638 /** 639 * blk_mq_complete_request - end I/O on a request 640 * @rq: the request being processed 641 * 642 * Description: 643 * Ends all I/O on a request. It does not handle partial completions. 644 * The actual completion happens out-of-order, through a IPI handler. 645 **/ 646 bool blk_mq_complete_request(struct request *rq) 647 { 648 if (unlikely(blk_should_fake_timeout(rq->q))) 649 return false; 650 __blk_mq_complete_request(rq); 651 return true; 652 } 653 EXPORT_SYMBOL(blk_mq_complete_request); 654 655 void blk_mq_complete_request_sync(struct request *rq) 656 { 657 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 658 rq->q->mq_ops->complete(rq); 659 } 660 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync); 661 662 int blk_mq_request_started(struct request *rq) 663 { 664 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 665 } 666 EXPORT_SYMBOL_GPL(blk_mq_request_started); 667 668 void blk_mq_start_request(struct request *rq) 669 { 670 struct request_queue *q = rq->q; 671 672 trace_block_rq_issue(q, rq); 673 674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 675 rq->io_start_time_ns = ktime_get_ns(); 676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 677 rq->throtl_size = blk_rq_sectors(rq); 678 #endif 679 rq->rq_flags |= RQF_STATS; 680 rq_qos_issue(q, rq); 681 } 682 683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 684 685 blk_add_timer(rq); 686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 687 688 if (q->dma_drain_size && blk_rq_bytes(rq)) { 689 /* 690 * Make sure space for the drain appears. We know we can do 691 * this because max_hw_segments has been adjusted to be one 692 * fewer than the device can handle. 693 */ 694 rq->nr_phys_segments++; 695 } 696 } 697 EXPORT_SYMBOL(blk_mq_start_request); 698 699 static void __blk_mq_requeue_request(struct request *rq) 700 { 701 struct request_queue *q = rq->q; 702 703 blk_mq_put_driver_tag(rq); 704 705 trace_block_rq_requeue(q, rq); 706 rq_qos_requeue(q, rq); 707 708 if (blk_mq_request_started(rq)) { 709 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 710 rq->rq_flags &= ~RQF_TIMED_OUT; 711 if (q->dma_drain_size && blk_rq_bytes(rq)) 712 rq->nr_phys_segments--; 713 } 714 } 715 716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 717 { 718 __blk_mq_requeue_request(rq); 719 720 /* this request will be re-inserted to io scheduler queue */ 721 blk_mq_sched_requeue_request(rq); 722 723 BUG_ON(!list_empty(&rq->queuelist)); 724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 725 } 726 EXPORT_SYMBOL(blk_mq_requeue_request); 727 728 static void blk_mq_requeue_work(struct work_struct *work) 729 { 730 struct request_queue *q = 731 container_of(work, struct request_queue, requeue_work.work); 732 LIST_HEAD(rq_list); 733 struct request *rq, *next; 734 735 spin_lock_irq(&q->requeue_lock); 736 list_splice_init(&q->requeue_list, &rq_list); 737 spin_unlock_irq(&q->requeue_lock); 738 739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 740 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 741 continue; 742 743 rq->rq_flags &= ~RQF_SOFTBARRIER; 744 list_del_init(&rq->queuelist); 745 /* 746 * If RQF_DONTPREP, rq has contained some driver specific 747 * data, so insert it to hctx dispatch list to avoid any 748 * merge. 749 */ 750 if (rq->rq_flags & RQF_DONTPREP) 751 blk_mq_request_bypass_insert(rq, false); 752 else 753 blk_mq_sched_insert_request(rq, true, false, false); 754 } 755 756 while (!list_empty(&rq_list)) { 757 rq = list_entry(rq_list.next, struct request, queuelist); 758 list_del_init(&rq->queuelist); 759 blk_mq_sched_insert_request(rq, false, false, false); 760 } 761 762 blk_mq_run_hw_queues(q, false); 763 } 764 765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 766 bool kick_requeue_list) 767 { 768 struct request_queue *q = rq->q; 769 unsigned long flags; 770 771 /* 772 * We abuse this flag that is otherwise used by the I/O scheduler to 773 * request head insertion from the workqueue. 774 */ 775 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 776 777 spin_lock_irqsave(&q->requeue_lock, flags); 778 if (at_head) { 779 rq->rq_flags |= RQF_SOFTBARRIER; 780 list_add(&rq->queuelist, &q->requeue_list); 781 } else { 782 list_add_tail(&rq->queuelist, &q->requeue_list); 783 } 784 spin_unlock_irqrestore(&q->requeue_lock, flags); 785 786 if (kick_requeue_list) 787 blk_mq_kick_requeue_list(q); 788 } 789 790 void blk_mq_kick_requeue_list(struct request_queue *q) 791 { 792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 793 } 794 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 795 796 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 797 unsigned long msecs) 798 { 799 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 800 msecs_to_jiffies(msecs)); 801 } 802 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 803 804 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 805 { 806 if (tag < tags->nr_tags) { 807 prefetch(tags->rqs[tag]); 808 return tags->rqs[tag]; 809 } 810 811 return NULL; 812 } 813 EXPORT_SYMBOL(blk_mq_tag_to_rq); 814 815 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 816 void *priv, bool reserved) 817 { 818 /* 819 * If we find a request that is inflight and the queue matches, 820 * we know the queue is busy. Return false to stop the iteration. 821 */ 822 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 823 bool *busy = priv; 824 825 *busy = true; 826 return false; 827 } 828 829 return true; 830 } 831 832 bool blk_mq_queue_inflight(struct request_queue *q) 833 { 834 bool busy = false; 835 836 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 837 return busy; 838 } 839 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 840 841 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 842 { 843 req->rq_flags |= RQF_TIMED_OUT; 844 if (req->q->mq_ops->timeout) { 845 enum blk_eh_timer_return ret; 846 847 ret = req->q->mq_ops->timeout(req, reserved); 848 if (ret == BLK_EH_DONE) 849 return; 850 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 851 } 852 853 blk_add_timer(req); 854 } 855 856 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 857 { 858 unsigned long deadline; 859 860 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 861 return false; 862 if (rq->rq_flags & RQF_TIMED_OUT) 863 return false; 864 865 deadline = READ_ONCE(rq->deadline); 866 if (time_after_eq(jiffies, deadline)) 867 return true; 868 869 if (*next == 0) 870 *next = deadline; 871 else if (time_after(*next, deadline)) 872 *next = deadline; 873 return false; 874 } 875 876 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 877 struct request *rq, void *priv, bool reserved) 878 { 879 unsigned long *next = priv; 880 881 /* 882 * Just do a quick check if it is expired before locking the request in 883 * so we're not unnecessarilly synchronizing across CPUs. 884 */ 885 if (!blk_mq_req_expired(rq, next)) 886 return true; 887 888 /* 889 * We have reason to believe the request may be expired. Take a 890 * reference on the request to lock this request lifetime into its 891 * currently allocated context to prevent it from being reallocated in 892 * the event the completion by-passes this timeout handler. 893 * 894 * If the reference was already released, then the driver beat the 895 * timeout handler to posting a natural completion. 896 */ 897 if (!refcount_inc_not_zero(&rq->ref)) 898 return true; 899 900 /* 901 * The request is now locked and cannot be reallocated underneath the 902 * timeout handler's processing. Re-verify this exact request is truly 903 * expired; if it is not expired, then the request was completed and 904 * reallocated as a new request. 905 */ 906 if (blk_mq_req_expired(rq, next)) 907 blk_mq_rq_timed_out(rq, reserved); 908 if (refcount_dec_and_test(&rq->ref)) 909 __blk_mq_free_request(rq); 910 911 return true; 912 } 913 914 static void blk_mq_timeout_work(struct work_struct *work) 915 { 916 struct request_queue *q = 917 container_of(work, struct request_queue, timeout_work); 918 unsigned long next = 0; 919 struct blk_mq_hw_ctx *hctx; 920 int i; 921 922 /* A deadlock might occur if a request is stuck requiring a 923 * timeout at the same time a queue freeze is waiting 924 * completion, since the timeout code would not be able to 925 * acquire the queue reference here. 926 * 927 * That's why we don't use blk_queue_enter here; instead, we use 928 * percpu_ref_tryget directly, because we need to be able to 929 * obtain a reference even in the short window between the queue 930 * starting to freeze, by dropping the first reference in 931 * blk_freeze_queue_start, and the moment the last request is 932 * consumed, marked by the instant q_usage_counter reaches 933 * zero. 934 */ 935 if (!percpu_ref_tryget(&q->q_usage_counter)) 936 return; 937 938 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 939 940 if (next != 0) { 941 mod_timer(&q->timeout, next); 942 } else { 943 /* 944 * Request timeouts are handled as a forward rolling timer. If 945 * we end up here it means that no requests are pending and 946 * also that no request has been pending for a while. Mark 947 * each hctx as idle. 948 */ 949 queue_for_each_hw_ctx(q, hctx, i) { 950 /* the hctx may be unmapped, so check it here */ 951 if (blk_mq_hw_queue_mapped(hctx)) 952 blk_mq_tag_idle(hctx); 953 } 954 } 955 blk_queue_exit(q); 956 } 957 958 struct flush_busy_ctx_data { 959 struct blk_mq_hw_ctx *hctx; 960 struct list_head *list; 961 }; 962 963 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 964 { 965 struct flush_busy_ctx_data *flush_data = data; 966 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 967 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 968 enum hctx_type type = hctx->type; 969 970 spin_lock(&ctx->lock); 971 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 972 sbitmap_clear_bit(sb, bitnr); 973 spin_unlock(&ctx->lock); 974 return true; 975 } 976 977 /* 978 * Process software queues that have been marked busy, splicing them 979 * to the for-dispatch 980 */ 981 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 982 { 983 struct flush_busy_ctx_data data = { 984 .hctx = hctx, 985 .list = list, 986 }; 987 988 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 989 } 990 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 991 992 struct dispatch_rq_data { 993 struct blk_mq_hw_ctx *hctx; 994 struct request *rq; 995 }; 996 997 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 998 void *data) 999 { 1000 struct dispatch_rq_data *dispatch_data = data; 1001 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1002 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1003 enum hctx_type type = hctx->type; 1004 1005 spin_lock(&ctx->lock); 1006 if (!list_empty(&ctx->rq_lists[type])) { 1007 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1008 list_del_init(&dispatch_data->rq->queuelist); 1009 if (list_empty(&ctx->rq_lists[type])) 1010 sbitmap_clear_bit(sb, bitnr); 1011 } 1012 spin_unlock(&ctx->lock); 1013 1014 return !dispatch_data->rq; 1015 } 1016 1017 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1018 struct blk_mq_ctx *start) 1019 { 1020 unsigned off = start ? start->index_hw[hctx->type] : 0; 1021 struct dispatch_rq_data data = { 1022 .hctx = hctx, 1023 .rq = NULL, 1024 }; 1025 1026 __sbitmap_for_each_set(&hctx->ctx_map, off, 1027 dispatch_rq_from_ctx, &data); 1028 1029 return data.rq; 1030 } 1031 1032 static inline unsigned int queued_to_index(unsigned int queued) 1033 { 1034 if (!queued) 1035 return 0; 1036 1037 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1038 } 1039 1040 bool blk_mq_get_driver_tag(struct request *rq) 1041 { 1042 struct blk_mq_alloc_data data = { 1043 .q = rq->q, 1044 .hctx = rq->mq_hctx, 1045 .flags = BLK_MQ_REQ_NOWAIT, 1046 .cmd_flags = rq->cmd_flags, 1047 }; 1048 bool shared; 1049 1050 if (rq->tag != -1) 1051 goto done; 1052 1053 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1054 data.flags |= BLK_MQ_REQ_RESERVED; 1055 1056 shared = blk_mq_tag_busy(data.hctx); 1057 rq->tag = blk_mq_get_tag(&data); 1058 if (rq->tag >= 0) { 1059 if (shared) { 1060 rq->rq_flags |= RQF_MQ_INFLIGHT; 1061 atomic_inc(&data.hctx->nr_active); 1062 } 1063 data.hctx->tags->rqs[rq->tag] = rq; 1064 } 1065 1066 done: 1067 return rq->tag != -1; 1068 } 1069 1070 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1071 int flags, void *key) 1072 { 1073 struct blk_mq_hw_ctx *hctx; 1074 1075 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1076 1077 spin_lock(&hctx->dispatch_wait_lock); 1078 if (!list_empty(&wait->entry)) { 1079 struct sbitmap_queue *sbq; 1080 1081 list_del_init(&wait->entry); 1082 sbq = &hctx->tags->bitmap_tags; 1083 atomic_dec(&sbq->ws_active); 1084 } 1085 spin_unlock(&hctx->dispatch_wait_lock); 1086 1087 blk_mq_run_hw_queue(hctx, true); 1088 return 1; 1089 } 1090 1091 /* 1092 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1093 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1094 * restart. For both cases, take care to check the condition again after 1095 * marking us as waiting. 1096 */ 1097 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1098 struct request *rq) 1099 { 1100 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1101 struct wait_queue_head *wq; 1102 wait_queue_entry_t *wait; 1103 bool ret; 1104 1105 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1106 blk_mq_sched_mark_restart_hctx(hctx); 1107 1108 /* 1109 * It's possible that a tag was freed in the window between the 1110 * allocation failure and adding the hardware queue to the wait 1111 * queue. 1112 * 1113 * Don't clear RESTART here, someone else could have set it. 1114 * At most this will cost an extra queue run. 1115 */ 1116 return blk_mq_get_driver_tag(rq); 1117 } 1118 1119 wait = &hctx->dispatch_wait; 1120 if (!list_empty_careful(&wait->entry)) 1121 return false; 1122 1123 wq = &bt_wait_ptr(sbq, hctx)->wait; 1124 1125 spin_lock_irq(&wq->lock); 1126 spin_lock(&hctx->dispatch_wait_lock); 1127 if (!list_empty(&wait->entry)) { 1128 spin_unlock(&hctx->dispatch_wait_lock); 1129 spin_unlock_irq(&wq->lock); 1130 return false; 1131 } 1132 1133 atomic_inc(&sbq->ws_active); 1134 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1135 __add_wait_queue(wq, wait); 1136 1137 /* 1138 * It's possible that a tag was freed in the window between the 1139 * allocation failure and adding the hardware queue to the wait 1140 * queue. 1141 */ 1142 ret = blk_mq_get_driver_tag(rq); 1143 if (!ret) { 1144 spin_unlock(&hctx->dispatch_wait_lock); 1145 spin_unlock_irq(&wq->lock); 1146 return false; 1147 } 1148 1149 /* 1150 * We got a tag, remove ourselves from the wait queue to ensure 1151 * someone else gets the wakeup. 1152 */ 1153 list_del_init(&wait->entry); 1154 atomic_dec(&sbq->ws_active); 1155 spin_unlock(&hctx->dispatch_wait_lock); 1156 spin_unlock_irq(&wq->lock); 1157 1158 return true; 1159 } 1160 1161 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1162 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1163 /* 1164 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1165 * - EWMA is one simple way to compute running average value 1166 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1167 * - take 4 as factor for avoiding to get too small(0) result, and this 1168 * factor doesn't matter because EWMA decreases exponentially 1169 */ 1170 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1171 { 1172 unsigned int ewma; 1173 1174 if (hctx->queue->elevator) 1175 return; 1176 1177 ewma = hctx->dispatch_busy; 1178 1179 if (!ewma && !busy) 1180 return; 1181 1182 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1183 if (busy) 1184 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1185 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1186 1187 hctx->dispatch_busy = ewma; 1188 } 1189 1190 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1191 1192 /* 1193 * Returns true if we did some work AND can potentially do more. 1194 */ 1195 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1196 bool got_budget) 1197 { 1198 struct blk_mq_hw_ctx *hctx; 1199 struct request *rq, *nxt; 1200 bool no_tag = false; 1201 int errors, queued; 1202 blk_status_t ret = BLK_STS_OK; 1203 1204 if (list_empty(list)) 1205 return false; 1206 1207 WARN_ON(!list_is_singular(list) && got_budget); 1208 1209 /* 1210 * Now process all the entries, sending them to the driver. 1211 */ 1212 errors = queued = 0; 1213 do { 1214 struct blk_mq_queue_data bd; 1215 1216 rq = list_first_entry(list, struct request, queuelist); 1217 1218 hctx = rq->mq_hctx; 1219 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1220 break; 1221 1222 if (!blk_mq_get_driver_tag(rq)) { 1223 /* 1224 * The initial allocation attempt failed, so we need to 1225 * rerun the hardware queue when a tag is freed. The 1226 * waitqueue takes care of that. If the queue is run 1227 * before we add this entry back on the dispatch list, 1228 * we'll re-run it below. 1229 */ 1230 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1231 blk_mq_put_dispatch_budget(hctx); 1232 /* 1233 * For non-shared tags, the RESTART check 1234 * will suffice. 1235 */ 1236 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1237 no_tag = true; 1238 break; 1239 } 1240 } 1241 1242 list_del_init(&rq->queuelist); 1243 1244 bd.rq = rq; 1245 1246 /* 1247 * Flag last if we have no more requests, or if we have more 1248 * but can't assign a driver tag to it. 1249 */ 1250 if (list_empty(list)) 1251 bd.last = true; 1252 else { 1253 nxt = list_first_entry(list, struct request, queuelist); 1254 bd.last = !blk_mq_get_driver_tag(nxt); 1255 } 1256 1257 ret = q->mq_ops->queue_rq(hctx, &bd); 1258 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1259 /* 1260 * If an I/O scheduler has been configured and we got a 1261 * driver tag for the next request already, free it 1262 * again. 1263 */ 1264 if (!list_empty(list)) { 1265 nxt = list_first_entry(list, struct request, queuelist); 1266 blk_mq_put_driver_tag(nxt); 1267 } 1268 list_add(&rq->queuelist, list); 1269 __blk_mq_requeue_request(rq); 1270 break; 1271 } 1272 1273 if (unlikely(ret != BLK_STS_OK)) { 1274 errors++; 1275 blk_mq_end_request(rq, BLK_STS_IOERR); 1276 continue; 1277 } 1278 1279 queued++; 1280 } while (!list_empty(list)); 1281 1282 hctx->dispatched[queued_to_index(queued)]++; 1283 1284 /* 1285 * Any items that need requeuing? Stuff them into hctx->dispatch, 1286 * that is where we will continue on next queue run. 1287 */ 1288 if (!list_empty(list)) { 1289 bool needs_restart; 1290 1291 /* 1292 * If we didn't flush the entire list, we could have told 1293 * the driver there was more coming, but that turned out to 1294 * be a lie. 1295 */ 1296 if (q->mq_ops->commit_rqs) 1297 q->mq_ops->commit_rqs(hctx); 1298 1299 spin_lock(&hctx->lock); 1300 list_splice_init(list, &hctx->dispatch); 1301 spin_unlock(&hctx->lock); 1302 1303 /* 1304 * If SCHED_RESTART was set by the caller of this function and 1305 * it is no longer set that means that it was cleared by another 1306 * thread and hence that a queue rerun is needed. 1307 * 1308 * If 'no_tag' is set, that means that we failed getting 1309 * a driver tag with an I/O scheduler attached. If our dispatch 1310 * waitqueue is no longer active, ensure that we run the queue 1311 * AFTER adding our entries back to the list. 1312 * 1313 * If no I/O scheduler has been configured it is possible that 1314 * the hardware queue got stopped and restarted before requests 1315 * were pushed back onto the dispatch list. Rerun the queue to 1316 * avoid starvation. Notes: 1317 * - blk_mq_run_hw_queue() checks whether or not a queue has 1318 * been stopped before rerunning a queue. 1319 * - Some but not all block drivers stop a queue before 1320 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1321 * and dm-rq. 1322 * 1323 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1324 * bit is set, run queue after a delay to avoid IO stalls 1325 * that could otherwise occur if the queue is idle. 1326 */ 1327 needs_restart = blk_mq_sched_needs_restart(hctx); 1328 if (!needs_restart || 1329 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1330 blk_mq_run_hw_queue(hctx, true); 1331 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1332 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1333 1334 blk_mq_update_dispatch_busy(hctx, true); 1335 return false; 1336 } else 1337 blk_mq_update_dispatch_busy(hctx, false); 1338 1339 /* 1340 * If the host/device is unable to accept more work, inform the 1341 * caller of that. 1342 */ 1343 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1344 return false; 1345 1346 return (queued + errors) != 0; 1347 } 1348 1349 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1350 { 1351 int srcu_idx; 1352 1353 /* 1354 * We should be running this queue from one of the CPUs that 1355 * are mapped to it. 1356 * 1357 * There are at least two related races now between setting 1358 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1359 * __blk_mq_run_hw_queue(): 1360 * 1361 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1362 * but later it becomes online, then this warning is harmless 1363 * at all 1364 * 1365 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1366 * but later it becomes offline, then the warning can't be 1367 * triggered, and we depend on blk-mq timeout handler to 1368 * handle dispatched requests to this hctx 1369 */ 1370 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1371 cpu_online(hctx->next_cpu)) { 1372 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1373 raw_smp_processor_id(), 1374 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1375 dump_stack(); 1376 } 1377 1378 /* 1379 * We can't run the queue inline with ints disabled. Ensure that 1380 * we catch bad users of this early. 1381 */ 1382 WARN_ON_ONCE(in_interrupt()); 1383 1384 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1385 1386 hctx_lock(hctx, &srcu_idx); 1387 blk_mq_sched_dispatch_requests(hctx); 1388 hctx_unlock(hctx, srcu_idx); 1389 } 1390 1391 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1392 { 1393 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1394 1395 if (cpu >= nr_cpu_ids) 1396 cpu = cpumask_first(hctx->cpumask); 1397 return cpu; 1398 } 1399 1400 /* 1401 * It'd be great if the workqueue API had a way to pass 1402 * in a mask and had some smarts for more clever placement. 1403 * For now we just round-robin here, switching for every 1404 * BLK_MQ_CPU_WORK_BATCH queued items. 1405 */ 1406 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1407 { 1408 bool tried = false; 1409 int next_cpu = hctx->next_cpu; 1410 1411 if (hctx->queue->nr_hw_queues == 1) 1412 return WORK_CPU_UNBOUND; 1413 1414 if (--hctx->next_cpu_batch <= 0) { 1415 select_cpu: 1416 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1417 cpu_online_mask); 1418 if (next_cpu >= nr_cpu_ids) 1419 next_cpu = blk_mq_first_mapped_cpu(hctx); 1420 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1421 } 1422 1423 /* 1424 * Do unbound schedule if we can't find a online CPU for this hctx, 1425 * and it should only happen in the path of handling CPU DEAD. 1426 */ 1427 if (!cpu_online(next_cpu)) { 1428 if (!tried) { 1429 tried = true; 1430 goto select_cpu; 1431 } 1432 1433 /* 1434 * Make sure to re-select CPU next time once after CPUs 1435 * in hctx->cpumask become online again. 1436 */ 1437 hctx->next_cpu = next_cpu; 1438 hctx->next_cpu_batch = 1; 1439 return WORK_CPU_UNBOUND; 1440 } 1441 1442 hctx->next_cpu = next_cpu; 1443 return next_cpu; 1444 } 1445 1446 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1447 unsigned long msecs) 1448 { 1449 if (unlikely(blk_mq_hctx_stopped(hctx))) 1450 return; 1451 1452 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1453 int cpu = get_cpu(); 1454 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1455 __blk_mq_run_hw_queue(hctx); 1456 put_cpu(); 1457 return; 1458 } 1459 1460 put_cpu(); 1461 } 1462 1463 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1464 msecs_to_jiffies(msecs)); 1465 } 1466 1467 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1468 { 1469 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1470 } 1471 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1472 1473 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1474 { 1475 int srcu_idx; 1476 bool need_run; 1477 1478 /* 1479 * When queue is quiesced, we may be switching io scheduler, or 1480 * updating nr_hw_queues, or other things, and we can't run queue 1481 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1482 * 1483 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1484 * quiesced. 1485 */ 1486 hctx_lock(hctx, &srcu_idx); 1487 need_run = !blk_queue_quiesced(hctx->queue) && 1488 blk_mq_hctx_has_pending(hctx); 1489 hctx_unlock(hctx, srcu_idx); 1490 1491 if (need_run) { 1492 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1493 return true; 1494 } 1495 1496 return false; 1497 } 1498 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1499 1500 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1501 { 1502 struct blk_mq_hw_ctx *hctx; 1503 int i; 1504 1505 queue_for_each_hw_ctx(q, hctx, i) { 1506 if (blk_mq_hctx_stopped(hctx)) 1507 continue; 1508 1509 blk_mq_run_hw_queue(hctx, async); 1510 } 1511 } 1512 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1513 1514 /** 1515 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1516 * @q: request queue. 1517 * 1518 * The caller is responsible for serializing this function against 1519 * blk_mq_{start,stop}_hw_queue(). 1520 */ 1521 bool blk_mq_queue_stopped(struct request_queue *q) 1522 { 1523 struct blk_mq_hw_ctx *hctx; 1524 int i; 1525 1526 queue_for_each_hw_ctx(q, hctx, i) 1527 if (blk_mq_hctx_stopped(hctx)) 1528 return true; 1529 1530 return false; 1531 } 1532 EXPORT_SYMBOL(blk_mq_queue_stopped); 1533 1534 /* 1535 * This function is often used for pausing .queue_rq() by driver when 1536 * there isn't enough resource or some conditions aren't satisfied, and 1537 * BLK_STS_RESOURCE is usually returned. 1538 * 1539 * We do not guarantee that dispatch can be drained or blocked 1540 * after blk_mq_stop_hw_queue() returns. Please use 1541 * blk_mq_quiesce_queue() for that requirement. 1542 */ 1543 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1544 { 1545 cancel_delayed_work(&hctx->run_work); 1546 1547 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1548 } 1549 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1550 1551 /* 1552 * This function is often used for pausing .queue_rq() by driver when 1553 * there isn't enough resource or some conditions aren't satisfied, and 1554 * BLK_STS_RESOURCE is usually returned. 1555 * 1556 * We do not guarantee that dispatch can be drained or blocked 1557 * after blk_mq_stop_hw_queues() returns. Please use 1558 * blk_mq_quiesce_queue() for that requirement. 1559 */ 1560 void blk_mq_stop_hw_queues(struct request_queue *q) 1561 { 1562 struct blk_mq_hw_ctx *hctx; 1563 int i; 1564 1565 queue_for_each_hw_ctx(q, hctx, i) 1566 blk_mq_stop_hw_queue(hctx); 1567 } 1568 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1569 1570 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1571 { 1572 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1573 1574 blk_mq_run_hw_queue(hctx, false); 1575 } 1576 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1577 1578 void blk_mq_start_hw_queues(struct request_queue *q) 1579 { 1580 struct blk_mq_hw_ctx *hctx; 1581 int i; 1582 1583 queue_for_each_hw_ctx(q, hctx, i) 1584 blk_mq_start_hw_queue(hctx); 1585 } 1586 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1587 1588 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1589 { 1590 if (!blk_mq_hctx_stopped(hctx)) 1591 return; 1592 1593 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1594 blk_mq_run_hw_queue(hctx, async); 1595 } 1596 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1597 1598 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1599 { 1600 struct blk_mq_hw_ctx *hctx; 1601 int i; 1602 1603 queue_for_each_hw_ctx(q, hctx, i) 1604 blk_mq_start_stopped_hw_queue(hctx, async); 1605 } 1606 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1607 1608 static void blk_mq_run_work_fn(struct work_struct *work) 1609 { 1610 struct blk_mq_hw_ctx *hctx; 1611 1612 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1613 1614 /* 1615 * If we are stopped, don't run the queue. 1616 */ 1617 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1618 return; 1619 1620 __blk_mq_run_hw_queue(hctx); 1621 } 1622 1623 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1624 struct request *rq, 1625 bool at_head) 1626 { 1627 struct blk_mq_ctx *ctx = rq->mq_ctx; 1628 enum hctx_type type = hctx->type; 1629 1630 lockdep_assert_held(&ctx->lock); 1631 1632 trace_block_rq_insert(hctx->queue, rq); 1633 1634 if (at_head) 1635 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1636 else 1637 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1638 } 1639 1640 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1641 bool at_head) 1642 { 1643 struct blk_mq_ctx *ctx = rq->mq_ctx; 1644 1645 lockdep_assert_held(&ctx->lock); 1646 1647 __blk_mq_insert_req_list(hctx, rq, at_head); 1648 blk_mq_hctx_mark_pending(hctx, ctx); 1649 } 1650 1651 /* 1652 * Should only be used carefully, when the caller knows we want to 1653 * bypass a potential IO scheduler on the target device. 1654 */ 1655 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1656 { 1657 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1658 1659 spin_lock(&hctx->lock); 1660 list_add_tail(&rq->queuelist, &hctx->dispatch); 1661 spin_unlock(&hctx->lock); 1662 1663 if (run_queue) 1664 blk_mq_run_hw_queue(hctx, false); 1665 } 1666 1667 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1668 struct list_head *list) 1669 1670 { 1671 struct request *rq; 1672 enum hctx_type type = hctx->type; 1673 1674 /* 1675 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1676 * offline now 1677 */ 1678 list_for_each_entry(rq, list, queuelist) { 1679 BUG_ON(rq->mq_ctx != ctx); 1680 trace_block_rq_insert(hctx->queue, rq); 1681 } 1682 1683 spin_lock(&ctx->lock); 1684 list_splice_tail_init(list, &ctx->rq_lists[type]); 1685 blk_mq_hctx_mark_pending(hctx, ctx); 1686 spin_unlock(&ctx->lock); 1687 } 1688 1689 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1690 { 1691 struct request *rqa = container_of(a, struct request, queuelist); 1692 struct request *rqb = container_of(b, struct request, queuelist); 1693 1694 if (rqa->mq_ctx < rqb->mq_ctx) 1695 return -1; 1696 else if (rqa->mq_ctx > rqb->mq_ctx) 1697 return 1; 1698 else if (rqa->mq_hctx < rqb->mq_hctx) 1699 return -1; 1700 else if (rqa->mq_hctx > rqb->mq_hctx) 1701 return 1; 1702 1703 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1704 } 1705 1706 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1707 { 1708 struct blk_mq_hw_ctx *this_hctx; 1709 struct blk_mq_ctx *this_ctx; 1710 struct request_queue *this_q; 1711 struct request *rq; 1712 LIST_HEAD(list); 1713 LIST_HEAD(rq_list); 1714 unsigned int depth; 1715 1716 list_splice_init(&plug->mq_list, &list); 1717 1718 if (plug->rq_count > 2 && plug->multiple_queues) 1719 list_sort(NULL, &list, plug_rq_cmp); 1720 1721 plug->rq_count = 0; 1722 1723 this_q = NULL; 1724 this_hctx = NULL; 1725 this_ctx = NULL; 1726 depth = 0; 1727 1728 while (!list_empty(&list)) { 1729 rq = list_entry_rq(list.next); 1730 list_del_init(&rq->queuelist); 1731 BUG_ON(!rq->q); 1732 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1733 if (this_hctx) { 1734 trace_block_unplug(this_q, depth, !from_schedule); 1735 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1736 &rq_list, 1737 from_schedule); 1738 } 1739 1740 this_q = rq->q; 1741 this_ctx = rq->mq_ctx; 1742 this_hctx = rq->mq_hctx; 1743 depth = 0; 1744 } 1745 1746 depth++; 1747 list_add_tail(&rq->queuelist, &rq_list); 1748 } 1749 1750 /* 1751 * If 'this_hctx' is set, we know we have entries to complete 1752 * on 'rq_list'. Do those. 1753 */ 1754 if (this_hctx) { 1755 trace_block_unplug(this_q, depth, !from_schedule); 1756 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1757 from_schedule); 1758 } 1759 } 1760 1761 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1762 unsigned int nr_segs) 1763 { 1764 if (bio->bi_opf & REQ_RAHEAD) 1765 rq->cmd_flags |= REQ_FAILFAST_MASK; 1766 1767 rq->__sector = bio->bi_iter.bi_sector; 1768 rq->write_hint = bio->bi_write_hint; 1769 blk_rq_bio_prep(rq, bio, nr_segs); 1770 1771 blk_account_io_start(rq, true); 1772 } 1773 1774 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1775 struct request *rq, 1776 blk_qc_t *cookie, bool last) 1777 { 1778 struct request_queue *q = rq->q; 1779 struct blk_mq_queue_data bd = { 1780 .rq = rq, 1781 .last = last, 1782 }; 1783 blk_qc_t new_cookie; 1784 blk_status_t ret; 1785 1786 new_cookie = request_to_qc_t(hctx, rq); 1787 1788 /* 1789 * For OK queue, we are done. For error, caller may kill it. 1790 * Any other error (busy), just add it to our list as we 1791 * previously would have done. 1792 */ 1793 ret = q->mq_ops->queue_rq(hctx, &bd); 1794 switch (ret) { 1795 case BLK_STS_OK: 1796 blk_mq_update_dispatch_busy(hctx, false); 1797 *cookie = new_cookie; 1798 break; 1799 case BLK_STS_RESOURCE: 1800 case BLK_STS_DEV_RESOURCE: 1801 blk_mq_update_dispatch_busy(hctx, true); 1802 __blk_mq_requeue_request(rq); 1803 break; 1804 default: 1805 blk_mq_update_dispatch_busy(hctx, false); 1806 *cookie = BLK_QC_T_NONE; 1807 break; 1808 } 1809 1810 return ret; 1811 } 1812 1813 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1814 struct request *rq, 1815 blk_qc_t *cookie, 1816 bool bypass_insert, bool last) 1817 { 1818 struct request_queue *q = rq->q; 1819 bool run_queue = true; 1820 1821 /* 1822 * RCU or SRCU read lock is needed before checking quiesced flag. 1823 * 1824 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1825 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1826 * and avoid driver to try to dispatch again. 1827 */ 1828 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1829 run_queue = false; 1830 bypass_insert = false; 1831 goto insert; 1832 } 1833 1834 if (q->elevator && !bypass_insert) 1835 goto insert; 1836 1837 if (!blk_mq_get_dispatch_budget(hctx)) 1838 goto insert; 1839 1840 if (!blk_mq_get_driver_tag(rq)) { 1841 blk_mq_put_dispatch_budget(hctx); 1842 goto insert; 1843 } 1844 1845 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1846 insert: 1847 if (bypass_insert) 1848 return BLK_STS_RESOURCE; 1849 1850 blk_mq_request_bypass_insert(rq, run_queue); 1851 return BLK_STS_OK; 1852 } 1853 1854 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1855 struct request *rq, blk_qc_t *cookie) 1856 { 1857 blk_status_t ret; 1858 int srcu_idx; 1859 1860 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1861 1862 hctx_lock(hctx, &srcu_idx); 1863 1864 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1865 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1866 blk_mq_request_bypass_insert(rq, true); 1867 else if (ret != BLK_STS_OK) 1868 blk_mq_end_request(rq, ret); 1869 1870 hctx_unlock(hctx, srcu_idx); 1871 } 1872 1873 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1874 { 1875 blk_status_t ret; 1876 int srcu_idx; 1877 blk_qc_t unused_cookie; 1878 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1879 1880 hctx_lock(hctx, &srcu_idx); 1881 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1882 hctx_unlock(hctx, srcu_idx); 1883 1884 return ret; 1885 } 1886 1887 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1888 struct list_head *list) 1889 { 1890 while (!list_empty(list)) { 1891 blk_status_t ret; 1892 struct request *rq = list_first_entry(list, struct request, 1893 queuelist); 1894 1895 list_del_init(&rq->queuelist); 1896 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1897 if (ret != BLK_STS_OK) { 1898 if (ret == BLK_STS_RESOURCE || 1899 ret == BLK_STS_DEV_RESOURCE) { 1900 blk_mq_request_bypass_insert(rq, 1901 list_empty(list)); 1902 break; 1903 } 1904 blk_mq_end_request(rq, ret); 1905 } 1906 } 1907 1908 /* 1909 * If we didn't flush the entire list, we could have told 1910 * the driver there was more coming, but that turned out to 1911 * be a lie. 1912 */ 1913 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) 1914 hctx->queue->mq_ops->commit_rqs(hctx); 1915 } 1916 1917 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1918 { 1919 list_add_tail(&rq->queuelist, &plug->mq_list); 1920 plug->rq_count++; 1921 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1922 struct request *tmp; 1923 1924 tmp = list_first_entry(&plug->mq_list, struct request, 1925 queuelist); 1926 if (tmp->q != rq->q) 1927 plug->multiple_queues = true; 1928 } 1929 } 1930 1931 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1932 { 1933 const int is_sync = op_is_sync(bio->bi_opf); 1934 const int is_flush_fua = op_is_flush(bio->bi_opf); 1935 struct blk_mq_alloc_data data = { .flags = 0}; 1936 struct request *rq; 1937 struct blk_plug *plug; 1938 struct request *same_queue_rq = NULL; 1939 unsigned int nr_segs; 1940 blk_qc_t cookie; 1941 1942 blk_queue_bounce(q, &bio); 1943 __blk_queue_split(q, &bio, &nr_segs); 1944 1945 if (!bio_integrity_prep(bio)) 1946 return BLK_QC_T_NONE; 1947 1948 if (!is_flush_fua && !blk_queue_nomerges(q) && 1949 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 1950 return BLK_QC_T_NONE; 1951 1952 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 1953 return BLK_QC_T_NONE; 1954 1955 rq_qos_throttle(q, bio); 1956 1957 data.cmd_flags = bio->bi_opf; 1958 rq = blk_mq_get_request(q, bio, &data); 1959 if (unlikely(!rq)) { 1960 rq_qos_cleanup(q, bio); 1961 if (bio->bi_opf & REQ_NOWAIT) 1962 bio_wouldblock_error(bio); 1963 return BLK_QC_T_NONE; 1964 } 1965 1966 trace_block_getrq(q, bio, bio->bi_opf); 1967 1968 rq_qos_track(q, rq, bio); 1969 1970 cookie = request_to_qc_t(data.hctx, rq); 1971 1972 blk_mq_bio_to_request(rq, bio, nr_segs); 1973 1974 plug = blk_mq_plug(q, bio); 1975 if (unlikely(is_flush_fua)) { 1976 /* bypass scheduler for flush rq */ 1977 blk_insert_flush(rq); 1978 blk_mq_run_hw_queue(data.hctx, true); 1979 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1980 /* 1981 * Use plugging if we have a ->commit_rqs() hook as well, as 1982 * we know the driver uses bd->last in a smart fashion. 1983 */ 1984 unsigned int request_count = plug->rq_count; 1985 struct request *last = NULL; 1986 1987 if (!request_count) 1988 trace_block_plug(q); 1989 else 1990 last = list_entry_rq(plug->mq_list.prev); 1991 1992 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1993 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1994 blk_flush_plug_list(plug, false); 1995 trace_block_plug(q); 1996 } 1997 1998 blk_add_rq_to_plug(plug, rq); 1999 } else if (plug && !blk_queue_nomerges(q)) { 2000 /* 2001 * We do limited plugging. If the bio can be merged, do that. 2002 * Otherwise the existing request in the plug list will be 2003 * issued. So the plug list will have one request at most 2004 * The plug list might get flushed before this. If that happens, 2005 * the plug list is empty, and same_queue_rq is invalid. 2006 */ 2007 if (list_empty(&plug->mq_list)) 2008 same_queue_rq = NULL; 2009 if (same_queue_rq) { 2010 list_del_init(&same_queue_rq->queuelist); 2011 plug->rq_count--; 2012 } 2013 blk_add_rq_to_plug(plug, rq); 2014 trace_block_plug(q); 2015 2016 if (same_queue_rq) { 2017 data.hctx = same_queue_rq->mq_hctx; 2018 trace_block_unplug(q, 1, true); 2019 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2020 &cookie); 2021 } 2022 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2023 !data.hctx->dispatch_busy)) { 2024 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2025 } else { 2026 blk_mq_sched_insert_request(rq, false, true, true); 2027 } 2028 2029 return cookie; 2030 } 2031 2032 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2033 unsigned int hctx_idx) 2034 { 2035 struct page *page; 2036 2037 if (tags->rqs && set->ops->exit_request) { 2038 int i; 2039 2040 for (i = 0; i < tags->nr_tags; i++) { 2041 struct request *rq = tags->static_rqs[i]; 2042 2043 if (!rq) 2044 continue; 2045 set->ops->exit_request(set, rq, hctx_idx); 2046 tags->static_rqs[i] = NULL; 2047 } 2048 } 2049 2050 while (!list_empty(&tags->page_list)) { 2051 page = list_first_entry(&tags->page_list, struct page, lru); 2052 list_del_init(&page->lru); 2053 /* 2054 * Remove kmemleak object previously allocated in 2055 * blk_mq_alloc_rqs(). 2056 */ 2057 kmemleak_free(page_address(page)); 2058 __free_pages(page, page->private); 2059 } 2060 } 2061 2062 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2063 { 2064 kfree(tags->rqs); 2065 tags->rqs = NULL; 2066 kfree(tags->static_rqs); 2067 tags->static_rqs = NULL; 2068 2069 blk_mq_free_tags(tags); 2070 } 2071 2072 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2073 unsigned int hctx_idx, 2074 unsigned int nr_tags, 2075 unsigned int reserved_tags) 2076 { 2077 struct blk_mq_tags *tags; 2078 int node; 2079 2080 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2081 if (node == NUMA_NO_NODE) 2082 node = set->numa_node; 2083 2084 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2085 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2086 if (!tags) 2087 return NULL; 2088 2089 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2090 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2091 node); 2092 if (!tags->rqs) { 2093 blk_mq_free_tags(tags); 2094 return NULL; 2095 } 2096 2097 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2098 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2099 node); 2100 if (!tags->static_rqs) { 2101 kfree(tags->rqs); 2102 blk_mq_free_tags(tags); 2103 return NULL; 2104 } 2105 2106 return tags; 2107 } 2108 2109 static size_t order_to_size(unsigned int order) 2110 { 2111 return (size_t)PAGE_SIZE << order; 2112 } 2113 2114 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2115 unsigned int hctx_idx, int node) 2116 { 2117 int ret; 2118 2119 if (set->ops->init_request) { 2120 ret = set->ops->init_request(set, rq, hctx_idx, node); 2121 if (ret) 2122 return ret; 2123 } 2124 2125 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2126 return 0; 2127 } 2128 2129 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2130 unsigned int hctx_idx, unsigned int depth) 2131 { 2132 unsigned int i, j, entries_per_page, max_order = 4; 2133 size_t rq_size, left; 2134 int node; 2135 2136 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2137 if (node == NUMA_NO_NODE) 2138 node = set->numa_node; 2139 2140 INIT_LIST_HEAD(&tags->page_list); 2141 2142 /* 2143 * rq_size is the size of the request plus driver payload, rounded 2144 * to the cacheline size 2145 */ 2146 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2147 cache_line_size()); 2148 left = rq_size * depth; 2149 2150 for (i = 0; i < depth; ) { 2151 int this_order = max_order; 2152 struct page *page; 2153 int to_do; 2154 void *p; 2155 2156 while (this_order && left < order_to_size(this_order - 1)) 2157 this_order--; 2158 2159 do { 2160 page = alloc_pages_node(node, 2161 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2162 this_order); 2163 if (page) 2164 break; 2165 if (!this_order--) 2166 break; 2167 if (order_to_size(this_order) < rq_size) 2168 break; 2169 } while (1); 2170 2171 if (!page) 2172 goto fail; 2173 2174 page->private = this_order; 2175 list_add_tail(&page->lru, &tags->page_list); 2176 2177 p = page_address(page); 2178 /* 2179 * Allow kmemleak to scan these pages as they contain pointers 2180 * to additional allocations like via ops->init_request(). 2181 */ 2182 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2183 entries_per_page = order_to_size(this_order) / rq_size; 2184 to_do = min(entries_per_page, depth - i); 2185 left -= to_do * rq_size; 2186 for (j = 0; j < to_do; j++) { 2187 struct request *rq = p; 2188 2189 tags->static_rqs[i] = rq; 2190 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2191 tags->static_rqs[i] = NULL; 2192 goto fail; 2193 } 2194 2195 p += rq_size; 2196 i++; 2197 } 2198 } 2199 return 0; 2200 2201 fail: 2202 blk_mq_free_rqs(set, tags, hctx_idx); 2203 return -ENOMEM; 2204 } 2205 2206 /* 2207 * 'cpu' is going away. splice any existing rq_list entries from this 2208 * software queue to the hw queue dispatch list, and ensure that it 2209 * gets run. 2210 */ 2211 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2212 { 2213 struct blk_mq_hw_ctx *hctx; 2214 struct blk_mq_ctx *ctx; 2215 LIST_HEAD(tmp); 2216 enum hctx_type type; 2217 2218 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2219 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2220 type = hctx->type; 2221 2222 spin_lock(&ctx->lock); 2223 if (!list_empty(&ctx->rq_lists[type])) { 2224 list_splice_init(&ctx->rq_lists[type], &tmp); 2225 blk_mq_hctx_clear_pending(hctx, ctx); 2226 } 2227 spin_unlock(&ctx->lock); 2228 2229 if (list_empty(&tmp)) 2230 return 0; 2231 2232 spin_lock(&hctx->lock); 2233 list_splice_tail_init(&tmp, &hctx->dispatch); 2234 spin_unlock(&hctx->lock); 2235 2236 blk_mq_run_hw_queue(hctx, true); 2237 return 0; 2238 } 2239 2240 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2241 { 2242 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2243 &hctx->cpuhp_dead); 2244 } 2245 2246 /* hctx->ctxs will be freed in queue's release handler */ 2247 static void blk_mq_exit_hctx(struct request_queue *q, 2248 struct blk_mq_tag_set *set, 2249 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2250 { 2251 if (blk_mq_hw_queue_mapped(hctx)) 2252 blk_mq_tag_idle(hctx); 2253 2254 if (set->ops->exit_request) 2255 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2256 2257 if (set->ops->exit_hctx) 2258 set->ops->exit_hctx(hctx, hctx_idx); 2259 2260 blk_mq_remove_cpuhp(hctx); 2261 2262 spin_lock(&q->unused_hctx_lock); 2263 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2264 spin_unlock(&q->unused_hctx_lock); 2265 } 2266 2267 static void blk_mq_exit_hw_queues(struct request_queue *q, 2268 struct blk_mq_tag_set *set, int nr_queue) 2269 { 2270 struct blk_mq_hw_ctx *hctx; 2271 unsigned int i; 2272 2273 queue_for_each_hw_ctx(q, hctx, i) { 2274 if (i == nr_queue) 2275 break; 2276 blk_mq_debugfs_unregister_hctx(hctx); 2277 blk_mq_exit_hctx(q, set, hctx, i); 2278 } 2279 } 2280 2281 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2282 { 2283 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2284 2285 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2286 __alignof__(struct blk_mq_hw_ctx)) != 2287 sizeof(struct blk_mq_hw_ctx)); 2288 2289 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2290 hw_ctx_size += sizeof(struct srcu_struct); 2291 2292 return hw_ctx_size; 2293 } 2294 2295 static int blk_mq_init_hctx(struct request_queue *q, 2296 struct blk_mq_tag_set *set, 2297 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2298 { 2299 hctx->queue_num = hctx_idx; 2300 2301 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2302 2303 hctx->tags = set->tags[hctx_idx]; 2304 2305 if (set->ops->init_hctx && 2306 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2307 goto unregister_cpu_notifier; 2308 2309 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2310 hctx->numa_node)) 2311 goto exit_hctx; 2312 return 0; 2313 2314 exit_hctx: 2315 if (set->ops->exit_hctx) 2316 set->ops->exit_hctx(hctx, hctx_idx); 2317 unregister_cpu_notifier: 2318 blk_mq_remove_cpuhp(hctx); 2319 return -1; 2320 } 2321 2322 static struct blk_mq_hw_ctx * 2323 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2324 int node) 2325 { 2326 struct blk_mq_hw_ctx *hctx; 2327 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2328 2329 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2330 if (!hctx) 2331 goto fail_alloc_hctx; 2332 2333 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2334 goto free_hctx; 2335 2336 atomic_set(&hctx->nr_active, 0); 2337 if (node == NUMA_NO_NODE) 2338 node = set->numa_node; 2339 hctx->numa_node = node; 2340 2341 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2342 spin_lock_init(&hctx->lock); 2343 INIT_LIST_HEAD(&hctx->dispatch); 2344 hctx->queue = q; 2345 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2346 2347 INIT_LIST_HEAD(&hctx->hctx_list); 2348 2349 /* 2350 * Allocate space for all possible cpus to avoid allocation at 2351 * runtime 2352 */ 2353 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2354 gfp, node); 2355 if (!hctx->ctxs) 2356 goto free_cpumask; 2357 2358 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2359 gfp, node)) 2360 goto free_ctxs; 2361 hctx->nr_ctx = 0; 2362 2363 spin_lock_init(&hctx->dispatch_wait_lock); 2364 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2365 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2366 2367 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2368 gfp); 2369 if (!hctx->fq) 2370 goto free_bitmap; 2371 2372 if (hctx->flags & BLK_MQ_F_BLOCKING) 2373 init_srcu_struct(hctx->srcu); 2374 blk_mq_hctx_kobj_init(hctx); 2375 2376 return hctx; 2377 2378 free_bitmap: 2379 sbitmap_free(&hctx->ctx_map); 2380 free_ctxs: 2381 kfree(hctx->ctxs); 2382 free_cpumask: 2383 free_cpumask_var(hctx->cpumask); 2384 free_hctx: 2385 kfree(hctx); 2386 fail_alloc_hctx: 2387 return NULL; 2388 } 2389 2390 static void blk_mq_init_cpu_queues(struct request_queue *q, 2391 unsigned int nr_hw_queues) 2392 { 2393 struct blk_mq_tag_set *set = q->tag_set; 2394 unsigned int i, j; 2395 2396 for_each_possible_cpu(i) { 2397 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2398 struct blk_mq_hw_ctx *hctx; 2399 int k; 2400 2401 __ctx->cpu = i; 2402 spin_lock_init(&__ctx->lock); 2403 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2404 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2405 2406 __ctx->queue = q; 2407 2408 /* 2409 * Set local node, IFF we have more than one hw queue. If 2410 * not, we remain on the home node of the device 2411 */ 2412 for (j = 0; j < set->nr_maps; j++) { 2413 hctx = blk_mq_map_queue_type(q, j, i); 2414 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2415 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2416 } 2417 } 2418 } 2419 2420 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2421 { 2422 int ret = 0; 2423 2424 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2425 set->queue_depth, set->reserved_tags); 2426 if (!set->tags[hctx_idx]) 2427 return false; 2428 2429 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2430 set->queue_depth); 2431 if (!ret) 2432 return true; 2433 2434 blk_mq_free_rq_map(set->tags[hctx_idx]); 2435 set->tags[hctx_idx] = NULL; 2436 return false; 2437 } 2438 2439 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2440 unsigned int hctx_idx) 2441 { 2442 if (set->tags && set->tags[hctx_idx]) { 2443 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2444 blk_mq_free_rq_map(set->tags[hctx_idx]); 2445 set->tags[hctx_idx] = NULL; 2446 } 2447 } 2448 2449 static void blk_mq_map_swqueue(struct request_queue *q) 2450 { 2451 unsigned int i, j, hctx_idx; 2452 struct blk_mq_hw_ctx *hctx; 2453 struct blk_mq_ctx *ctx; 2454 struct blk_mq_tag_set *set = q->tag_set; 2455 2456 /* 2457 * Avoid others reading imcomplete hctx->cpumask through sysfs 2458 */ 2459 mutex_lock(&q->sysfs_lock); 2460 2461 queue_for_each_hw_ctx(q, hctx, i) { 2462 cpumask_clear(hctx->cpumask); 2463 hctx->nr_ctx = 0; 2464 hctx->dispatch_from = NULL; 2465 } 2466 2467 /* 2468 * Map software to hardware queues. 2469 * 2470 * If the cpu isn't present, the cpu is mapped to first hctx. 2471 */ 2472 for_each_possible_cpu(i) { 2473 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2474 /* unmapped hw queue can be remapped after CPU topo changed */ 2475 if (!set->tags[hctx_idx] && 2476 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2477 /* 2478 * If tags initialization fail for some hctx, 2479 * that hctx won't be brought online. In this 2480 * case, remap the current ctx to hctx[0] which 2481 * is guaranteed to always have tags allocated 2482 */ 2483 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2484 } 2485 2486 ctx = per_cpu_ptr(q->queue_ctx, i); 2487 for (j = 0; j < set->nr_maps; j++) { 2488 if (!set->map[j].nr_queues) { 2489 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2490 HCTX_TYPE_DEFAULT, i); 2491 continue; 2492 } 2493 2494 hctx = blk_mq_map_queue_type(q, j, i); 2495 ctx->hctxs[j] = hctx; 2496 /* 2497 * If the CPU is already set in the mask, then we've 2498 * mapped this one already. This can happen if 2499 * devices share queues across queue maps. 2500 */ 2501 if (cpumask_test_cpu(i, hctx->cpumask)) 2502 continue; 2503 2504 cpumask_set_cpu(i, hctx->cpumask); 2505 hctx->type = j; 2506 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2507 hctx->ctxs[hctx->nr_ctx++] = ctx; 2508 2509 /* 2510 * If the nr_ctx type overflows, we have exceeded the 2511 * amount of sw queues we can support. 2512 */ 2513 BUG_ON(!hctx->nr_ctx); 2514 } 2515 2516 for (; j < HCTX_MAX_TYPES; j++) 2517 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2518 HCTX_TYPE_DEFAULT, i); 2519 } 2520 2521 mutex_unlock(&q->sysfs_lock); 2522 2523 queue_for_each_hw_ctx(q, hctx, i) { 2524 /* 2525 * If no software queues are mapped to this hardware queue, 2526 * disable it and free the request entries. 2527 */ 2528 if (!hctx->nr_ctx) { 2529 /* Never unmap queue 0. We need it as a 2530 * fallback in case of a new remap fails 2531 * allocation 2532 */ 2533 if (i && set->tags[i]) 2534 blk_mq_free_map_and_requests(set, i); 2535 2536 hctx->tags = NULL; 2537 continue; 2538 } 2539 2540 hctx->tags = set->tags[i]; 2541 WARN_ON(!hctx->tags); 2542 2543 /* 2544 * Set the map size to the number of mapped software queues. 2545 * This is more accurate and more efficient than looping 2546 * over all possibly mapped software queues. 2547 */ 2548 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2549 2550 /* 2551 * Initialize batch roundrobin counts 2552 */ 2553 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2554 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2555 } 2556 } 2557 2558 /* 2559 * Caller needs to ensure that we're either frozen/quiesced, or that 2560 * the queue isn't live yet. 2561 */ 2562 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2563 { 2564 struct blk_mq_hw_ctx *hctx; 2565 int i; 2566 2567 queue_for_each_hw_ctx(q, hctx, i) { 2568 if (shared) 2569 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2570 else 2571 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2572 } 2573 } 2574 2575 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2576 bool shared) 2577 { 2578 struct request_queue *q; 2579 2580 lockdep_assert_held(&set->tag_list_lock); 2581 2582 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2583 blk_mq_freeze_queue(q); 2584 queue_set_hctx_shared(q, shared); 2585 blk_mq_unfreeze_queue(q); 2586 } 2587 } 2588 2589 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2590 { 2591 struct blk_mq_tag_set *set = q->tag_set; 2592 2593 mutex_lock(&set->tag_list_lock); 2594 list_del_rcu(&q->tag_set_list); 2595 if (list_is_singular(&set->tag_list)) { 2596 /* just transitioned to unshared */ 2597 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2598 /* update existing queue */ 2599 blk_mq_update_tag_set_depth(set, false); 2600 } 2601 mutex_unlock(&set->tag_list_lock); 2602 INIT_LIST_HEAD(&q->tag_set_list); 2603 } 2604 2605 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2606 struct request_queue *q) 2607 { 2608 mutex_lock(&set->tag_list_lock); 2609 2610 /* 2611 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2612 */ 2613 if (!list_empty(&set->tag_list) && 2614 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2615 set->flags |= BLK_MQ_F_TAG_SHARED; 2616 /* update existing queue */ 2617 blk_mq_update_tag_set_depth(set, true); 2618 } 2619 if (set->flags & BLK_MQ_F_TAG_SHARED) 2620 queue_set_hctx_shared(q, true); 2621 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2622 2623 mutex_unlock(&set->tag_list_lock); 2624 } 2625 2626 /* All allocations will be freed in release handler of q->mq_kobj */ 2627 static int blk_mq_alloc_ctxs(struct request_queue *q) 2628 { 2629 struct blk_mq_ctxs *ctxs; 2630 int cpu; 2631 2632 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2633 if (!ctxs) 2634 return -ENOMEM; 2635 2636 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2637 if (!ctxs->queue_ctx) 2638 goto fail; 2639 2640 for_each_possible_cpu(cpu) { 2641 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2642 ctx->ctxs = ctxs; 2643 } 2644 2645 q->mq_kobj = &ctxs->kobj; 2646 q->queue_ctx = ctxs->queue_ctx; 2647 2648 return 0; 2649 fail: 2650 kfree(ctxs); 2651 return -ENOMEM; 2652 } 2653 2654 /* 2655 * It is the actual release handler for mq, but we do it from 2656 * request queue's release handler for avoiding use-after-free 2657 * and headache because q->mq_kobj shouldn't have been introduced, 2658 * but we can't group ctx/kctx kobj without it. 2659 */ 2660 void blk_mq_release(struct request_queue *q) 2661 { 2662 struct blk_mq_hw_ctx *hctx, *next; 2663 int i; 2664 2665 queue_for_each_hw_ctx(q, hctx, i) 2666 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2667 2668 /* all hctx are in .unused_hctx_list now */ 2669 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2670 list_del_init(&hctx->hctx_list); 2671 kobject_put(&hctx->kobj); 2672 } 2673 2674 kfree(q->queue_hw_ctx); 2675 2676 /* 2677 * release .mq_kobj and sw queue's kobject now because 2678 * both share lifetime with request queue. 2679 */ 2680 blk_mq_sysfs_deinit(q); 2681 } 2682 2683 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2684 { 2685 struct request_queue *uninit_q, *q; 2686 2687 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2688 if (!uninit_q) 2689 return ERR_PTR(-ENOMEM); 2690 2691 q = blk_mq_init_allocated_queue(set, uninit_q); 2692 if (IS_ERR(q)) 2693 blk_cleanup_queue(uninit_q); 2694 2695 return q; 2696 } 2697 EXPORT_SYMBOL(blk_mq_init_queue); 2698 2699 /* 2700 * Helper for setting up a queue with mq ops, given queue depth, and 2701 * the passed in mq ops flags. 2702 */ 2703 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2704 const struct blk_mq_ops *ops, 2705 unsigned int queue_depth, 2706 unsigned int set_flags) 2707 { 2708 struct request_queue *q; 2709 int ret; 2710 2711 memset(set, 0, sizeof(*set)); 2712 set->ops = ops; 2713 set->nr_hw_queues = 1; 2714 set->nr_maps = 1; 2715 set->queue_depth = queue_depth; 2716 set->numa_node = NUMA_NO_NODE; 2717 set->flags = set_flags; 2718 2719 ret = blk_mq_alloc_tag_set(set); 2720 if (ret) 2721 return ERR_PTR(ret); 2722 2723 q = blk_mq_init_queue(set); 2724 if (IS_ERR(q)) { 2725 blk_mq_free_tag_set(set); 2726 return q; 2727 } 2728 2729 return q; 2730 } 2731 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2732 2733 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2734 struct blk_mq_tag_set *set, struct request_queue *q, 2735 int hctx_idx, int node) 2736 { 2737 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2738 2739 /* reuse dead hctx first */ 2740 spin_lock(&q->unused_hctx_lock); 2741 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2742 if (tmp->numa_node == node) { 2743 hctx = tmp; 2744 break; 2745 } 2746 } 2747 if (hctx) 2748 list_del_init(&hctx->hctx_list); 2749 spin_unlock(&q->unused_hctx_lock); 2750 2751 if (!hctx) 2752 hctx = blk_mq_alloc_hctx(q, set, node); 2753 if (!hctx) 2754 goto fail; 2755 2756 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2757 goto free_hctx; 2758 2759 return hctx; 2760 2761 free_hctx: 2762 kobject_put(&hctx->kobj); 2763 fail: 2764 return NULL; 2765 } 2766 2767 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2768 struct request_queue *q) 2769 { 2770 int i, j, end; 2771 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2772 2773 /* protect against switching io scheduler */ 2774 mutex_lock(&q->sysfs_lock); 2775 for (i = 0; i < set->nr_hw_queues; i++) { 2776 int node; 2777 struct blk_mq_hw_ctx *hctx; 2778 2779 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2780 /* 2781 * If the hw queue has been mapped to another numa node, 2782 * we need to realloc the hctx. If allocation fails, fallback 2783 * to use the previous one. 2784 */ 2785 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2786 continue; 2787 2788 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2789 if (hctx) { 2790 if (hctxs[i]) 2791 blk_mq_exit_hctx(q, set, hctxs[i], i); 2792 hctxs[i] = hctx; 2793 } else { 2794 if (hctxs[i]) 2795 pr_warn("Allocate new hctx on node %d fails,\ 2796 fallback to previous one on node %d\n", 2797 node, hctxs[i]->numa_node); 2798 else 2799 break; 2800 } 2801 } 2802 /* 2803 * Increasing nr_hw_queues fails. Free the newly allocated 2804 * hctxs and keep the previous q->nr_hw_queues. 2805 */ 2806 if (i != set->nr_hw_queues) { 2807 j = q->nr_hw_queues; 2808 end = i; 2809 } else { 2810 j = i; 2811 end = q->nr_hw_queues; 2812 q->nr_hw_queues = set->nr_hw_queues; 2813 } 2814 2815 for (; j < end; j++) { 2816 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2817 2818 if (hctx) { 2819 if (hctx->tags) 2820 blk_mq_free_map_and_requests(set, j); 2821 blk_mq_exit_hctx(q, set, hctx, j); 2822 hctxs[j] = NULL; 2823 } 2824 } 2825 mutex_unlock(&q->sysfs_lock); 2826 } 2827 2828 /* 2829 * Maximum number of hardware queues we support. For single sets, we'll never 2830 * have more than the CPUs (software queues). For multiple sets, the tag_set 2831 * user may have set ->nr_hw_queues larger. 2832 */ 2833 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2834 { 2835 if (set->nr_maps == 1) 2836 return nr_cpu_ids; 2837 2838 return max(set->nr_hw_queues, nr_cpu_ids); 2839 } 2840 2841 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2842 struct request_queue *q) 2843 { 2844 /* mark the queue as mq asap */ 2845 q->mq_ops = set->ops; 2846 2847 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2848 blk_mq_poll_stats_bkt, 2849 BLK_MQ_POLL_STATS_BKTS, q); 2850 if (!q->poll_cb) 2851 goto err_exit; 2852 2853 if (blk_mq_alloc_ctxs(q)) 2854 goto err_poll; 2855 2856 /* init q->mq_kobj and sw queues' kobjects */ 2857 blk_mq_sysfs_init(q); 2858 2859 q->nr_queues = nr_hw_queues(set); 2860 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2861 GFP_KERNEL, set->numa_node); 2862 if (!q->queue_hw_ctx) 2863 goto err_sys_init; 2864 2865 INIT_LIST_HEAD(&q->unused_hctx_list); 2866 spin_lock_init(&q->unused_hctx_lock); 2867 2868 blk_mq_realloc_hw_ctxs(set, q); 2869 if (!q->nr_hw_queues) 2870 goto err_hctxs; 2871 2872 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2873 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2874 2875 q->tag_set = set; 2876 2877 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2878 if (set->nr_maps > HCTX_TYPE_POLL && 2879 set->map[HCTX_TYPE_POLL].nr_queues) 2880 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2881 2882 q->sg_reserved_size = INT_MAX; 2883 2884 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2885 INIT_LIST_HEAD(&q->requeue_list); 2886 spin_lock_init(&q->requeue_lock); 2887 2888 blk_queue_make_request(q, blk_mq_make_request); 2889 2890 /* 2891 * Do this after blk_queue_make_request() overrides it... 2892 */ 2893 q->nr_requests = set->queue_depth; 2894 2895 /* 2896 * Default to classic polling 2897 */ 2898 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2899 2900 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2901 blk_mq_add_queue_tag_set(set, q); 2902 blk_mq_map_swqueue(q); 2903 2904 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2905 int ret; 2906 2907 ret = elevator_init_mq(q); 2908 if (ret) 2909 return ERR_PTR(ret); 2910 } 2911 2912 return q; 2913 2914 err_hctxs: 2915 kfree(q->queue_hw_ctx); 2916 err_sys_init: 2917 blk_mq_sysfs_deinit(q); 2918 err_poll: 2919 blk_stat_free_callback(q->poll_cb); 2920 q->poll_cb = NULL; 2921 err_exit: 2922 q->mq_ops = NULL; 2923 return ERR_PTR(-ENOMEM); 2924 } 2925 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2926 2927 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2928 void blk_mq_exit_queue(struct request_queue *q) 2929 { 2930 struct blk_mq_tag_set *set = q->tag_set; 2931 2932 blk_mq_del_queue_tag_set(q); 2933 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2934 } 2935 2936 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2937 { 2938 int i; 2939 2940 for (i = 0; i < set->nr_hw_queues; i++) 2941 if (!__blk_mq_alloc_rq_map(set, i)) 2942 goto out_unwind; 2943 2944 return 0; 2945 2946 out_unwind: 2947 while (--i >= 0) 2948 blk_mq_free_rq_map(set->tags[i]); 2949 2950 return -ENOMEM; 2951 } 2952 2953 /* 2954 * Allocate the request maps associated with this tag_set. Note that this 2955 * may reduce the depth asked for, if memory is tight. set->queue_depth 2956 * will be updated to reflect the allocated depth. 2957 */ 2958 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2959 { 2960 unsigned int depth; 2961 int err; 2962 2963 depth = set->queue_depth; 2964 do { 2965 err = __blk_mq_alloc_rq_maps(set); 2966 if (!err) 2967 break; 2968 2969 set->queue_depth >>= 1; 2970 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2971 err = -ENOMEM; 2972 break; 2973 } 2974 } while (set->queue_depth); 2975 2976 if (!set->queue_depth || err) { 2977 pr_err("blk-mq: failed to allocate request map\n"); 2978 return -ENOMEM; 2979 } 2980 2981 if (depth != set->queue_depth) 2982 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2983 depth, set->queue_depth); 2984 2985 return 0; 2986 } 2987 2988 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2989 { 2990 if (set->ops->map_queues && !is_kdump_kernel()) { 2991 int i; 2992 2993 /* 2994 * transport .map_queues is usually done in the following 2995 * way: 2996 * 2997 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2998 * mask = get_cpu_mask(queue) 2999 * for_each_cpu(cpu, mask) 3000 * set->map[x].mq_map[cpu] = queue; 3001 * } 3002 * 3003 * When we need to remap, the table has to be cleared for 3004 * killing stale mapping since one CPU may not be mapped 3005 * to any hw queue. 3006 */ 3007 for (i = 0; i < set->nr_maps; i++) 3008 blk_mq_clear_mq_map(&set->map[i]); 3009 3010 return set->ops->map_queues(set); 3011 } else { 3012 BUG_ON(set->nr_maps > 1); 3013 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3014 } 3015 } 3016 3017 /* 3018 * Alloc a tag set to be associated with one or more request queues. 3019 * May fail with EINVAL for various error conditions. May adjust the 3020 * requested depth down, if it's too large. In that case, the set 3021 * value will be stored in set->queue_depth. 3022 */ 3023 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3024 { 3025 int i, ret; 3026 3027 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3028 3029 if (!set->nr_hw_queues) 3030 return -EINVAL; 3031 if (!set->queue_depth) 3032 return -EINVAL; 3033 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3034 return -EINVAL; 3035 3036 if (!set->ops->queue_rq) 3037 return -EINVAL; 3038 3039 if (!set->ops->get_budget ^ !set->ops->put_budget) 3040 return -EINVAL; 3041 3042 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3043 pr_info("blk-mq: reduced tag depth to %u\n", 3044 BLK_MQ_MAX_DEPTH); 3045 set->queue_depth = BLK_MQ_MAX_DEPTH; 3046 } 3047 3048 if (!set->nr_maps) 3049 set->nr_maps = 1; 3050 else if (set->nr_maps > HCTX_MAX_TYPES) 3051 return -EINVAL; 3052 3053 /* 3054 * If a crashdump is active, then we are potentially in a very 3055 * memory constrained environment. Limit us to 1 queue and 3056 * 64 tags to prevent using too much memory. 3057 */ 3058 if (is_kdump_kernel()) { 3059 set->nr_hw_queues = 1; 3060 set->nr_maps = 1; 3061 set->queue_depth = min(64U, set->queue_depth); 3062 } 3063 /* 3064 * There is no use for more h/w queues than cpus if we just have 3065 * a single map 3066 */ 3067 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3068 set->nr_hw_queues = nr_cpu_ids; 3069 3070 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3071 GFP_KERNEL, set->numa_node); 3072 if (!set->tags) 3073 return -ENOMEM; 3074 3075 ret = -ENOMEM; 3076 for (i = 0; i < set->nr_maps; i++) { 3077 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3078 sizeof(set->map[i].mq_map[0]), 3079 GFP_KERNEL, set->numa_node); 3080 if (!set->map[i].mq_map) 3081 goto out_free_mq_map; 3082 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3083 } 3084 3085 ret = blk_mq_update_queue_map(set); 3086 if (ret) 3087 goto out_free_mq_map; 3088 3089 ret = blk_mq_alloc_rq_maps(set); 3090 if (ret) 3091 goto out_free_mq_map; 3092 3093 mutex_init(&set->tag_list_lock); 3094 INIT_LIST_HEAD(&set->tag_list); 3095 3096 return 0; 3097 3098 out_free_mq_map: 3099 for (i = 0; i < set->nr_maps; i++) { 3100 kfree(set->map[i].mq_map); 3101 set->map[i].mq_map = NULL; 3102 } 3103 kfree(set->tags); 3104 set->tags = NULL; 3105 return ret; 3106 } 3107 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3108 3109 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3110 { 3111 int i, j; 3112 3113 for (i = 0; i < nr_hw_queues(set); i++) 3114 blk_mq_free_map_and_requests(set, i); 3115 3116 for (j = 0; j < set->nr_maps; j++) { 3117 kfree(set->map[j].mq_map); 3118 set->map[j].mq_map = NULL; 3119 } 3120 3121 kfree(set->tags); 3122 set->tags = NULL; 3123 } 3124 EXPORT_SYMBOL(blk_mq_free_tag_set); 3125 3126 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3127 { 3128 struct blk_mq_tag_set *set = q->tag_set; 3129 struct blk_mq_hw_ctx *hctx; 3130 int i, ret; 3131 3132 if (!set) 3133 return -EINVAL; 3134 3135 if (q->nr_requests == nr) 3136 return 0; 3137 3138 blk_mq_freeze_queue(q); 3139 blk_mq_quiesce_queue(q); 3140 3141 ret = 0; 3142 queue_for_each_hw_ctx(q, hctx, i) { 3143 if (!hctx->tags) 3144 continue; 3145 /* 3146 * If we're using an MQ scheduler, just update the scheduler 3147 * queue depth. This is similar to what the old code would do. 3148 */ 3149 if (!hctx->sched_tags) { 3150 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3151 false); 3152 } else { 3153 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3154 nr, true); 3155 } 3156 if (ret) 3157 break; 3158 if (q->elevator && q->elevator->type->ops.depth_updated) 3159 q->elevator->type->ops.depth_updated(hctx); 3160 } 3161 3162 if (!ret) 3163 q->nr_requests = nr; 3164 3165 blk_mq_unquiesce_queue(q); 3166 blk_mq_unfreeze_queue(q); 3167 3168 return ret; 3169 } 3170 3171 /* 3172 * request_queue and elevator_type pair. 3173 * It is just used by __blk_mq_update_nr_hw_queues to cache 3174 * the elevator_type associated with a request_queue. 3175 */ 3176 struct blk_mq_qe_pair { 3177 struct list_head node; 3178 struct request_queue *q; 3179 struct elevator_type *type; 3180 }; 3181 3182 /* 3183 * Cache the elevator_type in qe pair list and switch the 3184 * io scheduler to 'none' 3185 */ 3186 static bool blk_mq_elv_switch_none(struct list_head *head, 3187 struct request_queue *q) 3188 { 3189 struct blk_mq_qe_pair *qe; 3190 3191 if (!q->elevator) 3192 return true; 3193 3194 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3195 if (!qe) 3196 return false; 3197 3198 INIT_LIST_HEAD(&qe->node); 3199 qe->q = q; 3200 qe->type = q->elevator->type; 3201 list_add(&qe->node, head); 3202 3203 mutex_lock(&q->sysfs_lock); 3204 /* 3205 * After elevator_switch_mq, the previous elevator_queue will be 3206 * released by elevator_release. The reference of the io scheduler 3207 * module get by elevator_get will also be put. So we need to get 3208 * a reference of the io scheduler module here to prevent it to be 3209 * removed. 3210 */ 3211 __module_get(qe->type->elevator_owner); 3212 elevator_switch_mq(q, NULL); 3213 mutex_unlock(&q->sysfs_lock); 3214 3215 return true; 3216 } 3217 3218 static void blk_mq_elv_switch_back(struct list_head *head, 3219 struct request_queue *q) 3220 { 3221 struct blk_mq_qe_pair *qe; 3222 struct elevator_type *t = NULL; 3223 3224 list_for_each_entry(qe, head, node) 3225 if (qe->q == q) { 3226 t = qe->type; 3227 break; 3228 } 3229 3230 if (!t) 3231 return; 3232 3233 list_del(&qe->node); 3234 kfree(qe); 3235 3236 mutex_lock(&q->sysfs_lock); 3237 elevator_switch_mq(q, t); 3238 mutex_unlock(&q->sysfs_lock); 3239 } 3240 3241 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3242 int nr_hw_queues) 3243 { 3244 struct request_queue *q; 3245 LIST_HEAD(head); 3246 int prev_nr_hw_queues; 3247 3248 lockdep_assert_held(&set->tag_list_lock); 3249 3250 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3251 nr_hw_queues = nr_cpu_ids; 3252 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3253 return; 3254 3255 list_for_each_entry(q, &set->tag_list, tag_set_list) 3256 blk_mq_freeze_queue(q); 3257 /* 3258 * Sync with blk_mq_queue_tag_busy_iter. 3259 */ 3260 synchronize_rcu(); 3261 /* 3262 * Switch IO scheduler to 'none', cleaning up the data associated 3263 * with the previous scheduler. We will switch back once we are done 3264 * updating the new sw to hw queue mappings. 3265 */ 3266 list_for_each_entry(q, &set->tag_list, tag_set_list) 3267 if (!blk_mq_elv_switch_none(&head, q)) 3268 goto switch_back; 3269 3270 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3271 blk_mq_debugfs_unregister_hctxs(q); 3272 blk_mq_sysfs_unregister(q); 3273 } 3274 3275 prev_nr_hw_queues = set->nr_hw_queues; 3276 set->nr_hw_queues = nr_hw_queues; 3277 blk_mq_update_queue_map(set); 3278 fallback: 3279 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3280 blk_mq_realloc_hw_ctxs(set, q); 3281 if (q->nr_hw_queues != set->nr_hw_queues) { 3282 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3283 nr_hw_queues, prev_nr_hw_queues); 3284 set->nr_hw_queues = prev_nr_hw_queues; 3285 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3286 goto fallback; 3287 } 3288 blk_mq_map_swqueue(q); 3289 } 3290 3291 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3292 blk_mq_sysfs_register(q); 3293 blk_mq_debugfs_register_hctxs(q); 3294 } 3295 3296 switch_back: 3297 list_for_each_entry(q, &set->tag_list, tag_set_list) 3298 blk_mq_elv_switch_back(&head, q); 3299 3300 list_for_each_entry(q, &set->tag_list, tag_set_list) 3301 blk_mq_unfreeze_queue(q); 3302 } 3303 3304 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3305 { 3306 mutex_lock(&set->tag_list_lock); 3307 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3308 mutex_unlock(&set->tag_list_lock); 3309 } 3310 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3311 3312 /* Enable polling stats and return whether they were already enabled. */ 3313 static bool blk_poll_stats_enable(struct request_queue *q) 3314 { 3315 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3316 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3317 return true; 3318 blk_stat_add_callback(q, q->poll_cb); 3319 return false; 3320 } 3321 3322 static void blk_mq_poll_stats_start(struct request_queue *q) 3323 { 3324 /* 3325 * We don't arm the callback if polling stats are not enabled or the 3326 * callback is already active. 3327 */ 3328 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3329 blk_stat_is_active(q->poll_cb)) 3330 return; 3331 3332 blk_stat_activate_msecs(q->poll_cb, 100); 3333 } 3334 3335 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3336 { 3337 struct request_queue *q = cb->data; 3338 int bucket; 3339 3340 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3341 if (cb->stat[bucket].nr_samples) 3342 q->poll_stat[bucket] = cb->stat[bucket]; 3343 } 3344 } 3345 3346 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3347 struct blk_mq_hw_ctx *hctx, 3348 struct request *rq) 3349 { 3350 unsigned long ret = 0; 3351 int bucket; 3352 3353 /* 3354 * If stats collection isn't on, don't sleep but turn it on for 3355 * future users 3356 */ 3357 if (!blk_poll_stats_enable(q)) 3358 return 0; 3359 3360 /* 3361 * As an optimistic guess, use half of the mean service time 3362 * for this type of request. We can (and should) make this smarter. 3363 * For instance, if the completion latencies are tight, we can 3364 * get closer than just half the mean. This is especially 3365 * important on devices where the completion latencies are longer 3366 * than ~10 usec. We do use the stats for the relevant IO size 3367 * if available which does lead to better estimates. 3368 */ 3369 bucket = blk_mq_poll_stats_bkt(rq); 3370 if (bucket < 0) 3371 return ret; 3372 3373 if (q->poll_stat[bucket].nr_samples) 3374 ret = (q->poll_stat[bucket].mean + 1) / 2; 3375 3376 return ret; 3377 } 3378 3379 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3380 struct blk_mq_hw_ctx *hctx, 3381 struct request *rq) 3382 { 3383 struct hrtimer_sleeper hs; 3384 enum hrtimer_mode mode; 3385 unsigned int nsecs; 3386 ktime_t kt; 3387 3388 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3389 return false; 3390 3391 /* 3392 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3393 * 3394 * 0: use half of prev avg 3395 * >0: use this specific value 3396 */ 3397 if (q->poll_nsec > 0) 3398 nsecs = q->poll_nsec; 3399 else 3400 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3401 3402 if (!nsecs) 3403 return false; 3404 3405 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3406 3407 /* 3408 * This will be replaced with the stats tracking code, using 3409 * 'avg_completion_time / 2' as the pre-sleep target. 3410 */ 3411 kt = nsecs; 3412 3413 mode = HRTIMER_MODE_REL; 3414 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3415 hrtimer_set_expires(&hs.timer, kt); 3416 3417 hrtimer_init_sleeper(&hs, current); 3418 do { 3419 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3420 break; 3421 set_current_state(TASK_UNINTERRUPTIBLE); 3422 hrtimer_start_expires(&hs.timer, mode); 3423 if (hs.task) 3424 io_schedule(); 3425 hrtimer_cancel(&hs.timer); 3426 mode = HRTIMER_MODE_ABS; 3427 } while (hs.task && !signal_pending(current)); 3428 3429 __set_current_state(TASK_RUNNING); 3430 destroy_hrtimer_on_stack(&hs.timer); 3431 return true; 3432 } 3433 3434 static bool blk_mq_poll_hybrid(struct request_queue *q, 3435 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3436 { 3437 struct request *rq; 3438 3439 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3440 return false; 3441 3442 if (!blk_qc_t_is_internal(cookie)) 3443 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3444 else { 3445 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3446 /* 3447 * With scheduling, if the request has completed, we'll 3448 * get a NULL return here, as we clear the sched tag when 3449 * that happens. The request still remains valid, like always, 3450 * so we should be safe with just the NULL check. 3451 */ 3452 if (!rq) 3453 return false; 3454 } 3455 3456 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3457 } 3458 3459 /** 3460 * blk_poll - poll for IO completions 3461 * @q: the queue 3462 * @cookie: cookie passed back at IO submission time 3463 * @spin: whether to spin for completions 3464 * 3465 * Description: 3466 * Poll for completions on the passed in queue. Returns number of 3467 * completed entries found. If @spin is true, then blk_poll will continue 3468 * looping until at least one completion is found, unless the task is 3469 * otherwise marked running (or we need to reschedule). 3470 */ 3471 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3472 { 3473 struct blk_mq_hw_ctx *hctx; 3474 long state; 3475 3476 if (!blk_qc_t_valid(cookie) || 3477 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3478 return 0; 3479 3480 if (current->plug) 3481 blk_flush_plug_list(current->plug, false); 3482 3483 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3484 3485 /* 3486 * If we sleep, have the caller restart the poll loop to reset 3487 * the state. Like for the other success return cases, the 3488 * caller is responsible for checking if the IO completed. If 3489 * the IO isn't complete, we'll get called again and will go 3490 * straight to the busy poll loop. 3491 */ 3492 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3493 return 1; 3494 3495 hctx->poll_considered++; 3496 3497 state = current->state; 3498 do { 3499 int ret; 3500 3501 hctx->poll_invoked++; 3502 3503 ret = q->mq_ops->poll(hctx); 3504 if (ret > 0) { 3505 hctx->poll_success++; 3506 __set_current_state(TASK_RUNNING); 3507 return ret; 3508 } 3509 3510 if (signal_pending_state(state, current)) 3511 __set_current_state(TASK_RUNNING); 3512 3513 if (current->state == TASK_RUNNING) 3514 return 1; 3515 if (ret < 0 || !spin) 3516 break; 3517 cpu_relax(); 3518 } while (!need_resched()); 3519 3520 __set_current_state(TASK_RUNNING); 3521 return 0; 3522 } 3523 EXPORT_SYMBOL_GPL(blk_poll); 3524 3525 unsigned int blk_mq_rq_cpu(struct request *rq) 3526 { 3527 return rq->mq_ctx->cpu; 3528 } 3529 EXPORT_SYMBOL(blk_mq_rq_cpu); 3530 3531 static int __init blk_mq_init(void) 3532 { 3533 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3534 blk_mq_hctx_notify_dead); 3535 return 0; 3536 } 3537 subsys_initcall(blk_mq_init); 3538