xref: /openbmc/linux/block/blk-mq.c (revision adb80490)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41 
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 	int ddir, bytes, bucket;
48 
49 	ddir = rq_data_dir(rq);
50 	bytes = blk_rq_bytes(rq);
51 
52 	bucket = ddir + 2*(ilog2(bytes) - 9);
53 
54 	if (bucket < 0)
55 		return -1;
56 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 
59 	return bucket;
60 }
61 
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 	return !list_empty_careful(&hctx->dispatch) ||
69 		sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			blk_mq_sched_has_work(hctx);
71 }
72 
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 				     struct blk_mq_ctx *ctx)
78 {
79 	const int bit = ctx->index_hw[hctx->type];
80 
81 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 		sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84 
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 				      struct blk_mq_ctx *ctx)
87 {
88 	const int bit = ctx->index_hw[hctx->type];
89 
90 	sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92 
93 struct mq_inflight {
94 	struct hd_struct *part;
95 	unsigned int *inflight;
96 };
97 
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99 				  struct request *rq, void *priv,
100 				  bool reserved)
101 {
102 	struct mq_inflight *mi = priv;
103 
104 	/*
105 	 * index[0] counts the specific partition that was asked for.
106 	 */
107 	if (rq->part == mi->part)
108 		mi->inflight[0]++;
109 
110 	return true;
111 }
112 
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115 	unsigned inflight[2];
116 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 
118 	inflight[0] = inflight[1] = 0;
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return inflight[0];
122 }
123 
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 				     struct request *rq, void *priv,
126 				     bool reserved)
127 {
128 	struct mq_inflight *mi = priv;
129 
130 	if (rq->part == mi->part)
131 		mi->inflight[rq_data_dir(rq)]++;
132 
133 	return true;
134 }
135 
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 			 unsigned int inflight[2])
138 {
139 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
140 
141 	inflight[0] = inflight[1] = 0;
142 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144 
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147 	mutex_lock(&q->mq_freeze_lock);
148 	if (++q->mq_freeze_depth == 1) {
149 		percpu_ref_kill(&q->q_usage_counter);
150 		mutex_unlock(&q->mq_freeze_lock);
151 		if (queue_is_mq(q))
152 			blk_mq_run_hw_queues(q, false);
153 	} else {
154 		mutex_unlock(&q->mq_freeze_lock);
155 	}
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158 
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164 
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 				     unsigned long timeout)
167 {
168 	return wait_event_timeout(q->mq_freeze_wq,
169 					percpu_ref_is_zero(&q->q_usage_counter),
170 					timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173 
174 /*
175  * Guarantee no request is in use, so we can change any data structure of
176  * the queue afterward.
177  */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180 	/*
181 	 * In the !blk_mq case we are only calling this to kill the
182 	 * q_usage_counter, otherwise this increases the freeze depth
183 	 * and waits for it to return to zero.  For this reason there is
184 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 	 * exported to drivers as the only user for unfreeze is blk_mq.
186 	 */
187 	blk_freeze_queue_start(q);
188 	blk_mq_freeze_queue_wait(q);
189 }
190 
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193 	/*
194 	 * ...just an alias to keep freeze and unfreeze actions balanced
195 	 * in the blk_mq_* namespace
196 	 */
197 	blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200 
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203 	mutex_lock(&q->mq_freeze_lock);
204 	q->mq_freeze_depth--;
205 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 	if (!q->mq_freeze_depth) {
207 		percpu_ref_resurrect(&q->q_usage_counter);
208 		wake_up_all(&q->mq_freeze_wq);
209 	}
210 	mutex_unlock(&q->mq_freeze_lock);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213 
214 /*
215  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216  * mpt3sas driver such that this function can be removed.
217  */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223 
224 /**
225  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226  * @q: request queue.
227  *
228  * Note: this function does not prevent that the struct request end_io()
229  * callback function is invoked. Once this function is returned, we make
230  * sure no dispatch can happen until the queue is unquiesced via
231  * blk_mq_unquiesce_queue().
232  */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235 	struct blk_mq_hw_ctx *hctx;
236 	unsigned int i;
237 	bool rcu = false;
238 
239 	blk_mq_quiesce_queue_nowait(q);
240 
241 	queue_for_each_hw_ctx(q, hctx, i) {
242 		if (hctx->flags & BLK_MQ_F_BLOCKING)
243 			synchronize_srcu(hctx->srcu);
244 		else
245 			rcu = true;
246 	}
247 	if (rcu)
248 		synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251 
252 /*
253  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254  * @q: request queue.
255  *
256  * This function recovers queue into the state before quiescing
257  * which is done by blk_mq_quiesce_queue.
258  */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262 
263 	/* dispatch requests which are inserted during quiescing */
264 	blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267 
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270 	struct blk_mq_hw_ctx *hctx;
271 	unsigned int i;
272 
273 	queue_for_each_hw_ctx(q, hctx, i)
274 		if (blk_mq_hw_queue_mapped(hctx))
275 			blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277 
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280 	return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283 
284 /*
285  * Only need start/end time stamping if we have stats enabled, or using
286  * an IO scheduler.
287  */
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
289 {
290 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291 }
292 
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294 		unsigned int tag, unsigned int op)
295 {
296 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 	struct request *rq = tags->static_rqs[tag];
298 	req_flags_t rq_flags = 0;
299 
300 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
301 		rq->tag = -1;
302 		rq->internal_tag = tag;
303 	} else {
304 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305 			rq_flags = RQF_MQ_INFLIGHT;
306 			atomic_inc(&data->hctx->nr_active);
307 		}
308 		rq->tag = tag;
309 		rq->internal_tag = -1;
310 		data->hctx->tags->rqs[rq->tag] = rq;
311 	}
312 
313 	/* csd/requeue_work/fifo_time is initialized before use */
314 	rq->q = data->q;
315 	rq->mq_ctx = data->ctx;
316 	rq->mq_hctx = data->hctx;
317 	rq->rq_flags = rq_flags;
318 	rq->cmd_flags = op;
319 	if (data->flags & BLK_MQ_REQ_PREEMPT)
320 		rq->rq_flags |= RQF_PREEMPT;
321 	if (blk_queue_io_stat(data->q))
322 		rq->rq_flags |= RQF_IO_STAT;
323 	INIT_LIST_HEAD(&rq->queuelist);
324 	INIT_HLIST_NODE(&rq->hash);
325 	RB_CLEAR_NODE(&rq->rb_node);
326 	rq->rq_disk = NULL;
327 	rq->part = NULL;
328 	if (blk_mq_need_time_stamp(rq))
329 		rq->start_time_ns = ktime_get_ns();
330 	else
331 		rq->start_time_ns = 0;
332 	rq->io_start_time_ns = 0;
333 	rq->nr_phys_segments = 0;
334 #if defined(CONFIG_BLK_DEV_INTEGRITY)
335 	rq->nr_integrity_segments = 0;
336 #endif
337 	/* tag was already set */
338 	rq->extra_len = 0;
339 	WRITE_ONCE(rq->deadline, 0);
340 
341 	rq->timeout = 0;
342 
343 	rq->end_io = NULL;
344 	rq->end_io_data = NULL;
345 
346 	data->ctx->rq_dispatched[op_is_sync(op)]++;
347 	refcount_set(&rq->ref, 1);
348 	return rq;
349 }
350 
351 static struct request *blk_mq_get_request(struct request_queue *q,
352 					  struct bio *bio,
353 					  struct blk_mq_alloc_data *data)
354 {
355 	struct elevator_queue *e = q->elevator;
356 	struct request *rq;
357 	unsigned int tag;
358 	bool clear_ctx_on_error = false;
359 
360 	blk_queue_enter_live(q);
361 	data->q = q;
362 	if (likely(!data->ctx)) {
363 		data->ctx = blk_mq_get_ctx(q);
364 		clear_ctx_on_error = true;
365 	}
366 	if (likely(!data->hctx))
367 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
368 						data->ctx);
369 	if (data->cmd_flags & REQ_NOWAIT)
370 		data->flags |= BLK_MQ_REQ_NOWAIT;
371 
372 	if (e) {
373 		data->flags |= BLK_MQ_REQ_INTERNAL;
374 
375 		/*
376 		 * Flush requests are special and go directly to the
377 		 * dispatch list. Don't include reserved tags in the
378 		 * limiting, as it isn't useful.
379 		 */
380 		if (!op_is_flush(data->cmd_flags) &&
381 		    e->type->ops.limit_depth &&
382 		    !(data->flags & BLK_MQ_REQ_RESERVED))
383 			e->type->ops.limit_depth(data->cmd_flags, data);
384 	} else {
385 		blk_mq_tag_busy(data->hctx);
386 	}
387 
388 	tag = blk_mq_get_tag(data);
389 	if (tag == BLK_MQ_TAG_FAIL) {
390 		if (clear_ctx_on_error)
391 			data->ctx = NULL;
392 		blk_queue_exit(q);
393 		return NULL;
394 	}
395 
396 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 	if (!op_is_flush(data->cmd_flags)) {
398 		rq->elv.icq = NULL;
399 		if (e && e->type->ops.prepare_request) {
400 			if (e->type->icq_cache)
401 				blk_mq_sched_assign_ioc(rq);
402 
403 			e->type->ops.prepare_request(rq, bio);
404 			rq->rq_flags |= RQF_ELVPRIV;
405 		}
406 	}
407 	data->hctx->queued++;
408 	return rq;
409 }
410 
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 		blk_mq_req_flags_t flags)
413 {
414 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415 	struct request *rq;
416 	int ret;
417 
418 	ret = blk_queue_enter(q, flags);
419 	if (ret)
420 		return ERR_PTR(ret);
421 
422 	rq = blk_mq_get_request(q, NULL, &alloc_data);
423 	blk_queue_exit(q);
424 
425 	if (!rq)
426 		return ERR_PTR(-EWOULDBLOCK);
427 
428 	rq->__data_len = 0;
429 	rq->__sector = (sector_t) -1;
430 	rq->bio = rq->biotail = NULL;
431 	return rq;
432 }
433 EXPORT_SYMBOL(blk_mq_alloc_request);
434 
435 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
436 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
437 {
438 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
439 	struct request *rq;
440 	unsigned int cpu;
441 	int ret;
442 
443 	/*
444 	 * If the tag allocator sleeps we could get an allocation for a
445 	 * different hardware context.  No need to complicate the low level
446 	 * allocator for this for the rare use case of a command tied to
447 	 * a specific queue.
448 	 */
449 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
450 		return ERR_PTR(-EINVAL);
451 
452 	if (hctx_idx >= q->nr_hw_queues)
453 		return ERR_PTR(-EIO);
454 
455 	ret = blk_queue_enter(q, flags);
456 	if (ret)
457 		return ERR_PTR(ret);
458 
459 	/*
460 	 * Check if the hardware context is actually mapped to anything.
461 	 * If not tell the caller that it should skip this queue.
462 	 */
463 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
464 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
465 		blk_queue_exit(q);
466 		return ERR_PTR(-EXDEV);
467 	}
468 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
469 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
470 
471 	rq = blk_mq_get_request(q, NULL, &alloc_data);
472 	blk_queue_exit(q);
473 
474 	if (!rq)
475 		return ERR_PTR(-EWOULDBLOCK);
476 
477 	return rq;
478 }
479 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
480 
481 static void __blk_mq_free_request(struct request *rq)
482 {
483 	struct request_queue *q = rq->q;
484 	struct blk_mq_ctx *ctx = rq->mq_ctx;
485 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
486 	const int sched_tag = rq->internal_tag;
487 
488 	blk_pm_mark_last_busy(rq);
489 	rq->mq_hctx = NULL;
490 	if (rq->tag != -1)
491 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 	if (sched_tag != -1)
493 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 	blk_mq_sched_restart(hctx);
495 	blk_queue_exit(q);
496 }
497 
498 void blk_mq_free_request(struct request *rq)
499 {
500 	struct request_queue *q = rq->q;
501 	struct elevator_queue *e = q->elevator;
502 	struct blk_mq_ctx *ctx = rq->mq_ctx;
503 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
504 
505 	if (rq->rq_flags & RQF_ELVPRIV) {
506 		if (e && e->type->ops.finish_request)
507 			e->type->ops.finish_request(rq);
508 		if (rq->elv.icq) {
509 			put_io_context(rq->elv.icq->ioc);
510 			rq->elv.icq = NULL;
511 		}
512 	}
513 
514 	ctx->rq_completed[rq_is_sync(rq)]++;
515 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
516 		atomic_dec(&hctx->nr_active);
517 
518 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
519 		laptop_io_completion(q->backing_dev_info);
520 
521 	rq_qos_done(q, rq);
522 
523 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
524 	if (refcount_dec_and_test(&rq->ref))
525 		__blk_mq_free_request(rq);
526 }
527 EXPORT_SYMBOL_GPL(blk_mq_free_request);
528 
529 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
530 {
531 	u64 now = 0;
532 
533 	if (blk_mq_need_time_stamp(rq))
534 		now = ktime_get_ns();
535 
536 	if (rq->rq_flags & RQF_STATS) {
537 		blk_mq_poll_stats_start(rq->q);
538 		blk_stat_add(rq, now);
539 	}
540 
541 	if (rq->internal_tag != -1)
542 		blk_mq_sched_completed_request(rq, now);
543 
544 	blk_account_io_done(rq, now);
545 
546 	if (rq->end_io) {
547 		rq_qos_done(rq->q, rq);
548 		rq->end_io(rq, error);
549 	} else {
550 		blk_mq_free_request(rq);
551 	}
552 }
553 EXPORT_SYMBOL(__blk_mq_end_request);
554 
555 void blk_mq_end_request(struct request *rq, blk_status_t error)
556 {
557 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
558 		BUG();
559 	__blk_mq_end_request(rq, error);
560 }
561 EXPORT_SYMBOL(blk_mq_end_request);
562 
563 static void __blk_mq_complete_request_remote(void *data)
564 {
565 	struct request *rq = data;
566 	struct request_queue *q = rq->q;
567 
568 	q->mq_ops->complete(rq);
569 }
570 
571 static void __blk_mq_complete_request(struct request *rq)
572 {
573 	struct blk_mq_ctx *ctx = rq->mq_ctx;
574 	struct request_queue *q = rq->q;
575 	bool shared = false;
576 	int cpu;
577 
578 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
579 	/*
580 	 * Most of single queue controllers, there is only one irq vector
581 	 * for handling IO completion, and the only irq's affinity is set
582 	 * as all possible CPUs. On most of ARCHs, this affinity means the
583 	 * irq is handled on one specific CPU.
584 	 *
585 	 * So complete IO reqeust in softirq context in case of single queue
586 	 * for not degrading IO performance by irqsoff latency.
587 	 */
588 	if (q->nr_hw_queues == 1) {
589 		__blk_complete_request(rq);
590 		return;
591 	}
592 
593 	/*
594 	 * For a polled request, always complete locallly, it's pointless
595 	 * to redirect the completion.
596 	 */
597 	if ((rq->cmd_flags & REQ_HIPRI) ||
598 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
599 		q->mq_ops->complete(rq);
600 		return;
601 	}
602 
603 	cpu = get_cpu();
604 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
605 		shared = cpus_share_cache(cpu, ctx->cpu);
606 
607 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
608 		rq->csd.func = __blk_mq_complete_request_remote;
609 		rq->csd.info = rq;
610 		rq->csd.flags = 0;
611 		smp_call_function_single_async(ctx->cpu, &rq->csd);
612 	} else {
613 		q->mq_ops->complete(rq);
614 	}
615 	put_cpu();
616 }
617 
618 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
619 	__releases(hctx->srcu)
620 {
621 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
622 		rcu_read_unlock();
623 	else
624 		srcu_read_unlock(hctx->srcu, srcu_idx);
625 }
626 
627 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
628 	__acquires(hctx->srcu)
629 {
630 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
631 		/* shut up gcc false positive */
632 		*srcu_idx = 0;
633 		rcu_read_lock();
634 	} else
635 		*srcu_idx = srcu_read_lock(hctx->srcu);
636 }
637 
638 /**
639  * blk_mq_complete_request - end I/O on a request
640  * @rq:		the request being processed
641  *
642  * Description:
643  *	Ends all I/O on a request. It does not handle partial completions.
644  *	The actual completion happens out-of-order, through a IPI handler.
645  **/
646 bool blk_mq_complete_request(struct request *rq)
647 {
648 	if (unlikely(blk_should_fake_timeout(rq->q)))
649 		return false;
650 	__blk_mq_complete_request(rq);
651 	return true;
652 }
653 EXPORT_SYMBOL(blk_mq_complete_request);
654 
655 void blk_mq_complete_request_sync(struct request *rq)
656 {
657 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658 	rq->q->mq_ops->complete(rq);
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
661 
662 int blk_mq_request_started(struct request *rq)
663 {
664 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
665 }
666 EXPORT_SYMBOL_GPL(blk_mq_request_started);
667 
668 void blk_mq_start_request(struct request *rq)
669 {
670 	struct request_queue *q = rq->q;
671 
672 	trace_block_rq_issue(q, rq);
673 
674 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 		rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 		rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 		rq->rq_flags |= RQF_STATS;
680 		rq_qos_issue(q, rq);
681 	}
682 
683 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684 
685 	blk_add_timer(rq);
686 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687 
688 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 		/*
690 		 * Make sure space for the drain appears.  We know we can do
691 		 * this because max_hw_segments has been adjusted to be one
692 		 * fewer than the device can handle.
693 		 */
694 		rq->nr_phys_segments++;
695 	}
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698 
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 	struct request_queue *q = rq->q;
702 
703 	blk_mq_put_driver_tag(rq);
704 
705 	trace_block_rq_requeue(q, rq);
706 	rq_qos_requeue(q, rq);
707 
708 	if (blk_mq_request_started(rq)) {
709 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 		rq->rq_flags &= ~RQF_TIMED_OUT;
711 		if (q->dma_drain_size && blk_rq_bytes(rq))
712 			rq->nr_phys_segments--;
713 	}
714 }
715 
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718 	__blk_mq_requeue_request(rq);
719 
720 	/* this request will be re-inserted to io scheduler queue */
721 	blk_mq_sched_requeue_request(rq);
722 
723 	BUG_ON(!list_empty(&rq->queuelist));
724 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727 
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730 	struct request_queue *q =
731 		container_of(work, struct request_queue, requeue_work.work);
732 	LIST_HEAD(rq_list);
733 	struct request *rq, *next;
734 
735 	spin_lock_irq(&q->requeue_lock);
736 	list_splice_init(&q->requeue_list, &rq_list);
737 	spin_unlock_irq(&q->requeue_lock);
738 
739 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
741 			continue;
742 
743 		rq->rq_flags &= ~RQF_SOFTBARRIER;
744 		list_del_init(&rq->queuelist);
745 		/*
746 		 * If RQF_DONTPREP, rq has contained some driver specific
747 		 * data, so insert it to hctx dispatch list to avoid any
748 		 * merge.
749 		 */
750 		if (rq->rq_flags & RQF_DONTPREP)
751 			blk_mq_request_bypass_insert(rq, false);
752 		else
753 			blk_mq_sched_insert_request(rq, true, false, false);
754 	}
755 
756 	while (!list_empty(&rq_list)) {
757 		rq = list_entry(rq_list.next, struct request, queuelist);
758 		list_del_init(&rq->queuelist);
759 		blk_mq_sched_insert_request(rq, false, false, false);
760 	}
761 
762 	blk_mq_run_hw_queues(q, false);
763 }
764 
765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
766 				bool kick_requeue_list)
767 {
768 	struct request_queue *q = rq->q;
769 	unsigned long flags;
770 
771 	/*
772 	 * We abuse this flag that is otherwise used by the I/O scheduler to
773 	 * request head insertion from the workqueue.
774 	 */
775 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
776 
777 	spin_lock_irqsave(&q->requeue_lock, flags);
778 	if (at_head) {
779 		rq->rq_flags |= RQF_SOFTBARRIER;
780 		list_add(&rq->queuelist, &q->requeue_list);
781 	} else {
782 		list_add_tail(&rq->queuelist, &q->requeue_list);
783 	}
784 	spin_unlock_irqrestore(&q->requeue_lock, flags);
785 
786 	if (kick_requeue_list)
787 		blk_mq_kick_requeue_list(q);
788 }
789 
790 void blk_mq_kick_requeue_list(struct request_queue *q)
791 {
792 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
793 }
794 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
795 
796 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
797 				    unsigned long msecs)
798 {
799 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
800 				    msecs_to_jiffies(msecs));
801 }
802 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
803 
804 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
805 {
806 	if (tag < tags->nr_tags) {
807 		prefetch(tags->rqs[tag]);
808 		return tags->rqs[tag];
809 	}
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(blk_mq_tag_to_rq);
814 
815 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
816 			       void *priv, bool reserved)
817 {
818 	/*
819 	 * If we find a request that is inflight and the queue matches,
820 	 * we know the queue is busy. Return false to stop the iteration.
821 	 */
822 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
823 		bool *busy = priv;
824 
825 		*busy = true;
826 		return false;
827 	}
828 
829 	return true;
830 }
831 
832 bool blk_mq_queue_inflight(struct request_queue *q)
833 {
834 	bool busy = false;
835 
836 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
837 	return busy;
838 }
839 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
840 
841 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
842 {
843 	req->rq_flags |= RQF_TIMED_OUT;
844 	if (req->q->mq_ops->timeout) {
845 		enum blk_eh_timer_return ret;
846 
847 		ret = req->q->mq_ops->timeout(req, reserved);
848 		if (ret == BLK_EH_DONE)
849 			return;
850 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
851 	}
852 
853 	blk_add_timer(req);
854 }
855 
856 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
857 {
858 	unsigned long deadline;
859 
860 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
861 		return false;
862 	if (rq->rq_flags & RQF_TIMED_OUT)
863 		return false;
864 
865 	deadline = READ_ONCE(rq->deadline);
866 	if (time_after_eq(jiffies, deadline))
867 		return true;
868 
869 	if (*next == 0)
870 		*next = deadline;
871 	else if (time_after(*next, deadline))
872 		*next = deadline;
873 	return false;
874 }
875 
876 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
877 		struct request *rq, void *priv, bool reserved)
878 {
879 	unsigned long *next = priv;
880 
881 	/*
882 	 * Just do a quick check if it is expired before locking the request in
883 	 * so we're not unnecessarilly synchronizing across CPUs.
884 	 */
885 	if (!blk_mq_req_expired(rq, next))
886 		return true;
887 
888 	/*
889 	 * We have reason to believe the request may be expired. Take a
890 	 * reference on the request to lock this request lifetime into its
891 	 * currently allocated context to prevent it from being reallocated in
892 	 * the event the completion by-passes this timeout handler.
893 	 *
894 	 * If the reference was already released, then the driver beat the
895 	 * timeout handler to posting a natural completion.
896 	 */
897 	if (!refcount_inc_not_zero(&rq->ref))
898 		return true;
899 
900 	/*
901 	 * The request is now locked and cannot be reallocated underneath the
902 	 * timeout handler's processing. Re-verify this exact request is truly
903 	 * expired; if it is not expired, then the request was completed and
904 	 * reallocated as a new request.
905 	 */
906 	if (blk_mq_req_expired(rq, next))
907 		blk_mq_rq_timed_out(rq, reserved);
908 	if (refcount_dec_and_test(&rq->ref))
909 		__blk_mq_free_request(rq);
910 
911 	return true;
912 }
913 
914 static void blk_mq_timeout_work(struct work_struct *work)
915 {
916 	struct request_queue *q =
917 		container_of(work, struct request_queue, timeout_work);
918 	unsigned long next = 0;
919 	struct blk_mq_hw_ctx *hctx;
920 	int i;
921 
922 	/* A deadlock might occur if a request is stuck requiring a
923 	 * timeout at the same time a queue freeze is waiting
924 	 * completion, since the timeout code would not be able to
925 	 * acquire the queue reference here.
926 	 *
927 	 * That's why we don't use blk_queue_enter here; instead, we use
928 	 * percpu_ref_tryget directly, because we need to be able to
929 	 * obtain a reference even in the short window between the queue
930 	 * starting to freeze, by dropping the first reference in
931 	 * blk_freeze_queue_start, and the moment the last request is
932 	 * consumed, marked by the instant q_usage_counter reaches
933 	 * zero.
934 	 */
935 	if (!percpu_ref_tryget(&q->q_usage_counter))
936 		return;
937 
938 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
939 
940 	if (next != 0) {
941 		mod_timer(&q->timeout, next);
942 	} else {
943 		/*
944 		 * Request timeouts are handled as a forward rolling timer. If
945 		 * we end up here it means that no requests are pending and
946 		 * also that no request has been pending for a while. Mark
947 		 * each hctx as idle.
948 		 */
949 		queue_for_each_hw_ctx(q, hctx, i) {
950 			/* the hctx may be unmapped, so check it here */
951 			if (blk_mq_hw_queue_mapped(hctx))
952 				blk_mq_tag_idle(hctx);
953 		}
954 	}
955 	blk_queue_exit(q);
956 }
957 
958 struct flush_busy_ctx_data {
959 	struct blk_mq_hw_ctx *hctx;
960 	struct list_head *list;
961 };
962 
963 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
964 {
965 	struct flush_busy_ctx_data *flush_data = data;
966 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
967 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
968 	enum hctx_type type = hctx->type;
969 
970 	spin_lock(&ctx->lock);
971 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
972 	sbitmap_clear_bit(sb, bitnr);
973 	spin_unlock(&ctx->lock);
974 	return true;
975 }
976 
977 /*
978  * Process software queues that have been marked busy, splicing them
979  * to the for-dispatch
980  */
981 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
982 {
983 	struct flush_busy_ctx_data data = {
984 		.hctx = hctx,
985 		.list = list,
986 	};
987 
988 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
989 }
990 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
991 
992 struct dispatch_rq_data {
993 	struct blk_mq_hw_ctx *hctx;
994 	struct request *rq;
995 };
996 
997 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
998 		void *data)
999 {
1000 	struct dispatch_rq_data *dispatch_data = data;
1001 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1002 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1003 	enum hctx_type type = hctx->type;
1004 
1005 	spin_lock(&ctx->lock);
1006 	if (!list_empty(&ctx->rq_lists[type])) {
1007 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1008 		list_del_init(&dispatch_data->rq->queuelist);
1009 		if (list_empty(&ctx->rq_lists[type]))
1010 			sbitmap_clear_bit(sb, bitnr);
1011 	}
1012 	spin_unlock(&ctx->lock);
1013 
1014 	return !dispatch_data->rq;
1015 }
1016 
1017 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1018 					struct blk_mq_ctx *start)
1019 {
1020 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1021 	struct dispatch_rq_data data = {
1022 		.hctx = hctx,
1023 		.rq   = NULL,
1024 	};
1025 
1026 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1027 			       dispatch_rq_from_ctx, &data);
1028 
1029 	return data.rq;
1030 }
1031 
1032 static inline unsigned int queued_to_index(unsigned int queued)
1033 {
1034 	if (!queued)
1035 		return 0;
1036 
1037 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1038 }
1039 
1040 bool blk_mq_get_driver_tag(struct request *rq)
1041 {
1042 	struct blk_mq_alloc_data data = {
1043 		.q = rq->q,
1044 		.hctx = rq->mq_hctx,
1045 		.flags = BLK_MQ_REQ_NOWAIT,
1046 		.cmd_flags = rq->cmd_flags,
1047 	};
1048 	bool shared;
1049 
1050 	if (rq->tag != -1)
1051 		goto done;
1052 
1053 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1054 		data.flags |= BLK_MQ_REQ_RESERVED;
1055 
1056 	shared = blk_mq_tag_busy(data.hctx);
1057 	rq->tag = blk_mq_get_tag(&data);
1058 	if (rq->tag >= 0) {
1059 		if (shared) {
1060 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1061 			atomic_inc(&data.hctx->nr_active);
1062 		}
1063 		data.hctx->tags->rqs[rq->tag] = rq;
1064 	}
1065 
1066 done:
1067 	return rq->tag != -1;
1068 }
1069 
1070 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1071 				int flags, void *key)
1072 {
1073 	struct blk_mq_hw_ctx *hctx;
1074 
1075 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1076 
1077 	spin_lock(&hctx->dispatch_wait_lock);
1078 	if (!list_empty(&wait->entry)) {
1079 		struct sbitmap_queue *sbq;
1080 
1081 		list_del_init(&wait->entry);
1082 		sbq = &hctx->tags->bitmap_tags;
1083 		atomic_dec(&sbq->ws_active);
1084 	}
1085 	spin_unlock(&hctx->dispatch_wait_lock);
1086 
1087 	blk_mq_run_hw_queue(hctx, true);
1088 	return 1;
1089 }
1090 
1091 /*
1092  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1093  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1094  * restart. For both cases, take care to check the condition again after
1095  * marking us as waiting.
1096  */
1097 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1098 				 struct request *rq)
1099 {
1100 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1101 	struct wait_queue_head *wq;
1102 	wait_queue_entry_t *wait;
1103 	bool ret;
1104 
1105 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1106 		blk_mq_sched_mark_restart_hctx(hctx);
1107 
1108 		/*
1109 		 * It's possible that a tag was freed in the window between the
1110 		 * allocation failure and adding the hardware queue to the wait
1111 		 * queue.
1112 		 *
1113 		 * Don't clear RESTART here, someone else could have set it.
1114 		 * At most this will cost an extra queue run.
1115 		 */
1116 		return blk_mq_get_driver_tag(rq);
1117 	}
1118 
1119 	wait = &hctx->dispatch_wait;
1120 	if (!list_empty_careful(&wait->entry))
1121 		return false;
1122 
1123 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1124 
1125 	spin_lock_irq(&wq->lock);
1126 	spin_lock(&hctx->dispatch_wait_lock);
1127 	if (!list_empty(&wait->entry)) {
1128 		spin_unlock(&hctx->dispatch_wait_lock);
1129 		spin_unlock_irq(&wq->lock);
1130 		return false;
1131 	}
1132 
1133 	atomic_inc(&sbq->ws_active);
1134 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1135 	__add_wait_queue(wq, wait);
1136 
1137 	/*
1138 	 * It's possible that a tag was freed in the window between the
1139 	 * allocation failure and adding the hardware queue to the wait
1140 	 * queue.
1141 	 */
1142 	ret = blk_mq_get_driver_tag(rq);
1143 	if (!ret) {
1144 		spin_unlock(&hctx->dispatch_wait_lock);
1145 		spin_unlock_irq(&wq->lock);
1146 		return false;
1147 	}
1148 
1149 	/*
1150 	 * We got a tag, remove ourselves from the wait queue to ensure
1151 	 * someone else gets the wakeup.
1152 	 */
1153 	list_del_init(&wait->entry);
1154 	atomic_dec(&sbq->ws_active);
1155 	spin_unlock(&hctx->dispatch_wait_lock);
1156 	spin_unlock_irq(&wq->lock);
1157 
1158 	return true;
1159 }
1160 
1161 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1162 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1163 /*
1164  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1165  * - EWMA is one simple way to compute running average value
1166  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1167  * - take 4 as factor for avoiding to get too small(0) result, and this
1168  *   factor doesn't matter because EWMA decreases exponentially
1169  */
1170 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1171 {
1172 	unsigned int ewma;
1173 
1174 	if (hctx->queue->elevator)
1175 		return;
1176 
1177 	ewma = hctx->dispatch_busy;
1178 
1179 	if (!ewma && !busy)
1180 		return;
1181 
1182 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1183 	if (busy)
1184 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1185 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1186 
1187 	hctx->dispatch_busy = ewma;
1188 }
1189 
1190 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1191 
1192 /*
1193  * Returns true if we did some work AND can potentially do more.
1194  */
1195 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1196 			     bool got_budget)
1197 {
1198 	struct blk_mq_hw_ctx *hctx;
1199 	struct request *rq, *nxt;
1200 	bool no_tag = false;
1201 	int errors, queued;
1202 	blk_status_t ret = BLK_STS_OK;
1203 
1204 	if (list_empty(list))
1205 		return false;
1206 
1207 	WARN_ON(!list_is_singular(list) && got_budget);
1208 
1209 	/*
1210 	 * Now process all the entries, sending them to the driver.
1211 	 */
1212 	errors = queued = 0;
1213 	do {
1214 		struct blk_mq_queue_data bd;
1215 
1216 		rq = list_first_entry(list, struct request, queuelist);
1217 
1218 		hctx = rq->mq_hctx;
1219 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1220 			break;
1221 
1222 		if (!blk_mq_get_driver_tag(rq)) {
1223 			/*
1224 			 * The initial allocation attempt failed, so we need to
1225 			 * rerun the hardware queue when a tag is freed. The
1226 			 * waitqueue takes care of that. If the queue is run
1227 			 * before we add this entry back on the dispatch list,
1228 			 * we'll re-run it below.
1229 			 */
1230 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1231 				blk_mq_put_dispatch_budget(hctx);
1232 				/*
1233 				 * For non-shared tags, the RESTART check
1234 				 * will suffice.
1235 				 */
1236 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1237 					no_tag = true;
1238 				break;
1239 			}
1240 		}
1241 
1242 		list_del_init(&rq->queuelist);
1243 
1244 		bd.rq = rq;
1245 
1246 		/*
1247 		 * Flag last if we have no more requests, or if we have more
1248 		 * but can't assign a driver tag to it.
1249 		 */
1250 		if (list_empty(list))
1251 			bd.last = true;
1252 		else {
1253 			nxt = list_first_entry(list, struct request, queuelist);
1254 			bd.last = !blk_mq_get_driver_tag(nxt);
1255 		}
1256 
1257 		ret = q->mq_ops->queue_rq(hctx, &bd);
1258 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1259 			/*
1260 			 * If an I/O scheduler has been configured and we got a
1261 			 * driver tag for the next request already, free it
1262 			 * again.
1263 			 */
1264 			if (!list_empty(list)) {
1265 				nxt = list_first_entry(list, struct request, queuelist);
1266 				blk_mq_put_driver_tag(nxt);
1267 			}
1268 			list_add(&rq->queuelist, list);
1269 			__blk_mq_requeue_request(rq);
1270 			break;
1271 		}
1272 
1273 		if (unlikely(ret != BLK_STS_OK)) {
1274 			errors++;
1275 			blk_mq_end_request(rq, BLK_STS_IOERR);
1276 			continue;
1277 		}
1278 
1279 		queued++;
1280 	} while (!list_empty(list));
1281 
1282 	hctx->dispatched[queued_to_index(queued)]++;
1283 
1284 	/*
1285 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1286 	 * that is where we will continue on next queue run.
1287 	 */
1288 	if (!list_empty(list)) {
1289 		bool needs_restart;
1290 
1291 		/*
1292 		 * If we didn't flush the entire list, we could have told
1293 		 * the driver there was more coming, but that turned out to
1294 		 * be a lie.
1295 		 */
1296 		if (q->mq_ops->commit_rqs)
1297 			q->mq_ops->commit_rqs(hctx);
1298 
1299 		spin_lock(&hctx->lock);
1300 		list_splice_init(list, &hctx->dispatch);
1301 		spin_unlock(&hctx->lock);
1302 
1303 		/*
1304 		 * If SCHED_RESTART was set by the caller of this function and
1305 		 * it is no longer set that means that it was cleared by another
1306 		 * thread and hence that a queue rerun is needed.
1307 		 *
1308 		 * If 'no_tag' is set, that means that we failed getting
1309 		 * a driver tag with an I/O scheduler attached. If our dispatch
1310 		 * waitqueue is no longer active, ensure that we run the queue
1311 		 * AFTER adding our entries back to the list.
1312 		 *
1313 		 * If no I/O scheduler has been configured it is possible that
1314 		 * the hardware queue got stopped and restarted before requests
1315 		 * were pushed back onto the dispatch list. Rerun the queue to
1316 		 * avoid starvation. Notes:
1317 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1318 		 *   been stopped before rerunning a queue.
1319 		 * - Some but not all block drivers stop a queue before
1320 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1321 		 *   and dm-rq.
1322 		 *
1323 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1324 		 * bit is set, run queue after a delay to avoid IO stalls
1325 		 * that could otherwise occur if the queue is idle.
1326 		 */
1327 		needs_restart = blk_mq_sched_needs_restart(hctx);
1328 		if (!needs_restart ||
1329 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1330 			blk_mq_run_hw_queue(hctx, true);
1331 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1332 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1333 
1334 		blk_mq_update_dispatch_busy(hctx, true);
1335 		return false;
1336 	} else
1337 		blk_mq_update_dispatch_busy(hctx, false);
1338 
1339 	/*
1340 	 * If the host/device is unable to accept more work, inform the
1341 	 * caller of that.
1342 	 */
1343 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1344 		return false;
1345 
1346 	return (queued + errors) != 0;
1347 }
1348 
1349 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1350 {
1351 	int srcu_idx;
1352 
1353 	/*
1354 	 * We should be running this queue from one of the CPUs that
1355 	 * are mapped to it.
1356 	 *
1357 	 * There are at least two related races now between setting
1358 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1359 	 * __blk_mq_run_hw_queue():
1360 	 *
1361 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1362 	 *   but later it becomes online, then this warning is harmless
1363 	 *   at all
1364 	 *
1365 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1366 	 *   but later it becomes offline, then the warning can't be
1367 	 *   triggered, and we depend on blk-mq timeout handler to
1368 	 *   handle dispatched requests to this hctx
1369 	 */
1370 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1371 		cpu_online(hctx->next_cpu)) {
1372 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1373 			raw_smp_processor_id(),
1374 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1375 		dump_stack();
1376 	}
1377 
1378 	/*
1379 	 * We can't run the queue inline with ints disabled. Ensure that
1380 	 * we catch bad users of this early.
1381 	 */
1382 	WARN_ON_ONCE(in_interrupt());
1383 
1384 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1385 
1386 	hctx_lock(hctx, &srcu_idx);
1387 	blk_mq_sched_dispatch_requests(hctx);
1388 	hctx_unlock(hctx, srcu_idx);
1389 }
1390 
1391 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1392 {
1393 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1394 
1395 	if (cpu >= nr_cpu_ids)
1396 		cpu = cpumask_first(hctx->cpumask);
1397 	return cpu;
1398 }
1399 
1400 /*
1401  * It'd be great if the workqueue API had a way to pass
1402  * in a mask and had some smarts for more clever placement.
1403  * For now we just round-robin here, switching for every
1404  * BLK_MQ_CPU_WORK_BATCH queued items.
1405  */
1406 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1407 {
1408 	bool tried = false;
1409 	int next_cpu = hctx->next_cpu;
1410 
1411 	if (hctx->queue->nr_hw_queues == 1)
1412 		return WORK_CPU_UNBOUND;
1413 
1414 	if (--hctx->next_cpu_batch <= 0) {
1415 select_cpu:
1416 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1417 				cpu_online_mask);
1418 		if (next_cpu >= nr_cpu_ids)
1419 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1420 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1421 	}
1422 
1423 	/*
1424 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1425 	 * and it should only happen in the path of handling CPU DEAD.
1426 	 */
1427 	if (!cpu_online(next_cpu)) {
1428 		if (!tried) {
1429 			tried = true;
1430 			goto select_cpu;
1431 		}
1432 
1433 		/*
1434 		 * Make sure to re-select CPU next time once after CPUs
1435 		 * in hctx->cpumask become online again.
1436 		 */
1437 		hctx->next_cpu = next_cpu;
1438 		hctx->next_cpu_batch = 1;
1439 		return WORK_CPU_UNBOUND;
1440 	}
1441 
1442 	hctx->next_cpu = next_cpu;
1443 	return next_cpu;
1444 }
1445 
1446 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1447 					unsigned long msecs)
1448 {
1449 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1450 		return;
1451 
1452 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1453 		int cpu = get_cpu();
1454 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1455 			__blk_mq_run_hw_queue(hctx);
1456 			put_cpu();
1457 			return;
1458 		}
1459 
1460 		put_cpu();
1461 	}
1462 
1463 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1464 				    msecs_to_jiffies(msecs));
1465 }
1466 
1467 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1468 {
1469 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1470 }
1471 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1472 
1473 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1474 {
1475 	int srcu_idx;
1476 	bool need_run;
1477 
1478 	/*
1479 	 * When queue is quiesced, we may be switching io scheduler, or
1480 	 * updating nr_hw_queues, or other things, and we can't run queue
1481 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1482 	 *
1483 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1484 	 * quiesced.
1485 	 */
1486 	hctx_lock(hctx, &srcu_idx);
1487 	need_run = !blk_queue_quiesced(hctx->queue) &&
1488 		blk_mq_hctx_has_pending(hctx);
1489 	hctx_unlock(hctx, srcu_idx);
1490 
1491 	if (need_run) {
1492 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1493 		return true;
1494 	}
1495 
1496 	return false;
1497 }
1498 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1499 
1500 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1501 {
1502 	struct blk_mq_hw_ctx *hctx;
1503 	int i;
1504 
1505 	queue_for_each_hw_ctx(q, hctx, i) {
1506 		if (blk_mq_hctx_stopped(hctx))
1507 			continue;
1508 
1509 		blk_mq_run_hw_queue(hctx, async);
1510 	}
1511 }
1512 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1513 
1514 /**
1515  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1516  * @q: request queue.
1517  *
1518  * The caller is responsible for serializing this function against
1519  * blk_mq_{start,stop}_hw_queue().
1520  */
1521 bool blk_mq_queue_stopped(struct request_queue *q)
1522 {
1523 	struct blk_mq_hw_ctx *hctx;
1524 	int i;
1525 
1526 	queue_for_each_hw_ctx(q, hctx, i)
1527 		if (blk_mq_hctx_stopped(hctx))
1528 			return true;
1529 
1530 	return false;
1531 }
1532 EXPORT_SYMBOL(blk_mq_queue_stopped);
1533 
1534 /*
1535  * This function is often used for pausing .queue_rq() by driver when
1536  * there isn't enough resource or some conditions aren't satisfied, and
1537  * BLK_STS_RESOURCE is usually returned.
1538  *
1539  * We do not guarantee that dispatch can be drained or blocked
1540  * after blk_mq_stop_hw_queue() returns. Please use
1541  * blk_mq_quiesce_queue() for that requirement.
1542  */
1543 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1544 {
1545 	cancel_delayed_work(&hctx->run_work);
1546 
1547 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1548 }
1549 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1550 
1551 /*
1552  * This function is often used for pausing .queue_rq() by driver when
1553  * there isn't enough resource or some conditions aren't satisfied, and
1554  * BLK_STS_RESOURCE is usually returned.
1555  *
1556  * We do not guarantee that dispatch can be drained or blocked
1557  * after blk_mq_stop_hw_queues() returns. Please use
1558  * blk_mq_quiesce_queue() for that requirement.
1559  */
1560 void blk_mq_stop_hw_queues(struct request_queue *q)
1561 {
1562 	struct blk_mq_hw_ctx *hctx;
1563 	int i;
1564 
1565 	queue_for_each_hw_ctx(q, hctx, i)
1566 		blk_mq_stop_hw_queue(hctx);
1567 }
1568 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1569 
1570 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1571 {
1572 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1573 
1574 	blk_mq_run_hw_queue(hctx, false);
1575 }
1576 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1577 
1578 void blk_mq_start_hw_queues(struct request_queue *q)
1579 {
1580 	struct blk_mq_hw_ctx *hctx;
1581 	int i;
1582 
1583 	queue_for_each_hw_ctx(q, hctx, i)
1584 		blk_mq_start_hw_queue(hctx);
1585 }
1586 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1587 
1588 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1589 {
1590 	if (!blk_mq_hctx_stopped(hctx))
1591 		return;
1592 
1593 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1594 	blk_mq_run_hw_queue(hctx, async);
1595 }
1596 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1597 
1598 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1599 {
1600 	struct blk_mq_hw_ctx *hctx;
1601 	int i;
1602 
1603 	queue_for_each_hw_ctx(q, hctx, i)
1604 		blk_mq_start_stopped_hw_queue(hctx, async);
1605 }
1606 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1607 
1608 static void blk_mq_run_work_fn(struct work_struct *work)
1609 {
1610 	struct blk_mq_hw_ctx *hctx;
1611 
1612 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1613 
1614 	/*
1615 	 * If we are stopped, don't run the queue.
1616 	 */
1617 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1618 		return;
1619 
1620 	__blk_mq_run_hw_queue(hctx);
1621 }
1622 
1623 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1624 					    struct request *rq,
1625 					    bool at_head)
1626 {
1627 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1628 	enum hctx_type type = hctx->type;
1629 
1630 	lockdep_assert_held(&ctx->lock);
1631 
1632 	trace_block_rq_insert(hctx->queue, rq);
1633 
1634 	if (at_head)
1635 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1636 	else
1637 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1638 }
1639 
1640 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1641 			     bool at_head)
1642 {
1643 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1644 
1645 	lockdep_assert_held(&ctx->lock);
1646 
1647 	__blk_mq_insert_req_list(hctx, rq, at_head);
1648 	blk_mq_hctx_mark_pending(hctx, ctx);
1649 }
1650 
1651 /*
1652  * Should only be used carefully, when the caller knows we want to
1653  * bypass a potential IO scheduler on the target device.
1654  */
1655 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1656 {
1657 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1658 
1659 	spin_lock(&hctx->lock);
1660 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1661 	spin_unlock(&hctx->lock);
1662 
1663 	if (run_queue)
1664 		blk_mq_run_hw_queue(hctx, false);
1665 }
1666 
1667 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1668 			    struct list_head *list)
1669 
1670 {
1671 	struct request *rq;
1672 	enum hctx_type type = hctx->type;
1673 
1674 	/*
1675 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1676 	 * offline now
1677 	 */
1678 	list_for_each_entry(rq, list, queuelist) {
1679 		BUG_ON(rq->mq_ctx != ctx);
1680 		trace_block_rq_insert(hctx->queue, rq);
1681 	}
1682 
1683 	spin_lock(&ctx->lock);
1684 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1685 	blk_mq_hctx_mark_pending(hctx, ctx);
1686 	spin_unlock(&ctx->lock);
1687 }
1688 
1689 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1690 {
1691 	struct request *rqa = container_of(a, struct request, queuelist);
1692 	struct request *rqb = container_of(b, struct request, queuelist);
1693 
1694 	if (rqa->mq_ctx < rqb->mq_ctx)
1695 		return -1;
1696 	else if (rqa->mq_ctx > rqb->mq_ctx)
1697 		return 1;
1698 	else if (rqa->mq_hctx < rqb->mq_hctx)
1699 		return -1;
1700 	else if (rqa->mq_hctx > rqb->mq_hctx)
1701 		return 1;
1702 
1703 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1704 }
1705 
1706 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1707 {
1708 	struct blk_mq_hw_ctx *this_hctx;
1709 	struct blk_mq_ctx *this_ctx;
1710 	struct request_queue *this_q;
1711 	struct request *rq;
1712 	LIST_HEAD(list);
1713 	LIST_HEAD(rq_list);
1714 	unsigned int depth;
1715 
1716 	list_splice_init(&plug->mq_list, &list);
1717 
1718 	if (plug->rq_count > 2 && plug->multiple_queues)
1719 		list_sort(NULL, &list, plug_rq_cmp);
1720 
1721 	plug->rq_count = 0;
1722 
1723 	this_q = NULL;
1724 	this_hctx = NULL;
1725 	this_ctx = NULL;
1726 	depth = 0;
1727 
1728 	while (!list_empty(&list)) {
1729 		rq = list_entry_rq(list.next);
1730 		list_del_init(&rq->queuelist);
1731 		BUG_ON(!rq->q);
1732 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1733 			if (this_hctx) {
1734 				trace_block_unplug(this_q, depth, !from_schedule);
1735 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1736 								&rq_list,
1737 								from_schedule);
1738 			}
1739 
1740 			this_q = rq->q;
1741 			this_ctx = rq->mq_ctx;
1742 			this_hctx = rq->mq_hctx;
1743 			depth = 0;
1744 		}
1745 
1746 		depth++;
1747 		list_add_tail(&rq->queuelist, &rq_list);
1748 	}
1749 
1750 	/*
1751 	 * If 'this_hctx' is set, we know we have entries to complete
1752 	 * on 'rq_list'. Do those.
1753 	 */
1754 	if (this_hctx) {
1755 		trace_block_unplug(this_q, depth, !from_schedule);
1756 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1757 						from_schedule);
1758 	}
1759 }
1760 
1761 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1762 		unsigned int nr_segs)
1763 {
1764 	if (bio->bi_opf & REQ_RAHEAD)
1765 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1766 
1767 	rq->__sector = bio->bi_iter.bi_sector;
1768 	rq->write_hint = bio->bi_write_hint;
1769 	blk_rq_bio_prep(rq, bio, nr_segs);
1770 
1771 	blk_account_io_start(rq, true);
1772 }
1773 
1774 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1775 					    struct request *rq,
1776 					    blk_qc_t *cookie, bool last)
1777 {
1778 	struct request_queue *q = rq->q;
1779 	struct blk_mq_queue_data bd = {
1780 		.rq = rq,
1781 		.last = last,
1782 	};
1783 	blk_qc_t new_cookie;
1784 	blk_status_t ret;
1785 
1786 	new_cookie = request_to_qc_t(hctx, rq);
1787 
1788 	/*
1789 	 * For OK queue, we are done. For error, caller may kill it.
1790 	 * Any other error (busy), just add it to our list as we
1791 	 * previously would have done.
1792 	 */
1793 	ret = q->mq_ops->queue_rq(hctx, &bd);
1794 	switch (ret) {
1795 	case BLK_STS_OK:
1796 		blk_mq_update_dispatch_busy(hctx, false);
1797 		*cookie = new_cookie;
1798 		break;
1799 	case BLK_STS_RESOURCE:
1800 	case BLK_STS_DEV_RESOURCE:
1801 		blk_mq_update_dispatch_busy(hctx, true);
1802 		__blk_mq_requeue_request(rq);
1803 		break;
1804 	default:
1805 		blk_mq_update_dispatch_busy(hctx, false);
1806 		*cookie = BLK_QC_T_NONE;
1807 		break;
1808 	}
1809 
1810 	return ret;
1811 }
1812 
1813 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814 						struct request *rq,
1815 						blk_qc_t *cookie,
1816 						bool bypass_insert, bool last)
1817 {
1818 	struct request_queue *q = rq->q;
1819 	bool run_queue = true;
1820 
1821 	/*
1822 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1823 	 *
1824 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1825 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1826 	 * and avoid driver to try to dispatch again.
1827 	 */
1828 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1829 		run_queue = false;
1830 		bypass_insert = false;
1831 		goto insert;
1832 	}
1833 
1834 	if (q->elevator && !bypass_insert)
1835 		goto insert;
1836 
1837 	if (!blk_mq_get_dispatch_budget(hctx))
1838 		goto insert;
1839 
1840 	if (!blk_mq_get_driver_tag(rq)) {
1841 		blk_mq_put_dispatch_budget(hctx);
1842 		goto insert;
1843 	}
1844 
1845 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1846 insert:
1847 	if (bypass_insert)
1848 		return BLK_STS_RESOURCE;
1849 
1850 	blk_mq_request_bypass_insert(rq, run_queue);
1851 	return BLK_STS_OK;
1852 }
1853 
1854 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1855 		struct request *rq, blk_qc_t *cookie)
1856 {
1857 	blk_status_t ret;
1858 	int srcu_idx;
1859 
1860 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1861 
1862 	hctx_lock(hctx, &srcu_idx);
1863 
1864 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1865 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1866 		blk_mq_request_bypass_insert(rq, true);
1867 	else if (ret != BLK_STS_OK)
1868 		blk_mq_end_request(rq, ret);
1869 
1870 	hctx_unlock(hctx, srcu_idx);
1871 }
1872 
1873 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1874 {
1875 	blk_status_t ret;
1876 	int srcu_idx;
1877 	blk_qc_t unused_cookie;
1878 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1879 
1880 	hctx_lock(hctx, &srcu_idx);
1881 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1882 	hctx_unlock(hctx, srcu_idx);
1883 
1884 	return ret;
1885 }
1886 
1887 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1888 		struct list_head *list)
1889 {
1890 	while (!list_empty(list)) {
1891 		blk_status_t ret;
1892 		struct request *rq = list_first_entry(list, struct request,
1893 				queuelist);
1894 
1895 		list_del_init(&rq->queuelist);
1896 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1897 		if (ret != BLK_STS_OK) {
1898 			if (ret == BLK_STS_RESOURCE ||
1899 					ret == BLK_STS_DEV_RESOURCE) {
1900 				blk_mq_request_bypass_insert(rq,
1901 							list_empty(list));
1902 				break;
1903 			}
1904 			blk_mq_end_request(rq, ret);
1905 		}
1906 	}
1907 
1908 	/*
1909 	 * If we didn't flush the entire list, we could have told
1910 	 * the driver there was more coming, but that turned out to
1911 	 * be a lie.
1912 	 */
1913 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1914 		hctx->queue->mq_ops->commit_rqs(hctx);
1915 }
1916 
1917 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1918 {
1919 	list_add_tail(&rq->queuelist, &plug->mq_list);
1920 	plug->rq_count++;
1921 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1922 		struct request *tmp;
1923 
1924 		tmp = list_first_entry(&plug->mq_list, struct request,
1925 						queuelist);
1926 		if (tmp->q != rq->q)
1927 			plug->multiple_queues = true;
1928 	}
1929 }
1930 
1931 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1932 {
1933 	const int is_sync = op_is_sync(bio->bi_opf);
1934 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1935 	struct blk_mq_alloc_data data = { .flags = 0};
1936 	struct request *rq;
1937 	struct blk_plug *plug;
1938 	struct request *same_queue_rq = NULL;
1939 	unsigned int nr_segs;
1940 	blk_qc_t cookie;
1941 
1942 	blk_queue_bounce(q, &bio);
1943 	__blk_queue_split(q, &bio, &nr_segs);
1944 
1945 	if (!bio_integrity_prep(bio))
1946 		return BLK_QC_T_NONE;
1947 
1948 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1949 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1950 		return BLK_QC_T_NONE;
1951 
1952 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1953 		return BLK_QC_T_NONE;
1954 
1955 	rq_qos_throttle(q, bio);
1956 
1957 	data.cmd_flags = bio->bi_opf;
1958 	rq = blk_mq_get_request(q, bio, &data);
1959 	if (unlikely(!rq)) {
1960 		rq_qos_cleanup(q, bio);
1961 		if (bio->bi_opf & REQ_NOWAIT)
1962 			bio_wouldblock_error(bio);
1963 		return BLK_QC_T_NONE;
1964 	}
1965 
1966 	trace_block_getrq(q, bio, bio->bi_opf);
1967 
1968 	rq_qos_track(q, rq, bio);
1969 
1970 	cookie = request_to_qc_t(data.hctx, rq);
1971 
1972 	blk_mq_bio_to_request(rq, bio, nr_segs);
1973 
1974 	plug = blk_mq_plug(q, bio);
1975 	if (unlikely(is_flush_fua)) {
1976 		/* bypass scheduler for flush rq */
1977 		blk_insert_flush(rq);
1978 		blk_mq_run_hw_queue(data.hctx, true);
1979 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1980 		/*
1981 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1982 		 * we know the driver uses bd->last in a smart fashion.
1983 		 */
1984 		unsigned int request_count = plug->rq_count;
1985 		struct request *last = NULL;
1986 
1987 		if (!request_count)
1988 			trace_block_plug(q);
1989 		else
1990 			last = list_entry_rq(plug->mq_list.prev);
1991 
1992 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1993 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1994 			blk_flush_plug_list(plug, false);
1995 			trace_block_plug(q);
1996 		}
1997 
1998 		blk_add_rq_to_plug(plug, rq);
1999 	} else if (plug && !blk_queue_nomerges(q)) {
2000 		/*
2001 		 * We do limited plugging. If the bio can be merged, do that.
2002 		 * Otherwise the existing request in the plug list will be
2003 		 * issued. So the plug list will have one request at most
2004 		 * The plug list might get flushed before this. If that happens,
2005 		 * the plug list is empty, and same_queue_rq is invalid.
2006 		 */
2007 		if (list_empty(&plug->mq_list))
2008 			same_queue_rq = NULL;
2009 		if (same_queue_rq) {
2010 			list_del_init(&same_queue_rq->queuelist);
2011 			plug->rq_count--;
2012 		}
2013 		blk_add_rq_to_plug(plug, rq);
2014 		trace_block_plug(q);
2015 
2016 		if (same_queue_rq) {
2017 			data.hctx = same_queue_rq->mq_hctx;
2018 			trace_block_unplug(q, 1, true);
2019 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2020 					&cookie);
2021 		}
2022 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2023 			!data.hctx->dispatch_busy)) {
2024 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2025 	} else {
2026 		blk_mq_sched_insert_request(rq, false, true, true);
2027 	}
2028 
2029 	return cookie;
2030 }
2031 
2032 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2033 		     unsigned int hctx_idx)
2034 {
2035 	struct page *page;
2036 
2037 	if (tags->rqs && set->ops->exit_request) {
2038 		int i;
2039 
2040 		for (i = 0; i < tags->nr_tags; i++) {
2041 			struct request *rq = tags->static_rqs[i];
2042 
2043 			if (!rq)
2044 				continue;
2045 			set->ops->exit_request(set, rq, hctx_idx);
2046 			tags->static_rqs[i] = NULL;
2047 		}
2048 	}
2049 
2050 	while (!list_empty(&tags->page_list)) {
2051 		page = list_first_entry(&tags->page_list, struct page, lru);
2052 		list_del_init(&page->lru);
2053 		/*
2054 		 * Remove kmemleak object previously allocated in
2055 		 * blk_mq_alloc_rqs().
2056 		 */
2057 		kmemleak_free(page_address(page));
2058 		__free_pages(page, page->private);
2059 	}
2060 }
2061 
2062 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2063 {
2064 	kfree(tags->rqs);
2065 	tags->rqs = NULL;
2066 	kfree(tags->static_rqs);
2067 	tags->static_rqs = NULL;
2068 
2069 	blk_mq_free_tags(tags);
2070 }
2071 
2072 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2073 					unsigned int hctx_idx,
2074 					unsigned int nr_tags,
2075 					unsigned int reserved_tags)
2076 {
2077 	struct blk_mq_tags *tags;
2078 	int node;
2079 
2080 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2081 	if (node == NUMA_NO_NODE)
2082 		node = set->numa_node;
2083 
2084 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2085 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2086 	if (!tags)
2087 		return NULL;
2088 
2089 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2090 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2091 				 node);
2092 	if (!tags->rqs) {
2093 		blk_mq_free_tags(tags);
2094 		return NULL;
2095 	}
2096 
2097 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2098 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2099 					node);
2100 	if (!tags->static_rqs) {
2101 		kfree(tags->rqs);
2102 		blk_mq_free_tags(tags);
2103 		return NULL;
2104 	}
2105 
2106 	return tags;
2107 }
2108 
2109 static size_t order_to_size(unsigned int order)
2110 {
2111 	return (size_t)PAGE_SIZE << order;
2112 }
2113 
2114 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2115 			       unsigned int hctx_idx, int node)
2116 {
2117 	int ret;
2118 
2119 	if (set->ops->init_request) {
2120 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2121 		if (ret)
2122 			return ret;
2123 	}
2124 
2125 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2126 	return 0;
2127 }
2128 
2129 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2130 		     unsigned int hctx_idx, unsigned int depth)
2131 {
2132 	unsigned int i, j, entries_per_page, max_order = 4;
2133 	size_t rq_size, left;
2134 	int node;
2135 
2136 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2137 	if (node == NUMA_NO_NODE)
2138 		node = set->numa_node;
2139 
2140 	INIT_LIST_HEAD(&tags->page_list);
2141 
2142 	/*
2143 	 * rq_size is the size of the request plus driver payload, rounded
2144 	 * to the cacheline size
2145 	 */
2146 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2147 				cache_line_size());
2148 	left = rq_size * depth;
2149 
2150 	for (i = 0; i < depth; ) {
2151 		int this_order = max_order;
2152 		struct page *page;
2153 		int to_do;
2154 		void *p;
2155 
2156 		while (this_order && left < order_to_size(this_order - 1))
2157 			this_order--;
2158 
2159 		do {
2160 			page = alloc_pages_node(node,
2161 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2162 				this_order);
2163 			if (page)
2164 				break;
2165 			if (!this_order--)
2166 				break;
2167 			if (order_to_size(this_order) < rq_size)
2168 				break;
2169 		} while (1);
2170 
2171 		if (!page)
2172 			goto fail;
2173 
2174 		page->private = this_order;
2175 		list_add_tail(&page->lru, &tags->page_list);
2176 
2177 		p = page_address(page);
2178 		/*
2179 		 * Allow kmemleak to scan these pages as they contain pointers
2180 		 * to additional allocations like via ops->init_request().
2181 		 */
2182 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2183 		entries_per_page = order_to_size(this_order) / rq_size;
2184 		to_do = min(entries_per_page, depth - i);
2185 		left -= to_do * rq_size;
2186 		for (j = 0; j < to_do; j++) {
2187 			struct request *rq = p;
2188 
2189 			tags->static_rqs[i] = rq;
2190 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2191 				tags->static_rqs[i] = NULL;
2192 				goto fail;
2193 			}
2194 
2195 			p += rq_size;
2196 			i++;
2197 		}
2198 	}
2199 	return 0;
2200 
2201 fail:
2202 	blk_mq_free_rqs(set, tags, hctx_idx);
2203 	return -ENOMEM;
2204 }
2205 
2206 /*
2207  * 'cpu' is going away. splice any existing rq_list entries from this
2208  * software queue to the hw queue dispatch list, and ensure that it
2209  * gets run.
2210  */
2211 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2212 {
2213 	struct blk_mq_hw_ctx *hctx;
2214 	struct blk_mq_ctx *ctx;
2215 	LIST_HEAD(tmp);
2216 	enum hctx_type type;
2217 
2218 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2219 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2220 	type = hctx->type;
2221 
2222 	spin_lock(&ctx->lock);
2223 	if (!list_empty(&ctx->rq_lists[type])) {
2224 		list_splice_init(&ctx->rq_lists[type], &tmp);
2225 		blk_mq_hctx_clear_pending(hctx, ctx);
2226 	}
2227 	spin_unlock(&ctx->lock);
2228 
2229 	if (list_empty(&tmp))
2230 		return 0;
2231 
2232 	spin_lock(&hctx->lock);
2233 	list_splice_tail_init(&tmp, &hctx->dispatch);
2234 	spin_unlock(&hctx->lock);
2235 
2236 	blk_mq_run_hw_queue(hctx, true);
2237 	return 0;
2238 }
2239 
2240 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2241 {
2242 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2243 					    &hctx->cpuhp_dead);
2244 }
2245 
2246 /* hctx->ctxs will be freed in queue's release handler */
2247 static void blk_mq_exit_hctx(struct request_queue *q,
2248 		struct blk_mq_tag_set *set,
2249 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2250 {
2251 	if (blk_mq_hw_queue_mapped(hctx))
2252 		blk_mq_tag_idle(hctx);
2253 
2254 	if (set->ops->exit_request)
2255 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2256 
2257 	if (set->ops->exit_hctx)
2258 		set->ops->exit_hctx(hctx, hctx_idx);
2259 
2260 	blk_mq_remove_cpuhp(hctx);
2261 
2262 	spin_lock(&q->unused_hctx_lock);
2263 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2264 	spin_unlock(&q->unused_hctx_lock);
2265 }
2266 
2267 static void blk_mq_exit_hw_queues(struct request_queue *q,
2268 		struct blk_mq_tag_set *set, int nr_queue)
2269 {
2270 	struct blk_mq_hw_ctx *hctx;
2271 	unsigned int i;
2272 
2273 	queue_for_each_hw_ctx(q, hctx, i) {
2274 		if (i == nr_queue)
2275 			break;
2276 		blk_mq_debugfs_unregister_hctx(hctx);
2277 		blk_mq_exit_hctx(q, set, hctx, i);
2278 	}
2279 }
2280 
2281 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2282 {
2283 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2284 
2285 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2286 			   __alignof__(struct blk_mq_hw_ctx)) !=
2287 		     sizeof(struct blk_mq_hw_ctx));
2288 
2289 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2290 		hw_ctx_size += sizeof(struct srcu_struct);
2291 
2292 	return hw_ctx_size;
2293 }
2294 
2295 static int blk_mq_init_hctx(struct request_queue *q,
2296 		struct blk_mq_tag_set *set,
2297 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2298 {
2299 	hctx->queue_num = hctx_idx;
2300 
2301 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2302 
2303 	hctx->tags = set->tags[hctx_idx];
2304 
2305 	if (set->ops->init_hctx &&
2306 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2307 		goto unregister_cpu_notifier;
2308 
2309 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2310 				hctx->numa_node))
2311 		goto exit_hctx;
2312 	return 0;
2313 
2314  exit_hctx:
2315 	if (set->ops->exit_hctx)
2316 		set->ops->exit_hctx(hctx, hctx_idx);
2317  unregister_cpu_notifier:
2318 	blk_mq_remove_cpuhp(hctx);
2319 	return -1;
2320 }
2321 
2322 static struct blk_mq_hw_ctx *
2323 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2324 		int node)
2325 {
2326 	struct blk_mq_hw_ctx *hctx;
2327 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2328 
2329 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2330 	if (!hctx)
2331 		goto fail_alloc_hctx;
2332 
2333 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2334 		goto free_hctx;
2335 
2336 	atomic_set(&hctx->nr_active, 0);
2337 	if (node == NUMA_NO_NODE)
2338 		node = set->numa_node;
2339 	hctx->numa_node = node;
2340 
2341 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2342 	spin_lock_init(&hctx->lock);
2343 	INIT_LIST_HEAD(&hctx->dispatch);
2344 	hctx->queue = q;
2345 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2346 
2347 	INIT_LIST_HEAD(&hctx->hctx_list);
2348 
2349 	/*
2350 	 * Allocate space for all possible cpus to avoid allocation at
2351 	 * runtime
2352 	 */
2353 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2354 			gfp, node);
2355 	if (!hctx->ctxs)
2356 		goto free_cpumask;
2357 
2358 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2359 				gfp, node))
2360 		goto free_ctxs;
2361 	hctx->nr_ctx = 0;
2362 
2363 	spin_lock_init(&hctx->dispatch_wait_lock);
2364 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2365 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2366 
2367 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2368 			gfp);
2369 	if (!hctx->fq)
2370 		goto free_bitmap;
2371 
2372 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2373 		init_srcu_struct(hctx->srcu);
2374 	blk_mq_hctx_kobj_init(hctx);
2375 
2376 	return hctx;
2377 
2378  free_bitmap:
2379 	sbitmap_free(&hctx->ctx_map);
2380  free_ctxs:
2381 	kfree(hctx->ctxs);
2382  free_cpumask:
2383 	free_cpumask_var(hctx->cpumask);
2384  free_hctx:
2385 	kfree(hctx);
2386  fail_alloc_hctx:
2387 	return NULL;
2388 }
2389 
2390 static void blk_mq_init_cpu_queues(struct request_queue *q,
2391 				   unsigned int nr_hw_queues)
2392 {
2393 	struct blk_mq_tag_set *set = q->tag_set;
2394 	unsigned int i, j;
2395 
2396 	for_each_possible_cpu(i) {
2397 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2398 		struct blk_mq_hw_ctx *hctx;
2399 		int k;
2400 
2401 		__ctx->cpu = i;
2402 		spin_lock_init(&__ctx->lock);
2403 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2404 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2405 
2406 		__ctx->queue = q;
2407 
2408 		/*
2409 		 * Set local node, IFF we have more than one hw queue. If
2410 		 * not, we remain on the home node of the device
2411 		 */
2412 		for (j = 0; j < set->nr_maps; j++) {
2413 			hctx = blk_mq_map_queue_type(q, j, i);
2414 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2415 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2416 		}
2417 	}
2418 }
2419 
2420 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2421 {
2422 	int ret = 0;
2423 
2424 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2425 					set->queue_depth, set->reserved_tags);
2426 	if (!set->tags[hctx_idx])
2427 		return false;
2428 
2429 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2430 				set->queue_depth);
2431 	if (!ret)
2432 		return true;
2433 
2434 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2435 	set->tags[hctx_idx] = NULL;
2436 	return false;
2437 }
2438 
2439 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2440 					 unsigned int hctx_idx)
2441 {
2442 	if (set->tags && set->tags[hctx_idx]) {
2443 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2444 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2445 		set->tags[hctx_idx] = NULL;
2446 	}
2447 }
2448 
2449 static void blk_mq_map_swqueue(struct request_queue *q)
2450 {
2451 	unsigned int i, j, hctx_idx;
2452 	struct blk_mq_hw_ctx *hctx;
2453 	struct blk_mq_ctx *ctx;
2454 	struct blk_mq_tag_set *set = q->tag_set;
2455 
2456 	/*
2457 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2458 	 */
2459 	mutex_lock(&q->sysfs_lock);
2460 
2461 	queue_for_each_hw_ctx(q, hctx, i) {
2462 		cpumask_clear(hctx->cpumask);
2463 		hctx->nr_ctx = 0;
2464 		hctx->dispatch_from = NULL;
2465 	}
2466 
2467 	/*
2468 	 * Map software to hardware queues.
2469 	 *
2470 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2471 	 */
2472 	for_each_possible_cpu(i) {
2473 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2474 		/* unmapped hw queue can be remapped after CPU topo changed */
2475 		if (!set->tags[hctx_idx] &&
2476 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2477 			/*
2478 			 * If tags initialization fail for some hctx,
2479 			 * that hctx won't be brought online.  In this
2480 			 * case, remap the current ctx to hctx[0] which
2481 			 * is guaranteed to always have tags allocated
2482 			 */
2483 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2484 		}
2485 
2486 		ctx = per_cpu_ptr(q->queue_ctx, i);
2487 		for (j = 0; j < set->nr_maps; j++) {
2488 			if (!set->map[j].nr_queues) {
2489 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2490 						HCTX_TYPE_DEFAULT, i);
2491 				continue;
2492 			}
2493 
2494 			hctx = blk_mq_map_queue_type(q, j, i);
2495 			ctx->hctxs[j] = hctx;
2496 			/*
2497 			 * If the CPU is already set in the mask, then we've
2498 			 * mapped this one already. This can happen if
2499 			 * devices share queues across queue maps.
2500 			 */
2501 			if (cpumask_test_cpu(i, hctx->cpumask))
2502 				continue;
2503 
2504 			cpumask_set_cpu(i, hctx->cpumask);
2505 			hctx->type = j;
2506 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2507 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2508 
2509 			/*
2510 			 * If the nr_ctx type overflows, we have exceeded the
2511 			 * amount of sw queues we can support.
2512 			 */
2513 			BUG_ON(!hctx->nr_ctx);
2514 		}
2515 
2516 		for (; j < HCTX_MAX_TYPES; j++)
2517 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2518 					HCTX_TYPE_DEFAULT, i);
2519 	}
2520 
2521 	mutex_unlock(&q->sysfs_lock);
2522 
2523 	queue_for_each_hw_ctx(q, hctx, i) {
2524 		/*
2525 		 * If no software queues are mapped to this hardware queue,
2526 		 * disable it and free the request entries.
2527 		 */
2528 		if (!hctx->nr_ctx) {
2529 			/* Never unmap queue 0.  We need it as a
2530 			 * fallback in case of a new remap fails
2531 			 * allocation
2532 			 */
2533 			if (i && set->tags[i])
2534 				blk_mq_free_map_and_requests(set, i);
2535 
2536 			hctx->tags = NULL;
2537 			continue;
2538 		}
2539 
2540 		hctx->tags = set->tags[i];
2541 		WARN_ON(!hctx->tags);
2542 
2543 		/*
2544 		 * Set the map size to the number of mapped software queues.
2545 		 * This is more accurate and more efficient than looping
2546 		 * over all possibly mapped software queues.
2547 		 */
2548 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2549 
2550 		/*
2551 		 * Initialize batch roundrobin counts
2552 		 */
2553 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2554 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2555 	}
2556 }
2557 
2558 /*
2559  * Caller needs to ensure that we're either frozen/quiesced, or that
2560  * the queue isn't live yet.
2561  */
2562 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2563 {
2564 	struct blk_mq_hw_ctx *hctx;
2565 	int i;
2566 
2567 	queue_for_each_hw_ctx(q, hctx, i) {
2568 		if (shared)
2569 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2570 		else
2571 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2572 	}
2573 }
2574 
2575 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2576 					bool shared)
2577 {
2578 	struct request_queue *q;
2579 
2580 	lockdep_assert_held(&set->tag_list_lock);
2581 
2582 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2583 		blk_mq_freeze_queue(q);
2584 		queue_set_hctx_shared(q, shared);
2585 		blk_mq_unfreeze_queue(q);
2586 	}
2587 }
2588 
2589 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2590 {
2591 	struct blk_mq_tag_set *set = q->tag_set;
2592 
2593 	mutex_lock(&set->tag_list_lock);
2594 	list_del_rcu(&q->tag_set_list);
2595 	if (list_is_singular(&set->tag_list)) {
2596 		/* just transitioned to unshared */
2597 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2598 		/* update existing queue */
2599 		blk_mq_update_tag_set_depth(set, false);
2600 	}
2601 	mutex_unlock(&set->tag_list_lock);
2602 	INIT_LIST_HEAD(&q->tag_set_list);
2603 }
2604 
2605 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2606 				     struct request_queue *q)
2607 {
2608 	mutex_lock(&set->tag_list_lock);
2609 
2610 	/*
2611 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2612 	 */
2613 	if (!list_empty(&set->tag_list) &&
2614 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2615 		set->flags |= BLK_MQ_F_TAG_SHARED;
2616 		/* update existing queue */
2617 		blk_mq_update_tag_set_depth(set, true);
2618 	}
2619 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2620 		queue_set_hctx_shared(q, true);
2621 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2622 
2623 	mutex_unlock(&set->tag_list_lock);
2624 }
2625 
2626 /* All allocations will be freed in release handler of q->mq_kobj */
2627 static int blk_mq_alloc_ctxs(struct request_queue *q)
2628 {
2629 	struct blk_mq_ctxs *ctxs;
2630 	int cpu;
2631 
2632 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2633 	if (!ctxs)
2634 		return -ENOMEM;
2635 
2636 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2637 	if (!ctxs->queue_ctx)
2638 		goto fail;
2639 
2640 	for_each_possible_cpu(cpu) {
2641 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2642 		ctx->ctxs = ctxs;
2643 	}
2644 
2645 	q->mq_kobj = &ctxs->kobj;
2646 	q->queue_ctx = ctxs->queue_ctx;
2647 
2648 	return 0;
2649  fail:
2650 	kfree(ctxs);
2651 	return -ENOMEM;
2652 }
2653 
2654 /*
2655  * It is the actual release handler for mq, but we do it from
2656  * request queue's release handler for avoiding use-after-free
2657  * and headache because q->mq_kobj shouldn't have been introduced,
2658  * but we can't group ctx/kctx kobj without it.
2659  */
2660 void blk_mq_release(struct request_queue *q)
2661 {
2662 	struct blk_mq_hw_ctx *hctx, *next;
2663 	int i;
2664 
2665 	queue_for_each_hw_ctx(q, hctx, i)
2666 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2667 
2668 	/* all hctx are in .unused_hctx_list now */
2669 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2670 		list_del_init(&hctx->hctx_list);
2671 		kobject_put(&hctx->kobj);
2672 	}
2673 
2674 	kfree(q->queue_hw_ctx);
2675 
2676 	/*
2677 	 * release .mq_kobj and sw queue's kobject now because
2678 	 * both share lifetime with request queue.
2679 	 */
2680 	blk_mq_sysfs_deinit(q);
2681 }
2682 
2683 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2684 {
2685 	struct request_queue *uninit_q, *q;
2686 
2687 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2688 	if (!uninit_q)
2689 		return ERR_PTR(-ENOMEM);
2690 
2691 	q = blk_mq_init_allocated_queue(set, uninit_q);
2692 	if (IS_ERR(q))
2693 		blk_cleanup_queue(uninit_q);
2694 
2695 	return q;
2696 }
2697 EXPORT_SYMBOL(blk_mq_init_queue);
2698 
2699 /*
2700  * Helper for setting up a queue with mq ops, given queue depth, and
2701  * the passed in mq ops flags.
2702  */
2703 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2704 					   const struct blk_mq_ops *ops,
2705 					   unsigned int queue_depth,
2706 					   unsigned int set_flags)
2707 {
2708 	struct request_queue *q;
2709 	int ret;
2710 
2711 	memset(set, 0, sizeof(*set));
2712 	set->ops = ops;
2713 	set->nr_hw_queues = 1;
2714 	set->nr_maps = 1;
2715 	set->queue_depth = queue_depth;
2716 	set->numa_node = NUMA_NO_NODE;
2717 	set->flags = set_flags;
2718 
2719 	ret = blk_mq_alloc_tag_set(set);
2720 	if (ret)
2721 		return ERR_PTR(ret);
2722 
2723 	q = blk_mq_init_queue(set);
2724 	if (IS_ERR(q)) {
2725 		blk_mq_free_tag_set(set);
2726 		return q;
2727 	}
2728 
2729 	return q;
2730 }
2731 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2732 
2733 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2734 		struct blk_mq_tag_set *set, struct request_queue *q,
2735 		int hctx_idx, int node)
2736 {
2737 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2738 
2739 	/* reuse dead hctx first */
2740 	spin_lock(&q->unused_hctx_lock);
2741 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2742 		if (tmp->numa_node == node) {
2743 			hctx = tmp;
2744 			break;
2745 		}
2746 	}
2747 	if (hctx)
2748 		list_del_init(&hctx->hctx_list);
2749 	spin_unlock(&q->unused_hctx_lock);
2750 
2751 	if (!hctx)
2752 		hctx = blk_mq_alloc_hctx(q, set, node);
2753 	if (!hctx)
2754 		goto fail;
2755 
2756 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2757 		goto free_hctx;
2758 
2759 	return hctx;
2760 
2761  free_hctx:
2762 	kobject_put(&hctx->kobj);
2763  fail:
2764 	return NULL;
2765 }
2766 
2767 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2768 						struct request_queue *q)
2769 {
2770 	int i, j, end;
2771 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2772 
2773 	/* protect against switching io scheduler  */
2774 	mutex_lock(&q->sysfs_lock);
2775 	for (i = 0; i < set->nr_hw_queues; i++) {
2776 		int node;
2777 		struct blk_mq_hw_ctx *hctx;
2778 
2779 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2780 		/*
2781 		 * If the hw queue has been mapped to another numa node,
2782 		 * we need to realloc the hctx. If allocation fails, fallback
2783 		 * to use the previous one.
2784 		 */
2785 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2786 			continue;
2787 
2788 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2789 		if (hctx) {
2790 			if (hctxs[i])
2791 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2792 			hctxs[i] = hctx;
2793 		} else {
2794 			if (hctxs[i])
2795 				pr_warn("Allocate new hctx on node %d fails,\
2796 						fallback to previous one on node %d\n",
2797 						node, hctxs[i]->numa_node);
2798 			else
2799 				break;
2800 		}
2801 	}
2802 	/*
2803 	 * Increasing nr_hw_queues fails. Free the newly allocated
2804 	 * hctxs and keep the previous q->nr_hw_queues.
2805 	 */
2806 	if (i != set->nr_hw_queues) {
2807 		j = q->nr_hw_queues;
2808 		end = i;
2809 	} else {
2810 		j = i;
2811 		end = q->nr_hw_queues;
2812 		q->nr_hw_queues = set->nr_hw_queues;
2813 	}
2814 
2815 	for (; j < end; j++) {
2816 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2817 
2818 		if (hctx) {
2819 			if (hctx->tags)
2820 				blk_mq_free_map_and_requests(set, j);
2821 			blk_mq_exit_hctx(q, set, hctx, j);
2822 			hctxs[j] = NULL;
2823 		}
2824 	}
2825 	mutex_unlock(&q->sysfs_lock);
2826 }
2827 
2828 /*
2829  * Maximum number of hardware queues we support. For single sets, we'll never
2830  * have more than the CPUs (software queues). For multiple sets, the tag_set
2831  * user may have set ->nr_hw_queues larger.
2832  */
2833 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2834 {
2835 	if (set->nr_maps == 1)
2836 		return nr_cpu_ids;
2837 
2838 	return max(set->nr_hw_queues, nr_cpu_ids);
2839 }
2840 
2841 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2842 						  struct request_queue *q)
2843 {
2844 	/* mark the queue as mq asap */
2845 	q->mq_ops = set->ops;
2846 
2847 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2848 					     blk_mq_poll_stats_bkt,
2849 					     BLK_MQ_POLL_STATS_BKTS, q);
2850 	if (!q->poll_cb)
2851 		goto err_exit;
2852 
2853 	if (blk_mq_alloc_ctxs(q))
2854 		goto err_poll;
2855 
2856 	/* init q->mq_kobj and sw queues' kobjects */
2857 	blk_mq_sysfs_init(q);
2858 
2859 	q->nr_queues = nr_hw_queues(set);
2860 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2861 						GFP_KERNEL, set->numa_node);
2862 	if (!q->queue_hw_ctx)
2863 		goto err_sys_init;
2864 
2865 	INIT_LIST_HEAD(&q->unused_hctx_list);
2866 	spin_lock_init(&q->unused_hctx_lock);
2867 
2868 	blk_mq_realloc_hw_ctxs(set, q);
2869 	if (!q->nr_hw_queues)
2870 		goto err_hctxs;
2871 
2872 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2873 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2874 
2875 	q->tag_set = set;
2876 
2877 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2878 	if (set->nr_maps > HCTX_TYPE_POLL &&
2879 	    set->map[HCTX_TYPE_POLL].nr_queues)
2880 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2881 
2882 	q->sg_reserved_size = INT_MAX;
2883 
2884 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2885 	INIT_LIST_HEAD(&q->requeue_list);
2886 	spin_lock_init(&q->requeue_lock);
2887 
2888 	blk_queue_make_request(q, blk_mq_make_request);
2889 
2890 	/*
2891 	 * Do this after blk_queue_make_request() overrides it...
2892 	 */
2893 	q->nr_requests = set->queue_depth;
2894 
2895 	/*
2896 	 * Default to classic polling
2897 	 */
2898 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2899 
2900 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2901 	blk_mq_add_queue_tag_set(set, q);
2902 	blk_mq_map_swqueue(q);
2903 
2904 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2905 		int ret;
2906 
2907 		ret = elevator_init_mq(q);
2908 		if (ret)
2909 			return ERR_PTR(ret);
2910 	}
2911 
2912 	return q;
2913 
2914 err_hctxs:
2915 	kfree(q->queue_hw_ctx);
2916 err_sys_init:
2917 	blk_mq_sysfs_deinit(q);
2918 err_poll:
2919 	blk_stat_free_callback(q->poll_cb);
2920 	q->poll_cb = NULL;
2921 err_exit:
2922 	q->mq_ops = NULL;
2923 	return ERR_PTR(-ENOMEM);
2924 }
2925 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2926 
2927 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2928 void blk_mq_exit_queue(struct request_queue *q)
2929 {
2930 	struct blk_mq_tag_set	*set = q->tag_set;
2931 
2932 	blk_mq_del_queue_tag_set(q);
2933 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2934 }
2935 
2936 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2937 {
2938 	int i;
2939 
2940 	for (i = 0; i < set->nr_hw_queues; i++)
2941 		if (!__blk_mq_alloc_rq_map(set, i))
2942 			goto out_unwind;
2943 
2944 	return 0;
2945 
2946 out_unwind:
2947 	while (--i >= 0)
2948 		blk_mq_free_rq_map(set->tags[i]);
2949 
2950 	return -ENOMEM;
2951 }
2952 
2953 /*
2954  * Allocate the request maps associated with this tag_set. Note that this
2955  * may reduce the depth asked for, if memory is tight. set->queue_depth
2956  * will be updated to reflect the allocated depth.
2957  */
2958 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2959 {
2960 	unsigned int depth;
2961 	int err;
2962 
2963 	depth = set->queue_depth;
2964 	do {
2965 		err = __blk_mq_alloc_rq_maps(set);
2966 		if (!err)
2967 			break;
2968 
2969 		set->queue_depth >>= 1;
2970 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2971 			err = -ENOMEM;
2972 			break;
2973 		}
2974 	} while (set->queue_depth);
2975 
2976 	if (!set->queue_depth || err) {
2977 		pr_err("blk-mq: failed to allocate request map\n");
2978 		return -ENOMEM;
2979 	}
2980 
2981 	if (depth != set->queue_depth)
2982 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2983 						depth, set->queue_depth);
2984 
2985 	return 0;
2986 }
2987 
2988 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2989 {
2990 	if (set->ops->map_queues && !is_kdump_kernel()) {
2991 		int i;
2992 
2993 		/*
2994 		 * transport .map_queues is usually done in the following
2995 		 * way:
2996 		 *
2997 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2998 		 * 	mask = get_cpu_mask(queue)
2999 		 * 	for_each_cpu(cpu, mask)
3000 		 * 		set->map[x].mq_map[cpu] = queue;
3001 		 * }
3002 		 *
3003 		 * When we need to remap, the table has to be cleared for
3004 		 * killing stale mapping since one CPU may not be mapped
3005 		 * to any hw queue.
3006 		 */
3007 		for (i = 0; i < set->nr_maps; i++)
3008 			blk_mq_clear_mq_map(&set->map[i]);
3009 
3010 		return set->ops->map_queues(set);
3011 	} else {
3012 		BUG_ON(set->nr_maps > 1);
3013 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3014 	}
3015 }
3016 
3017 /*
3018  * Alloc a tag set to be associated with one or more request queues.
3019  * May fail with EINVAL for various error conditions. May adjust the
3020  * requested depth down, if it's too large. In that case, the set
3021  * value will be stored in set->queue_depth.
3022  */
3023 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3024 {
3025 	int i, ret;
3026 
3027 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3028 
3029 	if (!set->nr_hw_queues)
3030 		return -EINVAL;
3031 	if (!set->queue_depth)
3032 		return -EINVAL;
3033 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3034 		return -EINVAL;
3035 
3036 	if (!set->ops->queue_rq)
3037 		return -EINVAL;
3038 
3039 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3040 		return -EINVAL;
3041 
3042 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3043 		pr_info("blk-mq: reduced tag depth to %u\n",
3044 			BLK_MQ_MAX_DEPTH);
3045 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3046 	}
3047 
3048 	if (!set->nr_maps)
3049 		set->nr_maps = 1;
3050 	else if (set->nr_maps > HCTX_MAX_TYPES)
3051 		return -EINVAL;
3052 
3053 	/*
3054 	 * If a crashdump is active, then we are potentially in a very
3055 	 * memory constrained environment. Limit us to 1 queue and
3056 	 * 64 tags to prevent using too much memory.
3057 	 */
3058 	if (is_kdump_kernel()) {
3059 		set->nr_hw_queues = 1;
3060 		set->nr_maps = 1;
3061 		set->queue_depth = min(64U, set->queue_depth);
3062 	}
3063 	/*
3064 	 * There is no use for more h/w queues than cpus if we just have
3065 	 * a single map
3066 	 */
3067 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3068 		set->nr_hw_queues = nr_cpu_ids;
3069 
3070 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3071 				 GFP_KERNEL, set->numa_node);
3072 	if (!set->tags)
3073 		return -ENOMEM;
3074 
3075 	ret = -ENOMEM;
3076 	for (i = 0; i < set->nr_maps; i++) {
3077 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3078 						  sizeof(set->map[i].mq_map[0]),
3079 						  GFP_KERNEL, set->numa_node);
3080 		if (!set->map[i].mq_map)
3081 			goto out_free_mq_map;
3082 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3083 	}
3084 
3085 	ret = blk_mq_update_queue_map(set);
3086 	if (ret)
3087 		goto out_free_mq_map;
3088 
3089 	ret = blk_mq_alloc_rq_maps(set);
3090 	if (ret)
3091 		goto out_free_mq_map;
3092 
3093 	mutex_init(&set->tag_list_lock);
3094 	INIT_LIST_HEAD(&set->tag_list);
3095 
3096 	return 0;
3097 
3098 out_free_mq_map:
3099 	for (i = 0; i < set->nr_maps; i++) {
3100 		kfree(set->map[i].mq_map);
3101 		set->map[i].mq_map = NULL;
3102 	}
3103 	kfree(set->tags);
3104 	set->tags = NULL;
3105 	return ret;
3106 }
3107 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3108 
3109 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3110 {
3111 	int i, j;
3112 
3113 	for (i = 0; i < nr_hw_queues(set); i++)
3114 		blk_mq_free_map_and_requests(set, i);
3115 
3116 	for (j = 0; j < set->nr_maps; j++) {
3117 		kfree(set->map[j].mq_map);
3118 		set->map[j].mq_map = NULL;
3119 	}
3120 
3121 	kfree(set->tags);
3122 	set->tags = NULL;
3123 }
3124 EXPORT_SYMBOL(blk_mq_free_tag_set);
3125 
3126 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3127 {
3128 	struct blk_mq_tag_set *set = q->tag_set;
3129 	struct blk_mq_hw_ctx *hctx;
3130 	int i, ret;
3131 
3132 	if (!set)
3133 		return -EINVAL;
3134 
3135 	if (q->nr_requests == nr)
3136 		return 0;
3137 
3138 	blk_mq_freeze_queue(q);
3139 	blk_mq_quiesce_queue(q);
3140 
3141 	ret = 0;
3142 	queue_for_each_hw_ctx(q, hctx, i) {
3143 		if (!hctx->tags)
3144 			continue;
3145 		/*
3146 		 * If we're using an MQ scheduler, just update the scheduler
3147 		 * queue depth. This is similar to what the old code would do.
3148 		 */
3149 		if (!hctx->sched_tags) {
3150 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3151 							false);
3152 		} else {
3153 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3154 							nr, true);
3155 		}
3156 		if (ret)
3157 			break;
3158 		if (q->elevator && q->elevator->type->ops.depth_updated)
3159 			q->elevator->type->ops.depth_updated(hctx);
3160 	}
3161 
3162 	if (!ret)
3163 		q->nr_requests = nr;
3164 
3165 	blk_mq_unquiesce_queue(q);
3166 	blk_mq_unfreeze_queue(q);
3167 
3168 	return ret;
3169 }
3170 
3171 /*
3172  * request_queue and elevator_type pair.
3173  * It is just used by __blk_mq_update_nr_hw_queues to cache
3174  * the elevator_type associated with a request_queue.
3175  */
3176 struct blk_mq_qe_pair {
3177 	struct list_head node;
3178 	struct request_queue *q;
3179 	struct elevator_type *type;
3180 };
3181 
3182 /*
3183  * Cache the elevator_type in qe pair list and switch the
3184  * io scheduler to 'none'
3185  */
3186 static bool blk_mq_elv_switch_none(struct list_head *head,
3187 		struct request_queue *q)
3188 {
3189 	struct blk_mq_qe_pair *qe;
3190 
3191 	if (!q->elevator)
3192 		return true;
3193 
3194 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3195 	if (!qe)
3196 		return false;
3197 
3198 	INIT_LIST_HEAD(&qe->node);
3199 	qe->q = q;
3200 	qe->type = q->elevator->type;
3201 	list_add(&qe->node, head);
3202 
3203 	mutex_lock(&q->sysfs_lock);
3204 	/*
3205 	 * After elevator_switch_mq, the previous elevator_queue will be
3206 	 * released by elevator_release. The reference of the io scheduler
3207 	 * module get by elevator_get will also be put. So we need to get
3208 	 * a reference of the io scheduler module here to prevent it to be
3209 	 * removed.
3210 	 */
3211 	__module_get(qe->type->elevator_owner);
3212 	elevator_switch_mq(q, NULL);
3213 	mutex_unlock(&q->sysfs_lock);
3214 
3215 	return true;
3216 }
3217 
3218 static void blk_mq_elv_switch_back(struct list_head *head,
3219 		struct request_queue *q)
3220 {
3221 	struct blk_mq_qe_pair *qe;
3222 	struct elevator_type *t = NULL;
3223 
3224 	list_for_each_entry(qe, head, node)
3225 		if (qe->q == q) {
3226 			t = qe->type;
3227 			break;
3228 		}
3229 
3230 	if (!t)
3231 		return;
3232 
3233 	list_del(&qe->node);
3234 	kfree(qe);
3235 
3236 	mutex_lock(&q->sysfs_lock);
3237 	elevator_switch_mq(q, t);
3238 	mutex_unlock(&q->sysfs_lock);
3239 }
3240 
3241 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3242 							int nr_hw_queues)
3243 {
3244 	struct request_queue *q;
3245 	LIST_HEAD(head);
3246 	int prev_nr_hw_queues;
3247 
3248 	lockdep_assert_held(&set->tag_list_lock);
3249 
3250 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3251 		nr_hw_queues = nr_cpu_ids;
3252 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3253 		return;
3254 
3255 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3256 		blk_mq_freeze_queue(q);
3257 	/*
3258 	 * Sync with blk_mq_queue_tag_busy_iter.
3259 	 */
3260 	synchronize_rcu();
3261 	/*
3262 	 * Switch IO scheduler to 'none', cleaning up the data associated
3263 	 * with the previous scheduler. We will switch back once we are done
3264 	 * updating the new sw to hw queue mappings.
3265 	 */
3266 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3267 		if (!blk_mq_elv_switch_none(&head, q))
3268 			goto switch_back;
3269 
3270 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3271 		blk_mq_debugfs_unregister_hctxs(q);
3272 		blk_mq_sysfs_unregister(q);
3273 	}
3274 
3275 	prev_nr_hw_queues = set->nr_hw_queues;
3276 	set->nr_hw_queues = nr_hw_queues;
3277 	blk_mq_update_queue_map(set);
3278 fallback:
3279 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3280 		blk_mq_realloc_hw_ctxs(set, q);
3281 		if (q->nr_hw_queues != set->nr_hw_queues) {
3282 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3283 					nr_hw_queues, prev_nr_hw_queues);
3284 			set->nr_hw_queues = prev_nr_hw_queues;
3285 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3286 			goto fallback;
3287 		}
3288 		blk_mq_map_swqueue(q);
3289 	}
3290 
3291 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3292 		blk_mq_sysfs_register(q);
3293 		blk_mq_debugfs_register_hctxs(q);
3294 	}
3295 
3296 switch_back:
3297 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3298 		blk_mq_elv_switch_back(&head, q);
3299 
3300 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3301 		blk_mq_unfreeze_queue(q);
3302 }
3303 
3304 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3305 {
3306 	mutex_lock(&set->tag_list_lock);
3307 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3308 	mutex_unlock(&set->tag_list_lock);
3309 }
3310 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3311 
3312 /* Enable polling stats and return whether they were already enabled. */
3313 static bool blk_poll_stats_enable(struct request_queue *q)
3314 {
3315 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3316 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3317 		return true;
3318 	blk_stat_add_callback(q, q->poll_cb);
3319 	return false;
3320 }
3321 
3322 static void blk_mq_poll_stats_start(struct request_queue *q)
3323 {
3324 	/*
3325 	 * We don't arm the callback if polling stats are not enabled or the
3326 	 * callback is already active.
3327 	 */
3328 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3329 	    blk_stat_is_active(q->poll_cb))
3330 		return;
3331 
3332 	blk_stat_activate_msecs(q->poll_cb, 100);
3333 }
3334 
3335 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3336 {
3337 	struct request_queue *q = cb->data;
3338 	int bucket;
3339 
3340 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3341 		if (cb->stat[bucket].nr_samples)
3342 			q->poll_stat[bucket] = cb->stat[bucket];
3343 	}
3344 }
3345 
3346 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3347 				       struct blk_mq_hw_ctx *hctx,
3348 				       struct request *rq)
3349 {
3350 	unsigned long ret = 0;
3351 	int bucket;
3352 
3353 	/*
3354 	 * If stats collection isn't on, don't sleep but turn it on for
3355 	 * future users
3356 	 */
3357 	if (!blk_poll_stats_enable(q))
3358 		return 0;
3359 
3360 	/*
3361 	 * As an optimistic guess, use half of the mean service time
3362 	 * for this type of request. We can (and should) make this smarter.
3363 	 * For instance, if the completion latencies are tight, we can
3364 	 * get closer than just half the mean. This is especially
3365 	 * important on devices where the completion latencies are longer
3366 	 * than ~10 usec. We do use the stats for the relevant IO size
3367 	 * if available which does lead to better estimates.
3368 	 */
3369 	bucket = blk_mq_poll_stats_bkt(rq);
3370 	if (bucket < 0)
3371 		return ret;
3372 
3373 	if (q->poll_stat[bucket].nr_samples)
3374 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3375 
3376 	return ret;
3377 }
3378 
3379 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3380 				     struct blk_mq_hw_ctx *hctx,
3381 				     struct request *rq)
3382 {
3383 	struct hrtimer_sleeper hs;
3384 	enum hrtimer_mode mode;
3385 	unsigned int nsecs;
3386 	ktime_t kt;
3387 
3388 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3389 		return false;
3390 
3391 	/*
3392 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3393 	 *
3394 	 *  0:	use half of prev avg
3395 	 * >0:	use this specific value
3396 	 */
3397 	if (q->poll_nsec > 0)
3398 		nsecs = q->poll_nsec;
3399 	else
3400 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3401 
3402 	if (!nsecs)
3403 		return false;
3404 
3405 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3406 
3407 	/*
3408 	 * This will be replaced with the stats tracking code, using
3409 	 * 'avg_completion_time / 2' as the pre-sleep target.
3410 	 */
3411 	kt = nsecs;
3412 
3413 	mode = HRTIMER_MODE_REL;
3414 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3415 	hrtimer_set_expires(&hs.timer, kt);
3416 
3417 	hrtimer_init_sleeper(&hs, current);
3418 	do {
3419 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3420 			break;
3421 		set_current_state(TASK_UNINTERRUPTIBLE);
3422 		hrtimer_start_expires(&hs.timer, mode);
3423 		if (hs.task)
3424 			io_schedule();
3425 		hrtimer_cancel(&hs.timer);
3426 		mode = HRTIMER_MODE_ABS;
3427 	} while (hs.task && !signal_pending(current));
3428 
3429 	__set_current_state(TASK_RUNNING);
3430 	destroy_hrtimer_on_stack(&hs.timer);
3431 	return true;
3432 }
3433 
3434 static bool blk_mq_poll_hybrid(struct request_queue *q,
3435 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3436 {
3437 	struct request *rq;
3438 
3439 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3440 		return false;
3441 
3442 	if (!blk_qc_t_is_internal(cookie))
3443 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3444 	else {
3445 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3446 		/*
3447 		 * With scheduling, if the request has completed, we'll
3448 		 * get a NULL return here, as we clear the sched tag when
3449 		 * that happens. The request still remains valid, like always,
3450 		 * so we should be safe with just the NULL check.
3451 		 */
3452 		if (!rq)
3453 			return false;
3454 	}
3455 
3456 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3457 }
3458 
3459 /**
3460  * blk_poll - poll for IO completions
3461  * @q:  the queue
3462  * @cookie: cookie passed back at IO submission time
3463  * @spin: whether to spin for completions
3464  *
3465  * Description:
3466  *    Poll for completions on the passed in queue. Returns number of
3467  *    completed entries found. If @spin is true, then blk_poll will continue
3468  *    looping until at least one completion is found, unless the task is
3469  *    otherwise marked running (or we need to reschedule).
3470  */
3471 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3472 {
3473 	struct blk_mq_hw_ctx *hctx;
3474 	long state;
3475 
3476 	if (!blk_qc_t_valid(cookie) ||
3477 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3478 		return 0;
3479 
3480 	if (current->plug)
3481 		blk_flush_plug_list(current->plug, false);
3482 
3483 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3484 
3485 	/*
3486 	 * If we sleep, have the caller restart the poll loop to reset
3487 	 * the state. Like for the other success return cases, the
3488 	 * caller is responsible for checking if the IO completed. If
3489 	 * the IO isn't complete, we'll get called again and will go
3490 	 * straight to the busy poll loop.
3491 	 */
3492 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3493 		return 1;
3494 
3495 	hctx->poll_considered++;
3496 
3497 	state = current->state;
3498 	do {
3499 		int ret;
3500 
3501 		hctx->poll_invoked++;
3502 
3503 		ret = q->mq_ops->poll(hctx);
3504 		if (ret > 0) {
3505 			hctx->poll_success++;
3506 			__set_current_state(TASK_RUNNING);
3507 			return ret;
3508 		}
3509 
3510 		if (signal_pending_state(state, current))
3511 			__set_current_state(TASK_RUNNING);
3512 
3513 		if (current->state == TASK_RUNNING)
3514 			return 1;
3515 		if (ret < 0 || !spin)
3516 			break;
3517 		cpu_relax();
3518 	} while (!need_resched());
3519 
3520 	__set_current_state(TASK_RUNNING);
3521 	return 0;
3522 }
3523 EXPORT_SYMBOL_GPL(blk_poll);
3524 
3525 unsigned int blk_mq_rq_cpu(struct request *rq)
3526 {
3527 	return rq->mq_ctx->cpu;
3528 }
3529 EXPORT_SYMBOL(blk_mq_rq_cpu);
3530 
3531 static int __init blk_mq_init(void)
3532 {
3533 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3534 				blk_mq_hctx_notify_dead);
3535 	return 0;
3536 }
3537 subsys_initcall(blk_mq_init);
3538