xref: /openbmc/linux/block/blk-mq.c (revision ad4455c6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
49 		struct list_head *list);
50 
51 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
52 		blk_qc_t qc)
53 {
54 	return xa_load(&q->hctx_table, qc);
55 }
56 
57 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
58 {
59 	return rq->mq_hctx->queue_num;
60 }
61 
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 	return !list_empty_careful(&hctx->dispatch) ||
69 		sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			blk_mq_sched_has_work(hctx);
71 }
72 
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 				     struct blk_mq_ctx *ctx)
78 {
79 	const int bit = ctx->index_hw[hctx->type];
80 
81 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 		sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84 
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 				      struct blk_mq_ctx *ctx)
87 {
88 	const int bit = ctx->index_hw[hctx->type];
89 
90 	sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92 
93 struct mq_inflight {
94 	struct block_device *part;
95 	unsigned int inflight[2];
96 };
97 
98 static bool blk_mq_check_inflight(struct request *rq, void *priv)
99 {
100 	struct mq_inflight *mi = priv;
101 
102 	if (rq->part && blk_do_io_stat(rq) &&
103 	    (!mi->part->bd_partno || rq->part == mi->part) &&
104 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
105 		mi->inflight[rq_data_dir(rq)]++;
106 
107 	return true;
108 }
109 
110 unsigned int blk_mq_in_flight(struct request_queue *q,
111 		struct block_device *part)
112 {
113 	struct mq_inflight mi = { .part = part };
114 
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 
117 	return mi.inflight[0] + mi.inflight[1];
118 }
119 
120 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
121 		unsigned int inflight[2])
122 {
123 	struct mq_inflight mi = { .part = part };
124 
125 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 	inflight[0] = mi.inflight[0];
127 	inflight[1] = mi.inflight[1];
128 }
129 
130 void blk_freeze_queue_start(struct request_queue *q)
131 {
132 	mutex_lock(&q->mq_freeze_lock);
133 	if (++q->mq_freeze_depth == 1) {
134 		percpu_ref_kill(&q->q_usage_counter);
135 		mutex_unlock(&q->mq_freeze_lock);
136 		if (queue_is_mq(q))
137 			blk_mq_run_hw_queues(q, false);
138 	} else {
139 		mutex_unlock(&q->mq_freeze_lock);
140 	}
141 }
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143 
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
145 {
146 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149 
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 				     unsigned long timeout)
152 {
153 	return wait_event_timeout(q->mq_freeze_wq,
154 					percpu_ref_is_zero(&q->q_usage_counter),
155 					timeout);
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158 
159 /*
160  * Guarantee no request is in use, so we can change any data structure of
161  * the queue afterward.
162  */
163 void blk_freeze_queue(struct request_queue *q)
164 {
165 	/*
166 	 * In the !blk_mq case we are only calling this to kill the
167 	 * q_usage_counter, otherwise this increases the freeze depth
168 	 * and waits for it to return to zero.  For this reason there is
169 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 	 * exported to drivers as the only user for unfreeze is blk_mq.
171 	 */
172 	blk_freeze_queue_start(q);
173 	blk_mq_freeze_queue_wait(q);
174 }
175 
176 void blk_mq_freeze_queue(struct request_queue *q)
177 {
178 	/*
179 	 * ...just an alias to keep freeze and unfreeze actions balanced
180 	 * in the blk_mq_* namespace
181 	 */
182 	blk_freeze_queue(q);
183 }
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185 
186 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
187 {
188 	mutex_lock(&q->mq_freeze_lock);
189 	if (force_atomic)
190 		q->q_usage_counter.data->force_atomic = true;
191 	q->mq_freeze_depth--;
192 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
193 	if (!q->mq_freeze_depth) {
194 		percpu_ref_resurrect(&q->q_usage_counter);
195 		wake_up_all(&q->mq_freeze_wq);
196 	}
197 	mutex_unlock(&q->mq_freeze_lock);
198 }
199 
200 void blk_mq_unfreeze_queue(struct request_queue *q)
201 {
202 	__blk_mq_unfreeze_queue(q, false);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
205 
206 /*
207  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
208  * mpt3sas driver such that this function can be removed.
209  */
210 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
211 {
212 	unsigned long flags;
213 
214 	spin_lock_irqsave(&q->queue_lock, flags);
215 	if (!q->quiesce_depth++)
216 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
217 	spin_unlock_irqrestore(&q->queue_lock, flags);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220 
221 /**
222  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
223  * @set: tag_set to wait on
224  *
225  * Note: it is driver's responsibility for making sure that quiesce has
226  * been started on or more of the request_queues of the tag_set.  This
227  * function only waits for the quiesce on those request_queues that had
228  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
229  */
230 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
231 {
232 	if (set->flags & BLK_MQ_F_BLOCKING)
233 		synchronize_srcu(set->srcu);
234 	else
235 		synchronize_rcu();
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
238 
239 /**
240  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
241  * @q: request queue.
242  *
243  * Note: this function does not prevent that the struct request end_io()
244  * callback function is invoked. Once this function is returned, we make
245  * sure no dispatch can happen until the queue is unquiesced via
246  * blk_mq_unquiesce_queue().
247  */
248 void blk_mq_quiesce_queue(struct request_queue *q)
249 {
250 	blk_mq_quiesce_queue_nowait(q);
251 	/* nothing to wait for non-mq queues */
252 	if (queue_is_mq(q))
253 		blk_mq_wait_quiesce_done(q->tag_set);
254 }
255 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
256 
257 /*
258  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
259  * @q: request queue.
260  *
261  * This function recovers queue into the state before quiescing
262  * which is done by blk_mq_quiesce_queue.
263  */
264 void blk_mq_unquiesce_queue(struct request_queue *q)
265 {
266 	unsigned long flags;
267 	bool run_queue = false;
268 
269 	spin_lock_irqsave(&q->queue_lock, flags);
270 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
271 		;
272 	} else if (!--q->quiesce_depth) {
273 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
274 		run_queue = true;
275 	}
276 	spin_unlock_irqrestore(&q->queue_lock, flags);
277 
278 	/* dispatch requests which are inserted during quiescing */
279 	if (run_queue)
280 		blk_mq_run_hw_queues(q, true);
281 }
282 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
283 
284 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
285 {
286 	struct request_queue *q;
287 
288 	mutex_lock(&set->tag_list_lock);
289 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
290 		if (!blk_queue_skip_tagset_quiesce(q))
291 			blk_mq_quiesce_queue_nowait(q);
292 	}
293 	blk_mq_wait_quiesce_done(set);
294 	mutex_unlock(&set->tag_list_lock);
295 }
296 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
297 
298 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
299 {
300 	struct request_queue *q;
301 
302 	mutex_lock(&set->tag_list_lock);
303 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
304 		if (!blk_queue_skip_tagset_quiesce(q))
305 			blk_mq_unquiesce_queue(q);
306 	}
307 	mutex_unlock(&set->tag_list_lock);
308 }
309 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
310 
311 void blk_mq_wake_waiters(struct request_queue *q)
312 {
313 	struct blk_mq_hw_ctx *hctx;
314 	unsigned long i;
315 
316 	queue_for_each_hw_ctx(q, hctx, i)
317 		if (blk_mq_hw_queue_mapped(hctx))
318 			blk_mq_tag_wakeup_all(hctx->tags, true);
319 }
320 
321 void blk_rq_init(struct request_queue *q, struct request *rq)
322 {
323 	memset(rq, 0, sizeof(*rq));
324 
325 	INIT_LIST_HEAD(&rq->queuelist);
326 	rq->q = q;
327 	rq->__sector = (sector_t) -1;
328 	INIT_HLIST_NODE(&rq->hash);
329 	RB_CLEAR_NODE(&rq->rb_node);
330 	rq->tag = BLK_MQ_NO_TAG;
331 	rq->internal_tag = BLK_MQ_NO_TAG;
332 	rq->start_time_ns = ktime_get_ns();
333 	rq->part = NULL;
334 	blk_crypto_rq_set_defaults(rq);
335 }
336 EXPORT_SYMBOL(blk_rq_init);
337 
338 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
339 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
340 {
341 	struct blk_mq_ctx *ctx = data->ctx;
342 	struct blk_mq_hw_ctx *hctx = data->hctx;
343 	struct request_queue *q = data->q;
344 	struct request *rq = tags->static_rqs[tag];
345 
346 	rq->q = q;
347 	rq->mq_ctx = ctx;
348 	rq->mq_hctx = hctx;
349 	rq->cmd_flags = data->cmd_flags;
350 
351 	if (data->flags & BLK_MQ_REQ_PM)
352 		data->rq_flags |= RQF_PM;
353 	if (blk_queue_io_stat(q))
354 		data->rq_flags |= RQF_IO_STAT;
355 	rq->rq_flags = data->rq_flags;
356 
357 	if (!(data->rq_flags & RQF_ELV)) {
358 		rq->tag = tag;
359 		rq->internal_tag = BLK_MQ_NO_TAG;
360 	} else {
361 		rq->tag = BLK_MQ_NO_TAG;
362 		rq->internal_tag = tag;
363 	}
364 	rq->timeout = 0;
365 
366 	if (blk_mq_need_time_stamp(rq))
367 		rq->start_time_ns = ktime_get_ns();
368 	else
369 		rq->start_time_ns = 0;
370 	rq->part = NULL;
371 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
372 	rq->alloc_time_ns = alloc_time_ns;
373 #endif
374 	rq->io_start_time_ns = 0;
375 	rq->stats_sectors = 0;
376 	rq->nr_phys_segments = 0;
377 #if defined(CONFIG_BLK_DEV_INTEGRITY)
378 	rq->nr_integrity_segments = 0;
379 #endif
380 	rq->end_io = NULL;
381 	rq->end_io_data = NULL;
382 
383 	blk_crypto_rq_set_defaults(rq);
384 	INIT_LIST_HEAD(&rq->queuelist);
385 	/* tag was already set */
386 	WRITE_ONCE(rq->deadline, 0);
387 	req_ref_set(rq, 1);
388 
389 	if (rq->rq_flags & RQF_ELV) {
390 		struct elevator_queue *e = data->q->elevator;
391 
392 		INIT_HLIST_NODE(&rq->hash);
393 		RB_CLEAR_NODE(&rq->rb_node);
394 
395 		if (!op_is_flush(data->cmd_flags) &&
396 		    e->type->ops.prepare_request) {
397 			e->type->ops.prepare_request(rq);
398 			rq->rq_flags |= RQF_ELVPRIV;
399 		}
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
407 		u64 alloc_time_ns)
408 {
409 	unsigned int tag, tag_offset;
410 	struct blk_mq_tags *tags;
411 	struct request *rq;
412 	unsigned long tag_mask;
413 	int i, nr = 0;
414 
415 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
416 	if (unlikely(!tag_mask))
417 		return NULL;
418 
419 	tags = blk_mq_tags_from_data(data);
420 	for (i = 0; tag_mask; i++) {
421 		if (!(tag_mask & (1UL << i)))
422 			continue;
423 		tag = tag_offset + i;
424 		prefetch(tags->static_rqs[tag]);
425 		tag_mask &= ~(1UL << i);
426 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
427 		rq_list_add(data->cached_rq, rq);
428 		nr++;
429 	}
430 	/* caller already holds a reference, add for remainder */
431 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432 	data->nr_tags -= nr;
433 
434 	return rq_list_pop(data->cached_rq);
435 }
436 
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439 	struct request_queue *q = data->q;
440 	u64 alloc_time_ns = 0;
441 	struct request *rq;
442 	unsigned int tag;
443 
444 	/* alloc_time includes depth and tag waits */
445 	if (blk_queue_rq_alloc_time(q))
446 		alloc_time_ns = ktime_get_ns();
447 
448 	if (data->cmd_flags & REQ_NOWAIT)
449 		data->flags |= BLK_MQ_REQ_NOWAIT;
450 
451 	if (q->elevator) {
452 		struct elevator_queue *e = q->elevator;
453 
454 		data->rq_flags |= RQF_ELV;
455 
456 		/*
457 		 * Flush/passthrough requests are special and go directly to the
458 		 * dispatch list. Don't include reserved tags in the
459 		 * limiting, as it isn't useful.
460 		 */
461 		if (!op_is_flush(data->cmd_flags) &&
462 		    !blk_op_is_passthrough(data->cmd_flags) &&
463 		    e->type->ops.limit_depth &&
464 		    !(data->flags & BLK_MQ_REQ_RESERVED))
465 			e->type->ops.limit_depth(data->cmd_flags, data);
466 	}
467 
468 retry:
469 	data->ctx = blk_mq_get_ctx(q);
470 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
471 	if (!(data->rq_flags & RQF_ELV))
472 		blk_mq_tag_busy(data->hctx);
473 
474 	if (data->flags & BLK_MQ_REQ_RESERVED)
475 		data->rq_flags |= RQF_RESV;
476 
477 	/*
478 	 * Try batched alloc if we want more than 1 tag.
479 	 */
480 	if (data->nr_tags > 1) {
481 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482 		if (rq)
483 			return rq;
484 		data->nr_tags = 1;
485 	}
486 
487 	/*
488 	 * Waiting allocations only fail because of an inactive hctx.  In that
489 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
490 	 * should have migrated us to an online CPU by now.
491 	 */
492 	tag = blk_mq_get_tag(data);
493 	if (tag == BLK_MQ_NO_TAG) {
494 		if (data->flags & BLK_MQ_REQ_NOWAIT)
495 			return NULL;
496 		/*
497 		 * Give up the CPU and sleep for a random short time to
498 		 * ensure that thread using a realtime scheduling class
499 		 * are migrated off the CPU, and thus off the hctx that
500 		 * is going away.
501 		 */
502 		msleep(3);
503 		goto retry;
504 	}
505 
506 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507 					alloc_time_ns);
508 }
509 
510 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
511 					    struct blk_plug *plug,
512 					    blk_opf_t opf,
513 					    blk_mq_req_flags_t flags)
514 {
515 	struct blk_mq_alloc_data data = {
516 		.q		= q,
517 		.flags		= flags,
518 		.cmd_flags	= opf,
519 		.nr_tags	= plug->nr_ios,
520 		.cached_rq	= &plug->cached_rq,
521 	};
522 	struct request *rq;
523 
524 	if (blk_queue_enter(q, flags))
525 		return NULL;
526 
527 	plug->nr_ios = 1;
528 
529 	rq = __blk_mq_alloc_requests(&data);
530 	if (unlikely(!rq))
531 		blk_queue_exit(q);
532 	return rq;
533 }
534 
535 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
536 						   blk_opf_t opf,
537 						   blk_mq_req_flags_t flags)
538 {
539 	struct blk_plug *plug = current->plug;
540 	struct request *rq;
541 
542 	if (!plug)
543 		return NULL;
544 
545 	if (rq_list_empty(plug->cached_rq)) {
546 		if (plug->nr_ios == 1)
547 			return NULL;
548 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
549 		if (!rq)
550 			return NULL;
551 	} else {
552 		rq = rq_list_peek(&plug->cached_rq);
553 		if (!rq || rq->q != q)
554 			return NULL;
555 
556 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
557 			return NULL;
558 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
559 			return NULL;
560 
561 		plug->cached_rq = rq_list_next(rq);
562 	}
563 
564 	rq->cmd_flags = opf;
565 	INIT_LIST_HEAD(&rq->queuelist);
566 	return rq;
567 }
568 
569 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
570 		blk_mq_req_flags_t flags)
571 {
572 	struct request *rq;
573 
574 	rq = blk_mq_alloc_cached_request(q, opf, flags);
575 	if (!rq) {
576 		struct blk_mq_alloc_data data = {
577 			.q		= q,
578 			.flags		= flags,
579 			.cmd_flags	= opf,
580 			.nr_tags	= 1,
581 		};
582 		int ret;
583 
584 		ret = blk_queue_enter(q, flags);
585 		if (ret)
586 			return ERR_PTR(ret);
587 
588 		rq = __blk_mq_alloc_requests(&data);
589 		if (!rq)
590 			goto out_queue_exit;
591 	}
592 	rq->__data_len = 0;
593 	rq->__sector = (sector_t) -1;
594 	rq->bio = rq->biotail = NULL;
595 	return rq;
596 out_queue_exit:
597 	blk_queue_exit(q);
598 	return ERR_PTR(-EWOULDBLOCK);
599 }
600 EXPORT_SYMBOL(blk_mq_alloc_request);
601 
602 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
603 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
604 {
605 	struct blk_mq_alloc_data data = {
606 		.q		= q,
607 		.flags		= flags,
608 		.cmd_flags	= opf,
609 		.nr_tags	= 1,
610 	};
611 	u64 alloc_time_ns = 0;
612 	struct request *rq;
613 	unsigned int cpu;
614 	unsigned int tag;
615 	int ret;
616 
617 	/* alloc_time includes depth and tag waits */
618 	if (blk_queue_rq_alloc_time(q))
619 		alloc_time_ns = ktime_get_ns();
620 
621 	/*
622 	 * If the tag allocator sleeps we could get an allocation for a
623 	 * different hardware context.  No need to complicate the low level
624 	 * allocator for this for the rare use case of a command tied to
625 	 * a specific queue.
626 	 */
627 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
628 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
629 		return ERR_PTR(-EINVAL);
630 
631 	if (hctx_idx >= q->nr_hw_queues)
632 		return ERR_PTR(-EIO);
633 
634 	ret = blk_queue_enter(q, flags);
635 	if (ret)
636 		return ERR_PTR(ret);
637 
638 	/*
639 	 * Check if the hardware context is actually mapped to anything.
640 	 * If not tell the caller that it should skip this queue.
641 	 */
642 	ret = -EXDEV;
643 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
644 	if (!blk_mq_hw_queue_mapped(data.hctx))
645 		goto out_queue_exit;
646 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
647 	if (cpu >= nr_cpu_ids)
648 		goto out_queue_exit;
649 	data.ctx = __blk_mq_get_ctx(q, cpu);
650 
651 	if (!q->elevator)
652 		blk_mq_tag_busy(data.hctx);
653 	else
654 		data.rq_flags |= RQF_ELV;
655 
656 	if (flags & BLK_MQ_REQ_RESERVED)
657 		data.rq_flags |= RQF_RESV;
658 
659 	ret = -EWOULDBLOCK;
660 	tag = blk_mq_get_tag(&data);
661 	if (tag == BLK_MQ_NO_TAG)
662 		goto out_queue_exit;
663 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
664 					alloc_time_ns);
665 	rq->__data_len = 0;
666 	rq->__sector = (sector_t) -1;
667 	rq->bio = rq->biotail = NULL;
668 	return rq;
669 
670 out_queue_exit:
671 	blk_queue_exit(q);
672 	return ERR_PTR(ret);
673 }
674 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
675 
676 static void __blk_mq_free_request(struct request *rq)
677 {
678 	struct request_queue *q = rq->q;
679 	struct blk_mq_ctx *ctx = rq->mq_ctx;
680 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
681 	const int sched_tag = rq->internal_tag;
682 
683 	blk_crypto_free_request(rq);
684 	blk_pm_mark_last_busy(rq);
685 	rq->mq_hctx = NULL;
686 
687 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
688 		__blk_mq_dec_active_requests(hctx);
689 
690 	if (rq->tag != BLK_MQ_NO_TAG)
691 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
692 	if (sched_tag != BLK_MQ_NO_TAG)
693 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
694 	blk_mq_sched_restart(hctx);
695 	blk_queue_exit(q);
696 }
697 
698 void blk_mq_free_request(struct request *rq)
699 {
700 	struct request_queue *q = rq->q;
701 
702 	if ((rq->rq_flags & RQF_ELVPRIV) &&
703 	    q->elevator->type->ops.finish_request)
704 		q->elevator->type->ops.finish_request(rq);
705 
706 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
707 		laptop_io_completion(q->disk->bdi);
708 
709 	rq_qos_done(q, rq);
710 
711 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
712 	if (req_ref_put_and_test(rq))
713 		__blk_mq_free_request(rq);
714 }
715 EXPORT_SYMBOL_GPL(blk_mq_free_request);
716 
717 void blk_mq_free_plug_rqs(struct blk_plug *plug)
718 {
719 	struct request *rq;
720 
721 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
722 		blk_mq_free_request(rq);
723 }
724 
725 void blk_dump_rq_flags(struct request *rq, char *msg)
726 {
727 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
728 		rq->q->disk ? rq->q->disk->disk_name : "?",
729 		(__force unsigned long long) rq->cmd_flags);
730 
731 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
732 	       (unsigned long long)blk_rq_pos(rq),
733 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
734 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
735 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
736 }
737 EXPORT_SYMBOL(blk_dump_rq_flags);
738 
739 static void req_bio_endio(struct request *rq, struct bio *bio,
740 			  unsigned int nbytes, blk_status_t error)
741 {
742 	if (unlikely(error)) {
743 		bio->bi_status = error;
744 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
745 		/*
746 		 * Partial zone append completions cannot be supported as the
747 		 * BIO fragments may end up not being written sequentially.
748 		 */
749 		if (bio->bi_iter.bi_size != nbytes)
750 			bio->bi_status = BLK_STS_IOERR;
751 		else
752 			bio->bi_iter.bi_sector = rq->__sector;
753 	}
754 
755 	bio_advance(bio, nbytes);
756 
757 	if (unlikely(rq->rq_flags & RQF_QUIET))
758 		bio_set_flag(bio, BIO_QUIET);
759 	/* don't actually finish bio if it's part of flush sequence */
760 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
761 		bio_endio(bio);
762 }
763 
764 static void blk_account_io_completion(struct request *req, unsigned int bytes)
765 {
766 	if (req->part && blk_do_io_stat(req)) {
767 		const int sgrp = op_stat_group(req_op(req));
768 
769 		part_stat_lock();
770 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
771 		part_stat_unlock();
772 	}
773 }
774 
775 static void blk_print_req_error(struct request *req, blk_status_t status)
776 {
777 	printk_ratelimited(KERN_ERR
778 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
779 		"phys_seg %u prio class %u\n",
780 		blk_status_to_str(status),
781 		req->q->disk ? req->q->disk->disk_name : "?",
782 		blk_rq_pos(req), (__force u32)req_op(req),
783 		blk_op_str(req_op(req)),
784 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
785 		req->nr_phys_segments,
786 		IOPRIO_PRIO_CLASS(req->ioprio));
787 }
788 
789 /*
790  * Fully end IO on a request. Does not support partial completions, or
791  * errors.
792  */
793 static void blk_complete_request(struct request *req)
794 {
795 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
796 	int total_bytes = blk_rq_bytes(req);
797 	struct bio *bio = req->bio;
798 
799 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
800 
801 	if (!bio)
802 		return;
803 
804 #ifdef CONFIG_BLK_DEV_INTEGRITY
805 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
806 		req->q->integrity.profile->complete_fn(req, total_bytes);
807 #endif
808 
809 	/*
810 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
811 	 * bio_endio().  Therefore, the keyslot must be released before that.
812 	 */
813 	blk_crypto_rq_put_keyslot(req);
814 
815 	blk_account_io_completion(req, total_bytes);
816 
817 	do {
818 		struct bio *next = bio->bi_next;
819 
820 		/* Completion has already been traced */
821 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
822 
823 		if (req_op(req) == REQ_OP_ZONE_APPEND)
824 			bio->bi_iter.bi_sector = req->__sector;
825 
826 		if (!is_flush)
827 			bio_endio(bio);
828 		bio = next;
829 	} while (bio);
830 
831 	/*
832 	 * Reset counters so that the request stacking driver
833 	 * can find how many bytes remain in the request
834 	 * later.
835 	 */
836 	if (!req->end_io) {
837 		req->bio = NULL;
838 		req->__data_len = 0;
839 	}
840 }
841 
842 /**
843  * blk_update_request - Complete multiple bytes without completing the request
844  * @req:      the request being processed
845  * @error:    block status code
846  * @nr_bytes: number of bytes to complete for @req
847  *
848  * Description:
849  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
850  *     the request structure even if @req doesn't have leftover.
851  *     If @req has leftover, sets it up for the next range of segments.
852  *
853  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
854  *     %false return from this function.
855  *
856  * Note:
857  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
858  *      except in the consistency check at the end of this function.
859  *
860  * Return:
861  *     %false - this request doesn't have any more data
862  *     %true  - this request has more data
863  **/
864 bool blk_update_request(struct request *req, blk_status_t error,
865 		unsigned int nr_bytes)
866 {
867 	int total_bytes;
868 
869 	trace_block_rq_complete(req, error, nr_bytes);
870 
871 	if (!req->bio)
872 		return false;
873 
874 #ifdef CONFIG_BLK_DEV_INTEGRITY
875 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
876 	    error == BLK_STS_OK)
877 		req->q->integrity.profile->complete_fn(req, nr_bytes);
878 #endif
879 
880 	/*
881 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
882 	 * bio_endio().  Therefore, the keyslot must be released before that.
883 	 */
884 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
885 		__blk_crypto_rq_put_keyslot(req);
886 
887 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
888 		     !(req->rq_flags & RQF_QUIET)) &&
889 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
890 		blk_print_req_error(req, error);
891 		trace_block_rq_error(req, error, nr_bytes);
892 	}
893 
894 	blk_account_io_completion(req, nr_bytes);
895 
896 	total_bytes = 0;
897 	while (req->bio) {
898 		struct bio *bio = req->bio;
899 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
900 
901 		if (bio_bytes == bio->bi_iter.bi_size)
902 			req->bio = bio->bi_next;
903 
904 		/* Completion has already been traced */
905 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
906 		req_bio_endio(req, bio, bio_bytes, error);
907 
908 		total_bytes += bio_bytes;
909 		nr_bytes -= bio_bytes;
910 
911 		if (!nr_bytes)
912 			break;
913 	}
914 
915 	/*
916 	 * completely done
917 	 */
918 	if (!req->bio) {
919 		/*
920 		 * Reset counters so that the request stacking driver
921 		 * can find how many bytes remain in the request
922 		 * later.
923 		 */
924 		req->__data_len = 0;
925 		return false;
926 	}
927 
928 	req->__data_len -= total_bytes;
929 
930 	/* update sector only for requests with clear definition of sector */
931 	if (!blk_rq_is_passthrough(req))
932 		req->__sector += total_bytes >> 9;
933 
934 	/* mixed attributes always follow the first bio */
935 	if (req->rq_flags & RQF_MIXED_MERGE) {
936 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
937 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
938 	}
939 
940 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
941 		/*
942 		 * If total number of sectors is less than the first segment
943 		 * size, something has gone terribly wrong.
944 		 */
945 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
946 			blk_dump_rq_flags(req, "request botched");
947 			req->__data_len = blk_rq_cur_bytes(req);
948 		}
949 
950 		/* recalculate the number of segments */
951 		req->nr_phys_segments = blk_recalc_rq_segments(req);
952 	}
953 
954 	return true;
955 }
956 EXPORT_SYMBOL_GPL(blk_update_request);
957 
958 static inline void blk_account_io_done(struct request *req, u64 now)
959 {
960 	/*
961 	 * Account IO completion.  flush_rq isn't accounted as a
962 	 * normal IO on queueing nor completion.  Accounting the
963 	 * containing request is enough.
964 	 */
965 	if (blk_do_io_stat(req) && req->part &&
966 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
967 		const int sgrp = op_stat_group(req_op(req));
968 
969 		part_stat_lock();
970 		update_io_ticks(req->part, jiffies, true);
971 		part_stat_inc(req->part, ios[sgrp]);
972 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
973 		part_stat_unlock();
974 	}
975 }
976 
977 static inline void blk_account_io_start(struct request *req)
978 {
979 	if (blk_do_io_stat(req)) {
980 		/*
981 		 * All non-passthrough requests are created from a bio with one
982 		 * exception: when a flush command that is part of a flush sequence
983 		 * generated by the state machine in blk-flush.c is cloned onto the
984 		 * lower device by dm-multipath we can get here without a bio.
985 		 */
986 		if (req->bio)
987 			req->part = req->bio->bi_bdev;
988 		else
989 			req->part = req->q->disk->part0;
990 
991 		part_stat_lock();
992 		update_io_ticks(req->part, jiffies, false);
993 		part_stat_unlock();
994 	}
995 }
996 
997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
998 {
999 	if (rq->rq_flags & RQF_STATS)
1000 		blk_stat_add(rq, now);
1001 
1002 	blk_mq_sched_completed_request(rq, now);
1003 	blk_account_io_done(rq, now);
1004 }
1005 
1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1007 {
1008 	if (blk_mq_need_time_stamp(rq))
1009 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1010 
1011 	if (rq->end_io) {
1012 		rq_qos_done(rq->q, rq);
1013 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1014 			blk_mq_free_request(rq);
1015 	} else {
1016 		blk_mq_free_request(rq);
1017 	}
1018 }
1019 EXPORT_SYMBOL(__blk_mq_end_request);
1020 
1021 void blk_mq_end_request(struct request *rq, blk_status_t error)
1022 {
1023 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1024 		BUG();
1025 	__blk_mq_end_request(rq, error);
1026 }
1027 EXPORT_SYMBOL(blk_mq_end_request);
1028 
1029 #define TAG_COMP_BATCH		32
1030 
1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1032 					  int *tag_array, int nr_tags)
1033 {
1034 	struct request_queue *q = hctx->queue;
1035 
1036 	/*
1037 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1038 	 * update hctx->nr_active in batch
1039 	 */
1040 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1041 		__blk_mq_sub_active_requests(hctx, nr_tags);
1042 
1043 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1044 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1045 }
1046 
1047 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1048 {
1049 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1050 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1051 	struct request *rq;
1052 	u64 now = 0;
1053 
1054 	if (iob->need_ts)
1055 		now = ktime_get_ns();
1056 
1057 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1058 		prefetch(rq->bio);
1059 		prefetch(rq->rq_next);
1060 
1061 		blk_complete_request(rq);
1062 		if (iob->need_ts)
1063 			__blk_mq_end_request_acct(rq, now);
1064 
1065 		rq_qos_done(rq->q, rq);
1066 
1067 		/*
1068 		 * If end_io handler returns NONE, then it still has
1069 		 * ownership of the request.
1070 		 */
1071 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1072 			continue;
1073 
1074 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1075 		if (!req_ref_put_and_test(rq))
1076 			continue;
1077 
1078 		blk_crypto_free_request(rq);
1079 		blk_pm_mark_last_busy(rq);
1080 
1081 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1082 			if (cur_hctx)
1083 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1084 			nr_tags = 0;
1085 			cur_hctx = rq->mq_hctx;
1086 		}
1087 		tags[nr_tags++] = rq->tag;
1088 	}
1089 
1090 	if (nr_tags)
1091 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1092 }
1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1094 
1095 static void blk_complete_reqs(struct llist_head *list)
1096 {
1097 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1098 	struct request *rq, *next;
1099 
1100 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1101 		rq->q->mq_ops->complete(rq);
1102 }
1103 
1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1105 {
1106 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1107 }
1108 
1109 static int blk_softirq_cpu_dead(unsigned int cpu)
1110 {
1111 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1112 	return 0;
1113 }
1114 
1115 static void __blk_mq_complete_request_remote(void *data)
1116 {
1117 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1118 }
1119 
1120 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1121 {
1122 	int cpu = raw_smp_processor_id();
1123 
1124 	if (!IS_ENABLED(CONFIG_SMP) ||
1125 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1126 		return false;
1127 	/*
1128 	 * With force threaded interrupts enabled, raising softirq from an SMP
1129 	 * function call will always result in waking the ksoftirqd thread.
1130 	 * This is probably worse than completing the request on a different
1131 	 * cache domain.
1132 	 */
1133 	if (force_irqthreads())
1134 		return false;
1135 
1136 	/* same CPU or cache domain?  Complete locally */
1137 	if (cpu == rq->mq_ctx->cpu ||
1138 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1139 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1140 		return false;
1141 
1142 	/* don't try to IPI to an offline CPU */
1143 	return cpu_online(rq->mq_ctx->cpu);
1144 }
1145 
1146 static void blk_mq_complete_send_ipi(struct request *rq)
1147 {
1148 	struct llist_head *list;
1149 	unsigned int cpu;
1150 
1151 	cpu = rq->mq_ctx->cpu;
1152 	list = &per_cpu(blk_cpu_done, cpu);
1153 	if (llist_add(&rq->ipi_list, list)) {
1154 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1155 		smp_call_function_single_async(cpu, &rq->csd);
1156 	}
1157 }
1158 
1159 static void blk_mq_raise_softirq(struct request *rq)
1160 {
1161 	struct llist_head *list;
1162 
1163 	preempt_disable();
1164 	list = this_cpu_ptr(&blk_cpu_done);
1165 	if (llist_add(&rq->ipi_list, list))
1166 		raise_softirq(BLOCK_SOFTIRQ);
1167 	preempt_enable();
1168 }
1169 
1170 bool blk_mq_complete_request_remote(struct request *rq)
1171 {
1172 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1173 
1174 	/*
1175 	 * For request which hctx has only one ctx mapping,
1176 	 * or a polled request, always complete locally,
1177 	 * it's pointless to redirect the completion.
1178 	 */
1179 	if (rq->mq_hctx->nr_ctx == 1 ||
1180 		rq->cmd_flags & REQ_POLLED)
1181 		return false;
1182 
1183 	if (blk_mq_complete_need_ipi(rq)) {
1184 		blk_mq_complete_send_ipi(rq);
1185 		return true;
1186 	}
1187 
1188 	if (rq->q->nr_hw_queues == 1) {
1189 		blk_mq_raise_softirq(rq);
1190 		return true;
1191 	}
1192 	return false;
1193 }
1194 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1195 
1196 /**
1197  * blk_mq_complete_request - end I/O on a request
1198  * @rq:		the request being processed
1199  *
1200  * Description:
1201  *	Complete a request by scheduling the ->complete_rq operation.
1202  **/
1203 void blk_mq_complete_request(struct request *rq)
1204 {
1205 	if (!blk_mq_complete_request_remote(rq))
1206 		rq->q->mq_ops->complete(rq);
1207 }
1208 EXPORT_SYMBOL(blk_mq_complete_request);
1209 
1210 /**
1211  * blk_mq_start_request - Start processing a request
1212  * @rq: Pointer to request to be started
1213  *
1214  * Function used by device drivers to notify the block layer that a request
1215  * is going to be processed now, so blk layer can do proper initializations
1216  * such as starting the timeout timer.
1217  */
1218 void blk_mq_start_request(struct request *rq)
1219 {
1220 	struct request_queue *q = rq->q;
1221 
1222 	trace_block_rq_issue(rq);
1223 
1224 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1225 		rq->io_start_time_ns = ktime_get_ns();
1226 		rq->stats_sectors = blk_rq_sectors(rq);
1227 		rq->rq_flags |= RQF_STATS;
1228 		rq_qos_issue(q, rq);
1229 	}
1230 
1231 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1232 
1233 	blk_add_timer(rq);
1234 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1235 
1236 #ifdef CONFIG_BLK_DEV_INTEGRITY
1237 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1238 		q->integrity.profile->prepare_fn(rq);
1239 #endif
1240 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1241 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1242 }
1243 EXPORT_SYMBOL(blk_mq_start_request);
1244 
1245 /*
1246  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1247  * queues. This is important for md arrays to benefit from merging
1248  * requests.
1249  */
1250 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1251 {
1252 	if (plug->multiple_queues)
1253 		return BLK_MAX_REQUEST_COUNT * 2;
1254 	return BLK_MAX_REQUEST_COUNT;
1255 }
1256 
1257 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1258 {
1259 	struct request *last = rq_list_peek(&plug->mq_list);
1260 
1261 	if (!plug->rq_count) {
1262 		trace_block_plug(rq->q);
1263 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1264 		   (!blk_queue_nomerges(rq->q) &&
1265 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1266 		blk_mq_flush_plug_list(plug, false);
1267 		last = NULL;
1268 		trace_block_plug(rq->q);
1269 	}
1270 
1271 	if (!plug->multiple_queues && last && last->q != rq->q)
1272 		plug->multiple_queues = true;
1273 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1274 		plug->has_elevator = true;
1275 	rq->rq_next = NULL;
1276 	rq_list_add(&plug->mq_list, rq);
1277 	plug->rq_count++;
1278 }
1279 
1280 /**
1281  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1282  * @rq:		request to insert
1283  * @at_head:    insert request at head or tail of queue
1284  *
1285  * Description:
1286  *    Insert a fully prepared request at the back of the I/O scheduler queue
1287  *    for execution.  Don't wait for completion.
1288  *
1289  * Note:
1290  *    This function will invoke @done directly if the queue is dead.
1291  */
1292 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1293 {
1294 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1295 
1296 	WARN_ON(irqs_disabled());
1297 	WARN_ON(!blk_rq_is_passthrough(rq));
1298 
1299 	blk_account_io_start(rq);
1300 
1301 	/*
1302 	 * As plugging can be enabled for passthrough requests on a zoned
1303 	 * device, directly accessing the plug instead of using blk_mq_plug()
1304 	 * should not have any consequences.
1305 	 */
1306 	if (current->plug && !at_head) {
1307 		blk_add_rq_to_plug(current->plug, rq);
1308 		return;
1309 	}
1310 
1311 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1312 	blk_mq_run_hw_queue(hctx, false);
1313 }
1314 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1315 
1316 struct blk_rq_wait {
1317 	struct completion done;
1318 	blk_status_t ret;
1319 };
1320 
1321 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1322 {
1323 	struct blk_rq_wait *wait = rq->end_io_data;
1324 
1325 	wait->ret = ret;
1326 	complete(&wait->done);
1327 	return RQ_END_IO_NONE;
1328 }
1329 
1330 bool blk_rq_is_poll(struct request *rq)
1331 {
1332 	if (!rq->mq_hctx)
1333 		return false;
1334 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1335 		return false;
1336 	return true;
1337 }
1338 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1339 
1340 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1341 {
1342 	do {
1343 		blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1344 		cond_resched();
1345 	} while (!completion_done(wait));
1346 }
1347 
1348 /**
1349  * blk_execute_rq - insert a request into queue for execution
1350  * @rq:		request to insert
1351  * @at_head:    insert request at head or tail of queue
1352  *
1353  * Description:
1354  *    Insert a fully prepared request at the back of the I/O scheduler queue
1355  *    for execution and wait for completion.
1356  * Return: The blk_status_t result provided to blk_mq_end_request().
1357  */
1358 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1359 {
1360 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1361 	struct blk_rq_wait wait = {
1362 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1363 	};
1364 
1365 	WARN_ON(irqs_disabled());
1366 	WARN_ON(!blk_rq_is_passthrough(rq));
1367 
1368 	rq->end_io_data = &wait;
1369 	rq->end_io = blk_end_sync_rq;
1370 
1371 	blk_account_io_start(rq);
1372 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1373 	blk_mq_run_hw_queue(hctx, false);
1374 
1375 	if (blk_rq_is_poll(rq)) {
1376 		blk_rq_poll_completion(rq, &wait.done);
1377 	} else {
1378 		/*
1379 		 * Prevent hang_check timer from firing at us during very long
1380 		 * I/O
1381 		 */
1382 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1383 
1384 		if (hang_check)
1385 			while (!wait_for_completion_io_timeout(&wait.done,
1386 					hang_check * (HZ/2)))
1387 				;
1388 		else
1389 			wait_for_completion_io(&wait.done);
1390 	}
1391 
1392 	return wait.ret;
1393 }
1394 EXPORT_SYMBOL(blk_execute_rq);
1395 
1396 static void __blk_mq_requeue_request(struct request *rq)
1397 {
1398 	struct request_queue *q = rq->q;
1399 
1400 	blk_mq_put_driver_tag(rq);
1401 
1402 	trace_block_rq_requeue(rq);
1403 	rq_qos_requeue(q, rq);
1404 
1405 	if (blk_mq_request_started(rq)) {
1406 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1407 		rq->rq_flags &= ~RQF_TIMED_OUT;
1408 	}
1409 }
1410 
1411 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1412 {
1413 	struct request_queue *q = rq->q;
1414 
1415 	__blk_mq_requeue_request(rq);
1416 
1417 	/* this request will be re-inserted to io scheduler queue */
1418 	blk_mq_sched_requeue_request(rq);
1419 
1420 	blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD);
1421 
1422 	if (kick_requeue_list)
1423 		blk_mq_kick_requeue_list(q);
1424 }
1425 EXPORT_SYMBOL(blk_mq_requeue_request);
1426 
1427 static void blk_mq_requeue_work(struct work_struct *work)
1428 {
1429 	struct request_queue *q =
1430 		container_of(work, struct request_queue, requeue_work.work);
1431 	LIST_HEAD(rq_list);
1432 	struct request *rq, *next;
1433 
1434 	spin_lock_irq(&q->requeue_lock);
1435 	list_splice_init(&q->requeue_list, &rq_list);
1436 	spin_unlock_irq(&q->requeue_lock);
1437 
1438 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1439 		/*
1440 		 * If RQF_DONTPREP ist set, the request has been started by the
1441 		 * driver already and might have driver-specific data allocated
1442 		 * already.  Insert it into the hctx dispatch list to avoid
1443 		 * block layer merges for the request.
1444 		 */
1445 		if (rq->rq_flags & RQF_DONTPREP) {
1446 			rq->rq_flags &= ~RQF_SOFTBARRIER;
1447 			list_del_init(&rq->queuelist);
1448 			blk_mq_request_bypass_insert(rq, 0);
1449 		} else if (rq->rq_flags & RQF_SOFTBARRIER) {
1450 			rq->rq_flags &= ~RQF_SOFTBARRIER;
1451 			list_del_init(&rq->queuelist);
1452 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1453 		}
1454 	}
1455 
1456 	while (!list_empty(&rq_list)) {
1457 		rq = list_entry(rq_list.next, struct request, queuelist);
1458 		list_del_init(&rq->queuelist);
1459 		blk_mq_insert_request(rq, 0);
1460 	}
1461 
1462 	blk_mq_run_hw_queues(q, false);
1463 }
1464 
1465 void blk_mq_add_to_requeue_list(struct request *rq, blk_insert_t insert_flags)
1466 {
1467 	struct request_queue *q = rq->q;
1468 	unsigned long flags;
1469 
1470 	/*
1471 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1472 	 * request head insertion from the workqueue.
1473 	 */
1474 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1475 
1476 	spin_lock_irqsave(&q->requeue_lock, flags);
1477 	if (insert_flags & BLK_MQ_INSERT_AT_HEAD) {
1478 		rq->rq_flags |= RQF_SOFTBARRIER;
1479 		list_add(&rq->queuelist, &q->requeue_list);
1480 	} else {
1481 		list_add_tail(&rq->queuelist, &q->requeue_list);
1482 	}
1483 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1484 }
1485 
1486 void blk_mq_kick_requeue_list(struct request_queue *q)
1487 {
1488 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1489 }
1490 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1491 
1492 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1493 				    unsigned long msecs)
1494 {
1495 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1496 				    msecs_to_jiffies(msecs));
1497 }
1498 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1499 
1500 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1501 {
1502 	/*
1503 	 * If we find a request that isn't idle we know the queue is busy
1504 	 * as it's checked in the iter.
1505 	 * Return false to stop the iteration.
1506 	 */
1507 	if (blk_mq_request_started(rq)) {
1508 		bool *busy = priv;
1509 
1510 		*busy = true;
1511 		return false;
1512 	}
1513 
1514 	return true;
1515 }
1516 
1517 bool blk_mq_queue_inflight(struct request_queue *q)
1518 {
1519 	bool busy = false;
1520 
1521 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1522 	return busy;
1523 }
1524 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1525 
1526 static void blk_mq_rq_timed_out(struct request *req)
1527 {
1528 	req->rq_flags |= RQF_TIMED_OUT;
1529 	if (req->q->mq_ops->timeout) {
1530 		enum blk_eh_timer_return ret;
1531 
1532 		ret = req->q->mq_ops->timeout(req);
1533 		if (ret == BLK_EH_DONE)
1534 			return;
1535 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1536 	}
1537 
1538 	blk_add_timer(req);
1539 }
1540 
1541 struct blk_expired_data {
1542 	bool has_timedout_rq;
1543 	unsigned long next;
1544 	unsigned long timeout_start;
1545 };
1546 
1547 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1548 {
1549 	unsigned long deadline;
1550 
1551 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1552 		return false;
1553 	if (rq->rq_flags & RQF_TIMED_OUT)
1554 		return false;
1555 
1556 	deadline = READ_ONCE(rq->deadline);
1557 	if (time_after_eq(expired->timeout_start, deadline))
1558 		return true;
1559 
1560 	if (expired->next == 0)
1561 		expired->next = deadline;
1562 	else if (time_after(expired->next, deadline))
1563 		expired->next = deadline;
1564 	return false;
1565 }
1566 
1567 void blk_mq_put_rq_ref(struct request *rq)
1568 {
1569 	if (is_flush_rq(rq)) {
1570 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1571 			blk_mq_free_request(rq);
1572 	} else if (req_ref_put_and_test(rq)) {
1573 		__blk_mq_free_request(rq);
1574 	}
1575 }
1576 
1577 static bool blk_mq_check_expired(struct request *rq, void *priv)
1578 {
1579 	struct blk_expired_data *expired = priv;
1580 
1581 	/*
1582 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1583 	 * be reallocated underneath the timeout handler's processing, then
1584 	 * the expire check is reliable. If the request is not expired, then
1585 	 * it was completed and reallocated as a new request after returning
1586 	 * from blk_mq_check_expired().
1587 	 */
1588 	if (blk_mq_req_expired(rq, expired)) {
1589 		expired->has_timedout_rq = true;
1590 		return false;
1591 	}
1592 	return true;
1593 }
1594 
1595 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1596 {
1597 	struct blk_expired_data *expired = priv;
1598 
1599 	if (blk_mq_req_expired(rq, expired))
1600 		blk_mq_rq_timed_out(rq);
1601 	return true;
1602 }
1603 
1604 static void blk_mq_timeout_work(struct work_struct *work)
1605 {
1606 	struct request_queue *q =
1607 		container_of(work, struct request_queue, timeout_work);
1608 	struct blk_expired_data expired = {
1609 		.timeout_start = jiffies,
1610 	};
1611 	struct blk_mq_hw_ctx *hctx;
1612 	unsigned long i;
1613 
1614 	/* A deadlock might occur if a request is stuck requiring a
1615 	 * timeout at the same time a queue freeze is waiting
1616 	 * completion, since the timeout code would not be able to
1617 	 * acquire the queue reference here.
1618 	 *
1619 	 * That's why we don't use blk_queue_enter here; instead, we use
1620 	 * percpu_ref_tryget directly, because we need to be able to
1621 	 * obtain a reference even in the short window between the queue
1622 	 * starting to freeze, by dropping the first reference in
1623 	 * blk_freeze_queue_start, and the moment the last request is
1624 	 * consumed, marked by the instant q_usage_counter reaches
1625 	 * zero.
1626 	 */
1627 	if (!percpu_ref_tryget(&q->q_usage_counter))
1628 		return;
1629 
1630 	/* check if there is any timed-out request */
1631 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1632 	if (expired.has_timedout_rq) {
1633 		/*
1634 		 * Before walking tags, we must ensure any submit started
1635 		 * before the current time has finished. Since the submit
1636 		 * uses srcu or rcu, wait for a synchronization point to
1637 		 * ensure all running submits have finished
1638 		 */
1639 		blk_mq_wait_quiesce_done(q->tag_set);
1640 
1641 		expired.next = 0;
1642 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1643 	}
1644 
1645 	if (expired.next != 0) {
1646 		mod_timer(&q->timeout, expired.next);
1647 	} else {
1648 		/*
1649 		 * Request timeouts are handled as a forward rolling timer. If
1650 		 * we end up here it means that no requests are pending and
1651 		 * also that no request has been pending for a while. Mark
1652 		 * each hctx as idle.
1653 		 */
1654 		queue_for_each_hw_ctx(q, hctx, i) {
1655 			/* the hctx may be unmapped, so check it here */
1656 			if (blk_mq_hw_queue_mapped(hctx))
1657 				blk_mq_tag_idle(hctx);
1658 		}
1659 	}
1660 	blk_queue_exit(q);
1661 }
1662 
1663 struct flush_busy_ctx_data {
1664 	struct blk_mq_hw_ctx *hctx;
1665 	struct list_head *list;
1666 };
1667 
1668 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1669 {
1670 	struct flush_busy_ctx_data *flush_data = data;
1671 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1672 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1673 	enum hctx_type type = hctx->type;
1674 
1675 	spin_lock(&ctx->lock);
1676 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1677 	sbitmap_clear_bit(sb, bitnr);
1678 	spin_unlock(&ctx->lock);
1679 	return true;
1680 }
1681 
1682 /*
1683  * Process software queues that have been marked busy, splicing them
1684  * to the for-dispatch
1685  */
1686 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1687 {
1688 	struct flush_busy_ctx_data data = {
1689 		.hctx = hctx,
1690 		.list = list,
1691 	};
1692 
1693 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1694 }
1695 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1696 
1697 struct dispatch_rq_data {
1698 	struct blk_mq_hw_ctx *hctx;
1699 	struct request *rq;
1700 };
1701 
1702 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1703 		void *data)
1704 {
1705 	struct dispatch_rq_data *dispatch_data = data;
1706 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1707 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1708 	enum hctx_type type = hctx->type;
1709 
1710 	spin_lock(&ctx->lock);
1711 	if (!list_empty(&ctx->rq_lists[type])) {
1712 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1713 		list_del_init(&dispatch_data->rq->queuelist);
1714 		if (list_empty(&ctx->rq_lists[type]))
1715 			sbitmap_clear_bit(sb, bitnr);
1716 	}
1717 	spin_unlock(&ctx->lock);
1718 
1719 	return !dispatch_data->rq;
1720 }
1721 
1722 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1723 					struct blk_mq_ctx *start)
1724 {
1725 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1726 	struct dispatch_rq_data data = {
1727 		.hctx = hctx,
1728 		.rq   = NULL,
1729 	};
1730 
1731 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1732 			       dispatch_rq_from_ctx, &data);
1733 
1734 	return data.rq;
1735 }
1736 
1737 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1738 {
1739 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1740 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1741 	int tag;
1742 
1743 	blk_mq_tag_busy(rq->mq_hctx);
1744 
1745 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1746 		bt = &rq->mq_hctx->tags->breserved_tags;
1747 		tag_offset = 0;
1748 	} else {
1749 		if (!hctx_may_queue(rq->mq_hctx, bt))
1750 			return false;
1751 	}
1752 
1753 	tag = __sbitmap_queue_get(bt);
1754 	if (tag == BLK_MQ_NO_TAG)
1755 		return false;
1756 
1757 	rq->tag = tag + tag_offset;
1758 	return true;
1759 }
1760 
1761 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1762 {
1763 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1764 		return false;
1765 
1766 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1767 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1768 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1769 		__blk_mq_inc_active_requests(hctx);
1770 	}
1771 	hctx->tags->rqs[rq->tag] = rq;
1772 	return true;
1773 }
1774 
1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1776 				int flags, void *key)
1777 {
1778 	struct blk_mq_hw_ctx *hctx;
1779 
1780 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1781 
1782 	spin_lock(&hctx->dispatch_wait_lock);
1783 	if (!list_empty(&wait->entry)) {
1784 		struct sbitmap_queue *sbq;
1785 
1786 		list_del_init(&wait->entry);
1787 		sbq = &hctx->tags->bitmap_tags;
1788 		atomic_dec(&sbq->ws_active);
1789 	}
1790 	spin_unlock(&hctx->dispatch_wait_lock);
1791 
1792 	blk_mq_run_hw_queue(hctx, true);
1793 	return 1;
1794 }
1795 
1796 /*
1797  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1798  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1799  * restart. For both cases, take care to check the condition again after
1800  * marking us as waiting.
1801  */
1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1803 				 struct request *rq)
1804 {
1805 	struct sbitmap_queue *sbq;
1806 	struct wait_queue_head *wq;
1807 	wait_queue_entry_t *wait;
1808 	bool ret;
1809 
1810 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1811 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1812 		blk_mq_sched_mark_restart_hctx(hctx);
1813 
1814 		/*
1815 		 * It's possible that a tag was freed in the window between the
1816 		 * allocation failure and adding the hardware queue to the wait
1817 		 * queue.
1818 		 *
1819 		 * Don't clear RESTART here, someone else could have set it.
1820 		 * At most this will cost an extra queue run.
1821 		 */
1822 		return blk_mq_get_driver_tag(rq);
1823 	}
1824 
1825 	wait = &hctx->dispatch_wait;
1826 	if (!list_empty_careful(&wait->entry))
1827 		return false;
1828 
1829 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1830 		sbq = &hctx->tags->breserved_tags;
1831 	else
1832 		sbq = &hctx->tags->bitmap_tags;
1833 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1834 
1835 	spin_lock_irq(&wq->lock);
1836 	spin_lock(&hctx->dispatch_wait_lock);
1837 	if (!list_empty(&wait->entry)) {
1838 		spin_unlock(&hctx->dispatch_wait_lock);
1839 		spin_unlock_irq(&wq->lock);
1840 		return false;
1841 	}
1842 
1843 	atomic_inc(&sbq->ws_active);
1844 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1845 	__add_wait_queue(wq, wait);
1846 
1847 	/*
1848 	 * It's possible that a tag was freed in the window between the
1849 	 * allocation failure and adding the hardware queue to the wait
1850 	 * queue.
1851 	 */
1852 	ret = blk_mq_get_driver_tag(rq);
1853 	if (!ret) {
1854 		spin_unlock(&hctx->dispatch_wait_lock);
1855 		spin_unlock_irq(&wq->lock);
1856 		return false;
1857 	}
1858 
1859 	/*
1860 	 * We got a tag, remove ourselves from the wait queue to ensure
1861 	 * someone else gets the wakeup.
1862 	 */
1863 	list_del_init(&wait->entry);
1864 	atomic_dec(&sbq->ws_active);
1865 	spin_unlock(&hctx->dispatch_wait_lock);
1866 	spin_unlock_irq(&wq->lock);
1867 
1868 	return true;
1869 }
1870 
1871 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1872 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1873 /*
1874  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1875  * - EWMA is one simple way to compute running average value
1876  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1877  * - take 4 as factor for avoiding to get too small(0) result, and this
1878  *   factor doesn't matter because EWMA decreases exponentially
1879  */
1880 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1881 {
1882 	unsigned int ewma;
1883 
1884 	ewma = hctx->dispatch_busy;
1885 
1886 	if (!ewma && !busy)
1887 		return;
1888 
1889 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1890 	if (busy)
1891 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1892 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1893 
1894 	hctx->dispatch_busy = ewma;
1895 }
1896 
1897 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1898 
1899 static void blk_mq_handle_dev_resource(struct request *rq,
1900 				       struct list_head *list)
1901 {
1902 	list_add(&rq->queuelist, list);
1903 	__blk_mq_requeue_request(rq);
1904 }
1905 
1906 static void blk_mq_handle_zone_resource(struct request *rq,
1907 					struct list_head *zone_list)
1908 {
1909 	/*
1910 	 * If we end up here it is because we cannot dispatch a request to a
1911 	 * specific zone due to LLD level zone-write locking or other zone
1912 	 * related resource not being available. In this case, set the request
1913 	 * aside in zone_list for retrying it later.
1914 	 */
1915 	list_add(&rq->queuelist, zone_list);
1916 	__blk_mq_requeue_request(rq);
1917 }
1918 
1919 enum prep_dispatch {
1920 	PREP_DISPATCH_OK,
1921 	PREP_DISPATCH_NO_TAG,
1922 	PREP_DISPATCH_NO_BUDGET,
1923 };
1924 
1925 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1926 						  bool need_budget)
1927 {
1928 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1929 	int budget_token = -1;
1930 
1931 	if (need_budget) {
1932 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1933 		if (budget_token < 0) {
1934 			blk_mq_put_driver_tag(rq);
1935 			return PREP_DISPATCH_NO_BUDGET;
1936 		}
1937 		blk_mq_set_rq_budget_token(rq, budget_token);
1938 	}
1939 
1940 	if (!blk_mq_get_driver_tag(rq)) {
1941 		/*
1942 		 * The initial allocation attempt failed, so we need to
1943 		 * rerun the hardware queue when a tag is freed. The
1944 		 * waitqueue takes care of that. If the queue is run
1945 		 * before we add this entry back on the dispatch list,
1946 		 * we'll re-run it below.
1947 		 */
1948 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1949 			/*
1950 			 * All budgets not got from this function will be put
1951 			 * together during handling partial dispatch
1952 			 */
1953 			if (need_budget)
1954 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1955 			return PREP_DISPATCH_NO_TAG;
1956 		}
1957 	}
1958 
1959 	return PREP_DISPATCH_OK;
1960 }
1961 
1962 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1963 static void blk_mq_release_budgets(struct request_queue *q,
1964 		struct list_head *list)
1965 {
1966 	struct request *rq;
1967 
1968 	list_for_each_entry(rq, list, queuelist) {
1969 		int budget_token = blk_mq_get_rq_budget_token(rq);
1970 
1971 		if (budget_token >= 0)
1972 			blk_mq_put_dispatch_budget(q, budget_token);
1973 	}
1974 }
1975 
1976 /*
1977  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1978  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1979  * details)
1980  * Attention, we should explicitly call this in unusual cases:
1981  *  1) did not queue everything initially scheduled to queue
1982  *  2) the last attempt to queue a request failed
1983  */
1984 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1985 			      bool from_schedule)
1986 {
1987 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1988 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1989 		hctx->queue->mq_ops->commit_rqs(hctx);
1990 	}
1991 }
1992 
1993 /*
1994  * Returns true if we did some work AND can potentially do more.
1995  */
1996 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1997 			     unsigned int nr_budgets)
1998 {
1999 	enum prep_dispatch prep;
2000 	struct request_queue *q = hctx->queue;
2001 	struct request *rq;
2002 	int queued;
2003 	blk_status_t ret = BLK_STS_OK;
2004 	LIST_HEAD(zone_list);
2005 	bool needs_resource = false;
2006 
2007 	if (list_empty(list))
2008 		return false;
2009 
2010 	/*
2011 	 * Now process all the entries, sending them to the driver.
2012 	 */
2013 	queued = 0;
2014 	do {
2015 		struct blk_mq_queue_data bd;
2016 
2017 		rq = list_first_entry(list, struct request, queuelist);
2018 
2019 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2020 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2021 		if (prep != PREP_DISPATCH_OK)
2022 			break;
2023 
2024 		list_del_init(&rq->queuelist);
2025 
2026 		bd.rq = rq;
2027 		bd.last = list_empty(list);
2028 
2029 		/*
2030 		 * once the request is queued to lld, no need to cover the
2031 		 * budget any more
2032 		 */
2033 		if (nr_budgets)
2034 			nr_budgets--;
2035 		ret = q->mq_ops->queue_rq(hctx, &bd);
2036 		switch (ret) {
2037 		case BLK_STS_OK:
2038 			queued++;
2039 			break;
2040 		case BLK_STS_RESOURCE:
2041 			needs_resource = true;
2042 			fallthrough;
2043 		case BLK_STS_DEV_RESOURCE:
2044 			blk_mq_handle_dev_resource(rq, list);
2045 			goto out;
2046 		case BLK_STS_ZONE_RESOURCE:
2047 			/*
2048 			 * Move the request to zone_list and keep going through
2049 			 * the dispatch list to find more requests the drive can
2050 			 * accept.
2051 			 */
2052 			blk_mq_handle_zone_resource(rq, &zone_list);
2053 			needs_resource = true;
2054 			break;
2055 		default:
2056 			blk_mq_end_request(rq, ret);
2057 		}
2058 	} while (!list_empty(list));
2059 out:
2060 	if (!list_empty(&zone_list))
2061 		list_splice_tail_init(&zone_list, list);
2062 
2063 	/* If we didn't flush the entire list, we could have told the driver
2064 	 * there was more coming, but that turned out to be a lie.
2065 	 */
2066 	if (!list_empty(list) || ret != BLK_STS_OK)
2067 		blk_mq_commit_rqs(hctx, queued, false);
2068 
2069 	/*
2070 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2071 	 * that is where we will continue on next queue run.
2072 	 */
2073 	if (!list_empty(list)) {
2074 		bool needs_restart;
2075 		/* For non-shared tags, the RESTART check will suffice */
2076 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2077 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2078 			blk_mq_is_shared_tags(hctx->flags));
2079 
2080 		if (nr_budgets)
2081 			blk_mq_release_budgets(q, list);
2082 
2083 		spin_lock(&hctx->lock);
2084 		list_splice_tail_init(list, &hctx->dispatch);
2085 		spin_unlock(&hctx->lock);
2086 
2087 		/*
2088 		 * Order adding requests to hctx->dispatch and checking
2089 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2090 		 * in blk_mq_sched_restart(). Avoid restart code path to
2091 		 * miss the new added requests to hctx->dispatch, meantime
2092 		 * SCHED_RESTART is observed here.
2093 		 */
2094 		smp_mb();
2095 
2096 		/*
2097 		 * If SCHED_RESTART was set by the caller of this function and
2098 		 * it is no longer set that means that it was cleared by another
2099 		 * thread and hence that a queue rerun is needed.
2100 		 *
2101 		 * If 'no_tag' is set, that means that we failed getting
2102 		 * a driver tag with an I/O scheduler attached. If our dispatch
2103 		 * waitqueue is no longer active, ensure that we run the queue
2104 		 * AFTER adding our entries back to the list.
2105 		 *
2106 		 * If no I/O scheduler has been configured it is possible that
2107 		 * the hardware queue got stopped and restarted before requests
2108 		 * were pushed back onto the dispatch list. Rerun the queue to
2109 		 * avoid starvation. Notes:
2110 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2111 		 *   been stopped before rerunning a queue.
2112 		 * - Some but not all block drivers stop a queue before
2113 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2114 		 *   and dm-rq.
2115 		 *
2116 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2117 		 * bit is set, run queue after a delay to avoid IO stalls
2118 		 * that could otherwise occur if the queue is idle.  We'll do
2119 		 * similar if we couldn't get budget or couldn't lock a zone
2120 		 * and SCHED_RESTART is set.
2121 		 */
2122 		needs_restart = blk_mq_sched_needs_restart(hctx);
2123 		if (prep == PREP_DISPATCH_NO_BUDGET)
2124 			needs_resource = true;
2125 		if (!needs_restart ||
2126 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2127 			blk_mq_run_hw_queue(hctx, true);
2128 		else if (needs_resource)
2129 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2130 
2131 		blk_mq_update_dispatch_busy(hctx, true);
2132 		return false;
2133 	}
2134 
2135 	blk_mq_update_dispatch_busy(hctx, false);
2136 	return true;
2137 }
2138 
2139 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2140 {
2141 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2142 
2143 	if (cpu >= nr_cpu_ids)
2144 		cpu = cpumask_first(hctx->cpumask);
2145 	return cpu;
2146 }
2147 
2148 /*
2149  * It'd be great if the workqueue API had a way to pass
2150  * in a mask and had some smarts for more clever placement.
2151  * For now we just round-robin here, switching for every
2152  * BLK_MQ_CPU_WORK_BATCH queued items.
2153  */
2154 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2155 {
2156 	bool tried = false;
2157 	int next_cpu = hctx->next_cpu;
2158 
2159 	if (hctx->queue->nr_hw_queues == 1)
2160 		return WORK_CPU_UNBOUND;
2161 
2162 	if (--hctx->next_cpu_batch <= 0) {
2163 select_cpu:
2164 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2165 				cpu_online_mask);
2166 		if (next_cpu >= nr_cpu_ids)
2167 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2168 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2169 	}
2170 
2171 	/*
2172 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2173 	 * and it should only happen in the path of handling CPU DEAD.
2174 	 */
2175 	if (!cpu_online(next_cpu)) {
2176 		if (!tried) {
2177 			tried = true;
2178 			goto select_cpu;
2179 		}
2180 
2181 		/*
2182 		 * Make sure to re-select CPU next time once after CPUs
2183 		 * in hctx->cpumask become online again.
2184 		 */
2185 		hctx->next_cpu = next_cpu;
2186 		hctx->next_cpu_batch = 1;
2187 		return WORK_CPU_UNBOUND;
2188 	}
2189 
2190 	hctx->next_cpu = next_cpu;
2191 	return next_cpu;
2192 }
2193 
2194 /**
2195  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2196  * @hctx: Pointer to the hardware queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queue.
2198  *
2199  * Run a hardware queue asynchronously with a delay of @msecs.
2200  */
2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2202 {
2203 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2204 		return;
2205 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2206 				    msecs_to_jiffies(msecs));
2207 }
2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2209 
2210 /**
2211  * blk_mq_run_hw_queue - Start to run a hardware queue.
2212  * @hctx: Pointer to the hardware queue to run.
2213  * @async: If we want to run the queue asynchronously.
2214  *
2215  * Check if the request queue is not in a quiesced state and if there are
2216  * pending requests to be sent. If this is true, run the queue to send requests
2217  * to hardware.
2218  */
2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2220 {
2221 	bool need_run;
2222 
2223 	/*
2224 	 * We can't run the queue inline with interrupts disabled.
2225 	 */
2226 	WARN_ON_ONCE(!async && in_interrupt());
2227 
2228 	/*
2229 	 * When queue is quiesced, we may be switching io scheduler, or
2230 	 * updating nr_hw_queues, or other things, and we can't run queue
2231 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2232 	 *
2233 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2234 	 * quiesced.
2235 	 */
2236 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2237 		need_run = !blk_queue_quiesced(hctx->queue) &&
2238 		blk_mq_hctx_has_pending(hctx));
2239 
2240 	if (!need_run)
2241 		return;
2242 
2243 	if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2244 	    !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2245 		blk_mq_delay_run_hw_queue(hctx, 0);
2246 		return;
2247 	}
2248 
2249 	blk_mq_run_dispatch_ops(hctx->queue,
2250 				blk_mq_sched_dispatch_requests(hctx));
2251 }
2252 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2253 
2254 /*
2255  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2256  * scheduler.
2257  */
2258 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2259 {
2260 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2261 	/*
2262 	 * If the IO scheduler does not respect hardware queues when
2263 	 * dispatching, we just don't bother with multiple HW queues and
2264 	 * dispatch from hctx for the current CPU since running multiple queues
2265 	 * just causes lock contention inside the scheduler and pointless cache
2266 	 * bouncing.
2267 	 */
2268 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2269 
2270 	if (!blk_mq_hctx_stopped(hctx))
2271 		return hctx;
2272 	return NULL;
2273 }
2274 
2275 /**
2276  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2277  * @q: Pointer to the request queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  */
2280 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2281 {
2282 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2283 	unsigned long i;
2284 
2285 	sq_hctx = NULL;
2286 	if (blk_queue_sq_sched(q))
2287 		sq_hctx = blk_mq_get_sq_hctx(q);
2288 	queue_for_each_hw_ctx(q, hctx, i) {
2289 		if (blk_mq_hctx_stopped(hctx))
2290 			continue;
2291 		/*
2292 		 * Dispatch from this hctx either if there's no hctx preferred
2293 		 * by IO scheduler or if it has requests that bypass the
2294 		 * scheduler.
2295 		 */
2296 		if (!sq_hctx || sq_hctx == hctx ||
2297 		    !list_empty_careful(&hctx->dispatch))
2298 			blk_mq_run_hw_queue(hctx, async);
2299 	}
2300 }
2301 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2302 
2303 /**
2304  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2305  * @q: Pointer to the request queue to run.
2306  * @msecs: Milliseconds of delay to wait before running the queues.
2307  */
2308 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2309 {
2310 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2311 	unsigned long i;
2312 
2313 	sq_hctx = NULL;
2314 	if (blk_queue_sq_sched(q))
2315 		sq_hctx = blk_mq_get_sq_hctx(q);
2316 	queue_for_each_hw_ctx(q, hctx, i) {
2317 		if (blk_mq_hctx_stopped(hctx))
2318 			continue;
2319 		/*
2320 		 * If there is already a run_work pending, leave the
2321 		 * pending delay untouched. Otherwise, a hctx can stall
2322 		 * if another hctx is re-delaying the other's work
2323 		 * before the work executes.
2324 		 */
2325 		if (delayed_work_pending(&hctx->run_work))
2326 			continue;
2327 		/*
2328 		 * Dispatch from this hctx either if there's no hctx preferred
2329 		 * by IO scheduler or if it has requests that bypass the
2330 		 * scheduler.
2331 		 */
2332 		if (!sq_hctx || sq_hctx == hctx ||
2333 		    !list_empty_careful(&hctx->dispatch))
2334 			blk_mq_delay_run_hw_queue(hctx, msecs);
2335 	}
2336 }
2337 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2338 
2339 /*
2340  * This function is often used for pausing .queue_rq() by driver when
2341  * there isn't enough resource or some conditions aren't satisfied, and
2342  * BLK_STS_RESOURCE is usually returned.
2343  *
2344  * We do not guarantee that dispatch can be drained or blocked
2345  * after blk_mq_stop_hw_queue() returns. Please use
2346  * blk_mq_quiesce_queue() for that requirement.
2347  */
2348 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2349 {
2350 	cancel_delayed_work(&hctx->run_work);
2351 
2352 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2353 }
2354 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2355 
2356 /*
2357  * This function is often used for pausing .queue_rq() by driver when
2358  * there isn't enough resource or some conditions aren't satisfied, and
2359  * BLK_STS_RESOURCE is usually returned.
2360  *
2361  * We do not guarantee that dispatch can be drained or blocked
2362  * after blk_mq_stop_hw_queues() returns. Please use
2363  * blk_mq_quiesce_queue() for that requirement.
2364  */
2365 void blk_mq_stop_hw_queues(struct request_queue *q)
2366 {
2367 	struct blk_mq_hw_ctx *hctx;
2368 	unsigned long i;
2369 
2370 	queue_for_each_hw_ctx(q, hctx, i)
2371 		blk_mq_stop_hw_queue(hctx);
2372 }
2373 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2374 
2375 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2376 {
2377 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2378 
2379 	blk_mq_run_hw_queue(hctx, false);
2380 }
2381 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2382 
2383 void blk_mq_start_hw_queues(struct request_queue *q)
2384 {
2385 	struct blk_mq_hw_ctx *hctx;
2386 	unsigned long i;
2387 
2388 	queue_for_each_hw_ctx(q, hctx, i)
2389 		blk_mq_start_hw_queue(hctx);
2390 }
2391 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2392 
2393 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2394 {
2395 	if (!blk_mq_hctx_stopped(hctx))
2396 		return;
2397 
2398 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2399 	blk_mq_run_hw_queue(hctx, async);
2400 }
2401 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2402 
2403 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2404 {
2405 	struct blk_mq_hw_ctx *hctx;
2406 	unsigned long i;
2407 
2408 	queue_for_each_hw_ctx(q, hctx, i)
2409 		blk_mq_start_stopped_hw_queue(hctx, async);
2410 }
2411 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2412 
2413 static void blk_mq_run_work_fn(struct work_struct *work)
2414 {
2415 	struct blk_mq_hw_ctx *hctx =
2416 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2417 
2418 	blk_mq_run_dispatch_ops(hctx->queue,
2419 				blk_mq_sched_dispatch_requests(hctx));
2420 }
2421 
2422 /**
2423  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2424  * @rq: Pointer to request to be inserted.
2425  * @flags: BLK_MQ_INSERT_*
2426  *
2427  * Should only be used carefully, when the caller knows we want to
2428  * bypass a potential IO scheduler on the target device.
2429  */
2430 void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2431 {
2432 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2433 
2434 	spin_lock(&hctx->lock);
2435 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2436 		list_add(&rq->queuelist, &hctx->dispatch);
2437 	else
2438 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2439 	spin_unlock(&hctx->lock);
2440 }
2441 
2442 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2443 		struct blk_mq_ctx *ctx, struct list_head *list,
2444 		bool run_queue_async)
2445 {
2446 	struct request *rq;
2447 	enum hctx_type type = hctx->type;
2448 
2449 	/*
2450 	 * Try to issue requests directly if the hw queue isn't busy to save an
2451 	 * extra enqueue & dequeue to the sw queue.
2452 	 */
2453 	if (!hctx->dispatch_busy && !run_queue_async) {
2454 		blk_mq_run_dispatch_ops(hctx->queue,
2455 			blk_mq_try_issue_list_directly(hctx, list));
2456 		if (list_empty(list))
2457 			goto out;
2458 	}
2459 
2460 	/*
2461 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2462 	 * offline now
2463 	 */
2464 	list_for_each_entry(rq, list, queuelist) {
2465 		BUG_ON(rq->mq_ctx != ctx);
2466 		trace_block_rq_insert(rq);
2467 	}
2468 
2469 	spin_lock(&ctx->lock);
2470 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2471 	blk_mq_hctx_mark_pending(hctx, ctx);
2472 	spin_unlock(&ctx->lock);
2473 out:
2474 	blk_mq_run_hw_queue(hctx, run_queue_async);
2475 }
2476 
2477 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2478 {
2479 	struct request_queue *q = rq->q;
2480 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2481 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2482 
2483 	if (blk_rq_is_passthrough(rq)) {
2484 		/*
2485 		 * Passthrough request have to be added to hctx->dispatch
2486 		 * directly.  The device may be in a situation where it can't
2487 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2488 		 * them, which gets them added to hctx->dispatch.
2489 		 *
2490 		 * If a passthrough request is required to unblock the queues,
2491 		 * and it is added to the scheduler queue, there is no chance to
2492 		 * dispatch it given we prioritize requests in hctx->dispatch.
2493 		 */
2494 		blk_mq_request_bypass_insert(rq, flags);
2495 	} else if (rq->rq_flags & RQF_FLUSH_SEQ) {
2496 		/*
2497 		 * Firstly normal IO request is inserted to scheduler queue or
2498 		 * sw queue, meantime we add flush request to dispatch queue(
2499 		 * hctx->dispatch) directly and there is at most one in-flight
2500 		 * flush request for each hw queue, so it doesn't matter to add
2501 		 * flush request to tail or front of the dispatch queue.
2502 		 *
2503 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2504 		 * command, and queueing it will fail when there is any
2505 		 * in-flight normal IO request(NCQ command). When adding flush
2506 		 * rq to the front of hctx->dispatch, it is easier to introduce
2507 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2508 		 * compared with adding to the tail of dispatch queue, then
2509 		 * chance of flush merge is increased, and less flush requests
2510 		 * will be issued to controller. It is observed that ~10% time
2511 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2512 		 * drive when adding flush rq to the front of hctx->dispatch.
2513 		 *
2514 		 * Simply queue flush rq to the front of hctx->dispatch so that
2515 		 * intensive flush workloads can benefit in case of NCQ HW.
2516 		 */
2517 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2518 	} else if (q->elevator) {
2519 		LIST_HEAD(list);
2520 
2521 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2522 
2523 		list_add(&rq->queuelist, &list);
2524 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2525 	} else {
2526 		trace_block_rq_insert(rq);
2527 
2528 		spin_lock(&ctx->lock);
2529 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2530 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2531 		else
2532 			list_add_tail(&rq->queuelist,
2533 				      &ctx->rq_lists[hctx->type]);
2534 		blk_mq_hctx_mark_pending(hctx, ctx);
2535 		spin_unlock(&ctx->lock);
2536 	}
2537 }
2538 
2539 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2540 		unsigned int nr_segs)
2541 {
2542 	int err;
2543 
2544 	if (bio->bi_opf & REQ_RAHEAD)
2545 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2546 
2547 	rq->__sector = bio->bi_iter.bi_sector;
2548 	blk_rq_bio_prep(rq, bio, nr_segs);
2549 
2550 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2551 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2552 	WARN_ON_ONCE(err);
2553 
2554 	blk_account_io_start(rq);
2555 }
2556 
2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2558 					    struct request *rq, bool last)
2559 {
2560 	struct request_queue *q = rq->q;
2561 	struct blk_mq_queue_data bd = {
2562 		.rq = rq,
2563 		.last = last,
2564 	};
2565 	blk_status_t ret;
2566 
2567 	/*
2568 	 * For OK queue, we are done. For error, caller may kill it.
2569 	 * Any other error (busy), just add it to our list as we
2570 	 * previously would have done.
2571 	 */
2572 	ret = q->mq_ops->queue_rq(hctx, &bd);
2573 	switch (ret) {
2574 	case BLK_STS_OK:
2575 		blk_mq_update_dispatch_busy(hctx, false);
2576 		break;
2577 	case BLK_STS_RESOURCE:
2578 	case BLK_STS_DEV_RESOURCE:
2579 		blk_mq_update_dispatch_busy(hctx, true);
2580 		__blk_mq_requeue_request(rq);
2581 		break;
2582 	default:
2583 		blk_mq_update_dispatch_busy(hctx, false);
2584 		break;
2585 	}
2586 
2587 	return ret;
2588 }
2589 
2590 static bool blk_mq_get_budget_and_tag(struct request *rq)
2591 {
2592 	int budget_token;
2593 
2594 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2595 	if (budget_token < 0)
2596 		return false;
2597 	blk_mq_set_rq_budget_token(rq, budget_token);
2598 	if (!blk_mq_get_driver_tag(rq)) {
2599 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2600 		return false;
2601 	}
2602 	return true;
2603 }
2604 
2605 /**
2606  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2607  * @hctx: Pointer of the associated hardware queue.
2608  * @rq: Pointer to request to be sent.
2609  *
2610  * If the device has enough resources to accept a new request now, send the
2611  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2612  * we can try send it another time in the future. Requests inserted at this
2613  * queue have higher priority.
2614  */
2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2616 		struct request *rq)
2617 {
2618 	blk_status_t ret;
2619 
2620 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2621 		blk_mq_insert_request(rq, 0);
2622 		return;
2623 	}
2624 
2625 	if ((rq->rq_flags & RQF_ELV) || !blk_mq_get_budget_and_tag(rq)) {
2626 		blk_mq_insert_request(rq, 0);
2627 		blk_mq_run_hw_queue(hctx, false);
2628 		return;
2629 	}
2630 
2631 	ret = __blk_mq_issue_directly(hctx, rq, true);
2632 	switch (ret) {
2633 	case BLK_STS_OK:
2634 		break;
2635 	case BLK_STS_RESOURCE:
2636 	case BLK_STS_DEV_RESOURCE:
2637 		blk_mq_request_bypass_insert(rq, 0);
2638 		blk_mq_run_hw_queue(hctx, false);
2639 		break;
2640 	default:
2641 		blk_mq_end_request(rq, ret);
2642 		break;
2643 	}
2644 }
2645 
2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2647 {
2648 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2649 
2650 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651 		blk_mq_insert_request(rq, 0);
2652 		return BLK_STS_OK;
2653 	}
2654 
2655 	if (!blk_mq_get_budget_and_tag(rq))
2656 		return BLK_STS_RESOURCE;
2657 	return __blk_mq_issue_directly(hctx, rq, last);
2658 }
2659 
2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2661 {
2662 	struct blk_mq_hw_ctx *hctx = NULL;
2663 	struct request *rq;
2664 	int queued = 0;
2665 	blk_status_t ret = BLK_STS_OK;
2666 
2667 	while ((rq = rq_list_pop(&plug->mq_list))) {
2668 		bool last = rq_list_empty(plug->mq_list);
2669 
2670 		if (hctx != rq->mq_hctx) {
2671 			if (hctx) {
2672 				blk_mq_commit_rqs(hctx, queued, false);
2673 				queued = 0;
2674 			}
2675 			hctx = rq->mq_hctx;
2676 		}
2677 
2678 		ret = blk_mq_request_issue_directly(rq, last);
2679 		switch (ret) {
2680 		case BLK_STS_OK:
2681 			queued++;
2682 			break;
2683 		case BLK_STS_RESOURCE:
2684 		case BLK_STS_DEV_RESOURCE:
2685 			blk_mq_request_bypass_insert(rq, 0);
2686 			blk_mq_run_hw_queue(hctx, false);
2687 			goto out;
2688 		default:
2689 			blk_mq_end_request(rq, ret);
2690 			break;
2691 		}
2692 	}
2693 
2694 out:
2695 	if (ret != BLK_STS_OK)
2696 		blk_mq_commit_rqs(hctx, queued, false);
2697 }
2698 
2699 static void __blk_mq_flush_plug_list(struct request_queue *q,
2700 				     struct blk_plug *plug)
2701 {
2702 	if (blk_queue_quiesced(q))
2703 		return;
2704 	q->mq_ops->queue_rqs(&plug->mq_list);
2705 }
2706 
2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708 {
2709 	struct blk_mq_hw_ctx *this_hctx = NULL;
2710 	struct blk_mq_ctx *this_ctx = NULL;
2711 	struct request *requeue_list = NULL;
2712 	struct request **requeue_lastp = &requeue_list;
2713 	unsigned int depth = 0;
2714 	LIST_HEAD(list);
2715 
2716 	do {
2717 		struct request *rq = rq_list_pop(&plug->mq_list);
2718 
2719 		if (!this_hctx) {
2720 			this_hctx = rq->mq_hctx;
2721 			this_ctx = rq->mq_ctx;
2722 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2723 			rq_list_add_tail(&requeue_lastp, rq);
2724 			continue;
2725 		}
2726 		list_add(&rq->queuelist, &list);
2727 		depth++;
2728 	} while (!rq_list_empty(plug->mq_list));
2729 
2730 	plug->mq_list = requeue_list;
2731 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2732 
2733 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2734 	if (this_hctx->queue->elevator) {
2735 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2736 				&list, 0);
2737 		blk_mq_run_hw_queue(this_hctx, from_sched);
2738 	} else {
2739 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2740 	}
2741 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2742 }
2743 
2744 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2745 {
2746 	struct request *rq;
2747 
2748 	if (rq_list_empty(plug->mq_list))
2749 		return;
2750 	plug->rq_count = 0;
2751 
2752 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2753 		struct request_queue *q;
2754 
2755 		rq = rq_list_peek(&plug->mq_list);
2756 		q = rq->q;
2757 
2758 		/*
2759 		 * Peek first request and see if we have a ->queue_rqs() hook.
2760 		 * If we do, we can dispatch the whole plug list in one go. We
2761 		 * already know at this point that all requests belong to the
2762 		 * same queue, caller must ensure that's the case.
2763 		 *
2764 		 * Since we pass off the full list to the driver at this point,
2765 		 * we do not increment the active request count for the queue.
2766 		 * Bypass shared tags for now because of that.
2767 		 */
2768 		if (q->mq_ops->queue_rqs &&
2769 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2770 			blk_mq_run_dispatch_ops(q,
2771 				__blk_mq_flush_plug_list(q, plug));
2772 			if (rq_list_empty(plug->mq_list))
2773 				return;
2774 		}
2775 
2776 		blk_mq_run_dispatch_ops(q,
2777 				blk_mq_plug_issue_direct(plug));
2778 		if (rq_list_empty(plug->mq_list))
2779 			return;
2780 	}
2781 
2782 	do {
2783 		blk_mq_dispatch_plug_list(plug, from_schedule);
2784 	} while (!rq_list_empty(plug->mq_list));
2785 }
2786 
2787 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2788 		struct list_head *list)
2789 {
2790 	int queued = 0;
2791 	blk_status_t ret = BLK_STS_OK;
2792 
2793 	while (!list_empty(list)) {
2794 		struct request *rq = list_first_entry(list, struct request,
2795 				queuelist);
2796 
2797 		list_del_init(&rq->queuelist);
2798 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2799 		switch (ret) {
2800 		case BLK_STS_OK:
2801 			queued++;
2802 			break;
2803 		case BLK_STS_RESOURCE:
2804 		case BLK_STS_DEV_RESOURCE:
2805 			blk_mq_request_bypass_insert(rq, 0);
2806 			if (list_empty(list))
2807 				blk_mq_run_hw_queue(hctx, false);
2808 			goto out;
2809 		default:
2810 			blk_mq_end_request(rq, ret);
2811 			break;
2812 		}
2813 	}
2814 
2815 out:
2816 	if (ret != BLK_STS_OK)
2817 		blk_mq_commit_rqs(hctx, queued, false);
2818 }
2819 
2820 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2821 				     struct bio *bio, unsigned int nr_segs)
2822 {
2823 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2824 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2825 			return true;
2826 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2827 			return true;
2828 	}
2829 	return false;
2830 }
2831 
2832 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2833 					       struct blk_plug *plug,
2834 					       struct bio *bio,
2835 					       unsigned int nsegs)
2836 {
2837 	struct blk_mq_alloc_data data = {
2838 		.q		= q,
2839 		.nr_tags	= 1,
2840 		.cmd_flags	= bio->bi_opf,
2841 	};
2842 	struct request *rq;
2843 
2844 	if (unlikely(bio_queue_enter(bio)))
2845 		return NULL;
2846 
2847 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2848 		goto queue_exit;
2849 
2850 	rq_qos_throttle(q, bio);
2851 
2852 	if (plug) {
2853 		data.nr_tags = plug->nr_ios;
2854 		plug->nr_ios = 1;
2855 		data.cached_rq = &plug->cached_rq;
2856 	}
2857 
2858 	rq = __blk_mq_alloc_requests(&data);
2859 	if (rq)
2860 		return rq;
2861 	rq_qos_cleanup(q, bio);
2862 	if (bio->bi_opf & REQ_NOWAIT)
2863 		bio_wouldblock_error(bio);
2864 queue_exit:
2865 	blk_queue_exit(q);
2866 	return NULL;
2867 }
2868 
2869 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2870 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2871 {
2872 	struct request *rq;
2873 	enum hctx_type type, hctx_type;
2874 
2875 	if (!plug)
2876 		return NULL;
2877 	rq = rq_list_peek(&plug->cached_rq);
2878 	if (!rq || rq->q != q)
2879 		return NULL;
2880 
2881 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2882 		*bio = NULL;
2883 		return NULL;
2884 	}
2885 
2886 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2887 	hctx_type = rq->mq_hctx->type;
2888 	if (type != hctx_type &&
2889 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2890 		return NULL;
2891 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2892 		return NULL;
2893 
2894 	/*
2895 	 * If any qos ->throttle() end up blocking, we will have flushed the
2896 	 * plug and hence killed the cached_rq list as well. Pop this entry
2897 	 * before we throttle.
2898 	 */
2899 	plug->cached_rq = rq_list_next(rq);
2900 	rq_qos_throttle(q, *bio);
2901 
2902 	rq->cmd_flags = (*bio)->bi_opf;
2903 	INIT_LIST_HEAD(&rq->queuelist);
2904 	return rq;
2905 }
2906 
2907 static void bio_set_ioprio(struct bio *bio)
2908 {
2909 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2910 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2911 		bio->bi_ioprio = get_current_ioprio();
2912 	blkcg_set_ioprio(bio);
2913 }
2914 
2915 /**
2916  * blk_mq_submit_bio - Create and send a request to block device.
2917  * @bio: Bio pointer.
2918  *
2919  * Builds up a request structure from @q and @bio and send to the device. The
2920  * request may not be queued directly to hardware if:
2921  * * This request can be merged with another one
2922  * * We want to place request at plug queue for possible future merging
2923  * * There is an IO scheduler active at this queue
2924  *
2925  * It will not queue the request if there is an error with the bio, or at the
2926  * request creation.
2927  */
2928 void blk_mq_submit_bio(struct bio *bio)
2929 {
2930 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2931 	struct blk_plug *plug = blk_mq_plug(bio);
2932 	const int is_sync = op_is_sync(bio->bi_opf);
2933 	struct blk_mq_hw_ctx *hctx;
2934 	struct request *rq;
2935 	unsigned int nr_segs = 1;
2936 	blk_status_t ret;
2937 
2938 	bio = blk_queue_bounce(bio, q);
2939 	if (bio_may_exceed_limits(bio, &q->limits)) {
2940 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2941 		if (!bio)
2942 			return;
2943 	}
2944 
2945 	if (!bio_integrity_prep(bio))
2946 		return;
2947 
2948 	bio_set_ioprio(bio);
2949 
2950 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2951 	if (!rq) {
2952 		if (!bio)
2953 			return;
2954 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2955 		if (unlikely(!rq))
2956 			return;
2957 	}
2958 
2959 	trace_block_getrq(bio);
2960 
2961 	rq_qos_track(q, rq, bio);
2962 
2963 	blk_mq_bio_to_request(rq, bio, nr_segs);
2964 
2965 	ret = blk_crypto_rq_get_keyslot(rq);
2966 	if (ret != BLK_STS_OK) {
2967 		bio->bi_status = ret;
2968 		bio_endio(bio);
2969 		blk_mq_free_request(rq);
2970 		return;
2971 	}
2972 
2973 	if (op_is_flush(bio->bi_opf)) {
2974 		blk_insert_flush(rq);
2975 		return;
2976 	}
2977 
2978 	if (plug) {
2979 		blk_add_rq_to_plug(plug, rq);
2980 		return;
2981 	}
2982 
2983 	hctx = rq->mq_hctx;
2984 	if ((rq->rq_flags & RQF_ELV) ||
2985 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2986 		blk_mq_insert_request(rq, 0);
2987 		blk_mq_run_hw_queue(hctx, true);
2988 	} else {
2989 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2990 	}
2991 }
2992 
2993 #ifdef CONFIG_BLK_MQ_STACKING
2994 /**
2995  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2996  * @rq: the request being queued
2997  */
2998 blk_status_t blk_insert_cloned_request(struct request *rq)
2999 {
3000 	struct request_queue *q = rq->q;
3001 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3002 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3003 	blk_status_t ret;
3004 
3005 	if (blk_rq_sectors(rq) > max_sectors) {
3006 		/*
3007 		 * SCSI device does not have a good way to return if
3008 		 * Write Same/Zero is actually supported. If a device rejects
3009 		 * a non-read/write command (discard, write same,etc.) the
3010 		 * low-level device driver will set the relevant queue limit to
3011 		 * 0 to prevent blk-lib from issuing more of the offending
3012 		 * operations. Commands queued prior to the queue limit being
3013 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3014 		 * errors being propagated to upper layers.
3015 		 */
3016 		if (max_sectors == 0)
3017 			return BLK_STS_NOTSUPP;
3018 
3019 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3020 			__func__, blk_rq_sectors(rq), max_sectors);
3021 		return BLK_STS_IOERR;
3022 	}
3023 
3024 	/*
3025 	 * The queue settings related to segment counting may differ from the
3026 	 * original queue.
3027 	 */
3028 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3029 	if (rq->nr_phys_segments > max_segments) {
3030 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3031 			__func__, rq->nr_phys_segments, max_segments);
3032 		return BLK_STS_IOERR;
3033 	}
3034 
3035 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3036 		return BLK_STS_IOERR;
3037 
3038 	ret = blk_crypto_rq_get_keyslot(rq);
3039 	if (ret != BLK_STS_OK)
3040 		return ret;
3041 
3042 	blk_account_io_start(rq);
3043 
3044 	/*
3045 	 * Since we have a scheduler attached on the top device,
3046 	 * bypass a potential scheduler on the bottom device for
3047 	 * insert.
3048 	 */
3049 	blk_mq_run_dispatch_ops(q,
3050 			ret = blk_mq_request_issue_directly(rq, true));
3051 	if (ret)
3052 		blk_account_io_done(rq, ktime_get_ns());
3053 	return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3056 
3057 /**
3058  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3059  * @rq: the clone request to be cleaned up
3060  *
3061  * Description:
3062  *     Free all bios in @rq for a cloned request.
3063  */
3064 void blk_rq_unprep_clone(struct request *rq)
3065 {
3066 	struct bio *bio;
3067 
3068 	while ((bio = rq->bio) != NULL) {
3069 		rq->bio = bio->bi_next;
3070 
3071 		bio_put(bio);
3072 	}
3073 }
3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3075 
3076 /**
3077  * blk_rq_prep_clone - Helper function to setup clone request
3078  * @rq: the request to be setup
3079  * @rq_src: original request to be cloned
3080  * @bs: bio_set that bios for clone are allocated from
3081  * @gfp_mask: memory allocation mask for bio
3082  * @bio_ctr: setup function to be called for each clone bio.
3083  *           Returns %0 for success, non %0 for failure.
3084  * @data: private data to be passed to @bio_ctr
3085  *
3086  * Description:
3087  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3088  *     Also, pages which the original bios are pointing to are not copied
3089  *     and the cloned bios just point same pages.
3090  *     So cloned bios must be completed before original bios, which means
3091  *     the caller must complete @rq before @rq_src.
3092  */
3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3094 		      struct bio_set *bs, gfp_t gfp_mask,
3095 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3096 		      void *data)
3097 {
3098 	struct bio *bio, *bio_src;
3099 
3100 	if (!bs)
3101 		bs = &fs_bio_set;
3102 
3103 	__rq_for_each_bio(bio_src, rq_src) {
3104 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3105 				      bs);
3106 		if (!bio)
3107 			goto free_and_out;
3108 
3109 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3110 			goto free_and_out;
3111 
3112 		if (rq->bio) {
3113 			rq->biotail->bi_next = bio;
3114 			rq->biotail = bio;
3115 		} else {
3116 			rq->bio = rq->biotail = bio;
3117 		}
3118 		bio = NULL;
3119 	}
3120 
3121 	/* Copy attributes of the original request to the clone request. */
3122 	rq->__sector = blk_rq_pos(rq_src);
3123 	rq->__data_len = blk_rq_bytes(rq_src);
3124 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3125 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3126 		rq->special_vec = rq_src->special_vec;
3127 	}
3128 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3129 	rq->ioprio = rq_src->ioprio;
3130 
3131 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3132 		goto free_and_out;
3133 
3134 	return 0;
3135 
3136 free_and_out:
3137 	if (bio)
3138 		bio_put(bio);
3139 	blk_rq_unprep_clone(rq);
3140 
3141 	return -ENOMEM;
3142 }
3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3144 #endif /* CONFIG_BLK_MQ_STACKING */
3145 
3146 /*
3147  * Steal bios from a request and add them to a bio list.
3148  * The request must not have been partially completed before.
3149  */
3150 void blk_steal_bios(struct bio_list *list, struct request *rq)
3151 {
3152 	if (rq->bio) {
3153 		if (list->tail)
3154 			list->tail->bi_next = rq->bio;
3155 		else
3156 			list->head = rq->bio;
3157 		list->tail = rq->biotail;
3158 
3159 		rq->bio = NULL;
3160 		rq->biotail = NULL;
3161 	}
3162 
3163 	rq->__data_len = 0;
3164 }
3165 EXPORT_SYMBOL_GPL(blk_steal_bios);
3166 
3167 static size_t order_to_size(unsigned int order)
3168 {
3169 	return (size_t)PAGE_SIZE << order;
3170 }
3171 
3172 /* called before freeing request pool in @tags */
3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3174 				    struct blk_mq_tags *tags)
3175 {
3176 	struct page *page;
3177 	unsigned long flags;
3178 
3179 	/*
3180 	 * There is no need to clear mapping if driver tags is not initialized
3181 	 * or the mapping belongs to the driver tags.
3182 	 */
3183 	if (!drv_tags || drv_tags == tags)
3184 		return;
3185 
3186 	list_for_each_entry(page, &tags->page_list, lru) {
3187 		unsigned long start = (unsigned long)page_address(page);
3188 		unsigned long end = start + order_to_size(page->private);
3189 		int i;
3190 
3191 		for (i = 0; i < drv_tags->nr_tags; i++) {
3192 			struct request *rq = drv_tags->rqs[i];
3193 			unsigned long rq_addr = (unsigned long)rq;
3194 
3195 			if (rq_addr >= start && rq_addr < end) {
3196 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3197 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3198 			}
3199 		}
3200 	}
3201 
3202 	/*
3203 	 * Wait until all pending iteration is done.
3204 	 *
3205 	 * Request reference is cleared and it is guaranteed to be observed
3206 	 * after the ->lock is released.
3207 	 */
3208 	spin_lock_irqsave(&drv_tags->lock, flags);
3209 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3210 }
3211 
3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3213 		     unsigned int hctx_idx)
3214 {
3215 	struct blk_mq_tags *drv_tags;
3216 	struct page *page;
3217 
3218 	if (list_empty(&tags->page_list))
3219 		return;
3220 
3221 	if (blk_mq_is_shared_tags(set->flags))
3222 		drv_tags = set->shared_tags;
3223 	else
3224 		drv_tags = set->tags[hctx_idx];
3225 
3226 	if (tags->static_rqs && set->ops->exit_request) {
3227 		int i;
3228 
3229 		for (i = 0; i < tags->nr_tags; i++) {
3230 			struct request *rq = tags->static_rqs[i];
3231 
3232 			if (!rq)
3233 				continue;
3234 			set->ops->exit_request(set, rq, hctx_idx);
3235 			tags->static_rqs[i] = NULL;
3236 		}
3237 	}
3238 
3239 	blk_mq_clear_rq_mapping(drv_tags, tags);
3240 
3241 	while (!list_empty(&tags->page_list)) {
3242 		page = list_first_entry(&tags->page_list, struct page, lru);
3243 		list_del_init(&page->lru);
3244 		/*
3245 		 * Remove kmemleak object previously allocated in
3246 		 * blk_mq_alloc_rqs().
3247 		 */
3248 		kmemleak_free(page_address(page));
3249 		__free_pages(page, page->private);
3250 	}
3251 }
3252 
3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3254 {
3255 	kfree(tags->rqs);
3256 	tags->rqs = NULL;
3257 	kfree(tags->static_rqs);
3258 	tags->static_rqs = NULL;
3259 
3260 	blk_mq_free_tags(tags);
3261 }
3262 
3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3264 		unsigned int hctx_idx)
3265 {
3266 	int i;
3267 
3268 	for (i = 0; i < set->nr_maps; i++) {
3269 		unsigned int start = set->map[i].queue_offset;
3270 		unsigned int end = start + set->map[i].nr_queues;
3271 
3272 		if (hctx_idx >= start && hctx_idx < end)
3273 			break;
3274 	}
3275 
3276 	if (i >= set->nr_maps)
3277 		i = HCTX_TYPE_DEFAULT;
3278 
3279 	return i;
3280 }
3281 
3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3283 		unsigned int hctx_idx)
3284 {
3285 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3286 
3287 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3288 }
3289 
3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3291 					       unsigned int hctx_idx,
3292 					       unsigned int nr_tags,
3293 					       unsigned int reserved_tags)
3294 {
3295 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3296 	struct blk_mq_tags *tags;
3297 
3298 	if (node == NUMA_NO_NODE)
3299 		node = set->numa_node;
3300 
3301 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3302 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3303 	if (!tags)
3304 		return NULL;
3305 
3306 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3307 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3308 				 node);
3309 	if (!tags->rqs)
3310 		goto err_free_tags;
3311 
3312 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3313 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3314 					node);
3315 	if (!tags->static_rqs)
3316 		goto err_free_rqs;
3317 
3318 	return tags;
3319 
3320 err_free_rqs:
3321 	kfree(tags->rqs);
3322 err_free_tags:
3323 	blk_mq_free_tags(tags);
3324 	return NULL;
3325 }
3326 
3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3328 			       unsigned int hctx_idx, int node)
3329 {
3330 	int ret;
3331 
3332 	if (set->ops->init_request) {
3333 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3334 		if (ret)
3335 			return ret;
3336 	}
3337 
3338 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3339 	return 0;
3340 }
3341 
3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3343 			    struct blk_mq_tags *tags,
3344 			    unsigned int hctx_idx, unsigned int depth)
3345 {
3346 	unsigned int i, j, entries_per_page, max_order = 4;
3347 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3348 	size_t rq_size, left;
3349 
3350 	if (node == NUMA_NO_NODE)
3351 		node = set->numa_node;
3352 
3353 	INIT_LIST_HEAD(&tags->page_list);
3354 
3355 	/*
3356 	 * rq_size is the size of the request plus driver payload, rounded
3357 	 * to the cacheline size
3358 	 */
3359 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3360 				cache_line_size());
3361 	left = rq_size * depth;
3362 
3363 	for (i = 0; i < depth; ) {
3364 		int this_order = max_order;
3365 		struct page *page;
3366 		int to_do;
3367 		void *p;
3368 
3369 		while (this_order && left < order_to_size(this_order - 1))
3370 			this_order--;
3371 
3372 		do {
3373 			page = alloc_pages_node(node,
3374 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3375 				this_order);
3376 			if (page)
3377 				break;
3378 			if (!this_order--)
3379 				break;
3380 			if (order_to_size(this_order) < rq_size)
3381 				break;
3382 		} while (1);
3383 
3384 		if (!page)
3385 			goto fail;
3386 
3387 		page->private = this_order;
3388 		list_add_tail(&page->lru, &tags->page_list);
3389 
3390 		p = page_address(page);
3391 		/*
3392 		 * Allow kmemleak to scan these pages as they contain pointers
3393 		 * to additional allocations like via ops->init_request().
3394 		 */
3395 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3396 		entries_per_page = order_to_size(this_order) / rq_size;
3397 		to_do = min(entries_per_page, depth - i);
3398 		left -= to_do * rq_size;
3399 		for (j = 0; j < to_do; j++) {
3400 			struct request *rq = p;
3401 
3402 			tags->static_rqs[i] = rq;
3403 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3404 				tags->static_rqs[i] = NULL;
3405 				goto fail;
3406 			}
3407 
3408 			p += rq_size;
3409 			i++;
3410 		}
3411 	}
3412 	return 0;
3413 
3414 fail:
3415 	blk_mq_free_rqs(set, tags, hctx_idx);
3416 	return -ENOMEM;
3417 }
3418 
3419 struct rq_iter_data {
3420 	struct blk_mq_hw_ctx *hctx;
3421 	bool has_rq;
3422 };
3423 
3424 static bool blk_mq_has_request(struct request *rq, void *data)
3425 {
3426 	struct rq_iter_data *iter_data = data;
3427 
3428 	if (rq->mq_hctx != iter_data->hctx)
3429 		return true;
3430 	iter_data->has_rq = true;
3431 	return false;
3432 }
3433 
3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3435 {
3436 	struct blk_mq_tags *tags = hctx->sched_tags ?
3437 			hctx->sched_tags : hctx->tags;
3438 	struct rq_iter_data data = {
3439 		.hctx	= hctx,
3440 	};
3441 
3442 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3443 	return data.has_rq;
3444 }
3445 
3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3447 		struct blk_mq_hw_ctx *hctx)
3448 {
3449 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3450 		return false;
3451 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3452 		return false;
3453 	return true;
3454 }
3455 
3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3457 {
3458 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3459 			struct blk_mq_hw_ctx, cpuhp_online);
3460 
3461 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3462 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3463 		return 0;
3464 
3465 	/*
3466 	 * Prevent new request from being allocated on the current hctx.
3467 	 *
3468 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3469 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3470 	 * seen once we return from the tag allocator.
3471 	 */
3472 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3473 	smp_mb__after_atomic();
3474 
3475 	/*
3476 	 * Try to grab a reference to the queue and wait for any outstanding
3477 	 * requests.  If we could not grab a reference the queue has been
3478 	 * frozen and there are no requests.
3479 	 */
3480 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3481 		while (blk_mq_hctx_has_requests(hctx))
3482 			msleep(5);
3483 		percpu_ref_put(&hctx->queue->q_usage_counter);
3484 	}
3485 
3486 	return 0;
3487 }
3488 
3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3490 {
3491 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3492 			struct blk_mq_hw_ctx, cpuhp_online);
3493 
3494 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3495 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3496 	return 0;
3497 }
3498 
3499 /*
3500  * 'cpu' is going away. splice any existing rq_list entries from this
3501  * software queue to the hw queue dispatch list, and ensure that it
3502  * gets run.
3503  */
3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3505 {
3506 	struct blk_mq_hw_ctx *hctx;
3507 	struct blk_mq_ctx *ctx;
3508 	LIST_HEAD(tmp);
3509 	enum hctx_type type;
3510 
3511 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3512 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3513 		return 0;
3514 
3515 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3516 	type = hctx->type;
3517 
3518 	spin_lock(&ctx->lock);
3519 	if (!list_empty(&ctx->rq_lists[type])) {
3520 		list_splice_init(&ctx->rq_lists[type], &tmp);
3521 		blk_mq_hctx_clear_pending(hctx, ctx);
3522 	}
3523 	spin_unlock(&ctx->lock);
3524 
3525 	if (list_empty(&tmp))
3526 		return 0;
3527 
3528 	spin_lock(&hctx->lock);
3529 	list_splice_tail_init(&tmp, &hctx->dispatch);
3530 	spin_unlock(&hctx->lock);
3531 
3532 	blk_mq_run_hw_queue(hctx, true);
3533 	return 0;
3534 }
3535 
3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3537 {
3538 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3539 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3540 						    &hctx->cpuhp_online);
3541 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3542 					    &hctx->cpuhp_dead);
3543 }
3544 
3545 /*
3546  * Before freeing hw queue, clearing the flush request reference in
3547  * tags->rqs[] for avoiding potential UAF.
3548  */
3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3550 		unsigned int queue_depth, struct request *flush_rq)
3551 {
3552 	int i;
3553 	unsigned long flags;
3554 
3555 	/* The hw queue may not be mapped yet */
3556 	if (!tags)
3557 		return;
3558 
3559 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3560 
3561 	for (i = 0; i < queue_depth; i++)
3562 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3563 
3564 	/*
3565 	 * Wait until all pending iteration is done.
3566 	 *
3567 	 * Request reference is cleared and it is guaranteed to be observed
3568 	 * after the ->lock is released.
3569 	 */
3570 	spin_lock_irqsave(&tags->lock, flags);
3571 	spin_unlock_irqrestore(&tags->lock, flags);
3572 }
3573 
3574 /* hctx->ctxs will be freed in queue's release handler */
3575 static void blk_mq_exit_hctx(struct request_queue *q,
3576 		struct blk_mq_tag_set *set,
3577 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3578 {
3579 	struct request *flush_rq = hctx->fq->flush_rq;
3580 
3581 	if (blk_mq_hw_queue_mapped(hctx))
3582 		blk_mq_tag_idle(hctx);
3583 
3584 	if (blk_queue_init_done(q))
3585 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3586 				set->queue_depth, flush_rq);
3587 	if (set->ops->exit_request)
3588 		set->ops->exit_request(set, flush_rq, hctx_idx);
3589 
3590 	if (set->ops->exit_hctx)
3591 		set->ops->exit_hctx(hctx, hctx_idx);
3592 
3593 	blk_mq_remove_cpuhp(hctx);
3594 
3595 	xa_erase(&q->hctx_table, hctx_idx);
3596 
3597 	spin_lock(&q->unused_hctx_lock);
3598 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3599 	spin_unlock(&q->unused_hctx_lock);
3600 }
3601 
3602 static void blk_mq_exit_hw_queues(struct request_queue *q,
3603 		struct blk_mq_tag_set *set, int nr_queue)
3604 {
3605 	struct blk_mq_hw_ctx *hctx;
3606 	unsigned long i;
3607 
3608 	queue_for_each_hw_ctx(q, hctx, i) {
3609 		if (i == nr_queue)
3610 			break;
3611 		blk_mq_exit_hctx(q, set, hctx, i);
3612 	}
3613 }
3614 
3615 static int blk_mq_init_hctx(struct request_queue *q,
3616 		struct blk_mq_tag_set *set,
3617 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3618 {
3619 	hctx->queue_num = hctx_idx;
3620 
3621 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3622 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3623 				&hctx->cpuhp_online);
3624 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3625 
3626 	hctx->tags = set->tags[hctx_idx];
3627 
3628 	if (set->ops->init_hctx &&
3629 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3630 		goto unregister_cpu_notifier;
3631 
3632 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3633 				hctx->numa_node))
3634 		goto exit_hctx;
3635 
3636 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3637 		goto exit_flush_rq;
3638 
3639 	return 0;
3640 
3641  exit_flush_rq:
3642 	if (set->ops->exit_request)
3643 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3644  exit_hctx:
3645 	if (set->ops->exit_hctx)
3646 		set->ops->exit_hctx(hctx, hctx_idx);
3647  unregister_cpu_notifier:
3648 	blk_mq_remove_cpuhp(hctx);
3649 	return -1;
3650 }
3651 
3652 static struct blk_mq_hw_ctx *
3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3654 		int node)
3655 {
3656 	struct blk_mq_hw_ctx *hctx;
3657 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3658 
3659 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3660 	if (!hctx)
3661 		goto fail_alloc_hctx;
3662 
3663 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3664 		goto free_hctx;
3665 
3666 	atomic_set(&hctx->nr_active, 0);
3667 	if (node == NUMA_NO_NODE)
3668 		node = set->numa_node;
3669 	hctx->numa_node = node;
3670 
3671 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3672 	spin_lock_init(&hctx->lock);
3673 	INIT_LIST_HEAD(&hctx->dispatch);
3674 	hctx->queue = q;
3675 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3676 
3677 	INIT_LIST_HEAD(&hctx->hctx_list);
3678 
3679 	/*
3680 	 * Allocate space for all possible cpus to avoid allocation at
3681 	 * runtime
3682 	 */
3683 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3684 			gfp, node);
3685 	if (!hctx->ctxs)
3686 		goto free_cpumask;
3687 
3688 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3689 				gfp, node, false, false))
3690 		goto free_ctxs;
3691 	hctx->nr_ctx = 0;
3692 
3693 	spin_lock_init(&hctx->dispatch_wait_lock);
3694 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3695 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3696 
3697 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3698 	if (!hctx->fq)
3699 		goto free_bitmap;
3700 
3701 	blk_mq_hctx_kobj_init(hctx);
3702 
3703 	return hctx;
3704 
3705  free_bitmap:
3706 	sbitmap_free(&hctx->ctx_map);
3707  free_ctxs:
3708 	kfree(hctx->ctxs);
3709  free_cpumask:
3710 	free_cpumask_var(hctx->cpumask);
3711  free_hctx:
3712 	kfree(hctx);
3713  fail_alloc_hctx:
3714 	return NULL;
3715 }
3716 
3717 static void blk_mq_init_cpu_queues(struct request_queue *q,
3718 				   unsigned int nr_hw_queues)
3719 {
3720 	struct blk_mq_tag_set *set = q->tag_set;
3721 	unsigned int i, j;
3722 
3723 	for_each_possible_cpu(i) {
3724 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3725 		struct blk_mq_hw_ctx *hctx;
3726 		int k;
3727 
3728 		__ctx->cpu = i;
3729 		spin_lock_init(&__ctx->lock);
3730 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3731 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3732 
3733 		__ctx->queue = q;
3734 
3735 		/*
3736 		 * Set local node, IFF we have more than one hw queue. If
3737 		 * not, we remain on the home node of the device
3738 		 */
3739 		for (j = 0; j < set->nr_maps; j++) {
3740 			hctx = blk_mq_map_queue_type(q, j, i);
3741 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3742 				hctx->numa_node = cpu_to_node(i);
3743 		}
3744 	}
3745 }
3746 
3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3748 					     unsigned int hctx_idx,
3749 					     unsigned int depth)
3750 {
3751 	struct blk_mq_tags *tags;
3752 	int ret;
3753 
3754 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3755 	if (!tags)
3756 		return NULL;
3757 
3758 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3759 	if (ret) {
3760 		blk_mq_free_rq_map(tags);
3761 		return NULL;
3762 	}
3763 
3764 	return tags;
3765 }
3766 
3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3768 				       int hctx_idx)
3769 {
3770 	if (blk_mq_is_shared_tags(set->flags)) {
3771 		set->tags[hctx_idx] = set->shared_tags;
3772 
3773 		return true;
3774 	}
3775 
3776 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3777 						       set->queue_depth);
3778 
3779 	return set->tags[hctx_idx];
3780 }
3781 
3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3783 			     struct blk_mq_tags *tags,
3784 			     unsigned int hctx_idx)
3785 {
3786 	if (tags) {
3787 		blk_mq_free_rqs(set, tags, hctx_idx);
3788 		blk_mq_free_rq_map(tags);
3789 	}
3790 }
3791 
3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3793 				      unsigned int hctx_idx)
3794 {
3795 	if (!blk_mq_is_shared_tags(set->flags))
3796 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3797 
3798 	set->tags[hctx_idx] = NULL;
3799 }
3800 
3801 static void blk_mq_map_swqueue(struct request_queue *q)
3802 {
3803 	unsigned int j, hctx_idx;
3804 	unsigned long i;
3805 	struct blk_mq_hw_ctx *hctx;
3806 	struct blk_mq_ctx *ctx;
3807 	struct blk_mq_tag_set *set = q->tag_set;
3808 
3809 	queue_for_each_hw_ctx(q, hctx, i) {
3810 		cpumask_clear(hctx->cpumask);
3811 		hctx->nr_ctx = 0;
3812 		hctx->dispatch_from = NULL;
3813 	}
3814 
3815 	/*
3816 	 * Map software to hardware queues.
3817 	 *
3818 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3819 	 */
3820 	for_each_possible_cpu(i) {
3821 
3822 		ctx = per_cpu_ptr(q->queue_ctx, i);
3823 		for (j = 0; j < set->nr_maps; j++) {
3824 			if (!set->map[j].nr_queues) {
3825 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3826 						HCTX_TYPE_DEFAULT, i);
3827 				continue;
3828 			}
3829 			hctx_idx = set->map[j].mq_map[i];
3830 			/* unmapped hw queue can be remapped after CPU topo changed */
3831 			if (!set->tags[hctx_idx] &&
3832 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3833 				/*
3834 				 * If tags initialization fail for some hctx,
3835 				 * that hctx won't be brought online.  In this
3836 				 * case, remap the current ctx to hctx[0] which
3837 				 * is guaranteed to always have tags allocated
3838 				 */
3839 				set->map[j].mq_map[i] = 0;
3840 			}
3841 
3842 			hctx = blk_mq_map_queue_type(q, j, i);
3843 			ctx->hctxs[j] = hctx;
3844 			/*
3845 			 * If the CPU is already set in the mask, then we've
3846 			 * mapped this one already. This can happen if
3847 			 * devices share queues across queue maps.
3848 			 */
3849 			if (cpumask_test_cpu(i, hctx->cpumask))
3850 				continue;
3851 
3852 			cpumask_set_cpu(i, hctx->cpumask);
3853 			hctx->type = j;
3854 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3855 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3856 
3857 			/*
3858 			 * If the nr_ctx type overflows, we have exceeded the
3859 			 * amount of sw queues we can support.
3860 			 */
3861 			BUG_ON(!hctx->nr_ctx);
3862 		}
3863 
3864 		for (; j < HCTX_MAX_TYPES; j++)
3865 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866 					HCTX_TYPE_DEFAULT, i);
3867 	}
3868 
3869 	queue_for_each_hw_ctx(q, hctx, i) {
3870 		/*
3871 		 * If no software queues are mapped to this hardware queue,
3872 		 * disable it and free the request entries.
3873 		 */
3874 		if (!hctx->nr_ctx) {
3875 			/* Never unmap queue 0.  We need it as a
3876 			 * fallback in case of a new remap fails
3877 			 * allocation
3878 			 */
3879 			if (i)
3880 				__blk_mq_free_map_and_rqs(set, i);
3881 
3882 			hctx->tags = NULL;
3883 			continue;
3884 		}
3885 
3886 		hctx->tags = set->tags[i];
3887 		WARN_ON(!hctx->tags);
3888 
3889 		/*
3890 		 * Set the map size to the number of mapped software queues.
3891 		 * This is more accurate and more efficient than looping
3892 		 * over all possibly mapped software queues.
3893 		 */
3894 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3895 
3896 		/*
3897 		 * Initialize batch roundrobin counts
3898 		 */
3899 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3900 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3901 	}
3902 }
3903 
3904 /*
3905  * Caller needs to ensure that we're either frozen/quiesced, or that
3906  * the queue isn't live yet.
3907  */
3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3909 {
3910 	struct blk_mq_hw_ctx *hctx;
3911 	unsigned long i;
3912 
3913 	queue_for_each_hw_ctx(q, hctx, i) {
3914 		if (shared) {
3915 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3916 		} else {
3917 			blk_mq_tag_idle(hctx);
3918 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3919 		}
3920 	}
3921 }
3922 
3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3924 					 bool shared)
3925 {
3926 	struct request_queue *q;
3927 
3928 	lockdep_assert_held(&set->tag_list_lock);
3929 
3930 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3931 		blk_mq_freeze_queue(q);
3932 		queue_set_hctx_shared(q, shared);
3933 		blk_mq_unfreeze_queue(q);
3934 	}
3935 }
3936 
3937 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3938 {
3939 	struct blk_mq_tag_set *set = q->tag_set;
3940 
3941 	mutex_lock(&set->tag_list_lock);
3942 	list_del(&q->tag_set_list);
3943 	if (list_is_singular(&set->tag_list)) {
3944 		/* just transitioned to unshared */
3945 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3946 		/* update existing queue */
3947 		blk_mq_update_tag_set_shared(set, false);
3948 	}
3949 	mutex_unlock(&set->tag_list_lock);
3950 	INIT_LIST_HEAD(&q->tag_set_list);
3951 }
3952 
3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3954 				     struct request_queue *q)
3955 {
3956 	mutex_lock(&set->tag_list_lock);
3957 
3958 	/*
3959 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3960 	 */
3961 	if (!list_empty(&set->tag_list) &&
3962 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3963 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3964 		/* update existing queue */
3965 		blk_mq_update_tag_set_shared(set, true);
3966 	}
3967 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3968 		queue_set_hctx_shared(q, true);
3969 	list_add_tail(&q->tag_set_list, &set->tag_list);
3970 
3971 	mutex_unlock(&set->tag_list_lock);
3972 }
3973 
3974 /* All allocations will be freed in release handler of q->mq_kobj */
3975 static int blk_mq_alloc_ctxs(struct request_queue *q)
3976 {
3977 	struct blk_mq_ctxs *ctxs;
3978 	int cpu;
3979 
3980 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3981 	if (!ctxs)
3982 		return -ENOMEM;
3983 
3984 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3985 	if (!ctxs->queue_ctx)
3986 		goto fail;
3987 
3988 	for_each_possible_cpu(cpu) {
3989 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3990 		ctx->ctxs = ctxs;
3991 	}
3992 
3993 	q->mq_kobj = &ctxs->kobj;
3994 	q->queue_ctx = ctxs->queue_ctx;
3995 
3996 	return 0;
3997  fail:
3998 	kfree(ctxs);
3999 	return -ENOMEM;
4000 }
4001 
4002 /*
4003  * It is the actual release handler for mq, but we do it from
4004  * request queue's release handler for avoiding use-after-free
4005  * and headache because q->mq_kobj shouldn't have been introduced,
4006  * but we can't group ctx/kctx kobj without it.
4007  */
4008 void blk_mq_release(struct request_queue *q)
4009 {
4010 	struct blk_mq_hw_ctx *hctx, *next;
4011 	unsigned long i;
4012 
4013 	queue_for_each_hw_ctx(q, hctx, i)
4014 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4015 
4016 	/* all hctx are in .unused_hctx_list now */
4017 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4018 		list_del_init(&hctx->hctx_list);
4019 		kobject_put(&hctx->kobj);
4020 	}
4021 
4022 	xa_destroy(&q->hctx_table);
4023 
4024 	/*
4025 	 * release .mq_kobj and sw queue's kobject now because
4026 	 * both share lifetime with request queue.
4027 	 */
4028 	blk_mq_sysfs_deinit(q);
4029 }
4030 
4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4032 		void *queuedata)
4033 {
4034 	struct request_queue *q;
4035 	int ret;
4036 
4037 	q = blk_alloc_queue(set->numa_node);
4038 	if (!q)
4039 		return ERR_PTR(-ENOMEM);
4040 	q->queuedata = queuedata;
4041 	ret = blk_mq_init_allocated_queue(set, q);
4042 	if (ret) {
4043 		blk_put_queue(q);
4044 		return ERR_PTR(ret);
4045 	}
4046 	return q;
4047 }
4048 
4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4050 {
4051 	return blk_mq_init_queue_data(set, NULL);
4052 }
4053 EXPORT_SYMBOL(blk_mq_init_queue);
4054 
4055 /**
4056  * blk_mq_destroy_queue - shutdown a request queue
4057  * @q: request queue to shutdown
4058  *
4059  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4060  * requests will be failed with -ENODEV. The caller is responsible for dropping
4061  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4062  *
4063  * Context: can sleep
4064  */
4065 void blk_mq_destroy_queue(struct request_queue *q)
4066 {
4067 	WARN_ON_ONCE(!queue_is_mq(q));
4068 	WARN_ON_ONCE(blk_queue_registered(q));
4069 
4070 	might_sleep();
4071 
4072 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4073 	blk_queue_start_drain(q);
4074 	blk_mq_freeze_queue_wait(q);
4075 
4076 	blk_sync_queue(q);
4077 	blk_mq_cancel_work_sync(q);
4078 	blk_mq_exit_queue(q);
4079 }
4080 EXPORT_SYMBOL(blk_mq_destroy_queue);
4081 
4082 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4083 		struct lock_class_key *lkclass)
4084 {
4085 	struct request_queue *q;
4086 	struct gendisk *disk;
4087 
4088 	q = blk_mq_init_queue_data(set, queuedata);
4089 	if (IS_ERR(q))
4090 		return ERR_CAST(q);
4091 
4092 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4093 	if (!disk) {
4094 		blk_mq_destroy_queue(q);
4095 		blk_put_queue(q);
4096 		return ERR_PTR(-ENOMEM);
4097 	}
4098 	set_bit(GD_OWNS_QUEUE, &disk->state);
4099 	return disk;
4100 }
4101 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4102 
4103 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4104 		struct lock_class_key *lkclass)
4105 {
4106 	struct gendisk *disk;
4107 
4108 	if (!blk_get_queue(q))
4109 		return NULL;
4110 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4111 	if (!disk)
4112 		blk_put_queue(q);
4113 	return disk;
4114 }
4115 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4116 
4117 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4118 		struct blk_mq_tag_set *set, struct request_queue *q,
4119 		int hctx_idx, int node)
4120 {
4121 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4122 
4123 	/* reuse dead hctx first */
4124 	spin_lock(&q->unused_hctx_lock);
4125 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4126 		if (tmp->numa_node == node) {
4127 			hctx = tmp;
4128 			break;
4129 		}
4130 	}
4131 	if (hctx)
4132 		list_del_init(&hctx->hctx_list);
4133 	spin_unlock(&q->unused_hctx_lock);
4134 
4135 	if (!hctx)
4136 		hctx = blk_mq_alloc_hctx(q, set, node);
4137 	if (!hctx)
4138 		goto fail;
4139 
4140 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4141 		goto free_hctx;
4142 
4143 	return hctx;
4144 
4145  free_hctx:
4146 	kobject_put(&hctx->kobj);
4147  fail:
4148 	return NULL;
4149 }
4150 
4151 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4152 						struct request_queue *q)
4153 {
4154 	struct blk_mq_hw_ctx *hctx;
4155 	unsigned long i, j;
4156 
4157 	/* protect against switching io scheduler  */
4158 	mutex_lock(&q->sysfs_lock);
4159 	for (i = 0; i < set->nr_hw_queues; i++) {
4160 		int old_node;
4161 		int node = blk_mq_get_hctx_node(set, i);
4162 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4163 
4164 		if (old_hctx) {
4165 			old_node = old_hctx->numa_node;
4166 			blk_mq_exit_hctx(q, set, old_hctx, i);
4167 		}
4168 
4169 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4170 			if (!old_hctx)
4171 				break;
4172 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4173 					node, old_node);
4174 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4175 			WARN_ON_ONCE(!hctx);
4176 		}
4177 	}
4178 	/*
4179 	 * Increasing nr_hw_queues fails. Free the newly allocated
4180 	 * hctxs and keep the previous q->nr_hw_queues.
4181 	 */
4182 	if (i != set->nr_hw_queues) {
4183 		j = q->nr_hw_queues;
4184 	} else {
4185 		j = i;
4186 		q->nr_hw_queues = set->nr_hw_queues;
4187 	}
4188 
4189 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4190 		blk_mq_exit_hctx(q, set, hctx, j);
4191 	mutex_unlock(&q->sysfs_lock);
4192 }
4193 
4194 static void blk_mq_update_poll_flag(struct request_queue *q)
4195 {
4196 	struct blk_mq_tag_set *set = q->tag_set;
4197 
4198 	if (set->nr_maps > HCTX_TYPE_POLL &&
4199 	    set->map[HCTX_TYPE_POLL].nr_queues)
4200 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4201 	else
4202 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4203 }
4204 
4205 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4206 		struct request_queue *q)
4207 {
4208 	/* mark the queue as mq asap */
4209 	q->mq_ops = set->ops;
4210 
4211 	if (blk_mq_alloc_ctxs(q))
4212 		goto err_exit;
4213 
4214 	/* init q->mq_kobj and sw queues' kobjects */
4215 	blk_mq_sysfs_init(q);
4216 
4217 	INIT_LIST_HEAD(&q->unused_hctx_list);
4218 	spin_lock_init(&q->unused_hctx_lock);
4219 
4220 	xa_init(&q->hctx_table);
4221 
4222 	blk_mq_realloc_hw_ctxs(set, q);
4223 	if (!q->nr_hw_queues)
4224 		goto err_hctxs;
4225 
4226 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4227 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4228 
4229 	q->tag_set = set;
4230 
4231 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4232 	blk_mq_update_poll_flag(q);
4233 
4234 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4235 	INIT_LIST_HEAD(&q->requeue_list);
4236 	spin_lock_init(&q->requeue_lock);
4237 
4238 	q->nr_requests = set->queue_depth;
4239 
4240 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4241 	blk_mq_add_queue_tag_set(set, q);
4242 	blk_mq_map_swqueue(q);
4243 	return 0;
4244 
4245 err_hctxs:
4246 	blk_mq_release(q);
4247 err_exit:
4248 	q->mq_ops = NULL;
4249 	return -ENOMEM;
4250 }
4251 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4252 
4253 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4254 void blk_mq_exit_queue(struct request_queue *q)
4255 {
4256 	struct blk_mq_tag_set *set = q->tag_set;
4257 
4258 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4259 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4260 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4261 	blk_mq_del_queue_tag_set(q);
4262 }
4263 
4264 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4265 {
4266 	int i;
4267 
4268 	if (blk_mq_is_shared_tags(set->flags)) {
4269 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4270 						BLK_MQ_NO_HCTX_IDX,
4271 						set->queue_depth);
4272 		if (!set->shared_tags)
4273 			return -ENOMEM;
4274 	}
4275 
4276 	for (i = 0; i < set->nr_hw_queues; i++) {
4277 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4278 			goto out_unwind;
4279 		cond_resched();
4280 	}
4281 
4282 	return 0;
4283 
4284 out_unwind:
4285 	while (--i >= 0)
4286 		__blk_mq_free_map_and_rqs(set, i);
4287 
4288 	if (blk_mq_is_shared_tags(set->flags)) {
4289 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4290 					BLK_MQ_NO_HCTX_IDX);
4291 	}
4292 
4293 	return -ENOMEM;
4294 }
4295 
4296 /*
4297  * Allocate the request maps associated with this tag_set. Note that this
4298  * may reduce the depth asked for, if memory is tight. set->queue_depth
4299  * will be updated to reflect the allocated depth.
4300  */
4301 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4302 {
4303 	unsigned int depth;
4304 	int err;
4305 
4306 	depth = set->queue_depth;
4307 	do {
4308 		err = __blk_mq_alloc_rq_maps(set);
4309 		if (!err)
4310 			break;
4311 
4312 		set->queue_depth >>= 1;
4313 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4314 			err = -ENOMEM;
4315 			break;
4316 		}
4317 	} while (set->queue_depth);
4318 
4319 	if (!set->queue_depth || err) {
4320 		pr_err("blk-mq: failed to allocate request map\n");
4321 		return -ENOMEM;
4322 	}
4323 
4324 	if (depth != set->queue_depth)
4325 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4326 						depth, set->queue_depth);
4327 
4328 	return 0;
4329 }
4330 
4331 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4332 {
4333 	/*
4334 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4335 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4336 	 * number of hardware queues.
4337 	 */
4338 	if (set->nr_maps == 1)
4339 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4340 
4341 	if (set->ops->map_queues && !is_kdump_kernel()) {
4342 		int i;
4343 
4344 		/*
4345 		 * transport .map_queues is usually done in the following
4346 		 * way:
4347 		 *
4348 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4349 		 * 	mask = get_cpu_mask(queue)
4350 		 * 	for_each_cpu(cpu, mask)
4351 		 * 		set->map[x].mq_map[cpu] = queue;
4352 		 * }
4353 		 *
4354 		 * When we need to remap, the table has to be cleared for
4355 		 * killing stale mapping since one CPU may not be mapped
4356 		 * to any hw queue.
4357 		 */
4358 		for (i = 0; i < set->nr_maps; i++)
4359 			blk_mq_clear_mq_map(&set->map[i]);
4360 
4361 		set->ops->map_queues(set);
4362 	} else {
4363 		BUG_ON(set->nr_maps > 1);
4364 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4365 	}
4366 }
4367 
4368 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4369 				       int new_nr_hw_queues)
4370 {
4371 	struct blk_mq_tags **new_tags;
4372 
4373 	if (set->nr_hw_queues >= new_nr_hw_queues)
4374 		goto done;
4375 
4376 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4377 				GFP_KERNEL, set->numa_node);
4378 	if (!new_tags)
4379 		return -ENOMEM;
4380 
4381 	if (set->tags)
4382 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4383 		       sizeof(*set->tags));
4384 	kfree(set->tags);
4385 	set->tags = new_tags;
4386 done:
4387 	set->nr_hw_queues = new_nr_hw_queues;
4388 	return 0;
4389 }
4390 
4391 /*
4392  * Alloc a tag set to be associated with one or more request queues.
4393  * May fail with EINVAL for various error conditions. May adjust the
4394  * requested depth down, if it's too large. In that case, the set
4395  * value will be stored in set->queue_depth.
4396  */
4397 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4398 {
4399 	int i, ret;
4400 
4401 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4402 
4403 	if (!set->nr_hw_queues)
4404 		return -EINVAL;
4405 	if (!set->queue_depth)
4406 		return -EINVAL;
4407 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4408 		return -EINVAL;
4409 
4410 	if (!set->ops->queue_rq)
4411 		return -EINVAL;
4412 
4413 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4414 		return -EINVAL;
4415 
4416 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4417 		pr_info("blk-mq: reduced tag depth to %u\n",
4418 			BLK_MQ_MAX_DEPTH);
4419 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4420 	}
4421 
4422 	if (!set->nr_maps)
4423 		set->nr_maps = 1;
4424 	else if (set->nr_maps > HCTX_MAX_TYPES)
4425 		return -EINVAL;
4426 
4427 	/*
4428 	 * If a crashdump is active, then we are potentially in a very
4429 	 * memory constrained environment. Limit us to 1 queue and
4430 	 * 64 tags to prevent using too much memory.
4431 	 */
4432 	if (is_kdump_kernel()) {
4433 		set->nr_hw_queues = 1;
4434 		set->nr_maps = 1;
4435 		set->queue_depth = min(64U, set->queue_depth);
4436 	}
4437 	/*
4438 	 * There is no use for more h/w queues than cpus if we just have
4439 	 * a single map
4440 	 */
4441 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4442 		set->nr_hw_queues = nr_cpu_ids;
4443 
4444 	if (set->flags & BLK_MQ_F_BLOCKING) {
4445 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4446 		if (!set->srcu)
4447 			return -ENOMEM;
4448 		ret = init_srcu_struct(set->srcu);
4449 		if (ret)
4450 			goto out_free_srcu;
4451 	}
4452 
4453 	ret = -ENOMEM;
4454 	set->tags = kcalloc_node(set->nr_hw_queues,
4455 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4456 				 set->numa_node);
4457 	if (!set->tags)
4458 		goto out_cleanup_srcu;
4459 
4460 	for (i = 0; i < set->nr_maps; i++) {
4461 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4462 						  sizeof(set->map[i].mq_map[0]),
4463 						  GFP_KERNEL, set->numa_node);
4464 		if (!set->map[i].mq_map)
4465 			goto out_free_mq_map;
4466 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4467 	}
4468 
4469 	blk_mq_update_queue_map(set);
4470 
4471 	ret = blk_mq_alloc_set_map_and_rqs(set);
4472 	if (ret)
4473 		goto out_free_mq_map;
4474 
4475 	mutex_init(&set->tag_list_lock);
4476 	INIT_LIST_HEAD(&set->tag_list);
4477 
4478 	return 0;
4479 
4480 out_free_mq_map:
4481 	for (i = 0; i < set->nr_maps; i++) {
4482 		kfree(set->map[i].mq_map);
4483 		set->map[i].mq_map = NULL;
4484 	}
4485 	kfree(set->tags);
4486 	set->tags = NULL;
4487 out_cleanup_srcu:
4488 	if (set->flags & BLK_MQ_F_BLOCKING)
4489 		cleanup_srcu_struct(set->srcu);
4490 out_free_srcu:
4491 	if (set->flags & BLK_MQ_F_BLOCKING)
4492 		kfree(set->srcu);
4493 	return ret;
4494 }
4495 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4496 
4497 /* allocate and initialize a tagset for a simple single-queue device */
4498 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4499 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4500 		unsigned int set_flags)
4501 {
4502 	memset(set, 0, sizeof(*set));
4503 	set->ops = ops;
4504 	set->nr_hw_queues = 1;
4505 	set->nr_maps = 1;
4506 	set->queue_depth = queue_depth;
4507 	set->numa_node = NUMA_NO_NODE;
4508 	set->flags = set_flags;
4509 	return blk_mq_alloc_tag_set(set);
4510 }
4511 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4512 
4513 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4514 {
4515 	int i, j;
4516 
4517 	for (i = 0; i < set->nr_hw_queues; i++)
4518 		__blk_mq_free_map_and_rqs(set, i);
4519 
4520 	if (blk_mq_is_shared_tags(set->flags)) {
4521 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4522 					BLK_MQ_NO_HCTX_IDX);
4523 	}
4524 
4525 	for (j = 0; j < set->nr_maps; j++) {
4526 		kfree(set->map[j].mq_map);
4527 		set->map[j].mq_map = NULL;
4528 	}
4529 
4530 	kfree(set->tags);
4531 	set->tags = NULL;
4532 	if (set->flags & BLK_MQ_F_BLOCKING) {
4533 		cleanup_srcu_struct(set->srcu);
4534 		kfree(set->srcu);
4535 	}
4536 }
4537 EXPORT_SYMBOL(blk_mq_free_tag_set);
4538 
4539 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4540 {
4541 	struct blk_mq_tag_set *set = q->tag_set;
4542 	struct blk_mq_hw_ctx *hctx;
4543 	int ret;
4544 	unsigned long i;
4545 
4546 	if (!set)
4547 		return -EINVAL;
4548 
4549 	if (q->nr_requests == nr)
4550 		return 0;
4551 
4552 	blk_mq_freeze_queue(q);
4553 	blk_mq_quiesce_queue(q);
4554 
4555 	ret = 0;
4556 	queue_for_each_hw_ctx(q, hctx, i) {
4557 		if (!hctx->tags)
4558 			continue;
4559 		/*
4560 		 * If we're using an MQ scheduler, just update the scheduler
4561 		 * queue depth. This is similar to what the old code would do.
4562 		 */
4563 		if (hctx->sched_tags) {
4564 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4565 						      nr, true);
4566 		} else {
4567 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4568 						      false);
4569 		}
4570 		if (ret)
4571 			break;
4572 		if (q->elevator && q->elevator->type->ops.depth_updated)
4573 			q->elevator->type->ops.depth_updated(hctx);
4574 	}
4575 	if (!ret) {
4576 		q->nr_requests = nr;
4577 		if (blk_mq_is_shared_tags(set->flags)) {
4578 			if (q->elevator)
4579 				blk_mq_tag_update_sched_shared_tags(q);
4580 			else
4581 				blk_mq_tag_resize_shared_tags(set, nr);
4582 		}
4583 	}
4584 
4585 	blk_mq_unquiesce_queue(q);
4586 	blk_mq_unfreeze_queue(q);
4587 
4588 	return ret;
4589 }
4590 
4591 /*
4592  * request_queue and elevator_type pair.
4593  * It is just used by __blk_mq_update_nr_hw_queues to cache
4594  * the elevator_type associated with a request_queue.
4595  */
4596 struct blk_mq_qe_pair {
4597 	struct list_head node;
4598 	struct request_queue *q;
4599 	struct elevator_type *type;
4600 };
4601 
4602 /*
4603  * Cache the elevator_type in qe pair list and switch the
4604  * io scheduler to 'none'
4605  */
4606 static bool blk_mq_elv_switch_none(struct list_head *head,
4607 		struct request_queue *q)
4608 {
4609 	struct blk_mq_qe_pair *qe;
4610 
4611 	if (!q->elevator)
4612 		return true;
4613 
4614 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4615 	if (!qe)
4616 		return false;
4617 
4618 	/* q->elevator needs protection from ->sysfs_lock */
4619 	mutex_lock(&q->sysfs_lock);
4620 
4621 	INIT_LIST_HEAD(&qe->node);
4622 	qe->q = q;
4623 	qe->type = q->elevator->type;
4624 	/* keep a reference to the elevator module as we'll switch back */
4625 	__elevator_get(qe->type);
4626 	list_add(&qe->node, head);
4627 	elevator_disable(q);
4628 	mutex_unlock(&q->sysfs_lock);
4629 
4630 	return true;
4631 }
4632 
4633 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4634 						struct request_queue *q)
4635 {
4636 	struct blk_mq_qe_pair *qe;
4637 
4638 	list_for_each_entry(qe, head, node)
4639 		if (qe->q == q)
4640 			return qe;
4641 
4642 	return NULL;
4643 }
4644 
4645 static void blk_mq_elv_switch_back(struct list_head *head,
4646 				  struct request_queue *q)
4647 {
4648 	struct blk_mq_qe_pair *qe;
4649 	struct elevator_type *t;
4650 
4651 	qe = blk_lookup_qe_pair(head, q);
4652 	if (!qe)
4653 		return;
4654 	t = qe->type;
4655 	list_del(&qe->node);
4656 	kfree(qe);
4657 
4658 	mutex_lock(&q->sysfs_lock);
4659 	elevator_switch(q, t);
4660 	/* drop the reference acquired in blk_mq_elv_switch_none */
4661 	elevator_put(t);
4662 	mutex_unlock(&q->sysfs_lock);
4663 }
4664 
4665 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4666 							int nr_hw_queues)
4667 {
4668 	struct request_queue *q;
4669 	LIST_HEAD(head);
4670 	int prev_nr_hw_queues;
4671 
4672 	lockdep_assert_held(&set->tag_list_lock);
4673 
4674 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4675 		nr_hw_queues = nr_cpu_ids;
4676 	if (nr_hw_queues < 1)
4677 		return;
4678 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4679 		return;
4680 
4681 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4682 		blk_mq_freeze_queue(q);
4683 	/*
4684 	 * Switch IO scheduler to 'none', cleaning up the data associated
4685 	 * with the previous scheduler. We will switch back once we are done
4686 	 * updating the new sw to hw queue mappings.
4687 	 */
4688 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4689 		if (!blk_mq_elv_switch_none(&head, q))
4690 			goto switch_back;
4691 
4692 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4693 		blk_mq_debugfs_unregister_hctxs(q);
4694 		blk_mq_sysfs_unregister_hctxs(q);
4695 	}
4696 
4697 	prev_nr_hw_queues = set->nr_hw_queues;
4698 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4699 		goto reregister;
4700 
4701 fallback:
4702 	blk_mq_update_queue_map(set);
4703 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4704 		blk_mq_realloc_hw_ctxs(set, q);
4705 		blk_mq_update_poll_flag(q);
4706 		if (q->nr_hw_queues != set->nr_hw_queues) {
4707 			int i = prev_nr_hw_queues;
4708 
4709 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4710 					nr_hw_queues, prev_nr_hw_queues);
4711 			for (; i < set->nr_hw_queues; i++)
4712 				__blk_mq_free_map_and_rqs(set, i);
4713 
4714 			set->nr_hw_queues = prev_nr_hw_queues;
4715 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4716 			goto fallback;
4717 		}
4718 		blk_mq_map_swqueue(q);
4719 	}
4720 
4721 reregister:
4722 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4723 		blk_mq_sysfs_register_hctxs(q);
4724 		blk_mq_debugfs_register_hctxs(q);
4725 	}
4726 
4727 switch_back:
4728 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4729 		blk_mq_elv_switch_back(&head, q);
4730 
4731 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4732 		blk_mq_unfreeze_queue(q);
4733 }
4734 
4735 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4736 {
4737 	mutex_lock(&set->tag_list_lock);
4738 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4739 	mutex_unlock(&set->tag_list_lock);
4740 }
4741 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4742 
4743 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4744 		unsigned int flags)
4745 {
4746 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4747 	long state = get_current_state();
4748 	int ret;
4749 
4750 	do {
4751 		ret = q->mq_ops->poll(hctx, iob);
4752 		if (ret > 0) {
4753 			__set_current_state(TASK_RUNNING);
4754 			return ret;
4755 		}
4756 
4757 		if (signal_pending_state(state, current))
4758 			__set_current_state(TASK_RUNNING);
4759 		if (task_is_running(current))
4760 			return 1;
4761 
4762 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4763 			break;
4764 		cpu_relax();
4765 	} while (!need_resched());
4766 
4767 	__set_current_state(TASK_RUNNING);
4768 	return 0;
4769 }
4770 
4771 unsigned int blk_mq_rq_cpu(struct request *rq)
4772 {
4773 	return rq->mq_ctx->cpu;
4774 }
4775 EXPORT_SYMBOL(blk_mq_rq_cpu);
4776 
4777 void blk_mq_cancel_work_sync(struct request_queue *q)
4778 {
4779 	struct blk_mq_hw_ctx *hctx;
4780 	unsigned long i;
4781 
4782 	cancel_delayed_work_sync(&q->requeue_work);
4783 
4784 	queue_for_each_hw_ctx(q, hctx, i)
4785 		cancel_delayed_work_sync(&hctx->run_work);
4786 }
4787 
4788 static int __init blk_mq_init(void)
4789 {
4790 	int i;
4791 
4792 	for_each_possible_cpu(i)
4793 		init_llist_head(&per_cpu(blk_cpu_done, i));
4794 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4795 
4796 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4797 				  "block/softirq:dead", NULL,
4798 				  blk_softirq_cpu_dead);
4799 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4800 				blk_mq_hctx_notify_dead);
4801 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4802 				blk_mq_hctx_notify_online,
4803 				blk_mq_hctx_notify_offline);
4804 	return 0;
4805 }
4806 subsys_initcall(blk_mq_init);
4807