1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-pm.h" 37 #include "blk-stat.h" 38 #include "blk-mq-sched.h" 39 #include "blk-rq-qos.h" 40 41 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 42 static void blk_mq_poll_stats_start(struct request_queue *q); 43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 44 45 static int blk_mq_poll_stats_bkt(const struct request *rq) 46 { 47 int ddir, bytes, bucket; 48 49 ddir = rq_data_dir(rq); 50 bytes = blk_rq_bytes(rq); 51 52 bucket = ddir + 2*(ilog2(bytes) - 9); 53 54 if (bucket < 0) 55 return -1; 56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 58 59 return bucket; 60 } 61 62 /* 63 * Check if any of the ctx's have pending work in this hardware queue 64 */ 65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 66 { 67 return !list_empty_careful(&hctx->dispatch) || 68 sbitmap_any_bit_set(&hctx->ctx_map) || 69 blk_mq_sched_has_work(hctx); 70 } 71 72 /* 73 * Mark this ctx as having pending work in this hardware queue 74 */ 75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 76 struct blk_mq_ctx *ctx) 77 { 78 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 79 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 80 } 81 82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 83 struct blk_mq_ctx *ctx) 84 { 85 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 86 } 87 88 struct mq_inflight { 89 struct hd_struct *part; 90 unsigned int *inflight; 91 }; 92 93 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 94 struct request *rq, void *priv, 95 bool reserved) 96 { 97 struct mq_inflight *mi = priv; 98 99 /* 100 * index[0] counts the specific partition that was asked for. index[1] 101 * counts the ones that are active on the whole device, so increment 102 * that if mi->part is indeed a partition, and not a whole device. 103 */ 104 if (rq->part == mi->part) 105 mi->inflight[0]++; 106 if (mi->part->partno) 107 mi->inflight[1]++; 108 } 109 110 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 111 unsigned int inflight[2]) 112 { 113 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 114 115 inflight[0] = inflight[1] = 0; 116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 117 } 118 119 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 120 struct request *rq, void *priv, 121 bool reserved) 122 { 123 struct mq_inflight *mi = priv; 124 125 if (rq->part == mi->part) 126 mi->inflight[rq_data_dir(rq)]++; 127 } 128 129 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 130 unsigned int inflight[2]) 131 { 132 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 133 134 inflight[0] = inflight[1] = 0; 135 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 136 } 137 138 void blk_freeze_queue_start(struct request_queue *q) 139 { 140 int freeze_depth; 141 142 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 143 if (freeze_depth == 1) { 144 percpu_ref_kill(&q->q_usage_counter); 145 if (q->mq_ops) 146 blk_mq_run_hw_queues(q, false); 147 } 148 } 149 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 150 151 void blk_mq_freeze_queue_wait(struct request_queue *q) 152 { 153 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 154 } 155 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 156 157 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 158 unsigned long timeout) 159 { 160 return wait_event_timeout(q->mq_freeze_wq, 161 percpu_ref_is_zero(&q->q_usage_counter), 162 timeout); 163 } 164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 165 166 /* 167 * Guarantee no request is in use, so we can change any data structure of 168 * the queue afterward. 169 */ 170 void blk_freeze_queue(struct request_queue *q) 171 { 172 /* 173 * In the !blk_mq case we are only calling this to kill the 174 * q_usage_counter, otherwise this increases the freeze depth 175 * and waits for it to return to zero. For this reason there is 176 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 177 * exported to drivers as the only user for unfreeze is blk_mq. 178 */ 179 blk_freeze_queue_start(q); 180 if (!q->mq_ops) 181 blk_drain_queue(q); 182 blk_mq_freeze_queue_wait(q); 183 } 184 185 void blk_mq_freeze_queue(struct request_queue *q) 186 { 187 /* 188 * ...just an alias to keep freeze and unfreeze actions balanced 189 * in the blk_mq_* namespace 190 */ 191 blk_freeze_queue(q); 192 } 193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 194 195 void blk_mq_unfreeze_queue(struct request_queue *q) 196 { 197 int freeze_depth; 198 199 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 200 WARN_ON_ONCE(freeze_depth < 0); 201 if (!freeze_depth) { 202 percpu_ref_resurrect(&q->q_usage_counter); 203 wake_up_all(&q->mq_freeze_wq); 204 } 205 } 206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 207 208 /* 209 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 210 * mpt3sas driver such that this function can be removed. 211 */ 212 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 213 { 214 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 215 } 216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 217 218 /** 219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 220 * @q: request queue. 221 * 222 * Note: this function does not prevent that the struct request end_io() 223 * callback function is invoked. Once this function is returned, we make 224 * sure no dispatch can happen until the queue is unquiesced via 225 * blk_mq_unquiesce_queue(). 226 */ 227 void blk_mq_quiesce_queue(struct request_queue *q) 228 { 229 struct blk_mq_hw_ctx *hctx; 230 unsigned int i; 231 bool rcu = false; 232 233 blk_mq_quiesce_queue_nowait(q); 234 235 queue_for_each_hw_ctx(q, hctx, i) { 236 if (hctx->flags & BLK_MQ_F_BLOCKING) 237 synchronize_srcu(hctx->srcu); 238 else 239 rcu = true; 240 } 241 if (rcu) 242 synchronize_rcu(); 243 } 244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 245 246 /* 247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 248 * @q: request queue. 249 * 250 * This function recovers queue into the state before quiescing 251 * which is done by blk_mq_quiesce_queue. 252 */ 253 void blk_mq_unquiesce_queue(struct request_queue *q) 254 { 255 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 256 257 /* dispatch requests which are inserted during quiescing */ 258 blk_mq_run_hw_queues(q, true); 259 } 260 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 261 262 void blk_mq_wake_waiters(struct request_queue *q) 263 { 264 struct blk_mq_hw_ctx *hctx; 265 unsigned int i; 266 267 queue_for_each_hw_ctx(q, hctx, i) 268 if (blk_mq_hw_queue_mapped(hctx)) 269 blk_mq_tag_wakeup_all(hctx->tags, true); 270 } 271 272 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 273 { 274 return blk_mq_has_free_tags(hctx->tags); 275 } 276 EXPORT_SYMBOL(blk_mq_can_queue); 277 278 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 279 unsigned int tag, unsigned int op) 280 { 281 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 282 struct request *rq = tags->static_rqs[tag]; 283 req_flags_t rq_flags = 0; 284 285 if (data->flags & BLK_MQ_REQ_INTERNAL) { 286 rq->tag = -1; 287 rq->internal_tag = tag; 288 } else { 289 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 290 rq_flags = RQF_MQ_INFLIGHT; 291 atomic_inc(&data->hctx->nr_active); 292 } 293 rq->tag = tag; 294 rq->internal_tag = -1; 295 data->hctx->tags->rqs[rq->tag] = rq; 296 } 297 298 /* csd/requeue_work/fifo_time is initialized before use */ 299 rq->q = data->q; 300 rq->mq_ctx = data->ctx; 301 rq->rq_flags = rq_flags; 302 rq->cpu = -1; 303 rq->cmd_flags = op; 304 if (data->flags & BLK_MQ_REQ_PREEMPT) 305 rq->rq_flags |= RQF_PREEMPT; 306 if (blk_queue_io_stat(data->q)) 307 rq->rq_flags |= RQF_IO_STAT; 308 INIT_LIST_HEAD(&rq->queuelist); 309 INIT_HLIST_NODE(&rq->hash); 310 RB_CLEAR_NODE(&rq->rb_node); 311 rq->rq_disk = NULL; 312 rq->part = NULL; 313 rq->start_time_ns = ktime_get_ns(); 314 rq->io_start_time_ns = 0; 315 rq->nr_phys_segments = 0; 316 #if defined(CONFIG_BLK_DEV_INTEGRITY) 317 rq->nr_integrity_segments = 0; 318 #endif 319 rq->special = NULL; 320 /* tag was already set */ 321 rq->extra_len = 0; 322 rq->__deadline = 0; 323 324 INIT_LIST_HEAD(&rq->timeout_list); 325 rq->timeout = 0; 326 327 rq->end_io = NULL; 328 rq->end_io_data = NULL; 329 rq->next_rq = NULL; 330 331 #ifdef CONFIG_BLK_CGROUP 332 rq->rl = NULL; 333 #endif 334 335 data->ctx->rq_dispatched[op_is_sync(op)]++; 336 refcount_set(&rq->ref, 1); 337 return rq; 338 } 339 340 static struct request *blk_mq_get_request(struct request_queue *q, 341 struct bio *bio, unsigned int op, 342 struct blk_mq_alloc_data *data) 343 { 344 struct elevator_queue *e = q->elevator; 345 struct request *rq; 346 unsigned int tag; 347 bool put_ctx_on_error = false; 348 349 blk_queue_enter_live(q); 350 data->q = q; 351 if (likely(!data->ctx)) { 352 data->ctx = blk_mq_get_ctx(q); 353 put_ctx_on_error = true; 354 } 355 if (likely(!data->hctx)) 356 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 357 if (op & REQ_NOWAIT) 358 data->flags |= BLK_MQ_REQ_NOWAIT; 359 360 if (e) { 361 data->flags |= BLK_MQ_REQ_INTERNAL; 362 363 /* 364 * Flush requests are special and go directly to the 365 * dispatch list. Don't include reserved tags in the 366 * limiting, as it isn't useful. 367 */ 368 if (!op_is_flush(op) && e->type->ops.mq.limit_depth && 369 !(data->flags & BLK_MQ_REQ_RESERVED)) 370 e->type->ops.mq.limit_depth(op, data); 371 } else { 372 blk_mq_tag_busy(data->hctx); 373 } 374 375 tag = blk_mq_get_tag(data); 376 if (tag == BLK_MQ_TAG_FAIL) { 377 if (put_ctx_on_error) { 378 blk_mq_put_ctx(data->ctx); 379 data->ctx = NULL; 380 } 381 blk_queue_exit(q); 382 return NULL; 383 } 384 385 rq = blk_mq_rq_ctx_init(data, tag, op); 386 if (!op_is_flush(op)) { 387 rq->elv.icq = NULL; 388 if (e && e->type->ops.mq.prepare_request) { 389 if (e->type->icq_cache && rq_ioc(bio)) 390 blk_mq_sched_assign_ioc(rq, bio); 391 392 e->type->ops.mq.prepare_request(rq, bio); 393 rq->rq_flags |= RQF_ELVPRIV; 394 } 395 } 396 data->hctx->queued++; 397 return rq; 398 } 399 400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 401 blk_mq_req_flags_t flags) 402 { 403 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 404 struct request *rq; 405 int ret; 406 407 ret = blk_queue_enter(q, flags); 408 if (ret) 409 return ERR_PTR(ret); 410 411 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 412 blk_queue_exit(q); 413 414 if (!rq) 415 return ERR_PTR(-EWOULDBLOCK); 416 417 blk_mq_put_ctx(alloc_data.ctx); 418 419 rq->__data_len = 0; 420 rq->__sector = (sector_t) -1; 421 rq->bio = rq->biotail = NULL; 422 return rq; 423 } 424 EXPORT_SYMBOL(blk_mq_alloc_request); 425 426 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 427 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 428 { 429 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 430 struct request *rq; 431 unsigned int cpu; 432 int ret; 433 434 /* 435 * If the tag allocator sleeps we could get an allocation for a 436 * different hardware context. No need to complicate the low level 437 * allocator for this for the rare use case of a command tied to 438 * a specific queue. 439 */ 440 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 441 return ERR_PTR(-EINVAL); 442 443 if (hctx_idx >= q->nr_hw_queues) 444 return ERR_PTR(-EIO); 445 446 ret = blk_queue_enter(q, flags); 447 if (ret) 448 return ERR_PTR(ret); 449 450 /* 451 * Check if the hardware context is actually mapped to anything. 452 * If not tell the caller that it should skip this queue. 453 */ 454 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 455 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 456 blk_queue_exit(q); 457 return ERR_PTR(-EXDEV); 458 } 459 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 460 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 461 462 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 463 blk_queue_exit(q); 464 465 if (!rq) 466 return ERR_PTR(-EWOULDBLOCK); 467 468 return rq; 469 } 470 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 471 472 static void __blk_mq_free_request(struct request *rq) 473 { 474 struct request_queue *q = rq->q; 475 struct blk_mq_ctx *ctx = rq->mq_ctx; 476 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 477 const int sched_tag = rq->internal_tag; 478 479 blk_pm_mark_last_busy(rq); 480 if (rq->tag != -1) 481 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 482 if (sched_tag != -1) 483 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 484 blk_mq_sched_restart(hctx); 485 blk_queue_exit(q); 486 } 487 488 void blk_mq_free_request(struct request *rq) 489 { 490 struct request_queue *q = rq->q; 491 struct elevator_queue *e = q->elevator; 492 struct blk_mq_ctx *ctx = rq->mq_ctx; 493 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 494 495 if (rq->rq_flags & RQF_ELVPRIV) { 496 if (e && e->type->ops.mq.finish_request) 497 e->type->ops.mq.finish_request(rq); 498 if (rq->elv.icq) { 499 put_io_context(rq->elv.icq->ioc); 500 rq->elv.icq = NULL; 501 } 502 } 503 504 ctx->rq_completed[rq_is_sync(rq)]++; 505 if (rq->rq_flags & RQF_MQ_INFLIGHT) 506 atomic_dec(&hctx->nr_active); 507 508 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 509 laptop_io_completion(q->backing_dev_info); 510 511 rq_qos_done(q, rq); 512 513 if (blk_rq_rl(rq)) 514 blk_put_rl(blk_rq_rl(rq)); 515 516 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 517 if (refcount_dec_and_test(&rq->ref)) 518 __blk_mq_free_request(rq); 519 } 520 EXPORT_SYMBOL_GPL(blk_mq_free_request); 521 522 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 523 { 524 u64 now = ktime_get_ns(); 525 526 if (rq->rq_flags & RQF_STATS) { 527 blk_mq_poll_stats_start(rq->q); 528 blk_stat_add(rq, now); 529 } 530 531 if (rq->internal_tag != -1) 532 blk_mq_sched_completed_request(rq, now); 533 534 blk_account_io_done(rq, now); 535 536 if (rq->end_io) { 537 rq_qos_done(rq->q, rq); 538 rq->end_io(rq, error); 539 } else { 540 if (unlikely(blk_bidi_rq(rq))) 541 blk_mq_free_request(rq->next_rq); 542 blk_mq_free_request(rq); 543 } 544 } 545 EXPORT_SYMBOL(__blk_mq_end_request); 546 547 void blk_mq_end_request(struct request *rq, blk_status_t error) 548 { 549 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 550 BUG(); 551 __blk_mq_end_request(rq, error); 552 } 553 EXPORT_SYMBOL(blk_mq_end_request); 554 555 static void __blk_mq_complete_request_remote(void *data) 556 { 557 struct request *rq = data; 558 559 rq->q->softirq_done_fn(rq); 560 } 561 562 static void __blk_mq_complete_request(struct request *rq) 563 { 564 struct blk_mq_ctx *ctx = rq->mq_ctx; 565 bool shared = false; 566 int cpu; 567 568 if (!blk_mq_mark_complete(rq)) 569 return; 570 571 /* 572 * Most of single queue controllers, there is only one irq vector 573 * for handling IO completion, and the only irq's affinity is set 574 * as all possible CPUs. On most of ARCHs, this affinity means the 575 * irq is handled on one specific CPU. 576 * 577 * So complete IO reqeust in softirq context in case of single queue 578 * for not degrading IO performance by irqsoff latency. 579 */ 580 if (rq->q->nr_hw_queues == 1) { 581 __blk_complete_request(rq); 582 return; 583 } 584 585 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 586 rq->q->softirq_done_fn(rq); 587 return; 588 } 589 590 cpu = get_cpu(); 591 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 592 shared = cpus_share_cache(cpu, ctx->cpu); 593 594 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 595 rq->csd.func = __blk_mq_complete_request_remote; 596 rq->csd.info = rq; 597 rq->csd.flags = 0; 598 smp_call_function_single_async(ctx->cpu, &rq->csd); 599 } else { 600 rq->q->softirq_done_fn(rq); 601 } 602 put_cpu(); 603 } 604 605 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 606 __releases(hctx->srcu) 607 { 608 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 609 rcu_read_unlock(); 610 else 611 srcu_read_unlock(hctx->srcu, srcu_idx); 612 } 613 614 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 615 __acquires(hctx->srcu) 616 { 617 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 618 /* shut up gcc false positive */ 619 *srcu_idx = 0; 620 rcu_read_lock(); 621 } else 622 *srcu_idx = srcu_read_lock(hctx->srcu); 623 } 624 625 /** 626 * blk_mq_complete_request - end I/O on a request 627 * @rq: the request being processed 628 * 629 * Description: 630 * Ends all I/O on a request. It does not handle partial completions. 631 * The actual completion happens out-of-order, through a IPI handler. 632 **/ 633 void blk_mq_complete_request(struct request *rq) 634 { 635 if (unlikely(blk_should_fake_timeout(rq->q))) 636 return; 637 __blk_mq_complete_request(rq); 638 } 639 EXPORT_SYMBOL(blk_mq_complete_request); 640 641 int blk_mq_request_started(struct request *rq) 642 { 643 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 644 } 645 EXPORT_SYMBOL_GPL(blk_mq_request_started); 646 647 void blk_mq_start_request(struct request *rq) 648 { 649 struct request_queue *q = rq->q; 650 651 blk_mq_sched_started_request(rq); 652 653 trace_block_rq_issue(q, rq); 654 655 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 656 rq->io_start_time_ns = ktime_get_ns(); 657 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 658 rq->throtl_size = blk_rq_sectors(rq); 659 #endif 660 rq->rq_flags |= RQF_STATS; 661 rq_qos_issue(q, rq); 662 } 663 664 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 665 666 blk_add_timer(rq); 667 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 668 669 if (q->dma_drain_size && blk_rq_bytes(rq)) { 670 /* 671 * Make sure space for the drain appears. We know we can do 672 * this because max_hw_segments has been adjusted to be one 673 * fewer than the device can handle. 674 */ 675 rq->nr_phys_segments++; 676 } 677 } 678 EXPORT_SYMBOL(blk_mq_start_request); 679 680 static void __blk_mq_requeue_request(struct request *rq) 681 { 682 struct request_queue *q = rq->q; 683 684 blk_mq_put_driver_tag(rq); 685 686 trace_block_rq_requeue(q, rq); 687 rq_qos_requeue(q, rq); 688 689 if (blk_mq_request_started(rq)) { 690 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 691 rq->rq_flags &= ~RQF_TIMED_OUT; 692 if (q->dma_drain_size && blk_rq_bytes(rq)) 693 rq->nr_phys_segments--; 694 } 695 } 696 697 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 698 { 699 __blk_mq_requeue_request(rq); 700 701 /* this request will be re-inserted to io scheduler queue */ 702 blk_mq_sched_requeue_request(rq); 703 704 BUG_ON(blk_queued_rq(rq)); 705 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 706 } 707 EXPORT_SYMBOL(blk_mq_requeue_request); 708 709 static void blk_mq_requeue_work(struct work_struct *work) 710 { 711 struct request_queue *q = 712 container_of(work, struct request_queue, requeue_work.work); 713 LIST_HEAD(rq_list); 714 struct request *rq, *next; 715 716 spin_lock_irq(&q->requeue_lock); 717 list_splice_init(&q->requeue_list, &rq_list); 718 spin_unlock_irq(&q->requeue_lock); 719 720 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 721 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 722 continue; 723 724 rq->rq_flags &= ~RQF_SOFTBARRIER; 725 list_del_init(&rq->queuelist); 726 blk_mq_sched_insert_request(rq, true, false, false); 727 } 728 729 while (!list_empty(&rq_list)) { 730 rq = list_entry(rq_list.next, struct request, queuelist); 731 list_del_init(&rq->queuelist); 732 blk_mq_sched_insert_request(rq, false, false, false); 733 } 734 735 blk_mq_run_hw_queues(q, false); 736 } 737 738 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 739 bool kick_requeue_list) 740 { 741 struct request_queue *q = rq->q; 742 unsigned long flags; 743 744 /* 745 * We abuse this flag that is otherwise used by the I/O scheduler to 746 * request head insertion from the workqueue. 747 */ 748 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 749 750 spin_lock_irqsave(&q->requeue_lock, flags); 751 if (at_head) { 752 rq->rq_flags |= RQF_SOFTBARRIER; 753 list_add(&rq->queuelist, &q->requeue_list); 754 } else { 755 list_add_tail(&rq->queuelist, &q->requeue_list); 756 } 757 spin_unlock_irqrestore(&q->requeue_lock, flags); 758 759 if (kick_requeue_list) 760 blk_mq_kick_requeue_list(q); 761 } 762 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 763 764 void blk_mq_kick_requeue_list(struct request_queue *q) 765 { 766 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 767 } 768 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 769 770 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 771 unsigned long msecs) 772 { 773 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 774 msecs_to_jiffies(msecs)); 775 } 776 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 777 778 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 779 { 780 if (tag < tags->nr_tags) { 781 prefetch(tags->rqs[tag]); 782 return tags->rqs[tag]; 783 } 784 785 return NULL; 786 } 787 EXPORT_SYMBOL(blk_mq_tag_to_rq); 788 789 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 790 { 791 req->rq_flags |= RQF_TIMED_OUT; 792 if (req->q->mq_ops->timeout) { 793 enum blk_eh_timer_return ret; 794 795 ret = req->q->mq_ops->timeout(req, reserved); 796 if (ret == BLK_EH_DONE) 797 return; 798 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 799 } 800 801 blk_add_timer(req); 802 } 803 804 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 805 { 806 unsigned long deadline; 807 808 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 809 return false; 810 if (rq->rq_flags & RQF_TIMED_OUT) 811 return false; 812 813 deadline = blk_rq_deadline(rq); 814 if (time_after_eq(jiffies, deadline)) 815 return true; 816 817 if (*next == 0) 818 *next = deadline; 819 else if (time_after(*next, deadline)) 820 *next = deadline; 821 return false; 822 } 823 824 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 825 struct request *rq, void *priv, bool reserved) 826 { 827 unsigned long *next = priv; 828 829 /* 830 * Just do a quick check if it is expired before locking the request in 831 * so we're not unnecessarilly synchronizing across CPUs. 832 */ 833 if (!blk_mq_req_expired(rq, next)) 834 return; 835 836 /* 837 * We have reason to believe the request may be expired. Take a 838 * reference on the request to lock this request lifetime into its 839 * currently allocated context to prevent it from being reallocated in 840 * the event the completion by-passes this timeout handler. 841 * 842 * If the reference was already released, then the driver beat the 843 * timeout handler to posting a natural completion. 844 */ 845 if (!refcount_inc_not_zero(&rq->ref)) 846 return; 847 848 /* 849 * The request is now locked and cannot be reallocated underneath the 850 * timeout handler's processing. Re-verify this exact request is truly 851 * expired; if it is not expired, then the request was completed and 852 * reallocated as a new request. 853 */ 854 if (blk_mq_req_expired(rq, next)) 855 blk_mq_rq_timed_out(rq, reserved); 856 if (refcount_dec_and_test(&rq->ref)) 857 __blk_mq_free_request(rq); 858 } 859 860 static void blk_mq_timeout_work(struct work_struct *work) 861 { 862 struct request_queue *q = 863 container_of(work, struct request_queue, timeout_work); 864 unsigned long next = 0; 865 struct blk_mq_hw_ctx *hctx; 866 int i; 867 868 /* A deadlock might occur if a request is stuck requiring a 869 * timeout at the same time a queue freeze is waiting 870 * completion, since the timeout code would not be able to 871 * acquire the queue reference here. 872 * 873 * That's why we don't use blk_queue_enter here; instead, we use 874 * percpu_ref_tryget directly, because we need to be able to 875 * obtain a reference even in the short window between the queue 876 * starting to freeze, by dropping the first reference in 877 * blk_freeze_queue_start, and the moment the last request is 878 * consumed, marked by the instant q_usage_counter reaches 879 * zero. 880 */ 881 if (!percpu_ref_tryget(&q->q_usage_counter)) 882 return; 883 884 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 885 886 if (next != 0) { 887 mod_timer(&q->timeout, next); 888 } else { 889 /* 890 * Request timeouts are handled as a forward rolling timer. If 891 * we end up here it means that no requests are pending and 892 * also that no request has been pending for a while. Mark 893 * each hctx as idle. 894 */ 895 queue_for_each_hw_ctx(q, hctx, i) { 896 /* the hctx may be unmapped, so check it here */ 897 if (blk_mq_hw_queue_mapped(hctx)) 898 blk_mq_tag_idle(hctx); 899 } 900 } 901 blk_queue_exit(q); 902 } 903 904 struct flush_busy_ctx_data { 905 struct blk_mq_hw_ctx *hctx; 906 struct list_head *list; 907 }; 908 909 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 910 { 911 struct flush_busy_ctx_data *flush_data = data; 912 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 913 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 914 915 spin_lock(&ctx->lock); 916 list_splice_tail_init(&ctx->rq_list, flush_data->list); 917 sbitmap_clear_bit(sb, bitnr); 918 spin_unlock(&ctx->lock); 919 return true; 920 } 921 922 /* 923 * Process software queues that have been marked busy, splicing them 924 * to the for-dispatch 925 */ 926 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 927 { 928 struct flush_busy_ctx_data data = { 929 .hctx = hctx, 930 .list = list, 931 }; 932 933 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 934 } 935 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 936 937 struct dispatch_rq_data { 938 struct blk_mq_hw_ctx *hctx; 939 struct request *rq; 940 }; 941 942 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 943 void *data) 944 { 945 struct dispatch_rq_data *dispatch_data = data; 946 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 947 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 948 949 spin_lock(&ctx->lock); 950 if (!list_empty(&ctx->rq_list)) { 951 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 952 list_del_init(&dispatch_data->rq->queuelist); 953 if (list_empty(&ctx->rq_list)) 954 sbitmap_clear_bit(sb, bitnr); 955 } 956 spin_unlock(&ctx->lock); 957 958 return !dispatch_data->rq; 959 } 960 961 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 962 struct blk_mq_ctx *start) 963 { 964 unsigned off = start ? start->index_hw : 0; 965 struct dispatch_rq_data data = { 966 .hctx = hctx, 967 .rq = NULL, 968 }; 969 970 __sbitmap_for_each_set(&hctx->ctx_map, off, 971 dispatch_rq_from_ctx, &data); 972 973 return data.rq; 974 } 975 976 static inline unsigned int queued_to_index(unsigned int queued) 977 { 978 if (!queued) 979 return 0; 980 981 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 982 } 983 984 bool blk_mq_get_driver_tag(struct request *rq) 985 { 986 struct blk_mq_alloc_data data = { 987 .q = rq->q, 988 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 989 .flags = BLK_MQ_REQ_NOWAIT, 990 }; 991 bool shared; 992 993 if (rq->tag != -1) 994 goto done; 995 996 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 997 data.flags |= BLK_MQ_REQ_RESERVED; 998 999 shared = blk_mq_tag_busy(data.hctx); 1000 rq->tag = blk_mq_get_tag(&data); 1001 if (rq->tag >= 0) { 1002 if (shared) { 1003 rq->rq_flags |= RQF_MQ_INFLIGHT; 1004 atomic_inc(&data.hctx->nr_active); 1005 } 1006 data.hctx->tags->rqs[rq->tag] = rq; 1007 } 1008 1009 done: 1010 return rq->tag != -1; 1011 } 1012 1013 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1014 int flags, void *key) 1015 { 1016 struct blk_mq_hw_ctx *hctx; 1017 1018 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1019 1020 spin_lock(&hctx->dispatch_wait_lock); 1021 list_del_init(&wait->entry); 1022 spin_unlock(&hctx->dispatch_wait_lock); 1023 1024 blk_mq_run_hw_queue(hctx, true); 1025 return 1; 1026 } 1027 1028 /* 1029 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1030 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1031 * restart. For both cases, take care to check the condition again after 1032 * marking us as waiting. 1033 */ 1034 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1035 struct request *rq) 1036 { 1037 struct wait_queue_head *wq; 1038 wait_queue_entry_t *wait; 1039 bool ret; 1040 1041 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1042 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 1043 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 1044 1045 /* 1046 * It's possible that a tag was freed in the window between the 1047 * allocation failure and adding the hardware queue to the wait 1048 * queue. 1049 * 1050 * Don't clear RESTART here, someone else could have set it. 1051 * At most this will cost an extra queue run. 1052 */ 1053 return blk_mq_get_driver_tag(rq); 1054 } 1055 1056 wait = &hctx->dispatch_wait; 1057 if (!list_empty_careful(&wait->entry)) 1058 return false; 1059 1060 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait; 1061 1062 spin_lock_irq(&wq->lock); 1063 spin_lock(&hctx->dispatch_wait_lock); 1064 if (!list_empty(&wait->entry)) { 1065 spin_unlock(&hctx->dispatch_wait_lock); 1066 spin_unlock_irq(&wq->lock); 1067 return false; 1068 } 1069 1070 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1071 __add_wait_queue(wq, wait); 1072 1073 /* 1074 * It's possible that a tag was freed in the window between the 1075 * allocation failure and adding the hardware queue to the wait 1076 * queue. 1077 */ 1078 ret = blk_mq_get_driver_tag(rq); 1079 if (!ret) { 1080 spin_unlock(&hctx->dispatch_wait_lock); 1081 spin_unlock_irq(&wq->lock); 1082 return false; 1083 } 1084 1085 /* 1086 * We got a tag, remove ourselves from the wait queue to ensure 1087 * someone else gets the wakeup. 1088 */ 1089 list_del_init(&wait->entry); 1090 spin_unlock(&hctx->dispatch_wait_lock); 1091 spin_unlock_irq(&wq->lock); 1092 1093 return true; 1094 } 1095 1096 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1097 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1098 /* 1099 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1100 * - EWMA is one simple way to compute running average value 1101 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1102 * - take 4 as factor for avoiding to get too small(0) result, and this 1103 * factor doesn't matter because EWMA decreases exponentially 1104 */ 1105 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1106 { 1107 unsigned int ewma; 1108 1109 if (hctx->queue->elevator) 1110 return; 1111 1112 ewma = hctx->dispatch_busy; 1113 1114 if (!ewma && !busy) 1115 return; 1116 1117 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1118 if (busy) 1119 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1120 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1121 1122 hctx->dispatch_busy = ewma; 1123 } 1124 1125 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1126 1127 /* 1128 * Returns true if we did some work AND can potentially do more. 1129 */ 1130 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1131 bool got_budget) 1132 { 1133 struct blk_mq_hw_ctx *hctx; 1134 struct request *rq, *nxt; 1135 bool no_tag = false; 1136 int errors, queued; 1137 blk_status_t ret = BLK_STS_OK; 1138 1139 if (list_empty(list)) 1140 return false; 1141 1142 WARN_ON(!list_is_singular(list) && got_budget); 1143 1144 /* 1145 * Now process all the entries, sending them to the driver. 1146 */ 1147 errors = queued = 0; 1148 do { 1149 struct blk_mq_queue_data bd; 1150 1151 rq = list_first_entry(list, struct request, queuelist); 1152 1153 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 1154 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1155 break; 1156 1157 if (!blk_mq_get_driver_tag(rq)) { 1158 /* 1159 * The initial allocation attempt failed, so we need to 1160 * rerun the hardware queue when a tag is freed. The 1161 * waitqueue takes care of that. If the queue is run 1162 * before we add this entry back on the dispatch list, 1163 * we'll re-run it below. 1164 */ 1165 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1166 blk_mq_put_dispatch_budget(hctx); 1167 /* 1168 * For non-shared tags, the RESTART check 1169 * will suffice. 1170 */ 1171 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1172 no_tag = true; 1173 break; 1174 } 1175 } 1176 1177 list_del_init(&rq->queuelist); 1178 1179 bd.rq = rq; 1180 1181 /* 1182 * Flag last if we have no more requests, or if we have more 1183 * but can't assign a driver tag to it. 1184 */ 1185 if (list_empty(list)) 1186 bd.last = true; 1187 else { 1188 nxt = list_first_entry(list, struct request, queuelist); 1189 bd.last = !blk_mq_get_driver_tag(nxt); 1190 } 1191 1192 ret = q->mq_ops->queue_rq(hctx, &bd); 1193 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1194 /* 1195 * If an I/O scheduler has been configured and we got a 1196 * driver tag for the next request already, free it 1197 * again. 1198 */ 1199 if (!list_empty(list)) { 1200 nxt = list_first_entry(list, struct request, queuelist); 1201 blk_mq_put_driver_tag(nxt); 1202 } 1203 list_add(&rq->queuelist, list); 1204 __blk_mq_requeue_request(rq); 1205 break; 1206 } 1207 1208 if (unlikely(ret != BLK_STS_OK)) { 1209 errors++; 1210 blk_mq_end_request(rq, BLK_STS_IOERR); 1211 continue; 1212 } 1213 1214 queued++; 1215 } while (!list_empty(list)); 1216 1217 hctx->dispatched[queued_to_index(queued)]++; 1218 1219 /* 1220 * Any items that need requeuing? Stuff them into hctx->dispatch, 1221 * that is where we will continue on next queue run. 1222 */ 1223 if (!list_empty(list)) { 1224 bool needs_restart; 1225 1226 spin_lock(&hctx->lock); 1227 list_splice_init(list, &hctx->dispatch); 1228 spin_unlock(&hctx->lock); 1229 1230 /* 1231 * If SCHED_RESTART was set by the caller of this function and 1232 * it is no longer set that means that it was cleared by another 1233 * thread and hence that a queue rerun is needed. 1234 * 1235 * If 'no_tag' is set, that means that we failed getting 1236 * a driver tag with an I/O scheduler attached. If our dispatch 1237 * waitqueue is no longer active, ensure that we run the queue 1238 * AFTER adding our entries back to the list. 1239 * 1240 * If no I/O scheduler has been configured it is possible that 1241 * the hardware queue got stopped and restarted before requests 1242 * were pushed back onto the dispatch list. Rerun the queue to 1243 * avoid starvation. Notes: 1244 * - blk_mq_run_hw_queue() checks whether or not a queue has 1245 * been stopped before rerunning a queue. 1246 * - Some but not all block drivers stop a queue before 1247 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1248 * and dm-rq. 1249 * 1250 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1251 * bit is set, run queue after a delay to avoid IO stalls 1252 * that could otherwise occur if the queue is idle. 1253 */ 1254 needs_restart = blk_mq_sched_needs_restart(hctx); 1255 if (!needs_restart || 1256 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1257 blk_mq_run_hw_queue(hctx, true); 1258 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1259 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1260 1261 blk_mq_update_dispatch_busy(hctx, true); 1262 return false; 1263 } else 1264 blk_mq_update_dispatch_busy(hctx, false); 1265 1266 /* 1267 * If the host/device is unable to accept more work, inform the 1268 * caller of that. 1269 */ 1270 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1271 return false; 1272 1273 return (queued + errors) != 0; 1274 } 1275 1276 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1277 { 1278 int srcu_idx; 1279 1280 /* 1281 * We should be running this queue from one of the CPUs that 1282 * are mapped to it. 1283 * 1284 * There are at least two related races now between setting 1285 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1286 * __blk_mq_run_hw_queue(): 1287 * 1288 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1289 * but later it becomes online, then this warning is harmless 1290 * at all 1291 * 1292 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1293 * but later it becomes offline, then the warning can't be 1294 * triggered, and we depend on blk-mq timeout handler to 1295 * handle dispatched requests to this hctx 1296 */ 1297 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1298 cpu_online(hctx->next_cpu)) { 1299 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1300 raw_smp_processor_id(), 1301 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1302 dump_stack(); 1303 } 1304 1305 /* 1306 * We can't run the queue inline with ints disabled. Ensure that 1307 * we catch bad users of this early. 1308 */ 1309 WARN_ON_ONCE(in_interrupt()); 1310 1311 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1312 1313 hctx_lock(hctx, &srcu_idx); 1314 blk_mq_sched_dispatch_requests(hctx); 1315 hctx_unlock(hctx, srcu_idx); 1316 } 1317 1318 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1319 { 1320 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1321 1322 if (cpu >= nr_cpu_ids) 1323 cpu = cpumask_first(hctx->cpumask); 1324 return cpu; 1325 } 1326 1327 /* 1328 * It'd be great if the workqueue API had a way to pass 1329 * in a mask and had some smarts for more clever placement. 1330 * For now we just round-robin here, switching for every 1331 * BLK_MQ_CPU_WORK_BATCH queued items. 1332 */ 1333 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1334 { 1335 bool tried = false; 1336 int next_cpu = hctx->next_cpu; 1337 1338 if (hctx->queue->nr_hw_queues == 1) 1339 return WORK_CPU_UNBOUND; 1340 1341 if (--hctx->next_cpu_batch <= 0) { 1342 select_cpu: 1343 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1344 cpu_online_mask); 1345 if (next_cpu >= nr_cpu_ids) 1346 next_cpu = blk_mq_first_mapped_cpu(hctx); 1347 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1348 } 1349 1350 /* 1351 * Do unbound schedule if we can't find a online CPU for this hctx, 1352 * and it should only happen in the path of handling CPU DEAD. 1353 */ 1354 if (!cpu_online(next_cpu)) { 1355 if (!tried) { 1356 tried = true; 1357 goto select_cpu; 1358 } 1359 1360 /* 1361 * Make sure to re-select CPU next time once after CPUs 1362 * in hctx->cpumask become online again. 1363 */ 1364 hctx->next_cpu = next_cpu; 1365 hctx->next_cpu_batch = 1; 1366 return WORK_CPU_UNBOUND; 1367 } 1368 1369 hctx->next_cpu = next_cpu; 1370 return next_cpu; 1371 } 1372 1373 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1374 unsigned long msecs) 1375 { 1376 if (unlikely(blk_mq_hctx_stopped(hctx))) 1377 return; 1378 1379 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1380 int cpu = get_cpu(); 1381 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1382 __blk_mq_run_hw_queue(hctx); 1383 put_cpu(); 1384 return; 1385 } 1386 1387 put_cpu(); 1388 } 1389 1390 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1391 msecs_to_jiffies(msecs)); 1392 } 1393 1394 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1395 { 1396 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1397 } 1398 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1399 1400 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1401 { 1402 int srcu_idx; 1403 bool need_run; 1404 1405 /* 1406 * When queue is quiesced, we may be switching io scheduler, or 1407 * updating nr_hw_queues, or other things, and we can't run queue 1408 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1409 * 1410 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1411 * quiesced. 1412 */ 1413 hctx_lock(hctx, &srcu_idx); 1414 need_run = !blk_queue_quiesced(hctx->queue) && 1415 blk_mq_hctx_has_pending(hctx); 1416 hctx_unlock(hctx, srcu_idx); 1417 1418 if (need_run) { 1419 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1420 return true; 1421 } 1422 1423 return false; 1424 } 1425 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1426 1427 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1428 { 1429 struct blk_mq_hw_ctx *hctx; 1430 int i; 1431 1432 queue_for_each_hw_ctx(q, hctx, i) { 1433 if (blk_mq_hctx_stopped(hctx)) 1434 continue; 1435 1436 blk_mq_run_hw_queue(hctx, async); 1437 } 1438 } 1439 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1440 1441 /** 1442 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1443 * @q: request queue. 1444 * 1445 * The caller is responsible for serializing this function against 1446 * blk_mq_{start,stop}_hw_queue(). 1447 */ 1448 bool blk_mq_queue_stopped(struct request_queue *q) 1449 { 1450 struct blk_mq_hw_ctx *hctx; 1451 int i; 1452 1453 queue_for_each_hw_ctx(q, hctx, i) 1454 if (blk_mq_hctx_stopped(hctx)) 1455 return true; 1456 1457 return false; 1458 } 1459 EXPORT_SYMBOL(blk_mq_queue_stopped); 1460 1461 /* 1462 * This function is often used for pausing .queue_rq() by driver when 1463 * there isn't enough resource or some conditions aren't satisfied, and 1464 * BLK_STS_RESOURCE is usually returned. 1465 * 1466 * We do not guarantee that dispatch can be drained or blocked 1467 * after blk_mq_stop_hw_queue() returns. Please use 1468 * blk_mq_quiesce_queue() for that requirement. 1469 */ 1470 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1471 { 1472 cancel_delayed_work(&hctx->run_work); 1473 1474 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1475 } 1476 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1477 1478 /* 1479 * This function is often used for pausing .queue_rq() by driver when 1480 * there isn't enough resource or some conditions aren't satisfied, and 1481 * BLK_STS_RESOURCE is usually returned. 1482 * 1483 * We do not guarantee that dispatch can be drained or blocked 1484 * after blk_mq_stop_hw_queues() returns. Please use 1485 * blk_mq_quiesce_queue() for that requirement. 1486 */ 1487 void blk_mq_stop_hw_queues(struct request_queue *q) 1488 { 1489 struct blk_mq_hw_ctx *hctx; 1490 int i; 1491 1492 queue_for_each_hw_ctx(q, hctx, i) 1493 blk_mq_stop_hw_queue(hctx); 1494 } 1495 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1496 1497 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1498 { 1499 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1500 1501 blk_mq_run_hw_queue(hctx, false); 1502 } 1503 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1504 1505 void blk_mq_start_hw_queues(struct request_queue *q) 1506 { 1507 struct blk_mq_hw_ctx *hctx; 1508 int i; 1509 1510 queue_for_each_hw_ctx(q, hctx, i) 1511 blk_mq_start_hw_queue(hctx); 1512 } 1513 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1514 1515 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1516 { 1517 if (!blk_mq_hctx_stopped(hctx)) 1518 return; 1519 1520 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1521 blk_mq_run_hw_queue(hctx, async); 1522 } 1523 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1524 1525 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1526 { 1527 struct blk_mq_hw_ctx *hctx; 1528 int i; 1529 1530 queue_for_each_hw_ctx(q, hctx, i) 1531 blk_mq_start_stopped_hw_queue(hctx, async); 1532 } 1533 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1534 1535 static void blk_mq_run_work_fn(struct work_struct *work) 1536 { 1537 struct blk_mq_hw_ctx *hctx; 1538 1539 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1540 1541 /* 1542 * If we are stopped, don't run the queue. 1543 */ 1544 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1545 return; 1546 1547 __blk_mq_run_hw_queue(hctx); 1548 } 1549 1550 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1551 struct request *rq, 1552 bool at_head) 1553 { 1554 struct blk_mq_ctx *ctx = rq->mq_ctx; 1555 1556 lockdep_assert_held(&ctx->lock); 1557 1558 trace_block_rq_insert(hctx->queue, rq); 1559 1560 if (at_head) 1561 list_add(&rq->queuelist, &ctx->rq_list); 1562 else 1563 list_add_tail(&rq->queuelist, &ctx->rq_list); 1564 } 1565 1566 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1567 bool at_head) 1568 { 1569 struct blk_mq_ctx *ctx = rq->mq_ctx; 1570 1571 lockdep_assert_held(&ctx->lock); 1572 1573 __blk_mq_insert_req_list(hctx, rq, at_head); 1574 blk_mq_hctx_mark_pending(hctx, ctx); 1575 } 1576 1577 /* 1578 * Should only be used carefully, when the caller knows we want to 1579 * bypass a potential IO scheduler on the target device. 1580 */ 1581 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1582 { 1583 struct blk_mq_ctx *ctx = rq->mq_ctx; 1584 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1585 1586 spin_lock(&hctx->lock); 1587 list_add_tail(&rq->queuelist, &hctx->dispatch); 1588 spin_unlock(&hctx->lock); 1589 1590 if (run_queue) 1591 blk_mq_run_hw_queue(hctx, false); 1592 } 1593 1594 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1595 struct list_head *list) 1596 1597 { 1598 struct request *rq; 1599 1600 /* 1601 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1602 * offline now 1603 */ 1604 list_for_each_entry(rq, list, queuelist) { 1605 BUG_ON(rq->mq_ctx != ctx); 1606 trace_block_rq_insert(hctx->queue, rq); 1607 } 1608 1609 spin_lock(&ctx->lock); 1610 list_splice_tail_init(list, &ctx->rq_list); 1611 blk_mq_hctx_mark_pending(hctx, ctx); 1612 spin_unlock(&ctx->lock); 1613 } 1614 1615 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1616 { 1617 struct request *rqa = container_of(a, struct request, queuelist); 1618 struct request *rqb = container_of(b, struct request, queuelist); 1619 1620 return !(rqa->mq_ctx < rqb->mq_ctx || 1621 (rqa->mq_ctx == rqb->mq_ctx && 1622 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1623 } 1624 1625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1626 { 1627 struct blk_mq_ctx *this_ctx; 1628 struct request_queue *this_q; 1629 struct request *rq; 1630 LIST_HEAD(list); 1631 LIST_HEAD(ctx_list); 1632 unsigned int depth; 1633 1634 list_splice_init(&plug->mq_list, &list); 1635 1636 list_sort(NULL, &list, plug_ctx_cmp); 1637 1638 this_q = NULL; 1639 this_ctx = NULL; 1640 depth = 0; 1641 1642 while (!list_empty(&list)) { 1643 rq = list_entry_rq(list.next); 1644 list_del_init(&rq->queuelist); 1645 BUG_ON(!rq->q); 1646 if (rq->mq_ctx != this_ctx) { 1647 if (this_ctx) { 1648 trace_block_unplug(this_q, depth, !from_schedule); 1649 blk_mq_sched_insert_requests(this_q, this_ctx, 1650 &ctx_list, 1651 from_schedule); 1652 } 1653 1654 this_ctx = rq->mq_ctx; 1655 this_q = rq->q; 1656 depth = 0; 1657 } 1658 1659 depth++; 1660 list_add_tail(&rq->queuelist, &ctx_list); 1661 } 1662 1663 /* 1664 * If 'this_ctx' is set, we know we have entries to complete 1665 * on 'ctx_list'. Do those. 1666 */ 1667 if (this_ctx) { 1668 trace_block_unplug(this_q, depth, !from_schedule); 1669 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1670 from_schedule); 1671 } 1672 } 1673 1674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1675 { 1676 blk_init_request_from_bio(rq, bio); 1677 1678 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1679 1680 blk_account_io_start(rq, true); 1681 } 1682 1683 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1684 { 1685 if (rq->tag != -1) 1686 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1687 1688 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1689 } 1690 1691 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1692 struct request *rq, 1693 blk_qc_t *cookie) 1694 { 1695 struct request_queue *q = rq->q; 1696 struct blk_mq_queue_data bd = { 1697 .rq = rq, 1698 .last = true, 1699 }; 1700 blk_qc_t new_cookie; 1701 blk_status_t ret; 1702 1703 new_cookie = request_to_qc_t(hctx, rq); 1704 1705 /* 1706 * For OK queue, we are done. For error, caller may kill it. 1707 * Any other error (busy), just add it to our list as we 1708 * previously would have done. 1709 */ 1710 ret = q->mq_ops->queue_rq(hctx, &bd); 1711 switch (ret) { 1712 case BLK_STS_OK: 1713 blk_mq_update_dispatch_busy(hctx, false); 1714 *cookie = new_cookie; 1715 break; 1716 case BLK_STS_RESOURCE: 1717 case BLK_STS_DEV_RESOURCE: 1718 blk_mq_update_dispatch_busy(hctx, true); 1719 __blk_mq_requeue_request(rq); 1720 break; 1721 default: 1722 blk_mq_update_dispatch_busy(hctx, false); 1723 *cookie = BLK_QC_T_NONE; 1724 break; 1725 } 1726 1727 return ret; 1728 } 1729 1730 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1731 struct request *rq, 1732 blk_qc_t *cookie, 1733 bool bypass_insert) 1734 { 1735 struct request_queue *q = rq->q; 1736 bool run_queue = true; 1737 1738 /* 1739 * RCU or SRCU read lock is needed before checking quiesced flag. 1740 * 1741 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1742 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1743 * and avoid driver to try to dispatch again. 1744 */ 1745 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1746 run_queue = false; 1747 bypass_insert = false; 1748 goto insert; 1749 } 1750 1751 if (q->elevator && !bypass_insert) 1752 goto insert; 1753 1754 if (!blk_mq_get_dispatch_budget(hctx)) 1755 goto insert; 1756 1757 if (!blk_mq_get_driver_tag(rq)) { 1758 blk_mq_put_dispatch_budget(hctx); 1759 goto insert; 1760 } 1761 1762 return __blk_mq_issue_directly(hctx, rq, cookie); 1763 insert: 1764 if (bypass_insert) 1765 return BLK_STS_RESOURCE; 1766 1767 blk_mq_request_bypass_insert(rq, run_queue); 1768 return BLK_STS_OK; 1769 } 1770 1771 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1772 struct request *rq, blk_qc_t *cookie) 1773 { 1774 blk_status_t ret; 1775 int srcu_idx; 1776 1777 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1778 1779 hctx_lock(hctx, &srcu_idx); 1780 1781 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1782 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1783 blk_mq_request_bypass_insert(rq, true); 1784 else if (ret != BLK_STS_OK) 1785 blk_mq_end_request(rq, ret); 1786 1787 hctx_unlock(hctx, srcu_idx); 1788 } 1789 1790 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1791 { 1792 blk_status_t ret; 1793 int srcu_idx; 1794 blk_qc_t unused_cookie; 1795 struct blk_mq_ctx *ctx = rq->mq_ctx; 1796 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1797 1798 hctx_lock(hctx, &srcu_idx); 1799 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1800 hctx_unlock(hctx, srcu_idx); 1801 1802 return ret; 1803 } 1804 1805 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1806 struct list_head *list) 1807 { 1808 while (!list_empty(list)) { 1809 blk_status_t ret; 1810 struct request *rq = list_first_entry(list, struct request, 1811 queuelist); 1812 1813 list_del_init(&rq->queuelist); 1814 ret = blk_mq_request_issue_directly(rq); 1815 if (ret != BLK_STS_OK) { 1816 if (ret == BLK_STS_RESOURCE || 1817 ret == BLK_STS_DEV_RESOURCE) { 1818 blk_mq_request_bypass_insert(rq, 1819 list_empty(list)); 1820 break; 1821 } 1822 blk_mq_end_request(rq, ret); 1823 } 1824 } 1825 } 1826 1827 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1828 { 1829 const int is_sync = op_is_sync(bio->bi_opf); 1830 const int is_flush_fua = op_is_flush(bio->bi_opf); 1831 struct blk_mq_alloc_data data = { .flags = 0 }; 1832 struct request *rq; 1833 unsigned int request_count = 0; 1834 struct blk_plug *plug; 1835 struct request *same_queue_rq = NULL; 1836 blk_qc_t cookie; 1837 1838 blk_queue_bounce(q, &bio); 1839 1840 blk_queue_split(q, &bio); 1841 1842 if (!bio_integrity_prep(bio)) 1843 return BLK_QC_T_NONE; 1844 1845 if (!is_flush_fua && !blk_queue_nomerges(q) && 1846 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1847 return BLK_QC_T_NONE; 1848 1849 if (blk_mq_sched_bio_merge(q, bio)) 1850 return BLK_QC_T_NONE; 1851 1852 rq_qos_throttle(q, bio, NULL); 1853 1854 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1855 if (unlikely(!rq)) { 1856 rq_qos_cleanup(q, bio); 1857 if (bio->bi_opf & REQ_NOWAIT) 1858 bio_wouldblock_error(bio); 1859 return BLK_QC_T_NONE; 1860 } 1861 1862 trace_block_getrq(q, bio, bio->bi_opf); 1863 1864 rq_qos_track(q, rq, bio); 1865 1866 cookie = request_to_qc_t(data.hctx, rq); 1867 1868 plug = current->plug; 1869 if (unlikely(is_flush_fua)) { 1870 blk_mq_put_ctx(data.ctx); 1871 blk_mq_bio_to_request(rq, bio); 1872 1873 /* bypass scheduler for flush rq */ 1874 blk_insert_flush(rq); 1875 blk_mq_run_hw_queue(data.hctx, true); 1876 } else if (plug && q->nr_hw_queues == 1) { 1877 struct request *last = NULL; 1878 1879 blk_mq_put_ctx(data.ctx); 1880 blk_mq_bio_to_request(rq, bio); 1881 1882 /* 1883 * @request_count may become stale because of schedule 1884 * out, so check the list again. 1885 */ 1886 if (list_empty(&plug->mq_list)) 1887 request_count = 0; 1888 else if (blk_queue_nomerges(q)) 1889 request_count = blk_plug_queued_count(q); 1890 1891 if (!request_count) 1892 trace_block_plug(q); 1893 else 1894 last = list_entry_rq(plug->mq_list.prev); 1895 1896 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1897 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1898 blk_flush_plug_list(plug, false); 1899 trace_block_plug(q); 1900 } 1901 1902 list_add_tail(&rq->queuelist, &plug->mq_list); 1903 } else if (plug && !blk_queue_nomerges(q)) { 1904 blk_mq_bio_to_request(rq, bio); 1905 1906 /* 1907 * We do limited plugging. If the bio can be merged, do that. 1908 * Otherwise the existing request in the plug list will be 1909 * issued. So the plug list will have one request at most 1910 * The plug list might get flushed before this. If that happens, 1911 * the plug list is empty, and same_queue_rq is invalid. 1912 */ 1913 if (list_empty(&plug->mq_list)) 1914 same_queue_rq = NULL; 1915 if (same_queue_rq) 1916 list_del_init(&same_queue_rq->queuelist); 1917 list_add_tail(&rq->queuelist, &plug->mq_list); 1918 1919 blk_mq_put_ctx(data.ctx); 1920 1921 if (same_queue_rq) { 1922 data.hctx = blk_mq_map_queue(q, 1923 same_queue_rq->mq_ctx->cpu); 1924 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1925 &cookie); 1926 } 1927 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 1928 !data.hctx->dispatch_busy)) { 1929 blk_mq_put_ctx(data.ctx); 1930 blk_mq_bio_to_request(rq, bio); 1931 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1932 } else { 1933 blk_mq_put_ctx(data.ctx); 1934 blk_mq_bio_to_request(rq, bio); 1935 blk_mq_sched_insert_request(rq, false, true, true); 1936 } 1937 1938 return cookie; 1939 } 1940 1941 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1942 unsigned int hctx_idx) 1943 { 1944 struct page *page; 1945 1946 if (tags->rqs && set->ops->exit_request) { 1947 int i; 1948 1949 for (i = 0; i < tags->nr_tags; i++) { 1950 struct request *rq = tags->static_rqs[i]; 1951 1952 if (!rq) 1953 continue; 1954 set->ops->exit_request(set, rq, hctx_idx); 1955 tags->static_rqs[i] = NULL; 1956 } 1957 } 1958 1959 while (!list_empty(&tags->page_list)) { 1960 page = list_first_entry(&tags->page_list, struct page, lru); 1961 list_del_init(&page->lru); 1962 /* 1963 * Remove kmemleak object previously allocated in 1964 * blk_mq_init_rq_map(). 1965 */ 1966 kmemleak_free(page_address(page)); 1967 __free_pages(page, page->private); 1968 } 1969 } 1970 1971 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1972 { 1973 kfree(tags->rqs); 1974 tags->rqs = NULL; 1975 kfree(tags->static_rqs); 1976 tags->static_rqs = NULL; 1977 1978 blk_mq_free_tags(tags); 1979 } 1980 1981 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1982 unsigned int hctx_idx, 1983 unsigned int nr_tags, 1984 unsigned int reserved_tags) 1985 { 1986 struct blk_mq_tags *tags; 1987 int node; 1988 1989 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1990 if (node == NUMA_NO_NODE) 1991 node = set->numa_node; 1992 1993 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1994 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1995 if (!tags) 1996 return NULL; 1997 1998 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 1999 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2000 node); 2001 if (!tags->rqs) { 2002 blk_mq_free_tags(tags); 2003 return NULL; 2004 } 2005 2006 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2007 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2008 node); 2009 if (!tags->static_rqs) { 2010 kfree(tags->rqs); 2011 blk_mq_free_tags(tags); 2012 return NULL; 2013 } 2014 2015 return tags; 2016 } 2017 2018 static size_t order_to_size(unsigned int order) 2019 { 2020 return (size_t)PAGE_SIZE << order; 2021 } 2022 2023 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2024 unsigned int hctx_idx, int node) 2025 { 2026 int ret; 2027 2028 if (set->ops->init_request) { 2029 ret = set->ops->init_request(set, rq, hctx_idx, node); 2030 if (ret) 2031 return ret; 2032 } 2033 2034 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2035 return 0; 2036 } 2037 2038 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2039 unsigned int hctx_idx, unsigned int depth) 2040 { 2041 unsigned int i, j, entries_per_page, max_order = 4; 2042 size_t rq_size, left; 2043 int node; 2044 2045 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2046 if (node == NUMA_NO_NODE) 2047 node = set->numa_node; 2048 2049 INIT_LIST_HEAD(&tags->page_list); 2050 2051 /* 2052 * rq_size is the size of the request plus driver payload, rounded 2053 * to the cacheline size 2054 */ 2055 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2056 cache_line_size()); 2057 left = rq_size * depth; 2058 2059 for (i = 0; i < depth; ) { 2060 int this_order = max_order; 2061 struct page *page; 2062 int to_do; 2063 void *p; 2064 2065 while (this_order && left < order_to_size(this_order - 1)) 2066 this_order--; 2067 2068 do { 2069 page = alloc_pages_node(node, 2070 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2071 this_order); 2072 if (page) 2073 break; 2074 if (!this_order--) 2075 break; 2076 if (order_to_size(this_order) < rq_size) 2077 break; 2078 } while (1); 2079 2080 if (!page) 2081 goto fail; 2082 2083 page->private = this_order; 2084 list_add_tail(&page->lru, &tags->page_list); 2085 2086 p = page_address(page); 2087 /* 2088 * Allow kmemleak to scan these pages as they contain pointers 2089 * to additional allocations like via ops->init_request(). 2090 */ 2091 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2092 entries_per_page = order_to_size(this_order) / rq_size; 2093 to_do = min(entries_per_page, depth - i); 2094 left -= to_do * rq_size; 2095 for (j = 0; j < to_do; j++) { 2096 struct request *rq = p; 2097 2098 tags->static_rqs[i] = rq; 2099 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2100 tags->static_rqs[i] = NULL; 2101 goto fail; 2102 } 2103 2104 p += rq_size; 2105 i++; 2106 } 2107 } 2108 return 0; 2109 2110 fail: 2111 blk_mq_free_rqs(set, tags, hctx_idx); 2112 return -ENOMEM; 2113 } 2114 2115 /* 2116 * 'cpu' is going away. splice any existing rq_list entries from this 2117 * software queue to the hw queue dispatch list, and ensure that it 2118 * gets run. 2119 */ 2120 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2121 { 2122 struct blk_mq_hw_ctx *hctx; 2123 struct blk_mq_ctx *ctx; 2124 LIST_HEAD(tmp); 2125 2126 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2127 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2128 2129 spin_lock(&ctx->lock); 2130 if (!list_empty(&ctx->rq_list)) { 2131 list_splice_init(&ctx->rq_list, &tmp); 2132 blk_mq_hctx_clear_pending(hctx, ctx); 2133 } 2134 spin_unlock(&ctx->lock); 2135 2136 if (list_empty(&tmp)) 2137 return 0; 2138 2139 spin_lock(&hctx->lock); 2140 list_splice_tail_init(&tmp, &hctx->dispatch); 2141 spin_unlock(&hctx->lock); 2142 2143 blk_mq_run_hw_queue(hctx, true); 2144 return 0; 2145 } 2146 2147 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2148 { 2149 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2150 &hctx->cpuhp_dead); 2151 } 2152 2153 /* hctx->ctxs will be freed in queue's release handler */ 2154 static void blk_mq_exit_hctx(struct request_queue *q, 2155 struct blk_mq_tag_set *set, 2156 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2157 { 2158 if (blk_mq_hw_queue_mapped(hctx)) 2159 blk_mq_tag_idle(hctx); 2160 2161 if (set->ops->exit_request) 2162 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2163 2164 if (set->ops->exit_hctx) 2165 set->ops->exit_hctx(hctx, hctx_idx); 2166 2167 if (hctx->flags & BLK_MQ_F_BLOCKING) 2168 cleanup_srcu_struct(hctx->srcu); 2169 2170 blk_mq_remove_cpuhp(hctx); 2171 blk_free_flush_queue(hctx->fq); 2172 sbitmap_free(&hctx->ctx_map); 2173 } 2174 2175 static void blk_mq_exit_hw_queues(struct request_queue *q, 2176 struct blk_mq_tag_set *set, int nr_queue) 2177 { 2178 struct blk_mq_hw_ctx *hctx; 2179 unsigned int i; 2180 2181 queue_for_each_hw_ctx(q, hctx, i) { 2182 if (i == nr_queue) 2183 break; 2184 blk_mq_debugfs_unregister_hctx(hctx); 2185 blk_mq_exit_hctx(q, set, hctx, i); 2186 } 2187 } 2188 2189 static int blk_mq_init_hctx(struct request_queue *q, 2190 struct blk_mq_tag_set *set, 2191 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2192 { 2193 int node; 2194 2195 node = hctx->numa_node; 2196 if (node == NUMA_NO_NODE) 2197 node = hctx->numa_node = set->numa_node; 2198 2199 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2200 spin_lock_init(&hctx->lock); 2201 INIT_LIST_HEAD(&hctx->dispatch); 2202 hctx->queue = q; 2203 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2204 2205 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2206 2207 hctx->tags = set->tags[hctx_idx]; 2208 2209 /* 2210 * Allocate space for all possible cpus to avoid allocation at 2211 * runtime 2212 */ 2213 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2214 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node); 2215 if (!hctx->ctxs) 2216 goto unregister_cpu_notifier; 2217 2218 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2219 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node)) 2220 goto free_ctxs; 2221 2222 hctx->nr_ctx = 0; 2223 2224 spin_lock_init(&hctx->dispatch_wait_lock); 2225 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2226 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2227 2228 if (set->ops->init_hctx && 2229 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2230 goto free_bitmap; 2231 2232 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2233 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 2234 if (!hctx->fq) 2235 goto exit_hctx; 2236 2237 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2238 goto free_fq; 2239 2240 if (hctx->flags & BLK_MQ_F_BLOCKING) 2241 init_srcu_struct(hctx->srcu); 2242 2243 return 0; 2244 2245 free_fq: 2246 kfree(hctx->fq); 2247 exit_hctx: 2248 if (set->ops->exit_hctx) 2249 set->ops->exit_hctx(hctx, hctx_idx); 2250 free_bitmap: 2251 sbitmap_free(&hctx->ctx_map); 2252 free_ctxs: 2253 kfree(hctx->ctxs); 2254 unregister_cpu_notifier: 2255 blk_mq_remove_cpuhp(hctx); 2256 return -1; 2257 } 2258 2259 static void blk_mq_init_cpu_queues(struct request_queue *q, 2260 unsigned int nr_hw_queues) 2261 { 2262 unsigned int i; 2263 2264 for_each_possible_cpu(i) { 2265 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2266 struct blk_mq_hw_ctx *hctx; 2267 2268 __ctx->cpu = i; 2269 spin_lock_init(&__ctx->lock); 2270 INIT_LIST_HEAD(&__ctx->rq_list); 2271 __ctx->queue = q; 2272 2273 /* 2274 * Set local node, IFF we have more than one hw queue. If 2275 * not, we remain on the home node of the device 2276 */ 2277 hctx = blk_mq_map_queue(q, i); 2278 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2279 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2280 } 2281 } 2282 2283 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2284 { 2285 int ret = 0; 2286 2287 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2288 set->queue_depth, set->reserved_tags); 2289 if (!set->tags[hctx_idx]) 2290 return false; 2291 2292 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2293 set->queue_depth); 2294 if (!ret) 2295 return true; 2296 2297 blk_mq_free_rq_map(set->tags[hctx_idx]); 2298 set->tags[hctx_idx] = NULL; 2299 return false; 2300 } 2301 2302 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2303 unsigned int hctx_idx) 2304 { 2305 if (set->tags[hctx_idx]) { 2306 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2307 blk_mq_free_rq_map(set->tags[hctx_idx]); 2308 set->tags[hctx_idx] = NULL; 2309 } 2310 } 2311 2312 static void blk_mq_map_swqueue(struct request_queue *q) 2313 { 2314 unsigned int i, hctx_idx; 2315 struct blk_mq_hw_ctx *hctx; 2316 struct blk_mq_ctx *ctx; 2317 struct blk_mq_tag_set *set = q->tag_set; 2318 2319 /* 2320 * Avoid others reading imcomplete hctx->cpumask through sysfs 2321 */ 2322 mutex_lock(&q->sysfs_lock); 2323 2324 queue_for_each_hw_ctx(q, hctx, i) { 2325 cpumask_clear(hctx->cpumask); 2326 hctx->nr_ctx = 0; 2327 hctx->dispatch_from = NULL; 2328 } 2329 2330 /* 2331 * Map software to hardware queues. 2332 * 2333 * If the cpu isn't present, the cpu is mapped to first hctx. 2334 */ 2335 for_each_possible_cpu(i) { 2336 hctx_idx = q->mq_map[i]; 2337 /* unmapped hw queue can be remapped after CPU topo changed */ 2338 if (!set->tags[hctx_idx] && 2339 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2340 /* 2341 * If tags initialization fail for some hctx, 2342 * that hctx won't be brought online. In this 2343 * case, remap the current ctx to hctx[0] which 2344 * is guaranteed to always have tags allocated 2345 */ 2346 q->mq_map[i] = 0; 2347 } 2348 2349 ctx = per_cpu_ptr(q->queue_ctx, i); 2350 hctx = blk_mq_map_queue(q, i); 2351 2352 cpumask_set_cpu(i, hctx->cpumask); 2353 ctx->index_hw = hctx->nr_ctx; 2354 hctx->ctxs[hctx->nr_ctx++] = ctx; 2355 } 2356 2357 mutex_unlock(&q->sysfs_lock); 2358 2359 queue_for_each_hw_ctx(q, hctx, i) { 2360 /* 2361 * If no software queues are mapped to this hardware queue, 2362 * disable it and free the request entries. 2363 */ 2364 if (!hctx->nr_ctx) { 2365 /* Never unmap queue 0. We need it as a 2366 * fallback in case of a new remap fails 2367 * allocation 2368 */ 2369 if (i && set->tags[i]) 2370 blk_mq_free_map_and_requests(set, i); 2371 2372 hctx->tags = NULL; 2373 continue; 2374 } 2375 2376 hctx->tags = set->tags[i]; 2377 WARN_ON(!hctx->tags); 2378 2379 /* 2380 * Set the map size to the number of mapped software queues. 2381 * This is more accurate and more efficient than looping 2382 * over all possibly mapped software queues. 2383 */ 2384 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2385 2386 /* 2387 * Initialize batch roundrobin counts 2388 */ 2389 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2390 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2391 } 2392 } 2393 2394 /* 2395 * Caller needs to ensure that we're either frozen/quiesced, or that 2396 * the queue isn't live yet. 2397 */ 2398 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2399 { 2400 struct blk_mq_hw_ctx *hctx; 2401 int i; 2402 2403 queue_for_each_hw_ctx(q, hctx, i) { 2404 if (shared) 2405 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2406 else 2407 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2408 } 2409 } 2410 2411 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2412 bool shared) 2413 { 2414 struct request_queue *q; 2415 2416 lockdep_assert_held(&set->tag_list_lock); 2417 2418 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2419 blk_mq_freeze_queue(q); 2420 queue_set_hctx_shared(q, shared); 2421 blk_mq_unfreeze_queue(q); 2422 } 2423 } 2424 2425 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2426 { 2427 struct blk_mq_tag_set *set = q->tag_set; 2428 2429 mutex_lock(&set->tag_list_lock); 2430 list_del_rcu(&q->tag_set_list); 2431 if (list_is_singular(&set->tag_list)) { 2432 /* just transitioned to unshared */ 2433 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2434 /* update existing queue */ 2435 blk_mq_update_tag_set_depth(set, false); 2436 } 2437 mutex_unlock(&set->tag_list_lock); 2438 INIT_LIST_HEAD(&q->tag_set_list); 2439 } 2440 2441 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2442 struct request_queue *q) 2443 { 2444 q->tag_set = set; 2445 2446 mutex_lock(&set->tag_list_lock); 2447 2448 /* 2449 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2450 */ 2451 if (!list_empty(&set->tag_list) && 2452 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2453 set->flags |= BLK_MQ_F_TAG_SHARED; 2454 /* update existing queue */ 2455 blk_mq_update_tag_set_depth(set, true); 2456 } 2457 if (set->flags & BLK_MQ_F_TAG_SHARED) 2458 queue_set_hctx_shared(q, true); 2459 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2460 2461 mutex_unlock(&set->tag_list_lock); 2462 } 2463 2464 /* 2465 * It is the actual release handler for mq, but we do it from 2466 * request queue's release handler for avoiding use-after-free 2467 * and headache because q->mq_kobj shouldn't have been introduced, 2468 * but we can't group ctx/kctx kobj without it. 2469 */ 2470 void blk_mq_release(struct request_queue *q) 2471 { 2472 struct blk_mq_hw_ctx *hctx; 2473 unsigned int i; 2474 2475 /* hctx kobj stays in hctx */ 2476 queue_for_each_hw_ctx(q, hctx, i) { 2477 if (!hctx) 2478 continue; 2479 kobject_put(&hctx->kobj); 2480 } 2481 2482 q->mq_map = NULL; 2483 2484 kfree(q->queue_hw_ctx); 2485 2486 /* 2487 * release .mq_kobj and sw queue's kobject now because 2488 * both share lifetime with request queue. 2489 */ 2490 blk_mq_sysfs_deinit(q); 2491 2492 free_percpu(q->queue_ctx); 2493 } 2494 2495 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2496 { 2497 struct request_queue *uninit_q, *q; 2498 2499 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL); 2500 if (!uninit_q) 2501 return ERR_PTR(-ENOMEM); 2502 2503 q = blk_mq_init_allocated_queue(set, uninit_q); 2504 if (IS_ERR(q)) 2505 blk_cleanup_queue(uninit_q); 2506 2507 return q; 2508 } 2509 EXPORT_SYMBOL(blk_mq_init_queue); 2510 2511 /* 2512 * Helper for setting up a queue with mq ops, given queue depth, and 2513 * the passed in mq ops flags. 2514 */ 2515 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2516 const struct blk_mq_ops *ops, 2517 unsigned int queue_depth, 2518 unsigned int set_flags) 2519 { 2520 struct request_queue *q; 2521 int ret; 2522 2523 memset(set, 0, sizeof(*set)); 2524 set->ops = ops; 2525 set->nr_hw_queues = 1; 2526 set->queue_depth = queue_depth; 2527 set->numa_node = NUMA_NO_NODE; 2528 set->flags = set_flags; 2529 2530 ret = blk_mq_alloc_tag_set(set); 2531 if (ret) 2532 return ERR_PTR(ret); 2533 2534 q = blk_mq_init_queue(set); 2535 if (IS_ERR(q)) { 2536 blk_mq_free_tag_set(set); 2537 return q; 2538 } 2539 2540 return q; 2541 } 2542 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2543 2544 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2545 { 2546 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2547 2548 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2549 __alignof__(struct blk_mq_hw_ctx)) != 2550 sizeof(struct blk_mq_hw_ctx)); 2551 2552 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2553 hw_ctx_size += sizeof(struct srcu_struct); 2554 2555 return hw_ctx_size; 2556 } 2557 2558 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2559 struct blk_mq_tag_set *set, struct request_queue *q, 2560 int hctx_idx, int node) 2561 { 2562 struct blk_mq_hw_ctx *hctx; 2563 2564 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), 2565 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2566 node); 2567 if (!hctx) 2568 return NULL; 2569 2570 if (!zalloc_cpumask_var_node(&hctx->cpumask, 2571 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2572 node)) { 2573 kfree(hctx); 2574 return NULL; 2575 } 2576 2577 atomic_set(&hctx->nr_active, 0); 2578 hctx->numa_node = node; 2579 hctx->queue_num = hctx_idx; 2580 2581 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) { 2582 free_cpumask_var(hctx->cpumask); 2583 kfree(hctx); 2584 return NULL; 2585 } 2586 blk_mq_hctx_kobj_init(hctx); 2587 2588 return hctx; 2589 } 2590 2591 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2592 struct request_queue *q) 2593 { 2594 int i, j, end; 2595 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2596 2597 /* protect against switching io scheduler */ 2598 mutex_lock(&q->sysfs_lock); 2599 for (i = 0; i < set->nr_hw_queues; i++) { 2600 int node; 2601 struct blk_mq_hw_ctx *hctx; 2602 2603 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2604 /* 2605 * If the hw queue has been mapped to another numa node, 2606 * we need to realloc the hctx. If allocation fails, fallback 2607 * to use the previous one. 2608 */ 2609 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2610 continue; 2611 2612 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2613 if (hctx) { 2614 if (hctxs[i]) { 2615 blk_mq_exit_hctx(q, set, hctxs[i], i); 2616 kobject_put(&hctxs[i]->kobj); 2617 } 2618 hctxs[i] = hctx; 2619 } else { 2620 if (hctxs[i]) 2621 pr_warn("Allocate new hctx on node %d fails,\ 2622 fallback to previous one on node %d\n", 2623 node, hctxs[i]->numa_node); 2624 else 2625 break; 2626 } 2627 } 2628 /* 2629 * Increasing nr_hw_queues fails. Free the newly allocated 2630 * hctxs and keep the previous q->nr_hw_queues. 2631 */ 2632 if (i != set->nr_hw_queues) { 2633 j = q->nr_hw_queues; 2634 end = i; 2635 } else { 2636 j = i; 2637 end = q->nr_hw_queues; 2638 q->nr_hw_queues = set->nr_hw_queues; 2639 } 2640 2641 for (; j < end; j++) { 2642 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2643 2644 if (hctx) { 2645 if (hctx->tags) 2646 blk_mq_free_map_and_requests(set, j); 2647 blk_mq_exit_hctx(q, set, hctx, j); 2648 kobject_put(&hctx->kobj); 2649 hctxs[j] = NULL; 2650 2651 } 2652 } 2653 mutex_unlock(&q->sysfs_lock); 2654 } 2655 2656 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2657 struct request_queue *q) 2658 { 2659 /* mark the queue as mq asap */ 2660 q->mq_ops = set->ops; 2661 2662 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2663 blk_mq_poll_stats_bkt, 2664 BLK_MQ_POLL_STATS_BKTS, q); 2665 if (!q->poll_cb) 2666 goto err_exit; 2667 2668 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2669 if (!q->queue_ctx) 2670 goto err_exit; 2671 2672 /* init q->mq_kobj and sw queues' kobjects */ 2673 blk_mq_sysfs_init(q); 2674 2675 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)), 2676 GFP_KERNEL, set->numa_node); 2677 if (!q->queue_hw_ctx) 2678 goto err_percpu; 2679 2680 q->mq_map = set->mq_map; 2681 2682 blk_mq_realloc_hw_ctxs(set, q); 2683 if (!q->nr_hw_queues) 2684 goto err_hctxs; 2685 2686 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2687 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2688 2689 q->nr_queues = nr_cpu_ids; 2690 2691 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2692 2693 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2694 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 2695 2696 q->sg_reserved_size = INT_MAX; 2697 2698 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2699 INIT_LIST_HEAD(&q->requeue_list); 2700 spin_lock_init(&q->requeue_lock); 2701 2702 blk_queue_make_request(q, blk_mq_make_request); 2703 if (q->mq_ops->poll) 2704 q->poll_fn = blk_mq_poll; 2705 2706 /* 2707 * Do this after blk_queue_make_request() overrides it... 2708 */ 2709 q->nr_requests = set->queue_depth; 2710 2711 /* 2712 * Default to classic polling 2713 */ 2714 q->poll_nsec = -1; 2715 2716 if (set->ops->complete) 2717 blk_queue_softirq_done(q, set->ops->complete); 2718 2719 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2720 blk_mq_add_queue_tag_set(set, q); 2721 blk_mq_map_swqueue(q); 2722 2723 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2724 int ret; 2725 2726 ret = elevator_init_mq(q); 2727 if (ret) 2728 return ERR_PTR(ret); 2729 } 2730 2731 return q; 2732 2733 err_hctxs: 2734 kfree(q->queue_hw_ctx); 2735 err_percpu: 2736 free_percpu(q->queue_ctx); 2737 err_exit: 2738 q->mq_ops = NULL; 2739 return ERR_PTR(-ENOMEM); 2740 } 2741 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2742 2743 void blk_mq_free_queue(struct request_queue *q) 2744 { 2745 struct blk_mq_tag_set *set = q->tag_set; 2746 2747 blk_mq_del_queue_tag_set(q); 2748 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2749 } 2750 2751 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2752 { 2753 int i; 2754 2755 for (i = 0; i < set->nr_hw_queues; i++) 2756 if (!__blk_mq_alloc_rq_map(set, i)) 2757 goto out_unwind; 2758 2759 return 0; 2760 2761 out_unwind: 2762 while (--i >= 0) 2763 blk_mq_free_rq_map(set->tags[i]); 2764 2765 return -ENOMEM; 2766 } 2767 2768 /* 2769 * Allocate the request maps associated with this tag_set. Note that this 2770 * may reduce the depth asked for, if memory is tight. set->queue_depth 2771 * will be updated to reflect the allocated depth. 2772 */ 2773 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2774 { 2775 unsigned int depth; 2776 int err; 2777 2778 depth = set->queue_depth; 2779 do { 2780 err = __blk_mq_alloc_rq_maps(set); 2781 if (!err) 2782 break; 2783 2784 set->queue_depth >>= 1; 2785 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2786 err = -ENOMEM; 2787 break; 2788 } 2789 } while (set->queue_depth); 2790 2791 if (!set->queue_depth || err) { 2792 pr_err("blk-mq: failed to allocate request map\n"); 2793 return -ENOMEM; 2794 } 2795 2796 if (depth != set->queue_depth) 2797 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2798 depth, set->queue_depth); 2799 2800 return 0; 2801 } 2802 2803 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2804 { 2805 if (set->ops->map_queues) { 2806 /* 2807 * transport .map_queues is usually done in the following 2808 * way: 2809 * 2810 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2811 * mask = get_cpu_mask(queue) 2812 * for_each_cpu(cpu, mask) 2813 * set->mq_map[cpu] = queue; 2814 * } 2815 * 2816 * When we need to remap, the table has to be cleared for 2817 * killing stale mapping since one CPU may not be mapped 2818 * to any hw queue. 2819 */ 2820 blk_mq_clear_mq_map(set); 2821 2822 return set->ops->map_queues(set); 2823 } else 2824 return blk_mq_map_queues(set); 2825 } 2826 2827 /* 2828 * Alloc a tag set to be associated with one or more request queues. 2829 * May fail with EINVAL for various error conditions. May adjust the 2830 * requested depth down, if it's too large. In that case, the set 2831 * value will be stored in set->queue_depth. 2832 */ 2833 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2834 { 2835 int ret; 2836 2837 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2838 2839 if (!set->nr_hw_queues) 2840 return -EINVAL; 2841 if (!set->queue_depth) 2842 return -EINVAL; 2843 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2844 return -EINVAL; 2845 2846 if (!set->ops->queue_rq) 2847 return -EINVAL; 2848 2849 if (!set->ops->get_budget ^ !set->ops->put_budget) 2850 return -EINVAL; 2851 2852 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2853 pr_info("blk-mq: reduced tag depth to %u\n", 2854 BLK_MQ_MAX_DEPTH); 2855 set->queue_depth = BLK_MQ_MAX_DEPTH; 2856 } 2857 2858 /* 2859 * If a crashdump is active, then we are potentially in a very 2860 * memory constrained environment. Limit us to 1 queue and 2861 * 64 tags to prevent using too much memory. 2862 */ 2863 if (is_kdump_kernel()) { 2864 set->nr_hw_queues = 1; 2865 set->queue_depth = min(64U, set->queue_depth); 2866 } 2867 /* 2868 * There is no use for more h/w queues than cpus. 2869 */ 2870 if (set->nr_hw_queues > nr_cpu_ids) 2871 set->nr_hw_queues = nr_cpu_ids; 2872 2873 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *), 2874 GFP_KERNEL, set->numa_node); 2875 if (!set->tags) 2876 return -ENOMEM; 2877 2878 ret = -ENOMEM; 2879 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map), 2880 GFP_KERNEL, set->numa_node); 2881 if (!set->mq_map) 2882 goto out_free_tags; 2883 2884 ret = blk_mq_update_queue_map(set); 2885 if (ret) 2886 goto out_free_mq_map; 2887 2888 ret = blk_mq_alloc_rq_maps(set); 2889 if (ret) 2890 goto out_free_mq_map; 2891 2892 mutex_init(&set->tag_list_lock); 2893 INIT_LIST_HEAD(&set->tag_list); 2894 2895 return 0; 2896 2897 out_free_mq_map: 2898 kfree(set->mq_map); 2899 set->mq_map = NULL; 2900 out_free_tags: 2901 kfree(set->tags); 2902 set->tags = NULL; 2903 return ret; 2904 } 2905 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2906 2907 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2908 { 2909 int i; 2910 2911 for (i = 0; i < nr_cpu_ids; i++) 2912 blk_mq_free_map_and_requests(set, i); 2913 2914 kfree(set->mq_map); 2915 set->mq_map = NULL; 2916 2917 kfree(set->tags); 2918 set->tags = NULL; 2919 } 2920 EXPORT_SYMBOL(blk_mq_free_tag_set); 2921 2922 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2923 { 2924 struct blk_mq_tag_set *set = q->tag_set; 2925 struct blk_mq_hw_ctx *hctx; 2926 int i, ret; 2927 2928 if (!set) 2929 return -EINVAL; 2930 2931 blk_mq_freeze_queue(q); 2932 blk_mq_quiesce_queue(q); 2933 2934 ret = 0; 2935 queue_for_each_hw_ctx(q, hctx, i) { 2936 if (!hctx->tags) 2937 continue; 2938 /* 2939 * If we're using an MQ scheduler, just update the scheduler 2940 * queue depth. This is similar to what the old code would do. 2941 */ 2942 if (!hctx->sched_tags) { 2943 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2944 false); 2945 } else { 2946 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2947 nr, true); 2948 } 2949 if (ret) 2950 break; 2951 } 2952 2953 if (!ret) 2954 q->nr_requests = nr; 2955 2956 blk_mq_unquiesce_queue(q); 2957 blk_mq_unfreeze_queue(q); 2958 2959 return ret; 2960 } 2961 2962 /* 2963 * request_queue and elevator_type pair. 2964 * It is just used by __blk_mq_update_nr_hw_queues to cache 2965 * the elevator_type associated with a request_queue. 2966 */ 2967 struct blk_mq_qe_pair { 2968 struct list_head node; 2969 struct request_queue *q; 2970 struct elevator_type *type; 2971 }; 2972 2973 /* 2974 * Cache the elevator_type in qe pair list and switch the 2975 * io scheduler to 'none' 2976 */ 2977 static bool blk_mq_elv_switch_none(struct list_head *head, 2978 struct request_queue *q) 2979 { 2980 struct blk_mq_qe_pair *qe; 2981 2982 if (!q->elevator) 2983 return true; 2984 2985 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 2986 if (!qe) 2987 return false; 2988 2989 INIT_LIST_HEAD(&qe->node); 2990 qe->q = q; 2991 qe->type = q->elevator->type; 2992 list_add(&qe->node, head); 2993 2994 mutex_lock(&q->sysfs_lock); 2995 /* 2996 * After elevator_switch_mq, the previous elevator_queue will be 2997 * released by elevator_release. The reference of the io scheduler 2998 * module get by elevator_get will also be put. So we need to get 2999 * a reference of the io scheduler module here to prevent it to be 3000 * removed. 3001 */ 3002 __module_get(qe->type->elevator_owner); 3003 elevator_switch_mq(q, NULL); 3004 mutex_unlock(&q->sysfs_lock); 3005 3006 return true; 3007 } 3008 3009 static void blk_mq_elv_switch_back(struct list_head *head, 3010 struct request_queue *q) 3011 { 3012 struct blk_mq_qe_pair *qe; 3013 struct elevator_type *t = NULL; 3014 3015 list_for_each_entry(qe, head, node) 3016 if (qe->q == q) { 3017 t = qe->type; 3018 break; 3019 } 3020 3021 if (!t) 3022 return; 3023 3024 list_del(&qe->node); 3025 kfree(qe); 3026 3027 mutex_lock(&q->sysfs_lock); 3028 elevator_switch_mq(q, t); 3029 mutex_unlock(&q->sysfs_lock); 3030 } 3031 3032 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3033 int nr_hw_queues) 3034 { 3035 struct request_queue *q; 3036 LIST_HEAD(head); 3037 int prev_nr_hw_queues; 3038 3039 lockdep_assert_held(&set->tag_list_lock); 3040 3041 if (nr_hw_queues > nr_cpu_ids) 3042 nr_hw_queues = nr_cpu_ids; 3043 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3044 return; 3045 3046 list_for_each_entry(q, &set->tag_list, tag_set_list) 3047 blk_mq_freeze_queue(q); 3048 /* 3049 * Sync with blk_mq_queue_tag_busy_iter. 3050 */ 3051 synchronize_rcu(); 3052 /* 3053 * Switch IO scheduler to 'none', cleaning up the data associated 3054 * with the previous scheduler. We will switch back once we are done 3055 * updating the new sw to hw queue mappings. 3056 */ 3057 list_for_each_entry(q, &set->tag_list, tag_set_list) 3058 if (!blk_mq_elv_switch_none(&head, q)) 3059 goto switch_back; 3060 3061 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3062 blk_mq_debugfs_unregister_hctxs(q); 3063 blk_mq_sysfs_unregister(q); 3064 } 3065 3066 prev_nr_hw_queues = set->nr_hw_queues; 3067 set->nr_hw_queues = nr_hw_queues; 3068 blk_mq_update_queue_map(set); 3069 fallback: 3070 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3071 blk_mq_realloc_hw_ctxs(set, q); 3072 if (q->nr_hw_queues != set->nr_hw_queues) { 3073 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3074 nr_hw_queues, prev_nr_hw_queues); 3075 set->nr_hw_queues = prev_nr_hw_queues; 3076 blk_mq_map_queues(set); 3077 goto fallback; 3078 } 3079 blk_mq_map_swqueue(q); 3080 } 3081 3082 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3083 blk_mq_sysfs_register(q); 3084 blk_mq_debugfs_register_hctxs(q); 3085 } 3086 3087 switch_back: 3088 list_for_each_entry(q, &set->tag_list, tag_set_list) 3089 blk_mq_elv_switch_back(&head, q); 3090 3091 list_for_each_entry(q, &set->tag_list, tag_set_list) 3092 blk_mq_unfreeze_queue(q); 3093 } 3094 3095 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3096 { 3097 mutex_lock(&set->tag_list_lock); 3098 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3099 mutex_unlock(&set->tag_list_lock); 3100 } 3101 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3102 3103 /* Enable polling stats and return whether they were already enabled. */ 3104 static bool blk_poll_stats_enable(struct request_queue *q) 3105 { 3106 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3107 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3108 return true; 3109 blk_stat_add_callback(q, q->poll_cb); 3110 return false; 3111 } 3112 3113 static void blk_mq_poll_stats_start(struct request_queue *q) 3114 { 3115 /* 3116 * We don't arm the callback if polling stats are not enabled or the 3117 * callback is already active. 3118 */ 3119 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3120 blk_stat_is_active(q->poll_cb)) 3121 return; 3122 3123 blk_stat_activate_msecs(q->poll_cb, 100); 3124 } 3125 3126 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3127 { 3128 struct request_queue *q = cb->data; 3129 int bucket; 3130 3131 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3132 if (cb->stat[bucket].nr_samples) 3133 q->poll_stat[bucket] = cb->stat[bucket]; 3134 } 3135 } 3136 3137 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3138 struct blk_mq_hw_ctx *hctx, 3139 struct request *rq) 3140 { 3141 unsigned long ret = 0; 3142 int bucket; 3143 3144 /* 3145 * If stats collection isn't on, don't sleep but turn it on for 3146 * future users 3147 */ 3148 if (!blk_poll_stats_enable(q)) 3149 return 0; 3150 3151 /* 3152 * As an optimistic guess, use half of the mean service time 3153 * for this type of request. We can (and should) make this smarter. 3154 * For instance, if the completion latencies are tight, we can 3155 * get closer than just half the mean. This is especially 3156 * important on devices where the completion latencies are longer 3157 * than ~10 usec. We do use the stats for the relevant IO size 3158 * if available which does lead to better estimates. 3159 */ 3160 bucket = blk_mq_poll_stats_bkt(rq); 3161 if (bucket < 0) 3162 return ret; 3163 3164 if (q->poll_stat[bucket].nr_samples) 3165 ret = (q->poll_stat[bucket].mean + 1) / 2; 3166 3167 return ret; 3168 } 3169 3170 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3171 struct blk_mq_hw_ctx *hctx, 3172 struct request *rq) 3173 { 3174 struct hrtimer_sleeper hs; 3175 enum hrtimer_mode mode; 3176 unsigned int nsecs; 3177 ktime_t kt; 3178 3179 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3180 return false; 3181 3182 /* 3183 * poll_nsec can be: 3184 * 3185 * -1: don't ever hybrid sleep 3186 * 0: use half of prev avg 3187 * >0: use this specific value 3188 */ 3189 if (q->poll_nsec == -1) 3190 return false; 3191 else if (q->poll_nsec > 0) 3192 nsecs = q->poll_nsec; 3193 else 3194 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3195 3196 if (!nsecs) 3197 return false; 3198 3199 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3200 3201 /* 3202 * This will be replaced with the stats tracking code, using 3203 * 'avg_completion_time / 2' as the pre-sleep target. 3204 */ 3205 kt = nsecs; 3206 3207 mode = HRTIMER_MODE_REL; 3208 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3209 hrtimer_set_expires(&hs.timer, kt); 3210 3211 hrtimer_init_sleeper(&hs, current); 3212 do { 3213 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3214 break; 3215 set_current_state(TASK_UNINTERRUPTIBLE); 3216 hrtimer_start_expires(&hs.timer, mode); 3217 if (hs.task) 3218 io_schedule(); 3219 hrtimer_cancel(&hs.timer); 3220 mode = HRTIMER_MODE_ABS; 3221 } while (hs.task && !signal_pending(current)); 3222 3223 __set_current_state(TASK_RUNNING); 3224 destroy_hrtimer_on_stack(&hs.timer); 3225 return true; 3226 } 3227 3228 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 3229 { 3230 struct request_queue *q = hctx->queue; 3231 long state; 3232 3233 /* 3234 * If we sleep, have the caller restart the poll loop to reset 3235 * the state. Like for the other success return cases, the 3236 * caller is responsible for checking if the IO completed. If 3237 * the IO isn't complete, we'll get called again and will go 3238 * straight to the busy poll loop. 3239 */ 3240 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3241 return true; 3242 3243 hctx->poll_considered++; 3244 3245 state = current->state; 3246 while (!need_resched()) { 3247 int ret; 3248 3249 hctx->poll_invoked++; 3250 3251 ret = q->mq_ops->poll(hctx, rq->tag); 3252 if (ret > 0) { 3253 hctx->poll_success++; 3254 set_current_state(TASK_RUNNING); 3255 return true; 3256 } 3257 3258 if (signal_pending_state(state, current)) 3259 set_current_state(TASK_RUNNING); 3260 3261 if (current->state == TASK_RUNNING) 3262 return true; 3263 if (ret < 0) 3264 break; 3265 cpu_relax(); 3266 } 3267 3268 __set_current_state(TASK_RUNNING); 3269 return false; 3270 } 3271 3272 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3273 { 3274 struct blk_mq_hw_ctx *hctx; 3275 struct request *rq; 3276 3277 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3278 return false; 3279 3280 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3281 if (!blk_qc_t_is_internal(cookie)) 3282 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3283 else { 3284 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3285 /* 3286 * With scheduling, if the request has completed, we'll 3287 * get a NULL return here, as we clear the sched tag when 3288 * that happens. The request still remains valid, like always, 3289 * so we should be safe with just the NULL check. 3290 */ 3291 if (!rq) 3292 return false; 3293 } 3294 3295 return __blk_mq_poll(hctx, rq); 3296 } 3297 3298 static int __init blk_mq_init(void) 3299 { 3300 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3301 blk_mq_hctx_notify_dead); 3302 return 0; 3303 } 3304 subsys_initcall(blk_mq_init); 3305