xref: /openbmc/linux/block/blk-mq.c (revision ac8b6f14)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40 
41 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 	int ddir, bytes, bucket;
48 
49 	ddir = rq_data_dir(rq);
50 	bytes = blk_rq_bytes(rq);
51 
52 	bucket = ddir + 2*(ilog2(bytes) - 9);
53 
54 	if (bucket < 0)
55 		return -1;
56 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 
59 	return bucket;
60 }
61 
62 /*
63  * Check if any of the ctx's have pending work in this hardware queue
64  */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 	return !list_empty_careful(&hctx->dispatch) ||
68 		sbitmap_any_bit_set(&hctx->ctx_map) ||
69 			blk_mq_sched_has_work(hctx);
70 }
71 
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 				     struct blk_mq_ctx *ctx)
77 {
78 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81 
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83 				      struct blk_mq_ctx *ctx)
84 {
85 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87 
88 struct mq_inflight {
89 	struct hd_struct *part;
90 	unsigned int *inflight;
91 };
92 
93 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
94 				  struct request *rq, void *priv,
95 				  bool reserved)
96 {
97 	struct mq_inflight *mi = priv;
98 
99 	/*
100 	 * index[0] counts the specific partition that was asked for. index[1]
101 	 * counts the ones that are active on the whole device, so increment
102 	 * that if mi->part is indeed a partition, and not a whole device.
103 	 */
104 	if (rq->part == mi->part)
105 		mi->inflight[0]++;
106 	if (mi->part->partno)
107 		mi->inflight[1]++;
108 }
109 
110 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
111 		      unsigned int inflight[2])
112 {
113 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
114 
115 	inflight[0] = inflight[1] = 0;
116 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 }
118 
119 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
120 				     struct request *rq, void *priv,
121 				     bool reserved)
122 {
123 	struct mq_inflight *mi = priv;
124 
125 	if (rq->part == mi->part)
126 		mi->inflight[rq_data_dir(rq)]++;
127 }
128 
129 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
130 			 unsigned int inflight[2])
131 {
132 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
133 
134 	inflight[0] = inflight[1] = 0;
135 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
136 }
137 
138 void blk_freeze_queue_start(struct request_queue *q)
139 {
140 	int freeze_depth;
141 
142 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
143 	if (freeze_depth == 1) {
144 		percpu_ref_kill(&q->q_usage_counter);
145 		if (q->mq_ops)
146 			blk_mq_run_hw_queues(q, false);
147 	}
148 }
149 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150 
151 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 {
153 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156 
157 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
158 				     unsigned long timeout)
159 {
160 	return wait_event_timeout(q->mq_freeze_wq,
161 					percpu_ref_is_zero(&q->q_usage_counter),
162 					timeout);
163 }
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
165 
166 /*
167  * Guarantee no request is in use, so we can change any data structure of
168  * the queue afterward.
169  */
170 void blk_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * In the !blk_mq case we are only calling this to kill the
174 	 * q_usage_counter, otherwise this increases the freeze depth
175 	 * and waits for it to return to zero.  For this reason there is
176 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
177 	 * exported to drivers as the only user for unfreeze is blk_mq.
178 	 */
179 	blk_freeze_queue_start(q);
180 	if (!q->mq_ops)
181 		blk_drain_queue(q);
182 	blk_mq_freeze_queue_wait(q);
183 }
184 
185 void blk_mq_freeze_queue(struct request_queue *q)
186 {
187 	/*
188 	 * ...just an alias to keep freeze and unfreeze actions balanced
189 	 * in the blk_mq_* namespace
190 	 */
191 	blk_freeze_queue(q);
192 }
193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194 
195 void blk_mq_unfreeze_queue(struct request_queue *q)
196 {
197 	int freeze_depth;
198 
199 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
200 	WARN_ON_ONCE(freeze_depth < 0);
201 	if (!freeze_depth) {
202 		percpu_ref_resurrect(&q->q_usage_counter);
203 		wake_up_all(&q->mq_freeze_wq);
204 	}
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207 
208 /*
209  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210  * mpt3sas driver such that this function can be removed.
211  */
212 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 {
214 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217 
218 /**
219  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220  * @q: request queue.
221  *
222  * Note: this function does not prevent that the struct request end_io()
223  * callback function is invoked. Once this function is returned, we make
224  * sure no dispatch can happen until the queue is unquiesced via
225  * blk_mq_unquiesce_queue().
226  */
227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 	struct blk_mq_hw_ctx *hctx;
230 	unsigned int i;
231 	bool rcu = false;
232 
233 	blk_mq_quiesce_queue_nowait(q);
234 
235 	queue_for_each_hw_ctx(q, hctx, i) {
236 		if (hctx->flags & BLK_MQ_F_BLOCKING)
237 			synchronize_srcu(hctx->srcu);
238 		else
239 			rcu = true;
240 	}
241 	if (rcu)
242 		synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245 
246 /*
247  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248  * @q: request queue.
249  *
250  * This function recovers queue into the state before quiescing
251  * which is done by blk_mq_quiesce_queue.
252  */
253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256 
257 	/* dispatch requests which are inserted during quiescing */
258 	blk_mq_run_hw_queues(q, true);
259 }
260 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261 
262 void blk_mq_wake_waiters(struct request_queue *q)
263 {
264 	struct blk_mq_hw_ctx *hctx;
265 	unsigned int i;
266 
267 	queue_for_each_hw_ctx(q, hctx, i)
268 		if (blk_mq_hw_queue_mapped(hctx))
269 			blk_mq_tag_wakeup_all(hctx->tags, true);
270 }
271 
272 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 {
274 	return blk_mq_has_free_tags(hctx->tags);
275 }
276 EXPORT_SYMBOL(blk_mq_can_queue);
277 
278 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
279 		unsigned int tag, unsigned int op)
280 {
281 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
282 	struct request *rq = tags->static_rqs[tag];
283 	req_flags_t rq_flags = 0;
284 
285 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
286 		rq->tag = -1;
287 		rq->internal_tag = tag;
288 	} else {
289 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
290 			rq_flags = RQF_MQ_INFLIGHT;
291 			atomic_inc(&data->hctx->nr_active);
292 		}
293 		rq->tag = tag;
294 		rq->internal_tag = -1;
295 		data->hctx->tags->rqs[rq->tag] = rq;
296 	}
297 
298 	/* csd/requeue_work/fifo_time is initialized before use */
299 	rq->q = data->q;
300 	rq->mq_ctx = data->ctx;
301 	rq->rq_flags = rq_flags;
302 	rq->cpu = -1;
303 	rq->cmd_flags = op;
304 	if (data->flags & BLK_MQ_REQ_PREEMPT)
305 		rq->rq_flags |= RQF_PREEMPT;
306 	if (blk_queue_io_stat(data->q))
307 		rq->rq_flags |= RQF_IO_STAT;
308 	INIT_LIST_HEAD(&rq->queuelist);
309 	INIT_HLIST_NODE(&rq->hash);
310 	RB_CLEAR_NODE(&rq->rb_node);
311 	rq->rq_disk = NULL;
312 	rq->part = NULL;
313 	rq->start_time_ns = ktime_get_ns();
314 	rq->io_start_time_ns = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	rq->special = NULL;
320 	/* tag was already set */
321 	rq->extra_len = 0;
322 	rq->__deadline = 0;
323 
324 	INIT_LIST_HEAD(&rq->timeout_list);
325 	rq->timeout = 0;
326 
327 	rq->end_io = NULL;
328 	rq->end_io_data = NULL;
329 	rq->next_rq = NULL;
330 
331 #ifdef CONFIG_BLK_CGROUP
332 	rq->rl = NULL;
333 #endif
334 
335 	data->ctx->rq_dispatched[op_is_sync(op)]++;
336 	refcount_set(&rq->ref, 1);
337 	return rq;
338 }
339 
340 static struct request *blk_mq_get_request(struct request_queue *q,
341 		struct bio *bio, unsigned int op,
342 		struct blk_mq_alloc_data *data)
343 {
344 	struct elevator_queue *e = q->elevator;
345 	struct request *rq;
346 	unsigned int tag;
347 	bool put_ctx_on_error = false;
348 
349 	blk_queue_enter_live(q);
350 	data->q = q;
351 	if (likely(!data->ctx)) {
352 		data->ctx = blk_mq_get_ctx(q);
353 		put_ctx_on_error = true;
354 	}
355 	if (likely(!data->hctx))
356 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357 	if (op & REQ_NOWAIT)
358 		data->flags |= BLK_MQ_REQ_NOWAIT;
359 
360 	if (e) {
361 		data->flags |= BLK_MQ_REQ_INTERNAL;
362 
363 		/*
364 		 * Flush requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
369 		    !(data->flags & BLK_MQ_REQ_RESERVED))
370 			e->type->ops.mq.limit_depth(op, data);
371 	} else {
372 		blk_mq_tag_busy(data->hctx);
373 	}
374 
375 	tag = blk_mq_get_tag(data);
376 	if (tag == BLK_MQ_TAG_FAIL) {
377 		if (put_ctx_on_error) {
378 			blk_mq_put_ctx(data->ctx);
379 			data->ctx = NULL;
380 		}
381 		blk_queue_exit(q);
382 		return NULL;
383 	}
384 
385 	rq = blk_mq_rq_ctx_init(data, tag, op);
386 	if (!op_is_flush(op)) {
387 		rq->elv.icq = NULL;
388 		if (e && e->type->ops.mq.prepare_request) {
389 			if (e->type->icq_cache && rq_ioc(bio))
390 				blk_mq_sched_assign_ioc(rq, bio);
391 
392 			e->type->ops.mq.prepare_request(rq, bio);
393 			rq->rq_flags |= RQF_ELVPRIV;
394 		}
395 	}
396 	data->hctx->queued++;
397 	return rq;
398 }
399 
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 		blk_mq_req_flags_t flags)
402 {
403 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
404 	struct request *rq;
405 	int ret;
406 
407 	ret = blk_queue_enter(q, flags);
408 	if (ret)
409 		return ERR_PTR(ret);
410 
411 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
412 	blk_queue_exit(q);
413 
414 	if (!rq)
415 		return ERR_PTR(-EWOULDBLOCK);
416 
417 	blk_mq_put_ctx(alloc_data.ctx);
418 
419 	rq->__data_len = 0;
420 	rq->__sector = (sector_t) -1;
421 	rq->bio = rq->biotail = NULL;
422 	return rq;
423 }
424 EXPORT_SYMBOL(blk_mq_alloc_request);
425 
426 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
427 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
428 {
429 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
430 	struct request *rq;
431 	unsigned int cpu;
432 	int ret;
433 
434 	/*
435 	 * If the tag allocator sleeps we could get an allocation for a
436 	 * different hardware context.  No need to complicate the low level
437 	 * allocator for this for the rare use case of a command tied to
438 	 * a specific queue.
439 	 */
440 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
441 		return ERR_PTR(-EINVAL);
442 
443 	if (hctx_idx >= q->nr_hw_queues)
444 		return ERR_PTR(-EIO);
445 
446 	ret = blk_queue_enter(q, flags);
447 	if (ret)
448 		return ERR_PTR(ret);
449 
450 	/*
451 	 * Check if the hardware context is actually mapped to anything.
452 	 * If not tell the caller that it should skip this queue.
453 	 */
454 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
455 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
456 		blk_queue_exit(q);
457 		return ERR_PTR(-EXDEV);
458 	}
459 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
460 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
461 
462 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
463 	blk_queue_exit(q);
464 
465 	if (!rq)
466 		return ERR_PTR(-EWOULDBLOCK);
467 
468 	return rq;
469 }
470 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471 
472 static void __blk_mq_free_request(struct request *rq)
473 {
474 	struct request_queue *q = rq->q;
475 	struct blk_mq_ctx *ctx = rq->mq_ctx;
476 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
477 	const int sched_tag = rq->internal_tag;
478 
479 	blk_pm_mark_last_busy(rq);
480 	if (rq->tag != -1)
481 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
482 	if (sched_tag != -1)
483 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
484 	blk_mq_sched_restart(hctx);
485 	blk_queue_exit(q);
486 }
487 
488 void blk_mq_free_request(struct request *rq)
489 {
490 	struct request_queue *q = rq->q;
491 	struct elevator_queue *e = q->elevator;
492 	struct blk_mq_ctx *ctx = rq->mq_ctx;
493 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
494 
495 	if (rq->rq_flags & RQF_ELVPRIV) {
496 		if (e && e->type->ops.mq.finish_request)
497 			e->type->ops.mq.finish_request(rq);
498 		if (rq->elv.icq) {
499 			put_io_context(rq->elv.icq->ioc);
500 			rq->elv.icq = NULL;
501 		}
502 	}
503 
504 	ctx->rq_completed[rq_is_sync(rq)]++;
505 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
506 		atomic_dec(&hctx->nr_active);
507 
508 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
509 		laptop_io_completion(q->backing_dev_info);
510 
511 	rq_qos_done(q, rq);
512 
513 	if (blk_rq_rl(rq))
514 		blk_put_rl(blk_rq_rl(rq));
515 
516 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
517 	if (refcount_dec_and_test(&rq->ref))
518 		__blk_mq_free_request(rq);
519 }
520 EXPORT_SYMBOL_GPL(blk_mq_free_request);
521 
522 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
523 {
524 	u64 now = ktime_get_ns();
525 
526 	if (rq->rq_flags & RQF_STATS) {
527 		blk_mq_poll_stats_start(rq->q);
528 		blk_stat_add(rq, now);
529 	}
530 
531 	if (rq->internal_tag != -1)
532 		blk_mq_sched_completed_request(rq, now);
533 
534 	blk_account_io_done(rq, now);
535 
536 	if (rq->end_io) {
537 		rq_qos_done(rq->q, rq);
538 		rq->end_io(rq, error);
539 	} else {
540 		if (unlikely(blk_bidi_rq(rq)))
541 			blk_mq_free_request(rq->next_rq);
542 		blk_mq_free_request(rq);
543 	}
544 }
545 EXPORT_SYMBOL(__blk_mq_end_request);
546 
547 void blk_mq_end_request(struct request *rq, blk_status_t error)
548 {
549 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
550 		BUG();
551 	__blk_mq_end_request(rq, error);
552 }
553 EXPORT_SYMBOL(blk_mq_end_request);
554 
555 static void __blk_mq_complete_request_remote(void *data)
556 {
557 	struct request *rq = data;
558 
559 	rq->q->softirq_done_fn(rq);
560 }
561 
562 static void __blk_mq_complete_request(struct request *rq)
563 {
564 	struct blk_mq_ctx *ctx = rq->mq_ctx;
565 	bool shared = false;
566 	int cpu;
567 
568 	if (!blk_mq_mark_complete(rq))
569 		return;
570 
571 	/*
572 	 * Most of single queue controllers, there is only one irq vector
573 	 * for handling IO completion, and the only irq's affinity is set
574 	 * as all possible CPUs. On most of ARCHs, this affinity means the
575 	 * irq is handled on one specific CPU.
576 	 *
577 	 * So complete IO reqeust in softirq context in case of single queue
578 	 * for not degrading IO performance by irqsoff latency.
579 	 */
580 	if (rq->q->nr_hw_queues == 1) {
581 		__blk_complete_request(rq);
582 		return;
583 	}
584 
585 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
586 		rq->q->softirq_done_fn(rq);
587 		return;
588 	}
589 
590 	cpu = get_cpu();
591 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
592 		shared = cpus_share_cache(cpu, ctx->cpu);
593 
594 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
595 		rq->csd.func = __blk_mq_complete_request_remote;
596 		rq->csd.info = rq;
597 		rq->csd.flags = 0;
598 		smp_call_function_single_async(ctx->cpu, &rq->csd);
599 	} else {
600 		rq->q->softirq_done_fn(rq);
601 	}
602 	put_cpu();
603 }
604 
605 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
606 	__releases(hctx->srcu)
607 {
608 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
609 		rcu_read_unlock();
610 	else
611 		srcu_read_unlock(hctx->srcu, srcu_idx);
612 }
613 
614 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
615 	__acquires(hctx->srcu)
616 {
617 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
618 		/* shut up gcc false positive */
619 		*srcu_idx = 0;
620 		rcu_read_lock();
621 	} else
622 		*srcu_idx = srcu_read_lock(hctx->srcu);
623 }
624 
625 /**
626  * blk_mq_complete_request - end I/O on a request
627  * @rq:		the request being processed
628  *
629  * Description:
630  *	Ends all I/O on a request. It does not handle partial completions.
631  *	The actual completion happens out-of-order, through a IPI handler.
632  **/
633 void blk_mq_complete_request(struct request *rq)
634 {
635 	if (unlikely(blk_should_fake_timeout(rq->q)))
636 		return;
637 	__blk_mq_complete_request(rq);
638 }
639 EXPORT_SYMBOL(blk_mq_complete_request);
640 
641 int blk_mq_request_started(struct request *rq)
642 {
643 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 }
645 EXPORT_SYMBOL_GPL(blk_mq_request_started);
646 
647 void blk_mq_start_request(struct request *rq)
648 {
649 	struct request_queue *q = rq->q;
650 
651 	blk_mq_sched_started_request(rq);
652 
653 	trace_block_rq_issue(q, rq);
654 
655 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656 		rq->io_start_time_ns = ktime_get_ns();
657 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
658 		rq->throtl_size = blk_rq_sectors(rq);
659 #endif
660 		rq->rq_flags |= RQF_STATS;
661 		rq_qos_issue(q, rq);
662 	}
663 
664 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
665 
666 	blk_add_timer(rq);
667 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
668 
669 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
670 		/*
671 		 * Make sure space for the drain appears.  We know we can do
672 		 * this because max_hw_segments has been adjusted to be one
673 		 * fewer than the device can handle.
674 		 */
675 		rq->nr_phys_segments++;
676 	}
677 }
678 EXPORT_SYMBOL(blk_mq_start_request);
679 
680 static void __blk_mq_requeue_request(struct request *rq)
681 {
682 	struct request_queue *q = rq->q;
683 
684 	blk_mq_put_driver_tag(rq);
685 
686 	trace_block_rq_requeue(q, rq);
687 	rq_qos_requeue(q, rq);
688 
689 	if (blk_mq_request_started(rq)) {
690 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
691 		rq->rq_flags &= ~RQF_TIMED_OUT;
692 		if (q->dma_drain_size && blk_rq_bytes(rq))
693 			rq->nr_phys_segments--;
694 	}
695 }
696 
697 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
698 {
699 	__blk_mq_requeue_request(rq);
700 
701 	/* this request will be re-inserted to io scheduler queue */
702 	blk_mq_sched_requeue_request(rq);
703 
704 	BUG_ON(blk_queued_rq(rq));
705 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
706 }
707 EXPORT_SYMBOL(blk_mq_requeue_request);
708 
709 static void blk_mq_requeue_work(struct work_struct *work)
710 {
711 	struct request_queue *q =
712 		container_of(work, struct request_queue, requeue_work.work);
713 	LIST_HEAD(rq_list);
714 	struct request *rq, *next;
715 
716 	spin_lock_irq(&q->requeue_lock);
717 	list_splice_init(&q->requeue_list, &rq_list);
718 	spin_unlock_irq(&q->requeue_lock);
719 
720 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
721 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
722 			continue;
723 
724 		rq->rq_flags &= ~RQF_SOFTBARRIER;
725 		list_del_init(&rq->queuelist);
726 		blk_mq_sched_insert_request(rq, true, false, false);
727 	}
728 
729 	while (!list_empty(&rq_list)) {
730 		rq = list_entry(rq_list.next, struct request, queuelist);
731 		list_del_init(&rq->queuelist);
732 		blk_mq_sched_insert_request(rq, false, false, false);
733 	}
734 
735 	blk_mq_run_hw_queues(q, false);
736 }
737 
738 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
739 				bool kick_requeue_list)
740 {
741 	struct request_queue *q = rq->q;
742 	unsigned long flags;
743 
744 	/*
745 	 * We abuse this flag that is otherwise used by the I/O scheduler to
746 	 * request head insertion from the workqueue.
747 	 */
748 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
749 
750 	spin_lock_irqsave(&q->requeue_lock, flags);
751 	if (at_head) {
752 		rq->rq_flags |= RQF_SOFTBARRIER;
753 		list_add(&rq->queuelist, &q->requeue_list);
754 	} else {
755 		list_add_tail(&rq->queuelist, &q->requeue_list);
756 	}
757 	spin_unlock_irqrestore(&q->requeue_lock, flags);
758 
759 	if (kick_requeue_list)
760 		blk_mq_kick_requeue_list(q);
761 }
762 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
763 
764 void blk_mq_kick_requeue_list(struct request_queue *q)
765 {
766 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
767 }
768 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
769 
770 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
771 				    unsigned long msecs)
772 {
773 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
774 				    msecs_to_jiffies(msecs));
775 }
776 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
777 
778 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
779 {
780 	if (tag < tags->nr_tags) {
781 		prefetch(tags->rqs[tag]);
782 		return tags->rqs[tag];
783 	}
784 
785 	return NULL;
786 }
787 EXPORT_SYMBOL(blk_mq_tag_to_rq);
788 
789 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
790 {
791 	req->rq_flags |= RQF_TIMED_OUT;
792 	if (req->q->mq_ops->timeout) {
793 		enum blk_eh_timer_return ret;
794 
795 		ret = req->q->mq_ops->timeout(req, reserved);
796 		if (ret == BLK_EH_DONE)
797 			return;
798 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
799 	}
800 
801 	blk_add_timer(req);
802 }
803 
804 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
805 {
806 	unsigned long deadline;
807 
808 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
809 		return false;
810 	if (rq->rq_flags & RQF_TIMED_OUT)
811 		return false;
812 
813 	deadline = blk_rq_deadline(rq);
814 	if (time_after_eq(jiffies, deadline))
815 		return true;
816 
817 	if (*next == 0)
818 		*next = deadline;
819 	else if (time_after(*next, deadline))
820 		*next = deadline;
821 	return false;
822 }
823 
824 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
825 		struct request *rq, void *priv, bool reserved)
826 {
827 	unsigned long *next = priv;
828 
829 	/*
830 	 * Just do a quick check if it is expired before locking the request in
831 	 * so we're not unnecessarilly synchronizing across CPUs.
832 	 */
833 	if (!blk_mq_req_expired(rq, next))
834 		return;
835 
836 	/*
837 	 * We have reason to believe the request may be expired. Take a
838 	 * reference on the request to lock this request lifetime into its
839 	 * currently allocated context to prevent it from being reallocated in
840 	 * the event the completion by-passes this timeout handler.
841 	 *
842 	 * If the reference was already released, then the driver beat the
843 	 * timeout handler to posting a natural completion.
844 	 */
845 	if (!refcount_inc_not_zero(&rq->ref))
846 		return;
847 
848 	/*
849 	 * The request is now locked and cannot be reallocated underneath the
850 	 * timeout handler's processing. Re-verify this exact request is truly
851 	 * expired; if it is not expired, then the request was completed and
852 	 * reallocated as a new request.
853 	 */
854 	if (blk_mq_req_expired(rq, next))
855 		blk_mq_rq_timed_out(rq, reserved);
856 	if (refcount_dec_and_test(&rq->ref))
857 		__blk_mq_free_request(rq);
858 }
859 
860 static void blk_mq_timeout_work(struct work_struct *work)
861 {
862 	struct request_queue *q =
863 		container_of(work, struct request_queue, timeout_work);
864 	unsigned long next = 0;
865 	struct blk_mq_hw_ctx *hctx;
866 	int i;
867 
868 	/* A deadlock might occur if a request is stuck requiring a
869 	 * timeout at the same time a queue freeze is waiting
870 	 * completion, since the timeout code would not be able to
871 	 * acquire the queue reference here.
872 	 *
873 	 * That's why we don't use blk_queue_enter here; instead, we use
874 	 * percpu_ref_tryget directly, because we need to be able to
875 	 * obtain a reference even in the short window between the queue
876 	 * starting to freeze, by dropping the first reference in
877 	 * blk_freeze_queue_start, and the moment the last request is
878 	 * consumed, marked by the instant q_usage_counter reaches
879 	 * zero.
880 	 */
881 	if (!percpu_ref_tryget(&q->q_usage_counter))
882 		return;
883 
884 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
885 
886 	if (next != 0) {
887 		mod_timer(&q->timeout, next);
888 	} else {
889 		/*
890 		 * Request timeouts are handled as a forward rolling timer. If
891 		 * we end up here it means that no requests are pending and
892 		 * also that no request has been pending for a while. Mark
893 		 * each hctx as idle.
894 		 */
895 		queue_for_each_hw_ctx(q, hctx, i) {
896 			/* the hctx may be unmapped, so check it here */
897 			if (blk_mq_hw_queue_mapped(hctx))
898 				blk_mq_tag_idle(hctx);
899 		}
900 	}
901 	blk_queue_exit(q);
902 }
903 
904 struct flush_busy_ctx_data {
905 	struct blk_mq_hw_ctx *hctx;
906 	struct list_head *list;
907 };
908 
909 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
910 {
911 	struct flush_busy_ctx_data *flush_data = data;
912 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
913 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
914 
915 	spin_lock(&ctx->lock);
916 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
917 	sbitmap_clear_bit(sb, bitnr);
918 	spin_unlock(&ctx->lock);
919 	return true;
920 }
921 
922 /*
923  * Process software queues that have been marked busy, splicing them
924  * to the for-dispatch
925  */
926 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
927 {
928 	struct flush_busy_ctx_data data = {
929 		.hctx = hctx,
930 		.list = list,
931 	};
932 
933 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
934 }
935 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
936 
937 struct dispatch_rq_data {
938 	struct blk_mq_hw_ctx *hctx;
939 	struct request *rq;
940 };
941 
942 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
943 		void *data)
944 {
945 	struct dispatch_rq_data *dispatch_data = data;
946 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
947 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
948 
949 	spin_lock(&ctx->lock);
950 	if (!list_empty(&ctx->rq_list)) {
951 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
952 		list_del_init(&dispatch_data->rq->queuelist);
953 		if (list_empty(&ctx->rq_list))
954 			sbitmap_clear_bit(sb, bitnr);
955 	}
956 	spin_unlock(&ctx->lock);
957 
958 	return !dispatch_data->rq;
959 }
960 
961 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
962 					struct blk_mq_ctx *start)
963 {
964 	unsigned off = start ? start->index_hw : 0;
965 	struct dispatch_rq_data data = {
966 		.hctx = hctx,
967 		.rq   = NULL,
968 	};
969 
970 	__sbitmap_for_each_set(&hctx->ctx_map, off,
971 			       dispatch_rq_from_ctx, &data);
972 
973 	return data.rq;
974 }
975 
976 static inline unsigned int queued_to_index(unsigned int queued)
977 {
978 	if (!queued)
979 		return 0;
980 
981 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
982 }
983 
984 bool blk_mq_get_driver_tag(struct request *rq)
985 {
986 	struct blk_mq_alloc_data data = {
987 		.q = rq->q,
988 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
989 		.flags = BLK_MQ_REQ_NOWAIT,
990 	};
991 	bool shared;
992 
993 	if (rq->tag != -1)
994 		goto done;
995 
996 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
997 		data.flags |= BLK_MQ_REQ_RESERVED;
998 
999 	shared = blk_mq_tag_busy(data.hctx);
1000 	rq->tag = blk_mq_get_tag(&data);
1001 	if (rq->tag >= 0) {
1002 		if (shared) {
1003 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1004 			atomic_inc(&data.hctx->nr_active);
1005 		}
1006 		data.hctx->tags->rqs[rq->tag] = rq;
1007 	}
1008 
1009 done:
1010 	return rq->tag != -1;
1011 }
1012 
1013 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1014 				int flags, void *key)
1015 {
1016 	struct blk_mq_hw_ctx *hctx;
1017 
1018 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1019 
1020 	spin_lock(&hctx->dispatch_wait_lock);
1021 	list_del_init(&wait->entry);
1022 	spin_unlock(&hctx->dispatch_wait_lock);
1023 
1024 	blk_mq_run_hw_queue(hctx, true);
1025 	return 1;
1026 }
1027 
1028 /*
1029  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1030  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1031  * restart. For both cases, take care to check the condition again after
1032  * marking us as waiting.
1033  */
1034 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1035 				 struct request *rq)
1036 {
1037 	struct wait_queue_head *wq;
1038 	wait_queue_entry_t *wait;
1039 	bool ret;
1040 
1041 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1042 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1043 			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1044 
1045 		/*
1046 		 * It's possible that a tag was freed in the window between the
1047 		 * allocation failure and adding the hardware queue to the wait
1048 		 * queue.
1049 		 *
1050 		 * Don't clear RESTART here, someone else could have set it.
1051 		 * At most this will cost an extra queue run.
1052 		 */
1053 		return blk_mq_get_driver_tag(rq);
1054 	}
1055 
1056 	wait = &hctx->dispatch_wait;
1057 	if (!list_empty_careful(&wait->entry))
1058 		return false;
1059 
1060 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1061 
1062 	spin_lock_irq(&wq->lock);
1063 	spin_lock(&hctx->dispatch_wait_lock);
1064 	if (!list_empty(&wait->entry)) {
1065 		spin_unlock(&hctx->dispatch_wait_lock);
1066 		spin_unlock_irq(&wq->lock);
1067 		return false;
1068 	}
1069 
1070 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1071 	__add_wait_queue(wq, wait);
1072 
1073 	/*
1074 	 * It's possible that a tag was freed in the window between the
1075 	 * allocation failure and adding the hardware queue to the wait
1076 	 * queue.
1077 	 */
1078 	ret = blk_mq_get_driver_tag(rq);
1079 	if (!ret) {
1080 		spin_unlock(&hctx->dispatch_wait_lock);
1081 		spin_unlock_irq(&wq->lock);
1082 		return false;
1083 	}
1084 
1085 	/*
1086 	 * We got a tag, remove ourselves from the wait queue to ensure
1087 	 * someone else gets the wakeup.
1088 	 */
1089 	list_del_init(&wait->entry);
1090 	spin_unlock(&hctx->dispatch_wait_lock);
1091 	spin_unlock_irq(&wq->lock);
1092 
1093 	return true;
1094 }
1095 
1096 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1097 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1098 /*
1099  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1100  * - EWMA is one simple way to compute running average value
1101  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1102  * - take 4 as factor for avoiding to get too small(0) result, and this
1103  *   factor doesn't matter because EWMA decreases exponentially
1104  */
1105 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1106 {
1107 	unsigned int ewma;
1108 
1109 	if (hctx->queue->elevator)
1110 		return;
1111 
1112 	ewma = hctx->dispatch_busy;
1113 
1114 	if (!ewma && !busy)
1115 		return;
1116 
1117 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1118 	if (busy)
1119 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1120 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1121 
1122 	hctx->dispatch_busy = ewma;
1123 }
1124 
1125 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1126 
1127 /*
1128  * Returns true if we did some work AND can potentially do more.
1129  */
1130 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1131 			     bool got_budget)
1132 {
1133 	struct blk_mq_hw_ctx *hctx;
1134 	struct request *rq, *nxt;
1135 	bool no_tag = false;
1136 	int errors, queued;
1137 	blk_status_t ret = BLK_STS_OK;
1138 
1139 	if (list_empty(list))
1140 		return false;
1141 
1142 	WARN_ON(!list_is_singular(list) && got_budget);
1143 
1144 	/*
1145 	 * Now process all the entries, sending them to the driver.
1146 	 */
1147 	errors = queued = 0;
1148 	do {
1149 		struct blk_mq_queue_data bd;
1150 
1151 		rq = list_first_entry(list, struct request, queuelist);
1152 
1153 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1154 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1155 			break;
1156 
1157 		if (!blk_mq_get_driver_tag(rq)) {
1158 			/*
1159 			 * The initial allocation attempt failed, so we need to
1160 			 * rerun the hardware queue when a tag is freed. The
1161 			 * waitqueue takes care of that. If the queue is run
1162 			 * before we add this entry back on the dispatch list,
1163 			 * we'll re-run it below.
1164 			 */
1165 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1166 				blk_mq_put_dispatch_budget(hctx);
1167 				/*
1168 				 * For non-shared tags, the RESTART check
1169 				 * will suffice.
1170 				 */
1171 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1172 					no_tag = true;
1173 				break;
1174 			}
1175 		}
1176 
1177 		list_del_init(&rq->queuelist);
1178 
1179 		bd.rq = rq;
1180 
1181 		/*
1182 		 * Flag last if we have no more requests, or if we have more
1183 		 * but can't assign a driver tag to it.
1184 		 */
1185 		if (list_empty(list))
1186 			bd.last = true;
1187 		else {
1188 			nxt = list_first_entry(list, struct request, queuelist);
1189 			bd.last = !blk_mq_get_driver_tag(nxt);
1190 		}
1191 
1192 		ret = q->mq_ops->queue_rq(hctx, &bd);
1193 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1194 			/*
1195 			 * If an I/O scheduler has been configured and we got a
1196 			 * driver tag for the next request already, free it
1197 			 * again.
1198 			 */
1199 			if (!list_empty(list)) {
1200 				nxt = list_first_entry(list, struct request, queuelist);
1201 				blk_mq_put_driver_tag(nxt);
1202 			}
1203 			list_add(&rq->queuelist, list);
1204 			__blk_mq_requeue_request(rq);
1205 			break;
1206 		}
1207 
1208 		if (unlikely(ret != BLK_STS_OK)) {
1209 			errors++;
1210 			blk_mq_end_request(rq, BLK_STS_IOERR);
1211 			continue;
1212 		}
1213 
1214 		queued++;
1215 	} while (!list_empty(list));
1216 
1217 	hctx->dispatched[queued_to_index(queued)]++;
1218 
1219 	/*
1220 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1221 	 * that is where we will continue on next queue run.
1222 	 */
1223 	if (!list_empty(list)) {
1224 		bool needs_restart;
1225 
1226 		spin_lock(&hctx->lock);
1227 		list_splice_init(list, &hctx->dispatch);
1228 		spin_unlock(&hctx->lock);
1229 
1230 		/*
1231 		 * If SCHED_RESTART was set by the caller of this function and
1232 		 * it is no longer set that means that it was cleared by another
1233 		 * thread and hence that a queue rerun is needed.
1234 		 *
1235 		 * If 'no_tag' is set, that means that we failed getting
1236 		 * a driver tag with an I/O scheduler attached. If our dispatch
1237 		 * waitqueue is no longer active, ensure that we run the queue
1238 		 * AFTER adding our entries back to the list.
1239 		 *
1240 		 * If no I/O scheduler has been configured it is possible that
1241 		 * the hardware queue got stopped and restarted before requests
1242 		 * were pushed back onto the dispatch list. Rerun the queue to
1243 		 * avoid starvation. Notes:
1244 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1245 		 *   been stopped before rerunning a queue.
1246 		 * - Some but not all block drivers stop a queue before
1247 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1248 		 *   and dm-rq.
1249 		 *
1250 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1251 		 * bit is set, run queue after a delay to avoid IO stalls
1252 		 * that could otherwise occur if the queue is idle.
1253 		 */
1254 		needs_restart = blk_mq_sched_needs_restart(hctx);
1255 		if (!needs_restart ||
1256 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1257 			blk_mq_run_hw_queue(hctx, true);
1258 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1259 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1260 
1261 		blk_mq_update_dispatch_busy(hctx, true);
1262 		return false;
1263 	} else
1264 		blk_mq_update_dispatch_busy(hctx, false);
1265 
1266 	/*
1267 	 * If the host/device is unable to accept more work, inform the
1268 	 * caller of that.
1269 	 */
1270 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1271 		return false;
1272 
1273 	return (queued + errors) != 0;
1274 }
1275 
1276 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1277 {
1278 	int srcu_idx;
1279 
1280 	/*
1281 	 * We should be running this queue from one of the CPUs that
1282 	 * are mapped to it.
1283 	 *
1284 	 * There are at least two related races now between setting
1285 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1286 	 * __blk_mq_run_hw_queue():
1287 	 *
1288 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1289 	 *   but later it becomes online, then this warning is harmless
1290 	 *   at all
1291 	 *
1292 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1293 	 *   but later it becomes offline, then the warning can't be
1294 	 *   triggered, and we depend on blk-mq timeout handler to
1295 	 *   handle dispatched requests to this hctx
1296 	 */
1297 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1298 		cpu_online(hctx->next_cpu)) {
1299 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1300 			raw_smp_processor_id(),
1301 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1302 		dump_stack();
1303 	}
1304 
1305 	/*
1306 	 * We can't run the queue inline with ints disabled. Ensure that
1307 	 * we catch bad users of this early.
1308 	 */
1309 	WARN_ON_ONCE(in_interrupt());
1310 
1311 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1312 
1313 	hctx_lock(hctx, &srcu_idx);
1314 	blk_mq_sched_dispatch_requests(hctx);
1315 	hctx_unlock(hctx, srcu_idx);
1316 }
1317 
1318 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1319 {
1320 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1321 
1322 	if (cpu >= nr_cpu_ids)
1323 		cpu = cpumask_first(hctx->cpumask);
1324 	return cpu;
1325 }
1326 
1327 /*
1328  * It'd be great if the workqueue API had a way to pass
1329  * in a mask and had some smarts for more clever placement.
1330  * For now we just round-robin here, switching for every
1331  * BLK_MQ_CPU_WORK_BATCH queued items.
1332  */
1333 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1334 {
1335 	bool tried = false;
1336 	int next_cpu = hctx->next_cpu;
1337 
1338 	if (hctx->queue->nr_hw_queues == 1)
1339 		return WORK_CPU_UNBOUND;
1340 
1341 	if (--hctx->next_cpu_batch <= 0) {
1342 select_cpu:
1343 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1344 				cpu_online_mask);
1345 		if (next_cpu >= nr_cpu_ids)
1346 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1347 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1348 	}
1349 
1350 	/*
1351 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1352 	 * and it should only happen in the path of handling CPU DEAD.
1353 	 */
1354 	if (!cpu_online(next_cpu)) {
1355 		if (!tried) {
1356 			tried = true;
1357 			goto select_cpu;
1358 		}
1359 
1360 		/*
1361 		 * Make sure to re-select CPU next time once after CPUs
1362 		 * in hctx->cpumask become online again.
1363 		 */
1364 		hctx->next_cpu = next_cpu;
1365 		hctx->next_cpu_batch = 1;
1366 		return WORK_CPU_UNBOUND;
1367 	}
1368 
1369 	hctx->next_cpu = next_cpu;
1370 	return next_cpu;
1371 }
1372 
1373 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1374 					unsigned long msecs)
1375 {
1376 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1377 		return;
1378 
1379 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1380 		int cpu = get_cpu();
1381 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1382 			__blk_mq_run_hw_queue(hctx);
1383 			put_cpu();
1384 			return;
1385 		}
1386 
1387 		put_cpu();
1388 	}
1389 
1390 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1391 				    msecs_to_jiffies(msecs));
1392 }
1393 
1394 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1395 {
1396 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1397 }
1398 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1399 
1400 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1401 {
1402 	int srcu_idx;
1403 	bool need_run;
1404 
1405 	/*
1406 	 * When queue is quiesced, we may be switching io scheduler, or
1407 	 * updating nr_hw_queues, or other things, and we can't run queue
1408 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1409 	 *
1410 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1411 	 * quiesced.
1412 	 */
1413 	hctx_lock(hctx, &srcu_idx);
1414 	need_run = !blk_queue_quiesced(hctx->queue) &&
1415 		blk_mq_hctx_has_pending(hctx);
1416 	hctx_unlock(hctx, srcu_idx);
1417 
1418 	if (need_run) {
1419 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1420 		return true;
1421 	}
1422 
1423 	return false;
1424 }
1425 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1426 
1427 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1428 {
1429 	struct blk_mq_hw_ctx *hctx;
1430 	int i;
1431 
1432 	queue_for_each_hw_ctx(q, hctx, i) {
1433 		if (blk_mq_hctx_stopped(hctx))
1434 			continue;
1435 
1436 		blk_mq_run_hw_queue(hctx, async);
1437 	}
1438 }
1439 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1440 
1441 /**
1442  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1443  * @q: request queue.
1444  *
1445  * The caller is responsible for serializing this function against
1446  * blk_mq_{start,stop}_hw_queue().
1447  */
1448 bool blk_mq_queue_stopped(struct request_queue *q)
1449 {
1450 	struct blk_mq_hw_ctx *hctx;
1451 	int i;
1452 
1453 	queue_for_each_hw_ctx(q, hctx, i)
1454 		if (blk_mq_hctx_stopped(hctx))
1455 			return true;
1456 
1457 	return false;
1458 }
1459 EXPORT_SYMBOL(blk_mq_queue_stopped);
1460 
1461 /*
1462  * This function is often used for pausing .queue_rq() by driver when
1463  * there isn't enough resource or some conditions aren't satisfied, and
1464  * BLK_STS_RESOURCE is usually returned.
1465  *
1466  * We do not guarantee that dispatch can be drained or blocked
1467  * after blk_mq_stop_hw_queue() returns. Please use
1468  * blk_mq_quiesce_queue() for that requirement.
1469  */
1470 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1471 {
1472 	cancel_delayed_work(&hctx->run_work);
1473 
1474 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1475 }
1476 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1477 
1478 /*
1479  * This function is often used for pausing .queue_rq() by driver when
1480  * there isn't enough resource or some conditions aren't satisfied, and
1481  * BLK_STS_RESOURCE is usually returned.
1482  *
1483  * We do not guarantee that dispatch can be drained or blocked
1484  * after blk_mq_stop_hw_queues() returns. Please use
1485  * blk_mq_quiesce_queue() for that requirement.
1486  */
1487 void blk_mq_stop_hw_queues(struct request_queue *q)
1488 {
1489 	struct blk_mq_hw_ctx *hctx;
1490 	int i;
1491 
1492 	queue_for_each_hw_ctx(q, hctx, i)
1493 		blk_mq_stop_hw_queue(hctx);
1494 }
1495 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1496 
1497 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1498 {
1499 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1500 
1501 	blk_mq_run_hw_queue(hctx, false);
1502 }
1503 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1504 
1505 void blk_mq_start_hw_queues(struct request_queue *q)
1506 {
1507 	struct blk_mq_hw_ctx *hctx;
1508 	int i;
1509 
1510 	queue_for_each_hw_ctx(q, hctx, i)
1511 		blk_mq_start_hw_queue(hctx);
1512 }
1513 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1514 
1515 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1516 {
1517 	if (!blk_mq_hctx_stopped(hctx))
1518 		return;
1519 
1520 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1521 	blk_mq_run_hw_queue(hctx, async);
1522 }
1523 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1524 
1525 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1526 {
1527 	struct blk_mq_hw_ctx *hctx;
1528 	int i;
1529 
1530 	queue_for_each_hw_ctx(q, hctx, i)
1531 		blk_mq_start_stopped_hw_queue(hctx, async);
1532 }
1533 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1534 
1535 static void blk_mq_run_work_fn(struct work_struct *work)
1536 {
1537 	struct blk_mq_hw_ctx *hctx;
1538 
1539 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1540 
1541 	/*
1542 	 * If we are stopped, don't run the queue.
1543 	 */
1544 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1545 		return;
1546 
1547 	__blk_mq_run_hw_queue(hctx);
1548 }
1549 
1550 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1551 					    struct request *rq,
1552 					    bool at_head)
1553 {
1554 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1555 
1556 	lockdep_assert_held(&ctx->lock);
1557 
1558 	trace_block_rq_insert(hctx->queue, rq);
1559 
1560 	if (at_head)
1561 		list_add(&rq->queuelist, &ctx->rq_list);
1562 	else
1563 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1564 }
1565 
1566 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1567 			     bool at_head)
1568 {
1569 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1570 
1571 	lockdep_assert_held(&ctx->lock);
1572 
1573 	__blk_mq_insert_req_list(hctx, rq, at_head);
1574 	blk_mq_hctx_mark_pending(hctx, ctx);
1575 }
1576 
1577 /*
1578  * Should only be used carefully, when the caller knows we want to
1579  * bypass a potential IO scheduler on the target device.
1580  */
1581 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1582 {
1583 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1584 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1585 
1586 	spin_lock(&hctx->lock);
1587 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1588 	spin_unlock(&hctx->lock);
1589 
1590 	if (run_queue)
1591 		blk_mq_run_hw_queue(hctx, false);
1592 }
1593 
1594 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1595 			    struct list_head *list)
1596 
1597 {
1598 	struct request *rq;
1599 
1600 	/*
1601 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1602 	 * offline now
1603 	 */
1604 	list_for_each_entry(rq, list, queuelist) {
1605 		BUG_ON(rq->mq_ctx != ctx);
1606 		trace_block_rq_insert(hctx->queue, rq);
1607 	}
1608 
1609 	spin_lock(&ctx->lock);
1610 	list_splice_tail_init(list, &ctx->rq_list);
1611 	blk_mq_hctx_mark_pending(hctx, ctx);
1612 	spin_unlock(&ctx->lock);
1613 }
1614 
1615 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1616 {
1617 	struct request *rqa = container_of(a, struct request, queuelist);
1618 	struct request *rqb = container_of(b, struct request, queuelist);
1619 
1620 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1621 		 (rqa->mq_ctx == rqb->mq_ctx &&
1622 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1623 }
1624 
1625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1626 {
1627 	struct blk_mq_ctx *this_ctx;
1628 	struct request_queue *this_q;
1629 	struct request *rq;
1630 	LIST_HEAD(list);
1631 	LIST_HEAD(ctx_list);
1632 	unsigned int depth;
1633 
1634 	list_splice_init(&plug->mq_list, &list);
1635 
1636 	list_sort(NULL, &list, plug_ctx_cmp);
1637 
1638 	this_q = NULL;
1639 	this_ctx = NULL;
1640 	depth = 0;
1641 
1642 	while (!list_empty(&list)) {
1643 		rq = list_entry_rq(list.next);
1644 		list_del_init(&rq->queuelist);
1645 		BUG_ON(!rq->q);
1646 		if (rq->mq_ctx != this_ctx) {
1647 			if (this_ctx) {
1648 				trace_block_unplug(this_q, depth, !from_schedule);
1649 				blk_mq_sched_insert_requests(this_q, this_ctx,
1650 								&ctx_list,
1651 								from_schedule);
1652 			}
1653 
1654 			this_ctx = rq->mq_ctx;
1655 			this_q = rq->q;
1656 			depth = 0;
1657 		}
1658 
1659 		depth++;
1660 		list_add_tail(&rq->queuelist, &ctx_list);
1661 	}
1662 
1663 	/*
1664 	 * If 'this_ctx' is set, we know we have entries to complete
1665 	 * on 'ctx_list'. Do those.
1666 	 */
1667 	if (this_ctx) {
1668 		trace_block_unplug(this_q, depth, !from_schedule);
1669 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1670 						from_schedule);
1671 	}
1672 }
1673 
1674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1675 {
1676 	blk_init_request_from_bio(rq, bio);
1677 
1678 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1679 
1680 	blk_account_io_start(rq, true);
1681 }
1682 
1683 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1684 {
1685 	if (rq->tag != -1)
1686 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1687 
1688 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1689 }
1690 
1691 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1692 					    struct request *rq,
1693 					    blk_qc_t *cookie)
1694 {
1695 	struct request_queue *q = rq->q;
1696 	struct blk_mq_queue_data bd = {
1697 		.rq = rq,
1698 		.last = true,
1699 	};
1700 	blk_qc_t new_cookie;
1701 	blk_status_t ret;
1702 
1703 	new_cookie = request_to_qc_t(hctx, rq);
1704 
1705 	/*
1706 	 * For OK queue, we are done. For error, caller may kill it.
1707 	 * Any other error (busy), just add it to our list as we
1708 	 * previously would have done.
1709 	 */
1710 	ret = q->mq_ops->queue_rq(hctx, &bd);
1711 	switch (ret) {
1712 	case BLK_STS_OK:
1713 		blk_mq_update_dispatch_busy(hctx, false);
1714 		*cookie = new_cookie;
1715 		break;
1716 	case BLK_STS_RESOURCE:
1717 	case BLK_STS_DEV_RESOURCE:
1718 		blk_mq_update_dispatch_busy(hctx, true);
1719 		__blk_mq_requeue_request(rq);
1720 		break;
1721 	default:
1722 		blk_mq_update_dispatch_busy(hctx, false);
1723 		*cookie = BLK_QC_T_NONE;
1724 		break;
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1731 						struct request *rq,
1732 						blk_qc_t *cookie,
1733 						bool bypass_insert)
1734 {
1735 	struct request_queue *q = rq->q;
1736 	bool run_queue = true;
1737 
1738 	/*
1739 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1740 	 *
1741 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1742 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1743 	 * and avoid driver to try to dispatch again.
1744 	 */
1745 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1746 		run_queue = false;
1747 		bypass_insert = false;
1748 		goto insert;
1749 	}
1750 
1751 	if (q->elevator && !bypass_insert)
1752 		goto insert;
1753 
1754 	if (!blk_mq_get_dispatch_budget(hctx))
1755 		goto insert;
1756 
1757 	if (!blk_mq_get_driver_tag(rq)) {
1758 		blk_mq_put_dispatch_budget(hctx);
1759 		goto insert;
1760 	}
1761 
1762 	return __blk_mq_issue_directly(hctx, rq, cookie);
1763 insert:
1764 	if (bypass_insert)
1765 		return BLK_STS_RESOURCE;
1766 
1767 	blk_mq_request_bypass_insert(rq, run_queue);
1768 	return BLK_STS_OK;
1769 }
1770 
1771 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1772 		struct request *rq, blk_qc_t *cookie)
1773 {
1774 	blk_status_t ret;
1775 	int srcu_idx;
1776 
1777 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1778 
1779 	hctx_lock(hctx, &srcu_idx);
1780 
1781 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1782 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1783 		blk_mq_request_bypass_insert(rq, true);
1784 	else if (ret != BLK_STS_OK)
1785 		blk_mq_end_request(rq, ret);
1786 
1787 	hctx_unlock(hctx, srcu_idx);
1788 }
1789 
1790 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1791 {
1792 	blk_status_t ret;
1793 	int srcu_idx;
1794 	blk_qc_t unused_cookie;
1795 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1796 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1797 
1798 	hctx_lock(hctx, &srcu_idx);
1799 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1800 	hctx_unlock(hctx, srcu_idx);
1801 
1802 	return ret;
1803 }
1804 
1805 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1806 		struct list_head *list)
1807 {
1808 	while (!list_empty(list)) {
1809 		blk_status_t ret;
1810 		struct request *rq = list_first_entry(list, struct request,
1811 				queuelist);
1812 
1813 		list_del_init(&rq->queuelist);
1814 		ret = blk_mq_request_issue_directly(rq);
1815 		if (ret != BLK_STS_OK) {
1816 			if (ret == BLK_STS_RESOURCE ||
1817 					ret == BLK_STS_DEV_RESOURCE) {
1818 				blk_mq_request_bypass_insert(rq,
1819 							list_empty(list));
1820 				break;
1821 			}
1822 			blk_mq_end_request(rq, ret);
1823 		}
1824 	}
1825 }
1826 
1827 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1828 {
1829 	const int is_sync = op_is_sync(bio->bi_opf);
1830 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1831 	struct blk_mq_alloc_data data = { .flags = 0 };
1832 	struct request *rq;
1833 	unsigned int request_count = 0;
1834 	struct blk_plug *plug;
1835 	struct request *same_queue_rq = NULL;
1836 	blk_qc_t cookie;
1837 
1838 	blk_queue_bounce(q, &bio);
1839 
1840 	blk_queue_split(q, &bio);
1841 
1842 	if (!bio_integrity_prep(bio))
1843 		return BLK_QC_T_NONE;
1844 
1845 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1846 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1847 		return BLK_QC_T_NONE;
1848 
1849 	if (blk_mq_sched_bio_merge(q, bio))
1850 		return BLK_QC_T_NONE;
1851 
1852 	rq_qos_throttle(q, bio, NULL);
1853 
1854 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1855 	if (unlikely(!rq)) {
1856 		rq_qos_cleanup(q, bio);
1857 		if (bio->bi_opf & REQ_NOWAIT)
1858 			bio_wouldblock_error(bio);
1859 		return BLK_QC_T_NONE;
1860 	}
1861 
1862 	trace_block_getrq(q, bio, bio->bi_opf);
1863 
1864 	rq_qos_track(q, rq, bio);
1865 
1866 	cookie = request_to_qc_t(data.hctx, rq);
1867 
1868 	plug = current->plug;
1869 	if (unlikely(is_flush_fua)) {
1870 		blk_mq_put_ctx(data.ctx);
1871 		blk_mq_bio_to_request(rq, bio);
1872 
1873 		/* bypass scheduler for flush rq */
1874 		blk_insert_flush(rq);
1875 		blk_mq_run_hw_queue(data.hctx, true);
1876 	} else if (plug && q->nr_hw_queues == 1) {
1877 		struct request *last = NULL;
1878 
1879 		blk_mq_put_ctx(data.ctx);
1880 		blk_mq_bio_to_request(rq, bio);
1881 
1882 		/*
1883 		 * @request_count may become stale because of schedule
1884 		 * out, so check the list again.
1885 		 */
1886 		if (list_empty(&plug->mq_list))
1887 			request_count = 0;
1888 		else if (blk_queue_nomerges(q))
1889 			request_count = blk_plug_queued_count(q);
1890 
1891 		if (!request_count)
1892 			trace_block_plug(q);
1893 		else
1894 			last = list_entry_rq(plug->mq_list.prev);
1895 
1896 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1897 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1898 			blk_flush_plug_list(plug, false);
1899 			trace_block_plug(q);
1900 		}
1901 
1902 		list_add_tail(&rq->queuelist, &plug->mq_list);
1903 	} else if (plug && !blk_queue_nomerges(q)) {
1904 		blk_mq_bio_to_request(rq, bio);
1905 
1906 		/*
1907 		 * We do limited plugging. If the bio can be merged, do that.
1908 		 * Otherwise the existing request in the plug list will be
1909 		 * issued. So the plug list will have one request at most
1910 		 * The plug list might get flushed before this. If that happens,
1911 		 * the plug list is empty, and same_queue_rq is invalid.
1912 		 */
1913 		if (list_empty(&plug->mq_list))
1914 			same_queue_rq = NULL;
1915 		if (same_queue_rq)
1916 			list_del_init(&same_queue_rq->queuelist);
1917 		list_add_tail(&rq->queuelist, &plug->mq_list);
1918 
1919 		blk_mq_put_ctx(data.ctx);
1920 
1921 		if (same_queue_rq) {
1922 			data.hctx = blk_mq_map_queue(q,
1923 					same_queue_rq->mq_ctx->cpu);
1924 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1925 					&cookie);
1926 		}
1927 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1928 			!data.hctx->dispatch_busy)) {
1929 		blk_mq_put_ctx(data.ctx);
1930 		blk_mq_bio_to_request(rq, bio);
1931 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1932 	} else {
1933 		blk_mq_put_ctx(data.ctx);
1934 		blk_mq_bio_to_request(rq, bio);
1935 		blk_mq_sched_insert_request(rq, false, true, true);
1936 	}
1937 
1938 	return cookie;
1939 }
1940 
1941 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1942 		     unsigned int hctx_idx)
1943 {
1944 	struct page *page;
1945 
1946 	if (tags->rqs && set->ops->exit_request) {
1947 		int i;
1948 
1949 		for (i = 0; i < tags->nr_tags; i++) {
1950 			struct request *rq = tags->static_rqs[i];
1951 
1952 			if (!rq)
1953 				continue;
1954 			set->ops->exit_request(set, rq, hctx_idx);
1955 			tags->static_rqs[i] = NULL;
1956 		}
1957 	}
1958 
1959 	while (!list_empty(&tags->page_list)) {
1960 		page = list_first_entry(&tags->page_list, struct page, lru);
1961 		list_del_init(&page->lru);
1962 		/*
1963 		 * Remove kmemleak object previously allocated in
1964 		 * blk_mq_init_rq_map().
1965 		 */
1966 		kmemleak_free(page_address(page));
1967 		__free_pages(page, page->private);
1968 	}
1969 }
1970 
1971 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1972 {
1973 	kfree(tags->rqs);
1974 	tags->rqs = NULL;
1975 	kfree(tags->static_rqs);
1976 	tags->static_rqs = NULL;
1977 
1978 	blk_mq_free_tags(tags);
1979 }
1980 
1981 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1982 					unsigned int hctx_idx,
1983 					unsigned int nr_tags,
1984 					unsigned int reserved_tags)
1985 {
1986 	struct blk_mq_tags *tags;
1987 	int node;
1988 
1989 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1990 	if (node == NUMA_NO_NODE)
1991 		node = set->numa_node;
1992 
1993 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1994 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1995 	if (!tags)
1996 		return NULL;
1997 
1998 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1999 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2000 				 node);
2001 	if (!tags->rqs) {
2002 		blk_mq_free_tags(tags);
2003 		return NULL;
2004 	}
2005 
2006 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2007 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2008 					node);
2009 	if (!tags->static_rqs) {
2010 		kfree(tags->rqs);
2011 		blk_mq_free_tags(tags);
2012 		return NULL;
2013 	}
2014 
2015 	return tags;
2016 }
2017 
2018 static size_t order_to_size(unsigned int order)
2019 {
2020 	return (size_t)PAGE_SIZE << order;
2021 }
2022 
2023 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2024 			       unsigned int hctx_idx, int node)
2025 {
2026 	int ret;
2027 
2028 	if (set->ops->init_request) {
2029 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2030 		if (ret)
2031 			return ret;
2032 	}
2033 
2034 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2035 	return 0;
2036 }
2037 
2038 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2039 		     unsigned int hctx_idx, unsigned int depth)
2040 {
2041 	unsigned int i, j, entries_per_page, max_order = 4;
2042 	size_t rq_size, left;
2043 	int node;
2044 
2045 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2046 	if (node == NUMA_NO_NODE)
2047 		node = set->numa_node;
2048 
2049 	INIT_LIST_HEAD(&tags->page_list);
2050 
2051 	/*
2052 	 * rq_size is the size of the request plus driver payload, rounded
2053 	 * to the cacheline size
2054 	 */
2055 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2056 				cache_line_size());
2057 	left = rq_size * depth;
2058 
2059 	for (i = 0; i < depth; ) {
2060 		int this_order = max_order;
2061 		struct page *page;
2062 		int to_do;
2063 		void *p;
2064 
2065 		while (this_order && left < order_to_size(this_order - 1))
2066 			this_order--;
2067 
2068 		do {
2069 			page = alloc_pages_node(node,
2070 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2071 				this_order);
2072 			if (page)
2073 				break;
2074 			if (!this_order--)
2075 				break;
2076 			if (order_to_size(this_order) < rq_size)
2077 				break;
2078 		} while (1);
2079 
2080 		if (!page)
2081 			goto fail;
2082 
2083 		page->private = this_order;
2084 		list_add_tail(&page->lru, &tags->page_list);
2085 
2086 		p = page_address(page);
2087 		/*
2088 		 * Allow kmemleak to scan these pages as they contain pointers
2089 		 * to additional allocations like via ops->init_request().
2090 		 */
2091 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2092 		entries_per_page = order_to_size(this_order) / rq_size;
2093 		to_do = min(entries_per_page, depth - i);
2094 		left -= to_do * rq_size;
2095 		for (j = 0; j < to_do; j++) {
2096 			struct request *rq = p;
2097 
2098 			tags->static_rqs[i] = rq;
2099 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2100 				tags->static_rqs[i] = NULL;
2101 				goto fail;
2102 			}
2103 
2104 			p += rq_size;
2105 			i++;
2106 		}
2107 	}
2108 	return 0;
2109 
2110 fail:
2111 	blk_mq_free_rqs(set, tags, hctx_idx);
2112 	return -ENOMEM;
2113 }
2114 
2115 /*
2116  * 'cpu' is going away. splice any existing rq_list entries from this
2117  * software queue to the hw queue dispatch list, and ensure that it
2118  * gets run.
2119  */
2120 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2121 {
2122 	struct blk_mq_hw_ctx *hctx;
2123 	struct blk_mq_ctx *ctx;
2124 	LIST_HEAD(tmp);
2125 
2126 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2127 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2128 
2129 	spin_lock(&ctx->lock);
2130 	if (!list_empty(&ctx->rq_list)) {
2131 		list_splice_init(&ctx->rq_list, &tmp);
2132 		blk_mq_hctx_clear_pending(hctx, ctx);
2133 	}
2134 	spin_unlock(&ctx->lock);
2135 
2136 	if (list_empty(&tmp))
2137 		return 0;
2138 
2139 	spin_lock(&hctx->lock);
2140 	list_splice_tail_init(&tmp, &hctx->dispatch);
2141 	spin_unlock(&hctx->lock);
2142 
2143 	blk_mq_run_hw_queue(hctx, true);
2144 	return 0;
2145 }
2146 
2147 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2148 {
2149 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2150 					    &hctx->cpuhp_dead);
2151 }
2152 
2153 /* hctx->ctxs will be freed in queue's release handler */
2154 static void blk_mq_exit_hctx(struct request_queue *q,
2155 		struct blk_mq_tag_set *set,
2156 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2157 {
2158 	if (blk_mq_hw_queue_mapped(hctx))
2159 		blk_mq_tag_idle(hctx);
2160 
2161 	if (set->ops->exit_request)
2162 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2163 
2164 	if (set->ops->exit_hctx)
2165 		set->ops->exit_hctx(hctx, hctx_idx);
2166 
2167 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2168 		cleanup_srcu_struct(hctx->srcu);
2169 
2170 	blk_mq_remove_cpuhp(hctx);
2171 	blk_free_flush_queue(hctx->fq);
2172 	sbitmap_free(&hctx->ctx_map);
2173 }
2174 
2175 static void blk_mq_exit_hw_queues(struct request_queue *q,
2176 		struct blk_mq_tag_set *set, int nr_queue)
2177 {
2178 	struct blk_mq_hw_ctx *hctx;
2179 	unsigned int i;
2180 
2181 	queue_for_each_hw_ctx(q, hctx, i) {
2182 		if (i == nr_queue)
2183 			break;
2184 		blk_mq_debugfs_unregister_hctx(hctx);
2185 		blk_mq_exit_hctx(q, set, hctx, i);
2186 	}
2187 }
2188 
2189 static int blk_mq_init_hctx(struct request_queue *q,
2190 		struct blk_mq_tag_set *set,
2191 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2192 {
2193 	int node;
2194 
2195 	node = hctx->numa_node;
2196 	if (node == NUMA_NO_NODE)
2197 		node = hctx->numa_node = set->numa_node;
2198 
2199 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2200 	spin_lock_init(&hctx->lock);
2201 	INIT_LIST_HEAD(&hctx->dispatch);
2202 	hctx->queue = q;
2203 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2204 
2205 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2206 
2207 	hctx->tags = set->tags[hctx_idx];
2208 
2209 	/*
2210 	 * Allocate space for all possible cpus to avoid allocation at
2211 	 * runtime
2212 	 */
2213 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2214 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2215 	if (!hctx->ctxs)
2216 		goto unregister_cpu_notifier;
2217 
2218 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2219 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2220 		goto free_ctxs;
2221 
2222 	hctx->nr_ctx = 0;
2223 
2224 	spin_lock_init(&hctx->dispatch_wait_lock);
2225 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2226 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2227 
2228 	if (set->ops->init_hctx &&
2229 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2230 		goto free_bitmap;
2231 
2232 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2233 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2234 	if (!hctx->fq)
2235 		goto exit_hctx;
2236 
2237 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2238 		goto free_fq;
2239 
2240 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2241 		init_srcu_struct(hctx->srcu);
2242 
2243 	return 0;
2244 
2245  free_fq:
2246 	kfree(hctx->fq);
2247  exit_hctx:
2248 	if (set->ops->exit_hctx)
2249 		set->ops->exit_hctx(hctx, hctx_idx);
2250  free_bitmap:
2251 	sbitmap_free(&hctx->ctx_map);
2252  free_ctxs:
2253 	kfree(hctx->ctxs);
2254  unregister_cpu_notifier:
2255 	blk_mq_remove_cpuhp(hctx);
2256 	return -1;
2257 }
2258 
2259 static void blk_mq_init_cpu_queues(struct request_queue *q,
2260 				   unsigned int nr_hw_queues)
2261 {
2262 	unsigned int i;
2263 
2264 	for_each_possible_cpu(i) {
2265 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2266 		struct blk_mq_hw_ctx *hctx;
2267 
2268 		__ctx->cpu = i;
2269 		spin_lock_init(&__ctx->lock);
2270 		INIT_LIST_HEAD(&__ctx->rq_list);
2271 		__ctx->queue = q;
2272 
2273 		/*
2274 		 * Set local node, IFF we have more than one hw queue. If
2275 		 * not, we remain on the home node of the device
2276 		 */
2277 		hctx = blk_mq_map_queue(q, i);
2278 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2279 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2280 	}
2281 }
2282 
2283 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2284 {
2285 	int ret = 0;
2286 
2287 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2288 					set->queue_depth, set->reserved_tags);
2289 	if (!set->tags[hctx_idx])
2290 		return false;
2291 
2292 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2293 				set->queue_depth);
2294 	if (!ret)
2295 		return true;
2296 
2297 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2298 	set->tags[hctx_idx] = NULL;
2299 	return false;
2300 }
2301 
2302 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2303 					 unsigned int hctx_idx)
2304 {
2305 	if (set->tags[hctx_idx]) {
2306 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2307 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2308 		set->tags[hctx_idx] = NULL;
2309 	}
2310 }
2311 
2312 static void blk_mq_map_swqueue(struct request_queue *q)
2313 {
2314 	unsigned int i, hctx_idx;
2315 	struct blk_mq_hw_ctx *hctx;
2316 	struct blk_mq_ctx *ctx;
2317 	struct blk_mq_tag_set *set = q->tag_set;
2318 
2319 	/*
2320 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2321 	 */
2322 	mutex_lock(&q->sysfs_lock);
2323 
2324 	queue_for_each_hw_ctx(q, hctx, i) {
2325 		cpumask_clear(hctx->cpumask);
2326 		hctx->nr_ctx = 0;
2327 		hctx->dispatch_from = NULL;
2328 	}
2329 
2330 	/*
2331 	 * Map software to hardware queues.
2332 	 *
2333 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2334 	 */
2335 	for_each_possible_cpu(i) {
2336 		hctx_idx = q->mq_map[i];
2337 		/* unmapped hw queue can be remapped after CPU topo changed */
2338 		if (!set->tags[hctx_idx] &&
2339 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2340 			/*
2341 			 * If tags initialization fail for some hctx,
2342 			 * that hctx won't be brought online.  In this
2343 			 * case, remap the current ctx to hctx[0] which
2344 			 * is guaranteed to always have tags allocated
2345 			 */
2346 			q->mq_map[i] = 0;
2347 		}
2348 
2349 		ctx = per_cpu_ptr(q->queue_ctx, i);
2350 		hctx = blk_mq_map_queue(q, i);
2351 
2352 		cpumask_set_cpu(i, hctx->cpumask);
2353 		ctx->index_hw = hctx->nr_ctx;
2354 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2355 	}
2356 
2357 	mutex_unlock(&q->sysfs_lock);
2358 
2359 	queue_for_each_hw_ctx(q, hctx, i) {
2360 		/*
2361 		 * If no software queues are mapped to this hardware queue,
2362 		 * disable it and free the request entries.
2363 		 */
2364 		if (!hctx->nr_ctx) {
2365 			/* Never unmap queue 0.  We need it as a
2366 			 * fallback in case of a new remap fails
2367 			 * allocation
2368 			 */
2369 			if (i && set->tags[i])
2370 				blk_mq_free_map_and_requests(set, i);
2371 
2372 			hctx->tags = NULL;
2373 			continue;
2374 		}
2375 
2376 		hctx->tags = set->tags[i];
2377 		WARN_ON(!hctx->tags);
2378 
2379 		/*
2380 		 * Set the map size to the number of mapped software queues.
2381 		 * This is more accurate and more efficient than looping
2382 		 * over all possibly mapped software queues.
2383 		 */
2384 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2385 
2386 		/*
2387 		 * Initialize batch roundrobin counts
2388 		 */
2389 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2390 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2391 	}
2392 }
2393 
2394 /*
2395  * Caller needs to ensure that we're either frozen/quiesced, or that
2396  * the queue isn't live yet.
2397  */
2398 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2399 {
2400 	struct blk_mq_hw_ctx *hctx;
2401 	int i;
2402 
2403 	queue_for_each_hw_ctx(q, hctx, i) {
2404 		if (shared)
2405 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2406 		else
2407 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2408 	}
2409 }
2410 
2411 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2412 					bool shared)
2413 {
2414 	struct request_queue *q;
2415 
2416 	lockdep_assert_held(&set->tag_list_lock);
2417 
2418 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2419 		blk_mq_freeze_queue(q);
2420 		queue_set_hctx_shared(q, shared);
2421 		blk_mq_unfreeze_queue(q);
2422 	}
2423 }
2424 
2425 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2426 {
2427 	struct blk_mq_tag_set *set = q->tag_set;
2428 
2429 	mutex_lock(&set->tag_list_lock);
2430 	list_del_rcu(&q->tag_set_list);
2431 	if (list_is_singular(&set->tag_list)) {
2432 		/* just transitioned to unshared */
2433 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2434 		/* update existing queue */
2435 		blk_mq_update_tag_set_depth(set, false);
2436 	}
2437 	mutex_unlock(&set->tag_list_lock);
2438 	INIT_LIST_HEAD(&q->tag_set_list);
2439 }
2440 
2441 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2442 				     struct request_queue *q)
2443 {
2444 	q->tag_set = set;
2445 
2446 	mutex_lock(&set->tag_list_lock);
2447 
2448 	/*
2449 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2450 	 */
2451 	if (!list_empty(&set->tag_list) &&
2452 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2453 		set->flags |= BLK_MQ_F_TAG_SHARED;
2454 		/* update existing queue */
2455 		blk_mq_update_tag_set_depth(set, true);
2456 	}
2457 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2458 		queue_set_hctx_shared(q, true);
2459 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2460 
2461 	mutex_unlock(&set->tag_list_lock);
2462 }
2463 
2464 /*
2465  * It is the actual release handler for mq, but we do it from
2466  * request queue's release handler for avoiding use-after-free
2467  * and headache because q->mq_kobj shouldn't have been introduced,
2468  * but we can't group ctx/kctx kobj without it.
2469  */
2470 void blk_mq_release(struct request_queue *q)
2471 {
2472 	struct blk_mq_hw_ctx *hctx;
2473 	unsigned int i;
2474 
2475 	/* hctx kobj stays in hctx */
2476 	queue_for_each_hw_ctx(q, hctx, i) {
2477 		if (!hctx)
2478 			continue;
2479 		kobject_put(&hctx->kobj);
2480 	}
2481 
2482 	q->mq_map = NULL;
2483 
2484 	kfree(q->queue_hw_ctx);
2485 
2486 	/*
2487 	 * release .mq_kobj and sw queue's kobject now because
2488 	 * both share lifetime with request queue.
2489 	 */
2490 	blk_mq_sysfs_deinit(q);
2491 
2492 	free_percpu(q->queue_ctx);
2493 }
2494 
2495 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2496 {
2497 	struct request_queue *uninit_q, *q;
2498 
2499 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2500 	if (!uninit_q)
2501 		return ERR_PTR(-ENOMEM);
2502 
2503 	q = blk_mq_init_allocated_queue(set, uninit_q);
2504 	if (IS_ERR(q))
2505 		blk_cleanup_queue(uninit_q);
2506 
2507 	return q;
2508 }
2509 EXPORT_SYMBOL(blk_mq_init_queue);
2510 
2511 /*
2512  * Helper for setting up a queue with mq ops, given queue depth, and
2513  * the passed in mq ops flags.
2514  */
2515 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2516 					   const struct blk_mq_ops *ops,
2517 					   unsigned int queue_depth,
2518 					   unsigned int set_flags)
2519 {
2520 	struct request_queue *q;
2521 	int ret;
2522 
2523 	memset(set, 0, sizeof(*set));
2524 	set->ops = ops;
2525 	set->nr_hw_queues = 1;
2526 	set->queue_depth = queue_depth;
2527 	set->numa_node = NUMA_NO_NODE;
2528 	set->flags = set_flags;
2529 
2530 	ret = blk_mq_alloc_tag_set(set);
2531 	if (ret)
2532 		return ERR_PTR(ret);
2533 
2534 	q = blk_mq_init_queue(set);
2535 	if (IS_ERR(q)) {
2536 		blk_mq_free_tag_set(set);
2537 		return q;
2538 	}
2539 
2540 	return q;
2541 }
2542 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2543 
2544 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2545 {
2546 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2547 
2548 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2549 			   __alignof__(struct blk_mq_hw_ctx)) !=
2550 		     sizeof(struct blk_mq_hw_ctx));
2551 
2552 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2553 		hw_ctx_size += sizeof(struct srcu_struct);
2554 
2555 	return hw_ctx_size;
2556 }
2557 
2558 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2559 		struct blk_mq_tag_set *set, struct request_queue *q,
2560 		int hctx_idx, int node)
2561 {
2562 	struct blk_mq_hw_ctx *hctx;
2563 
2564 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2565 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2566 			node);
2567 	if (!hctx)
2568 		return NULL;
2569 
2570 	if (!zalloc_cpumask_var_node(&hctx->cpumask,
2571 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2572 				node)) {
2573 		kfree(hctx);
2574 		return NULL;
2575 	}
2576 
2577 	atomic_set(&hctx->nr_active, 0);
2578 	hctx->numa_node = node;
2579 	hctx->queue_num = hctx_idx;
2580 
2581 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2582 		free_cpumask_var(hctx->cpumask);
2583 		kfree(hctx);
2584 		return NULL;
2585 	}
2586 	blk_mq_hctx_kobj_init(hctx);
2587 
2588 	return hctx;
2589 }
2590 
2591 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2592 						struct request_queue *q)
2593 {
2594 	int i, j, end;
2595 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2596 
2597 	/* protect against switching io scheduler  */
2598 	mutex_lock(&q->sysfs_lock);
2599 	for (i = 0; i < set->nr_hw_queues; i++) {
2600 		int node;
2601 		struct blk_mq_hw_ctx *hctx;
2602 
2603 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2604 		/*
2605 		 * If the hw queue has been mapped to another numa node,
2606 		 * we need to realloc the hctx. If allocation fails, fallback
2607 		 * to use the previous one.
2608 		 */
2609 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2610 			continue;
2611 
2612 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2613 		if (hctx) {
2614 			if (hctxs[i]) {
2615 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2616 				kobject_put(&hctxs[i]->kobj);
2617 			}
2618 			hctxs[i] = hctx;
2619 		} else {
2620 			if (hctxs[i])
2621 				pr_warn("Allocate new hctx on node %d fails,\
2622 						fallback to previous one on node %d\n",
2623 						node, hctxs[i]->numa_node);
2624 			else
2625 				break;
2626 		}
2627 	}
2628 	/*
2629 	 * Increasing nr_hw_queues fails. Free the newly allocated
2630 	 * hctxs and keep the previous q->nr_hw_queues.
2631 	 */
2632 	if (i != set->nr_hw_queues) {
2633 		j = q->nr_hw_queues;
2634 		end = i;
2635 	} else {
2636 		j = i;
2637 		end = q->nr_hw_queues;
2638 		q->nr_hw_queues = set->nr_hw_queues;
2639 	}
2640 
2641 	for (; j < end; j++) {
2642 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2643 
2644 		if (hctx) {
2645 			if (hctx->tags)
2646 				blk_mq_free_map_and_requests(set, j);
2647 			blk_mq_exit_hctx(q, set, hctx, j);
2648 			kobject_put(&hctx->kobj);
2649 			hctxs[j] = NULL;
2650 
2651 		}
2652 	}
2653 	mutex_unlock(&q->sysfs_lock);
2654 }
2655 
2656 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2657 						  struct request_queue *q)
2658 {
2659 	/* mark the queue as mq asap */
2660 	q->mq_ops = set->ops;
2661 
2662 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2663 					     blk_mq_poll_stats_bkt,
2664 					     BLK_MQ_POLL_STATS_BKTS, q);
2665 	if (!q->poll_cb)
2666 		goto err_exit;
2667 
2668 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2669 	if (!q->queue_ctx)
2670 		goto err_exit;
2671 
2672 	/* init q->mq_kobj and sw queues' kobjects */
2673 	blk_mq_sysfs_init(q);
2674 
2675 	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2676 						GFP_KERNEL, set->numa_node);
2677 	if (!q->queue_hw_ctx)
2678 		goto err_percpu;
2679 
2680 	q->mq_map = set->mq_map;
2681 
2682 	blk_mq_realloc_hw_ctxs(set, q);
2683 	if (!q->nr_hw_queues)
2684 		goto err_hctxs;
2685 
2686 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2687 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2688 
2689 	q->nr_queues = nr_cpu_ids;
2690 
2691 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2692 
2693 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2694 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2695 
2696 	q->sg_reserved_size = INT_MAX;
2697 
2698 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2699 	INIT_LIST_HEAD(&q->requeue_list);
2700 	spin_lock_init(&q->requeue_lock);
2701 
2702 	blk_queue_make_request(q, blk_mq_make_request);
2703 	if (q->mq_ops->poll)
2704 		q->poll_fn = blk_mq_poll;
2705 
2706 	/*
2707 	 * Do this after blk_queue_make_request() overrides it...
2708 	 */
2709 	q->nr_requests = set->queue_depth;
2710 
2711 	/*
2712 	 * Default to classic polling
2713 	 */
2714 	q->poll_nsec = -1;
2715 
2716 	if (set->ops->complete)
2717 		blk_queue_softirq_done(q, set->ops->complete);
2718 
2719 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2720 	blk_mq_add_queue_tag_set(set, q);
2721 	blk_mq_map_swqueue(q);
2722 
2723 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2724 		int ret;
2725 
2726 		ret = elevator_init_mq(q);
2727 		if (ret)
2728 			return ERR_PTR(ret);
2729 	}
2730 
2731 	return q;
2732 
2733 err_hctxs:
2734 	kfree(q->queue_hw_ctx);
2735 err_percpu:
2736 	free_percpu(q->queue_ctx);
2737 err_exit:
2738 	q->mq_ops = NULL;
2739 	return ERR_PTR(-ENOMEM);
2740 }
2741 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2742 
2743 void blk_mq_free_queue(struct request_queue *q)
2744 {
2745 	struct blk_mq_tag_set	*set = q->tag_set;
2746 
2747 	blk_mq_del_queue_tag_set(q);
2748 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2749 }
2750 
2751 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2752 {
2753 	int i;
2754 
2755 	for (i = 0; i < set->nr_hw_queues; i++)
2756 		if (!__blk_mq_alloc_rq_map(set, i))
2757 			goto out_unwind;
2758 
2759 	return 0;
2760 
2761 out_unwind:
2762 	while (--i >= 0)
2763 		blk_mq_free_rq_map(set->tags[i]);
2764 
2765 	return -ENOMEM;
2766 }
2767 
2768 /*
2769  * Allocate the request maps associated with this tag_set. Note that this
2770  * may reduce the depth asked for, if memory is tight. set->queue_depth
2771  * will be updated to reflect the allocated depth.
2772  */
2773 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2774 {
2775 	unsigned int depth;
2776 	int err;
2777 
2778 	depth = set->queue_depth;
2779 	do {
2780 		err = __blk_mq_alloc_rq_maps(set);
2781 		if (!err)
2782 			break;
2783 
2784 		set->queue_depth >>= 1;
2785 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2786 			err = -ENOMEM;
2787 			break;
2788 		}
2789 	} while (set->queue_depth);
2790 
2791 	if (!set->queue_depth || err) {
2792 		pr_err("blk-mq: failed to allocate request map\n");
2793 		return -ENOMEM;
2794 	}
2795 
2796 	if (depth != set->queue_depth)
2797 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2798 						depth, set->queue_depth);
2799 
2800 	return 0;
2801 }
2802 
2803 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2804 {
2805 	if (set->ops->map_queues) {
2806 		/*
2807 		 * transport .map_queues is usually done in the following
2808 		 * way:
2809 		 *
2810 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2811 		 * 	mask = get_cpu_mask(queue)
2812 		 * 	for_each_cpu(cpu, mask)
2813 		 * 		set->mq_map[cpu] = queue;
2814 		 * }
2815 		 *
2816 		 * When we need to remap, the table has to be cleared for
2817 		 * killing stale mapping since one CPU may not be mapped
2818 		 * to any hw queue.
2819 		 */
2820 		blk_mq_clear_mq_map(set);
2821 
2822 		return set->ops->map_queues(set);
2823 	} else
2824 		return blk_mq_map_queues(set);
2825 }
2826 
2827 /*
2828  * Alloc a tag set to be associated with one or more request queues.
2829  * May fail with EINVAL for various error conditions. May adjust the
2830  * requested depth down, if it's too large. In that case, the set
2831  * value will be stored in set->queue_depth.
2832  */
2833 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2834 {
2835 	int ret;
2836 
2837 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2838 
2839 	if (!set->nr_hw_queues)
2840 		return -EINVAL;
2841 	if (!set->queue_depth)
2842 		return -EINVAL;
2843 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2844 		return -EINVAL;
2845 
2846 	if (!set->ops->queue_rq)
2847 		return -EINVAL;
2848 
2849 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2850 		return -EINVAL;
2851 
2852 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2853 		pr_info("blk-mq: reduced tag depth to %u\n",
2854 			BLK_MQ_MAX_DEPTH);
2855 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2856 	}
2857 
2858 	/*
2859 	 * If a crashdump is active, then we are potentially in a very
2860 	 * memory constrained environment. Limit us to 1 queue and
2861 	 * 64 tags to prevent using too much memory.
2862 	 */
2863 	if (is_kdump_kernel()) {
2864 		set->nr_hw_queues = 1;
2865 		set->queue_depth = min(64U, set->queue_depth);
2866 	}
2867 	/*
2868 	 * There is no use for more h/w queues than cpus.
2869 	 */
2870 	if (set->nr_hw_queues > nr_cpu_ids)
2871 		set->nr_hw_queues = nr_cpu_ids;
2872 
2873 	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2874 				 GFP_KERNEL, set->numa_node);
2875 	if (!set->tags)
2876 		return -ENOMEM;
2877 
2878 	ret = -ENOMEM;
2879 	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2880 				   GFP_KERNEL, set->numa_node);
2881 	if (!set->mq_map)
2882 		goto out_free_tags;
2883 
2884 	ret = blk_mq_update_queue_map(set);
2885 	if (ret)
2886 		goto out_free_mq_map;
2887 
2888 	ret = blk_mq_alloc_rq_maps(set);
2889 	if (ret)
2890 		goto out_free_mq_map;
2891 
2892 	mutex_init(&set->tag_list_lock);
2893 	INIT_LIST_HEAD(&set->tag_list);
2894 
2895 	return 0;
2896 
2897 out_free_mq_map:
2898 	kfree(set->mq_map);
2899 	set->mq_map = NULL;
2900 out_free_tags:
2901 	kfree(set->tags);
2902 	set->tags = NULL;
2903 	return ret;
2904 }
2905 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2906 
2907 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2908 {
2909 	int i;
2910 
2911 	for (i = 0; i < nr_cpu_ids; i++)
2912 		blk_mq_free_map_and_requests(set, i);
2913 
2914 	kfree(set->mq_map);
2915 	set->mq_map = NULL;
2916 
2917 	kfree(set->tags);
2918 	set->tags = NULL;
2919 }
2920 EXPORT_SYMBOL(blk_mq_free_tag_set);
2921 
2922 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2923 {
2924 	struct blk_mq_tag_set *set = q->tag_set;
2925 	struct blk_mq_hw_ctx *hctx;
2926 	int i, ret;
2927 
2928 	if (!set)
2929 		return -EINVAL;
2930 
2931 	blk_mq_freeze_queue(q);
2932 	blk_mq_quiesce_queue(q);
2933 
2934 	ret = 0;
2935 	queue_for_each_hw_ctx(q, hctx, i) {
2936 		if (!hctx->tags)
2937 			continue;
2938 		/*
2939 		 * If we're using an MQ scheduler, just update the scheduler
2940 		 * queue depth. This is similar to what the old code would do.
2941 		 */
2942 		if (!hctx->sched_tags) {
2943 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2944 							false);
2945 		} else {
2946 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2947 							nr, true);
2948 		}
2949 		if (ret)
2950 			break;
2951 	}
2952 
2953 	if (!ret)
2954 		q->nr_requests = nr;
2955 
2956 	blk_mq_unquiesce_queue(q);
2957 	blk_mq_unfreeze_queue(q);
2958 
2959 	return ret;
2960 }
2961 
2962 /*
2963  * request_queue and elevator_type pair.
2964  * It is just used by __blk_mq_update_nr_hw_queues to cache
2965  * the elevator_type associated with a request_queue.
2966  */
2967 struct blk_mq_qe_pair {
2968 	struct list_head node;
2969 	struct request_queue *q;
2970 	struct elevator_type *type;
2971 };
2972 
2973 /*
2974  * Cache the elevator_type in qe pair list and switch the
2975  * io scheduler to 'none'
2976  */
2977 static bool blk_mq_elv_switch_none(struct list_head *head,
2978 		struct request_queue *q)
2979 {
2980 	struct blk_mq_qe_pair *qe;
2981 
2982 	if (!q->elevator)
2983 		return true;
2984 
2985 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2986 	if (!qe)
2987 		return false;
2988 
2989 	INIT_LIST_HEAD(&qe->node);
2990 	qe->q = q;
2991 	qe->type = q->elevator->type;
2992 	list_add(&qe->node, head);
2993 
2994 	mutex_lock(&q->sysfs_lock);
2995 	/*
2996 	 * After elevator_switch_mq, the previous elevator_queue will be
2997 	 * released by elevator_release. The reference of the io scheduler
2998 	 * module get by elevator_get will also be put. So we need to get
2999 	 * a reference of the io scheduler module here to prevent it to be
3000 	 * removed.
3001 	 */
3002 	__module_get(qe->type->elevator_owner);
3003 	elevator_switch_mq(q, NULL);
3004 	mutex_unlock(&q->sysfs_lock);
3005 
3006 	return true;
3007 }
3008 
3009 static void blk_mq_elv_switch_back(struct list_head *head,
3010 		struct request_queue *q)
3011 {
3012 	struct blk_mq_qe_pair *qe;
3013 	struct elevator_type *t = NULL;
3014 
3015 	list_for_each_entry(qe, head, node)
3016 		if (qe->q == q) {
3017 			t = qe->type;
3018 			break;
3019 		}
3020 
3021 	if (!t)
3022 		return;
3023 
3024 	list_del(&qe->node);
3025 	kfree(qe);
3026 
3027 	mutex_lock(&q->sysfs_lock);
3028 	elevator_switch_mq(q, t);
3029 	mutex_unlock(&q->sysfs_lock);
3030 }
3031 
3032 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3033 							int nr_hw_queues)
3034 {
3035 	struct request_queue *q;
3036 	LIST_HEAD(head);
3037 	int prev_nr_hw_queues;
3038 
3039 	lockdep_assert_held(&set->tag_list_lock);
3040 
3041 	if (nr_hw_queues > nr_cpu_ids)
3042 		nr_hw_queues = nr_cpu_ids;
3043 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3044 		return;
3045 
3046 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3047 		blk_mq_freeze_queue(q);
3048 	/*
3049 	 * Sync with blk_mq_queue_tag_busy_iter.
3050 	 */
3051 	synchronize_rcu();
3052 	/*
3053 	 * Switch IO scheduler to 'none', cleaning up the data associated
3054 	 * with the previous scheduler. We will switch back once we are done
3055 	 * updating the new sw to hw queue mappings.
3056 	 */
3057 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3058 		if (!blk_mq_elv_switch_none(&head, q))
3059 			goto switch_back;
3060 
3061 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3062 		blk_mq_debugfs_unregister_hctxs(q);
3063 		blk_mq_sysfs_unregister(q);
3064 	}
3065 
3066 	prev_nr_hw_queues = set->nr_hw_queues;
3067 	set->nr_hw_queues = nr_hw_queues;
3068 	blk_mq_update_queue_map(set);
3069 fallback:
3070 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3071 		blk_mq_realloc_hw_ctxs(set, q);
3072 		if (q->nr_hw_queues != set->nr_hw_queues) {
3073 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3074 					nr_hw_queues, prev_nr_hw_queues);
3075 			set->nr_hw_queues = prev_nr_hw_queues;
3076 			blk_mq_map_queues(set);
3077 			goto fallback;
3078 		}
3079 		blk_mq_map_swqueue(q);
3080 	}
3081 
3082 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3083 		blk_mq_sysfs_register(q);
3084 		blk_mq_debugfs_register_hctxs(q);
3085 	}
3086 
3087 switch_back:
3088 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3089 		blk_mq_elv_switch_back(&head, q);
3090 
3091 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3092 		blk_mq_unfreeze_queue(q);
3093 }
3094 
3095 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3096 {
3097 	mutex_lock(&set->tag_list_lock);
3098 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3099 	mutex_unlock(&set->tag_list_lock);
3100 }
3101 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3102 
3103 /* Enable polling stats and return whether they were already enabled. */
3104 static bool blk_poll_stats_enable(struct request_queue *q)
3105 {
3106 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3107 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3108 		return true;
3109 	blk_stat_add_callback(q, q->poll_cb);
3110 	return false;
3111 }
3112 
3113 static void blk_mq_poll_stats_start(struct request_queue *q)
3114 {
3115 	/*
3116 	 * We don't arm the callback if polling stats are not enabled or the
3117 	 * callback is already active.
3118 	 */
3119 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3120 	    blk_stat_is_active(q->poll_cb))
3121 		return;
3122 
3123 	blk_stat_activate_msecs(q->poll_cb, 100);
3124 }
3125 
3126 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3127 {
3128 	struct request_queue *q = cb->data;
3129 	int bucket;
3130 
3131 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3132 		if (cb->stat[bucket].nr_samples)
3133 			q->poll_stat[bucket] = cb->stat[bucket];
3134 	}
3135 }
3136 
3137 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3138 				       struct blk_mq_hw_ctx *hctx,
3139 				       struct request *rq)
3140 {
3141 	unsigned long ret = 0;
3142 	int bucket;
3143 
3144 	/*
3145 	 * If stats collection isn't on, don't sleep but turn it on for
3146 	 * future users
3147 	 */
3148 	if (!blk_poll_stats_enable(q))
3149 		return 0;
3150 
3151 	/*
3152 	 * As an optimistic guess, use half of the mean service time
3153 	 * for this type of request. We can (and should) make this smarter.
3154 	 * For instance, if the completion latencies are tight, we can
3155 	 * get closer than just half the mean. This is especially
3156 	 * important on devices where the completion latencies are longer
3157 	 * than ~10 usec. We do use the stats for the relevant IO size
3158 	 * if available which does lead to better estimates.
3159 	 */
3160 	bucket = blk_mq_poll_stats_bkt(rq);
3161 	if (bucket < 0)
3162 		return ret;
3163 
3164 	if (q->poll_stat[bucket].nr_samples)
3165 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3166 
3167 	return ret;
3168 }
3169 
3170 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3171 				     struct blk_mq_hw_ctx *hctx,
3172 				     struct request *rq)
3173 {
3174 	struct hrtimer_sleeper hs;
3175 	enum hrtimer_mode mode;
3176 	unsigned int nsecs;
3177 	ktime_t kt;
3178 
3179 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3180 		return false;
3181 
3182 	/*
3183 	 * poll_nsec can be:
3184 	 *
3185 	 * -1:	don't ever hybrid sleep
3186 	 *  0:	use half of prev avg
3187 	 * >0:	use this specific value
3188 	 */
3189 	if (q->poll_nsec == -1)
3190 		return false;
3191 	else if (q->poll_nsec > 0)
3192 		nsecs = q->poll_nsec;
3193 	else
3194 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3195 
3196 	if (!nsecs)
3197 		return false;
3198 
3199 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3200 
3201 	/*
3202 	 * This will be replaced with the stats tracking code, using
3203 	 * 'avg_completion_time / 2' as the pre-sleep target.
3204 	 */
3205 	kt = nsecs;
3206 
3207 	mode = HRTIMER_MODE_REL;
3208 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3209 	hrtimer_set_expires(&hs.timer, kt);
3210 
3211 	hrtimer_init_sleeper(&hs, current);
3212 	do {
3213 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3214 			break;
3215 		set_current_state(TASK_UNINTERRUPTIBLE);
3216 		hrtimer_start_expires(&hs.timer, mode);
3217 		if (hs.task)
3218 			io_schedule();
3219 		hrtimer_cancel(&hs.timer);
3220 		mode = HRTIMER_MODE_ABS;
3221 	} while (hs.task && !signal_pending(current));
3222 
3223 	__set_current_state(TASK_RUNNING);
3224 	destroy_hrtimer_on_stack(&hs.timer);
3225 	return true;
3226 }
3227 
3228 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3229 {
3230 	struct request_queue *q = hctx->queue;
3231 	long state;
3232 
3233 	/*
3234 	 * If we sleep, have the caller restart the poll loop to reset
3235 	 * the state. Like for the other success return cases, the
3236 	 * caller is responsible for checking if the IO completed. If
3237 	 * the IO isn't complete, we'll get called again and will go
3238 	 * straight to the busy poll loop.
3239 	 */
3240 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3241 		return true;
3242 
3243 	hctx->poll_considered++;
3244 
3245 	state = current->state;
3246 	while (!need_resched()) {
3247 		int ret;
3248 
3249 		hctx->poll_invoked++;
3250 
3251 		ret = q->mq_ops->poll(hctx, rq->tag);
3252 		if (ret > 0) {
3253 			hctx->poll_success++;
3254 			set_current_state(TASK_RUNNING);
3255 			return true;
3256 		}
3257 
3258 		if (signal_pending_state(state, current))
3259 			set_current_state(TASK_RUNNING);
3260 
3261 		if (current->state == TASK_RUNNING)
3262 			return true;
3263 		if (ret < 0)
3264 			break;
3265 		cpu_relax();
3266 	}
3267 
3268 	__set_current_state(TASK_RUNNING);
3269 	return false;
3270 }
3271 
3272 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3273 {
3274 	struct blk_mq_hw_ctx *hctx;
3275 	struct request *rq;
3276 
3277 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3278 		return false;
3279 
3280 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3281 	if (!blk_qc_t_is_internal(cookie))
3282 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3283 	else {
3284 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3285 		/*
3286 		 * With scheduling, if the request has completed, we'll
3287 		 * get a NULL return here, as we clear the sched tag when
3288 		 * that happens. The request still remains valid, like always,
3289 		 * so we should be safe with just the NULL check.
3290 		 */
3291 		if (!rq)
3292 			return false;
3293 	}
3294 
3295 	return __blk_mq_poll(hctx, rq);
3296 }
3297 
3298 static int __init blk_mq_init(void)
3299 {
3300 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3301 				blk_mq_hctx_notify_dead);
3302 	return 0;
3303 }
3304 subsys_initcall(blk_mq_init);
3305