1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @q: request queue. 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started. 261 */ 262 void blk_mq_wait_quiesce_done(struct request_queue *q) 263 { 264 if (blk_queue_has_srcu(q)) 265 synchronize_srcu(q->srcu); 266 else 267 synchronize_rcu(); 268 } 269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 270 271 /** 272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 273 * @q: request queue. 274 * 275 * Note: this function does not prevent that the struct request end_io() 276 * callback function is invoked. Once this function is returned, we make 277 * sure no dispatch can happen until the queue is unquiesced via 278 * blk_mq_unquiesce_queue(). 279 */ 280 void blk_mq_quiesce_queue(struct request_queue *q) 281 { 282 blk_mq_quiesce_queue_nowait(q); 283 blk_mq_wait_quiesce_done(q); 284 } 285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 286 287 /* 288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 289 * @q: request queue. 290 * 291 * This function recovers queue into the state before quiescing 292 * which is done by blk_mq_quiesce_queue. 293 */ 294 void blk_mq_unquiesce_queue(struct request_queue *q) 295 { 296 unsigned long flags; 297 bool run_queue = false; 298 299 spin_lock_irqsave(&q->queue_lock, flags); 300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 301 ; 302 } else if (!--q->quiesce_depth) { 303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 304 run_queue = true; 305 } 306 spin_unlock_irqrestore(&q->queue_lock, flags); 307 308 /* dispatch requests which are inserted during quiescing */ 309 if (run_queue) 310 blk_mq_run_hw_queues(q, true); 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 313 314 void blk_mq_wake_waiters(struct request_queue *q) 315 { 316 struct blk_mq_hw_ctx *hctx; 317 unsigned long i; 318 319 queue_for_each_hw_ctx(q, hctx, i) 320 if (blk_mq_hw_queue_mapped(hctx)) 321 blk_mq_tag_wakeup_all(hctx->tags, true); 322 } 323 324 void blk_rq_init(struct request_queue *q, struct request *rq) 325 { 326 memset(rq, 0, sizeof(*rq)); 327 328 INIT_LIST_HEAD(&rq->queuelist); 329 rq->q = q; 330 rq->__sector = (sector_t) -1; 331 INIT_HLIST_NODE(&rq->hash); 332 RB_CLEAR_NODE(&rq->rb_node); 333 rq->tag = BLK_MQ_NO_TAG; 334 rq->internal_tag = BLK_MQ_NO_TAG; 335 rq->start_time_ns = ktime_get_ns(); 336 rq->part = NULL; 337 blk_crypto_rq_set_defaults(rq); 338 } 339 EXPORT_SYMBOL(blk_rq_init); 340 341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 343 { 344 struct blk_mq_ctx *ctx = data->ctx; 345 struct blk_mq_hw_ctx *hctx = data->hctx; 346 struct request_queue *q = data->q; 347 struct request *rq = tags->static_rqs[tag]; 348 349 rq->q = q; 350 rq->mq_ctx = ctx; 351 rq->mq_hctx = hctx; 352 rq->cmd_flags = data->cmd_flags; 353 354 if (data->flags & BLK_MQ_REQ_PM) 355 data->rq_flags |= RQF_PM; 356 if (blk_queue_io_stat(q)) 357 data->rq_flags |= RQF_IO_STAT; 358 rq->rq_flags = data->rq_flags; 359 360 if (!(data->rq_flags & RQF_ELV)) { 361 rq->tag = tag; 362 rq->internal_tag = BLK_MQ_NO_TAG; 363 } else { 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = tag; 366 } 367 rq->timeout = 0; 368 369 if (blk_mq_need_time_stamp(rq)) 370 rq->start_time_ns = ktime_get_ns(); 371 else 372 rq->start_time_ns = 0; 373 rq->part = NULL; 374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 375 rq->alloc_time_ns = alloc_time_ns; 376 #endif 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_ELV) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (!op_is_flush(data->cmd_flags) && 399 e->type->ops.prepare_request) { 400 e->type->ops.prepare_request(rq); 401 rq->rq_flags |= RQF_ELVPRIV; 402 } 403 } 404 405 return rq; 406 } 407 408 static inline struct request * 409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 410 u64 alloc_time_ns) 411 { 412 unsigned int tag, tag_offset; 413 struct blk_mq_tags *tags; 414 struct request *rq; 415 unsigned long tag_mask; 416 int i, nr = 0; 417 418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 419 if (unlikely(!tag_mask)) 420 return NULL; 421 422 tags = blk_mq_tags_from_data(data); 423 for (i = 0; tag_mask; i++) { 424 if (!(tag_mask & (1UL << i))) 425 continue; 426 tag = tag_offset + i; 427 prefetch(tags->static_rqs[tag]); 428 tag_mask &= ~(1UL << i); 429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 430 rq_list_add(data->cached_rq, rq); 431 nr++; 432 } 433 /* caller already holds a reference, add for remainder */ 434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 435 data->nr_tags -= nr; 436 437 return rq_list_pop(data->cached_rq); 438 } 439 440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 441 { 442 struct request_queue *q = data->q; 443 u64 alloc_time_ns = 0; 444 struct request *rq; 445 unsigned int tag; 446 447 /* alloc_time includes depth and tag waits */ 448 if (blk_queue_rq_alloc_time(q)) 449 alloc_time_ns = ktime_get_ns(); 450 451 if (data->cmd_flags & REQ_NOWAIT) 452 data->flags |= BLK_MQ_REQ_NOWAIT; 453 454 if (q->elevator) { 455 struct elevator_queue *e = q->elevator; 456 457 data->rq_flags |= RQF_ELV; 458 459 /* 460 * Flush/passthrough requests are special and go directly to the 461 * dispatch list. Don't include reserved tags in the 462 * limiting, as it isn't useful. 463 */ 464 if (!op_is_flush(data->cmd_flags) && 465 !blk_op_is_passthrough(data->cmd_flags) && 466 e->type->ops.limit_depth && 467 !(data->flags & BLK_MQ_REQ_RESERVED)) 468 e->type->ops.limit_depth(data->cmd_flags, data); 469 } 470 471 retry: 472 data->ctx = blk_mq_get_ctx(q); 473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 474 if (!(data->rq_flags & RQF_ELV)) 475 blk_mq_tag_busy(data->hctx); 476 477 if (data->flags & BLK_MQ_REQ_RESERVED) 478 data->rq_flags |= RQF_RESV; 479 480 /* 481 * Try batched alloc if we want more than 1 tag. 482 */ 483 if (data->nr_tags > 1) { 484 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 485 if (rq) 486 return rq; 487 data->nr_tags = 1; 488 } 489 490 /* 491 * Waiting allocations only fail because of an inactive hctx. In that 492 * case just retry the hctx assignment and tag allocation as CPU hotplug 493 * should have migrated us to an online CPU by now. 494 */ 495 tag = blk_mq_get_tag(data); 496 if (tag == BLK_MQ_NO_TAG) { 497 if (data->flags & BLK_MQ_REQ_NOWAIT) 498 return NULL; 499 /* 500 * Give up the CPU and sleep for a random short time to 501 * ensure that thread using a realtime scheduling class 502 * are migrated off the CPU, and thus off the hctx that 503 * is going away. 504 */ 505 msleep(3); 506 goto retry; 507 } 508 509 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 510 alloc_time_ns); 511 } 512 513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 514 struct blk_plug *plug, 515 blk_opf_t opf, 516 blk_mq_req_flags_t flags) 517 { 518 struct blk_mq_alloc_data data = { 519 .q = q, 520 .flags = flags, 521 .cmd_flags = opf, 522 .nr_tags = plug->nr_ios, 523 .cached_rq = &plug->cached_rq, 524 }; 525 struct request *rq; 526 527 if (blk_queue_enter(q, flags)) 528 return NULL; 529 530 plug->nr_ios = 1; 531 532 rq = __blk_mq_alloc_requests(&data); 533 if (unlikely(!rq)) 534 blk_queue_exit(q); 535 return rq; 536 } 537 538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 539 blk_opf_t opf, 540 blk_mq_req_flags_t flags) 541 { 542 struct blk_plug *plug = current->plug; 543 struct request *rq; 544 545 if (!plug) 546 return NULL; 547 if (rq_list_empty(plug->cached_rq)) { 548 if (plug->nr_ios == 1) 549 return NULL; 550 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 551 if (rq) 552 goto got_it; 553 return NULL; 554 } 555 rq = rq_list_peek(&plug->cached_rq); 556 if (!rq || rq->q != q) 557 return NULL; 558 559 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 560 return NULL; 561 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 562 return NULL; 563 564 plug->cached_rq = rq_list_next(rq); 565 got_it: 566 rq->cmd_flags = opf; 567 INIT_LIST_HEAD(&rq->queuelist); 568 return rq; 569 } 570 571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 572 blk_mq_req_flags_t flags) 573 { 574 struct request *rq; 575 576 rq = blk_mq_alloc_cached_request(q, opf, flags); 577 if (!rq) { 578 struct blk_mq_alloc_data data = { 579 .q = q, 580 .flags = flags, 581 .cmd_flags = opf, 582 .nr_tags = 1, 583 }; 584 int ret; 585 586 ret = blk_queue_enter(q, flags); 587 if (ret) 588 return ERR_PTR(ret); 589 590 rq = __blk_mq_alloc_requests(&data); 591 if (!rq) 592 goto out_queue_exit; 593 } 594 rq->__data_len = 0; 595 rq->__sector = (sector_t) -1; 596 rq->bio = rq->biotail = NULL; 597 return rq; 598 out_queue_exit: 599 blk_queue_exit(q); 600 return ERR_PTR(-EWOULDBLOCK); 601 } 602 EXPORT_SYMBOL(blk_mq_alloc_request); 603 604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 605 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 606 { 607 struct blk_mq_alloc_data data = { 608 .q = q, 609 .flags = flags, 610 .cmd_flags = opf, 611 .nr_tags = 1, 612 }; 613 u64 alloc_time_ns = 0; 614 struct request *rq; 615 unsigned int cpu; 616 unsigned int tag; 617 int ret; 618 619 /* alloc_time includes depth and tag waits */ 620 if (blk_queue_rq_alloc_time(q)) 621 alloc_time_ns = ktime_get_ns(); 622 623 /* 624 * If the tag allocator sleeps we could get an allocation for a 625 * different hardware context. No need to complicate the low level 626 * allocator for this for the rare use case of a command tied to 627 * a specific queue. 628 */ 629 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 630 return ERR_PTR(-EINVAL); 631 632 if (hctx_idx >= q->nr_hw_queues) 633 return ERR_PTR(-EIO); 634 635 ret = blk_queue_enter(q, flags); 636 if (ret) 637 return ERR_PTR(ret); 638 639 /* 640 * Check if the hardware context is actually mapped to anything. 641 * If not tell the caller that it should skip this queue. 642 */ 643 ret = -EXDEV; 644 data.hctx = xa_load(&q->hctx_table, hctx_idx); 645 if (!blk_mq_hw_queue_mapped(data.hctx)) 646 goto out_queue_exit; 647 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 648 if (cpu >= nr_cpu_ids) 649 goto out_queue_exit; 650 data.ctx = __blk_mq_get_ctx(q, cpu); 651 652 if (!q->elevator) 653 blk_mq_tag_busy(data.hctx); 654 else 655 data.rq_flags |= RQF_ELV; 656 657 if (flags & BLK_MQ_REQ_RESERVED) 658 data.rq_flags |= RQF_RESV; 659 660 ret = -EWOULDBLOCK; 661 tag = blk_mq_get_tag(&data); 662 if (tag == BLK_MQ_NO_TAG) 663 goto out_queue_exit; 664 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 665 alloc_time_ns); 666 rq->__data_len = 0; 667 rq->__sector = (sector_t) -1; 668 rq->bio = rq->biotail = NULL; 669 return rq; 670 671 out_queue_exit: 672 blk_queue_exit(q); 673 return ERR_PTR(ret); 674 } 675 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 676 677 static void __blk_mq_free_request(struct request *rq) 678 { 679 struct request_queue *q = rq->q; 680 struct blk_mq_ctx *ctx = rq->mq_ctx; 681 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 682 const int sched_tag = rq->internal_tag; 683 684 blk_crypto_free_request(rq); 685 blk_pm_mark_last_busy(rq); 686 rq->mq_hctx = NULL; 687 if (rq->tag != BLK_MQ_NO_TAG) 688 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 689 if (sched_tag != BLK_MQ_NO_TAG) 690 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 691 blk_mq_sched_restart(hctx); 692 blk_queue_exit(q); 693 } 694 695 void blk_mq_free_request(struct request *rq) 696 { 697 struct request_queue *q = rq->q; 698 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 699 700 if ((rq->rq_flags & RQF_ELVPRIV) && 701 q->elevator->type->ops.finish_request) 702 q->elevator->type->ops.finish_request(rq); 703 704 if (rq->rq_flags & RQF_MQ_INFLIGHT) 705 __blk_mq_dec_active_requests(hctx); 706 707 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 708 laptop_io_completion(q->disk->bdi); 709 710 rq_qos_done(q, rq); 711 712 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 713 if (req_ref_put_and_test(rq)) 714 __blk_mq_free_request(rq); 715 } 716 EXPORT_SYMBOL_GPL(blk_mq_free_request); 717 718 void blk_mq_free_plug_rqs(struct blk_plug *plug) 719 { 720 struct request *rq; 721 722 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 723 blk_mq_free_request(rq); 724 } 725 726 void blk_dump_rq_flags(struct request *rq, char *msg) 727 { 728 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 729 rq->q->disk ? rq->q->disk->disk_name : "?", 730 (__force unsigned long long) rq->cmd_flags); 731 732 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 733 (unsigned long long)blk_rq_pos(rq), 734 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 735 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 736 rq->bio, rq->biotail, blk_rq_bytes(rq)); 737 } 738 EXPORT_SYMBOL(blk_dump_rq_flags); 739 740 static void req_bio_endio(struct request *rq, struct bio *bio, 741 unsigned int nbytes, blk_status_t error) 742 { 743 if (unlikely(error)) { 744 bio->bi_status = error; 745 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 746 /* 747 * Partial zone append completions cannot be supported as the 748 * BIO fragments may end up not being written sequentially. 749 */ 750 if (bio->bi_iter.bi_size != nbytes) 751 bio->bi_status = BLK_STS_IOERR; 752 else 753 bio->bi_iter.bi_sector = rq->__sector; 754 } 755 756 bio_advance(bio, nbytes); 757 758 if (unlikely(rq->rq_flags & RQF_QUIET)) 759 bio_set_flag(bio, BIO_QUIET); 760 /* don't actually finish bio if it's part of flush sequence */ 761 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 762 bio_endio(bio); 763 } 764 765 static void blk_account_io_completion(struct request *req, unsigned int bytes) 766 { 767 if (req->part && blk_do_io_stat(req)) { 768 const int sgrp = op_stat_group(req_op(req)); 769 770 part_stat_lock(); 771 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 772 part_stat_unlock(); 773 } 774 } 775 776 static void blk_print_req_error(struct request *req, blk_status_t status) 777 { 778 printk_ratelimited(KERN_ERR 779 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 780 "phys_seg %u prio class %u\n", 781 blk_status_to_str(status), 782 req->q->disk ? req->q->disk->disk_name : "?", 783 blk_rq_pos(req), (__force u32)req_op(req), 784 blk_op_str(req_op(req)), 785 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 786 req->nr_phys_segments, 787 IOPRIO_PRIO_CLASS(req->ioprio)); 788 } 789 790 /* 791 * Fully end IO on a request. Does not support partial completions, or 792 * errors. 793 */ 794 static void blk_complete_request(struct request *req) 795 { 796 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 797 int total_bytes = blk_rq_bytes(req); 798 struct bio *bio = req->bio; 799 800 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 801 802 if (!bio) 803 return; 804 805 #ifdef CONFIG_BLK_DEV_INTEGRITY 806 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 807 req->q->integrity.profile->complete_fn(req, total_bytes); 808 #endif 809 810 blk_account_io_completion(req, total_bytes); 811 812 do { 813 struct bio *next = bio->bi_next; 814 815 /* Completion has already been traced */ 816 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 817 818 if (req_op(req) == REQ_OP_ZONE_APPEND) 819 bio->bi_iter.bi_sector = req->__sector; 820 821 if (!is_flush) 822 bio_endio(bio); 823 bio = next; 824 } while (bio); 825 826 /* 827 * Reset counters so that the request stacking driver 828 * can find how many bytes remain in the request 829 * later. 830 */ 831 if (!req->end_io) { 832 req->bio = NULL; 833 req->__data_len = 0; 834 } 835 } 836 837 /** 838 * blk_update_request - Complete multiple bytes without completing the request 839 * @req: the request being processed 840 * @error: block status code 841 * @nr_bytes: number of bytes to complete for @req 842 * 843 * Description: 844 * Ends I/O on a number of bytes attached to @req, but doesn't complete 845 * the request structure even if @req doesn't have leftover. 846 * If @req has leftover, sets it up for the next range of segments. 847 * 848 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 849 * %false return from this function. 850 * 851 * Note: 852 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 853 * except in the consistency check at the end of this function. 854 * 855 * Return: 856 * %false - this request doesn't have any more data 857 * %true - this request has more data 858 **/ 859 bool blk_update_request(struct request *req, blk_status_t error, 860 unsigned int nr_bytes) 861 { 862 int total_bytes; 863 864 trace_block_rq_complete(req, error, nr_bytes); 865 866 if (!req->bio) 867 return false; 868 869 #ifdef CONFIG_BLK_DEV_INTEGRITY 870 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 871 error == BLK_STS_OK) 872 req->q->integrity.profile->complete_fn(req, nr_bytes); 873 #endif 874 875 if (unlikely(error && !blk_rq_is_passthrough(req) && 876 !(req->rq_flags & RQF_QUIET)) && 877 !test_bit(GD_DEAD, &req->q->disk->state)) { 878 blk_print_req_error(req, error); 879 trace_block_rq_error(req, error, nr_bytes); 880 } 881 882 blk_account_io_completion(req, nr_bytes); 883 884 total_bytes = 0; 885 while (req->bio) { 886 struct bio *bio = req->bio; 887 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 888 889 if (bio_bytes == bio->bi_iter.bi_size) 890 req->bio = bio->bi_next; 891 892 /* Completion has already been traced */ 893 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 894 req_bio_endio(req, bio, bio_bytes, error); 895 896 total_bytes += bio_bytes; 897 nr_bytes -= bio_bytes; 898 899 if (!nr_bytes) 900 break; 901 } 902 903 /* 904 * completely done 905 */ 906 if (!req->bio) { 907 /* 908 * Reset counters so that the request stacking driver 909 * can find how many bytes remain in the request 910 * later. 911 */ 912 req->__data_len = 0; 913 return false; 914 } 915 916 req->__data_len -= total_bytes; 917 918 /* update sector only for requests with clear definition of sector */ 919 if (!blk_rq_is_passthrough(req)) 920 req->__sector += total_bytes >> 9; 921 922 /* mixed attributes always follow the first bio */ 923 if (req->rq_flags & RQF_MIXED_MERGE) { 924 req->cmd_flags &= ~REQ_FAILFAST_MASK; 925 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 926 } 927 928 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 929 /* 930 * If total number of sectors is less than the first segment 931 * size, something has gone terribly wrong. 932 */ 933 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 934 blk_dump_rq_flags(req, "request botched"); 935 req->__data_len = blk_rq_cur_bytes(req); 936 } 937 938 /* recalculate the number of segments */ 939 req->nr_phys_segments = blk_recalc_rq_segments(req); 940 } 941 942 return true; 943 } 944 EXPORT_SYMBOL_GPL(blk_update_request); 945 946 static void __blk_account_io_done(struct request *req, u64 now) 947 { 948 const int sgrp = op_stat_group(req_op(req)); 949 950 part_stat_lock(); 951 update_io_ticks(req->part, jiffies, true); 952 part_stat_inc(req->part, ios[sgrp]); 953 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 954 part_stat_unlock(); 955 } 956 957 static inline void blk_account_io_done(struct request *req, u64 now) 958 { 959 /* 960 * Account IO completion. flush_rq isn't accounted as a 961 * normal IO on queueing nor completion. Accounting the 962 * containing request is enough. 963 */ 964 if (blk_do_io_stat(req) && req->part && 965 !(req->rq_flags & RQF_FLUSH_SEQ)) 966 __blk_account_io_done(req, now); 967 } 968 969 static void __blk_account_io_start(struct request *rq) 970 { 971 /* 972 * All non-passthrough requests are created from a bio with one 973 * exception: when a flush command that is part of a flush sequence 974 * generated by the state machine in blk-flush.c is cloned onto the 975 * lower device by dm-multipath we can get here without a bio. 976 */ 977 if (rq->bio) 978 rq->part = rq->bio->bi_bdev; 979 else 980 rq->part = rq->q->disk->part0; 981 982 part_stat_lock(); 983 update_io_ticks(rq->part, jiffies, false); 984 part_stat_unlock(); 985 } 986 987 static inline void blk_account_io_start(struct request *req) 988 { 989 if (blk_do_io_stat(req)) 990 __blk_account_io_start(req); 991 } 992 993 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 994 { 995 if (rq->rq_flags & RQF_STATS) { 996 blk_mq_poll_stats_start(rq->q); 997 blk_stat_add(rq, now); 998 } 999 1000 blk_mq_sched_completed_request(rq, now); 1001 blk_account_io_done(rq, now); 1002 } 1003 1004 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1005 { 1006 if (blk_mq_need_time_stamp(rq)) 1007 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1008 1009 if (rq->end_io) { 1010 rq_qos_done(rq->q, rq); 1011 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1012 blk_mq_free_request(rq); 1013 } else { 1014 blk_mq_free_request(rq); 1015 } 1016 } 1017 EXPORT_SYMBOL(__blk_mq_end_request); 1018 1019 void blk_mq_end_request(struct request *rq, blk_status_t error) 1020 { 1021 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1022 BUG(); 1023 __blk_mq_end_request(rq, error); 1024 } 1025 EXPORT_SYMBOL(blk_mq_end_request); 1026 1027 #define TAG_COMP_BATCH 32 1028 1029 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1030 int *tag_array, int nr_tags) 1031 { 1032 struct request_queue *q = hctx->queue; 1033 1034 /* 1035 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1036 * update hctx->nr_active in batch 1037 */ 1038 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1039 __blk_mq_sub_active_requests(hctx, nr_tags); 1040 1041 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1042 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1043 } 1044 1045 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1046 { 1047 int tags[TAG_COMP_BATCH], nr_tags = 0; 1048 struct blk_mq_hw_ctx *cur_hctx = NULL; 1049 struct request *rq; 1050 u64 now = 0; 1051 1052 if (iob->need_ts) 1053 now = ktime_get_ns(); 1054 1055 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1056 prefetch(rq->bio); 1057 prefetch(rq->rq_next); 1058 1059 blk_complete_request(rq); 1060 if (iob->need_ts) 1061 __blk_mq_end_request_acct(rq, now); 1062 1063 rq_qos_done(rq->q, rq); 1064 1065 /* 1066 * If end_io handler returns NONE, then it still has 1067 * ownership of the request. 1068 */ 1069 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1070 continue; 1071 1072 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1073 if (!req_ref_put_and_test(rq)) 1074 continue; 1075 1076 blk_crypto_free_request(rq); 1077 blk_pm_mark_last_busy(rq); 1078 1079 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1080 if (cur_hctx) 1081 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1082 nr_tags = 0; 1083 cur_hctx = rq->mq_hctx; 1084 } 1085 tags[nr_tags++] = rq->tag; 1086 } 1087 1088 if (nr_tags) 1089 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1090 } 1091 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1092 1093 static void blk_complete_reqs(struct llist_head *list) 1094 { 1095 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1096 struct request *rq, *next; 1097 1098 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1099 rq->q->mq_ops->complete(rq); 1100 } 1101 1102 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1103 { 1104 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1105 } 1106 1107 static int blk_softirq_cpu_dead(unsigned int cpu) 1108 { 1109 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1110 return 0; 1111 } 1112 1113 static void __blk_mq_complete_request_remote(void *data) 1114 { 1115 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1116 } 1117 1118 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1119 { 1120 int cpu = raw_smp_processor_id(); 1121 1122 if (!IS_ENABLED(CONFIG_SMP) || 1123 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1124 return false; 1125 /* 1126 * With force threaded interrupts enabled, raising softirq from an SMP 1127 * function call will always result in waking the ksoftirqd thread. 1128 * This is probably worse than completing the request on a different 1129 * cache domain. 1130 */ 1131 if (force_irqthreads()) 1132 return false; 1133 1134 /* same CPU or cache domain? Complete locally */ 1135 if (cpu == rq->mq_ctx->cpu || 1136 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1137 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1138 return false; 1139 1140 /* don't try to IPI to an offline CPU */ 1141 return cpu_online(rq->mq_ctx->cpu); 1142 } 1143 1144 static void blk_mq_complete_send_ipi(struct request *rq) 1145 { 1146 struct llist_head *list; 1147 unsigned int cpu; 1148 1149 cpu = rq->mq_ctx->cpu; 1150 list = &per_cpu(blk_cpu_done, cpu); 1151 if (llist_add(&rq->ipi_list, list)) { 1152 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1153 smp_call_function_single_async(cpu, &rq->csd); 1154 } 1155 } 1156 1157 static void blk_mq_raise_softirq(struct request *rq) 1158 { 1159 struct llist_head *list; 1160 1161 preempt_disable(); 1162 list = this_cpu_ptr(&blk_cpu_done); 1163 if (llist_add(&rq->ipi_list, list)) 1164 raise_softirq(BLOCK_SOFTIRQ); 1165 preempt_enable(); 1166 } 1167 1168 bool blk_mq_complete_request_remote(struct request *rq) 1169 { 1170 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1171 1172 /* 1173 * For request which hctx has only one ctx mapping, 1174 * or a polled request, always complete locally, 1175 * it's pointless to redirect the completion. 1176 */ 1177 if (rq->mq_hctx->nr_ctx == 1 || 1178 rq->cmd_flags & REQ_POLLED) 1179 return false; 1180 1181 if (blk_mq_complete_need_ipi(rq)) { 1182 blk_mq_complete_send_ipi(rq); 1183 return true; 1184 } 1185 1186 if (rq->q->nr_hw_queues == 1) { 1187 blk_mq_raise_softirq(rq); 1188 return true; 1189 } 1190 return false; 1191 } 1192 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1193 1194 /** 1195 * blk_mq_complete_request - end I/O on a request 1196 * @rq: the request being processed 1197 * 1198 * Description: 1199 * Complete a request by scheduling the ->complete_rq operation. 1200 **/ 1201 void blk_mq_complete_request(struct request *rq) 1202 { 1203 if (!blk_mq_complete_request_remote(rq)) 1204 rq->q->mq_ops->complete(rq); 1205 } 1206 EXPORT_SYMBOL(blk_mq_complete_request); 1207 1208 /** 1209 * blk_mq_start_request - Start processing a request 1210 * @rq: Pointer to request to be started 1211 * 1212 * Function used by device drivers to notify the block layer that a request 1213 * is going to be processed now, so blk layer can do proper initializations 1214 * such as starting the timeout timer. 1215 */ 1216 void blk_mq_start_request(struct request *rq) 1217 { 1218 struct request_queue *q = rq->q; 1219 1220 trace_block_rq_issue(rq); 1221 1222 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1223 rq->io_start_time_ns = ktime_get_ns(); 1224 rq->stats_sectors = blk_rq_sectors(rq); 1225 rq->rq_flags |= RQF_STATS; 1226 rq_qos_issue(q, rq); 1227 } 1228 1229 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1230 1231 blk_add_timer(rq); 1232 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1233 1234 #ifdef CONFIG_BLK_DEV_INTEGRITY 1235 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1236 q->integrity.profile->prepare_fn(rq); 1237 #endif 1238 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1239 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1240 } 1241 EXPORT_SYMBOL(blk_mq_start_request); 1242 1243 /* 1244 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1245 * queues. This is important for md arrays to benefit from merging 1246 * requests. 1247 */ 1248 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1249 { 1250 if (plug->multiple_queues) 1251 return BLK_MAX_REQUEST_COUNT * 2; 1252 return BLK_MAX_REQUEST_COUNT; 1253 } 1254 1255 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1256 { 1257 struct request *last = rq_list_peek(&plug->mq_list); 1258 1259 if (!plug->rq_count) { 1260 trace_block_plug(rq->q); 1261 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1262 (!blk_queue_nomerges(rq->q) && 1263 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1264 blk_mq_flush_plug_list(plug, false); 1265 trace_block_plug(rq->q); 1266 } 1267 1268 if (!plug->multiple_queues && last && last->q != rq->q) 1269 plug->multiple_queues = true; 1270 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1271 plug->has_elevator = true; 1272 rq->rq_next = NULL; 1273 rq_list_add(&plug->mq_list, rq); 1274 plug->rq_count++; 1275 } 1276 1277 /** 1278 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1279 * @rq: request to insert 1280 * @at_head: insert request at head or tail of queue 1281 * 1282 * Description: 1283 * Insert a fully prepared request at the back of the I/O scheduler queue 1284 * for execution. Don't wait for completion. 1285 * 1286 * Note: 1287 * This function will invoke @done directly if the queue is dead. 1288 */ 1289 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1290 { 1291 WARN_ON(irqs_disabled()); 1292 WARN_ON(!blk_rq_is_passthrough(rq)); 1293 1294 blk_account_io_start(rq); 1295 1296 /* 1297 * As plugging can be enabled for passthrough requests on a zoned 1298 * device, directly accessing the plug instead of using blk_mq_plug() 1299 * should not have any consequences. 1300 */ 1301 if (current->plug) 1302 blk_add_rq_to_plug(current->plug, rq); 1303 else 1304 blk_mq_sched_insert_request(rq, at_head, true, false); 1305 } 1306 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1307 1308 struct blk_rq_wait { 1309 struct completion done; 1310 blk_status_t ret; 1311 }; 1312 1313 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1314 { 1315 struct blk_rq_wait *wait = rq->end_io_data; 1316 1317 wait->ret = ret; 1318 complete(&wait->done); 1319 return RQ_END_IO_NONE; 1320 } 1321 1322 bool blk_rq_is_poll(struct request *rq) 1323 { 1324 if (!rq->mq_hctx) 1325 return false; 1326 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1327 return false; 1328 if (WARN_ON_ONCE(!rq->bio)) 1329 return false; 1330 return true; 1331 } 1332 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1333 1334 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1335 { 1336 do { 1337 bio_poll(rq->bio, NULL, 0); 1338 cond_resched(); 1339 } while (!completion_done(wait)); 1340 } 1341 1342 /** 1343 * blk_execute_rq - insert a request into queue for execution 1344 * @rq: request to insert 1345 * @at_head: insert request at head or tail of queue 1346 * 1347 * Description: 1348 * Insert a fully prepared request at the back of the I/O scheduler queue 1349 * for execution and wait for completion. 1350 * Return: The blk_status_t result provided to blk_mq_end_request(). 1351 */ 1352 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1353 { 1354 struct blk_rq_wait wait = { 1355 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1356 }; 1357 1358 WARN_ON(irqs_disabled()); 1359 WARN_ON(!blk_rq_is_passthrough(rq)); 1360 1361 rq->end_io_data = &wait; 1362 rq->end_io = blk_end_sync_rq; 1363 1364 blk_account_io_start(rq); 1365 blk_mq_sched_insert_request(rq, at_head, true, false); 1366 1367 if (blk_rq_is_poll(rq)) { 1368 blk_rq_poll_completion(rq, &wait.done); 1369 } else { 1370 /* 1371 * Prevent hang_check timer from firing at us during very long 1372 * I/O 1373 */ 1374 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1375 1376 if (hang_check) 1377 while (!wait_for_completion_io_timeout(&wait.done, 1378 hang_check * (HZ/2))) 1379 ; 1380 else 1381 wait_for_completion_io(&wait.done); 1382 } 1383 1384 return wait.ret; 1385 } 1386 EXPORT_SYMBOL(blk_execute_rq); 1387 1388 static void __blk_mq_requeue_request(struct request *rq) 1389 { 1390 struct request_queue *q = rq->q; 1391 1392 blk_mq_put_driver_tag(rq); 1393 1394 trace_block_rq_requeue(rq); 1395 rq_qos_requeue(q, rq); 1396 1397 if (blk_mq_request_started(rq)) { 1398 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1399 rq->rq_flags &= ~RQF_TIMED_OUT; 1400 } 1401 } 1402 1403 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1404 { 1405 __blk_mq_requeue_request(rq); 1406 1407 /* this request will be re-inserted to io scheduler queue */ 1408 blk_mq_sched_requeue_request(rq); 1409 1410 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1411 } 1412 EXPORT_SYMBOL(blk_mq_requeue_request); 1413 1414 static void blk_mq_requeue_work(struct work_struct *work) 1415 { 1416 struct request_queue *q = 1417 container_of(work, struct request_queue, requeue_work.work); 1418 LIST_HEAD(rq_list); 1419 struct request *rq, *next; 1420 1421 spin_lock_irq(&q->requeue_lock); 1422 list_splice_init(&q->requeue_list, &rq_list); 1423 spin_unlock_irq(&q->requeue_lock); 1424 1425 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1426 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1427 continue; 1428 1429 rq->rq_flags &= ~RQF_SOFTBARRIER; 1430 list_del_init(&rq->queuelist); 1431 /* 1432 * If RQF_DONTPREP, rq has contained some driver specific 1433 * data, so insert it to hctx dispatch list to avoid any 1434 * merge. 1435 */ 1436 if (rq->rq_flags & RQF_DONTPREP) 1437 blk_mq_request_bypass_insert(rq, false, false); 1438 else 1439 blk_mq_sched_insert_request(rq, true, false, false); 1440 } 1441 1442 while (!list_empty(&rq_list)) { 1443 rq = list_entry(rq_list.next, struct request, queuelist); 1444 list_del_init(&rq->queuelist); 1445 blk_mq_sched_insert_request(rq, false, false, false); 1446 } 1447 1448 blk_mq_run_hw_queues(q, false); 1449 } 1450 1451 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1452 bool kick_requeue_list) 1453 { 1454 struct request_queue *q = rq->q; 1455 unsigned long flags; 1456 1457 /* 1458 * We abuse this flag that is otherwise used by the I/O scheduler to 1459 * request head insertion from the workqueue. 1460 */ 1461 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1462 1463 spin_lock_irqsave(&q->requeue_lock, flags); 1464 if (at_head) { 1465 rq->rq_flags |= RQF_SOFTBARRIER; 1466 list_add(&rq->queuelist, &q->requeue_list); 1467 } else { 1468 list_add_tail(&rq->queuelist, &q->requeue_list); 1469 } 1470 spin_unlock_irqrestore(&q->requeue_lock, flags); 1471 1472 if (kick_requeue_list) 1473 blk_mq_kick_requeue_list(q); 1474 } 1475 1476 void blk_mq_kick_requeue_list(struct request_queue *q) 1477 { 1478 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1479 } 1480 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1481 1482 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1483 unsigned long msecs) 1484 { 1485 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1486 msecs_to_jiffies(msecs)); 1487 } 1488 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1489 1490 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1491 { 1492 /* 1493 * If we find a request that isn't idle we know the queue is busy 1494 * as it's checked in the iter. 1495 * Return false to stop the iteration. 1496 */ 1497 if (blk_mq_request_started(rq)) { 1498 bool *busy = priv; 1499 1500 *busy = true; 1501 return false; 1502 } 1503 1504 return true; 1505 } 1506 1507 bool blk_mq_queue_inflight(struct request_queue *q) 1508 { 1509 bool busy = false; 1510 1511 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1512 return busy; 1513 } 1514 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1515 1516 static void blk_mq_rq_timed_out(struct request *req) 1517 { 1518 req->rq_flags |= RQF_TIMED_OUT; 1519 if (req->q->mq_ops->timeout) { 1520 enum blk_eh_timer_return ret; 1521 1522 ret = req->q->mq_ops->timeout(req); 1523 if (ret == BLK_EH_DONE) 1524 return; 1525 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1526 } 1527 1528 blk_add_timer(req); 1529 } 1530 1531 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1532 { 1533 unsigned long deadline; 1534 1535 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1536 return false; 1537 if (rq->rq_flags & RQF_TIMED_OUT) 1538 return false; 1539 1540 deadline = READ_ONCE(rq->deadline); 1541 if (time_after_eq(jiffies, deadline)) 1542 return true; 1543 1544 if (*next == 0) 1545 *next = deadline; 1546 else if (time_after(*next, deadline)) 1547 *next = deadline; 1548 return false; 1549 } 1550 1551 void blk_mq_put_rq_ref(struct request *rq) 1552 { 1553 if (is_flush_rq(rq)) { 1554 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1555 blk_mq_free_request(rq); 1556 } else if (req_ref_put_and_test(rq)) { 1557 __blk_mq_free_request(rq); 1558 } 1559 } 1560 1561 static bool blk_mq_check_expired(struct request *rq, void *priv) 1562 { 1563 unsigned long *next = priv; 1564 1565 /* 1566 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1567 * be reallocated underneath the timeout handler's processing, then 1568 * the expire check is reliable. If the request is not expired, then 1569 * it was completed and reallocated as a new request after returning 1570 * from blk_mq_check_expired(). 1571 */ 1572 if (blk_mq_req_expired(rq, next)) 1573 blk_mq_rq_timed_out(rq); 1574 return true; 1575 } 1576 1577 static void blk_mq_timeout_work(struct work_struct *work) 1578 { 1579 struct request_queue *q = 1580 container_of(work, struct request_queue, timeout_work); 1581 unsigned long next = 0; 1582 struct blk_mq_hw_ctx *hctx; 1583 unsigned long i; 1584 1585 /* A deadlock might occur if a request is stuck requiring a 1586 * timeout at the same time a queue freeze is waiting 1587 * completion, since the timeout code would not be able to 1588 * acquire the queue reference here. 1589 * 1590 * That's why we don't use blk_queue_enter here; instead, we use 1591 * percpu_ref_tryget directly, because we need to be able to 1592 * obtain a reference even in the short window between the queue 1593 * starting to freeze, by dropping the first reference in 1594 * blk_freeze_queue_start, and the moment the last request is 1595 * consumed, marked by the instant q_usage_counter reaches 1596 * zero. 1597 */ 1598 if (!percpu_ref_tryget(&q->q_usage_counter)) 1599 return; 1600 1601 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1602 1603 if (next != 0) { 1604 mod_timer(&q->timeout, next); 1605 } else { 1606 /* 1607 * Request timeouts are handled as a forward rolling timer. If 1608 * we end up here it means that no requests are pending and 1609 * also that no request has been pending for a while. Mark 1610 * each hctx as idle. 1611 */ 1612 queue_for_each_hw_ctx(q, hctx, i) { 1613 /* the hctx may be unmapped, so check it here */ 1614 if (blk_mq_hw_queue_mapped(hctx)) 1615 blk_mq_tag_idle(hctx); 1616 } 1617 } 1618 blk_queue_exit(q); 1619 } 1620 1621 struct flush_busy_ctx_data { 1622 struct blk_mq_hw_ctx *hctx; 1623 struct list_head *list; 1624 }; 1625 1626 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1627 { 1628 struct flush_busy_ctx_data *flush_data = data; 1629 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1630 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1631 enum hctx_type type = hctx->type; 1632 1633 spin_lock(&ctx->lock); 1634 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1635 sbitmap_clear_bit(sb, bitnr); 1636 spin_unlock(&ctx->lock); 1637 return true; 1638 } 1639 1640 /* 1641 * Process software queues that have been marked busy, splicing them 1642 * to the for-dispatch 1643 */ 1644 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1645 { 1646 struct flush_busy_ctx_data data = { 1647 .hctx = hctx, 1648 .list = list, 1649 }; 1650 1651 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1652 } 1653 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1654 1655 struct dispatch_rq_data { 1656 struct blk_mq_hw_ctx *hctx; 1657 struct request *rq; 1658 }; 1659 1660 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1661 void *data) 1662 { 1663 struct dispatch_rq_data *dispatch_data = data; 1664 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1665 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1666 enum hctx_type type = hctx->type; 1667 1668 spin_lock(&ctx->lock); 1669 if (!list_empty(&ctx->rq_lists[type])) { 1670 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1671 list_del_init(&dispatch_data->rq->queuelist); 1672 if (list_empty(&ctx->rq_lists[type])) 1673 sbitmap_clear_bit(sb, bitnr); 1674 } 1675 spin_unlock(&ctx->lock); 1676 1677 return !dispatch_data->rq; 1678 } 1679 1680 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1681 struct blk_mq_ctx *start) 1682 { 1683 unsigned off = start ? start->index_hw[hctx->type] : 0; 1684 struct dispatch_rq_data data = { 1685 .hctx = hctx, 1686 .rq = NULL, 1687 }; 1688 1689 __sbitmap_for_each_set(&hctx->ctx_map, off, 1690 dispatch_rq_from_ctx, &data); 1691 1692 return data.rq; 1693 } 1694 1695 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1696 { 1697 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1698 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1699 int tag; 1700 1701 blk_mq_tag_busy(rq->mq_hctx); 1702 1703 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1704 bt = &rq->mq_hctx->tags->breserved_tags; 1705 tag_offset = 0; 1706 } else { 1707 if (!hctx_may_queue(rq->mq_hctx, bt)) 1708 return false; 1709 } 1710 1711 tag = __sbitmap_queue_get(bt); 1712 if (tag == BLK_MQ_NO_TAG) 1713 return false; 1714 1715 rq->tag = tag + tag_offset; 1716 return true; 1717 } 1718 1719 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1720 { 1721 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1722 return false; 1723 1724 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1725 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1726 rq->rq_flags |= RQF_MQ_INFLIGHT; 1727 __blk_mq_inc_active_requests(hctx); 1728 } 1729 hctx->tags->rqs[rq->tag] = rq; 1730 return true; 1731 } 1732 1733 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1734 int flags, void *key) 1735 { 1736 struct blk_mq_hw_ctx *hctx; 1737 1738 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1739 1740 spin_lock(&hctx->dispatch_wait_lock); 1741 if (!list_empty(&wait->entry)) { 1742 struct sbitmap_queue *sbq; 1743 1744 list_del_init(&wait->entry); 1745 sbq = &hctx->tags->bitmap_tags; 1746 atomic_dec(&sbq->ws_active); 1747 } 1748 spin_unlock(&hctx->dispatch_wait_lock); 1749 1750 blk_mq_run_hw_queue(hctx, true); 1751 return 1; 1752 } 1753 1754 /* 1755 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1756 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1757 * restart. For both cases, take care to check the condition again after 1758 * marking us as waiting. 1759 */ 1760 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1761 struct request *rq) 1762 { 1763 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1764 struct wait_queue_head *wq; 1765 wait_queue_entry_t *wait; 1766 bool ret; 1767 1768 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1769 blk_mq_sched_mark_restart_hctx(hctx); 1770 1771 /* 1772 * It's possible that a tag was freed in the window between the 1773 * allocation failure and adding the hardware queue to the wait 1774 * queue. 1775 * 1776 * Don't clear RESTART here, someone else could have set it. 1777 * At most this will cost an extra queue run. 1778 */ 1779 return blk_mq_get_driver_tag(rq); 1780 } 1781 1782 wait = &hctx->dispatch_wait; 1783 if (!list_empty_careful(&wait->entry)) 1784 return false; 1785 1786 wq = &bt_wait_ptr(sbq, hctx)->wait; 1787 1788 spin_lock_irq(&wq->lock); 1789 spin_lock(&hctx->dispatch_wait_lock); 1790 if (!list_empty(&wait->entry)) { 1791 spin_unlock(&hctx->dispatch_wait_lock); 1792 spin_unlock_irq(&wq->lock); 1793 return false; 1794 } 1795 1796 atomic_inc(&sbq->ws_active); 1797 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1798 __add_wait_queue(wq, wait); 1799 1800 /* 1801 * It's possible that a tag was freed in the window between the 1802 * allocation failure and adding the hardware queue to the wait 1803 * queue. 1804 */ 1805 ret = blk_mq_get_driver_tag(rq); 1806 if (!ret) { 1807 spin_unlock(&hctx->dispatch_wait_lock); 1808 spin_unlock_irq(&wq->lock); 1809 return false; 1810 } 1811 1812 /* 1813 * We got a tag, remove ourselves from the wait queue to ensure 1814 * someone else gets the wakeup. 1815 */ 1816 list_del_init(&wait->entry); 1817 atomic_dec(&sbq->ws_active); 1818 spin_unlock(&hctx->dispatch_wait_lock); 1819 spin_unlock_irq(&wq->lock); 1820 1821 return true; 1822 } 1823 1824 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1825 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1826 /* 1827 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1828 * - EWMA is one simple way to compute running average value 1829 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1830 * - take 4 as factor for avoiding to get too small(0) result, and this 1831 * factor doesn't matter because EWMA decreases exponentially 1832 */ 1833 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1834 { 1835 unsigned int ewma; 1836 1837 ewma = hctx->dispatch_busy; 1838 1839 if (!ewma && !busy) 1840 return; 1841 1842 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1843 if (busy) 1844 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1845 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1846 1847 hctx->dispatch_busy = ewma; 1848 } 1849 1850 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1851 1852 static void blk_mq_handle_dev_resource(struct request *rq, 1853 struct list_head *list) 1854 { 1855 struct request *next = 1856 list_first_entry_or_null(list, struct request, queuelist); 1857 1858 /* 1859 * If an I/O scheduler has been configured and we got a driver tag for 1860 * the next request already, free it. 1861 */ 1862 if (next) 1863 blk_mq_put_driver_tag(next); 1864 1865 list_add(&rq->queuelist, list); 1866 __blk_mq_requeue_request(rq); 1867 } 1868 1869 static void blk_mq_handle_zone_resource(struct request *rq, 1870 struct list_head *zone_list) 1871 { 1872 /* 1873 * If we end up here it is because we cannot dispatch a request to a 1874 * specific zone due to LLD level zone-write locking or other zone 1875 * related resource not being available. In this case, set the request 1876 * aside in zone_list for retrying it later. 1877 */ 1878 list_add(&rq->queuelist, zone_list); 1879 __blk_mq_requeue_request(rq); 1880 } 1881 1882 enum prep_dispatch { 1883 PREP_DISPATCH_OK, 1884 PREP_DISPATCH_NO_TAG, 1885 PREP_DISPATCH_NO_BUDGET, 1886 }; 1887 1888 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1889 bool need_budget) 1890 { 1891 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1892 int budget_token = -1; 1893 1894 if (need_budget) { 1895 budget_token = blk_mq_get_dispatch_budget(rq->q); 1896 if (budget_token < 0) { 1897 blk_mq_put_driver_tag(rq); 1898 return PREP_DISPATCH_NO_BUDGET; 1899 } 1900 blk_mq_set_rq_budget_token(rq, budget_token); 1901 } 1902 1903 if (!blk_mq_get_driver_tag(rq)) { 1904 /* 1905 * The initial allocation attempt failed, so we need to 1906 * rerun the hardware queue when a tag is freed. The 1907 * waitqueue takes care of that. If the queue is run 1908 * before we add this entry back on the dispatch list, 1909 * we'll re-run it below. 1910 */ 1911 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1912 /* 1913 * All budgets not got from this function will be put 1914 * together during handling partial dispatch 1915 */ 1916 if (need_budget) 1917 blk_mq_put_dispatch_budget(rq->q, budget_token); 1918 return PREP_DISPATCH_NO_TAG; 1919 } 1920 } 1921 1922 return PREP_DISPATCH_OK; 1923 } 1924 1925 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1926 static void blk_mq_release_budgets(struct request_queue *q, 1927 struct list_head *list) 1928 { 1929 struct request *rq; 1930 1931 list_for_each_entry(rq, list, queuelist) { 1932 int budget_token = blk_mq_get_rq_budget_token(rq); 1933 1934 if (budget_token >= 0) 1935 blk_mq_put_dispatch_budget(q, budget_token); 1936 } 1937 } 1938 1939 /* 1940 * Returns true if we did some work AND can potentially do more. 1941 */ 1942 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1943 unsigned int nr_budgets) 1944 { 1945 enum prep_dispatch prep; 1946 struct request_queue *q = hctx->queue; 1947 struct request *rq, *nxt; 1948 int errors, queued; 1949 blk_status_t ret = BLK_STS_OK; 1950 LIST_HEAD(zone_list); 1951 bool needs_resource = false; 1952 1953 if (list_empty(list)) 1954 return false; 1955 1956 /* 1957 * Now process all the entries, sending them to the driver. 1958 */ 1959 errors = queued = 0; 1960 do { 1961 struct blk_mq_queue_data bd; 1962 1963 rq = list_first_entry(list, struct request, queuelist); 1964 1965 WARN_ON_ONCE(hctx != rq->mq_hctx); 1966 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1967 if (prep != PREP_DISPATCH_OK) 1968 break; 1969 1970 list_del_init(&rq->queuelist); 1971 1972 bd.rq = rq; 1973 1974 /* 1975 * Flag last if we have no more requests, or if we have more 1976 * but can't assign a driver tag to it. 1977 */ 1978 if (list_empty(list)) 1979 bd.last = true; 1980 else { 1981 nxt = list_first_entry(list, struct request, queuelist); 1982 bd.last = !blk_mq_get_driver_tag(nxt); 1983 } 1984 1985 /* 1986 * once the request is queued to lld, no need to cover the 1987 * budget any more 1988 */ 1989 if (nr_budgets) 1990 nr_budgets--; 1991 ret = q->mq_ops->queue_rq(hctx, &bd); 1992 switch (ret) { 1993 case BLK_STS_OK: 1994 queued++; 1995 break; 1996 case BLK_STS_RESOURCE: 1997 needs_resource = true; 1998 fallthrough; 1999 case BLK_STS_DEV_RESOURCE: 2000 blk_mq_handle_dev_resource(rq, list); 2001 goto out; 2002 case BLK_STS_ZONE_RESOURCE: 2003 /* 2004 * Move the request to zone_list and keep going through 2005 * the dispatch list to find more requests the drive can 2006 * accept. 2007 */ 2008 blk_mq_handle_zone_resource(rq, &zone_list); 2009 needs_resource = true; 2010 break; 2011 default: 2012 errors++; 2013 blk_mq_end_request(rq, ret); 2014 } 2015 } while (!list_empty(list)); 2016 out: 2017 if (!list_empty(&zone_list)) 2018 list_splice_tail_init(&zone_list, list); 2019 2020 /* If we didn't flush the entire list, we could have told the driver 2021 * there was more coming, but that turned out to be a lie. 2022 */ 2023 if ((!list_empty(list) || errors || needs_resource || 2024 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued) 2025 q->mq_ops->commit_rqs(hctx); 2026 /* 2027 * Any items that need requeuing? Stuff them into hctx->dispatch, 2028 * that is where we will continue on next queue run. 2029 */ 2030 if (!list_empty(list)) { 2031 bool needs_restart; 2032 /* For non-shared tags, the RESTART check will suffice */ 2033 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2034 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 2035 2036 if (nr_budgets) 2037 blk_mq_release_budgets(q, list); 2038 2039 spin_lock(&hctx->lock); 2040 list_splice_tail_init(list, &hctx->dispatch); 2041 spin_unlock(&hctx->lock); 2042 2043 /* 2044 * Order adding requests to hctx->dispatch and checking 2045 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2046 * in blk_mq_sched_restart(). Avoid restart code path to 2047 * miss the new added requests to hctx->dispatch, meantime 2048 * SCHED_RESTART is observed here. 2049 */ 2050 smp_mb(); 2051 2052 /* 2053 * If SCHED_RESTART was set by the caller of this function and 2054 * it is no longer set that means that it was cleared by another 2055 * thread and hence that a queue rerun is needed. 2056 * 2057 * If 'no_tag' is set, that means that we failed getting 2058 * a driver tag with an I/O scheduler attached. If our dispatch 2059 * waitqueue is no longer active, ensure that we run the queue 2060 * AFTER adding our entries back to the list. 2061 * 2062 * If no I/O scheduler has been configured it is possible that 2063 * the hardware queue got stopped and restarted before requests 2064 * were pushed back onto the dispatch list. Rerun the queue to 2065 * avoid starvation. Notes: 2066 * - blk_mq_run_hw_queue() checks whether or not a queue has 2067 * been stopped before rerunning a queue. 2068 * - Some but not all block drivers stop a queue before 2069 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2070 * and dm-rq. 2071 * 2072 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2073 * bit is set, run queue after a delay to avoid IO stalls 2074 * that could otherwise occur if the queue is idle. We'll do 2075 * similar if we couldn't get budget or couldn't lock a zone 2076 * and SCHED_RESTART is set. 2077 */ 2078 needs_restart = blk_mq_sched_needs_restart(hctx); 2079 if (prep == PREP_DISPATCH_NO_BUDGET) 2080 needs_resource = true; 2081 if (!needs_restart || 2082 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2083 blk_mq_run_hw_queue(hctx, true); 2084 else if (needs_resource) 2085 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2086 2087 blk_mq_update_dispatch_busy(hctx, true); 2088 return false; 2089 } else 2090 blk_mq_update_dispatch_busy(hctx, false); 2091 2092 return (queued + errors) != 0; 2093 } 2094 2095 /** 2096 * __blk_mq_run_hw_queue - Run a hardware queue. 2097 * @hctx: Pointer to the hardware queue to run. 2098 * 2099 * Send pending requests to the hardware. 2100 */ 2101 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2102 { 2103 /* 2104 * We can't run the queue inline with ints disabled. Ensure that 2105 * we catch bad users of this early. 2106 */ 2107 WARN_ON_ONCE(in_interrupt()); 2108 2109 blk_mq_run_dispatch_ops(hctx->queue, 2110 blk_mq_sched_dispatch_requests(hctx)); 2111 } 2112 2113 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2114 { 2115 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2116 2117 if (cpu >= nr_cpu_ids) 2118 cpu = cpumask_first(hctx->cpumask); 2119 return cpu; 2120 } 2121 2122 /* 2123 * It'd be great if the workqueue API had a way to pass 2124 * in a mask and had some smarts for more clever placement. 2125 * For now we just round-robin here, switching for every 2126 * BLK_MQ_CPU_WORK_BATCH queued items. 2127 */ 2128 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2129 { 2130 bool tried = false; 2131 int next_cpu = hctx->next_cpu; 2132 2133 if (hctx->queue->nr_hw_queues == 1) 2134 return WORK_CPU_UNBOUND; 2135 2136 if (--hctx->next_cpu_batch <= 0) { 2137 select_cpu: 2138 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2139 cpu_online_mask); 2140 if (next_cpu >= nr_cpu_ids) 2141 next_cpu = blk_mq_first_mapped_cpu(hctx); 2142 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2143 } 2144 2145 /* 2146 * Do unbound schedule if we can't find a online CPU for this hctx, 2147 * and it should only happen in the path of handling CPU DEAD. 2148 */ 2149 if (!cpu_online(next_cpu)) { 2150 if (!tried) { 2151 tried = true; 2152 goto select_cpu; 2153 } 2154 2155 /* 2156 * Make sure to re-select CPU next time once after CPUs 2157 * in hctx->cpumask become online again. 2158 */ 2159 hctx->next_cpu = next_cpu; 2160 hctx->next_cpu_batch = 1; 2161 return WORK_CPU_UNBOUND; 2162 } 2163 2164 hctx->next_cpu = next_cpu; 2165 return next_cpu; 2166 } 2167 2168 /** 2169 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2170 * @hctx: Pointer to the hardware queue to run. 2171 * @async: If we want to run the queue asynchronously. 2172 * @msecs: Milliseconds of delay to wait before running the queue. 2173 * 2174 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2175 * with a delay of @msecs. 2176 */ 2177 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2178 unsigned long msecs) 2179 { 2180 if (unlikely(blk_mq_hctx_stopped(hctx))) 2181 return; 2182 2183 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2184 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2185 __blk_mq_run_hw_queue(hctx); 2186 return; 2187 } 2188 } 2189 2190 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2191 msecs_to_jiffies(msecs)); 2192 } 2193 2194 /** 2195 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2196 * @hctx: Pointer to the hardware queue to run. 2197 * @msecs: Milliseconds of delay to wait before running the queue. 2198 * 2199 * Run a hardware queue asynchronously with a delay of @msecs. 2200 */ 2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2202 { 2203 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2204 } 2205 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2206 2207 /** 2208 * blk_mq_run_hw_queue - Start to run a hardware queue. 2209 * @hctx: Pointer to the hardware queue to run. 2210 * @async: If we want to run the queue asynchronously. 2211 * 2212 * Check if the request queue is not in a quiesced state and if there are 2213 * pending requests to be sent. If this is true, run the queue to send requests 2214 * to hardware. 2215 */ 2216 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2217 { 2218 bool need_run; 2219 2220 /* 2221 * When queue is quiesced, we may be switching io scheduler, or 2222 * updating nr_hw_queues, or other things, and we can't run queue 2223 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2224 * 2225 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2226 * quiesced. 2227 */ 2228 __blk_mq_run_dispatch_ops(hctx->queue, false, 2229 need_run = !blk_queue_quiesced(hctx->queue) && 2230 blk_mq_hctx_has_pending(hctx)); 2231 2232 if (need_run) 2233 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2234 } 2235 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2236 2237 /* 2238 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2239 * scheduler. 2240 */ 2241 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2242 { 2243 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2244 /* 2245 * If the IO scheduler does not respect hardware queues when 2246 * dispatching, we just don't bother with multiple HW queues and 2247 * dispatch from hctx for the current CPU since running multiple queues 2248 * just causes lock contention inside the scheduler and pointless cache 2249 * bouncing. 2250 */ 2251 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2252 2253 if (!blk_mq_hctx_stopped(hctx)) 2254 return hctx; 2255 return NULL; 2256 } 2257 2258 /** 2259 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2260 * @q: Pointer to the request queue to run. 2261 * @async: If we want to run the queue asynchronously. 2262 */ 2263 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2264 { 2265 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2266 unsigned long i; 2267 2268 sq_hctx = NULL; 2269 if (blk_queue_sq_sched(q)) 2270 sq_hctx = blk_mq_get_sq_hctx(q); 2271 queue_for_each_hw_ctx(q, hctx, i) { 2272 if (blk_mq_hctx_stopped(hctx)) 2273 continue; 2274 /* 2275 * Dispatch from this hctx either if there's no hctx preferred 2276 * by IO scheduler or if it has requests that bypass the 2277 * scheduler. 2278 */ 2279 if (!sq_hctx || sq_hctx == hctx || 2280 !list_empty_careful(&hctx->dispatch)) 2281 blk_mq_run_hw_queue(hctx, async); 2282 } 2283 } 2284 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2285 2286 /** 2287 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2288 * @q: Pointer to the request queue to run. 2289 * @msecs: Milliseconds of delay to wait before running the queues. 2290 */ 2291 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2292 { 2293 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2294 unsigned long i; 2295 2296 sq_hctx = NULL; 2297 if (blk_queue_sq_sched(q)) 2298 sq_hctx = blk_mq_get_sq_hctx(q); 2299 queue_for_each_hw_ctx(q, hctx, i) { 2300 if (blk_mq_hctx_stopped(hctx)) 2301 continue; 2302 /* 2303 * If there is already a run_work pending, leave the 2304 * pending delay untouched. Otherwise, a hctx can stall 2305 * if another hctx is re-delaying the other's work 2306 * before the work executes. 2307 */ 2308 if (delayed_work_pending(&hctx->run_work)) 2309 continue; 2310 /* 2311 * Dispatch from this hctx either if there's no hctx preferred 2312 * by IO scheduler or if it has requests that bypass the 2313 * scheduler. 2314 */ 2315 if (!sq_hctx || sq_hctx == hctx || 2316 !list_empty_careful(&hctx->dispatch)) 2317 blk_mq_delay_run_hw_queue(hctx, msecs); 2318 } 2319 } 2320 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2321 2322 /* 2323 * This function is often used for pausing .queue_rq() by driver when 2324 * there isn't enough resource or some conditions aren't satisfied, and 2325 * BLK_STS_RESOURCE is usually returned. 2326 * 2327 * We do not guarantee that dispatch can be drained or blocked 2328 * after blk_mq_stop_hw_queue() returns. Please use 2329 * blk_mq_quiesce_queue() for that requirement. 2330 */ 2331 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2332 { 2333 cancel_delayed_work(&hctx->run_work); 2334 2335 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2336 } 2337 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2338 2339 /* 2340 * This function is often used for pausing .queue_rq() by driver when 2341 * there isn't enough resource or some conditions aren't satisfied, and 2342 * BLK_STS_RESOURCE is usually returned. 2343 * 2344 * We do not guarantee that dispatch can be drained or blocked 2345 * after blk_mq_stop_hw_queues() returns. Please use 2346 * blk_mq_quiesce_queue() for that requirement. 2347 */ 2348 void blk_mq_stop_hw_queues(struct request_queue *q) 2349 { 2350 struct blk_mq_hw_ctx *hctx; 2351 unsigned long i; 2352 2353 queue_for_each_hw_ctx(q, hctx, i) 2354 blk_mq_stop_hw_queue(hctx); 2355 } 2356 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2357 2358 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2359 { 2360 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2361 2362 blk_mq_run_hw_queue(hctx, false); 2363 } 2364 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2365 2366 void blk_mq_start_hw_queues(struct request_queue *q) 2367 { 2368 struct blk_mq_hw_ctx *hctx; 2369 unsigned long i; 2370 2371 queue_for_each_hw_ctx(q, hctx, i) 2372 blk_mq_start_hw_queue(hctx); 2373 } 2374 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2375 2376 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2377 { 2378 if (!blk_mq_hctx_stopped(hctx)) 2379 return; 2380 2381 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2382 blk_mq_run_hw_queue(hctx, async); 2383 } 2384 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2385 2386 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2387 { 2388 struct blk_mq_hw_ctx *hctx; 2389 unsigned long i; 2390 2391 queue_for_each_hw_ctx(q, hctx, i) 2392 blk_mq_start_stopped_hw_queue(hctx, async); 2393 } 2394 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2395 2396 static void blk_mq_run_work_fn(struct work_struct *work) 2397 { 2398 struct blk_mq_hw_ctx *hctx; 2399 2400 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2401 2402 /* 2403 * If we are stopped, don't run the queue. 2404 */ 2405 if (blk_mq_hctx_stopped(hctx)) 2406 return; 2407 2408 __blk_mq_run_hw_queue(hctx); 2409 } 2410 2411 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2412 struct request *rq, 2413 bool at_head) 2414 { 2415 struct blk_mq_ctx *ctx = rq->mq_ctx; 2416 enum hctx_type type = hctx->type; 2417 2418 lockdep_assert_held(&ctx->lock); 2419 2420 trace_block_rq_insert(rq); 2421 2422 if (at_head) 2423 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2424 else 2425 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2426 } 2427 2428 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2429 bool at_head) 2430 { 2431 struct blk_mq_ctx *ctx = rq->mq_ctx; 2432 2433 lockdep_assert_held(&ctx->lock); 2434 2435 __blk_mq_insert_req_list(hctx, rq, at_head); 2436 blk_mq_hctx_mark_pending(hctx, ctx); 2437 } 2438 2439 /** 2440 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2441 * @rq: Pointer to request to be inserted. 2442 * @at_head: true if the request should be inserted at the head of the list. 2443 * @run_queue: If we should run the hardware queue after inserting the request. 2444 * 2445 * Should only be used carefully, when the caller knows we want to 2446 * bypass a potential IO scheduler on the target device. 2447 */ 2448 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2449 bool run_queue) 2450 { 2451 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2452 2453 spin_lock(&hctx->lock); 2454 if (at_head) 2455 list_add(&rq->queuelist, &hctx->dispatch); 2456 else 2457 list_add_tail(&rq->queuelist, &hctx->dispatch); 2458 spin_unlock(&hctx->lock); 2459 2460 if (run_queue) 2461 blk_mq_run_hw_queue(hctx, false); 2462 } 2463 2464 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2465 struct list_head *list) 2466 2467 { 2468 struct request *rq; 2469 enum hctx_type type = hctx->type; 2470 2471 /* 2472 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2473 * offline now 2474 */ 2475 list_for_each_entry(rq, list, queuelist) { 2476 BUG_ON(rq->mq_ctx != ctx); 2477 trace_block_rq_insert(rq); 2478 } 2479 2480 spin_lock(&ctx->lock); 2481 list_splice_tail_init(list, &ctx->rq_lists[type]); 2482 blk_mq_hctx_mark_pending(hctx, ctx); 2483 spin_unlock(&ctx->lock); 2484 } 2485 2486 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2487 bool from_schedule) 2488 { 2489 if (hctx->queue->mq_ops->commit_rqs) { 2490 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2491 hctx->queue->mq_ops->commit_rqs(hctx); 2492 } 2493 *queued = 0; 2494 } 2495 2496 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2497 unsigned int nr_segs) 2498 { 2499 int err; 2500 2501 if (bio->bi_opf & REQ_RAHEAD) 2502 rq->cmd_flags |= REQ_FAILFAST_MASK; 2503 2504 rq->__sector = bio->bi_iter.bi_sector; 2505 blk_rq_bio_prep(rq, bio, nr_segs); 2506 2507 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2508 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2509 WARN_ON_ONCE(err); 2510 2511 blk_account_io_start(rq); 2512 } 2513 2514 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2515 struct request *rq, bool last) 2516 { 2517 struct request_queue *q = rq->q; 2518 struct blk_mq_queue_data bd = { 2519 .rq = rq, 2520 .last = last, 2521 }; 2522 blk_status_t ret; 2523 2524 /* 2525 * For OK queue, we are done. For error, caller may kill it. 2526 * Any other error (busy), just add it to our list as we 2527 * previously would have done. 2528 */ 2529 ret = q->mq_ops->queue_rq(hctx, &bd); 2530 switch (ret) { 2531 case BLK_STS_OK: 2532 blk_mq_update_dispatch_busy(hctx, false); 2533 break; 2534 case BLK_STS_RESOURCE: 2535 case BLK_STS_DEV_RESOURCE: 2536 blk_mq_update_dispatch_busy(hctx, true); 2537 __blk_mq_requeue_request(rq); 2538 break; 2539 default: 2540 blk_mq_update_dispatch_busy(hctx, false); 2541 break; 2542 } 2543 2544 return ret; 2545 } 2546 2547 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2548 struct request *rq, 2549 bool bypass_insert, bool last) 2550 { 2551 struct request_queue *q = rq->q; 2552 bool run_queue = true; 2553 int budget_token; 2554 2555 /* 2556 * RCU or SRCU read lock is needed before checking quiesced flag. 2557 * 2558 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2559 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2560 * and avoid driver to try to dispatch again. 2561 */ 2562 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2563 run_queue = false; 2564 bypass_insert = false; 2565 goto insert; 2566 } 2567 2568 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2569 goto insert; 2570 2571 budget_token = blk_mq_get_dispatch_budget(q); 2572 if (budget_token < 0) 2573 goto insert; 2574 2575 blk_mq_set_rq_budget_token(rq, budget_token); 2576 2577 if (!blk_mq_get_driver_tag(rq)) { 2578 blk_mq_put_dispatch_budget(q, budget_token); 2579 goto insert; 2580 } 2581 2582 return __blk_mq_issue_directly(hctx, rq, last); 2583 insert: 2584 if (bypass_insert) 2585 return BLK_STS_RESOURCE; 2586 2587 blk_mq_sched_insert_request(rq, false, run_queue, false); 2588 2589 return BLK_STS_OK; 2590 } 2591 2592 /** 2593 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2594 * @hctx: Pointer of the associated hardware queue. 2595 * @rq: Pointer to request to be sent. 2596 * 2597 * If the device has enough resources to accept a new request now, send the 2598 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2599 * we can try send it another time in the future. Requests inserted at this 2600 * queue have higher priority. 2601 */ 2602 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2603 struct request *rq) 2604 { 2605 blk_status_t ret = 2606 __blk_mq_try_issue_directly(hctx, rq, false, true); 2607 2608 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2609 blk_mq_request_bypass_insert(rq, false, true); 2610 else if (ret != BLK_STS_OK) 2611 blk_mq_end_request(rq, ret); 2612 } 2613 2614 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2615 { 2616 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2617 } 2618 2619 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2620 { 2621 struct blk_mq_hw_ctx *hctx = NULL; 2622 struct request *rq; 2623 int queued = 0; 2624 int errors = 0; 2625 2626 while ((rq = rq_list_pop(&plug->mq_list))) { 2627 bool last = rq_list_empty(plug->mq_list); 2628 blk_status_t ret; 2629 2630 if (hctx != rq->mq_hctx) { 2631 if (hctx) 2632 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2633 hctx = rq->mq_hctx; 2634 } 2635 2636 ret = blk_mq_request_issue_directly(rq, last); 2637 switch (ret) { 2638 case BLK_STS_OK: 2639 queued++; 2640 break; 2641 case BLK_STS_RESOURCE: 2642 case BLK_STS_DEV_RESOURCE: 2643 blk_mq_request_bypass_insert(rq, false, true); 2644 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2645 return; 2646 default: 2647 blk_mq_end_request(rq, ret); 2648 errors++; 2649 break; 2650 } 2651 } 2652 2653 /* 2654 * If we didn't flush the entire list, we could have told the driver 2655 * there was more coming, but that turned out to be a lie. 2656 */ 2657 if (errors) 2658 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2659 } 2660 2661 static void __blk_mq_flush_plug_list(struct request_queue *q, 2662 struct blk_plug *plug) 2663 { 2664 if (blk_queue_quiesced(q)) 2665 return; 2666 q->mq_ops->queue_rqs(&plug->mq_list); 2667 } 2668 2669 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2670 { 2671 struct blk_mq_hw_ctx *this_hctx = NULL; 2672 struct blk_mq_ctx *this_ctx = NULL; 2673 struct request *requeue_list = NULL; 2674 unsigned int depth = 0; 2675 LIST_HEAD(list); 2676 2677 do { 2678 struct request *rq = rq_list_pop(&plug->mq_list); 2679 2680 if (!this_hctx) { 2681 this_hctx = rq->mq_hctx; 2682 this_ctx = rq->mq_ctx; 2683 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2684 rq_list_add(&requeue_list, rq); 2685 continue; 2686 } 2687 list_add_tail(&rq->queuelist, &list); 2688 depth++; 2689 } while (!rq_list_empty(plug->mq_list)); 2690 2691 plug->mq_list = requeue_list; 2692 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2693 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2694 } 2695 2696 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2697 { 2698 struct request *rq; 2699 2700 if (rq_list_empty(plug->mq_list)) 2701 return; 2702 plug->rq_count = 0; 2703 2704 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2705 struct request_queue *q; 2706 2707 rq = rq_list_peek(&plug->mq_list); 2708 q = rq->q; 2709 2710 /* 2711 * Peek first request and see if we have a ->queue_rqs() hook. 2712 * If we do, we can dispatch the whole plug list in one go. We 2713 * already know at this point that all requests belong to the 2714 * same queue, caller must ensure that's the case. 2715 * 2716 * Since we pass off the full list to the driver at this point, 2717 * we do not increment the active request count for the queue. 2718 * Bypass shared tags for now because of that. 2719 */ 2720 if (q->mq_ops->queue_rqs && 2721 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2722 blk_mq_run_dispatch_ops(q, 2723 __blk_mq_flush_plug_list(q, plug)); 2724 if (rq_list_empty(plug->mq_list)) 2725 return; 2726 } 2727 2728 blk_mq_run_dispatch_ops(q, 2729 blk_mq_plug_issue_direct(plug, false)); 2730 if (rq_list_empty(plug->mq_list)) 2731 return; 2732 } 2733 2734 do { 2735 blk_mq_dispatch_plug_list(plug, from_schedule); 2736 } while (!rq_list_empty(plug->mq_list)); 2737 } 2738 2739 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2740 struct list_head *list) 2741 { 2742 int queued = 0; 2743 int errors = 0; 2744 2745 while (!list_empty(list)) { 2746 blk_status_t ret; 2747 struct request *rq = list_first_entry(list, struct request, 2748 queuelist); 2749 2750 list_del_init(&rq->queuelist); 2751 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2752 if (ret != BLK_STS_OK) { 2753 errors++; 2754 if (ret == BLK_STS_RESOURCE || 2755 ret == BLK_STS_DEV_RESOURCE) { 2756 blk_mq_request_bypass_insert(rq, false, 2757 list_empty(list)); 2758 break; 2759 } 2760 blk_mq_end_request(rq, ret); 2761 } else 2762 queued++; 2763 } 2764 2765 /* 2766 * If we didn't flush the entire list, we could have told 2767 * the driver there was more coming, but that turned out to 2768 * be a lie. 2769 */ 2770 if ((!list_empty(list) || errors) && 2771 hctx->queue->mq_ops->commit_rqs && queued) 2772 hctx->queue->mq_ops->commit_rqs(hctx); 2773 } 2774 2775 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2776 struct bio *bio, unsigned int nr_segs) 2777 { 2778 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2779 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2780 return true; 2781 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2782 return true; 2783 } 2784 return false; 2785 } 2786 2787 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2788 struct blk_plug *plug, 2789 struct bio *bio, 2790 unsigned int nsegs) 2791 { 2792 struct blk_mq_alloc_data data = { 2793 .q = q, 2794 .nr_tags = 1, 2795 .cmd_flags = bio->bi_opf, 2796 }; 2797 struct request *rq; 2798 2799 if (unlikely(bio_queue_enter(bio))) 2800 return NULL; 2801 2802 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2803 goto queue_exit; 2804 2805 rq_qos_throttle(q, bio); 2806 2807 if (plug) { 2808 data.nr_tags = plug->nr_ios; 2809 plug->nr_ios = 1; 2810 data.cached_rq = &plug->cached_rq; 2811 } 2812 2813 rq = __blk_mq_alloc_requests(&data); 2814 if (rq) 2815 return rq; 2816 rq_qos_cleanup(q, bio); 2817 if (bio->bi_opf & REQ_NOWAIT) 2818 bio_wouldblock_error(bio); 2819 queue_exit: 2820 blk_queue_exit(q); 2821 return NULL; 2822 } 2823 2824 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2825 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2826 { 2827 struct request *rq; 2828 2829 if (!plug) 2830 return NULL; 2831 rq = rq_list_peek(&plug->cached_rq); 2832 if (!rq || rq->q != q) 2833 return NULL; 2834 2835 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2836 *bio = NULL; 2837 return NULL; 2838 } 2839 2840 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) 2841 return NULL; 2842 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2843 return NULL; 2844 2845 /* 2846 * If any qos ->throttle() end up blocking, we will have flushed the 2847 * plug and hence killed the cached_rq list as well. Pop this entry 2848 * before we throttle. 2849 */ 2850 plug->cached_rq = rq_list_next(rq); 2851 rq_qos_throttle(q, *bio); 2852 2853 rq->cmd_flags = (*bio)->bi_opf; 2854 INIT_LIST_HEAD(&rq->queuelist); 2855 return rq; 2856 } 2857 2858 static void bio_set_ioprio(struct bio *bio) 2859 { 2860 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2861 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2862 bio->bi_ioprio = get_current_ioprio(); 2863 blkcg_set_ioprio(bio); 2864 } 2865 2866 /** 2867 * blk_mq_submit_bio - Create and send a request to block device. 2868 * @bio: Bio pointer. 2869 * 2870 * Builds up a request structure from @q and @bio and send to the device. The 2871 * request may not be queued directly to hardware if: 2872 * * This request can be merged with another one 2873 * * We want to place request at plug queue for possible future merging 2874 * * There is an IO scheduler active at this queue 2875 * 2876 * It will not queue the request if there is an error with the bio, or at the 2877 * request creation. 2878 */ 2879 void blk_mq_submit_bio(struct bio *bio) 2880 { 2881 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2882 struct blk_plug *plug = blk_mq_plug(bio); 2883 const int is_sync = op_is_sync(bio->bi_opf); 2884 struct request *rq; 2885 unsigned int nr_segs = 1; 2886 blk_status_t ret; 2887 2888 bio = blk_queue_bounce(bio, q); 2889 if (bio_may_exceed_limits(bio, &q->limits)) 2890 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2891 2892 if (!bio_integrity_prep(bio)) 2893 return; 2894 2895 bio_set_ioprio(bio); 2896 2897 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2898 if (!rq) { 2899 if (!bio) 2900 return; 2901 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2902 if (unlikely(!rq)) 2903 return; 2904 } 2905 2906 trace_block_getrq(bio); 2907 2908 rq_qos_track(q, rq, bio); 2909 2910 blk_mq_bio_to_request(rq, bio, nr_segs); 2911 2912 ret = blk_crypto_init_request(rq); 2913 if (ret != BLK_STS_OK) { 2914 bio->bi_status = ret; 2915 bio_endio(bio); 2916 blk_mq_free_request(rq); 2917 return; 2918 } 2919 2920 if (op_is_flush(bio->bi_opf)) { 2921 blk_insert_flush(rq); 2922 return; 2923 } 2924 2925 if (plug) 2926 blk_add_rq_to_plug(plug, rq); 2927 else if ((rq->rq_flags & RQF_ELV) || 2928 (rq->mq_hctx->dispatch_busy && 2929 (q->nr_hw_queues == 1 || !is_sync))) 2930 blk_mq_sched_insert_request(rq, false, true, true); 2931 else 2932 blk_mq_run_dispatch_ops(rq->q, 2933 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2934 } 2935 2936 #ifdef CONFIG_BLK_MQ_STACKING 2937 /** 2938 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2939 * @rq: the request being queued 2940 */ 2941 blk_status_t blk_insert_cloned_request(struct request *rq) 2942 { 2943 struct request_queue *q = rq->q; 2944 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 2945 blk_status_t ret; 2946 2947 if (blk_rq_sectors(rq) > max_sectors) { 2948 /* 2949 * SCSI device does not have a good way to return if 2950 * Write Same/Zero is actually supported. If a device rejects 2951 * a non-read/write command (discard, write same,etc.) the 2952 * low-level device driver will set the relevant queue limit to 2953 * 0 to prevent blk-lib from issuing more of the offending 2954 * operations. Commands queued prior to the queue limit being 2955 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 2956 * errors being propagated to upper layers. 2957 */ 2958 if (max_sectors == 0) 2959 return BLK_STS_NOTSUPP; 2960 2961 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 2962 __func__, blk_rq_sectors(rq), max_sectors); 2963 return BLK_STS_IOERR; 2964 } 2965 2966 /* 2967 * The queue settings related to segment counting may differ from the 2968 * original queue. 2969 */ 2970 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 2971 if (rq->nr_phys_segments > queue_max_segments(q)) { 2972 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 2973 __func__, rq->nr_phys_segments, queue_max_segments(q)); 2974 return BLK_STS_IOERR; 2975 } 2976 2977 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 2978 return BLK_STS_IOERR; 2979 2980 if (blk_crypto_insert_cloned_request(rq)) 2981 return BLK_STS_IOERR; 2982 2983 blk_account_io_start(rq); 2984 2985 /* 2986 * Since we have a scheduler attached on the top device, 2987 * bypass a potential scheduler on the bottom device for 2988 * insert. 2989 */ 2990 blk_mq_run_dispatch_ops(q, 2991 ret = blk_mq_request_issue_directly(rq, true)); 2992 if (ret) 2993 blk_account_io_done(rq, ktime_get_ns()); 2994 return ret; 2995 } 2996 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2997 2998 /** 2999 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3000 * @rq: the clone request to be cleaned up 3001 * 3002 * Description: 3003 * Free all bios in @rq for a cloned request. 3004 */ 3005 void blk_rq_unprep_clone(struct request *rq) 3006 { 3007 struct bio *bio; 3008 3009 while ((bio = rq->bio) != NULL) { 3010 rq->bio = bio->bi_next; 3011 3012 bio_put(bio); 3013 } 3014 } 3015 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3016 3017 /** 3018 * blk_rq_prep_clone - Helper function to setup clone request 3019 * @rq: the request to be setup 3020 * @rq_src: original request to be cloned 3021 * @bs: bio_set that bios for clone are allocated from 3022 * @gfp_mask: memory allocation mask for bio 3023 * @bio_ctr: setup function to be called for each clone bio. 3024 * Returns %0 for success, non %0 for failure. 3025 * @data: private data to be passed to @bio_ctr 3026 * 3027 * Description: 3028 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3029 * Also, pages which the original bios are pointing to are not copied 3030 * and the cloned bios just point same pages. 3031 * So cloned bios must be completed before original bios, which means 3032 * the caller must complete @rq before @rq_src. 3033 */ 3034 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3035 struct bio_set *bs, gfp_t gfp_mask, 3036 int (*bio_ctr)(struct bio *, struct bio *, void *), 3037 void *data) 3038 { 3039 struct bio *bio, *bio_src; 3040 3041 if (!bs) 3042 bs = &fs_bio_set; 3043 3044 __rq_for_each_bio(bio_src, rq_src) { 3045 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3046 bs); 3047 if (!bio) 3048 goto free_and_out; 3049 3050 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3051 goto free_and_out; 3052 3053 if (rq->bio) { 3054 rq->biotail->bi_next = bio; 3055 rq->biotail = bio; 3056 } else { 3057 rq->bio = rq->biotail = bio; 3058 } 3059 bio = NULL; 3060 } 3061 3062 /* Copy attributes of the original request to the clone request. */ 3063 rq->__sector = blk_rq_pos(rq_src); 3064 rq->__data_len = blk_rq_bytes(rq_src); 3065 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3066 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3067 rq->special_vec = rq_src->special_vec; 3068 } 3069 rq->nr_phys_segments = rq_src->nr_phys_segments; 3070 rq->ioprio = rq_src->ioprio; 3071 3072 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3073 goto free_and_out; 3074 3075 return 0; 3076 3077 free_and_out: 3078 if (bio) 3079 bio_put(bio); 3080 blk_rq_unprep_clone(rq); 3081 3082 return -ENOMEM; 3083 } 3084 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3085 #endif /* CONFIG_BLK_MQ_STACKING */ 3086 3087 /* 3088 * Steal bios from a request and add them to a bio list. 3089 * The request must not have been partially completed before. 3090 */ 3091 void blk_steal_bios(struct bio_list *list, struct request *rq) 3092 { 3093 if (rq->bio) { 3094 if (list->tail) 3095 list->tail->bi_next = rq->bio; 3096 else 3097 list->head = rq->bio; 3098 list->tail = rq->biotail; 3099 3100 rq->bio = NULL; 3101 rq->biotail = NULL; 3102 } 3103 3104 rq->__data_len = 0; 3105 } 3106 EXPORT_SYMBOL_GPL(blk_steal_bios); 3107 3108 static size_t order_to_size(unsigned int order) 3109 { 3110 return (size_t)PAGE_SIZE << order; 3111 } 3112 3113 /* called before freeing request pool in @tags */ 3114 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3115 struct blk_mq_tags *tags) 3116 { 3117 struct page *page; 3118 unsigned long flags; 3119 3120 /* 3121 * There is no need to clear mapping if driver tags is not initialized 3122 * or the mapping belongs to the driver tags. 3123 */ 3124 if (!drv_tags || drv_tags == tags) 3125 return; 3126 3127 list_for_each_entry(page, &tags->page_list, lru) { 3128 unsigned long start = (unsigned long)page_address(page); 3129 unsigned long end = start + order_to_size(page->private); 3130 int i; 3131 3132 for (i = 0; i < drv_tags->nr_tags; i++) { 3133 struct request *rq = drv_tags->rqs[i]; 3134 unsigned long rq_addr = (unsigned long)rq; 3135 3136 if (rq_addr >= start && rq_addr < end) { 3137 WARN_ON_ONCE(req_ref_read(rq) != 0); 3138 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3139 } 3140 } 3141 } 3142 3143 /* 3144 * Wait until all pending iteration is done. 3145 * 3146 * Request reference is cleared and it is guaranteed to be observed 3147 * after the ->lock is released. 3148 */ 3149 spin_lock_irqsave(&drv_tags->lock, flags); 3150 spin_unlock_irqrestore(&drv_tags->lock, flags); 3151 } 3152 3153 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3154 unsigned int hctx_idx) 3155 { 3156 struct blk_mq_tags *drv_tags; 3157 struct page *page; 3158 3159 if (list_empty(&tags->page_list)) 3160 return; 3161 3162 if (blk_mq_is_shared_tags(set->flags)) 3163 drv_tags = set->shared_tags; 3164 else 3165 drv_tags = set->tags[hctx_idx]; 3166 3167 if (tags->static_rqs && set->ops->exit_request) { 3168 int i; 3169 3170 for (i = 0; i < tags->nr_tags; i++) { 3171 struct request *rq = tags->static_rqs[i]; 3172 3173 if (!rq) 3174 continue; 3175 set->ops->exit_request(set, rq, hctx_idx); 3176 tags->static_rqs[i] = NULL; 3177 } 3178 } 3179 3180 blk_mq_clear_rq_mapping(drv_tags, tags); 3181 3182 while (!list_empty(&tags->page_list)) { 3183 page = list_first_entry(&tags->page_list, struct page, lru); 3184 list_del_init(&page->lru); 3185 /* 3186 * Remove kmemleak object previously allocated in 3187 * blk_mq_alloc_rqs(). 3188 */ 3189 kmemleak_free(page_address(page)); 3190 __free_pages(page, page->private); 3191 } 3192 } 3193 3194 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3195 { 3196 kfree(tags->rqs); 3197 tags->rqs = NULL; 3198 kfree(tags->static_rqs); 3199 tags->static_rqs = NULL; 3200 3201 blk_mq_free_tags(tags); 3202 } 3203 3204 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3205 unsigned int hctx_idx) 3206 { 3207 int i; 3208 3209 for (i = 0; i < set->nr_maps; i++) { 3210 unsigned int start = set->map[i].queue_offset; 3211 unsigned int end = start + set->map[i].nr_queues; 3212 3213 if (hctx_idx >= start && hctx_idx < end) 3214 break; 3215 } 3216 3217 if (i >= set->nr_maps) 3218 i = HCTX_TYPE_DEFAULT; 3219 3220 return i; 3221 } 3222 3223 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3224 unsigned int hctx_idx) 3225 { 3226 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3227 3228 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3229 } 3230 3231 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3232 unsigned int hctx_idx, 3233 unsigned int nr_tags, 3234 unsigned int reserved_tags) 3235 { 3236 int node = blk_mq_get_hctx_node(set, hctx_idx); 3237 struct blk_mq_tags *tags; 3238 3239 if (node == NUMA_NO_NODE) 3240 node = set->numa_node; 3241 3242 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3243 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3244 if (!tags) 3245 return NULL; 3246 3247 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3248 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3249 node); 3250 if (!tags->rqs) { 3251 blk_mq_free_tags(tags); 3252 return NULL; 3253 } 3254 3255 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3256 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3257 node); 3258 if (!tags->static_rqs) { 3259 kfree(tags->rqs); 3260 blk_mq_free_tags(tags); 3261 return NULL; 3262 } 3263 3264 return tags; 3265 } 3266 3267 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3268 unsigned int hctx_idx, int node) 3269 { 3270 int ret; 3271 3272 if (set->ops->init_request) { 3273 ret = set->ops->init_request(set, rq, hctx_idx, node); 3274 if (ret) 3275 return ret; 3276 } 3277 3278 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3279 return 0; 3280 } 3281 3282 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3283 struct blk_mq_tags *tags, 3284 unsigned int hctx_idx, unsigned int depth) 3285 { 3286 unsigned int i, j, entries_per_page, max_order = 4; 3287 int node = blk_mq_get_hctx_node(set, hctx_idx); 3288 size_t rq_size, left; 3289 3290 if (node == NUMA_NO_NODE) 3291 node = set->numa_node; 3292 3293 INIT_LIST_HEAD(&tags->page_list); 3294 3295 /* 3296 * rq_size is the size of the request plus driver payload, rounded 3297 * to the cacheline size 3298 */ 3299 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3300 cache_line_size()); 3301 left = rq_size * depth; 3302 3303 for (i = 0; i < depth; ) { 3304 int this_order = max_order; 3305 struct page *page; 3306 int to_do; 3307 void *p; 3308 3309 while (this_order && left < order_to_size(this_order - 1)) 3310 this_order--; 3311 3312 do { 3313 page = alloc_pages_node(node, 3314 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3315 this_order); 3316 if (page) 3317 break; 3318 if (!this_order--) 3319 break; 3320 if (order_to_size(this_order) < rq_size) 3321 break; 3322 } while (1); 3323 3324 if (!page) 3325 goto fail; 3326 3327 page->private = this_order; 3328 list_add_tail(&page->lru, &tags->page_list); 3329 3330 p = page_address(page); 3331 /* 3332 * Allow kmemleak to scan these pages as they contain pointers 3333 * to additional allocations like via ops->init_request(). 3334 */ 3335 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3336 entries_per_page = order_to_size(this_order) / rq_size; 3337 to_do = min(entries_per_page, depth - i); 3338 left -= to_do * rq_size; 3339 for (j = 0; j < to_do; j++) { 3340 struct request *rq = p; 3341 3342 tags->static_rqs[i] = rq; 3343 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3344 tags->static_rqs[i] = NULL; 3345 goto fail; 3346 } 3347 3348 p += rq_size; 3349 i++; 3350 } 3351 } 3352 return 0; 3353 3354 fail: 3355 blk_mq_free_rqs(set, tags, hctx_idx); 3356 return -ENOMEM; 3357 } 3358 3359 struct rq_iter_data { 3360 struct blk_mq_hw_ctx *hctx; 3361 bool has_rq; 3362 }; 3363 3364 static bool blk_mq_has_request(struct request *rq, void *data) 3365 { 3366 struct rq_iter_data *iter_data = data; 3367 3368 if (rq->mq_hctx != iter_data->hctx) 3369 return true; 3370 iter_data->has_rq = true; 3371 return false; 3372 } 3373 3374 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3375 { 3376 struct blk_mq_tags *tags = hctx->sched_tags ? 3377 hctx->sched_tags : hctx->tags; 3378 struct rq_iter_data data = { 3379 .hctx = hctx, 3380 }; 3381 3382 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3383 return data.has_rq; 3384 } 3385 3386 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3387 struct blk_mq_hw_ctx *hctx) 3388 { 3389 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3390 return false; 3391 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3392 return false; 3393 return true; 3394 } 3395 3396 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3397 { 3398 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3399 struct blk_mq_hw_ctx, cpuhp_online); 3400 3401 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3402 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3403 return 0; 3404 3405 /* 3406 * Prevent new request from being allocated on the current hctx. 3407 * 3408 * The smp_mb__after_atomic() Pairs with the implied barrier in 3409 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3410 * seen once we return from the tag allocator. 3411 */ 3412 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3413 smp_mb__after_atomic(); 3414 3415 /* 3416 * Try to grab a reference to the queue and wait for any outstanding 3417 * requests. If we could not grab a reference the queue has been 3418 * frozen and there are no requests. 3419 */ 3420 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3421 while (blk_mq_hctx_has_requests(hctx)) 3422 msleep(5); 3423 percpu_ref_put(&hctx->queue->q_usage_counter); 3424 } 3425 3426 return 0; 3427 } 3428 3429 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3430 { 3431 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3432 struct blk_mq_hw_ctx, cpuhp_online); 3433 3434 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3435 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3436 return 0; 3437 } 3438 3439 /* 3440 * 'cpu' is going away. splice any existing rq_list entries from this 3441 * software queue to the hw queue dispatch list, and ensure that it 3442 * gets run. 3443 */ 3444 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3445 { 3446 struct blk_mq_hw_ctx *hctx; 3447 struct blk_mq_ctx *ctx; 3448 LIST_HEAD(tmp); 3449 enum hctx_type type; 3450 3451 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3452 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3453 return 0; 3454 3455 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3456 type = hctx->type; 3457 3458 spin_lock(&ctx->lock); 3459 if (!list_empty(&ctx->rq_lists[type])) { 3460 list_splice_init(&ctx->rq_lists[type], &tmp); 3461 blk_mq_hctx_clear_pending(hctx, ctx); 3462 } 3463 spin_unlock(&ctx->lock); 3464 3465 if (list_empty(&tmp)) 3466 return 0; 3467 3468 spin_lock(&hctx->lock); 3469 list_splice_tail_init(&tmp, &hctx->dispatch); 3470 spin_unlock(&hctx->lock); 3471 3472 blk_mq_run_hw_queue(hctx, true); 3473 return 0; 3474 } 3475 3476 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3477 { 3478 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3479 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3480 &hctx->cpuhp_online); 3481 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3482 &hctx->cpuhp_dead); 3483 } 3484 3485 /* 3486 * Before freeing hw queue, clearing the flush request reference in 3487 * tags->rqs[] for avoiding potential UAF. 3488 */ 3489 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3490 unsigned int queue_depth, struct request *flush_rq) 3491 { 3492 int i; 3493 unsigned long flags; 3494 3495 /* The hw queue may not be mapped yet */ 3496 if (!tags) 3497 return; 3498 3499 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3500 3501 for (i = 0; i < queue_depth; i++) 3502 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3503 3504 /* 3505 * Wait until all pending iteration is done. 3506 * 3507 * Request reference is cleared and it is guaranteed to be observed 3508 * after the ->lock is released. 3509 */ 3510 spin_lock_irqsave(&tags->lock, flags); 3511 spin_unlock_irqrestore(&tags->lock, flags); 3512 } 3513 3514 /* hctx->ctxs will be freed in queue's release handler */ 3515 static void blk_mq_exit_hctx(struct request_queue *q, 3516 struct blk_mq_tag_set *set, 3517 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3518 { 3519 struct request *flush_rq = hctx->fq->flush_rq; 3520 3521 if (blk_mq_hw_queue_mapped(hctx)) 3522 blk_mq_tag_idle(hctx); 3523 3524 if (blk_queue_init_done(q)) 3525 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3526 set->queue_depth, flush_rq); 3527 if (set->ops->exit_request) 3528 set->ops->exit_request(set, flush_rq, hctx_idx); 3529 3530 if (set->ops->exit_hctx) 3531 set->ops->exit_hctx(hctx, hctx_idx); 3532 3533 blk_mq_remove_cpuhp(hctx); 3534 3535 xa_erase(&q->hctx_table, hctx_idx); 3536 3537 spin_lock(&q->unused_hctx_lock); 3538 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3539 spin_unlock(&q->unused_hctx_lock); 3540 } 3541 3542 static void blk_mq_exit_hw_queues(struct request_queue *q, 3543 struct blk_mq_tag_set *set, int nr_queue) 3544 { 3545 struct blk_mq_hw_ctx *hctx; 3546 unsigned long i; 3547 3548 queue_for_each_hw_ctx(q, hctx, i) { 3549 if (i == nr_queue) 3550 break; 3551 blk_mq_exit_hctx(q, set, hctx, i); 3552 } 3553 } 3554 3555 static int blk_mq_init_hctx(struct request_queue *q, 3556 struct blk_mq_tag_set *set, 3557 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3558 { 3559 hctx->queue_num = hctx_idx; 3560 3561 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3562 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3563 &hctx->cpuhp_online); 3564 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3565 3566 hctx->tags = set->tags[hctx_idx]; 3567 3568 if (set->ops->init_hctx && 3569 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3570 goto unregister_cpu_notifier; 3571 3572 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3573 hctx->numa_node)) 3574 goto exit_hctx; 3575 3576 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3577 goto exit_flush_rq; 3578 3579 return 0; 3580 3581 exit_flush_rq: 3582 if (set->ops->exit_request) 3583 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3584 exit_hctx: 3585 if (set->ops->exit_hctx) 3586 set->ops->exit_hctx(hctx, hctx_idx); 3587 unregister_cpu_notifier: 3588 blk_mq_remove_cpuhp(hctx); 3589 return -1; 3590 } 3591 3592 static struct blk_mq_hw_ctx * 3593 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3594 int node) 3595 { 3596 struct blk_mq_hw_ctx *hctx; 3597 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3598 3599 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3600 if (!hctx) 3601 goto fail_alloc_hctx; 3602 3603 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3604 goto free_hctx; 3605 3606 atomic_set(&hctx->nr_active, 0); 3607 if (node == NUMA_NO_NODE) 3608 node = set->numa_node; 3609 hctx->numa_node = node; 3610 3611 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3612 spin_lock_init(&hctx->lock); 3613 INIT_LIST_HEAD(&hctx->dispatch); 3614 hctx->queue = q; 3615 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3616 3617 INIT_LIST_HEAD(&hctx->hctx_list); 3618 3619 /* 3620 * Allocate space for all possible cpus to avoid allocation at 3621 * runtime 3622 */ 3623 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3624 gfp, node); 3625 if (!hctx->ctxs) 3626 goto free_cpumask; 3627 3628 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3629 gfp, node, false, false)) 3630 goto free_ctxs; 3631 hctx->nr_ctx = 0; 3632 3633 spin_lock_init(&hctx->dispatch_wait_lock); 3634 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3635 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3636 3637 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3638 if (!hctx->fq) 3639 goto free_bitmap; 3640 3641 blk_mq_hctx_kobj_init(hctx); 3642 3643 return hctx; 3644 3645 free_bitmap: 3646 sbitmap_free(&hctx->ctx_map); 3647 free_ctxs: 3648 kfree(hctx->ctxs); 3649 free_cpumask: 3650 free_cpumask_var(hctx->cpumask); 3651 free_hctx: 3652 kfree(hctx); 3653 fail_alloc_hctx: 3654 return NULL; 3655 } 3656 3657 static void blk_mq_init_cpu_queues(struct request_queue *q, 3658 unsigned int nr_hw_queues) 3659 { 3660 struct blk_mq_tag_set *set = q->tag_set; 3661 unsigned int i, j; 3662 3663 for_each_possible_cpu(i) { 3664 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3665 struct blk_mq_hw_ctx *hctx; 3666 int k; 3667 3668 __ctx->cpu = i; 3669 spin_lock_init(&__ctx->lock); 3670 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3671 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3672 3673 __ctx->queue = q; 3674 3675 /* 3676 * Set local node, IFF we have more than one hw queue. If 3677 * not, we remain on the home node of the device 3678 */ 3679 for (j = 0; j < set->nr_maps; j++) { 3680 hctx = blk_mq_map_queue_type(q, j, i); 3681 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3682 hctx->numa_node = cpu_to_node(i); 3683 } 3684 } 3685 } 3686 3687 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3688 unsigned int hctx_idx, 3689 unsigned int depth) 3690 { 3691 struct blk_mq_tags *tags; 3692 int ret; 3693 3694 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3695 if (!tags) 3696 return NULL; 3697 3698 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3699 if (ret) { 3700 blk_mq_free_rq_map(tags); 3701 return NULL; 3702 } 3703 3704 return tags; 3705 } 3706 3707 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3708 int hctx_idx) 3709 { 3710 if (blk_mq_is_shared_tags(set->flags)) { 3711 set->tags[hctx_idx] = set->shared_tags; 3712 3713 return true; 3714 } 3715 3716 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3717 set->queue_depth); 3718 3719 return set->tags[hctx_idx]; 3720 } 3721 3722 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3723 struct blk_mq_tags *tags, 3724 unsigned int hctx_idx) 3725 { 3726 if (tags) { 3727 blk_mq_free_rqs(set, tags, hctx_idx); 3728 blk_mq_free_rq_map(tags); 3729 } 3730 } 3731 3732 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3733 unsigned int hctx_idx) 3734 { 3735 if (!blk_mq_is_shared_tags(set->flags)) 3736 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3737 3738 set->tags[hctx_idx] = NULL; 3739 } 3740 3741 static void blk_mq_map_swqueue(struct request_queue *q) 3742 { 3743 unsigned int j, hctx_idx; 3744 unsigned long i; 3745 struct blk_mq_hw_ctx *hctx; 3746 struct blk_mq_ctx *ctx; 3747 struct blk_mq_tag_set *set = q->tag_set; 3748 3749 queue_for_each_hw_ctx(q, hctx, i) { 3750 cpumask_clear(hctx->cpumask); 3751 hctx->nr_ctx = 0; 3752 hctx->dispatch_from = NULL; 3753 } 3754 3755 /* 3756 * Map software to hardware queues. 3757 * 3758 * If the cpu isn't present, the cpu is mapped to first hctx. 3759 */ 3760 for_each_possible_cpu(i) { 3761 3762 ctx = per_cpu_ptr(q->queue_ctx, i); 3763 for (j = 0; j < set->nr_maps; j++) { 3764 if (!set->map[j].nr_queues) { 3765 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3766 HCTX_TYPE_DEFAULT, i); 3767 continue; 3768 } 3769 hctx_idx = set->map[j].mq_map[i]; 3770 /* unmapped hw queue can be remapped after CPU topo changed */ 3771 if (!set->tags[hctx_idx] && 3772 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3773 /* 3774 * If tags initialization fail for some hctx, 3775 * that hctx won't be brought online. In this 3776 * case, remap the current ctx to hctx[0] which 3777 * is guaranteed to always have tags allocated 3778 */ 3779 set->map[j].mq_map[i] = 0; 3780 } 3781 3782 hctx = blk_mq_map_queue_type(q, j, i); 3783 ctx->hctxs[j] = hctx; 3784 /* 3785 * If the CPU is already set in the mask, then we've 3786 * mapped this one already. This can happen if 3787 * devices share queues across queue maps. 3788 */ 3789 if (cpumask_test_cpu(i, hctx->cpumask)) 3790 continue; 3791 3792 cpumask_set_cpu(i, hctx->cpumask); 3793 hctx->type = j; 3794 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3795 hctx->ctxs[hctx->nr_ctx++] = ctx; 3796 3797 /* 3798 * If the nr_ctx type overflows, we have exceeded the 3799 * amount of sw queues we can support. 3800 */ 3801 BUG_ON(!hctx->nr_ctx); 3802 } 3803 3804 for (; j < HCTX_MAX_TYPES; j++) 3805 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3806 HCTX_TYPE_DEFAULT, i); 3807 } 3808 3809 queue_for_each_hw_ctx(q, hctx, i) { 3810 /* 3811 * If no software queues are mapped to this hardware queue, 3812 * disable it and free the request entries. 3813 */ 3814 if (!hctx->nr_ctx) { 3815 /* Never unmap queue 0. We need it as a 3816 * fallback in case of a new remap fails 3817 * allocation 3818 */ 3819 if (i) 3820 __blk_mq_free_map_and_rqs(set, i); 3821 3822 hctx->tags = NULL; 3823 continue; 3824 } 3825 3826 hctx->tags = set->tags[i]; 3827 WARN_ON(!hctx->tags); 3828 3829 /* 3830 * Set the map size to the number of mapped software queues. 3831 * This is more accurate and more efficient than looping 3832 * over all possibly mapped software queues. 3833 */ 3834 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3835 3836 /* 3837 * Initialize batch roundrobin counts 3838 */ 3839 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3840 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3841 } 3842 } 3843 3844 /* 3845 * Caller needs to ensure that we're either frozen/quiesced, or that 3846 * the queue isn't live yet. 3847 */ 3848 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3849 { 3850 struct blk_mq_hw_ctx *hctx; 3851 unsigned long i; 3852 3853 queue_for_each_hw_ctx(q, hctx, i) { 3854 if (shared) { 3855 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3856 } else { 3857 blk_mq_tag_idle(hctx); 3858 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3859 } 3860 } 3861 } 3862 3863 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3864 bool shared) 3865 { 3866 struct request_queue *q; 3867 3868 lockdep_assert_held(&set->tag_list_lock); 3869 3870 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3871 blk_mq_freeze_queue(q); 3872 queue_set_hctx_shared(q, shared); 3873 blk_mq_unfreeze_queue(q); 3874 } 3875 } 3876 3877 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3878 { 3879 struct blk_mq_tag_set *set = q->tag_set; 3880 3881 mutex_lock(&set->tag_list_lock); 3882 list_del(&q->tag_set_list); 3883 if (list_is_singular(&set->tag_list)) { 3884 /* just transitioned to unshared */ 3885 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3886 /* update existing queue */ 3887 blk_mq_update_tag_set_shared(set, false); 3888 } 3889 mutex_unlock(&set->tag_list_lock); 3890 INIT_LIST_HEAD(&q->tag_set_list); 3891 } 3892 3893 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3894 struct request_queue *q) 3895 { 3896 mutex_lock(&set->tag_list_lock); 3897 3898 /* 3899 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3900 */ 3901 if (!list_empty(&set->tag_list) && 3902 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3903 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3904 /* update existing queue */ 3905 blk_mq_update_tag_set_shared(set, true); 3906 } 3907 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3908 queue_set_hctx_shared(q, true); 3909 list_add_tail(&q->tag_set_list, &set->tag_list); 3910 3911 mutex_unlock(&set->tag_list_lock); 3912 } 3913 3914 /* All allocations will be freed in release handler of q->mq_kobj */ 3915 static int blk_mq_alloc_ctxs(struct request_queue *q) 3916 { 3917 struct blk_mq_ctxs *ctxs; 3918 int cpu; 3919 3920 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3921 if (!ctxs) 3922 return -ENOMEM; 3923 3924 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3925 if (!ctxs->queue_ctx) 3926 goto fail; 3927 3928 for_each_possible_cpu(cpu) { 3929 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3930 ctx->ctxs = ctxs; 3931 } 3932 3933 q->mq_kobj = &ctxs->kobj; 3934 q->queue_ctx = ctxs->queue_ctx; 3935 3936 return 0; 3937 fail: 3938 kfree(ctxs); 3939 return -ENOMEM; 3940 } 3941 3942 /* 3943 * It is the actual release handler for mq, but we do it from 3944 * request queue's release handler for avoiding use-after-free 3945 * and headache because q->mq_kobj shouldn't have been introduced, 3946 * but we can't group ctx/kctx kobj without it. 3947 */ 3948 void blk_mq_release(struct request_queue *q) 3949 { 3950 struct blk_mq_hw_ctx *hctx, *next; 3951 unsigned long i; 3952 3953 queue_for_each_hw_ctx(q, hctx, i) 3954 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3955 3956 /* all hctx are in .unused_hctx_list now */ 3957 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3958 list_del_init(&hctx->hctx_list); 3959 kobject_put(&hctx->kobj); 3960 } 3961 3962 xa_destroy(&q->hctx_table); 3963 3964 /* 3965 * release .mq_kobj and sw queue's kobject now because 3966 * both share lifetime with request queue. 3967 */ 3968 blk_mq_sysfs_deinit(q); 3969 } 3970 3971 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3972 void *queuedata) 3973 { 3974 struct request_queue *q; 3975 int ret; 3976 3977 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); 3978 if (!q) 3979 return ERR_PTR(-ENOMEM); 3980 q->queuedata = queuedata; 3981 ret = blk_mq_init_allocated_queue(set, q); 3982 if (ret) { 3983 blk_put_queue(q); 3984 return ERR_PTR(ret); 3985 } 3986 return q; 3987 } 3988 3989 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3990 { 3991 return blk_mq_init_queue_data(set, NULL); 3992 } 3993 EXPORT_SYMBOL(blk_mq_init_queue); 3994 3995 /** 3996 * blk_mq_destroy_queue - shutdown a request queue 3997 * @q: request queue to shutdown 3998 * 3999 * This shuts down a request queue allocated by blk_mq_init_queue() and drops 4000 * the initial reference. All future requests will failed with -ENODEV. 4001 * 4002 * Context: can sleep 4003 */ 4004 void blk_mq_destroy_queue(struct request_queue *q) 4005 { 4006 WARN_ON_ONCE(!queue_is_mq(q)); 4007 WARN_ON_ONCE(blk_queue_registered(q)); 4008 4009 might_sleep(); 4010 4011 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4012 blk_queue_start_drain(q); 4013 blk_freeze_queue(q); 4014 4015 blk_sync_queue(q); 4016 blk_mq_cancel_work_sync(q); 4017 blk_mq_exit_queue(q); 4018 4019 /* @q is and will stay empty, shutdown and put */ 4020 blk_put_queue(q); 4021 } 4022 EXPORT_SYMBOL(blk_mq_destroy_queue); 4023 4024 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4025 struct lock_class_key *lkclass) 4026 { 4027 struct request_queue *q; 4028 struct gendisk *disk; 4029 4030 q = blk_mq_init_queue_data(set, queuedata); 4031 if (IS_ERR(q)) 4032 return ERR_CAST(q); 4033 4034 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4035 if (!disk) { 4036 blk_mq_destroy_queue(q); 4037 return ERR_PTR(-ENOMEM); 4038 } 4039 set_bit(GD_OWNS_QUEUE, &disk->state); 4040 return disk; 4041 } 4042 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4043 4044 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4045 struct lock_class_key *lkclass) 4046 { 4047 if (!blk_get_queue(q)) 4048 return NULL; 4049 return __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4050 } 4051 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4052 4053 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4054 struct blk_mq_tag_set *set, struct request_queue *q, 4055 int hctx_idx, int node) 4056 { 4057 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4058 4059 /* reuse dead hctx first */ 4060 spin_lock(&q->unused_hctx_lock); 4061 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4062 if (tmp->numa_node == node) { 4063 hctx = tmp; 4064 break; 4065 } 4066 } 4067 if (hctx) 4068 list_del_init(&hctx->hctx_list); 4069 spin_unlock(&q->unused_hctx_lock); 4070 4071 if (!hctx) 4072 hctx = blk_mq_alloc_hctx(q, set, node); 4073 if (!hctx) 4074 goto fail; 4075 4076 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4077 goto free_hctx; 4078 4079 return hctx; 4080 4081 free_hctx: 4082 kobject_put(&hctx->kobj); 4083 fail: 4084 return NULL; 4085 } 4086 4087 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4088 struct request_queue *q) 4089 { 4090 struct blk_mq_hw_ctx *hctx; 4091 unsigned long i, j; 4092 4093 /* protect against switching io scheduler */ 4094 mutex_lock(&q->sysfs_lock); 4095 for (i = 0; i < set->nr_hw_queues; i++) { 4096 int old_node; 4097 int node = blk_mq_get_hctx_node(set, i); 4098 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4099 4100 if (old_hctx) { 4101 old_node = old_hctx->numa_node; 4102 blk_mq_exit_hctx(q, set, old_hctx, i); 4103 } 4104 4105 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4106 if (!old_hctx) 4107 break; 4108 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4109 node, old_node); 4110 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4111 WARN_ON_ONCE(!hctx); 4112 } 4113 } 4114 /* 4115 * Increasing nr_hw_queues fails. Free the newly allocated 4116 * hctxs and keep the previous q->nr_hw_queues. 4117 */ 4118 if (i != set->nr_hw_queues) { 4119 j = q->nr_hw_queues; 4120 } else { 4121 j = i; 4122 q->nr_hw_queues = set->nr_hw_queues; 4123 } 4124 4125 xa_for_each_start(&q->hctx_table, j, hctx, j) 4126 blk_mq_exit_hctx(q, set, hctx, j); 4127 mutex_unlock(&q->sysfs_lock); 4128 } 4129 4130 static void blk_mq_update_poll_flag(struct request_queue *q) 4131 { 4132 struct blk_mq_tag_set *set = q->tag_set; 4133 4134 if (set->nr_maps > HCTX_TYPE_POLL && 4135 set->map[HCTX_TYPE_POLL].nr_queues) 4136 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4137 else 4138 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4139 } 4140 4141 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4142 struct request_queue *q) 4143 { 4144 WARN_ON_ONCE(blk_queue_has_srcu(q) != 4145 !!(set->flags & BLK_MQ_F_BLOCKING)); 4146 4147 /* mark the queue as mq asap */ 4148 q->mq_ops = set->ops; 4149 4150 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4151 blk_mq_poll_stats_bkt, 4152 BLK_MQ_POLL_STATS_BKTS, q); 4153 if (!q->poll_cb) 4154 goto err_exit; 4155 4156 if (blk_mq_alloc_ctxs(q)) 4157 goto err_poll; 4158 4159 /* init q->mq_kobj and sw queues' kobjects */ 4160 blk_mq_sysfs_init(q); 4161 4162 INIT_LIST_HEAD(&q->unused_hctx_list); 4163 spin_lock_init(&q->unused_hctx_lock); 4164 4165 xa_init(&q->hctx_table); 4166 4167 blk_mq_realloc_hw_ctxs(set, q); 4168 if (!q->nr_hw_queues) 4169 goto err_hctxs; 4170 4171 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4172 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4173 4174 q->tag_set = set; 4175 4176 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4177 blk_mq_update_poll_flag(q); 4178 4179 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4180 INIT_LIST_HEAD(&q->requeue_list); 4181 spin_lock_init(&q->requeue_lock); 4182 4183 q->nr_requests = set->queue_depth; 4184 4185 /* 4186 * Default to classic polling 4187 */ 4188 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4189 4190 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4191 blk_mq_add_queue_tag_set(set, q); 4192 blk_mq_map_swqueue(q); 4193 return 0; 4194 4195 err_hctxs: 4196 xa_destroy(&q->hctx_table); 4197 q->nr_hw_queues = 0; 4198 blk_mq_sysfs_deinit(q); 4199 err_poll: 4200 blk_stat_free_callback(q->poll_cb); 4201 q->poll_cb = NULL; 4202 err_exit: 4203 q->mq_ops = NULL; 4204 return -ENOMEM; 4205 } 4206 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4207 4208 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4209 void blk_mq_exit_queue(struct request_queue *q) 4210 { 4211 struct blk_mq_tag_set *set = q->tag_set; 4212 4213 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4214 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4215 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4216 blk_mq_del_queue_tag_set(q); 4217 } 4218 4219 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4220 { 4221 int i; 4222 4223 if (blk_mq_is_shared_tags(set->flags)) { 4224 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4225 BLK_MQ_NO_HCTX_IDX, 4226 set->queue_depth); 4227 if (!set->shared_tags) 4228 return -ENOMEM; 4229 } 4230 4231 for (i = 0; i < set->nr_hw_queues; i++) { 4232 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4233 goto out_unwind; 4234 cond_resched(); 4235 } 4236 4237 return 0; 4238 4239 out_unwind: 4240 while (--i >= 0) 4241 __blk_mq_free_map_and_rqs(set, i); 4242 4243 if (blk_mq_is_shared_tags(set->flags)) { 4244 blk_mq_free_map_and_rqs(set, set->shared_tags, 4245 BLK_MQ_NO_HCTX_IDX); 4246 } 4247 4248 return -ENOMEM; 4249 } 4250 4251 /* 4252 * Allocate the request maps associated with this tag_set. Note that this 4253 * may reduce the depth asked for, if memory is tight. set->queue_depth 4254 * will be updated to reflect the allocated depth. 4255 */ 4256 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4257 { 4258 unsigned int depth; 4259 int err; 4260 4261 depth = set->queue_depth; 4262 do { 4263 err = __blk_mq_alloc_rq_maps(set); 4264 if (!err) 4265 break; 4266 4267 set->queue_depth >>= 1; 4268 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4269 err = -ENOMEM; 4270 break; 4271 } 4272 } while (set->queue_depth); 4273 4274 if (!set->queue_depth || err) { 4275 pr_err("blk-mq: failed to allocate request map\n"); 4276 return -ENOMEM; 4277 } 4278 4279 if (depth != set->queue_depth) 4280 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4281 depth, set->queue_depth); 4282 4283 return 0; 4284 } 4285 4286 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4287 { 4288 /* 4289 * blk_mq_map_queues() and multiple .map_queues() implementations 4290 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4291 * number of hardware queues. 4292 */ 4293 if (set->nr_maps == 1) 4294 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4295 4296 if (set->ops->map_queues && !is_kdump_kernel()) { 4297 int i; 4298 4299 /* 4300 * transport .map_queues is usually done in the following 4301 * way: 4302 * 4303 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4304 * mask = get_cpu_mask(queue) 4305 * for_each_cpu(cpu, mask) 4306 * set->map[x].mq_map[cpu] = queue; 4307 * } 4308 * 4309 * When we need to remap, the table has to be cleared for 4310 * killing stale mapping since one CPU may not be mapped 4311 * to any hw queue. 4312 */ 4313 for (i = 0; i < set->nr_maps; i++) 4314 blk_mq_clear_mq_map(&set->map[i]); 4315 4316 set->ops->map_queues(set); 4317 } else { 4318 BUG_ON(set->nr_maps > 1); 4319 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4320 } 4321 } 4322 4323 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4324 int cur_nr_hw_queues, int new_nr_hw_queues) 4325 { 4326 struct blk_mq_tags **new_tags; 4327 4328 if (cur_nr_hw_queues >= new_nr_hw_queues) 4329 return 0; 4330 4331 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4332 GFP_KERNEL, set->numa_node); 4333 if (!new_tags) 4334 return -ENOMEM; 4335 4336 if (set->tags) 4337 memcpy(new_tags, set->tags, cur_nr_hw_queues * 4338 sizeof(*set->tags)); 4339 kfree(set->tags); 4340 set->tags = new_tags; 4341 set->nr_hw_queues = new_nr_hw_queues; 4342 4343 return 0; 4344 } 4345 4346 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 4347 int new_nr_hw_queues) 4348 { 4349 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 4350 } 4351 4352 /* 4353 * Alloc a tag set to be associated with one or more request queues. 4354 * May fail with EINVAL for various error conditions. May adjust the 4355 * requested depth down, if it's too large. In that case, the set 4356 * value will be stored in set->queue_depth. 4357 */ 4358 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4359 { 4360 int i, ret; 4361 4362 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4363 4364 if (!set->nr_hw_queues) 4365 return -EINVAL; 4366 if (!set->queue_depth) 4367 return -EINVAL; 4368 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4369 return -EINVAL; 4370 4371 if (!set->ops->queue_rq) 4372 return -EINVAL; 4373 4374 if (!set->ops->get_budget ^ !set->ops->put_budget) 4375 return -EINVAL; 4376 4377 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4378 pr_info("blk-mq: reduced tag depth to %u\n", 4379 BLK_MQ_MAX_DEPTH); 4380 set->queue_depth = BLK_MQ_MAX_DEPTH; 4381 } 4382 4383 if (!set->nr_maps) 4384 set->nr_maps = 1; 4385 else if (set->nr_maps > HCTX_MAX_TYPES) 4386 return -EINVAL; 4387 4388 /* 4389 * If a crashdump is active, then we are potentially in a very 4390 * memory constrained environment. Limit us to 1 queue and 4391 * 64 tags to prevent using too much memory. 4392 */ 4393 if (is_kdump_kernel()) { 4394 set->nr_hw_queues = 1; 4395 set->nr_maps = 1; 4396 set->queue_depth = min(64U, set->queue_depth); 4397 } 4398 /* 4399 * There is no use for more h/w queues than cpus if we just have 4400 * a single map 4401 */ 4402 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4403 set->nr_hw_queues = nr_cpu_ids; 4404 4405 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 4406 return -ENOMEM; 4407 4408 ret = -ENOMEM; 4409 for (i = 0; i < set->nr_maps; i++) { 4410 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4411 sizeof(set->map[i].mq_map[0]), 4412 GFP_KERNEL, set->numa_node); 4413 if (!set->map[i].mq_map) 4414 goto out_free_mq_map; 4415 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4416 } 4417 4418 blk_mq_update_queue_map(set); 4419 4420 ret = blk_mq_alloc_set_map_and_rqs(set); 4421 if (ret) 4422 goto out_free_mq_map; 4423 4424 mutex_init(&set->tag_list_lock); 4425 INIT_LIST_HEAD(&set->tag_list); 4426 4427 return 0; 4428 4429 out_free_mq_map: 4430 for (i = 0; i < set->nr_maps; i++) { 4431 kfree(set->map[i].mq_map); 4432 set->map[i].mq_map = NULL; 4433 } 4434 kfree(set->tags); 4435 set->tags = NULL; 4436 return ret; 4437 } 4438 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4439 4440 /* allocate and initialize a tagset for a simple single-queue device */ 4441 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4442 const struct blk_mq_ops *ops, unsigned int queue_depth, 4443 unsigned int set_flags) 4444 { 4445 memset(set, 0, sizeof(*set)); 4446 set->ops = ops; 4447 set->nr_hw_queues = 1; 4448 set->nr_maps = 1; 4449 set->queue_depth = queue_depth; 4450 set->numa_node = NUMA_NO_NODE; 4451 set->flags = set_flags; 4452 return blk_mq_alloc_tag_set(set); 4453 } 4454 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4455 4456 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4457 { 4458 int i, j; 4459 4460 for (i = 0; i < set->nr_hw_queues; i++) 4461 __blk_mq_free_map_and_rqs(set, i); 4462 4463 if (blk_mq_is_shared_tags(set->flags)) { 4464 blk_mq_free_map_and_rqs(set, set->shared_tags, 4465 BLK_MQ_NO_HCTX_IDX); 4466 } 4467 4468 for (j = 0; j < set->nr_maps; j++) { 4469 kfree(set->map[j].mq_map); 4470 set->map[j].mq_map = NULL; 4471 } 4472 4473 kfree(set->tags); 4474 set->tags = NULL; 4475 } 4476 EXPORT_SYMBOL(blk_mq_free_tag_set); 4477 4478 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4479 { 4480 struct blk_mq_tag_set *set = q->tag_set; 4481 struct blk_mq_hw_ctx *hctx; 4482 int ret; 4483 unsigned long i; 4484 4485 if (!set) 4486 return -EINVAL; 4487 4488 if (q->nr_requests == nr) 4489 return 0; 4490 4491 blk_mq_freeze_queue(q); 4492 blk_mq_quiesce_queue(q); 4493 4494 ret = 0; 4495 queue_for_each_hw_ctx(q, hctx, i) { 4496 if (!hctx->tags) 4497 continue; 4498 /* 4499 * If we're using an MQ scheduler, just update the scheduler 4500 * queue depth. This is similar to what the old code would do. 4501 */ 4502 if (hctx->sched_tags) { 4503 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4504 nr, true); 4505 } else { 4506 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4507 false); 4508 } 4509 if (ret) 4510 break; 4511 if (q->elevator && q->elevator->type->ops.depth_updated) 4512 q->elevator->type->ops.depth_updated(hctx); 4513 } 4514 if (!ret) { 4515 q->nr_requests = nr; 4516 if (blk_mq_is_shared_tags(set->flags)) { 4517 if (q->elevator) 4518 blk_mq_tag_update_sched_shared_tags(q); 4519 else 4520 blk_mq_tag_resize_shared_tags(set, nr); 4521 } 4522 } 4523 4524 blk_mq_unquiesce_queue(q); 4525 blk_mq_unfreeze_queue(q); 4526 4527 return ret; 4528 } 4529 4530 /* 4531 * request_queue and elevator_type pair. 4532 * It is just used by __blk_mq_update_nr_hw_queues to cache 4533 * the elevator_type associated with a request_queue. 4534 */ 4535 struct blk_mq_qe_pair { 4536 struct list_head node; 4537 struct request_queue *q; 4538 struct elevator_type *type; 4539 }; 4540 4541 /* 4542 * Cache the elevator_type in qe pair list and switch the 4543 * io scheduler to 'none' 4544 */ 4545 static bool blk_mq_elv_switch_none(struct list_head *head, 4546 struct request_queue *q) 4547 { 4548 struct blk_mq_qe_pair *qe; 4549 4550 if (!q->elevator) 4551 return true; 4552 4553 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4554 if (!qe) 4555 return false; 4556 4557 /* q->elevator needs protection from ->sysfs_lock */ 4558 mutex_lock(&q->sysfs_lock); 4559 4560 INIT_LIST_HEAD(&qe->node); 4561 qe->q = q; 4562 qe->type = q->elevator->type; 4563 list_add(&qe->node, head); 4564 4565 /* 4566 * After elevator_switch, the previous elevator_queue will be 4567 * released by elevator_release. The reference of the io scheduler 4568 * module get by elevator_get will also be put. So we need to get 4569 * a reference of the io scheduler module here to prevent it to be 4570 * removed. 4571 */ 4572 __module_get(qe->type->elevator_owner); 4573 elevator_switch(q, NULL); 4574 mutex_unlock(&q->sysfs_lock); 4575 4576 return true; 4577 } 4578 4579 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4580 struct request_queue *q) 4581 { 4582 struct blk_mq_qe_pair *qe; 4583 4584 list_for_each_entry(qe, head, node) 4585 if (qe->q == q) 4586 return qe; 4587 4588 return NULL; 4589 } 4590 4591 static void blk_mq_elv_switch_back(struct list_head *head, 4592 struct request_queue *q) 4593 { 4594 struct blk_mq_qe_pair *qe; 4595 struct elevator_type *t; 4596 4597 qe = blk_lookup_qe_pair(head, q); 4598 if (!qe) 4599 return; 4600 t = qe->type; 4601 list_del(&qe->node); 4602 kfree(qe); 4603 4604 mutex_lock(&q->sysfs_lock); 4605 elevator_switch(q, t); 4606 mutex_unlock(&q->sysfs_lock); 4607 } 4608 4609 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4610 int nr_hw_queues) 4611 { 4612 struct request_queue *q; 4613 LIST_HEAD(head); 4614 int prev_nr_hw_queues; 4615 4616 lockdep_assert_held(&set->tag_list_lock); 4617 4618 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4619 nr_hw_queues = nr_cpu_ids; 4620 if (nr_hw_queues < 1) 4621 return; 4622 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4623 return; 4624 4625 list_for_each_entry(q, &set->tag_list, tag_set_list) 4626 blk_mq_freeze_queue(q); 4627 /* 4628 * Switch IO scheduler to 'none', cleaning up the data associated 4629 * with the previous scheduler. We will switch back once we are done 4630 * updating the new sw to hw queue mappings. 4631 */ 4632 list_for_each_entry(q, &set->tag_list, tag_set_list) 4633 if (!blk_mq_elv_switch_none(&head, q)) 4634 goto switch_back; 4635 4636 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4637 blk_mq_debugfs_unregister_hctxs(q); 4638 blk_mq_sysfs_unregister_hctxs(q); 4639 } 4640 4641 prev_nr_hw_queues = set->nr_hw_queues; 4642 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4643 0) 4644 goto reregister; 4645 4646 set->nr_hw_queues = nr_hw_queues; 4647 fallback: 4648 blk_mq_update_queue_map(set); 4649 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4650 blk_mq_realloc_hw_ctxs(set, q); 4651 blk_mq_update_poll_flag(q); 4652 if (q->nr_hw_queues != set->nr_hw_queues) { 4653 int i = prev_nr_hw_queues; 4654 4655 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4656 nr_hw_queues, prev_nr_hw_queues); 4657 for (; i < set->nr_hw_queues; i++) 4658 __blk_mq_free_map_and_rqs(set, i); 4659 4660 set->nr_hw_queues = prev_nr_hw_queues; 4661 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4662 goto fallback; 4663 } 4664 blk_mq_map_swqueue(q); 4665 } 4666 4667 reregister: 4668 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4669 blk_mq_sysfs_register_hctxs(q); 4670 blk_mq_debugfs_register_hctxs(q); 4671 } 4672 4673 switch_back: 4674 list_for_each_entry(q, &set->tag_list, tag_set_list) 4675 blk_mq_elv_switch_back(&head, q); 4676 4677 list_for_each_entry(q, &set->tag_list, tag_set_list) 4678 blk_mq_unfreeze_queue(q); 4679 } 4680 4681 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4682 { 4683 mutex_lock(&set->tag_list_lock); 4684 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4685 mutex_unlock(&set->tag_list_lock); 4686 } 4687 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4688 4689 /* Enable polling stats and return whether they were already enabled. */ 4690 static bool blk_poll_stats_enable(struct request_queue *q) 4691 { 4692 if (q->poll_stat) 4693 return true; 4694 4695 return blk_stats_alloc_enable(q); 4696 } 4697 4698 static void blk_mq_poll_stats_start(struct request_queue *q) 4699 { 4700 /* 4701 * We don't arm the callback if polling stats are not enabled or the 4702 * callback is already active. 4703 */ 4704 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4705 return; 4706 4707 blk_stat_activate_msecs(q->poll_cb, 100); 4708 } 4709 4710 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4711 { 4712 struct request_queue *q = cb->data; 4713 int bucket; 4714 4715 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4716 if (cb->stat[bucket].nr_samples) 4717 q->poll_stat[bucket] = cb->stat[bucket]; 4718 } 4719 } 4720 4721 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4722 struct request *rq) 4723 { 4724 unsigned long ret = 0; 4725 int bucket; 4726 4727 /* 4728 * If stats collection isn't on, don't sleep but turn it on for 4729 * future users 4730 */ 4731 if (!blk_poll_stats_enable(q)) 4732 return 0; 4733 4734 /* 4735 * As an optimistic guess, use half of the mean service time 4736 * for this type of request. We can (and should) make this smarter. 4737 * For instance, if the completion latencies are tight, we can 4738 * get closer than just half the mean. This is especially 4739 * important on devices where the completion latencies are longer 4740 * than ~10 usec. We do use the stats for the relevant IO size 4741 * if available which does lead to better estimates. 4742 */ 4743 bucket = blk_mq_poll_stats_bkt(rq); 4744 if (bucket < 0) 4745 return ret; 4746 4747 if (q->poll_stat[bucket].nr_samples) 4748 ret = (q->poll_stat[bucket].mean + 1) / 2; 4749 4750 return ret; 4751 } 4752 4753 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4754 { 4755 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4756 struct request *rq = blk_qc_to_rq(hctx, qc); 4757 struct hrtimer_sleeper hs; 4758 enum hrtimer_mode mode; 4759 unsigned int nsecs; 4760 ktime_t kt; 4761 4762 /* 4763 * If a request has completed on queue that uses an I/O scheduler, we 4764 * won't get back a request from blk_qc_to_rq. 4765 */ 4766 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4767 return false; 4768 4769 /* 4770 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4771 * 4772 * 0: use half of prev avg 4773 * >0: use this specific value 4774 */ 4775 if (q->poll_nsec > 0) 4776 nsecs = q->poll_nsec; 4777 else 4778 nsecs = blk_mq_poll_nsecs(q, rq); 4779 4780 if (!nsecs) 4781 return false; 4782 4783 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4784 4785 /* 4786 * This will be replaced with the stats tracking code, using 4787 * 'avg_completion_time / 2' as the pre-sleep target. 4788 */ 4789 kt = nsecs; 4790 4791 mode = HRTIMER_MODE_REL; 4792 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4793 hrtimer_set_expires(&hs.timer, kt); 4794 4795 do { 4796 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4797 break; 4798 set_current_state(TASK_UNINTERRUPTIBLE); 4799 hrtimer_sleeper_start_expires(&hs, mode); 4800 if (hs.task) 4801 io_schedule(); 4802 hrtimer_cancel(&hs.timer); 4803 mode = HRTIMER_MODE_ABS; 4804 } while (hs.task && !signal_pending(current)); 4805 4806 __set_current_state(TASK_RUNNING); 4807 destroy_hrtimer_on_stack(&hs.timer); 4808 4809 /* 4810 * If we sleep, have the caller restart the poll loop to reset the 4811 * state. Like for the other success return cases, the caller is 4812 * responsible for checking if the IO completed. If the IO isn't 4813 * complete, we'll get called again and will go straight to the busy 4814 * poll loop. 4815 */ 4816 return true; 4817 } 4818 4819 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4820 struct io_comp_batch *iob, unsigned int flags) 4821 { 4822 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4823 long state = get_current_state(); 4824 int ret; 4825 4826 do { 4827 ret = q->mq_ops->poll(hctx, iob); 4828 if (ret > 0) { 4829 __set_current_state(TASK_RUNNING); 4830 return ret; 4831 } 4832 4833 if (signal_pending_state(state, current)) 4834 __set_current_state(TASK_RUNNING); 4835 if (task_is_running(current)) 4836 return 1; 4837 4838 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4839 break; 4840 cpu_relax(); 4841 } while (!need_resched()); 4842 4843 __set_current_state(TASK_RUNNING); 4844 return 0; 4845 } 4846 4847 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4848 unsigned int flags) 4849 { 4850 if (!(flags & BLK_POLL_NOSLEEP) && 4851 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4852 if (blk_mq_poll_hybrid(q, cookie)) 4853 return 1; 4854 } 4855 return blk_mq_poll_classic(q, cookie, iob, flags); 4856 } 4857 4858 unsigned int blk_mq_rq_cpu(struct request *rq) 4859 { 4860 return rq->mq_ctx->cpu; 4861 } 4862 EXPORT_SYMBOL(blk_mq_rq_cpu); 4863 4864 void blk_mq_cancel_work_sync(struct request_queue *q) 4865 { 4866 if (queue_is_mq(q)) { 4867 struct blk_mq_hw_ctx *hctx; 4868 unsigned long i; 4869 4870 cancel_delayed_work_sync(&q->requeue_work); 4871 4872 queue_for_each_hw_ctx(q, hctx, i) 4873 cancel_delayed_work_sync(&hctx->run_work); 4874 } 4875 } 4876 4877 static int __init blk_mq_init(void) 4878 { 4879 int i; 4880 4881 for_each_possible_cpu(i) 4882 init_llist_head(&per_cpu(blk_cpu_done, i)); 4883 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4884 4885 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4886 "block/softirq:dead", NULL, 4887 blk_softirq_cpu_dead); 4888 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4889 blk_mq_hctx_notify_dead); 4890 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4891 blk_mq_hctx_notify_online, 4892 blk_mq_hctx_notify_offline); 4893 return 0; 4894 } 4895 subsys_initcall(blk_mq_init); 4896