xref: /openbmc/linux/block/blk-mq.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PM)
298 		rq->rq_flags |= RQF_PM;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush/passthrough requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    !blk_op_is_passthrough(data->cmd_flags) &&
370 		    e->type->ops.limit_depth &&
371 		    !(data->flags & BLK_MQ_REQ_RESERVED))
372 			e->type->ops.limit_depth(data->cmd_flags, data);
373 	}
374 
375 retry:
376 	data->ctx = blk_mq_get_ctx(q);
377 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378 	if (!e)
379 		blk_mq_tag_busy(data->hctx);
380 
381 	/*
382 	 * Waiting allocations only fail because of an inactive hctx.  In that
383 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
384 	 * should have migrated us to an online CPU by now.
385 	 */
386 	tag = blk_mq_get_tag(data);
387 	if (tag == BLK_MQ_NO_TAG) {
388 		if (data->flags & BLK_MQ_REQ_NOWAIT)
389 			return NULL;
390 
391 		/*
392 		 * Give up the CPU and sleep for a random short time to ensure
393 		 * that thread using a realtime scheduling class are migrated
394 		 * off the CPU, and thus off the hctx that is going away.
395 		 */
396 		msleep(3);
397 		goto retry;
398 	}
399 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401 
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403 		blk_mq_req_flags_t flags)
404 {
405 	struct blk_mq_alloc_data data = {
406 		.q		= q,
407 		.flags		= flags,
408 		.cmd_flags	= op,
409 	};
410 	struct request *rq;
411 	int ret;
412 
413 	ret = blk_queue_enter(q, flags);
414 	if (ret)
415 		return ERR_PTR(ret);
416 
417 	rq = __blk_mq_alloc_request(&data);
418 	if (!rq)
419 		goto out_queue_exit;
420 	rq->__data_len = 0;
421 	rq->__sector = (sector_t) -1;
422 	rq->bio = rq->biotail = NULL;
423 	return rq;
424 out_queue_exit:
425 	blk_queue_exit(q);
426 	return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429 
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433 	struct blk_mq_alloc_data data = {
434 		.q		= q,
435 		.flags		= flags,
436 		.cmd_flags	= op,
437 	};
438 	u64 alloc_time_ns = 0;
439 	unsigned int cpu;
440 	unsigned int tag;
441 	int ret;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	/*
448 	 * If the tag allocator sleeps we could get an allocation for a
449 	 * different hardware context.  No need to complicate the low level
450 	 * allocator for this for the rare use case of a command tied to
451 	 * a specific queue.
452 	 */
453 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454 		return ERR_PTR(-EINVAL);
455 
456 	if (hctx_idx >= q->nr_hw_queues)
457 		return ERR_PTR(-EIO);
458 
459 	ret = blk_queue_enter(q, flags);
460 	if (ret)
461 		return ERR_PTR(ret);
462 
463 	/*
464 	 * Check if the hardware context is actually mapped to anything.
465 	 * If not tell the caller that it should skip this queue.
466 	 */
467 	ret = -EXDEV;
468 	data.hctx = q->queue_hw_ctx[hctx_idx];
469 	if (!blk_mq_hw_queue_mapped(data.hctx))
470 		goto out_queue_exit;
471 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472 	data.ctx = __blk_mq_get_ctx(q, cpu);
473 
474 	if (!q->elevator)
475 		blk_mq_tag_busy(data.hctx);
476 
477 	ret = -EWOULDBLOCK;
478 	tag = blk_mq_get_tag(&data);
479 	if (tag == BLK_MQ_NO_TAG)
480 		goto out_queue_exit;
481 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482 
483 out_queue_exit:
484 	blk_queue_exit(q);
485 	return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488 
489 static void __blk_mq_free_request(struct request *rq)
490 {
491 	struct request_queue *q = rq->q;
492 	struct blk_mq_ctx *ctx = rq->mq_ctx;
493 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 	const int sched_tag = rq->internal_tag;
495 
496 	blk_crypto_free_request(rq);
497 	blk_pm_mark_last_busy(rq);
498 	rq->mq_hctx = NULL;
499 	if (rq->tag != BLK_MQ_NO_TAG)
500 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501 	if (sched_tag != BLK_MQ_NO_TAG)
502 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503 	blk_mq_sched_restart(hctx);
504 	blk_queue_exit(q);
505 }
506 
507 void blk_mq_free_request(struct request *rq)
508 {
509 	struct request_queue *q = rq->q;
510 	struct elevator_queue *e = q->elevator;
511 	struct blk_mq_ctx *ctx = rq->mq_ctx;
512 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513 
514 	if (rq->rq_flags & RQF_ELVPRIV) {
515 		if (e && e->type->ops.finish_request)
516 			e->type->ops.finish_request(rq);
517 		if (rq->elv.icq) {
518 			put_io_context(rq->elv.icq->ioc);
519 			rq->elv.icq = NULL;
520 		}
521 	}
522 
523 	ctx->rq_completed[rq_is_sync(rq)]++;
524 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
525 		__blk_mq_dec_active_requests(hctx);
526 
527 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 		laptop_io_completion(q->backing_dev_info);
529 
530 	rq_qos_done(q, rq);
531 
532 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 	if (refcount_dec_and_test(&rq->ref))
534 		__blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537 
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540 	u64 now = 0;
541 
542 	if (blk_mq_need_time_stamp(rq))
543 		now = ktime_get_ns();
544 
545 	if (rq->rq_flags & RQF_STATS) {
546 		blk_mq_poll_stats_start(rq->q);
547 		blk_stat_add(rq, now);
548 	}
549 
550 	blk_mq_sched_completed_request(rq, now);
551 
552 	blk_account_io_done(rq, now);
553 
554 	if (rq->end_io) {
555 		rq_qos_done(rq->q, rq);
556 		rq->end_io(rq, error);
557 	} else {
558 		blk_mq_free_request(rq);
559 	}
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562 
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566 		BUG();
567 	__blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570 
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574 	struct request *rq, *next;
575 
576 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
577 		rq->q->mq_ops->complete(rq);
578 }
579 
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584 
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588 	return 0;
589 }
590 
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595 
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598 	int cpu = raw_smp_processor_id();
599 
600 	if (!IS_ENABLED(CONFIG_SMP) ||
601 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602 		return false;
603 	/*
604 	 * With force threaded interrupts enabled, raising softirq from an SMP
605 	 * function call will always result in waking the ksoftirqd thread.
606 	 * This is probably worse than completing the request on a different
607 	 * cache domain.
608 	 */
609 	if (force_irqthreads)
610 		return false;
611 
612 	/* same CPU or cache domain?  Complete locally */
613 	if (cpu == rq->mq_ctx->cpu ||
614 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616 		return false;
617 
618 	/* don't try to IPI to an offline CPU */
619 	return cpu_online(rq->mq_ctx->cpu);
620 }
621 
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624 	struct llist_head *list;
625 	unsigned int cpu;
626 
627 	cpu = rq->mq_ctx->cpu;
628 	list = &per_cpu(blk_cpu_done, cpu);
629 	if (llist_add(&rq->ipi_list, list)) {
630 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631 		smp_call_function_single_async(cpu, &rq->csd);
632 	}
633 }
634 
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637 	struct llist_head *list;
638 
639 	preempt_disable();
640 	list = this_cpu_ptr(&blk_cpu_done);
641 	if (llist_add(&rq->ipi_list, list))
642 		raise_softirq(BLOCK_SOFTIRQ);
643 	preempt_enable();
644 }
645 
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649 
650 	/*
651 	 * For a polled request, always complete locallly, it's pointless
652 	 * to redirect the completion.
653 	 */
654 	if (rq->cmd_flags & REQ_HIPRI)
655 		return false;
656 
657 	if (blk_mq_complete_need_ipi(rq)) {
658 		blk_mq_complete_send_ipi(rq);
659 		return true;
660 	}
661 
662 	if (rq->q->nr_hw_queues == 1) {
663 		blk_mq_raise_softirq(rq);
664 		return true;
665 	}
666 	return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669 
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:		the request being processed
673  *
674  * Description:
675  *	Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679 	if (!blk_mq_complete_request_remote(rq))
680 		rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683 
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685 	__releases(hctx->srcu)
686 {
687 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688 		rcu_read_unlock();
689 	else
690 		srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692 
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694 	__acquires(hctx->srcu)
695 {
696 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697 		/* shut up gcc false positive */
698 		*srcu_idx = 0;
699 		rcu_read_lock();
700 	} else
701 		*srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703 
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714 	struct request_queue *q = rq->q;
715 
716 	trace_block_rq_issue(rq);
717 
718 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719 		rq->io_start_time_ns = ktime_get_ns();
720 		rq->stats_sectors = blk_rq_sectors(rq);
721 		rq->rq_flags |= RQF_STATS;
722 		rq_qos_issue(q, rq);
723 	}
724 
725 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726 
727 	blk_add_timer(rq);
728 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729 
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732 		q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736 
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739 	struct request_queue *q = rq->q;
740 
741 	blk_mq_put_driver_tag(rq);
742 
743 	trace_block_rq_requeue(rq);
744 	rq_qos_requeue(q, rq);
745 
746 	if (blk_mq_request_started(rq)) {
747 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748 		rq->rq_flags &= ~RQF_TIMED_OUT;
749 	}
750 }
751 
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754 	__blk_mq_requeue_request(rq);
755 
756 	/* this request will be re-inserted to io scheduler queue */
757 	blk_mq_sched_requeue_request(rq);
758 
759 	BUG_ON(!list_empty(&rq->queuelist));
760 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763 
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766 	struct request_queue *q =
767 		container_of(work, struct request_queue, requeue_work.work);
768 	LIST_HEAD(rq_list);
769 	struct request *rq, *next;
770 
771 	spin_lock_irq(&q->requeue_lock);
772 	list_splice_init(&q->requeue_list, &rq_list);
773 	spin_unlock_irq(&q->requeue_lock);
774 
775 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777 			continue;
778 
779 		rq->rq_flags &= ~RQF_SOFTBARRIER;
780 		list_del_init(&rq->queuelist);
781 		/*
782 		 * If RQF_DONTPREP, rq has contained some driver specific
783 		 * data, so insert it to hctx dispatch list to avoid any
784 		 * merge.
785 		 */
786 		if (rq->rq_flags & RQF_DONTPREP)
787 			blk_mq_request_bypass_insert(rq, false, false);
788 		else
789 			blk_mq_sched_insert_request(rq, true, false, false);
790 	}
791 
792 	while (!list_empty(&rq_list)) {
793 		rq = list_entry(rq_list.next, struct request, queuelist);
794 		list_del_init(&rq->queuelist);
795 		blk_mq_sched_insert_request(rq, false, false, false);
796 	}
797 
798 	blk_mq_run_hw_queues(q, false);
799 }
800 
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802 				bool kick_requeue_list)
803 {
804 	struct request_queue *q = rq->q;
805 	unsigned long flags;
806 
807 	/*
808 	 * We abuse this flag that is otherwise used by the I/O scheduler to
809 	 * request head insertion from the workqueue.
810 	 */
811 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812 
813 	spin_lock_irqsave(&q->requeue_lock, flags);
814 	if (at_head) {
815 		rq->rq_flags |= RQF_SOFTBARRIER;
816 		list_add(&rq->queuelist, &q->requeue_list);
817 	} else {
818 		list_add_tail(&rq->queuelist, &q->requeue_list);
819 	}
820 	spin_unlock_irqrestore(&q->requeue_lock, flags);
821 
822 	if (kick_requeue_list)
823 		blk_mq_kick_requeue_list(q);
824 }
825 
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831 
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833 				    unsigned long msecs)
834 {
835 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836 				    msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839 
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842 	if (tag < tags->nr_tags) {
843 		prefetch(tags->rqs[tag]);
844 		return tags->rqs[tag];
845 	}
846 
847 	return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850 
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852 			       void *priv, bool reserved)
853 {
854 	/*
855 	 * If we find a request that isn't idle and the queue matches,
856 	 * we know the queue is busy. Return false to stop the iteration.
857 	 */
858 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859 		bool *busy = priv;
860 
861 		*busy = true;
862 		return false;
863 	}
864 
865 	return true;
866 }
867 
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870 	bool busy = false;
871 
872 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873 	return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876 
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879 	req->rq_flags |= RQF_TIMED_OUT;
880 	if (req->q->mq_ops->timeout) {
881 		enum blk_eh_timer_return ret;
882 
883 		ret = req->q->mq_ops->timeout(req, reserved);
884 		if (ret == BLK_EH_DONE)
885 			return;
886 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887 	}
888 
889 	blk_add_timer(req);
890 }
891 
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894 	unsigned long deadline;
895 
896 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897 		return false;
898 	if (rq->rq_flags & RQF_TIMED_OUT)
899 		return false;
900 
901 	deadline = READ_ONCE(rq->deadline);
902 	if (time_after_eq(jiffies, deadline))
903 		return true;
904 
905 	if (*next == 0)
906 		*next = deadline;
907 	else if (time_after(*next, deadline))
908 		*next = deadline;
909 	return false;
910 }
911 
912 void blk_mq_put_rq_ref(struct request *rq)
913 {
914 	if (is_flush_rq(rq))
915 		rq->end_io(rq, 0);
916 	else if (refcount_dec_and_test(&rq->ref))
917 		__blk_mq_free_request(rq);
918 }
919 
920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
921 		struct request *rq, void *priv, bool reserved)
922 {
923 	unsigned long *next = priv;
924 
925 	/*
926 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
927 	 * be reallocated underneath the timeout handler's processing, then
928 	 * the expire check is reliable. If the request is not expired, then
929 	 * it was completed and reallocated as a new request after returning
930 	 * from blk_mq_check_expired().
931 	 */
932 	if (blk_mq_req_expired(rq, next))
933 		blk_mq_rq_timed_out(rq, reserved);
934 	return true;
935 }
936 
937 static void blk_mq_timeout_work(struct work_struct *work)
938 {
939 	struct request_queue *q =
940 		container_of(work, struct request_queue, timeout_work);
941 	unsigned long next = 0;
942 	struct blk_mq_hw_ctx *hctx;
943 	int i;
944 
945 	/* A deadlock might occur if a request is stuck requiring a
946 	 * timeout at the same time a queue freeze is waiting
947 	 * completion, since the timeout code would not be able to
948 	 * acquire the queue reference here.
949 	 *
950 	 * That's why we don't use blk_queue_enter here; instead, we use
951 	 * percpu_ref_tryget directly, because we need to be able to
952 	 * obtain a reference even in the short window between the queue
953 	 * starting to freeze, by dropping the first reference in
954 	 * blk_freeze_queue_start, and the moment the last request is
955 	 * consumed, marked by the instant q_usage_counter reaches
956 	 * zero.
957 	 */
958 	if (!percpu_ref_tryget(&q->q_usage_counter))
959 		return;
960 
961 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
962 
963 	if (next != 0) {
964 		mod_timer(&q->timeout, next);
965 	} else {
966 		/*
967 		 * Request timeouts are handled as a forward rolling timer. If
968 		 * we end up here it means that no requests are pending and
969 		 * also that no request has been pending for a while. Mark
970 		 * each hctx as idle.
971 		 */
972 		queue_for_each_hw_ctx(q, hctx, i) {
973 			/* the hctx may be unmapped, so check it here */
974 			if (blk_mq_hw_queue_mapped(hctx))
975 				blk_mq_tag_idle(hctx);
976 		}
977 	}
978 	blk_queue_exit(q);
979 }
980 
981 struct flush_busy_ctx_data {
982 	struct blk_mq_hw_ctx *hctx;
983 	struct list_head *list;
984 };
985 
986 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
987 {
988 	struct flush_busy_ctx_data *flush_data = data;
989 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
990 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
991 	enum hctx_type type = hctx->type;
992 
993 	spin_lock(&ctx->lock);
994 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
995 	sbitmap_clear_bit(sb, bitnr);
996 	spin_unlock(&ctx->lock);
997 	return true;
998 }
999 
1000 /*
1001  * Process software queues that have been marked busy, splicing them
1002  * to the for-dispatch
1003  */
1004 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1005 {
1006 	struct flush_busy_ctx_data data = {
1007 		.hctx = hctx,
1008 		.list = list,
1009 	};
1010 
1011 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1012 }
1013 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1014 
1015 struct dispatch_rq_data {
1016 	struct blk_mq_hw_ctx *hctx;
1017 	struct request *rq;
1018 };
1019 
1020 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1021 		void *data)
1022 {
1023 	struct dispatch_rq_data *dispatch_data = data;
1024 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1025 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1026 	enum hctx_type type = hctx->type;
1027 
1028 	spin_lock(&ctx->lock);
1029 	if (!list_empty(&ctx->rq_lists[type])) {
1030 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1031 		list_del_init(&dispatch_data->rq->queuelist);
1032 		if (list_empty(&ctx->rq_lists[type]))
1033 			sbitmap_clear_bit(sb, bitnr);
1034 	}
1035 	spin_unlock(&ctx->lock);
1036 
1037 	return !dispatch_data->rq;
1038 }
1039 
1040 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1041 					struct blk_mq_ctx *start)
1042 {
1043 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1044 	struct dispatch_rq_data data = {
1045 		.hctx = hctx,
1046 		.rq   = NULL,
1047 	};
1048 
1049 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1050 			       dispatch_rq_from_ctx, &data);
1051 
1052 	return data.rq;
1053 }
1054 
1055 static inline unsigned int queued_to_index(unsigned int queued)
1056 {
1057 	if (!queued)
1058 		return 0;
1059 
1060 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1061 }
1062 
1063 static bool __blk_mq_get_driver_tag(struct request *rq)
1064 {
1065 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1066 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1067 	int tag;
1068 
1069 	blk_mq_tag_busy(rq->mq_hctx);
1070 
1071 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1072 		bt = rq->mq_hctx->tags->breserved_tags;
1073 		tag_offset = 0;
1074 	} else {
1075 		if (!hctx_may_queue(rq->mq_hctx, bt))
1076 			return false;
1077 	}
1078 
1079 	tag = __sbitmap_queue_get(bt);
1080 	if (tag == BLK_MQ_NO_TAG)
1081 		return false;
1082 
1083 	rq->tag = tag + tag_offset;
1084 	return true;
1085 }
1086 
1087 bool blk_mq_get_driver_tag(struct request *rq)
1088 {
1089 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1090 
1091 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1092 		return false;
1093 
1094 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1095 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1096 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1097 		__blk_mq_inc_active_requests(hctx);
1098 	}
1099 	hctx->tags->rqs[rq->tag] = rq;
1100 	return true;
1101 }
1102 
1103 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1104 				int flags, void *key)
1105 {
1106 	struct blk_mq_hw_ctx *hctx;
1107 
1108 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1109 
1110 	spin_lock(&hctx->dispatch_wait_lock);
1111 	if (!list_empty(&wait->entry)) {
1112 		struct sbitmap_queue *sbq;
1113 
1114 		list_del_init(&wait->entry);
1115 		sbq = hctx->tags->bitmap_tags;
1116 		atomic_dec(&sbq->ws_active);
1117 	}
1118 	spin_unlock(&hctx->dispatch_wait_lock);
1119 
1120 	blk_mq_run_hw_queue(hctx, true);
1121 	return 1;
1122 }
1123 
1124 /*
1125  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1126  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1127  * restart. For both cases, take care to check the condition again after
1128  * marking us as waiting.
1129  */
1130 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1131 				 struct request *rq)
1132 {
1133 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1134 	struct wait_queue_head *wq;
1135 	wait_queue_entry_t *wait;
1136 	bool ret;
1137 
1138 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1139 		blk_mq_sched_mark_restart_hctx(hctx);
1140 
1141 		/*
1142 		 * It's possible that a tag was freed in the window between the
1143 		 * allocation failure and adding the hardware queue to the wait
1144 		 * queue.
1145 		 *
1146 		 * Don't clear RESTART here, someone else could have set it.
1147 		 * At most this will cost an extra queue run.
1148 		 */
1149 		return blk_mq_get_driver_tag(rq);
1150 	}
1151 
1152 	wait = &hctx->dispatch_wait;
1153 	if (!list_empty_careful(&wait->entry))
1154 		return false;
1155 
1156 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1157 
1158 	spin_lock_irq(&wq->lock);
1159 	spin_lock(&hctx->dispatch_wait_lock);
1160 	if (!list_empty(&wait->entry)) {
1161 		spin_unlock(&hctx->dispatch_wait_lock);
1162 		spin_unlock_irq(&wq->lock);
1163 		return false;
1164 	}
1165 
1166 	atomic_inc(&sbq->ws_active);
1167 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1168 	__add_wait_queue(wq, wait);
1169 
1170 	/*
1171 	 * It's possible that a tag was freed in the window between the
1172 	 * allocation failure and adding the hardware queue to the wait
1173 	 * queue.
1174 	 */
1175 	ret = blk_mq_get_driver_tag(rq);
1176 	if (!ret) {
1177 		spin_unlock(&hctx->dispatch_wait_lock);
1178 		spin_unlock_irq(&wq->lock);
1179 		return false;
1180 	}
1181 
1182 	/*
1183 	 * We got a tag, remove ourselves from the wait queue to ensure
1184 	 * someone else gets the wakeup.
1185 	 */
1186 	list_del_init(&wait->entry);
1187 	atomic_dec(&sbq->ws_active);
1188 	spin_unlock(&hctx->dispatch_wait_lock);
1189 	spin_unlock_irq(&wq->lock);
1190 
1191 	return true;
1192 }
1193 
1194 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1195 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1196 /*
1197  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1198  * - EWMA is one simple way to compute running average value
1199  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1200  * - take 4 as factor for avoiding to get too small(0) result, and this
1201  *   factor doesn't matter because EWMA decreases exponentially
1202  */
1203 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1204 {
1205 	unsigned int ewma;
1206 
1207 	ewma = hctx->dispatch_busy;
1208 
1209 	if (!ewma && !busy)
1210 		return;
1211 
1212 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1213 	if (busy)
1214 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1215 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1216 
1217 	hctx->dispatch_busy = ewma;
1218 }
1219 
1220 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1221 
1222 static void blk_mq_handle_dev_resource(struct request *rq,
1223 				       struct list_head *list)
1224 {
1225 	struct request *next =
1226 		list_first_entry_or_null(list, struct request, queuelist);
1227 
1228 	/*
1229 	 * If an I/O scheduler has been configured and we got a driver tag for
1230 	 * the next request already, free it.
1231 	 */
1232 	if (next)
1233 		blk_mq_put_driver_tag(next);
1234 
1235 	list_add(&rq->queuelist, list);
1236 	__blk_mq_requeue_request(rq);
1237 }
1238 
1239 static void blk_mq_handle_zone_resource(struct request *rq,
1240 					struct list_head *zone_list)
1241 {
1242 	/*
1243 	 * If we end up here it is because we cannot dispatch a request to a
1244 	 * specific zone due to LLD level zone-write locking or other zone
1245 	 * related resource not being available. In this case, set the request
1246 	 * aside in zone_list for retrying it later.
1247 	 */
1248 	list_add(&rq->queuelist, zone_list);
1249 	__blk_mq_requeue_request(rq);
1250 }
1251 
1252 enum prep_dispatch {
1253 	PREP_DISPATCH_OK,
1254 	PREP_DISPATCH_NO_TAG,
1255 	PREP_DISPATCH_NO_BUDGET,
1256 };
1257 
1258 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1259 						  bool need_budget)
1260 {
1261 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1262 	int budget_token = -1;
1263 
1264 	if (need_budget) {
1265 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1266 		if (budget_token < 0) {
1267 			blk_mq_put_driver_tag(rq);
1268 			return PREP_DISPATCH_NO_BUDGET;
1269 		}
1270 		blk_mq_set_rq_budget_token(rq, budget_token);
1271 	}
1272 
1273 	if (!blk_mq_get_driver_tag(rq)) {
1274 		/*
1275 		 * The initial allocation attempt failed, so we need to
1276 		 * rerun the hardware queue when a tag is freed. The
1277 		 * waitqueue takes care of that. If the queue is run
1278 		 * before we add this entry back on the dispatch list,
1279 		 * we'll re-run it below.
1280 		 */
1281 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1282 			/*
1283 			 * All budgets not got from this function will be put
1284 			 * together during handling partial dispatch
1285 			 */
1286 			if (need_budget)
1287 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1288 			return PREP_DISPATCH_NO_TAG;
1289 		}
1290 	}
1291 
1292 	return PREP_DISPATCH_OK;
1293 }
1294 
1295 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1296 static void blk_mq_release_budgets(struct request_queue *q,
1297 		struct list_head *list)
1298 {
1299 	struct request *rq;
1300 
1301 	list_for_each_entry(rq, list, queuelist) {
1302 		int budget_token = blk_mq_get_rq_budget_token(rq);
1303 
1304 		if (budget_token >= 0)
1305 			blk_mq_put_dispatch_budget(q, budget_token);
1306 	}
1307 }
1308 
1309 /*
1310  * Returns true if we did some work AND can potentially do more.
1311  */
1312 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1313 			     unsigned int nr_budgets)
1314 {
1315 	enum prep_dispatch prep;
1316 	struct request_queue *q = hctx->queue;
1317 	struct request *rq, *nxt;
1318 	int errors, queued;
1319 	blk_status_t ret = BLK_STS_OK;
1320 	LIST_HEAD(zone_list);
1321 
1322 	if (list_empty(list))
1323 		return false;
1324 
1325 	/*
1326 	 * Now process all the entries, sending them to the driver.
1327 	 */
1328 	errors = queued = 0;
1329 	do {
1330 		struct blk_mq_queue_data bd;
1331 
1332 		rq = list_first_entry(list, struct request, queuelist);
1333 
1334 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1335 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1336 		if (prep != PREP_DISPATCH_OK)
1337 			break;
1338 
1339 		list_del_init(&rq->queuelist);
1340 
1341 		bd.rq = rq;
1342 
1343 		/*
1344 		 * Flag last if we have no more requests, or if we have more
1345 		 * but can't assign a driver tag to it.
1346 		 */
1347 		if (list_empty(list))
1348 			bd.last = true;
1349 		else {
1350 			nxt = list_first_entry(list, struct request, queuelist);
1351 			bd.last = !blk_mq_get_driver_tag(nxt);
1352 		}
1353 
1354 		/*
1355 		 * once the request is queued to lld, no need to cover the
1356 		 * budget any more
1357 		 */
1358 		if (nr_budgets)
1359 			nr_budgets--;
1360 		ret = q->mq_ops->queue_rq(hctx, &bd);
1361 		switch (ret) {
1362 		case BLK_STS_OK:
1363 			queued++;
1364 			break;
1365 		case BLK_STS_RESOURCE:
1366 		case BLK_STS_DEV_RESOURCE:
1367 			blk_mq_handle_dev_resource(rq, list);
1368 			goto out;
1369 		case BLK_STS_ZONE_RESOURCE:
1370 			/*
1371 			 * Move the request to zone_list and keep going through
1372 			 * the dispatch list to find more requests the drive can
1373 			 * accept.
1374 			 */
1375 			blk_mq_handle_zone_resource(rq, &zone_list);
1376 			break;
1377 		default:
1378 			errors++;
1379 			blk_mq_end_request(rq, ret);
1380 		}
1381 	} while (!list_empty(list));
1382 out:
1383 	if (!list_empty(&zone_list))
1384 		list_splice_tail_init(&zone_list, list);
1385 
1386 	hctx->dispatched[queued_to_index(queued)]++;
1387 
1388 	/* If we didn't flush the entire list, we could have told the driver
1389 	 * there was more coming, but that turned out to be a lie.
1390 	 */
1391 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1392 		q->mq_ops->commit_rqs(hctx);
1393 	/*
1394 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1395 	 * that is where we will continue on next queue run.
1396 	 */
1397 	if (!list_empty(list)) {
1398 		bool needs_restart;
1399 		/* For non-shared tags, the RESTART check will suffice */
1400 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1401 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1402 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1403 
1404 		if (nr_budgets)
1405 			blk_mq_release_budgets(q, list);
1406 
1407 		spin_lock(&hctx->lock);
1408 		list_splice_tail_init(list, &hctx->dispatch);
1409 		spin_unlock(&hctx->lock);
1410 
1411 		/*
1412 		 * Order adding requests to hctx->dispatch and checking
1413 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1414 		 * in blk_mq_sched_restart(). Avoid restart code path to
1415 		 * miss the new added requests to hctx->dispatch, meantime
1416 		 * SCHED_RESTART is observed here.
1417 		 */
1418 		smp_mb();
1419 
1420 		/*
1421 		 * If SCHED_RESTART was set by the caller of this function and
1422 		 * it is no longer set that means that it was cleared by another
1423 		 * thread and hence that a queue rerun is needed.
1424 		 *
1425 		 * If 'no_tag' is set, that means that we failed getting
1426 		 * a driver tag with an I/O scheduler attached. If our dispatch
1427 		 * waitqueue is no longer active, ensure that we run the queue
1428 		 * AFTER adding our entries back to the list.
1429 		 *
1430 		 * If no I/O scheduler has been configured it is possible that
1431 		 * the hardware queue got stopped and restarted before requests
1432 		 * were pushed back onto the dispatch list. Rerun the queue to
1433 		 * avoid starvation. Notes:
1434 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1435 		 *   been stopped before rerunning a queue.
1436 		 * - Some but not all block drivers stop a queue before
1437 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1438 		 *   and dm-rq.
1439 		 *
1440 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1441 		 * bit is set, run queue after a delay to avoid IO stalls
1442 		 * that could otherwise occur if the queue is idle.  We'll do
1443 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1444 		 */
1445 		needs_restart = blk_mq_sched_needs_restart(hctx);
1446 		if (!needs_restart ||
1447 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1448 			blk_mq_run_hw_queue(hctx, true);
1449 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1450 					   no_budget_avail))
1451 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1452 
1453 		blk_mq_update_dispatch_busy(hctx, true);
1454 		return false;
1455 	} else
1456 		blk_mq_update_dispatch_busy(hctx, false);
1457 
1458 	return (queued + errors) != 0;
1459 }
1460 
1461 /**
1462  * __blk_mq_run_hw_queue - Run a hardware queue.
1463  * @hctx: Pointer to the hardware queue to run.
1464  *
1465  * Send pending requests to the hardware.
1466  */
1467 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1468 {
1469 	int srcu_idx;
1470 
1471 	/*
1472 	 * We can't run the queue inline with ints disabled. Ensure that
1473 	 * we catch bad users of this early.
1474 	 */
1475 	WARN_ON_ONCE(in_interrupt());
1476 
1477 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1478 
1479 	hctx_lock(hctx, &srcu_idx);
1480 	blk_mq_sched_dispatch_requests(hctx);
1481 	hctx_unlock(hctx, srcu_idx);
1482 }
1483 
1484 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1485 {
1486 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1487 
1488 	if (cpu >= nr_cpu_ids)
1489 		cpu = cpumask_first(hctx->cpumask);
1490 	return cpu;
1491 }
1492 
1493 /*
1494  * It'd be great if the workqueue API had a way to pass
1495  * in a mask and had some smarts for more clever placement.
1496  * For now we just round-robin here, switching for every
1497  * BLK_MQ_CPU_WORK_BATCH queued items.
1498  */
1499 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1500 {
1501 	bool tried = false;
1502 	int next_cpu = hctx->next_cpu;
1503 
1504 	if (hctx->queue->nr_hw_queues == 1)
1505 		return WORK_CPU_UNBOUND;
1506 
1507 	if (--hctx->next_cpu_batch <= 0) {
1508 select_cpu:
1509 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1510 				cpu_online_mask);
1511 		if (next_cpu >= nr_cpu_ids)
1512 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1513 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1514 	}
1515 
1516 	/*
1517 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1518 	 * and it should only happen in the path of handling CPU DEAD.
1519 	 */
1520 	if (!cpu_online(next_cpu)) {
1521 		if (!tried) {
1522 			tried = true;
1523 			goto select_cpu;
1524 		}
1525 
1526 		/*
1527 		 * Make sure to re-select CPU next time once after CPUs
1528 		 * in hctx->cpumask become online again.
1529 		 */
1530 		hctx->next_cpu = next_cpu;
1531 		hctx->next_cpu_batch = 1;
1532 		return WORK_CPU_UNBOUND;
1533 	}
1534 
1535 	hctx->next_cpu = next_cpu;
1536 	return next_cpu;
1537 }
1538 
1539 /**
1540  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1541  * @hctx: Pointer to the hardware queue to run.
1542  * @async: If we want to run the queue asynchronously.
1543  * @msecs: Milliseconds of delay to wait before running the queue.
1544  *
1545  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1546  * with a delay of @msecs.
1547  */
1548 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1549 					unsigned long msecs)
1550 {
1551 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1552 		return;
1553 
1554 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1555 		int cpu = get_cpu();
1556 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1557 			__blk_mq_run_hw_queue(hctx);
1558 			put_cpu();
1559 			return;
1560 		}
1561 
1562 		put_cpu();
1563 	}
1564 
1565 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1566 				    msecs_to_jiffies(msecs));
1567 }
1568 
1569 /**
1570  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1571  * @hctx: Pointer to the hardware queue to run.
1572  * @msecs: Milliseconds of delay to wait before running the queue.
1573  *
1574  * Run a hardware queue asynchronously with a delay of @msecs.
1575  */
1576 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1577 {
1578 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1579 }
1580 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1581 
1582 /**
1583  * blk_mq_run_hw_queue - Start to run a hardware queue.
1584  * @hctx: Pointer to the hardware queue to run.
1585  * @async: If we want to run the queue asynchronously.
1586  *
1587  * Check if the request queue is not in a quiesced state and if there are
1588  * pending requests to be sent. If this is true, run the queue to send requests
1589  * to hardware.
1590  */
1591 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1592 {
1593 	int srcu_idx;
1594 	bool need_run;
1595 
1596 	/*
1597 	 * When queue is quiesced, we may be switching io scheduler, or
1598 	 * updating nr_hw_queues, or other things, and we can't run queue
1599 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1600 	 *
1601 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1602 	 * quiesced.
1603 	 */
1604 	hctx_lock(hctx, &srcu_idx);
1605 	need_run = !blk_queue_quiesced(hctx->queue) &&
1606 		blk_mq_hctx_has_pending(hctx);
1607 	hctx_unlock(hctx, srcu_idx);
1608 
1609 	if (need_run)
1610 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1611 }
1612 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1613 
1614 /*
1615  * Is the request queue handled by an IO scheduler that does not respect
1616  * hardware queues when dispatching?
1617  */
1618 static bool blk_mq_has_sqsched(struct request_queue *q)
1619 {
1620 	struct elevator_queue *e = q->elevator;
1621 
1622 	if (e && e->type->ops.dispatch_request &&
1623 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1624 		return true;
1625 	return false;
1626 }
1627 
1628 /*
1629  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1630  * scheduler.
1631  */
1632 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1633 {
1634 	struct blk_mq_hw_ctx *hctx;
1635 
1636 	/*
1637 	 * If the IO scheduler does not respect hardware queues when
1638 	 * dispatching, we just don't bother with multiple HW queues and
1639 	 * dispatch from hctx for the current CPU since running multiple queues
1640 	 * just causes lock contention inside the scheduler and pointless cache
1641 	 * bouncing.
1642 	 */
1643 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1644 				     raw_smp_processor_id());
1645 	if (!blk_mq_hctx_stopped(hctx))
1646 		return hctx;
1647 	return NULL;
1648 }
1649 
1650 /**
1651  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1652  * @q: Pointer to the request queue to run.
1653  * @async: If we want to run the queue asynchronously.
1654  */
1655 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1656 {
1657 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1658 	int i;
1659 
1660 	sq_hctx = NULL;
1661 	if (blk_mq_has_sqsched(q))
1662 		sq_hctx = blk_mq_get_sq_hctx(q);
1663 	queue_for_each_hw_ctx(q, hctx, i) {
1664 		if (blk_mq_hctx_stopped(hctx))
1665 			continue;
1666 		/*
1667 		 * Dispatch from this hctx either if there's no hctx preferred
1668 		 * by IO scheduler or if it has requests that bypass the
1669 		 * scheduler.
1670 		 */
1671 		if (!sq_hctx || sq_hctx == hctx ||
1672 		    !list_empty_careful(&hctx->dispatch))
1673 			blk_mq_run_hw_queue(hctx, async);
1674 	}
1675 }
1676 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1677 
1678 /**
1679  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1680  * @q: Pointer to the request queue to run.
1681  * @msecs: Milliseconds of delay to wait before running the queues.
1682  */
1683 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1684 {
1685 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1686 	int i;
1687 
1688 	sq_hctx = NULL;
1689 	if (blk_mq_has_sqsched(q))
1690 		sq_hctx = blk_mq_get_sq_hctx(q);
1691 	queue_for_each_hw_ctx(q, hctx, i) {
1692 		if (blk_mq_hctx_stopped(hctx))
1693 			continue;
1694 		/*
1695 		 * Dispatch from this hctx either if there's no hctx preferred
1696 		 * by IO scheduler or if it has requests that bypass the
1697 		 * scheduler.
1698 		 */
1699 		if (!sq_hctx || sq_hctx == hctx ||
1700 		    !list_empty_careful(&hctx->dispatch))
1701 			blk_mq_delay_run_hw_queue(hctx, msecs);
1702 	}
1703 }
1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705 
1706 /**
1707  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708  * @q: request queue.
1709  *
1710  * The caller is responsible for serializing this function against
1711  * blk_mq_{start,stop}_hw_queue().
1712  */
1713 bool blk_mq_queue_stopped(struct request_queue *q)
1714 {
1715 	struct blk_mq_hw_ctx *hctx;
1716 	int i;
1717 
1718 	queue_for_each_hw_ctx(q, hctx, i)
1719 		if (blk_mq_hctx_stopped(hctx))
1720 			return true;
1721 
1722 	return false;
1723 }
1724 EXPORT_SYMBOL(blk_mq_queue_stopped);
1725 
1726 /*
1727  * This function is often used for pausing .queue_rq() by driver when
1728  * there isn't enough resource or some conditions aren't satisfied, and
1729  * BLK_STS_RESOURCE is usually returned.
1730  *
1731  * We do not guarantee that dispatch can be drained or blocked
1732  * after blk_mq_stop_hw_queue() returns. Please use
1733  * blk_mq_quiesce_queue() for that requirement.
1734  */
1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736 {
1737 	cancel_delayed_work(&hctx->run_work);
1738 
1739 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742 
1743 /*
1744  * This function is often used for pausing .queue_rq() by driver when
1745  * there isn't enough resource or some conditions aren't satisfied, and
1746  * BLK_STS_RESOURCE is usually returned.
1747  *
1748  * We do not guarantee that dispatch can be drained or blocked
1749  * after blk_mq_stop_hw_queues() returns. Please use
1750  * blk_mq_quiesce_queue() for that requirement.
1751  */
1752 void blk_mq_stop_hw_queues(struct request_queue *q)
1753 {
1754 	struct blk_mq_hw_ctx *hctx;
1755 	int i;
1756 
1757 	queue_for_each_hw_ctx(q, hctx, i)
1758 		blk_mq_stop_hw_queue(hctx);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761 
1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763 {
1764 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765 
1766 	blk_mq_run_hw_queue(hctx, false);
1767 }
1768 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769 
1770 void blk_mq_start_hw_queues(struct request_queue *q)
1771 {
1772 	struct blk_mq_hw_ctx *hctx;
1773 	int i;
1774 
1775 	queue_for_each_hw_ctx(q, hctx, i)
1776 		blk_mq_start_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779 
1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781 {
1782 	if (!blk_mq_hctx_stopped(hctx))
1783 		return;
1784 
1785 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786 	blk_mq_run_hw_queue(hctx, async);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789 
1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 {
1792 	struct blk_mq_hw_ctx *hctx;
1793 	int i;
1794 
1795 	queue_for_each_hw_ctx(q, hctx, i)
1796 		blk_mq_start_stopped_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799 
1800 static void blk_mq_run_work_fn(struct work_struct *work)
1801 {
1802 	struct blk_mq_hw_ctx *hctx;
1803 
1804 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805 
1806 	/*
1807 	 * If we are stopped, don't run the queue.
1808 	 */
1809 	if (blk_mq_hctx_stopped(hctx))
1810 		return;
1811 
1812 	__blk_mq_run_hw_queue(hctx);
1813 }
1814 
1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816 					    struct request *rq,
1817 					    bool at_head)
1818 {
1819 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1820 	enum hctx_type type = hctx->type;
1821 
1822 	lockdep_assert_held(&ctx->lock);
1823 
1824 	trace_block_rq_insert(rq);
1825 
1826 	if (at_head)
1827 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828 	else
1829 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830 }
1831 
1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833 			     bool at_head)
1834 {
1835 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1836 
1837 	lockdep_assert_held(&ctx->lock);
1838 
1839 	__blk_mq_insert_req_list(hctx, rq, at_head);
1840 	blk_mq_hctx_mark_pending(hctx, ctx);
1841 }
1842 
1843 /**
1844  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845  * @rq: Pointer to request to be inserted.
1846  * @at_head: true if the request should be inserted at the head of the list.
1847  * @run_queue: If we should run the hardware queue after inserting the request.
1848  *
1849  * Should only be used carefully, when the caller knows we want to
1850  * bypass a potential IO scheduler on the target device.
1851  */
1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853 				  bool run_queue)
1854 {
1855 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856 
1857 	spin_lock(&hctx->lock);
1858 	if (at_head)
1859 		list_add(&rq->queuelist, &hctx->dispatch);
1860 	else
1861 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1862 	spin_unlock(&hctx->lock);
1863 
1864 	if (run_queue)
1865 		blk_mq_run_hw_queue(hctx, false);
1866 }
1867 
1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869 			    struct list_head *list)
1870 
1871 {
1872 	struct request *rq;
1873 	enum hctx_type type = hctx->type;
1874 
1875 	/*
1876 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877 	 * offline now
1878 	 */
1879 	list_for_each_entry(rq, list, queuelist) {
1880 		BUG_ON(rq->mq_ctx != ctx);
1881 		trace_block_rq_insert(rq);
1882 	}
1883 
1884 	spin_lock(&ctx->lock);
1885 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1886 	blk_mq_hctx_mark_pending(hctx, ctx);
1887 	spin_unlock(&ctx->lock);
1888 }
1889 
1890 static int plug_rq_cmp(void *priv, const struct list_head *a,
1891 		       const struct list_head *b)
1892 {
1893 	struct request *rqa = container_of(a, struct request, queuelist);
1894 	struct request *rqb = container_of(b, struct request, queuelist);
1895 
1896 	if (rqa->mq_ctx != rqb->mq_ctx)
1897 		return rqa->mq_ctx > rqb->mq_ctx;
1898 	if (rqa->mq_hctx != rqb->mq_hctx)
1899 		return rqa->mq_hctx > rqb->mq_hctx;
1900 
1901 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1902 }
1903 
1904 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1905 {
1906 	LIST_HEAD(list);
1907 
1908 	if (list_empty(&plug->mq_list))
1909 		return;
1910 	list_splice_init(&plug->mq_list, &list);
1911 
1912 	if (plug->rq_count > 2 && plug->multiple_queues)
1913 		list_sort(NULL, &list, plug_rq_cmp);
1914 
1915 	plug->rq_count = 0;
1916 
1917 	do {
1918 		struct list_head rq_list;
1919 		struct request *rq, *head_rq = list_entry_rq(list.next);
1920 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1921 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1922 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1923 		unsigned int depth = 1;
1924 
1925 		list_for_each_continue(pos, &list) {
1926 			rq = list_entry_rq(pos);
1927 			BUG_ON(!rq->q);
1928 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1929 				break;
1930 			depth++;
1931 		}
1932 
1933 		list_cut_before(&rq_list, &list, pos);
1934 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1935 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1936 						from_schedule);
1937 	} while(!list_empty(&list));
1938 }
1939 
1940 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1941 		unsigned int nr_segs)
1942 {
1943 	int err;
1944 
1945 	if (bio->bi_opf & REQ_RAHEAD)
1946 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1947 
1948 	rq->__sector = bio->bi_iter.bi_sector;
1949 	rq->write_hint = bio->bi_write_hint;
1950 	blk_rq_bio_prep(rq, bio, nr_segs);
1951 
1952 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1953 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1954 	WARN_ON_ONCE(err);
1955 
1956 	blk_account_io_start(rq);
1957 }
1958 
1959 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1960 					    struct request *rq,
1961 					    blk_qc_t *cookie, bool last)
1962 {
1963 	struct request_queue *q = rq->q;
1964 	struct blk_mq_queue_data bd = {
1965 		.rq = rq,
1966 		.last = last,
1967 	};
1968 	blk_qc_t new_cookie;
1969 	blk_status_t ret;
1970 
1971 	new_cookie = request_to_qc_t(hctx, rq);
1972 
1973 	/*
1974 	 * For OK queue, we are done. For error, caller may kill it.
1975 	 * Any other error (busy), just add it to our list as we
1976 	 * previously would have done.
1977 	 */
1978 	ret = q->mq_ops->queue_rq(hctx, &bd);
1979 	switch (ret) {
1980 	case BLK_STS_OK:
1981 		blk_mq_update_dispatch_busy(hctx, false);
1982 		*cookie = new_cookie;
1983 		break;
1984 	case BLK_STS_RESOURCE:
1985 	case BLK_STS_DEV_RESOURCE:
1986 		blk_mq_update_dispatch_busy(hctx, true);
1987 		__blk_mq_requeue_request(rq);
1988 		break;
1989 	default:
1990 		blk_mq_update_dispatch_busy(hctx, false);
1991 		*cookie = BLK_QC_T_NONE;
1992 		break;
1993 	}
1994 
1995 	return ret;
1996 }
1997 
1998 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1999 						struct request *rq,
2000 						blk_qc_t *cookie,
2001 						bool bypass_insert, bool last)
2002 {
2003 	struct request_queue *q = rq->q;
2004 	bool run_queue = true;
2005 	int budget_token;
2006 
2007 	/*
2008 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2009 	 *
2010 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2011 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2012 	 * and avoid driver to try to dispatch again.
2013 	 */
2014 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2015 		run_queue = false;
2016 		bypass_insert = false;
2017 		goto insert;
2018 	}
2019 
2020 	if (q->elevator && !bypass_insert)
2021 		goto insert;
2022 
2023 	budget_token = blk_mq_get_dispatch_budget(q);
2024 	if (budget_token < 0)
2025 		goto insert;
2026 
2027 	blk_mq_set_rq_budget_token(rq, budget_token);
2028 
2029 	if (!blk_mq_get_driver_tag(rq)) {
2030 		blk_mq_put_dispatch_budget(q, budget_token);
2031 		goto insert;
2032 	}
2033 
2034 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2035 insert:
2036 	if (bypass_insert)
2037 		return BLK_STS_RESOURCE;
2038 
2039 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2040 
2041 	return BLK_STS_OK;
2042 }
2043 
2044 /**
2045  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2046  * @hctx: Pointer of the associated hardware queue.
2047  * @rq: Pointer to request to be sent.
2048  * @cookie: Request queue cookie.
2049  *
2050  * If the device has enough resources to accept a new request now, send the
2051  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2052  * we can try send it another time in the future. Requests inserted at this
2053  * queue have higher priority.
2054  */
2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2056 		struct request *rq, blk_qc_t *cookie)
2057 {
2058 	blk_status_t ret;
2059 	int srcu_idx;
2060 
2061 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2062 
2063 	hctx_lock(hctx, &srcu_idx);
2064 
2065 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2066 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2067 		blk_mq_request_bypass_insert(rq, false, true);
2068 	else if (ret != BLK_STS_OK)
2069 		blk_mq_end_request(rq, ret);
2070 
2071 	hctx_unlock(hctx, srcu_idx);
2072 }
2073 
2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2075 {
2076 	blk_status_t ret;
2077 	int srcu_idx;
2078 	blk_qc_t unused_cookie;
2079 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2080 
2081 	hctx_lock(hctx, &srcu_idx);
2082 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2083 	hctx_unlock(hctx, srcu_idx);
2084 
2085 	return ret;
2086 }
2087 
2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2089 		struct list_head *list)
2090 {
2091 	int queued = 0;
2092 	int errors = 0;
2093 
2094 	while (!list_empty(list)) {
2095 		blk_status_t ret;
2096 		struct request *rq = list_first_entry(list, struct request,
2097 				queuelist);
2098 
2099 		list_del_init(&rq->queuelist);
2100 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2101 		if (ret != BLK_STS_OK) {
2102 			if (ret == BLK_STS_RESOURCE ||
2103 					ret == BLK_STS_DEV_RESOURCE) {
2104 				blk_mq_request_bypass_insert(rq, false,
2105 							list_empty(list));
2106 				break;
2107 			}
2108 			blk_mq_end_request(rq, ret);
2109 			errors++;
2110 		} else
2111 			queued++;
2112 	}
2113 
2114 	/*
2115 	 * If we didn't flush the entire list, we could have told
2116 	 * the driver there was more coming, but that turned out to
2117 	 * be a lie.
2118 	 */
2119 	if ((!list_empty(list) || errors) &&
2120 	     hctx->queue->mq_ops->commit_rqs && queued)
2121 		hctx->queue->mq_ops->commit_rqs(hctx);
2122 }
2123 
2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125 {
2126 	list_add_tail(&rq->queuelist, &plug->mq_list);
2127 	plug->rq_count++;
2128 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129 		struct request *tmp;
2130 
2131 		tmp = list_first_entry(&plug->mq_list, struct request,
2132 						queuelist);
2133 		if (tmp->q != rq->q)
2134 			plug->multiple_queues = true;
2135 	}
2136 }
2137 
2138 /**
2139  * blk_mq_submit_bio - Create and send a request to block device.
2140  * @bio: Bio pointer.
2141  *
2142  * Builds up a request structure from @q and @bio and send to the device. The
2143  * request may not be queued directly to hardware if:
2144  * * This request can be merged with another one
2145  * * We want to place request at plug queue for possible future merging
2146  * * There is an IO scheduler active at this queue
2147  *
2148  * It will not queue the request if there is an error with the bio, or at the
2149  * request creation.
2150  *
2151  * Returns: Request queue cookie.
2152  */
2153 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2154 {
2155 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2156 	const int is_sync = op_is_sync(bio->bi_opf);
2157 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2158 	struct blk_mq_alloc_data data = {
2159 		.q		= q,
2160 	};
2161 	struct request *rq;
2162 	struct blk_plug *plug;
2163 	struct request *same_queue_rq = NULL;
2164 	unsigned int nr_segs;
2165 	blk_qc_t cookie;
2166 	blk_status_t ret;
2167 	bool hipri;
2168 
2169 	blk_queue_bounce(q, &bio);
2170 	__blk_queue_split(&bio, &nr_segs);
2171 
2172 	if (!bio_integrity_prep(bio))
2173 		goto queue_exit;
2174 
2175 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2176 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2177 		goto queue_exit;
2178 
2179 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2180 		goto queue_exit;
2181 
2182 	rq_qos_throttle(q, bio);
2183 
2184 	hipri = bio->bi_opf & REQ_HIPRI;
2185 
2186 	data.cmd_flags = bio->bi_opf;
2187 	rq = __blk_mq_alloc_request(&data);
2188 	if (unlikely(!rq)) {
2189 		rq_qos_cleanup(q, bio);
2190 		if (bio->bi_opf & REQ_NOWAIT)
2191 			bio_wouldblock_error(bio);
2192 		goto queue_exit;
2193 	}
2194 
2195 	trace_block_getrq(bio);
2196 
2197 	rq_qos_track(q, rq, bio);
2198 
2199 	cookie = request_to_qc_t(data.hctx, rq);
2200 
2201 	blk_mq_bio_to_request(rq, bio, nr_segs);
2202 
2203 	ret = blk_crypto_init_request(rq);
2204 	if (ret != BLK_STS_OK) {
2205 		bio->bi_status = ret;
2206 		bio_endio(bio);
2207 		blk_mq_free_request(rq);
2208 		return BLK_QC_T_NONE;
2209 	}
2210 
2211 	plug = blk_mq_plug(q, bio);
2212 	if (unlikely(is_flush_fua)) {
2213 		/* Bypass scheduler for flush requests */
2214 		blk_insert_flush(rq);
2215 		blk_mq_run_hw_queue(data.hctx, true);
2216 	} else if (plug && (q->nr_hw_queues == 1 ||
2217 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2218 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2219 		/*
2220 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2221 		 * we know the driver uses bd->last in a smart fashion.
2222 		 *
2223 		 * Use normal plugging if this disk is slow HDD, as sequential
2224 		 * IO may benefit a lot from plug merging.
2225 		 */
2226 		unsigned int request_count = plug->rq_count;
2227 		struct request *last = NULL;
2228 
2229 		if (!request_count)
2230 			trace_block_plug(q);
2231 		else
2232 			last = list_entry_rq(plug->mq_list.prev);
2233 
2234 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2235 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2236 			blk_flush_plug_list(plug, false);
2237 			trace_block_plug(q);
2238 		}
2239 
2240 		blk_add_rq_to_plug(plug, rq);
2241 	} else if (q->elevator) {
2242 		/* Insert the request at the IO scheduler queue */
2243 		blk_mq_sched_insert_request(rq, false, true, true);
2244 	} else if (plug && !blk_queue_nomerges(q)) {
2245 		/*
2246 		 * We do limited plugging. If the bio can be merged, do that.
2247 		 * Otherwise the existing request in the plug list will be
2248 		 * issued. So the plug list will have one request at most
2249 		 * The plug list might get flushed before this. If that happens,
2250 		 * the plug list is empty, and same_queue_rq is invalid.
2251 		 */
2252 		if (list_empty(&plug->mq_list))
2253 			same_queue_rq = NULL;
2254 		if (same_queue_rq) {
2255 			list_del_init(&same_queue_rq->queuelist);
2256 			plug->rq_count--;
2257 		}
2258 		blk_add_rq_to_plug(plug, rq);
2259 		trace_block_plug(q);
2260 
2261 		if (same_queue_rq) {
2262 			data.hctx = same_queue_rq->mq_hctx;
2263 			trace_block_unplug(q, 1, true);
2264 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2265 					&cookie);
2266 		}
2267 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2268 			!data.hctx->dispatch_busy) {
2269 		/*
2270 		 * There is no scheduler and we can try to send directly
2271 		 * to the hardware.
2272 		 */
2273 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2274 	} else {
2275 		/* Default case. */
2276 		blk_mq_sched_insert_request(rq, false, true, true);
2277 	}
2278 
2279 	if (!hipri)
2280 		return BLK_QC_T_NONE;
2281 	return cookie;
2282 queue_exit:
2283 	blk_queue_exit(q);
2284 	return BLK_QC_T_NONE;
2285 }
2286 
2287 static size_t order_to_size(unsigned int order)
2288 {
2289 	return (size_t)PAGE_SIZE << order;
2290 }
2291 
2292 /* called before freeing request pool in @tags */
2293 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2294 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2295 {
2296 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2297 	struct page *page;
2298 	unsigned long flags;
2299 
2300 	list_for_each_entry(page, &tags->page_list, lru) {
2301 		unsigned long start = (unsigned long)page_address(page);
2302 		unsigned long end = start + order_to_size(page->private);
2303 		int i;
2304 
2305 		for (i = 0; i < set->queue_depth; i++) {
2306 			struct request *rq = drv_tags->rqs[i];
2307 			unsigned long rq_addr = (unsigned long)rq;
2308 
2309 			if (rq_addr >= start && rq_addr < end) {
2310 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2311 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2312 			}
2313 		}
2314 	}
2315 
2316 	/*
2317 	 * Wait until all pending iteration is done.
2318 	 *
2319 	 * Request reference is cleared and it is guaranteed to be observed
2320 	 * after the ->lock is released.
2321 	 */
2322 	spin_lock_irqsave(&drv_tags->lock, flags);
2323 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2324 }
2325 
2326 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2327 		     unsigned int hctx_idx)
2328 {
2329 	struct page *page;
2330 
2331 	if (tags->rqs && set->ops->exit_request) {
2332 		int i;
2333 
2334 		for (i = 0; i < tags->nr_tags; i++) {
2335 			struct request *rq = tags->static_rqs[i];
2336 
2337 			if (!rq)
2338 				continue;
2339 			set->ops->exit_request(set, rq, hctx_idx);
2340 			tags->static_rqs[i] = NULL;
2341 		}
2342 	}
2343 
2344 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2345 
2346 	while (!list_empty(&tags->page_list)) {
2347 		page = list_first_entry(&tags->page_list, struct page, lru);
2348 		list_del_init(&page->lru);
2349 		/*
2350 		 * Remove kmemleak object previously allocated in
2351 		 * blk_mq_alloc_rqs().
2352 		 */
2353 		kmemleak_free(page_address(page));
2354 		__free_pages(page, page->private);
2355 	}
2356 }
2357 
2358 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2359 {
2360 	kfree(tags->rqs);
2361 	tags->rqs = NULL;
2362 	kfree(tags->static_rqs);
2363 	tags->static_rqs = NULL;
2364 
2365 	blk_mq_free_tags(tags, flags);
2366 }
2367 
2368 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2369 					unsigned int hctx_idx,
2370 					unsigned int nr_tags,
2371 					unsigned int reserved_tags,
2372 					unsigned int flags)
2373 {
2374 	struct blk_mq_tags *tags;
2375 	int node;
2376 
2377 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2378 	if (node == NUMA_NO_NODE)
2379 		node = set->numa_node;
2380 
2381 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2382 	if (!tags)
2383 		return NULL;
2384 
2385 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2386 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2387 				 node);
2388 	if (!tags->rqs) {
2389 		blk_mq_free_tags(tags, flags);
2390 		return NULL;
2391 	}
2392 
2393 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2394 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2395 					node);
2396 	if (!tags->static_rqs) {
2397 		kfree(tags->rqs);
2398 		blk_mq_free_tags(tags, flags);
2399 		return NULL;
2400 	}
2401 
2402 	return tags;
2403 }
2404 
2405 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2406 			       unsigned int hctx_idx, int node)
2407 {
2408 	int ret;
2409 
2410 	if (set->ops->init_request) {
2411 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2412 		if (ret)
2413 			return ret;
2414 	}
2415 
2416 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2417 	return 0;
2418 }
2419 
2420 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2421 		     unsigned int hctx_idx, unsigned int depth)
2422 {
2423 	unsigned int i, j, entries_per_page, max_order = 4;
2424 	size_t rq_size, left;
2425 	int node;
2426 
2427 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2428 	if (node == NUMA_NO_NODE)
2429 		node = set->numa_node;
2430 
2431 	INIT_LIST_HEAD(&tags->page_list);
2432 
2433 	/*
2434 	 * rq_size is the size of the request plus driver payload, rounded
2435 	 * to the cacheline size
2436 	 */
2437 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2438 				cache_line_size());
2439 	left = rq_size * depth;
2440 
2441 	for (i = 0; i < depth; ) {
2442 		int this_order = max_order;
2443 		struct page *page;
2444 		int to_do;
2445 		void *p;
2446 
2447 		while (this_order && left < order_to_size(this_order - 1))
2448 			this_order--;
2449 
2450 		do {
2451 			page = alloc_pages_node(node,
2452 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2453 				this_order);
2454 			if (page)
2455 				break;
2456 			if (!this_order--)
2457 				break;
2458 			if (order_to_size(this_order) < rq_size)
2459 				break;
2460 		} while (1);
2461 
2462 		if (!page)
2463 			goto fail;
2464 
2465 		page->private = this_order;
2466 		list_add_tail(&page->lru, &tags->page_list);
2467 
2468 		p = page_address(page);
2469 		/*
2470 		 * Allow kmemleak to scan these pages as they contain pointers
2471 		 * to additional allocations like via ops->init_request().
2472 		 */
2473 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2474 		entries_per_page = order_to_size(this_order) / rq_size;
2475 		to_do = min(entries_per_page, depth - i);
2476 		left -= to_do * rq_size;
2477 		for (j = 0; j < to_do; j++) {
2478 			struct request *rq = p;
2479 
2480 			tags->static_rqs[i] = rq;
2481 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2482 				tags->static_rqs[i] = NULL;
2483 				goto fail;
2484 			}
2485 
2486 			p += rq_size;
2487 			i++;
2488 		}
2489 	}
2490 	return 0;
2491 
2492 fail:
2493 	blk_mq_free_rqs(set, tags, hctx_idx);
2494 	return -ENOMEM;
2495 }
2496 
2497 struct rq_iter_data {
2498 	struct blk_mq_hw_ctx *hctx;
2499 	bool has_rq;
2500 };
2501 
2502 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2503 {
2504 	struct rq_iter_data *iter_data = data;
2505 
2506 	if (rq->mq_hctx != iter_data->hctx)
2507 		return true;
2508 	iter_data->has_rq = true;
2509 	return false;
2510 }
2511 
2512 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2513 {
2514 	struct blk_mq_tags *tags = hctx->sched_tags ?
2515 			hctx->sched_tags : hctx->tags;
2516 	struct rq_iter_data data = {
2517 		.hctx	= hctx,
2518 	};
2519 
2520 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2521 	return data.has_rq;
2522 }
2523 
2524 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2525 		struct blk_mq_hw_ctx *hctx)
2526 {
2527 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2528 		return false;
2529 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2530 		return false;
2531 	return true;
2532 }
2533 
2534 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2535 {
2536 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2537 			struct blk_mq_hw_ctx, cpuhp_online);
2538 
2539 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2540 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2541 		return 0;
2542 
2543 	/*
2544 	 * Prevent new request from being allocated on the current hctx.
2545 	 *
2546 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2547 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2548 	 * seen once we return from the tag allocator.
2549 	 */
2550 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2551 	smp_mb__after_atomic();
2552 
2553 	/*
2554 	 * Try to grab a reference to the queue and wait for any outstanding
2555 	 * requests.  If we could not grab a reference the queue has been
2556 	 * frozen and there are no requests.
2557 	 */
2558 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2559 		while (blk_mq_hctx_has_requests(hctx))
2560 			msleep(5);
2561 		percpu_ref_put(&hctx->queue->q_usage_counter);
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2568 {
2569 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2570 			struct blk_mq_hw_ctx, cpuhp_online);
2571 
2572 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2573 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2574 	return 0;
2575 }
2576 
2577 /*
2578  * 'cpu' is going away. splice any existing rq_list entries from this
2579  * software queue to the hw queue dispatch list, and ensure that it
2580  * gets run.
2581  */
2582 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2583 {
2584 	struct blk_mq_hw_ctx *hctx;
2585 	struct blk_mq_ctx *ctx;
2586 	LIST_HEAD(tmp);
2587 	enum hctx_type type;
2588 
2589 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2590 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2591 		return 0;
2592 
2593 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2594 	type = hctx->type;
2595 
2596 	spin_lock(&ctx->lock);
2597 	if (!list_empty(&ctx->rq_lists[type])) {
2598 		list_splice_init(&ctx->rq_lists[type], &tmp);
2599 		blk_mq_hctx_clear_pending(hctx, ctx);
2600 	}
2601 	spin_unlock(&ctx->lock);
2602 
2603 	if (list_empty(&tmp))
2604 		return 0;
2605 
2606 	spin_lock(&hctx->lock);
2607 	list_splice_tail_init(&tmp, &hctx->dispatch);
2608 	spin_unlock(&hctx->lock);
2609 
2610 	blk_mq_run_hw_queue(hctx, true);
2611 	return 0;
2612 }
2613 
2614 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2615 {
2616 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2617 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2618 						    &hctx->cpuhp_online);
2619 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2620 					    &hctx->cpuhp_dead);
2621 }
2622 
2623 /*
2624  * Before freeing hw queue, clearing the flush request reference in
2625  * tags->rqs[] for avoiding potential UAF.
2626  */
2627 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2628 		unsigned int queue_depth, struct request *flush_rq)
2629 {
2630 	int i;
2631 	unsigned long flags;
2632 
2633 	/* The hw queue may not be mapped yet */
2634 	if (!tags)
2635 		return;
2636 
2637 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2638 
2639 	for (i = 0; i < queue_depth; i++)
2640 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2641 
2642 	/*
2643 	 * Wait until all pending iteration is done.
2644 	 *
2645 	 * Request reference is cleared and it is guaranteed to be observed
2646 	 * after the ->lock is released.
2647 	 */
2648 	spin_lock_irqsave(&tags->lock, flags);
2649 	spin_unlock_irqrestore(&tags->lock, flags);
2650 }
2651 
2652 /* hctx->ctxs will be freed in queue's release handler */
2653 static void blk_mq_exit_hctx(struct request_queue *q,
2654 		struct blk_mq_tag_set *set,
2655 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2656 {
2657 	struct request *flush_rq = hctx->fq->flush_rq;
2658 
2659 	if (blk_mq_hw_queue_mapped(hctx))
2660 		blk_mq_tag_idle(hctx);
2661 
2662 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2663 			set->queue_depth, flush_rq);
2664 	if (set->ops->exit_request)
2665 		set->ops->exit_request(set, flush_rq, hctx_idx);
2666 
2667 	if (set->ops->exit_hctx)
2668 		set->ops->exit_hctx(hctx, hctx_idx);
2669 
2670 	blk_mq_remove_cpuhp(hctx);
2671 
2672 	spin_lock(&q->unused_hctx_lock);
2673 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2674 	spin_unlock(&q->unused_hctx_lock);
2675 }
2676 
2677 static void blk_mq_exit_hw_queues(struct request_queue *q,
2678 		struct blk_mq_tag_set *set, int nr_queue)
2679 {
2680 	struct blk_mq_hw_ctx *hctx;
2681 	unsigned int i;
2682 
2683 	queue_for_each_hw_ctx(q, hctx, i) {
2684 		if (i == nr_queue)
2685 			break;
2686 		blk_mq_debugfs_unregister_hctx(hctx);
2687 		blk_mq_exit_hctx(q, set, hctx, i);
2688 	}
2689 }
2690 
2691 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2692 {
2693 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2694 
2695 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2696 			   __alignof__(struct blk_mq_hw_ctx)) !=
2697 		     sizeof(struct blk_mq_hw_ctx));
2698 
2699 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2700 		hw_ctx_size += sizeof(struct srcu_struct);
2701 
2702 	return hw_ctx_size;
2703 }
2704 
2705 static int blk_mq_init_hctx(struct request_queue *q,
2706 		struct blk_mq_tag_set *set,
2707 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2708 {
2709 	hctx->queue_num = hctx_idx;
2710 
2711 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2712 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2713 				&hctx->cpuhp_online);
2714 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2715 
2716 	hctx->tags = set->tags[hctx_idx];
2717 
2718 	if (set->ops->init_hctx &&
2719 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2720 		goto unregister_cpu_notifier;
2721 
2722 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2723 				hctx->numa_node))
2724 		goto exit_hctx;
2725 	return 0;
2726 
2727  exit_hctx:
2728 	if (set->ops->exit_hctx)
2729 		set->ops->exit_hctx(hctx, hctx_idx);
2730  unregister_cpu_notifier:
2731 	blk_mq_remove_cpuhp(hctx);
2732 	return -1;
2733 }
2734 
2735 static struct blk_mq_hw_ctx *
2736 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2737 		int node)
2738 {
2739 	struct blk_mq_hw_ctx *hctx;
2740 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2741 
2742 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2743 	if (!hctx)
2744 		goto fail_alloc_hctx;
2745 
2746 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2747 		goto free_hctx;
2748 
2749 	atomic_set(&hctx->nr_active, 0);
2750 	if (node == NUMA_NO_NODE)
2751 		node = set->numa_node;
2752 	hctx->numa_node = node;
2753 
2754 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2755 	spin_lock_init(&hctx->lock);
2756 	INIT_LIST_HEAD(&hctx->dispatch);
2757 	hctx->queue = q;
2758 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2759 
2760 	INIT_LIST_HEAD(&hctx->hctx_list);
2761 
2762 	/*
2763 	 * Allocate space for all possible cpus to avoid allocation at
2764 	 * runtime
2765 	 */
2766 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2767 			gfp, node);
2768 	if (!hctx->ctxs)
2769 		goto free_cpumask;
2770 
2771 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2772 				gfp, node, false, false))
2773 		goto free_ctxs;
2774 	hctx->nr_ctx = 0;
2775 
2776 	spin_lock_init(&hctx->dispatch_wait_lock);
2777 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2778 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2779 
2780 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2781 	if (!hctx->fq)
2782 		goto free_bitmap;
2783 
2784 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2785 		init_srcu_struct(hctx->srcu);
2786 	blk_mq_hctx_kobj_init(hctx);
2787 
2788 	return hctx;
2789 
2790  free_bitmap:
2791 	sbitmap_free(&hctx->ctx_map);
2792  free_ctxs:
2793 	kfree(hctx->ctxs);
2794  free_cpumask:
2795 	free_cpumask_var(hctx->cpumask);
2796  free_hctx:
2797 	kfree(hctx);
2798  fail_alloc_hctx:
2799 	return NULL;
2800 }
2801 
2802 static void blk_mq_init_cpu_queues(struct request_queue *q,
2803 				   unsigned int nr_hw_queues)
2804 {
2805 	struct blk_mq_tag_set *set = q->tag_set;
2806 	unsigned int i, j;
2807 
2808 	for_each_possible_cpu(i) {
2809 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2810 		struct blk_mq_hw_ctx *hctx;
2811 		int k;
2812 
2813 		__ctx->cpu = i;
2814 		spin_lock_init(&__ctx->lock);
2815 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2816 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2817 
2818 		__ctx->queue = q;
2819 
2820 		/*
2821 		 * Set local node, IFF we have more than one hw queue. If
2822 		 * not, we remain on the home node of the device
2823 		 */
2824 		for (j = 0; j < set->nr_maps; j++) {
2825 			hctx = blk_mq_map_queue_type(q, j, i);
2826 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2827 				hctx->numa_node = cpu_to_node(i);
2828 		}
2829 	}
2830 }
2831 
2832 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2833 					int hctx_idx)
2834 {
2835 	unsigned int flags = set->flags;
2836 	int ret = 0;
2837 
2838 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2839 					set->queue_depth, set->reserved_tags, flags);
2840 	if (!set->tags[hctx_idx])
2841 		return false;
2842 
2843 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2844 				set->queue_depth);
2845 	if (!ret)
2846 		return true;
2847 
2848 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2849 	set->tags[hctx_idx] = NULL;
2850 	return false;
2851 }
2852 
2853 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2854 					 unsigned int hctx_idx)
2855 {
2856 	unsigned int flags = set->flags;
2857 
2858 	if (set->tags && set->tags[hctx_idx]) {
2859 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2860 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2861 		set->tags[hctx_idx] = NULL;
2862 	}
2863 }
2864 
2865 static void blk_mq_map_swqueue(struct request_queue *q)
2866 {
2867 	unsigned int i, j, hctx_idx;
2868 	struct blk_mq_hw_ctx *hctx;
2869 	struct blk_mq_ctx *ctx;
2870 	struct blk_mq_tag_set *set = q->tag_set;
2871 
2872 	queue_for_each_hw_ctx(q, hctx, i) {
2873 		cpumask_clear(hctx->cpumask);
2874 		hctx->nr_ctx = 0;
2875 		hctx->dispatch_from = NULL;
2876 	}
2877 
2878 	/*
2879 	 * Map software to hardware queues.
2880 	 *
2881 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2882 	 */
2883 	for_each_possible_cpu(i) {
2884 
2885 		ctx = per_cpu_ptr(q->queue_ctx, i);
2886 		for (j = 0; j < set->nr_maps; j++) {
2887 			if (!set->map[j].nr_queues) {
2888 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2889 						HCTX_TYPE_DEFAULT, i);
2890 				continue;
2891 			}
2892 			hctx_idx = set->map[j].mq_map[i];
2893 			/* unmapped hw queue can be remapped after CPU topo changed */
2894 			if (!set->tags[hctx_idx] &&
2895 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2896 				/*
2897 				 * If tags initialization fail for some hctx,
2898 				 * that hctx won't be brought online.  In this
2899 				 * case, remap the current ctx to hctx[0] which
2900 				 * is guaranteed to always have tags allocated
2901 				 */
2902 				set->map[j].mq_map[i] = 0;
2903 			}
2904 
2905 			hctx = blk_mq_map_queue_type(q, j, i);
2906 			ctx->hctxs[j] = hctx;
2907 			/*
2908 			 * If the CPU is already set in the mask, then we've
2909 			 * mapped this one already. This can happen if
2910 			 * devices share queues across queue maps.
2911 			 */
2912 			if (cpumask_test_cpu(i, hctx->cpumask))
2913 				continue;
2914 
2915 			cpumask_set_cpu(i, hctx->cpumask);
2916 			hctx->type = j;
2917 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2918 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2919 
2920 			/*
2921 			 * If the nr_ctx type overflows, we have exceeded the
2922 			 * amount of sw queues we can support.
2923 			 */
2924 			BUG_ON(!hctx->nr_ctx);
2925 		}
2926 
2927 		for (; j < HCTX_MAX_TYPES; j++)
2928 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2929 					HCTX_TYPE_DEFAULT, i);
2930 	}
2931 
2932 	queue_for_each_hw_ctx(q, hctx, i) {
2933 		/*
2934 		 * If no software queues are mapped to this hardware queue,
2935 		 * disable it and free the request entries.
2936 		 */
2937 		if (!hctx->nr_ctx) {
2938 			/* Never unmap queue 0.  We need it as a
2939 			 * fallback in case of a new remap fails
2940 			 * allocation
2941 			 */
2942 			if (i && set->tags[i])
2943 				blk_mq_free_map_and_requests(set, i);
2944 
2945 			hctx->tags = NULL;
2946 			continue;
2947 		}
2948 
2949 		hctx->tags = set->tags[i];
2950 		WARN_ON(!hctx->tags);
2951 
2952 		/*
2953 		 * Set the map size to the number of mapped software queues.
2954 		 * This is more accurate and more efficient than looping
2955 		 * over all possibly mapped software queues.
2956 		 */
2957 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2958 
2959 		/*
2960 		 * Initialize batch roundrobin counts
2961 		 */
2962 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2963 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2964 	}
2965 }
2966 
2967 /*
2968  * Caller needs to ensure that we're either frozen/quiesced, or that
2969  * the queue isn't live yet.
2970  */
2971 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2972 {
2973 	struct blk_mq_hw_ctx *hctx;
2974 	int i;
2975 
2976 	queue_for_each_hw_ctx(q, hctx, i) {
2977 		if (shared) {
2978 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2979 		} else {
2980 			blk_mq_tag_idle(hctx);
2981 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2982 		}
2983 	}
2984 }
2985 
2986 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2987 					 bool shared)
2988 {
2989 	struct request_queue *q;
2990 
2991 	lockdep_assert_held(&set->tag_list_lock);
2992 
2993 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2994 		blk_mq_freeze_queue(q);
2995 		queue_set_hctx_shared(q, shared);
2996 		blk_mq_unfreeze_queue(q);
2997 	}
2998 }
2999 
3000 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3001 {
3002 	struct blk_mq_tag_set *set = q->tag_set;
3003 
3004 	mutex_lock(&set->tag_list_lock);
3005 	list_del(&q->tag_set_list);
3006 	if (list_is_singular(&set->tag_list)) {
3007 		/* just transitioned to unshared */
3008 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3009 		/* update existing queue */
3010 		blk_mq_update_tag_set_shared(set, false);
3011 	}
3012 	mutex_unlock(&set->tag_list_lock);
3013 	INIT_LIST_HEAD(&q->tag_set_list);
3014 }
3015 
3016 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3017 				     struct request_queue *q)
3018 {
3019 	mutex_lock(&set->tag_list_lock);
3020 
3021 	/*
3022 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3023 	 */
3024 	if (!list_empty(&set->tag_list) &&
3025 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3026 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3027 		/* update existing queue */
3028 		blk_mq_update_tag_set_shared(set, true);
3029 	}
3030 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3031 		queue_set_hctx_shared(q, true);
3032 	list_add_tail(&q->tag_set_list, &set->tag_list);
3033 
3034 	mutex_unlock(&set->tag_list_lock);
3035 }
3036 
3037 /* All allocations will be freed in release handler of q->mq_kobj */
3038 static int blk_mq_alloc_ctxs(struct request_queue *q)
3039 {
3040 	struct blk_mq_ctxs *ctxs;
3041 	int cpu;
3042 
3043 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3044 	if (!ctxs)
3045 		return -ENOMEM;
3046 
3047 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3048 	if (!ctxs->queue_ctx)
3049 		goto fail;
3050 
3051 	for_each_possible_cpu(cpu) {
3052 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3053 		ctx->ctxs = ctxs;
3054 	}
3055 
3056 	q->mq_kobj = &ctxs->kobj;
3057 	q->queue_ctx = ctxs->queue_ctx;
3058 
3059 	return 0;
3060  fail:
3061 	kfree(ctxs);
3062 	return -ENOMEM;
3063 }
3064 
3065 /*
3066  * It is the actual release handler for mq, but we do it from
3067  * request queue's release handler for avoiding use-after-free
3068  * and headache because q->mq_kobj shouldn't have been introduced,
3069  * but we can't group ctx/kctx kobj without it.
3070  */
3071 void blk_mq_release(struct request_queue *q)
3072 {
3073 	struct blk_mq_hw_ctx *hctx, *next;
3074 	int i;
3075 
3076 	queue_for_each_hw_ctx(q, hctx, i)
3077 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3078 
3079 	/* all hctx are in .unused_hctx_list now */
3080 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3081 		list_del_init(&hctx->hctx_list);
3082 		kobject_put(&hctx->kobj);
3083 	}
3084 
3085 	kfree(q->queue_hw_ctx);
3086 
3087 	/*
3088 	 * release .mq_kobj and sw queue's kobject now because
3089 	 * both share lifetime with request queue.
3090 	 */
3091 	blk_mq_sysfs_deinit(q);
3092 }
3093 
3094 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3095 		void *queuedata)
3096 {
3097 	struct request_queue *q;
3098 	int ret;
3099 
3100 	q = blk_alloc_queue(set->numa_node);
3101 	if (!q)
3102 		return ERR_PTR(-ENOMEM);
3103 	q->queuedata = queuedata;
3104 	ret = blk_mq_init_allocated_queue(set, q);
3105 	if (ret) {
3106 		blk_cleanup_queue(q);
3107 		return ERR_PTR(ret);
3108 	}
3109 	return q;
3110 }
3111 
3112 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3113 {
3114 	return blk_mq_init_queue_data(set, NULL);
3115 }
3116 EXPORT_SYMBOL(blk_mq_init_queue);
3117 
3118 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata)
3119 {
3120 	struct request_queue *q;
3121 	struct gendisk *disk;
3122 
3123 	q = blk_mq_init_queue_data(set, queuedata);
3124 	if (IS_ERR(q))
3125 		return ERR_CAST(q);
3126 
3127 	disk = __alloc_disk_node(0, set->numa_node);
3128 	if (!disk) {
3129 		blk_cleanup_queue(q);
3130 		return ERR_PTR(-ENOMEM);
3131 	}
3132 	disk->queue = q;
3133 	return disk;
3134 }
3135 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3136 
3137 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3138 		struct blk_mq_tag_set *set, struct request_queue *q,
3139 		int hctx_idx, int node)
3140 {
3141 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3142 
3143 	/* reuse dead hctx first */
3144 	spin_lock(&q->unused_hctx_lock);
3145 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3146 		if (tmp->numa_node == node) {
3147 			hctx = tmp;
3148 			break;
3149 		}
3150 	}
3151 	if (hctx)
3152 		list_del_init(&hctx->hctx_list);
3153 	spin_unlock(&q->unused_hctx_lock);
3154 
3155 	if (!hctx)
3156 		hctx = blk_mq_alloc_hctx(q, set, node);
3157 	if (!hctx)
3158 		goto fail;
3159 
3160 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3161 		goto free_hctx;
3162 
3163 	return hctx;
3164 
3165  free_hctx:
3166 	kobject_put(&hctx->kobj);
3167  fail:
3168 	return NULL;
3169 }
3170 
3171 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3172 						struct request_queue *q)
3173 {
3174 	int i, j, end;
3175 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3176 
3177 	if (q->nr_hw_queues < set->nr_hw_queues) {
3178 		struct blk_mq_hw_ctx **new_hctxs;
3179 
3180 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3181 				       sizeof(*new_hctxs), GFP_KERNEL,
3182 				       set->numa_node);
3183 		if (!new_hctxs)
3184 			return;
3185 		if (hctxs)
3186 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3187 			       sizeof(*hctxs));
3188 		q->queue_hw_ctx = new_hctxs;
3189 		kfree(hctxs);
3190 		hctxs = new_hctxs;
3191 	}
3192 
3193 	/* protect against switching io scheduler  */
3194 	mutex_lock(&q->sysfs_lock);
3195 	for (i = 0; i < set->nr_hw_queues; i++) {
3196 		int node;
3197 		struct blk_mq_hw_ctx *hctx;
3198 
3199 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3200 		/*
3201 		 * If the hw queue has been mapped to another numa node,
3202 		 * we need to realloc the hctx. If allocation fails, fallback
3203 		 * to use the previous one.
3204 		 */
3205 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3206 			continue;
3207 
3208 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3209 		if (hctx) {
3210 			if (hctxs[i])
3211 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3212 			hctxs[i] = hctx;
3213 		} else {
3214 			if (hctxs[i])
3215 				pr_warn("Allocate new hctx on node %d fails,\
3216 						fallback to previous one on node %d\n",
3217 						node, hctxs[i]->numa_node);
3218 			else
3219 				break;
3220 		}
3221 	}
3222 	/*
3223 	 * Increasing nr_hw_queues fails. Free the newly allocated
3224 	 * hctxs and keep the previous q->nr_hw_queues.
3225 	 */
3226 	if (i != set->nr_hw_queues) {
3227 		j = q->nr_hw_queues;
3228 		end = i;
3229 	} else {
3230 		j = i;
3231 		end = q->nr_hw_queues;
3232 		q->nr_hw_queues = set->nr_hw_queues;
3233 	}
3234 
3235 	for (; j < end; j++) {
3236 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3237 
3238 		if (hctx) {
3239 			if (hctx->tags)
3240 				blk_mq_free_map_and_requests(set, j);
3241 			blk_mq_exit_hctx(q, set, hctx, j);
3242 			hctxs[j] = NULL;
3243 		}
3244 	}
3245 	mutex_unlock(&q->sysfs_lock);
3246 }
3247 
3248 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3249 		struct request_queue *q)
3250 {
3251 	/* mark the queue as mq asap */
3252 	q->mq_ops = set->ops;
3253 
3254 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3255 					     blk_mq_poll_stats_bkt,
3256 					     BLK_MQ_POLL_STATS_BKTS, q);
3257 	if (!q->poll_cb)
3258 		goto err_exit;
3259 
3260 	if (blk_mq_alloc_ctxs(q))
3261 		goto err_poll;
3262 
3263 	/* init q->mq_kobj and sw queues' kobjects */
3264 	blk_mq_sysfs_init(q);
3265 
3266 	INIT_LIST_HEAD(&q->unused_hctx_list);
3267 	spin_lock_init(&q->unused_hctx_lock);
3268 
3269 	blk_mq_realloc_hw_ctxs(set, q);
3270 	if (!q->nr_hw_queues)
3271 		goto err_hctxs;
3272 
3273 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3274 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3275 
3276 	q->tag_set = set;
3277 
3278 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3279 	if (set->nr_maps > HCTX_TYPE_POLL &&
3280 	    set->map[HCTX_TYPE_POLL].nr_queues)
3281 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3282 
3283 	q->sg_reserved_size = INT_MAX;
3284 
3285 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3286 	INIT_LIST_HEAD(&q->requeue_list);
3287 	spin_lock_init(&q->requeue_lock);
3288 
3289 	q->nr_requests = set->queue_depth;
3290 
3291 	/*
3292 	 * Default to classic polling
3293 	 */
3294 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3295 
3296 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3297 	blk_mq_add_queue_tag_set(set, q);
3298 	blk_mq_map_swqueue(q);
3299 	return 0;
3300 
3301 err_hctxs:
3302 	kfree(q->queue_hw_ctx);
3303 	q->nr_hw_queues = 0;
3304 	blk_mq_sysfs_deinit(q);
3305 err_poll:
3306 	blk_stat_free_callback(q->poll_cb);
3307 	q->poll_cb = NULL;
3308 err_exit:
3309 	q->mq_ops = NULL;
3310 	return -ENOMEM;
3311 }
3312 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3313 
3314 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3315 void blk_mq_exit_queue(struct request_queue *q)
3316 {
3317 	struct blk_mq_tag_set *set = q->tag_set;
3318 
3319 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3320 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3321 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3322 	blk_mq_del_queue_tag_set(q);
3323 }
3324 
3325 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3326 {
3327 	int i;
3328 
3329 	for (i = 0; i < set->nr_hw_queues; i++) {
3330 		if (!__blk_mq_alloc_map_and_request(set, i))
3331 			goto out_unwind;
3332 		cond_resched();
3333 	}
3334 
3335 	return 0;
3336 
3337 out_unwind:
3338 	while (--i >= 0)
3339 		blk_mq_free_map_and_requests(set, i);
3340 
3341 	return -ENOMEM;
3342 }
3343 
3344 /*
3345  * Allocate the request maps associated with this tag_set. Note that this
3346  * may reduce the depth asked for, if memory is tight. set->queue_depth
3347  * will be updated to reflect the allocated depth.
3348  */
3349 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3350 {
3351 	unsigned int depth;
3352 	int err;
3353 
3354 	depth = set->queue_depth;
3355 	do {
3356 		err = __blk_mq_alloc_rq_maps(set);
3357 		if (!err)
3358 			break;
3359 
3360 		set->queue_depth >>= 1;
3361 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3362 			err = -ENOMEM;
3363 			break;
3364 		}
3365 	} while (set->queue_depth);
3366 
3367 	if (!set->queue_depth || err) {
3368 		pr_err("blk-mq: failed to allocate request map\n");
3369 		return -ENOMEM;
3370 	}
3371 
3372 	if (depth != set->queue_depth)
3373 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3374 						depth, set->queue_depth);
3375 
3376 	return 0;
3377 }
3378 
3379 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3380 {
3381 	/*
3382 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3383 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3384 	 * number of hardware queues.
3385 	 */
3386 	if (set->nr_maps == 1)
3387 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3388 
3389 	if (set->ops->map_queues && !is_kdump_kernel()) {
3390 		int i;
3391 
3392 		/*
3393 		 * transport .map_queues is usually done in the following
3394 		 * way:
3395 		 *
3396 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3397 		 * 	mask = get_cpu_mask(queue)
3398 		 * 	for_each_cpu(cpu, mask)
3399 		 * 		set->map[x].mq_map[cpu] = queue;
3400 		 * }
3401 		 *
3402 		 * When we need to remap, the table has to be cleared for
3403 		 * killing stale mapping since one CPU may not be mapped
3404 		 * to any hw queue.
3405 		 */
3406 		for (i = 0; i < set->nr_maps; i++)
3407 			blk_mq_clear_mq_map(&set->map[i]);
3408 
3409 		return set->ops->map_queues(set);
3410 	} else {
3411 		BUG_ON(set->nr_maps > 1);
3412 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3413 	}
3414 }
3415 
3416 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3417 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3418 {
3419 	struct blk_mq_tags **new_tags;
3420 
3421 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3422 		return 0;
3423 
3424 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3425 				GFP_KERNEL, set->numa_node);
3426 	if (!new_tags)
3427 		return -ENOMEM;
3428 
3429 	if (set->tags)
3430 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3431 		       sizeof(*set->tags));
3432 	kfree(set->tags);
3433 	set->tags = new_tags;
3434 	set->nr_hw_queues = new_nr_hw_queues;
3435 
3436 	return 0;
3437 }
3438 
3439 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3440 				int new_nr_hw_queues)
3441 {
3442 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3443 }
3444 
3445 /*
3446  * Alloc a tag set to be associated with one or more request queues.
3447  * May fail with EINVAL for various error conditions. May adjust the
3448  * requested depth down, if it's too large. In that case, the set
3449  * value will be stored in set->queue_depth.
3450  */
3451 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3452 {
3453 	int i, ret;
3454 
3455 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3456 
3457 	if (!set->nr_hw_queues)
3458 		return -EINVAL;
3459 	if (!set->queue_depth)
3460 		return -EINVAL;
3461 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3462 		return -EINVAL;
3463 
3464 	if (!set->ops->queue_rq)
3465 		return -EINVAL;
3466 
3467 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3468 		return -EINVAL;
3469 
3470 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3471 		pr_info("blk-mq: reduced tag depth to %u\n",
3472 			BLK_MQ_MAX_DEPTH);
3473 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3474 	}
3475 
3476 	if (!set->nr_maps)
3477 		set->nr_maps = 1;
3478 	else if (set->nr_maps > HCTX_MAX_TYPES)
3479 		return -EINVAL;
3480 
3481 	/*
3482 	 * If a crashdump is active, then we are potentially in a very
3483 	 * memory constrained environment. Limit us to 1 queue and
3484 	 * 64 tags to prevent using too much memory.
3485 	 */
3486 	if (is_kdump_kernel()) {
3487 		set->nr_hw_queues = 1;
3488 		set->nr_maps = 1;
3489 		set->queue_depth = min(64U, set->queue_depth);
3490 	}
3491 	/*
3492 	 * There is no use for more h/w queues than cpus if we just have
3493 	 * a single map
3494 	 */
3495 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3496 		set->nr_hw_queues = nr_cpu_ids;
3497 
3498 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3499 		return -ENOMEM;
3500 
3501 	ret = -ENOMEM;
3502 	for (i = 0; i < set->nr_maps; i++) {
3503 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3504 						  sizeof(set->map[i].mq_map[0]),
3505 						  GFP_KERNEL, set->numa_node);
3506 		if (!set->map[i].mq_map)
3507 			goto out_free_mq_map;
3508 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3509 	}
3510 
3511 	ret = blk_mq_update_queue_map(set);
3512 	if (ret)
3513 		goto out_free_mq_map;
3514 
3515 	ret = blk_mq_alloc_map_and_requests(set);
3516 	if (ret)
3517 		goto out_free_mq_map;
3518 
3519 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3520 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3521 
3522 		if (blk_mq_init_shared_sbitmap(set)) {
3523 			ret = -ENOMEM;
3524 			goto out_free_mq_rq_maps;
3525 		}
3526 	}
3527 
3528 	mutex_init(&set->tag_list_lock);
3529 	INIT_LIST_HEAD(&set->tag_list);
3530 
3531 	return 0;
3532 
3533 out_free_mq_rq_maps:
3534 	for (i = 0; i < set->nr_hw_queues; i++)
3535 		blk_mq_free_map_and_requests(set, i);
3536 out_free_mq_map:
3537 	for (i = 0; i < set->nr_maps; i++) {
3538 		kfree(set->map[i].mq_map);
3539 		set->map[i].mq_map = NULL;
3540 	}
3541 	kfree(set->tags);
3542 	set->tags = NULL;
3543 	return ret;
3544 }
3545 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3546 
3547 /* allocate and initialize a tagset for a simple single-queue device */
3548 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3549 		const struct blk_mq_ops *ops, unsigned int queue_depth,
3550 		unsigned int set_flags)
3551 {
3552 	memset(set, 0, sizeof(*set));
3553 	set->ops = ops;
3554 	set->nr_hw_queues = 1;
3555 	set->nr_maps = 1;
3556 	set->queue_depth = queue_depth;
3557 	set->numa_node = NUMA_NO_NODE;
3558 	set->flags = set_flags;
3559 	return blk_mq_alloc_tag_set(set);
3560 }
3561 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3562 
3563 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3564 {
3565 	int i, j;
3566 
3567 	for (i = 0; i < set->nr_hw_queues; i++)
3568 		blk_mq_free_map_and_requests(set, i);
3569 
3570 	if (blk_mq_is_sbitmap_shared(set->flags))
3571 		blk_mq_exit_shared_sbitmap(set);
3572 
3573 	for (j = 0; j < set->nr_maps; j++) {
3574 		kfree(set->map[j].mq_map);
3575 		set->map[j].mq_map = NULL;
3576 	}
3577 
3578 	kfree(set->tags);
3579 	set->tags = NULL;
3580 }
3581 EXPORT_SYMBOL(blk_mq_free_tag_set);
3582 
3583 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3584 {
3585 	struct blk_mq_tag_set *set = q->tag_set;
3586 	struct blk_mq_hw_ctx *hctx;
3587 	int i, ret;
3588 
3589 	if (!set)
3590 		return -EINVAL;
3591 
3592 	if (q->nr_requests == nr)
3593 		return 0;
3594 
3595 	blk_mq_freeze_queue(q);
3596 	blk_mq_quiesce_queue(q);
3597 
3598 	ret = 0;
3599 	queue_for_each_hw_ctx(q, hctx, i) {
3600 		if (!hctx->tags)
3601 			continue;
3602 		/*
3603 		 * If we're using an MQ scheduler, just update the scheduler
3604 		 * queue depth. This is similar to what the old code would do.
3605 		 */
3606 		if (!hctx->sched_tags) {
3607 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3608 							false);
3609 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3610 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3611 		} else {
3612 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3613 							nr, true);
3614 			if (blk_mq_is_sbitmap_shared(set->flags)) {
3615 				hctx->sched_tags->bitmap_tags =
3616 					&q->sched_bitmap_tags;
3617 				hctx->sched_tags->breserved_tags =
3618 					&q->sched_breserved_tags;
3619 			}
3620 		}
3621 		if (ret)
3622 			break;
3623 		if (q->elevator && q->elevator->type->ops.depth_updated)
3624 			q->elevator->type->ops.depth_updated(hctx);
3625 	}
3626 	if (!ret) {
3627 		q->nr_requests = nr;
3628 		if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3629 			sbitmap_queue_resize(&q->sched_bitmap_tags,
3630 					     nr - set->reserved_tags);
3631 	}
3632 
3633 	blk_mq_unquiesce_queue(q);
3634 	blk_mq_unfreeze_queue(q);
3635 
3636 	return ret;
3637 }
3638 
3639 /*
3640  * request_queue and elevator_type pair.
3641  * It is just used by __blk_mq_update_nr_hw_queues to cache
3642  * the elevator_type associated with a request_queue.
3643  */
3644 struct blk_mq_qe_pair {
3645 	struct list_head node;
3646 	struct request_queue *q;
3647 	struct elevator_type *type;
3648 };
3649 
3650 /*
3651  * Cache the elevator_type in qe pair list and switch the
3652  * io scheduler to 'none'
3653  */
3654 static bool blk_mq_elv_switch_none(struct list_head *head,
3655 		struct request_queue *q)
3656 {
3657 	struct blk_mq_qe_pair *qe;
3658 
3659 	if (!q->elevator)
3660 		return true;
3661 
3662 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3663 	if (!qe)
3664 		return false;
3665 
3666 	INIT_LIST_HEAD(&qe->node);
3667 	qe->q = q;
3668 	qe->type = q->elevator->type;
3669 	list_add(&qe->node, head);
3670 
3671 	mutex_lock(&q->sysfs_lock);
3672 	/*
3673 	 * After elevator_switch_mq, the previous elevator_queue will be
3674 	 * released by elevator_release. The reference of the io scheduler
3675 	 * module get by elevator_get will also be put. So we need to get
3676 	 * a reference of the io scheduler module here to prevent it to be
3677 	 * removed.
3678 	 */
3679 	__module_get(qe->type->elevator_owner);
3680 	elevator_switch_mq(q, NULL);
3681 	mutex_unlock(&q->sysfs_lock);
3682 
3683 	return true;
3684 }
3685 
3686 static void blk_mq_elv_switch_back(struct list_head *head,
3687 		struct request_queue *q)
3688 {
3689 	struct blk_mq_qe_pair *qe;
3690 	struct elevator_type *t = NULL;
3691 
3692 	list_for_each_entry(qe, head, node)
3693 		if (qe->q == q) {
3694 			t = qe->type;
3695 			break;
3696 		}
3697 
3698 	if (!t)
3699 		return;
3700 
3701 	list_del(&qe->node);
3702 	kfree(qe);
3703 
3704 	mutex_lock(&q->sysfs_lock);
3705 	elevator_switch_mq(q, t);
3706 	mutex_unlock(&q->sysfs_lock);
3707 }
3708 
3709 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3710 							int nr_hw_queues)
3711 {
3712 	struct request_queue *q;
3713 	LIST_HEAD(head);
3714 	int prev_nr_hw_queues;
3715 
3716 	lockdep_assert_held(&set->tag_list_lock);
3717 
3718 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3719 		nr_hw_queues = nr_cpu_ids;
3720 	if (nr_hw_queues < 1)
3721 		return;
3722 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3723 		return;
3724 
3725 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3726 		blk_mq_freeze_queue(q);
3727 	/*
3728 	 * Switch IO scheduler to 'none', cleaning up the data associated
3729 	 * with the previous scheduler. We will switch back once we are done
3730 	 * updating the new sw to hw queue mappings.
3731 	 */
3732 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3733 		if (!blk_mq_elv_switch_none(&head, q))
3734 			goto switch_back;
3735 
3736 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3737 		blk_mq_debugfs_unregister_hctxs(q);
3738 		blk_mq_sysfs_unregister(q);
3739 	}
3740 
3741 	prev_nr_hw_queues = set->nr_hw_queues;
3742 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3743 	    0)
3744 		goto reregister;
3745 
3746 	set->nr_hw_queues = nr_hw_queues;
3747 fallback:
3748 	blk_mq_update_queue_map(set);
3749 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3750 		blk_mq_realloc_hw_ctxs(set, q);
3751 		if (q->nr_hw_queues != set->nr_hw_queues) {
3752 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3753 					nr_hw_queues, prev_nr_hw_queues);
3754 			set->nr_hw_queues = prev_nr_hw_queues;
3755 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3756 			goto fallback;
3757 		}
3758 		blk_mq_map_swqueue(q);
3759 	}
3760 
3761 reregister:
3762 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3763 		blk_mq_sysfs_register(q);
3764 		blk_mq_debugfs_register_hctxs(q);
3765 	}
3766 
3767 switch_back:
3768 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3769 		blk_mq_elv_switch_back(&head, q);
3770 
3771 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3772 		blk_mq_unfreeze_queue(q);
3773 }
3774 
3775 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3776 {
3777 	mutex_lock(&set->tag_list_lock);
3778 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3779 	mutex_unlock(&set->tag_list_lock);
3780 }
3781 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3782 
3783 /* Enable polling stats and return whether they were already enabled. */
3784 static bool blk_poll_stats_enable(struct request_queue *q)
3785 {
3786 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3787 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3788 		return true;
3789 	blk_stat_add_callback(q, q->poll_cb);
3790 	return false;
3791 }
3792 
3793 static void blk_mq_poll_stats_start(struct request_queue *q)
3794 {
3795 	/*
3796 	 * We don't arm the callback if polling stats are not enabled or the
3797 	 * callback is already active.
3798 	 */
3799 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3800 	    blk_stat_is_active(q->poll_cb))
3801 		return;
3802 
3803 	blk_stat_activate_msecs(q->poll_cb, 100);
3804 }
3805 
3806 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3807 {
3808 	struct request_queue *q = cb->data;
3809 	int bucket;
3810 
3811 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3812 		if (cb->stat[bucket].nr_samples)
3813 			q->poll_stat[bucket] = cb->stat[bucket];
3814 	}
3815 }
3816 
3817 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3818 				       struct request *rq)
3819 {
3820 	unsigned long ret = 0;
3821 	int bucket;
3822 
3823 	/*
3824 	 * If stats collection isn't on, don't sleep but turn it on for
3825 	 * future users
3826 	 */
3827 	if (!blk_poll_stats_enable(q))
3828 		return 0;
3829 
3830 	/*
3831 	 * As an optimistic guess, use half of the mean service time
3832 	 * for this type of request. We can (and should) make this smarter.
3833 	 * For instance, if the completion latencies are tight, we can
3834 	 * get closer than just half the mean. This is especially
3835 	 * important on devices where the completion latencies are longer
3836 	 * than ~10 usec. We do use the stats for the relevant IO size
3837 	 * if available which does lead to better estimates.
3838 	 */
3839 	bucket = blk_mq_poll_stats_bkt(rq);
3840 	if (bucket < 0)
3841 		return ret;
3842 
3843 	if (q->poll_stat[bucket].nr_samples)
3844 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3845 
3846 	return ret;
3847 }
3848 
3849 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3850 				     struct request *rq)
3851 {
3852 	struct hrtimer_sleeper hs;
3853 	enum hrtimer_mode mode;
3854 	unsigned int nsecs;
3855 	ktime_t kt;
3856 
3857 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3858 		return false;
3859 
3860 	/*
3861 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3862 	 *
3863 	 *  0:	use half of prev avg
3864 	 * >0:	use this specific value
3865 	 */
3866 	if (q->poll_nsec > 0)
3867 		nsecs = q->poll_nsec;
3868 	else
3869 		nsecs = blk_mq_poll_nsecs(q, rq);
3870 
3871 	if (!nsecs)
3872 		return false;
3873 
3874 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3875 
3876 	/*
3877 	 * This will be replaced with the stats tracking code, using
3878 	 * 'avg_completion_time / 2' as the pre-sleep target.
3879 	 */
3880 	kt = nsecs;
3881 
3882 	mode = HRTIMER_MODE_REL;
3883 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3884 	hrtimer_set_expires(&hs.timer, kt);
3885 
3886 	do {
3887 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3888 			break;
3889 		set_current_state(TASK_UNINTERRUPTIBLE);
3890 		hrtimer_sleeper_start_expires(&hs, mode);
3891 		if (hs.task)
3892 			io_schedule();
3893 		hrtimer_cancel(&hs.timer);
3894 		mode = HRTIMER_MODE_ABS;
3895 	} while (hs.task && !signal_pending(current));
3896 
3897 	__set_current_state(TASK_RUNNING);
3898 	destroy_hrtimer_on_stack(&hs.timer);
3899 	return true;
3900 }
3901 
3902 static bool blk_mq_poll_hybrid(struct request_queue *q,
3903 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3904 {
3905 	struct request *rq;
3906 
3907 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3908 		return false;
3909 
3910 	if (!blk_qc_t_is_internal(cookie))
3911 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3912 	else {
3913 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3914 		/*
3915 		 * With scheduling, if the request has completed, we'll
3916 		 * get a NULL return here, as we clear the sched tag when
3917 		 * that happens. The request still remains valid, like always,
3918 		 * so we should be safe with just the NULL check.
3919 		 */
3920 		if (!rq)
3921 			return false;
3922 	}
3923 
3924 	return blk_mq_poll_hybrid_sleep(q, rq);
3925 }
3926 
3927 /**
3928  * blk_poll - poll for IO completions
3929  * @q:  the queue
3930  * @cookie: cookie passed back at IO submission time
3931  * @spin: whether to spin for completions
3932  *
3933  * Description:
3934  *    Poll for completions on the passed in queue. Returns number of
3935  *    completed entries found. If @spin is true, then blk_poll will continue
3936  *    looping until at least one completion is found, unless the task is
3937  *    otherwise marked running (or we need to reschedule).
3938  */
3939 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3940 {
3941 	struct blk_mq_hw_ctx *hctx;
3942 	unsigned int state;
3943 
3944 	if (!blk_qc_t_valid(cookie) ||
3945 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3946 		return 0;
3947 
3948 	if (current->plug)
3949 		blk_flush_plug_list(current->plug, false);
3950 
3951 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3952 
3953 	/*
3954 	 * If we sleep, have the caller restart the poll loop to reset
3955 	 * the state. Like for the other success return cases, the
3956 	 * caller is responsible for checking if the IO completed. If
3957 	 * the IO isn't complete, we'll get called again and will go
3958 	 * straight to the busy poll loop. If specified not to spin,
3959 	 * we also should not sleep.
3960 	 */
3961 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3962 		return 1;
3963 
3964 	hctx->poll_considered++;
3965 
3966 	state = get_current_state();
3967 	do {
3968 		int ret;
3969 
3970 		hctx->poll_invoked++;
3971 
3972 		ret = q->mq_ops->poll(hctx);
3973 		if (ret > 0) {
3974 			hctx->poll_success++;
3975 			__set_current_state(TASK_RUNNING);
3976 			return ret;
3977 		}
3978 
3979 		if (signal_pending_state(state, current))
3980 			__set_current_state(TASK_RUNNING);
3981 
3982 		if (task_is_running(current))
3983 			return 1;
3984 		if (ret < 0 || !spin)
3985 			break;
3986 		cpu_relax();
3987 	} while (!need_resched());
3988 
3989 	__set_current_state(TASK_RUNNING);
3990 	return 0;
3991 }
3992 EXPORT_SYMBOL_GPL(blk_poll);
3993 
3994 unsigned int blk_mq_rq_cpu(struct request *rq)
3995 {
3996 	return rq->mq_ctx->cpu;
3997 }
3998 EXPORT_SYMBOL(blk_mq_rq_cpu);
3999 
4000 static int __init blk_mq_init(void)
4001 {
4002 	int i;
4003 
4004 	for_each_possible_cpu(i)
4005 		init_llist_head(&per_cpu(blk_cpu_done, i));
4006 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4007 
4008 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4009 				  "block/softirq:dead", NULL,
4010 				  blk_softirq_cpu_dead);
4011 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4012 				blk_mq_hctx_notify_dead);
4013 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4014 				blk_mq_hctx_notify_online,
4015 				blk_mq_hctx_notify_offline);
4016 	return 0;
4017 }
4018 subsys_initcall(blk_mq_init);
4019