xref: /openbmc/linux/block/blk-mq.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if (rq->part == mi->part && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
109 		mi->inflight[rq_data_dir(rq)]++;
110 
111 	return true;
112 }
113 
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 
120 	return mi.inflight[0] + mi.inflight[1];
121 }
122 
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 			 unsigned int inflight[2])
125 {
126 	struct mq_inflight mi = { .part = part };
127 
128 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 	inflight[0] = mi.inflight[0];
130 	inflight[1] = mi.inflight[1];
131 }
132 
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135 	mutex_lock(&q->mq_freeze_lock);
136 	if (++q->mq_freeze_depth == 1) {
137 		percpu_ref_kill(&q->q_usage_counter);
138 		mutex_unlock(&q->mq_freeze_lock);
139 		if (queue_is_mq(q))
140 			blk_mq_run_hw_queues(q, false);
141 	} else {
142 		mutex_unlock(&q->mq_freeze_lock);
143 	}
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146 
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152 
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 				     unsigned long timeout)
155 {
156 	return wait_event_timeout(q->mq_freeze_wq,
157 					percpu_ref_is_zero(&q->q_usage_counter),
158 					timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161 
162 /*
163  * Guarantee no request is in use, so we can change any data structure of
164  * the queue afterward.
165  */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168 	/*
169 	 * In the !blk_mq case we are only calling this to kill the
170 	 * q_usage_counter, otherwise this increases the freeze depth
171 	 * and waits for it to return to zero.  For this reason there is
172 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 	 * exported to drivers as the only user for unfreeze is blk_mq.
174 	 */
175 	blk_freeze_queue_start(q);
176 	blk_mq_freeze_queue_wait(q);
177 }
178 
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181 	/*
182 	 * ...just an alias to keep freeze and unfreeze actions balanced
183 	 * in the blk_mq_* namespace
184 	 */
185 	blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188 
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191 	mutex_lock(&q->mq_freeze_lock);
192 	q->mq_freeze_depth--;
193 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 	if (!q->mq_freeze_depth) {
195 		percpu_ref_resurrect(&q->q_usage_counter);
196 		wake_up_all(&q->mq_freeze_wq);
197 	}
198 	mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201 
202 /*
203  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204  * mpt3sas driver such that this function can be removed.
205  */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211 
212 /**
213  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214  * @q: request queue.
215  *
216  * Note: this function does not prevent that the struct request end_io()
217  * callback function is invoked. Once this function is returned, we make
218  * sure no dispatch can happen until the queue is unquiesced via
219  * blk_mq_unquiesce_queue().
220  */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223 	struct blk_mq_hw_ctx *hctx;
224 	unsigned int i;
225 	bool rcu = false;
226 
227 	blk_mq_quiesce_queue_nowait(q);
228 
229 	queue_for_each_hw_ctx(q, hctx, i) {
230 		if (hctx->flags & BLK_MQ_F_BLOCKING)
231 			synchronize_srcu(hctx->srcu);
232 		else
233 			rcu = true;
234 	}
235 	if (rcu)
236 		synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239 
240 /*
241  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242  * @q: request queue.
243  *
244  * This function recovers queue into the state before quiescing
245  * which is done by blk_mq_quiesce_queue.
246  */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250 
251 	/* dispatch requests which are inserted during quiescing */
252 	blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255 
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258 	struct blk_mq_hw_ctx *hctx;
259 	unsigned int i;
260 
261 	queue_for_each_hw_ctx(q, hctx, i)
262 		if (blk_mq_hw_queue_mapped(hctx))
263 			blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265 
266 /*
267  * Only need start/end time stamping if we have iostat or
268  * blk stats enabled, or using an IO scheduler.
269  */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274 
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 		unsigned int tag, u64 alloc_time_ns)
277 {
278 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 	struct request *rq = tags->static_rqs[tag];
280 
281 	if (data->q->elevator) {
282 		rq->tag = BLK_MQ_NO_TAG;
283 		rq->internal_tag = tag;
284 	} else {
285 		rq->tag = tag;
286 		rq->internal_tag = BLK_MQ_NO_TAG;
287 	}
288 
289 	/* csd/requeue_work/fifo_time is initialized before use */
290 	rq->q = data->q;
291 	rq->mq_ctx = data->ctx;
292 	rq->mq_hctx = data->hctx;
293 	rq->rq_flags = 0;
294 	rq->cmd_flags = data->cmd_flags;
295 	if (data->flags & BLK_MQ_REQ_PREEMPT)
296 		rq->rq_flags |= RQF_PREEMPT;
297 	if (blk_queue_io_stat(data->q))
298 		rq->rq_flags |= RQF_IO_STAT;
299 	INIT_LIST_HEAD(&rq->queuelist);
300 	INIT_HLIST_NODE(&rq->hash);
301 	RB_CLEAR_NODE(&rq->rb_node);
302 	rq->rq_disk = NULL;
303 	rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305 	rq->alloc_time_ns = alloc_time_ns;
306 #endif
307 	if (blk_mq_need_time_stamp(rq))
308 		rq->start_time_ns = ktime_get_ns();
309 	else
310 		rq->start_time_ns = 0;
311 	rq->io_start_time_ns = 0;
312 	rq->stats_sectors = 0;
313 	rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 	rq->nr_integrity_segments = 0;
316 #endif
317 	blk_crypto_rq_set_defaults(rq);
318 	/* tag was already set */
319 	WRITE_ONCE(rq->deadline, 0);
320 
321 	rq->timeout = 0;
322 
323 	rq->end_io = NULL;
324 	rq->end_io_data = NULL;
325 
326 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327 	refcount_set(&rq->ref, 1);
328 
329 	if (!op_is_flush(data->cmd_flags)) {
330 		struct elevator_queue *e = data->q->elevator;
331 
332 		rq->elv.icq = NULL;
333 		if (e && e->type->ops.prepare_request) {
334 			if (e->type->icq_cache)
335 				blk_mq_sched_assign_ioc(rq);
336 
337 			e->type->ops.prepare_request(rq);
338 			rq->rq_flags |= RQF_ELVPRIV;
339 		}
340 	}
341 
342 	data->hctx->queued++;
343 	return rq;
344 }
345 
346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348 	struct request_queue *q = data->q;
349 	struct elevator_queue *e = q->elevator;
350 	u64 alloc_time_ns = 0;
351 	unsigned int tag;
352 
353 	/* alloc_time includes depth and tag waits */
354 	if (blk_queue_rq_alloc_time(q))
355 		alloc_time_ns = ktime_get_ns();
356 
357 	if (data->cmd_flags & REQ_NOWAIT)
358 		data->flags |= BLK_MQ_REQ_NOWAIT;
359 
360 	if (e) {
361 		/*
362 		 * Flush requests are special and go directly to the
363 		 * dispatch list. Don't include reserved tags in the
364 		 * limiting, as it isn't useful.
365 		 */
366 		if (!op_is_flush(data->cmd_flags) &&
367 		    e->type->ops.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.limit_depth(data->cmd_flags, data);
370 	}
371 
372 retry:
373 	data->ctx = blk_mq_get_ctx(q);
374 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375 	if (!e)
376 		blk_mq_tag_busy(data->hctx);
377 
378 	/*
379 	 * Waiting allocations only fail because of an inactive hctx.  In that
380 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
381 	 * should have migrated us to an online CPU by now.
382 	 */
383 	tag = blk_mq_get_tag(data);
384 	if (tag == BLK_MQ_NO_TAG) {
385 		if (data->flags & BLK_MQ_REQ_NOWAIT)
386 			return NULL;
387 
388 		/*
389 		 * Give up the CPU and sleep for a random short time to ensure
390 		 * that thread using a realtime scheduling class are migrated
391 		 * off the CPU, and thus off the hctx that is going away.
392 		 */
393 		msleep(3);
394 		goto retry;
395 	}
396 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398 
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 		blk_mq_req_flags_t flags)
401 {
402 	struct blk_mq_alloc_data data = {
403 		.q		= q,
404 		.flags		= flags,
405 		.cmd_flags	= op,
406 	};
407 	struct request *rq;
408 	int ret;
409 
410 	ret = blk_queue_enter(q, flags);
411 	if (ret)
412 		return ERR_PTR(ret);
413 
414 	rq = __blk_mq_alloc_request(&data);
415 	if (!rq)
416 		goto out_queue_exit;
417 	rq->__data_len = 0;
418 	rq->__sector = (sector_t) -1;
419 	rq->bio = rq->biotail = NULL;
420 	return rq;
421 out_queue_exit:
422 	blk_queue_exit(q);
423 	return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426 
427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430 	struct blk_mq_alloc_data data = {
431 		.q		= q,
432 		.flags		= flags,
433 		.cmd_flags	= op,
434 	};
435 	u64 alloc_time_ns = 0;
436 	unsigned int cpu;
437 	unsigned int tag;
438 	int ret;
439 
440 	/* alloc_time includes depth and tag waits */
441 	if (blk_queue_rq_alloc_time(q))
442 		alloc_time_ns = ktime_get_ns();
443 
444 	/*
445 	 * If the tag allocator sleeps we could get an allocation for a
446 	 * different hardware context.  No need to complicate the low level
447 	 * allocator for this for the rare use case of a command tied to
448 	 * a specific queue.
449 	 */
450 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451 		return ERR_PTR(-EINVAL);
452 
453 	if (hctx_idx >= q->nr_hw_queues)
454 		return ERR_PTR(-EIO);
455 
456 	ret = blk_queue_enter(q, flags);
457 	if (ret)
458 		return ERR_PTR(ret);
459 
460 	/*
461 	 * Check if the hardware context is actually mapped to anything.
462 	 * If not tell the caller that it should skip this queue.
463 	 */
464 	ret = -EXDEV;
465 	data.hctx = q->queue_hw_ctx[hctx_idx];
466 	if (!blk_mq_hw_queue_mapped(data.hctx))
467 		goto out_queue_exit;
468 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469 	data.ctx = __blk_mq_get_ctx(q, cpu);
470 
471 	if (!q->elevator)
472 		blk_mq_tag_busy(data.hctx);
473 
474 	ret = -EWOULDBLOCK;
475 	tag = blk_mq_get_tag(&data);
476 	if (tag == BLK_MQ_NO_TAG)
477 		goto out_queue_exit;
478 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479 
480 out_queue_exit:
481 	blk_queue_exit(q);
482 	return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485 
486 static void __blk_mq_free_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 	struct blk_mq_ctx *ctx = rq->mq_ctx;
490 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 	const int sched_tag = rq->internal_tag;
492 
493 	blk_crypto_free_request(rq);
494 	blk_pm_mark_last_busy(rq);
495 	rq->mq_hctx = NULL;
496 	if (rq->tag != BLK_MQ_NO_TAG)
497 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498 	if (sched_tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500 	blk_mq_sched_restart(hctx);
501 	blk_queue_exit(q);
502 }
503 
504 void blk_mq_free_request(struct request *rq)
505 {
506 	struct request_queue *q = rq->q;
507 	struct elevator_queue *e = q->elevator;
508 	struct blk_mq_ctx *ctx = rq->mq_ctx;
509 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510 
511 	if (rq->rq_flags & RQF_ELVPRIV) {
512 		if (e && e->type->ops.finish_request)
513 			e->type->ops.finish_request(rq);
514 		if (rq->elv.icq) {
515 			put_io_context(rq->elv.icq->ioc);
516 			rq->elv.icq = NULL;
517 		}
518 	}
519 
520 	ctx->rq_completed[rq_is_sync(rq)]++;
521 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
522 		__blk_mq_dec_active_requests(hctx);
523 
524 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525 		laptop_io_completion(q->backing_dev_info);
526 
527 	rq_qos_done(q, rq);
528 
529 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530 	if (refcount_dec_and_test(&rq->ref))
531 		__blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534 
535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 	u64 now = 0;
538 
539 	if (blk_mq_need_time_stamp(rq))
540 		now = ktime_get_ns();
541 
542 	if (rq->rq_flags & RQF_STATS) {
543 		blk_mq_poll_stats_start(rq->q);
544 		blk_stat_add(rq, now);
545 	}
546 
547 	blk_mq_sched_completed_request(rq, now);
548 
549 	blk_account_io_done(rq, now);
550 
551 	if (rq->end_io) {
552 		rq_qos_done(rq->q, rq);
553 		rq->end_io(rq, error);
554 	} else {
555 		blk_mq_free_request(rq);
556 	}
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559 
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 		BUG();
564 	__blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567 
568 /*
569  * Softirq action handler - move entries to local list and loop over them
570  * while passing them to the queue registered handler.
571  */
572 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573 {
574 	struct list_head *cpu_list, local_list;
575 
576 	local_irq_disable();
577 	cpu_list = this_cpu_ptr(&blk_cpu_done);
578 	list_replace_init(cpu_list, &local_list);
579 	local_irq_enable();
580 
581 	while (!list_empty(&local_list)) {
582 		struct request *rq;
583 
584 		rq = list_entry(local_list.next, struct request, ipi_list);
585 		list_del_init(&rq->ipi_list);
586 		rq->q->mq_ops->complete(rq);
587 	}
588 }
589 
590 static void blk_mq_trigger_softirq(struct request *rq)
591 {
592 	struct list_head *list;
593 	unsigned long flags;
594 
595 	local_irq_save(flags);
596 	list = this_cpu_ptr(&blk_cpu_done);
597 	list_add_tail(&rq->ipi_list, list);
598 
599 	/*
600 	 * If the list only contains our just added request, signal a raise of
601 	 * the softirq.  If there are already entries there, someone already
602 	 * raised the irq but it hasn't run yet.
603 	 */
604 	if (list->next == &rq->ipi_list)
605 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
606 	local_irq_restore(flags);
607 }
608 
609 static int blk_softirq_cpu_dead(unsigned int cpu)
610 {
611 	/*
612 	 * If a CPU goes away, splice its entries to the current CPU
613 	 * and trigger a run of the softirq
614 	 */
615 	local_irq_disable();
616 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
617 			 this_cpu_ptr(&blk_cpu_done));
618 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
619 	local_irq_enable();
620 
621 	return 0;
622 }
623 
624 
625 static void __blk_mq_complete_request_remote(void *data)
626 {
627 	struct request *rq = data;
628 
629 	/*
630 	 * For most of single queue controllers, there is only one irq vector
631 	 * for handling I/O completion, and the only irq's affinity is set
632 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
633 	 * is handled on one specific CPU.
634 	 *
635 	 * So complete I/O requests in softirq context in case of single queue
636 	 * devices to avoid degrading I/O performance due to irqsoff latency.
637 	 */
638 	if (rq->q->nr_hw_queues == 1)
639 		blk_mq_trigger_softirq(rq);
640 	else
641 		rq->q->mq_ops->complete(rq);
642 }
643 
644 static inline bool blk_mq_complete_need_ipi(struct request *rq)
645 {
646 	int cpu = raw_smp_processor_id();
647 
648 	if (!IS_ENABLED(CONFIG_SMP) ||
649 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650 		return false;
651 
652 	/* same CPU or cache domain?  Complete locally */
653 	if (cpu == rq->mq_ctx->cpu ||
654 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656 		return false;
657 
658 	/* don't try to IPI to an offline CPU */
659 	return cpu_online(rq->mq_ctx->cpu);
660 }
661 
662 bool blk_mq_complete_request_remote(struct request *rq)
663 {
664 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665 
666 	/*
667 	 * For a polled request, always complete locallly, it's pointless
668 	 * to redirect the completion.
669 	 */
670 	if (rq->cmd_flags & REQ_HIPRI)
671 		return false;
672 
673 	if (blk_mq_complete_need_ipi(rq)) {
674 		rq->csd.func = __blk_mq_complete_request_remote;
675 		rq->csd.info = rq;
676 		rq->csd.flags = 0;
677 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678 	} else {
679 		if (rq->q->nr_hw_queues > 1)
680 			return false;
681 		blk_mq_trigger_softirq(rq);
682 	}
683 
684 	return true;
685 }
686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
687 
688 /**
689  * blk_mq_complete_request - end I/O on a request
690  * @rq:		the request being processed
691  *
692  * Description:
693  *	Complete a request by scheduling the ->complete_rq operation.
694  **/
695 void blk_mq_complete_request(struct request *rq)
696 {
697 	if (!blk_mq_complete_request_remote(rq))
698 		rq->q->mq_ops->complete(rq);
699 }
700 EXPORT_SYMBOL(blk_mq_complete_request);
701 
702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703 	__releases(hctx->srcu)
704 {
705 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
706 		rcu_read_unlock();
707 	else
708 		srcu_read_unlock(hctx->srcu, srcu_idx);
709 }
710 
711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712 	__acquires(hctx->srcu)
713 {
714 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
715 		/* shut up gcc false positive */
716 		*srcu_idx = 0;
717 		rcu_read_lock();
718 	} else
719 		*srcu_idx = srcu_read_lock(hctx->srcu);
720 }
721 
722 /**
723  * blk_mq_start_request - Start processing a request
724  * @rq: Pointer to request to be started
725  *
726  * Function used by device drivers to notify the block layer that a request
727  * is going to be processed now, so blk layer can do proper initializations
728  * such as starting the timeout timer.
729  */
730 void blk_mq_start_request(struct request *rq)
731 {
732 	struct request_queue *q = rq->q;
733 
734 	trace_block_rq_issue(q, rq);
735 
736 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737 		rq->io_start_time_ns = ktime_get_ns();
738 		rq->stats_sectors = blk_rq_sectors(rq);
739 		rq->rq_flags |= RQF_STATS;
740 		rq_qos_issue(q, rq);
741 	}
742 
743 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744 
745 	blk_add_timer(rq);
746 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747 
748 #ifdef CONFIG_BLK_DEV_INTEGRITY
749 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
750 		q->integrity.profile->prepare_fn(rq);
751 #endif
752 }
753 EXPORT_SYMBOL(blk_mq_start_request);
754 
755 static void __blk_mq_requeue_request(struct request *rq)
756 {
757 	struct request_queue *q = rq->q;
758 
759 	blk_mq_put_driver_tag(rq);
760 
761 	trace_block_rq_requeue(q, rq);
762 	rq_qos_requeue(q, rq);
763 
764 	if (blk_mq_request_started(rq)) {
765 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766 		rq->rq_flags &= ~RQF_TIMED_OUT;
767 	}
768 }
769 
770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771 {
772 	__blk_mq_requeue_request(rq);
773 
774 	/* this request will be re-inserted to io scheduler queue */
775 	blk_mq_sched_requeue_request(rq);
776 
777 	BUG_ON(!list_empty(&rq->queuelist));
778 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
779 }
780 EXPORT_SYMBOL(blk_mq_requeue_request);
781 
782 static void blk_mq_requeue_work(struct work_struct *work)
783 {
784 	struct request_queue *q =
785 		container_of(work, struct request_queue, requeue_work.work);
786 	LIST_HEAD(rq_list);
787 	struct request *rq, *next;
788 
789 	spin_lock_irq(&q->requeue_lock);
790 	list_splice_init(&q->requeue_list, &rq_list);
791 	spin_unlock_irq(&q->requeue_lock);
792 
793 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
794 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
795 			continue;
796 
797 		rq->rq_flags &= ~RQF_SOFTBARRIER;
798 		list_del_init(&rq->queuelist);
799 		/*
800 		 * If RQF_DONTPREP, rq has contained some driver specific
801 		 * data, so insert it to hctx dispatch list to avoid any
802 		 * merge.
803 		 */
804 		if (rq->rq_flags & RQF_DONTPREP)
805 			blk_mq_request_bypass_insert(rq, false, false);
806 		else
807 			blk_mq_sched_insert_request(rq, true, false, false);
808 	}
809 
810 	while (!list_empty(&rq_list)) {
811 		rq = list_entry(rq_list.next, struct request, queuelist);
812 		list_del_init(&rq->queuelist);
813 		blk_mq_sched_insert_request(rq, false, false, false);
814 	}
815 
816 	blk_mq_run_hw_queues(q, false);
817 }
818 
819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
820 				bool kick_requeue_list)
821 {
822 	struct request_queue *q = rq->q;
823 	unsigned long flags;
824 
825 	/*
826 	 * We abuse this flag that is otherwise used by the I/O scheduler to
827 	 * request head insertion from the workqueue.
828 	 */
829 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
830 
831 	spin_lock_irqsave(&q->requeue_lock, flags);
832 	if (at_head) {
833 		rq->rq_flags |= RQF_SOFTBARRIER;
834 		list_add(&rq->queuelist, &q->requeue_list);
835 	} else {
836 		list_add_tail(&rq->queuelist, &q->requeue_list);
837 	}
838 	spin_unlock_irqrestore(&q->requeue_lock, flags);
839 
840 	if (kick_requeue_list)
841 		blk_mq_kick_requeue_list(q);
842 }
843 
844 void blk_mq_kick_requeue_list(struct request_queue *q)
845 {
846 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
847 }
848 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
849 
850 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
851 				    unsigned long msecs)
852 {
853 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
854 				    msecs_to_jiffies(msecs));
855 }
856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
857 
858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
859 {
860 	if (tag < tags->nr_tags) {
861 		prefetch(tags->rqs[tag]);
862 		return tags->rqs[tag];
863 	}
864 
865 	return NULL;
866 }
867 EXPORT_SYMBOL(blk_mq_tag_to_rq);
868 
869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
870 			       void *priv, bool reserved)
871 {
872 	/*
873 	 * If we find a request that isn't idle and the queue matches,
874 	 * we know the queue is busy. Return false to stop the iteration.
875 	 */
876 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
877 		bool *busy = priv;
878 
879 		*busy = true;
880 		return false;
881 	}
882 
883 	return true;
884 }
885 
886 bool blk_mq_queue_inflight(struct request_queue *q)
887 {
888 	bool busy = false;
889 
890 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
891 	return busy;
892 }
893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
894 
895 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
896 {
897 	req->rq_flags |= RQF_TIMED_OUT;
898 	if (req->q->mq_ops->timeout) {
899 		enum blk_eh_timer_return ret;
900 
901 		ret = req->q->mq_ops->timeout(req, reserved);
902 		if (ret == BLK_EH_DONE)
903 			return;
904 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
905 	}
906 
907 	blk_add_timer(req);
908 }
909 
910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
911 {
912 	unsigned long deadline;
913 
914 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
915 		return false;
916 	if (rq->rq_flags & RQF_TIMED_OUT)
917 		return false;
918 
919 	deadline = READ_ONCE(rq->deadline);
920 	if (time_after_eq(jiffies, deadline))
921 		return true;
922 
923 	if (*next == 0)
924 		*next = deadline;
925 	else if (time_after(*next, deadline))
926 		*next = deadline;
927 	return false;
928 }
929 
930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
931 		struct request *rq, void *priv, bool reserved)
932 {
933 	unsigned long *next = priv;
934 
935 	/*
936 	 * Just do a quick check if it is expired before locking the request in
937 	 * so we're not unnecessarilly synchronizing across CPUs.
938 	 */
939 	if (!blk_mq_req_expired(rq, next))
940 		return true;
941 
942 	/*
943 	 * We have reason to believe the request may be expired. Take a
944 	 * reference on the request to lock this request lifetime into its
945 	 * currently allocated context to prevent it from being reallocated in
946 	 * the event the completion by-passes this timeout handler.
947 	 *
948 	 * If the reference was already released, then the driver beat the
949 	 * timeout handler to posting a natural completion.
950 	 */
951 	if (!refcount_inc_not_zero(&rq->ref))
952 		return true;
953 
954 	/*
955 	 * The request is now locked and cannot be reallocated underneath the
956 	 * timeout handler's processing. Re-verify this exact request is truly
957 	 * expired; if it is not expired, then the request was completed and
958 	 * reallocated as a new request.
959 	 */
960 	if (blk_mq_req_expired(rq, next))
961 		blk_mq_rq_timed_out(rq, reserved);
962 
963 	if (is_flush_rq(rq, hctx))
964 		rq->end_io(rq, 0);
965 	else if (refcount_dec_and_test(&rq->ref))
966 		__blk_mq_free_request(rq);
967 
968 	return true;
969 }
970 
971 static void blk_mq_timeout_work(struct work_struct *work)
972 {
973 	struct request_queue *q =
974 		container_of(work, struct request_queue, timeout_work);
975 	unsigned long next = 0;
976 	struct blk_mq_hw_ctx *hctx;
977 	int i;
978 
979 	/* A deadlock might occur if a request is stuck requiring a
980 	 * timeout at the same time a queue freeze is waiting
981 	 * completion, since the timeout code would not be able to
982 	 * acquire the queue reference here.
983 	 *
984 	 * That's why we don't use blk_queue_enter here; instead, we use
985 	 * percpu_ref_tryget directly, because we need to be able to
986 	 * obtain a reference even in the short window between the queue
987 	 * starting to freeze, by dropping the first reference in
988 	 * blk_freeze_queue_start, and the moment the last request is
989 	 * consumed, marked by the instant q_usage_counter reaches
990 	 * zero.
991 	 */
992 	if (!percpu_ref_tryget(&q->q_usage_counter))
993 		return;
994 
995 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996 
997 	if (next != 0) {
998 		mod_timer(&q->timeout, next);
999 	} else {
1000 		/*
1001 		 * Request timeouts are handled as a forward rolling timer. If
1002 		 * we end up here it means that no requests are pending and
1003 		 * also that no request has been pending for a while. Mark
1004 		 * each hctx as idle.
1005 		 */
1006 		queue_for_each_hw_ctx(q, hctx, i) {
1007 			/* the hctx may be unmapped, so check it here */
1008 			if (blk_mq_hw_queue_mapped(hctx))
1009 				blk_mq_tag_idle(hctx);
1010 		}
1011 	}
1012 	blk_queue_exit(q);
1013 }
1014 
1015 struct flush_busy_ctx_data {
1016 	struct blk_mq_hw_ctx *hctx;
1017 	struct list_head *list;
1018 };
1019 
1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021 {
1022 	struct flush_busy_ctx_data *flush_data = data;
1023 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025 	enum hctx_type type = hctx->type;
1026 
1027 	spin_lock(&ctx->lock);
1028 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029 	sbitmap_clear_bit(sb, bitnr);
1030 	spin_unlock(&ctx->lock);
1031 	return true;
1032 }
1033 
1034 /*
1035  * Process software queues that have been marked busy, splicing them
1036  * to the for-dispatch
1037  */
1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039 {
1040 	struct flush_busy_ctx_data data = {
1041 		.hctx = hctx,
1042 		.list = list,
1043 	};
1044 
1045 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046 }
1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048 
1049 struct dispatch_rq_data {
1050 	struct blk_mq_hw_ctx *hctx;
1051 	struct request *rq;
1052 };
1053 
1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055 		void *data)
1056 {
1057 	struct dispatch_rq_data *dispatch_data = data;
1058 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060 	enum hctx_type type = hctx->type;
1061 
1062 	spin_lock(&ctx->lock);
1063 	if (!list_empty(&ctx->rq_lists[type])) {
1064 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065 		list_del_init(&dispatch_data->rq->queuelist);
1066 		if (list_empty(&ctx->rq_lists[type]))
1067 			sbitmap_clear_bit(sb, bitnr);
1068 	}
1069 	spin_unlock(&ctx->lock);
1070 
1071 	return !dispatch_data->rq;
1072 }
1073 
1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075 					struct blk_mq_ctx *start)
1076 {
1077 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 	struct dispatch_rq_data data = {
1079 		.hctx = hctx,
1080 		.rq   = NULL,
1081 	};
1082 
1083 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1084 			       dispatch_rq_from_ctx, &data);
1085 
1086 	return data.rq;
1087 }
1088 
1089 static inline unsigned int queued_to_index(unsigned int queued)
1090 {
1091 	if (!queued)
1092 		return 0;
1093 
1094 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 }
1096 
1097 static bool __blk_mq_get_driver_tag(struct request *rq)
1098 {
1099 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1100 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101 	int tag;
1102 
1103 	blk_mq_tag_busy(rq->mq_hctx);
1104 
1105 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106 		bt = rq->mq_hctx->tags->breserved_tags;
1107 		tag_offset = 0;
1108 	} else {
1109 		if (!hctx_may_queue(rq->mq_hctx, bt))
1110 			return false;
1111 	}
1112 
1113 	tag = __sbitmap_queue_get(bt);
1114 	if (tag == BLK_MQ_NO_TAG)
1115 		return false;
1116 
1117 	rq->tag = tag + tag_offset;
1118 	return true;
1119 }
1120 
1121 static bool blk_mq_get_driver_tag(struct request *rq)
1122 {
1123 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1124 
1125 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1126 		return false;
1127 
1128 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1129 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1130 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1131 		__blk_mq_inc_active_requests(hctx);
1132 	}
1133 	hctx->tags->rqs[rq->tag] = rq;
1134 	return true;
1135 }
1136 
1137 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1138 				int flags, void *key)
1139 {
1140 	struct blk_mq_hw_ctx *hctx;
1141 
1142 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1143 
1144 	spin_lock(&hctx->dispatch_wait_lock);
1145 	if (!list_empty(&wait->entry)) {
1146 		struct sbitmap_queue *sbq;
1147 
1148 		list_del_init(&wait->entry);
1149 		sbq = hctx->tags->bitmap_tags;
1150 		atomic_dec(&sbq->ws_active);
1151 	}
1152 	spin_unlock(&hctx->dispatch_wait_lock);
1153 
1154 	blk_mq_run_hw_queue(hctx, true);
1155 	return 1;
1156 }
1157 
1158 /*
1159  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1160  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1161  * restart. For both cases, take care to check the condition again after
1162  * marking us as waiting.
1163  */
1164 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1165 				 struct request *rq)
1166 {
1167 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1168 	struct wait_queue_head *wq;
1169 	wait_queue_entry_t *wait;
1170 	bool ret;
1171 
1172 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1173 		blk_mq_sched_mark_restart_hctx(hctx);
1174 
1175 		/*
1176 		 * It's possible that a tag was freed in the window between the
1177 		 * allocation failure and adding the hardware queue to the wait
1178 		 * queue.
1179 		 *
1180 		 * Don't clear RESTART here, someone else could have set it.
1181 		 * At most this will cost an extra queue run.
1182 		 */
1183 		return blk_mq_get_driver_tag(rq);
1184 	}
1185 
1186 	wait = &hctx->dispatch_wait;
1187 	if (!list_empty_careful(&wait->entry))
1188 		return false;
1189 
1190 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1191 
1192 	spin_lock_irq(&wq->lock);
1193 	spin_lock(&hctx->dispatch_wait_lock);
1194 	if (!list_empty(&wait->entry)) {
1195 		spin_unlock(&hctx->dispatch_wait_lock);
1196 		spin_unlock_irq(&wq->lock);
1197 		return false;
1198 	}
1199 
1200 	atomic_inc(&sbq->ws_active);
1201 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1202 	__add_wait_queue(wq, wait);
1203 
1204 	/*
1205 	 * It's possible that a tag was freed in the window between the
1206 	 * allocation failure and adding the hardware queue to the wait
1207 	 * queue.
1208 	 */
1209 	ret = blk_mq_get_driver_tag(rq);
1210 	if (!ret) {
1211 		spin_unlock(&hctx->dispatch_wait_lock);
1212 		spin_unlock_irq(&wq->lock);
1213 		return false;
1214 	}
1215 
1216 	/*
1217 	 * We got a tag, remove ourselves from the wait queue to ensure
1218 	 * someone else gets the wakeup.
1219 	 */
1220 	list_del_init(&wait->entry);
1221 	atomic_dec(&sbq->ws_active);
1222 	spin_unlock(&hctx->dispatch_wait_lock);
1223 	spin_unlock_irq(&wq->lock);
1224 
1225 	return true;
1226 }
1227 
1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1229 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1230 /*
1231  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1232  * - EWMA is one simple way to compute running average value
1233  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1234  * - take 4 as factor for avoiding to get too small(0) result, and this
1235  *   factor doesn't matter because EWMA decreases exponentially
1236  */
1237 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1238 {
1239 	unsigned int ewma;
1240 
1241 	if (hctx->queue->elevator)
1242 		return;
1243 
1244 	ewma = hctx->dispatch_busy;
1245 
1246 	if (!ewma && !busy)
1247 		return;
1248 
1249 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1250 	if (busy)
1251 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1252 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1253 
1254 	hctx->dispatch_busy = ewma;
1255 }
1256 
1257 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1258 
1259 static void blk_mq_handle_dev_resource(struct request *rq,
1260 				       struct list_head *list)
1261 {
1262 	struct request *next =
1263 		list_first_entry_or_null(list, struct request, queuelist);
1264 
1265 	/*
1266 	 * If an I/O scheduler has been configured and we got a driver tag for
1267 	 * the next request already, free it.
1268 	 */
1269 	if (next)
1270 		blk_mq_put_driver_tag(next);
1271 
1272 	list_add(&rq->queuelist, list);
1273 	__blk_mq_requeue_request(rq);
1274 }
1275 
1276 static void blk_mq_handle_zone_resource(struct request *rq,
1277 					struct list_head *zone_list)
1278 {
1279 	/*
1280 	 * If we end up here it is because we cannot dispatch a request to a
1281 	 * specific zone due to LLD level zone-write locking or other zone
1282 	 * related resource not being available. In this case, set the request
1283 	 * aside in zone_list for retrying it later.
1284 	 */
1285 	list_add(&rq->queuelist, zone_list);
1286 	__blk_mq_requeue_request(rq);
1287 }
1288 
1289 enum prep_dispatch {
1290 	PREP_DISPATCH_OK,
1291 	PREP_DISPATCH_NO_TAG,
1292 	PREP_DISPATCH_NO_BUDGET,
1293 };
1294 
1295 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1296 						  bool need_budget)
1297 {
1298 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1299 
1300 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1301 		blk_mq_put_driver_tag(rq);
1302 		return PREP_DISPATCH_NO_BUDGET;
1303 	}
1304 
1305 	if (!blk_mq_get_driver_tag(rq)) {
1306 		/*
1307 		 * The initial allocation attempt failed, so we need to
1308 		 * rerun the hardware queue when a tag is freed. The
1309 		 * waitqueue takes care of that. If the queue is run
1310 		 * before we add this entry back on the dispatch list,
1311 		 * we'll re-run it below.
1312 		 */
1313 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1314 			/*
1315 			 * All budgets not got from this function will be put
1316 			 * together during handling partial dispatch
1317 			 */
1318 			if (need_budget)
1319 				blk_mq_put_dispatch_budget(rq->q);
1320 			return PREP_DISPATCH_NO_TAG;
1321 		}
1322 	}
1323 
1324 	return PREP_DISPATCH_OK;
1325 }
1326 
1327 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1328 static void blk_mq_release_budgets(struct request_queue *q,
1329 		unsigned int nr_budgets)
1330 {
1331 	int i;
1332 
1333 	for (i = 0; i < nr_budgets; i++)
1334 		blk_mq_put_dispatch_budget(q);
1335 }
1336 
1337 /*
1338  * Returns true if we did some work AND can potentially do more.
1339  */
1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1341 			     unsigned int nr_budgets)
1342 {
1343 	enum prep_dispatch prep;
1344 	struct request_queue *q = hctx->queue;
1345 	struct request *rq, *nxt;
1346 	int errors, queued;
1347 	blk_status_t ret = BLK_STS_OK;
1348 	LIST_HEAD(zone_list);
1349 
1350 	if (list_empty(list))
1351 		return false;
1352 
1353 	/*
1354 	 * Now process all the entries, sending them to the driver.
1355 	 */
1356 	errors = queued = 0;
1357 	do {
1358 		struct blk_mq_queue_data bd;
1359 
1360 		rq = list_first_entry(list, struct request, queuelist);
1361 
1362 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1363 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1364 		if (prep != PREP_DISPATCH_OK)
1365 			break;
1366 
1367 		list_del_init(&rq->queuelist);
1368 
1369 		bd.rq = rq;
1370 
1371 		/*
1372 		 * Flag last if we have no more requests, or if we have more
1373 		 * but can't assign a driver tag to it.
1374 		 */
1375 		if (list_empty(list))
1376 			bd.last = true;
1377 		else {
1378 			nxt = list_first_entry(list, struct request, queuelist);
1379 			bd.last = !blk_mq_get_driver_tag(nxt);
1380 		}
1381 
1382 		/*
1383 		 * once the request is queued to lld, no need to cover the
1384 		 * budget any more
1385 		 */
1386 		if (nr_budgets)
1387 			nr_budgets--;
1388 		ret = q->mq_ops->queue_rq(hctx, &bd);
1389 		switch (ret) {
1390 		case BLK_STS_OK:
1391 			queued++;
1392 			break;
1393 		case BLK_STS_RESOURCE:
1394 		case BLK_STS_DEV_RESOURCE:
1395 			blk_mq_handle_dev_resource(rq, list);
1396 			goto out;
1397 		case BLK_STS_ZONE_RESOURCE:
1398 			/*
1399 			 * Move the request to zone_list and keep going through
1400 			 * the dispatch list to find more requests the drive can
1401 			 * accept.
1402 			 */
1403 			blk_mq_handle_zone_resource(rq, &zone_list);
1404 			break;
1405 		default:
1406 			errors++;
1407 			blk_mq_end_request(rq, BLK_STS_IOERR);
1408 		}
1409 	} while (!list_empty(list));
1410 out:
1411 	if (!list_empty(&zone_list))
1412 		list_splice_tail_init(&zone_list, list);
1413 
1414 	hctx->dispatched[queued_to_index(queued)]++;
1415 
1416 	/* If we didn't flush the entire list, we could have told the driver
1417 	 * there was more coming, but that turned out to be a lie.
1418 	 */
1419 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1420 		q->mq_ops->commit_rqs(hctx);
1421 	/*
1422 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1423 	 * that is where we will continue on next queue run.
1424 	 */
1425 	if (!list_empty(list)) {
1426 		bool needs_restart;
1427 		/* For non-shared tags, the RESTART check will suffice */
1428 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1429 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1430 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1431 
1432 		blk_mq_release_budgets(q, nr_budgets);
1433 
1434 		spin_lock(&hctx->lock);
1435 		list_splice_tail_init(list, &hctx->dispatch);
1436 		spin_unlock(&hctx->lock);
1437 
1438 		/*
1439 		 * Order adding requests to hctx->dispatch and checking
1440 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1441 		 * in blk_mq_sched_restart(). Avoid restart code path to
1442 		 * miss the new added requests to hctx->dispatch, meantime
1443 		 * SCHED_RESTART is observed here.
1444 		 */
1445 		smp_mb();
1446 
1447 		/*
1448 		 * If SCHED_RESTART was set by the caller of this function and
1449 		 * it is no longer set that means that it was cleared by another
1450 		 * thread and hence that a queue rerun is needed.
1451 		 *
1452 		 * If 'no_tag' is set, that means that we failed getting
1453 		 * a driver tag with an I/O scheduler attached. If our dispatch
1454 		 * waitqueue is no longer active, ensure that we run the queue
1455 		 * AFTER adding our entries back to the list.
1456 		 *
1457 		 * If no I/O scheduler has been configured it is possible that
1458 		 * the hardware queue got stopped and restarted before requests
1459 		 * were pushed back onto the dispatch list. Rerun the queue to
1460 		 * avoid starvation. Notes:
1461 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1462 		 *   been stopped before rerunning a queue.
1463 		 * - Some but not all block drivers stop a queue before
1464 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1465 		 *   and dm-rq.
1466 		 *
1467 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1468 		 * bit is set, run queue after a delay to avoid IO stalls
1469 		 * that could otherwise occur if the queue is idle.  We'll do
1470 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1471 		 */
1472 		needs_restart = blk_mq_sched_needs_restart(hctx);
1473 		if (!needs_restart ||
1474 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1475 			blk_mq_run_hw_queue(hctx, true);
1476 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1477 					   no_budget_avail))
1478 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1479 
1480 		blk_mq_update_dispatch_busy(hctx, true);
1481 		return false;
1482 	} else
1483 		blk_mq_update_dispatch_busy(hctx, false);
1484 
1485 	return (queued + errors) != 0;
1486 }
1487 
1488 /**
1489  * __blk_mq_run_hw_queue - Run a hardware queue.
1490  * @hctx: Pointer to the hardware queue to run.
1491  *
1492  * Send pending requests to the hardware.
1493  */
1494 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1495 {
1496 	int srcu_idx;
1497 
1498 	/*
1499 	 * We should be running this queue from one of the CPUs that
1500 	 * are mapped to it.
1501 	 *
1502 	 * There are at least two related races now between setting
1503 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1504 	 * __blk_mq_run_hw_queue():
1505 	 *
1506 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1507 	 *   but later it becomes online, then this warning is harmless
1508 	 *   at all
1509 	 *
1510 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1511 	 *   but later it becomes offline, then the warning can't be
1512 	 *   triggered, and we depend on blk-mq timeout handler to
1513 	 *   handle dispatched requests to this hctx
1514 	 */
1515 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1516 		cpu_online(hctx->next_cpu)) {
1517 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1518 			raw_smp_processor_id(),
1519 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1520 		dump_stack();
1521 	}
1522 
1523 	/*
1524 	 * We can't run the queue inline with ints disabled. Ensure that
1525 	 * we catch bad users of this early.
1526 	 */
1527 	WARN_ON_ONCE(in_interrupt());
1528 
1529 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1530 
1531 	hctx_lock(hctx, &srcu_idx);
1532 	blk_mq_sched_dispatch_requests(hctx);
1533 	hctx_unlock(hctx, srcu_idx);
1534 }
1535 
1536 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1537 {
1538 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1539 
1540 	if (cpu >= nr_cpu_ids)
1541 		cpu = cpumask_first(hctx->cpumask);
1542 	return cpu;
1543 }
1544 
1545 /*
1546  * It'd be great if the workqueue API had a way to pass
1547  * in a mask and had some smarts for more clever placement.
1548  * For now we just round-robin here, switching for every
1549  * BLK_MQ_CPU_WORK_BATCH queued items.
1550  */
1551 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1552 {
1553 	bool tried = false;
1554 	int next_cpu = hctx->next_cpu;
1555 
1556 	if (hctx->queue->nr_hw_queues == 1)
1557 		return WORK_CPU_UNBOUND;
1558 
1559 	if (--hctx->next_cpu_batch <= 0) {
1560 select_cpu:
1561 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1562 				cpu_online_mask);
1563 		if (next_cpu >= nr_cpu_ids)
1564 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1565 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1566 	}
1567 
1568 	/*
1569 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1570 	 * and it should only happen in the path of handling CPU DEAD.
1571 	 */
1572 	if (!cpu_online(next_cpu)) {
1573 		if (!tried) {
1574 			tried = true;
1575 			goto select_cpu;
1576 		}
1577 
1578 		/*
1579 		 * Make sure to re-select CPU next time once after CPUs
1580 		 * in hctx->cpumask become online again.
1581 		 */
1582 		hctx->next_cpu = next_cpu;
1583 		hctx->next_cpu_batch = 1;
1584 		return WORK_CPU_UNBOUND;
1585 	}
1586 
1587 	hctx->next_cpu = next_cpu;
1588 	return next_cpu;
1589 }
1590 
1591 /**
1592  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1593  * @hctx: Pointer to the hardware queue to run.
1594  * @async: If we want to run the queue asynchronously.
1595  * @msecs: Microseconds of delay to wait before running the queue.
1596  *
1597  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1598  * with a delay of @msecs.
1599  */
1600 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1601 					unsigned long msecs)
1602 {
1603 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1604 		return;
1605 
1606 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1607 		int cpu = get_cpu();
1608 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1609 			__blk_mq_run_hw_queue(hctx);
1610 			put_cpu();
1611 			return;
1612 		}
1613 
1614 		put_cpu();
1615 	}
1616 
1617 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1618 				    msecs_to_jiffies(msecs));
1619 }
1620 
1621 /**
1622  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1623  * @hctx: Pointer to the hardware queue to run.
1624  * @msecs: Microseconds of delay to wait before running the queue.
1625  *
1626  * Run a hardware queue asynchronously with a delay of @msecs.
1627  */
1628 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1629 {
1630 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1631 }
1632 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1633 
1634 /**
1635  * blk_mq_run_hw_queue - Start to run a hardware queue.
1636  * @hctx: Pointer to the hardware queue to run.
1637  * @async: If we want to run the queue asynchronously.
1638  *
1639  * Check if the request queue is not in a quiesced state and if there are
1640  * pending requests to be sent. If this is true, run the queue to send requests
1641  * to hardware.
1642  */
1643 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1644 {
1645 	int srcu_idx;
1646 	bool need_run;
1647 
1648 	/*
1649 	 * When queue is quiesced, we may be switching io scheduler, or
1650 	 * updating nr_hw_queues, or other things, and we can't run queue
1651 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1652 	 *
1653 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1654 	 * quiesced.
1655 	 */
1656 	hctx_lock(hctx, &srcu_idx);
1657 	need_run = !blk_queue_quiesced(hctx->queue) &&
1658 		blk_mq_hctx_has_pending(hctx);
1659 	hctx_unlock(hctx, srcu_idx);
1660 
1661 	if (need_run)
1662 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1663 }
1664 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1665 
1666 /**
1667  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1668  * @q: Pointer to the request queue to run.
1669  * @async: If we want to run the queue asynchronously.
1670  */
1671 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1672 {
1673 	struct blk_mq_hw_ctx *hctx;
1674 	int i;
1675 
1676 	queue_for_each_hw_ctx(q, hctx, i) {
1677 		if (blk_mq_hctx_stopped(hctx))
1678 			continue;
1679 
1680 		blk_mq_run_hw_queue(hctx, async);
1681 	}
1682 }
1683 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1684 
1685 /**
1686  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1687  * @q: Pointer to the request queue to run.
1688  * @msecs: Microseconds of delay to wait before running the queues.
1689  */
1690 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1691 {
1692 	struct blk_mq_hw_ctx *hctx;
1693 	int i;
1694 
1695 	queue_for_each_hw_ctx(q, hctx, i) {
1696 		if (blk_mq_hctx_stopped(hctx))
1697 			continue;
1698 
1699 		blk_mq_delay_run_hw_queue(hctx, msecs);
1700 	}
1701 }
1702 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1703 
1704 /**
1705  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1706  * @q: request queue.
1707  *
1708  * The caller is responsible for serializing this function against
1709  * blk_mq_{start,stop}_hw_queue().
1710  */
1711 bool blk_mq_queue_stopped(struct request_queue *q)
1712 {
1713 	struct blk_mq_hw_ctx *hctx;
1714 	int i;
1715 
1716 	queue_for_each_hw_ctx(q, hctx, i)
1717 		if (blk_mq_hctx_stopped(hctx))
1718 			return true;
1719 
1720 	return false;
1721 }
1722 EXPORT_SYMBOL(blk_mq_queue_stopped);
1723 
1724 /*
1725  * This function is often used for pausing .queue_rq() by driver when
1726  * there isn't enough resource or some conditions aren't satisfied, and
1727  * BLK_STS_RESOURCE is usually returned.
1728  *
1729  * We do not guarantee that dispatch can be drained or blocked
1730  * after blk_mq_stop_hw_queue() returns. Please use
1731  * blk_mq_quiesce_queue() for that requirement.
1732  */
1733 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1734 {
1735 	cancel_delayed_work(&hctx->run_work);
1736 
1737 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1738 }
1739 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1740 
1741 /*
1742  * This function is often used for pausing .queue_rq() by driver when
1743  * there isn't enough resource or some conditions aren't satisfied, and
1744  * BLK_STS_RESOURCE is usually returned.
1745  *
1746  * We do not guarantee that dispatch can be drained or blocked
1747  * after blk_mq_stop_hw_queues() returns. Please use
1748  * blk_mq_quiesce_queue() for that requirement.
1749  */
1750 void blk_mq_stop_hw_queues(struct request_queue *q)
1751 {
1752 	struct blk_mq_hw_ctx *hctx;
1753 	int i;
1754 
1755 	queue_for_each_hw_ctx(q, hctx, i)
1756 		blk_mq_stop_hw_queue(hctx);
1757 }
1758 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1759 
1760 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1761 {
1762 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1763 
1764 	blk_mq_run_hw_queue(hctx, false);
1765 }
1766 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1767 
1768 void blk_mq_start_hw_queues(struct request_queue *q)
1769 {
1770 	struct blk_mq_hw_ctx *hctx;
1771 	int i;
1772 
1773 	queue_for_each_hw_ctx(q, hctx, i)
1774 		blk_mq_start_hw_queue(hctx);
1775 }
1776 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1777 
1778 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1779 {
1780 	if (!blk_mq_hctx_stopped(hctx))
1781 		return;
1782 
1783 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1784 	blk_mq_run_hw_queue(hctx, async);
1785 }
1786 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1787 
1788 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1789 {
1790 	struct blk_mq_hw_ctx *hctx;
1791 	int i;
1792 
1793 	queue_for_each_hw_ctx(q, hctx, i)
1794 		blk_mq_start_stopped_hw_queue(hctx, async);
1795 }
1796 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1797 
1798 static void blk_mq_run_work_fn(struct work_struct *work)
1799 {
1800 	struct blk_mq_hw_ctx *hctx;
1801 
1802 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1803 
1804 	/*
1805 	 * If we are stopped, don't run the queue.
1806 	 */
1807 	if (blk_mq_hctx_stopped(hctx))
1808 		return;
1809 
1810 	__blk_mq_run_hw_queue(hctx);
1811 }
1812 
1813 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1814 					    struct request *rq,
1815 					    bool at_head)
1816 {
1817 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1818 	enum hctx_type type = hctx->type;
1819 
1820 	lockdep_assert_held(&ctx->lock);
1821 
1822 	trace_block_rq_insert(hctx->queue, rq);
1823 
1824 	if (at_head)
1825 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1826 	else
1827 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1828 }
1829 
1830 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1831 			     bool at_head)
1832 {
1833 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1834 
1835 	lockdep_assert_held(&ctx->lock);
1836 
1837 	__blk_mq_insert_req_list(hctx, rq, at_head);
1838 	blk_mq_hctx_mark_pending(hctx, ctx);
1839 }
1840 
1841 /**
1842  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1843  * @rq: Pointer to request to be inserted.
1844  * @at_head: true if the request should be inserted at the head of the list.
1845  * @run_queue: If we should run the hardware queue after inserting the request.
1846  *
1847  * Should only be used carefully, when the caller knows we want to
1848  * bypass a potential IO scheduler on the target device.
1849  */
1850 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1851 				  bool run_queue)
1852 {
1853 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1854 
1855 	spin_lock(&hctx->lock);
1856 	if (at_head)
1857 		list_add(&rq->queuelist, &hctx->dispatch);
1858 	else
1859 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1860 	spin_unlock(&hctx->lock);
1861 
1862 	if (run_queue)
1863 		blk_mq_run_hw_queue(hctx, false);
1864 }
1865 
1866 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1867 			    struct list_head *list)
1868 
1869 {
1870 	struct request *rq;
1871 	enum hctx_type type = hctx->type;
1872 
1873 	/*
1874 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1875 	 * offline now
1876 	 */
1877 	list_for_each_entry(rq, list, queuelist) {
1878 		BUG_ON(rq->mq_ctx != ctx);
1879 		trace_block_rq_insert(hctx->queue, rq);
1880 	}
1881 
1882 	spin_lock(&ctx->lock);
1883 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1884 	blk_mq_hctx_mark_pending(hctx, ctx);
1885 	spin_unlock(&ctx->lock);
1886 }
1887 
1888 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1889 {
1890 	struct request *rqa = container_of(a, struct request, queuelist);
1891 	struct request *rqb = container_of(b, struct request, queuelist);
1892 
1893 	if (rqa->mq_ctx != rqb->mq_ctx)
1894 		return rqa->mq_ctx > rqb->mq_ctx;
1895 	if (rqa->mq_hctx != rqb->mq_hctx)
1896 		return rqa->mq_hctx > rqb->mq_hctx;
1897 
1898 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1899 }
1900 
1901 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1902 {
1903 	LIST_HEAD(list);
1904 
1905 	if (list_empty(&plug->mq_list))
1906 		return;
1907 	list_splice_init(&plug->mq_list, &list);
1908 
1909 	if (plug->rq_count > 2 && plug->multiple_queues)
1910 		list_sort(NULL, &list, plug_rq_cmp);
1911 
1912 	plug->rq_count = 0;
1913 
1914 	do {
1915 		struct list_head rq_list;
1916 		struct request *rq, *head_rq = list_entry_rq(list.next);
1917 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1918 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1919 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1920 		unsigned int depth = 1;
1921 
1922 		list_for_each_continue(pos, &list) {
1923 			rq = list_entry_rq(pos);
1924 			BUG_ON(!rq->q);
1925 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1926 				break;
1927 			depth++;
1928 		}
1929 
1930 		list_cut_before(&rq_list, &list, pos);
1931 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1932 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1933 						from_schedule);
1934 	} while(!list_empty(&list));
1935 }
1936 
1937 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1938 		unsigned int nr_segs)
1939 {
1940 	int err;
1941 
1942 	if (bio->bi_opf & REQ_RAHEAD)
1943 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1944 
1945 	rq->__sector = bio->bi_iter.bi_sector;
1946 	rq->write_hint = bio->bi_write_hint;
1947 	blk_rq_bio_prep(rq, bio, nr_segs);
1948 
1949 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1950 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1951 	WARN_ON_ONCE(err);
1952 
1953 	blk_account_io_start(rq);
1954 }
1955 
1956 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1957 					    struct request *rq,
1958 					    blk_qc_t *cookie, bool last)
1959 {
1960 	struct request_queue *q = rq->q;
1961 	struct blk_mq_queue_data bd = {
1962 		.rq = rq,
1963 		.last = last,
1964 	};
1965 	blk_qc_t new_cookie;
1966 	blk_status_t ret;
1967 
1968 	new_cookie = request_to_qc_t(hctx, rq);
1969 
1970 	/*
1971 	 * For OK queue, we are done. For error, caller may kill it.
1972 	 * Any other error (busy), just add it to our list as we
1973 	 * previously would have done.
1974 	 */
1975 	ret = q->mq_ops->queue_rq(hctx, &bd);
1976 	switch (ret) {
1977 	case BLK_STS_OK:
1978 		blk_mq_update_dispatch_busy(hctx, false);
1979 		*cookie = new_cookie;
1980 		break;
1981 	case BLK_STS_RESOURCE:
1982 	case BLK_STS_DEV_RESOURCE:
1983 		blk_mq_update_dispatch_busy(hctx, true);
1984 		__blk_mq_requeue_request(rq);
1985 		break;
1986 	default:
1987 		blk_mq_update_dispatch_busy(hctx, false);
1988 		*cookie = BLK_QC_T_NONE;
1989 		break;
1990 	}
1991 
1992 	return ret;
1993 }
1994 
1995 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1996 						struct request *rq,
1997 						blk_qc_t *cookie,
1998 						bool bypass_insert, bool last)
1999 {
2000 	struct request_queue *q = rq->q;
2001 	bool run_queue = true;
2002 
2003 	/*
2004 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2005 	 *
2006 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2007 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2008 	 * and avoid driver to try to dispatch again.
2009 	 */
2010 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2011 		run_queue = false;
2012 		bypass_insert = false;
2013 		goto insert;
2014 	}
2015 
2016 	if (q->elevator && !bypass_insert)
2017 		goto insert;
2018 
2019 	if (!blk_mq_get_dispatch_budget(q))
2020 		goto insert;
2021 
2022 	if (!blk_mq_get_driver_tag(rq)) {
2023 		blk_mq_put_dispatch_budget(q);
2024 		goto insert;
2025 	}
2026 
2027 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2028 insert:
2029 	if (bypass_insert)
2030 		return BLK_STS_RESOURCE;
2031 
2032 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2033 
2034 	return BLK_STS_OK;
2035 }
2036 
2037 /**
2038  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2039  * @hctx: Pointer of the associated hardware queue.
2040  * @rq: Pointer to request to be sent.
2041  * @cookie: Request queue cookie.
2042  *
2043  * If the device has enough resources to accept a new request now, send the
2044  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2045  * we can try send it another time in the future. Requests inserted at this
2046  * queue have higher priority.
2047  */
2048 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2049 		struct request *rq, blk_qc_t *cookie)
2050 {
2051 	blk_status_t ret;
2052 	int srcu_idx;
2053 
2054 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2055 
2056 	hctx_lock(hctx, &srcu_idx);
2057 
2058 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2059 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2060 		blk_mq_request_bypass_insert(rq, false, true);
2061 	else if (ret != BLK_STS_OK)
2062 		blk_mq_end_request(rq, ret);
2063 
2064 	hctx_unlock(hctx, srcu_idx);
2065 }
2066 
2067 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2068 {
2069 	blk_status_t ret;
2070 	int srcu_idx;
2071 	blk_qc_t unused_cookie;
2072 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2073 
2074 	hctx_lock(hctx, &srcu_idx);
2075 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2076 	hctx_unlock(hctx, srcu_idx);
2077 
2078 	return ret;
2079 }
2080 
2081 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2082 		struct list_head *list)
2083 {
2084 	int queued = 0;
2085 	int errors = 0;
2086 
2087 	while (!list_empty(list)) {
2088 		blk_status_t ret;
2089 		struct request *rq = list_first_entry(list, struct request,
2090 				queuelist);
2091 
2092 		list_del_init(&rq->queuelist);
2093 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2094 		if (ret != BLK_STS_OK) {
2095 			if (ret == BLK_STS_RESOURCE ||
2096 					ret == BLK_STS_DEV_RESOURCE) {
2097 				blk_mq_request_bypass_insert(rq, false,
2098 							list_empty(list));
2099 				break;
2100 			}
2101 			blk_mq_end_request(rq, ret);
2102 			errors++;
2103 		} else
2104 			queued++;
2105 	}
2106 
2107 	/*
2108 	 * If we didn't flush the entire list, we could have told
2109 	 * the driver there was more coming, but that turned out to
2110 	 * be a lie.
2111 	 */
2112 	if ((!list_empty(list) || errors) &&
2113 	     hctx->queue->mq_ops->commit_rqs && queued)
2114 		hctx->queue->mq_ops->commit_rqs(hctx);
2115 }
2116 
2117 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2118 {
2119 	list_add_tail(&rq->queuelist, &plug->mq_list);
2120 	plug->rq_count++;
2121 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2122 		struct request *tmp;
2123 
2124 		tmp = list_first_entry(&plug->mq_list, struct request,
2125 						queuelist);
2126 		if (tmp->q != rq->q)
2127 			plug->multiple_queues = true;
2128 	}
2129 }
2130 
2131 /**
2132  * blk_mq_submit_bio - Create and send a request to block device.
2133  * @bio: Bio pointer.
2134  *
2135  * Builds up a request structure from @q and @bio and send to the device. The
2136  * request may not be queued directly to hardware if:
2137  * * This request can be merged with another one
2138  * * We want to place request at plug queue for possible future merging
2139  * * There is an IO scheduler active at this queue
2140  *
2141  * It will not queue the request if there is an error with the bio, or at the
2142  * request creation.
2143  *
2144  * Returns: Request queue cookie.
2145  */
2146 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2147 {
2148 	struct request_queue *q = bio->bi_disk->queue;
2149 	const int is_sync = op_is_sync(bio->bi_opf);
2150 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2151 	struct blk_mq_alloc_data data = {
2152 		.q		= q,
2153 	};
2154 	struct request *rq;
2155 	struct blk_plug *plug;
2156 	struct request *same_queue_rq = NULL;
2157 	unsigned int nr_segs;
2158 	blk_qc_t cookie;
2159 	blk_status_t ret;
2160 
2161 	blk_queue_bounce(q, &bio);
2162 	__blk_queue_split(&bio, &nr_segs);
2163 
2164 	if (!bio_integrity_prep(bio))
2165 		goto queue_exit;
2166 
2167 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2168 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2169 		goto queue_exit;
2170 
2171 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2172 		goto queue_exit;
2173 
2174 	rq_qos_throttle(q, bio);
2175 
2176 	data.cmd_flags = bio->bi_opf;
2177 	rq = __blk_mq_alloc_request(&data);
2178 	if (unlikely(!rq)) {
2179 		rq_qos_cleanup(q, bio);
2180 		if (bio->bi_opf & REQ_NOWAIT)
2181 			bio_wouldblock_error(bio);
2182 		goto queue_exit;
2183 	}
2184 
2185 	trace_block_getrq(q, bio, bio->bi_opf);
2186 
2187 	rq_qos_track(q, rq, bio);
2188 
2189 	cookie = request_to_qc_t(data.hctx, rq);
2190 
2191 	blk_mq_bio_to_request(rq, bio, nr_segs);
2192 
2193 	ret = blk_crypto_init_request(rq);
2194 	if (ret != BLK_STS_OK) {
2195 		bio->bi_status = ret;
2196 		bio_endio(bio);
2197 		blk_mq_free_request(rq);
2198 		return BLK_QC_T_NONE;
2199 	}
2200 
2201 	plug = blk_mq_plug(q, bio);
2202 	if (unlikely(is_flush_fua)) {
2203 		/* Bypass scheduler for flush requests */
2204 		blk_insert_flush(rq);
2205 		blk_mq_run_hw_queue(data.hctx, true);
2206 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2207 				!blk_queue_nonrot(q))) {
2208 		/*
2209 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2210 		 * we know the driver uses bd->last in a smart fashion.
2211 		 *
2212 		 * Use normal plugging if this disk is slow HDD, as sequential
2213 		 * IO may benefit a lot from plug merging.
2214 		 */
2215 		unsigned int request_count = plug->rq_count;
2216 		struct request *last = NULL;
2217 
2218 		if (!request_count)
2219 			trace_block_plug(q);
2220 		else
2221 			last = list_entry_rq(plug->mq_list.prev);
2222 
2223 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2224 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2225 			blk_flush_plug_list(plug, false);
2226 			trace_block_plug(q);
2227 		}
2228 
2229 		blk_add_rq_to_plug(plug, rq);
2230 	} else if (q->elevator) {
2231 		/* Insert the request at the IO scheduler queue */
2232 		blk_mq_sched_insert_request(rq, false, true, true);
2233 	} else if (plug && !blk_queue_nomerges(q)) {
2234 		/*
2235 		 * We do limited plugging. If the bio can be merged, do that.
2236 		 * Otherwise the existing request in the plug list will be
2237 		 * issued. So the plug list will have one request at most
2238 		 * The plug list might get flushed before this. If that happens,
2239 		 * the plug list is empty, and same_queue_rq is invalid.
2240 		 */
2241 		if (list_empty(&plug->mq_list))
2242 			same_queue_rq = NULL;
2243 		if (same_queue_rq) {
2244 			list_del_init(&same_queue_rq->queuelist);
2245 			plug->rq_count--;
2246 		}
2247 		blk_add_rq_to_plug(plug, rq);
2248 		trace_block_plug(q);
2249 
2250 		if (same_queue_rq) {
2251 			data.hctx = same_queue_rq->mq_hctx;
2252 			trace_block_unplug(q, 1, true);
2253 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2254 					&cookie);
2255 		}
2256 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2257 			!data.hctx->dispatch_busy) {
2258 		/*
2259 		 * There is no scheduler and we can try to send directly
2260 		 * to the hardware.
2261 		 */
2262 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2263 	} else {
2264 		/* Default case. */
2265 		blk_mq_sched_insert_request(rq, false, true, true);
2266 	}
2267 
2268 	return cookie;
2269 queue_exit:
2270 	blk_queue_exit(q);
2271 	return BLK_QC_T_NONE;
2272 }
2273 
2274 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2275 		     unsigned int hctx_idx)
2276 {
2277 	struct page *page;
2278 
2279 	if (tags->rqs && set->ops->exit_request) {
2280 		int i;
2281 
2282 		for (i = 0; i < tags->nr_tags; i++) {
2283 			struct request *rq = tags->static_rqs[i];
2284 
2285 			if (!rq)
2286 				continue;
2287 			set->ops->exit_request(set, rq, hctx_idx);
2288 			tags->static_rqs[i] = NULL;
2289 		}
2290 	}
2291 
2292 	while (!list_empty(&tags->page_list)) {
2293 		page = list_first_entry(&tags->page_list, struct page, lru);
2294 		list_del_init(&page->lru);
2295 		/*
2296 		 * Remove kmemleak object previously allocated in
2297 		 * blk_mq_alloc_rqs().
2298 		 */
2299 		kmemleak_free(page_address(page));
2300 		__free_pages(page, page->private);
2301 	}
2302 }
2303 
2304 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2305 {
2306 	kfree(tags->rqs);
2307 	tags->rqs = NULL;
2308 	kfree(tags->static_rqs);
2309 	tags->static_rqs = NULL;
2310 
2311 	blk_mq_free_tags(tags, flags);
2312 }
2313 
2314 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2315 					unsigned int hctx_idx,
2316 					unsigned int nr_tags,
2317 					unsigned int reserved_tags,
2318 					unsigned int flags)
2319 {
2320 	struct blk_mq_tags *tags;
2321 	int node;
2322 
2323 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2324 	if (node == NUMA_NO_NODE)
2325 		node = set->numa_node;
2326 
2327 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2328 	if (!tags)
2329 		return NULL;
2330 
2331 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2332 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2333 				 node);
2334 	if (!tags->rqs) {
2335 		blk_mq_free_tags(tags, flags);
2336 		return NULL;
2337 	}
2338 
2339 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2340 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2341 					node);
2342 	if (!tags->static_rqs) {
2343 		kfree(tags->rqs);
2344 		blk_mq_free_tags(tags, flags);
2345 		return NULL;
2346 	}
2347 
2348 	return tags;
2349 }
2350 
2351 static size_t order_to_size(unsigned int order)
2352 {
2353 	return (size_t)PAGE_SIZE << order;
2354 }
2355 
2356 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2357 			       unsigned int hctx_idx, int node)
2358 {
2359 	int ret;
2360 
2361 	if (set->ops->init_request) {
2362 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2363 		if (ret)
2364 			return ret;
2365 	}
2366 
2367 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2368 	return 0;
2369 }
2370 
2371 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2372 		     unsigned int hctx_idx, unsigned int depth)
2373 {
2374 	unsigned int i, j, entries_per_page, max_order = 4;
2375 	size_t rq_size, left;
2376 	int node;
2377 
2378 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2379 	if (node == NUMA_NO_NODE)
2380 		node = set->numa_node;
2381 
2382 	INIT_LIST_HEAD(&tags->page_list);
2383 
2384 	/*
2385 	 * rq_size is the size of the request plus driver payload, rounded
2386 	 * to the cacheline size
2387 	 */
2388 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2389 				cache_line_size());
2390 	left = rq_size * depth;
2391 
2392 	for (i = 0; i < depth; ) {
2393 		int this_order = max_order;
2394 		struct page *page;
2395 		int to_do;
2396 		void *p;
2397 
2398 		while (this_order && left < order_to_size(this_order - 1))
2399 			this_order--;
2400 
2401 		do {
2402 			page = alloc_pages_node(node,
2403 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2404 				this_order);
2405 			if (page)
2406 				break;
2407 			if (!this_order--)
2408 				break;
2409 			if (order_to_size(this_order) < rq_size)
2410 				break;
2411 		} while (1);
2412 
2413 		if (!page)
2414 			goto fail;
2415 
2416 		page->private = this_order;
2417 		list_add_tail(&page->lru, &tags->page_list);
2418 
2419 		p = page_address(page);
2420 		/*
2421 		 * Allow kmemleak to scan these pages as they contain pointers
2422 		 * to additional allocations like via ops->init_request().
2423 		 */
2424 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2425 		entries_per_page = order_to_size(this_order) / rq_size;
2426 		to_do = min(entries_per_page, depth - i);
2427 		left -= to_do * rq_size;
2428 		for (j = 0; j < to_do; j++) {
2429 			struct request *rq = p;
2430 
2431 			tags->static_rqs[i] = rq;
2432 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2433 				tags->static_rqs[i] = NULL;
2434 				goto fail;
2435 			}
2436 
2437 			p += rq_size;
2438 			i++;
2439 		}
2440 	}
2441 	return 0;
2442 
2443 fail:
2444 	blk_mq_free_rqs(set, tags, hctx_idx);
2445 	return -ENOMEM;
2446 }
2447 
2448 struct rq_iter_data {
2449 	struct blk_mq_hw_ctx *hctx;
2450 	bool has_rq;
2451 };
2452 
2453 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2454 {
2455 	struct rq_iter_data *iter_data = data;
2456 
2457 	if (rq->mq_hctx != iter_data->hctx)
2458 		return true;
2459 	iter_data->has_rq = true;
2460 	return false;
2461 }
2462 
2463 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2464 {
2465 	struct blk_mq_tags *tags = hctx->sched_tags ?
2466 			hctx->sched_tags : hctx->tags;
2467 	struct rq_iter_data data = {
2468 		.hctx	= hctx,
2469 	};
2470 
2471 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2472 	return data.has_rq;
2473 }
2474 
2475 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2476 		struct blk_mq_hw_ctx *hctx)
2477 {
2478 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2479 		return false;
2480 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2481 		return false;
2482 	return true;
2483 }
2484 
2485 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2486 {
2487 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2488 			struct blk_mq_hw_ctx, cpuhp_online);
2489 
2490 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2491 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2492 		return 0;
2493 
2494 	/*
2495 	 * Prevent new request from being allocated on the current hctx.
2496 	 *
2497 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2498 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2499 	 * seen once we return from the tag allocator.
2500 	 */
2501 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2502 	smp_mb__after_atomic();
2503 
2504 	/*
2505 	 * Try to grab a reference to the queue and wait for any outstanding
2506 	 * requests.  If we could not grab a reference the queue has been
2507 	 * frozen and there are no requests.
2508 	 */
2509 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2510 		while (blk_mq_hctx_has_requests(hctx))
2511 			msleep(5);
2512 		percpu_ref_put(&hctx->queue->q_usage_counter);
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2519 {
2520 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2521 			struct blk_mq_hw_ctx, cpuhp_online);
2522 
2523 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2524 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2525 	return 0;
2526 }
2527 
2528 /*
2529  * 'cpu' is going away. splice any existing rq_list entries from this
2530  * software queue to the hw queue dispatch list, and ensure that it
2531  * gets run.
2532  */
2533 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2534 {
2535 	struct blk_mq_hw_ctx *hctx;
2536 	struct blk_mq_ctx *ctx;
2537 	LIST_HEAD(tmp);
2538 	enum hctx_type type;
2539 
2540 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2541 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2542 		return 0;
2543 
2544 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2545 	type = hctx->type;
2546 
2547 	spin_lock(&ctx->lock);
2548 	if (!list_empty(&ctx->rq_lists[type])) {
2549 		list_splice_init(&ctx->rq_lists[type], &tmp);
2550 		blk_mq_hctx_clear_pending(hctx, ctx);
2551 	}
2552 	spin_unlock(&ctx->lock);
2553 
2554 	if (list_empty(&tmp))
2555 		return 0;
2556 
2557 	spin_lock(&hctx->lock);
2558 	list_splice_tail_init(&tmp, &hctx->dispatch);
2559 	spin_unlock(&hctx->lock);
2560 
2561 	blk_mq_run_hw_queue(hctx, true);
2562 	return 0;
2563 }
2564 
2565 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2566 {
2567 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2568 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2569 						    &hctx->cpuhp_online);
2570 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2571 					    &hctx->cpuhp_dead);
2572 }
2573 
2574 /* hctx->ctxs will be freed in queue's release handler */
2575 static void blk_mq_exit_hctx(struct request_queue *q,
2576 		struct blk_mq_tag_set *set,
2577 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2578 {
2579 	if (blk_mq_hw_queue_mapped(hctx))
2580 		blk_mq_tag_idle(hctx);
2581 
2582 	if (set->ops->exit_request)
2583 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2584 
2585 	if (set->ops->exit_hctx)
2586 		set->ops->exit_hctx(hctx, hctx_idx);
2587 
2588 	blk_mq_remove_cpuhp(hctx);
2589 
2590 	spin_lock(&q->unused_hctx_lock);
2591 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2592 	spin_unlock(&q->unused_hctx_lock);
2593 }
2594 
2595 static void blk_mq_exit_hw_queues(struct request_queue *q,
2596 		struct blk_mq_tag_set *set, int nr_queue)
2597 {
2598 	struct blk_mq_hw_ctx *hctx;
2599 	unsigned int i;
2600 
2601 	queue_for_each_hw_ctx(q, hctx, i) {
2602 		if (i == nr_queue)
2603 			break;
2604 		blk_mq_debugfs_unregister_hctx(hctx);
2605 		blk_mq_exit_hctx(q, set, hctx, i);
2606 	}
2607 }
2608 
2609 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2610 {
2611 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2612 
2613 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2614 			   __alignof__(struct blk_mq_hw_ctx)) !=
2615 		     sizeof(struct blk_mq_hw_ctx));
2616 
2617 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2618 		hw_ctx_size += sizeof(struct srcu_struct);
2619 
2620 	return hw_ctx_size;
2621 }
2622 
2623 static int blk_mq_init_hctx(struct request_queue *q,
2624 		struct blk_mq_tag_set *set,
2625 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2626 {
2627 	hctx->queue_num = hctx_idx;
2628 
2629 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2630 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2631 				&hctx->cpuhp_online);
2632 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2633 
2634 	hctx->tags = set->tags[hctx_idx];
2635 
2636 	if (set->ops->init_hctx &&
2637 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2638 		goto unregister_cpu_notifier;
2639 
2640 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2641 				hctx->numa_node))
2642 		goto exit_hctx;
2643 	return 0;
2644 
2645  exit_hctx:
2646 	if (set->ops->exit_hctx)
2647 		set->ops->exit_hctx(hctx, hctx_idx);
2648  unregister_cpu_notifier:
2649 	blk_mq_remove_cpuhp(hctx);
2650 	return -1;
2651 }
2652 
2653 static struct blk_mq_hw_ctx *
2654 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2655 		int node)
2656 {
2657 	struct blk_mq_hw_ctx *hctx;
2658 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2659 
2660 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2661 	if (!hctx)
2662 		goto fail_alloc_hctx;
2663 
2664 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2665 		goto free_hctx;
2666 
2667 	atomic_set(&hctx->nr_active, 0);
2668 	atomic_set(&hctx->elevator_queued, 0);
2669 	if (node == NUMA_NO_NODE)
2670 		node = set->numa_node;
2671 	hctx->numa_node = node;
2672 
2673 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2674 	spin_lock_init(&hctx->lock);
2675 	INIT_LIST_HEAD(&hctx->dispatch);
2676 	hctx->queue = q;
2677 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2678 
2679 	INIT_LIST_HEAD(&hctx->hctx_list);
2680 
2681 	/*
2682 	 * Allocate space for all possible cpus to avoid allocation at
2683 	 * runtime
2684 	 */
2685 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2686 			gfp, node);
2687 	if (!hctx->ctxs)
2688 		goto free_cpumask;
2689 
2690 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2691 				gfp, node))
2692 		goto free_ctxs;
2693 	hctx->nr_ctx = 0;
2694 
2695 	spin_lock_init(&hctx->dispatch_wait_lock);
2696 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2697 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2698 
2699 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2700 	if (!hctx->fq)
2701 		goto free_bitmap;
2702 
2703 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2704 		init_srcu_struct(hctx->srcu);
2705 	blk_mq_hctx_kobj_init(hctx);
2706 
2707 	return hctx;
2708 
2709  free_bitmap:
2710 	sbitmap_free(&hctx->ctx_map);
2711  free_ctxs:
2712 	kfree(hctx->ctxs);
2713  free_cpumask:
2714 	free_cpumask_var(hctx->cpumask);
2715  free_hctx:
2716 	kfree(hctx);
2717  fail_alloc_hctx:
2718 	return NULL;
2719 }
2720 
2721 static void blk_mq_init_cpu_queues(struct request_queue *q,
2722 				   unsigned int nr_hw_queues)
2723 {
2724 	struct blk_mq_tag_set *set = q->tag_set;
2725 	unsigned int i, j;
2726 
2727 	for_each_possible_cpu(i) {
2728 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2729 		struct blk_mq_hw_ctx *hctx;
2730 		int k;
2731 
2732 		__ctx->cpu = i;
2733 		spin_lock_init(&__ctx->lock);
2734 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2735 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2736 
2737 		__ctx->queue = q;
2738 
2739 		/*
2740 		 * Set local node, IFF we have more than one hw queue. If
2741 		 * not, we remain on the home node of the device
2742 		 */
2743 		for (j = 0; j < set->nr_maps; j++) {
2744 			hctx = blk_mq_map_queue_type(q, j, i);
2745 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2746 				hctx->numa_node = cpu_to_node(i);
2747 		}
2748 	}
2749 }
2750 
2751 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2752 					int hctx_idx)
2753 {
2754 	unsigned int flags = set->flags;
2755 	int ret = 0;
2756 
2757 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2758 					set->queue_depth, set->reserved_tags, flags);
2759 	if (!set->tags[hctx_idx])
2760 		return false;
2761 
2762 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2763 				set->queue_depth);
2764 	if (!ret)
2765 		return true;
2766 
2767 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2768 	set->tags[hctx_idx] = NULL;
2769 	return false;
2770 }
2771 
2772 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2773 					 unsigned int hctx_idx)
2774 {
2775 	unsigned int flags = set->flags;
2776 
2777 	if (set->tags && set->tags[hctx_idx]) {
2778 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2779 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2780 		set->tags[hctx_idx] = NULL;
2781 	}
2782 }
2783 
2784 static void blk_mq_map_swqueue(struct request_queue *q)
2785 {
2786 	unsigned int i, j, hctx_idx;
2787 	struct blk_mq_hw_ctx *hctx;
2788 	struct blk_mq_ctx *ctx;
2789 	struct blk_mq_tag_set *set = q->tag_set;
2790 
2791 	queue_for_each_hw_ctx(q, hctx, i) {
2792 		cpumask_clear(hctx->cpumask);
2793 		hctx->nr_ctx = 0;
2794 		hctx->dispatch_from = NULL;
2795 	}
2796 
2797 	/*
2798 	 * Map software to hardware queues.
2799 	 *
2800 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2801 	 */
2802 	for_each_possible_cpu(i) {
2803 
2804 		ctx = per_cpu_ptr(q->queue_ctx, i);
2805 		for (j = 0; j < set->nr_maps; j++) {
2806 			if (!set->map[j].nr_queues) {
2807 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2808 						HCTX_TYPE_DEFAULT, i);
2809 				continue;
2810 			}
2811 			hctx_idx = set->map[j].mq_map[i];
2812 			/* unmapped hw queue can be remapped after CPU topo changed */
2813 			if (!set->tags[hctx_idx] &&
2814 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2815 				/*
2816 				 * If tags initialization fail for some hctx,
2817 				 * that hctx won't be brought online.  In this
2818 				 * case, remap the current ctx to hctx[0] which
2819 				 * is guaranteed to always have tags allocated
2820 				 */
2821 				set->map[j].mq_map[i] = 0;
2822 			}
2823 
2824 			hctx = blk_mq_map_queue_type(q, j, i);
2825 			ctx->hctxs[j] = hctx;
2826 			/*
2827 			 * If the CPU is already set in the mask, then we've
2828 			 * mapped this one already. This can happen if
2829 			 * devices share queues across queue maps.
2830 			 */
2831 			if (cpumask_test_cpu(i, hctx->cpumask))
2832 				continue;
2833 
2834 			cpumask_set_cpu(i, hctx->cpumask);
2835 			hctx->type = j;
2836 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2837 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2838 
2839 			/*
2840 			 * If the nr_ctx type overflows, we have exceeded the
2841 			 * amount of sw queues we can support.
2842 			 */
2843 			BUG_ON(!hctx->nr_ctx);
2844 		}
2845 
2846 		for (; j < HCTX_MAX_TYPES; j++)
2847 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2848 					HCTX_TYPE_DEFAULT, i);
2849 	}
2850 
2851 	queue_for_each_hw_ctx(q, hctx, i) {
2852 		/*
2853 		 * If no software queues are mapped to this hardware queue,
2854 		 * disable it and free the request entries.
2855 		 */
2856 		if (!hctx->nr_ctx) {
2857 			/* Never unmap queue 0.  We need it as a
2858 			 * fallback in case of a new remap fails
2859 			 * allocation
2860 			 */
2861 			if (i && set->tags[i])
2862 				blk_mq_free_map_and_requests(set, i);
2863 
2864 			hctx->tags = NULL;
2865 			continue;
2866 		}
2867 
2868 		hctx->tags = set->tags[i];
2869 		WARN_ON(!hctx->tags);
2870 
2871 		/*
2872 		 * Set the map size to the number of mapped software queues.
2873 		 * This is more accurate and more efficient than looping
2874 		 * over all possibly mapped software queues.
2875 		 */
2876 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2877 
2878 		/*
2879 		 * Initialize batch roundrobin counts
2880 		 */
2881 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2882 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2883 	}
2884 }
2885 
2886 /*
2887  * Caller needs to ensure that we're either frozen/quiesced, or that
2888  * the queue isn't live yet.
2889  */
2890 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2891 {
2892 	struct blk_mq_hw_ctx *hctx;
2893 	int i;
2894 
2895 	queue_for_each_hw_ctx(q, hctx, i) {
2896 		if (shared)
2897 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2898 		else
2899 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2900 	}
2901 }
2902 
2903 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2904 					 bool shared)
2905 {
2906 	struct request_queue *q;
2907 
2908 	lockdep_assert_held(&set->tag_list_lock);
2909 
2910 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2911 		blk_mq_freeze_queue(q);
2912 		queue_set_hctx_shared(q, shared);
2913 		blk_mq_unfreeze_queue(q);
2914 	}
2915 }
2916 
2917 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2918 {
2919 	struct blk_mq_tag_set *set = q->tag_set;
2920 
2921 	mutex_lock(&set->tag_list_lock);
2922 	list_del(&q->tag_set_list);
2923 	if (list_is_singular(&set->tag_list)) {
2924 		/* just transitioned to unshared */
2925 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2926 		/* update existing queue */
2927 		blk_mq_update_tag_set_shared(set, false);
2928 	}
2929 	mutex_unlock(&set->tag_list_lock);
2930 	INIT_LIST_HEAD(&q->tag_set_list);
2931 }
2932 
2933 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2934 				     struct request_queue *q)
2935 {
2936 	mutex_lock(&set->tag_list_lock);
2937 
2938 	/*
2939 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2940 	 */
2941 	if (!list_empty(&set->tag_list) &&
2942 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2943 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2944 		/* update existing queue */
2945 		blk_mq_update_tag_set_shared(set, true);
2946 	}
2947 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2948 		queue_set_hctx_shared(q, true);
2949 	list_add_tail(&q->tag_set_list, &set->tag_list);
2950 
2951 	mutex_unlock(&set->tag_list_lock);
2952 }
2953 
2954 /* All allocations will be freed in release handler of q->mq_kobj */
2955 static int blk_mq_alloc_ctxs(struct request_queue *q)
2956 {
2957 	struct blk_mq_ctxs *ctxs;
2958 	int cpu;
2959 
2960 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2961 	if (!ctxs)
2962 		return -ENOMEM;
2963 
2964 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2965 	if (!ctxs->queue_ctx)
2966 		goto fail;
2967 
2968 	for_each_possible_cpu(cpu) {
2969 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2970 		ctx->ctxs = ctxs;
2971 	}
2972 
2973 	q->mq_kobj = &ctxs->kobj;
2974 	q->queue_ctx = ctxs->queue_ctx;
2975 
2976 	return 0;
2977  fail:
2978 	kfree(ctxs);
2979 	return -ENOMEM;
2980 }
2981 
2982 /*
2983  * It is the actual release handler for mq, but we do it from
2984  * request queue's release handler for avoiding use-after-free
2985  * and headache because q->mq_kobj shouldn't have been introduced,
2986  * but we can't group ctx/kctx kobj without it.
2987  */
2988 void blk_mq_release(struct request_queue *q)
2989 {
2990 	struct blk_mq_hw_ctx *hctx, *next;
2991 	int i;
2992 
2993 	queue_for_each_hw_ctx(q, hctx, i)
2994 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2995 
2996 	/* all hctx are in .unused_hctx_list now */
2997 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2998 		list_del_init(&hctx->hctx_list);
2999 		kobject_put(&hctx->kobj);
3000 	}
3001 
3002 	kfree(q->queue_hw_ctx);
3003 
3004 	/*
3005 	 * release .mq_kobj and sw queue's kobject now because
3006 	 * both share lifetime with request queue.
3007 	 */
3008 	blk_mq_sysfs_deinit(q);
3009 }
3010 
3011 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3012 		void *queuedata)
3013 {
3014 	struct request_queue *uninit_q, *q;
3015 
3016 	uninit_q = blk_alloc_queue(set->numa_node);
3017 	if (!uninit_q)
3018 		return ERR_PTR(-ENOMEM);
3019 	uninit_q->queuedata = queuedata;
3020 
3021 	/*
3022 	 * Initialize the queue without an elevator. device_add_disk() will do
3023 	 * the initialization.
3024 	 */
3025 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3026 	if (IS_ERR(q))
3027 		blk_cleanup_queue(uninit_q);
3028 
3029 	return q;
3030 }
3031 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3032 
3033 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3034 {
3035 	return blk_mq_init_queue_data(set, NULL);
3036 }
3037 EXPORT_SYMBOL(blk_mq_init_queue);
3038 
3039 /*
3040  * Helper for setting up a queue with mq ops, given queue depth, and
3041  * the passed in mq ops flags.
3042  */
3043 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3044 					   const struct blk_mq_ops *ops,
3045 					   unsigned int queue_depth,
3046 					   unsigned int set_flags)
3047 {
3048 	struct request_queue *q;
3049 	int ret;
3050 
3051 	memset(set, 0, sizeof(*set));
3052 	set->ops = ops;
3053 	set->nr_hw_queues = 1;
3054 	set->nr_maps = 1;
3055 	set->queue_depth = queue_depth;
3056 	set->numa_node = NUMA_NO_NODE;
3057 	set->flags = set_flags;
3058 
3059 	ret = blk_mq_alloc_tag_set(set);
3060 	if (ret)
3061 		return ERR_PTR(ret);
3062 
3063 	q = blk_mq_init_queue(set);
3064 	if (IS_ERR(q)) {
3065 		blk_mq_free_tag_set(set);
3066 		return q;
3067 	}
3068 
3069 	return q;
3070 }
3071 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3072 
3073 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3074 		struct blk_mq_tag_set *set, struct request_queue *q,
3075 		int hctx_idx, int node)
3076 {
3077 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3078 
3079 	/* reuse dead hctx first */
3080 	spin_lock(&q->unused_hctx_lock);
3081 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3082 		if (tmp->numa_node == node) {
3083 			hctx = tmp;
3084 			break;
3085 		}
3086 	}
3087 	if (hctx)
3088 		list_del_init(&hctx->hctx_list);
3089 	spin_unlock(&q->unused_hctx_lock);
3090 
3091 	if (!hctx)
3092 		hctx = blk_mq_alloc_hctx(q, set, node);
3093 	if (!hctx)
3094 		goto fail;
3095 
3096 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3097 		goto free_hctx;
3098 
3099 	return hctx;
3100 
3101  free_hctx:
3102 	kobject_put(&hctx->kobj);
3103  fail:
3104 	return NULL;
3105 }
3106 
3107 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3108 						struct request_queue *q)
3109 {
3110 	int i, j, end;
3111 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3112 
3113 	if (q->nr_hw_queues < set->nr_hw_queues) {
3114 		struct blk_mq_hw_ctx **new_hctxs;
3115 
3116 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3117 				       sizeof(*new_hctxs), GFP_KERNEL,
3118 				       set->numa_node);
3119 		if (!new_hctxs)
3120 			return;
3121 		if (hctxs)
3122 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3123 			       sizeof(*hctxs));
3124 		q->queue_hw_ctx = new_hctxs;
3125 		kfree(hctxs);
3126 		hctxs = new_hctxs;
3127 	}
3128 
3129 	/* protect against switching io scheduler  */
3130 	mutex_lock(&q->sysfs_lock);
3131 	for (i = 0; i < set->nr_hw_queues; i++) {
3132 		int node;
3133 		struct blk_mq_hw_ctx *hctx;
3134 
3135 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3136 		/*
3137 		 * If the hw queue has been mapped to another numa node,
3138 		 * we need to realloc the hctx. If allocation fails, fallback
3139 		 * to use the previous one.
3140 		 */
3141 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3142 			continue;
3143 
3144 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3145 		if (hctx) {
3146 			if (hctxs[i])
3147 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3148 			hctxs[i] = hctx;
3149 		} else {
3150 			if (hctxs[i])
3151 				pr_warn("Allocate new hctx on node %d fails,\
3152 						fallback to previous one on node %d\n",
3153 						node, hctxs[i]->numa_node);
3154 			else
3155 				break;
3156 		}
3157 	}
3158 	/*
3159 	 * Increasing nr_hw_queues fails. Free the newly allocated
3160 	 * hctxs and keep the previous q->nr_hw_queues.
3161 	 */
3162 	if (i != set->nr_hw_queues) {
3163 		j = q->nr_hw_queues;
3164 		end = i;
3165 	} else {
3166 		j = i;
3167 		end = q->nr_hw_queues;
3168 		q->nr_hw_queues = set->nr_hw_queues;
3169 	}
3170 
3171 	for (; j < end; j++) {
3172 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3173 
3174 		if (hctx) {
3175 			if (hctx->tags)
3176 				blk_mq_free_map_and_requests(set, j);
3177 			blk_mq_exit_hctx(q, set, hctx, j);
3178 			hctxs[j] = NULL;
3179 		}
3180 	}
3181 	mutex_unlock(&q->sysfs_lock);
3182 }
3183 
3184 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3185 						  struct request_queue *q,
3186 						  bool elevator_init)
3187 {
3188 	/* mark the queue as mq asap */
3189 	q->mq_ops = set->ops;
3190 
3191 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3192 					     blk_mq_poll_stats_bkt,
3193 					     BLK_MQ_POLL_STATS_BKTS, q);
3194 	if (!q->poll_cb)
3195 		goto err_exit;
3196 
3197 	if (blk_mq_alloc_ctxs(q))
3198 		goto err_poll;
3199 
3200 	/* init q->mq_kobj and sw queues' kobjects */
3201 	blk_mq_sysfs_init(q);
3202 
3203 	INIT_LIST_HEAD(&q->unused_hctx_list);
3204 	spin_lock_init(&q->unused_hctx_lock);
3205 
3206 	blk_mq_realloc_hw_ctxs(set, q);
3207 	if (!q->nr_hw_queues)
3208 		goto err_hctxs;
3209 
3210 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3211 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3212 
3213 	q->tag_set = set;
3214 
3215 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3216 	if (set->nr_maps > HCTX_TYPE_POLL &&
3217 	    set->map[HCTX_TYPE_POLL].nr_queues)
3218 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3219 
3220 	q->sg_reserved_size = INT_MAX;
3221 
3222 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3223 	INIT_LIST_HEAD(&q->requeue_list);
3224 	spin_lock_init(&q->requeue_lock);
3225 
3226 	q->nr_requests = set->queue_depth;
3227 
3228 	/*
3229 	 * Default to classic polling
3230 	 */
3231 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3232 
3233 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3234 	blk_mq_add_queue_tag_set(set, q);
3235 	blk_mq_map_swqueue(q);
3236 
3237 	if (elevator_init)
3238 		elevator_init_mq(q);
3239 
3240 	return q;
3241 
3242 err_hctxs:
3243 	kfree(q->queue_hw_ctx);
3244 	q->nr_hw_queues = 0;
3245 	blk_mq_sysfs_deinit(q);
3246 err_poll:
3247 	blk_stat_free_callback(q->poll_cb);
3248 	q->poll_cb = NULL;
3249 err_exit:
3250 	q->mq_ops = NULL;
3251 	return ERR_PTR(-ENOMEM);
3252 }
3253 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3254 
3255 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3256 void blk_mq_exit_queue(struct request_queue *q)
3257 {
3258 	struct blk_mq_tag_set	*set = q->tag_set;
3259 
3260 	blk_mq_del_queue_tag_set(q);
3261 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3262 }
3263 
3264 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3265 {
3266 	int i;
3267 
3268 	for (i = 0; i < set->nr_hw_queues; i++) {
3269 		if (!__blk_mq_alloc_map_and_request(set, i))
3270 			goto out_unwind;
3271 		cond_resched();
3272 	}
3273 
3274 	return 0;
3275 
3276 out_unwind:
3277 	while (--i >= 0)
3278 		blk_mq_free_map_and_requests(set, i);
3279 
3280 	return -ENOMEM;
3281 }
3282 
3283 /*
3284  * Allocate the request maps associated with this tag_set. Note that this
3285  * may reduce the depth asked for, if memory is tight. set->queue_depth
3286  * will be updated to reflect the allocated depth.
3287  */
3288 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3289 {
3290 	unsigned int depth;
3291 	int err;
3292 
3293 	depth = set->queue_depth;
3294 	do {
3295 		err = __blk_mq_alloc_rq_maps(set);
3296 		if (!err)
3297 			break;
3298 
3299 		set->queue_depth >>= 1;
3300 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3301 			err = -ENOMEM;
3302 			break;
3303 		}
3304 	} while (set->queue_depth);
3305 
3306 	if (!set->queue_depth || err) {
3307 		pr_err("blk-mq: failed to allocate request map\n");
3308 		return -ENOMEM;
3309 	}
3310 
3311 	if (depth != set->queue_depth)
3312 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3313 						depth, set->queue_depth);
3314 
3315 	return 0;
3316 }
3317 
3318 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3319 {
3320 	/*
3321 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3322 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3323 	 * number of hardware queues.
3324 	 */
3325 	if (set->nr_maps == 1)
3326 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3327 
3328 	if (set->ops->map_queues && !is_kdump_kernel()) {
3329 		int i;
3330 
3331 		/*
3332 		 * transport .map_queues is usually done in the following
3333 		 * way:
3334 		 *
3335 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3336 		 * 	mask = get_cpu_mask(queue)
3337 		 * 	for_each_cpu(cpu, mask)
3338 		 * 		set->map[x].mq_map[cpu] = queue;
3339 		 * }
3340 		 *
3341 		 * When we need to remap, the table has to be cleared for
3342 		 * killing stale mapping since one CPU may not be mapped
3343 		 * to any hw queue.
3344 		 */
3345 		for (i = 0; i < set->nr_maps; i++)
3346 			blk_mq_clear_mq_map(&set->map[i]);
3347 
3348 		return set->ops->map_queues(set);
3349 	} else {
3350 		BUG_ON(set->nr_maps > 1);
3351 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3352 	}
3353 }
3354 
3355 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3356 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3357 {
3358 	struct blk_mq_tags **new_tags;
3359 
3360 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3361 		return 0;
3362 
3363 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3364 				GFP_KERNEL, set->numa_node);
3365 	if (!new_tags)
3366 		return -ENOMEM;
3367 
3368 	if (set->tags)
3369 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3370 		       sizeof(*set->tags));
3371 	kfree(set->tags);
3372 	set->tags = new_tags;
3373 	set->nr_hw_queues = new_nr_hw_queues;
3374 
3375 	return 0;
3376 }
3377 
3378 /*
3379  * Alloc a tag set to be associated with one or more request queues.
3380  * May fail with EINVAL for various error conditions. May adjust the
3381  * requested depth down, if it's too large. In that case, the set
3382  * value will be stored in set->queue_depth.
3383  */
3384 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3385 {
3386 	int i, ret;
3387 
3388 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3389 
3390 	if (!set->nr_hw_queues)
3391 		return -EINVAL;
3392 	if (!set->queue_depth)
3393 		return -EINVAL;
3394 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3395 		return -EINVAL;
3396 
3397 	if (!set->ops->queue_rq)
3398 		return -EINVAL;
3399 
3400 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3401 		return -EINVAL;
3402 
3403 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3404 		pr_info("blk-mq: reduced tag depth to %u\n",
3405 			BLK_MQ_MAX_DEPTH);
3406 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3407 	}
3408 
3409 	if (!set->nr_maps)
3410 		set->nr_maps = 1;
3411 	else if (set->nr_maps > HCTX_MAX_TYPES)
3412 		return -EINVAL;
3413 
3414 	/*
3415 	 * If a crashdump is active, then we are potentially in a very
3416 	 * memory constrained environment. Limit us to 1 queue and
3417 	 * 64 tags to prevent using too much memory.
3418 	 */
3419 	if (is_kdump_kernel()) {
3420 		set->nr_hw_queues = 1;
3421 		set->nr_maps = 1;
3422 		set->queue_depth = min(64U, set->queue_depth);
3423 	}
3424 	/*
3425 	 * There is no use for more h/w queues than cpus if we just have
3426 	 * a single map
3427 	 */
3428 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3429 		set->nr_hw_queues = nr_cpu_ids;
3430 
3431 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3432 		return -ENOMEM;
3433 
3434 	ret = -ENOMEM;
3435 	for (i = 0; i < set->nr_maps; i++) {
3436 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3437 						  sizeof(set->map[i].mq_map[0]),
3438 						  GFP_KERNEL, set->numa_node);
3439 		if (!set->map[i].mq_map)
3440 			goto out_free_mq_map;
3441 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3442 	}
3443 
3444 	ret = blk_mq_update_queue_map(set);
3445 	if (ret)
3446 		goto out_free_mq_map;
3447 
3448 	ret = blk_mq_alloc_map_and_requests(set);
3449 	if (ret)
3450 		goto out_free_mq_map;
3451 
3452 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3453 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3454 
3455 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3456 			ret = -ENOMEM;
3457 			goto out_free_mq_rq_maps;
3458 		}
3459 	}
3460 
3461 	mutex_init(&set->tag_list_lock);
3462 	INIT_LIST_HEAD(&set->tag_list);
3463 
3464 	return 0;
3465 
3466 out_free_mq_rq_maps:
3467 	for (i = 0; i < set->nr_hw_queues; i++)
3468 		blk_mq_free_map_and_requests(set, i);
3469 out_free_mq_map:
3470 	for (i = 0; i < set->nr_maps; i++) {
3471 		kfree(set->map[i].mq_map);
3472 		set->map[i].mq_map = NULL;
3473 	}
3474 	kfree(set->tags);
3475 	set->tags = NULL;
3476 	return ret;
3477 }
3478 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3479 
3480 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3481 {
3482 	int i, j;
3483 
3484 	for (i = 0; i < set->nr_hw_queues; i++)
3485 		blk_mq_free_map_and_requests(set, i);
3486 
3487 	if (blk_mq_is_sbitmap_shared(set->flags))
3488 		blk_mq_exit_shared_sbitmap(set);
3489 
3490 	for (j = 0; j < set->nr_maps; j++) {
3491 		kfree(set->map[j].mq_map);
3492 		set->map[j].mq_map = NULL;
3493 	}
3494 
3495 	kfree(set->tags);
3496 	set->tags = NULL;
3497 }
3498 EXPORT_SYMBOL(blk_mq_free_tag_set);
3499 
3500 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3501 {
3502 	struct blk_mq_tag_set *set = q->tag_set;
3503 	struct blk_mq_hw_ctx *hctx;
3504 	int i, ret;
3505 
3506 	if (!set)
3507 		return -EINVAL;
3508 
3509 	if (q->nr_requests == nr)
3510 		return 0;
3511 
3512 	blk_mq_freeze_queue(q);
3513 	blk_mq_quiesce_queue(q);
3514 
3515 	ret = 0;
3516 	queue_for_each_hw_ctx(q, hctx, i) {
3517 		if (!hctx->tags)
3518 			continue;
3519 		/*
3520 		 * If we're using an MQ scheduler, just update the scheduler
3521 		 * queue depth. This is similar to what the old code would do.
3522 		 */
3523 		if (!hctx->sched_tags) {
3524 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3525 							false);
3526 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3527 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3528 		} else {
3529 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3530 							nr, true);
3531 		}
3532 		if (ret)
3533 			break;
3534 		if (q->elevator && q->elevator->type->ops.depth_updated)
3535 			q->elevator->type->ops.depth_updated(hctx);
3536 	}
3537 
3538 	if (!ret)
3539 		q->nr_requests = nr;
3540 
3541 	blk_mq_unquiesce_queue(q);
3542 	blk_mq_unfreeze_queue(q);
3543 
3544 	return ret;
3545 }
3546 
3547 /*
3548  * request_queue and elevator_type pair.
3549  * It is just used by __blk_mq_update_nr_hw_queues to cache
3550  * the elevator_type associated with a request_queue.
3551  */
3552 struct blk_mq_qe_pair {
3553 	struct list_head node;
3554 	struct request_queue *q;
3555 	struct elevator_type *type;
3556 };
3557 
3558 /*
3559  * Cache the elevator_type in qe pair list and switch the
3560  * io scheduler to 'none'
3561  */
3562 static bool blk_mq_elv_switch_none(struct list_head *head,
3563 		struct request_queue *q)
3564 {
3565 	struct blk_mq_qe_pair *qe;
3566 
3567 	if (!q->elevator)
3568 		return true;
3569 
3570 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3571 	if (!qe)
3572 		return false;
3573 
3574 	INIT_LIST_HEAD(&qe->node);
3575 	qe->q = q;
3576 	qe->type = q->elevator->type;
3577 	list_add(&qe->node, head);
3578 
3579 	mutex_lock(&q->sysfs_lock);
3580 	/*
3581 	 * After elevator_switch_mq, the previous elevator_queue will be
3582 	 * released by elevator_release. The reference of the io scheduler
3583 	 * module get by elevator_get will also be put. So we need to get
3584 	 * a reference of the io scheduler module here to prevent it to be
3585 	 * removed.
3586 	 */
3587 	__module_get(qe->type->elevator_owner);
3588 	elevator_switch_mq(q, NULL);
3589 	mutex_unlock(&q->sysfs_lock);
3590 
3591 	return true;
3592 }
3593 
3594 static void blk_mq_elv_switch_back(struct list_head *head,
3595 		struct request_queue *q)
3596 {
3597 	struct blk_mq_qe_pair *qe;
3598 	struct elevator_type *t = NULL;
3599 
3600 	list_for_each_entry(qe, head, node)
3601 		if (qe->q == q) {
3602 			t = qe->type;
3603 			break;
3604 		}
3605 
3606 	if (!t)
3607 		return;
3608 
3609 	list_del(&qe->node);
3610 	kfree(qe);
3611 
3612 	mutex_lock(&q->sysfs_lock);
3613 	elevator_switch_mq(q, t);
3614 	mutex_unlock(&q->sysfs_lock);
3615 }
3616 
3617 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3618 							int nr_hw_queues)
3619 {
3620 	struct request_queue *q;
3621 	LIST_HEAD(head);
3622 	int prev_nr_hw_queues;
3623 
3624 	lockdep_assert_held(&set->tag_list_lock);
3625 
3626 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3627 		nr_hw_queues = nr_cpu_ids;
3628 	if (nr_hw_queues < 1)
3629 		return;
3630 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3631 		return;
3632 
3633 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3634 		blk_mq_freeze_queue(q);
3635 	/*
3636 	 * Switch IO scheduler to 'none', cleaning up the data associated
3637 	 * with the previous scheduler. We will switch back once we are done
3638 	 * updating the new sw to hw queue mappings.
3639 	 */
3640 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3641 		if (!blk_mq_elv_switch_none(&head, q))
3642 			goto switch_back;
3643 
3644 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3645 		blk_mq_debugfs_unregister_hctxs(q);
3646 		blk_mq_sysfs_unregister(q);
3647 	}
3648 
3649 	prev_nr_hw_queues = set->nr_hw_queues;
3650 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3651 	    0)
3652 		goto reregister;
3653 
3654 	set->nr_hw_queues = nr_hw_queues;
3655 fallback:
3656 	blk_mq_update_queue_map(set);
3657 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3658 		blk_mq_realloc_hw_ctxs(set, q);
3659 		if (q->nr_hw_queues != set->nr_hw_queues) {
3660 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3661 					nr_hw_queues, prev_nr_hw_queues);
3662 			set->nr_hw_queues = prev_nr_hw_queues;
3663 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3664 			goto fallback;
3665 		}
3666 		blk_mq_map_swqueue(q);
3667 	}
3668 
3669 reregister:
3670 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3671 		blk_mq_sysfs_register(q);
3672 		blk_mq_debugfs_register_hctxs(q);
3673 	}
3674 
3675 switch_back:
3676 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3677 		blk_mq_elv_switch_back(&head, q);
3678 
3679 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3680 		blk_mq_unfreeze_queue(q);
3681 }
3682 
3683 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3684 {
3685 	mutex_lock(&set->tag_list_lock);
3686 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3687 	mutex_unlock(&set->tag_list_lock);
3688 }
3689 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3690 
3691 /* Enable polling stats and return whether they were already enabled. */
3692 static bool blk_poll_stats_enable(struct request_queue *q)
3693 {
3694 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3695 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3696 		return true;
3697 	blk_stat_add_callback(q, q->poll_cb);
3698 	return false;
3699 }
3700 
3701 static void blk_mq_poll_stats_start(struct request_queue *q)
3702 {
3703 	/*
3704 	 * We don't arm the callback if polling stats are not enabled or the
3705 	 * callback is already active.
3706 	 */
3707 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3708 	    blk_stat_is_active(q->poll_cb))
3709 		return;
3710 
3711 	blk_stat_activate_msecs(q->poll_cb, 100);
3712 }
3713 
3714 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3715 {
3716 	struct request_queue *q = cb->data;
3717 	int bucket;
3718 
3719 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3720 		if (cb->stat[bucket].nr_samples)
3721 			q->poll_stat[bucket] = cb->stat[bucket];
3722 	}
3723 }
3724 
3725 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3726 				       struct request *rq)
3727 {
3728 	unsigned long ret = 0;
3729 	int bucket;
3730 
3731 	/*
3732 	 * If stats collection isn't on, don't sleep but turn it on for
3733 	 * future users
3734 	 */
3735 	if (!blk_poll_stats_enable(q))
3736 		return 0;
3737 
3738 	/*
3739 	 * As an optimistic guess, use half of the mean service time
3740 	 * for this type of request. We can (and should) make this smarter.
3741 	 * For instance, if the completion latencies are tight, we can
3742 	 * get closer than just half the mean. This is especially
3743 	 * important on devices where the completion latencies are longer
3744 	 * than ~10 usec. We do use the stats for the relevant IO size
3745 	 * if available which does lead to better estimates.
3746 	 */
3747 	bucket = blk_mq_poll_stats_bkt(rq);
3748 	if (bucket < 0)
3749 		return ret;
3750 
3751 	if (q->poll_stat[bucket].nr_samples)
3752 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3753 
3754 	return ret;
3755 }
3756 
3757 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3758 				     struct request *rq)
3759 {
3760 	struct hrtimer_sleeper hs;
3761 	enum hrtimer_mode mode;
3762 	unsigned int nsecs;
3763 	ktime_t kt;
3764 
3765 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3766 		return false;
3767 
3768 	/*
3769 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3770 	 *
3771 	 *  0:	use half of prev avg
3772 	 * >0:	use this specific value
3773 	 */
3774 	if (q->poll_nsec > 0)
3775 		nsecs = q->poll_nsec;
3776 	else
3777 		nsecs = blk_mq_poll_nsecs(q, rq);
3778 
3779 	if (!nsecs)
3780 		return false;
3781 
3782 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3783 
3784 	/*
3785 	 * This will be replaced with the stats tracking code, using
3786 	 * 'avg_completion_time / 2' as the pre-sleep target.
3787 	 */
3788 	kt = nsecs;
3789 
3790 	mode = HRTIMER_MODE_REL;
3791 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3792 	hrtimer_set_expires(&hs.timer, kt);
3793 
3794 	do {
3795 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3796 			break;
3797 		set_current_state(TASK_UNINTERRUPTIBLE);
3798 		hrtimer_sleeper_start_expires(&hs, mode);
3799 		if (hs.task)
3800 			io_schedule();
3801 		hrtimer_cancel(&hs.timer);
3802 		mode = HRTIMER_MODE_ABS;
3803 	} while (hs.task && !signal_pending(current));
3804 
3805 	__set_current_state(TASK_RUNNING);
3806 	destroy_hrtimer_on_stack(&hs.timer);
3807 	return true;
3808 }
3809 
3810 static bool blk_mq_poll_hybrid(struct request_queue *q,
3811 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3812 {
3813 	struct request *rq;
3814 
3815 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3816 		return false;
3817 
3818 	if (!blk_qc_t_is_internal(cookie))
3819 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3820 	else {
3821 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3822 		/*
3823 		 * With scheduling, if the request has completed, we'll
3824 		 * get a NULL return here, as we clear the sched tag when
3825 		 * that happens. The request still remains valid, like always,
3826 		 * so we should be safe with just the NULL check.
3827 		 */
3828 		if (!rq)
3829 			return false;
3830 	}
3831 
3832 	return blk_mq_poll_hybrid_sleep(q, rq);
3833 }
3834 
3835 /**
3836  * blk_poll - poll for IO completions
3837  * @q:  the queue
3838  * @cookie: cookie passed back at IO submission time
3839  * @spin: whether to spin for completions
3840  *
3841  * Description:
3842  *    Poll for completions on the passed in queue. Returns number of
3843  *    completed entries found. If @spin is true, then blk_poll will continue
3844  *    looping until at least one completion is found, unless the task is
3845  *    otherwise marked running (or we need to reschedule).
3846  */
3847 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3848 {
3849 	struct blk_mq_hw_ctx *hctx;
3850 	long state;
3851 
3852 	if (!blk_qc_t_valid(cookie) ||
3853 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3854 		return 0;
3855 
3856 	if (current->plug)
3857 		blk_flush_plug_list(current->plug, false);
3858 
3859 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3860 
3861 	/*
3862 	 * If we sleep, have the caller restart the poll loop to reset
3863 	 * the state. Like for the other success return cases, the
3864 	 * caller is responsible for checking if the IO completed. If
3865 	 * the IO isn't complete, we'll get called again and will go
3866 	 * straight to the busy poll loop.
3867 	 */
3868 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3869 		return 1;
3870 
3871 	hctx->poll_considered++;
3872 
3873 	state = current->state;
3874 	do {
3875 		int ret;
3876 
3877 		hctx->poll_invoked++;
3878 
3879 		ret = q->mq_ops->poll(hctx);
3880 		if (ret > 0) {
3881 			hctx->poll_success++;
3882 			__set_current_state(TASK_RUNNING);
3883 			return ret;
3884 		}
3885 
3886 		if (signal_pending_state(state, current))
3887 			__set_current_state(TASK_RUNNING);
3888 
3889 		if (current->state == TASK_RUNNING)
3890 			return 1;
3891 		if (ret < 0 || !spin)
3892 			break;
3893 		cpu_relax();
3894 	} while (!need_resched());
3895 
3896 	__set_current_state(TASK_RUNNING);
3897 	return 0;
3898 }
3899 EXPORT_SYMBOL_GPL(blk_poll);
3900 
3901 unsigned int blk_mq_rq_cpu(struct request *rq)
3902 {
3903 	return rq->mq_ctx->cpu;
3904 }
3905 EXPORT_SYMBOL(blk_mq_rq_cpu);
3906 
3907 static int __init blk_mq_init(void)
3908 {
3909 	int i;
3910 
3911 	for_each_possible_cpu(i)
3912 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3913 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3914 
3915 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3916 				  "block/softirq:dead", NULL,
3917 				  blk_softirq_cpu_dead);
3918 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3919 				blk_mq_hctx_notify_dead);
3920 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3921 				blk_mq_hctx_notify_online,
3922 				blk_mq_hctx_notify_offline);
3923 	return 0;
3924 }
3925 subsys_initcall(blk_mq_init);
3926