1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-tag.h" 35 #include "blk-stat.h" 36 #include "blk-wbt.h" 37 #include "blk-mq-sched.h" 38 39 static DEFINE_MUTEX(all_q_mutex); 40 static LIST_HEAD(all_q_list); 41 42 /* 43 * Check if any of the ctx's have pending work in this hardware queue 44 */ 45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 46 { 47 return sbitmap_any_bit_set(&hctx->ctx_map) || 48 !list_empty_careful(&hctx->dispatch) || 49 blk_mq_sched_has_work(hctx); 50 } 51 52 /* 53 * Mark this ctx as having pending work in this hardware queue 54 */ 55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 56 struct blk_mq_ctx *ctx) 57 { 58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 60 } 61 62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 63 struct blk_mq_ctx *ctx) 64 { 65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 66 } 67 68 void blk_mq_freeze_queue_start(struct request_queue *q) 69 { 70 int freeze_depth; 71 72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 73 if (freeze_depth == 1) { 74 percpu_ref_kill(&q->q_usage_counter); 75 blk_mq_run_hw_queues(q, false); 76 } 77 } 78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 79 80 void blk_mq_freeze_queue_wait(struct request_queue *q) 81 { 82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 83 } 84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 85 86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 87 unsigned long timeout) 88 { 89 return wait_event_timeout(q->mq_freeze_wq, 90 percpu_ref_is_zero(&q->q_usage_counter), 91 timeout); 92 } 93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 94 95 /* 96 * Guarantee no request is in use, so we can change any data structure of 97 * the queue afterward. 98 */ 99 void blk_freeze_queue(struct request_queue *q) 100 { 101 /* 102 * In the !blk_mq case we are only calling this to kill the 103 * q_usage_counter, otherwise this increases the freeze depth 104 * and waits for it to return to zero. For this reason there is 105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 106 * exported to drivers as the only user for unfreeze is blk_mq. 107 */ 108 blk_mq_freeze_queue_start(q); 109 blk_mq_freeze_queue_wait(q); 110 } 111 112 void blk_mq_freeze_queue(struct request_queue *q) 113 { 114 /* 115 * ...just an alias to keep freeze and unfreeze actions balanced 116 * in the blk_mq_* namespace 117 */ 118 blk_freeze_queue(q); 119 } 120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 121 122 void blk_mq_unfreeze_queue(struct request_queue *q) 123 { 124 int freeze_depth; 125 126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 127 WARN_ON_ONCE(freeze_depth < 0); 128 if (!freeze_depth) { 129 percpu_ref_reinit(&q->q_usage_counter); 130 wake_up_all(&q->mq_freeze_wq); 131 } 132 } 133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 134 135 /** 136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 137 * @q: request queue. 138 * 139 * Note: this function does not prevent that the struct request end_io() 140 * callback function is invoked. Additionally, it is not prevented that 141 * new queue_rq() calls occur unless the queue has been stopped first. 142 */ 143 void blk_mq_quiesce_queue(struct request_queue *q) 144 { 145 struct blk_mq_hw_ctx *hctx; 146 unsigned int i; 147 bool rcu = false; 148 149 blk_mq_stop_hw_queues(q); 150 151 queue_for_each_hw_ctx(q, hctx, i) { 152 if (hctx->flags & BLK_MQ_F_BLOCKING) 153 synchronize_srcu(&hctx->queue_rq_srcu); 154 else 155 rcu = true; 156 } 157 if (rcu) 158 synchronize_rcu(); 159 } 160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 161 162 void blk_mq_wake_waiters(struct request_queue *q) 163 { 164 struct blk_mq_hw_ctx *hctx; 165 unsigned int i; 166 167 queue_for_each_hw_ctx(q, hctx, i) 168 if (blk_mq_hw_queue_mapped(hctx)) 169 blk_mq_tag_wakeup_all(hctx->tags, true); 170 171 /* 172 * If we are called because the queue has now been marked as 173 * dying, we need to ensure that processes currently waiting on 174 * the queue are notified as well. 175 */ 176 wake_up_all(&q->mq_freeze_wq); 177 } 178 179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 180 { 181 return blk_mq_has_free_tags(hctx->tags); 182 } 183 EXPORT_SYMBOL(blk_mq_can_queue); 184 185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 186 struct request *rq, unsigned int op) 187 { 188 INIT_LIST_HEAD(&rq->queuelist); 189 /* csd/requeue_work/fifo_time is initialized before use */ 190 rq->q = q; 191 rq->mq_ctx = ctx; 192 rq->cmd_flags = op; 193 if (blk_queue_io_stat(q)) 194 rq->rq_flags |= RQF_IO_STAT; 195 /* do not touch atomic flags, it needs atomic ops against the timer */ 196 rq->cpu = -1; 197 INIT_HLIST_NODE(&rq->hash); 198 RB_CLEAR_NODE(&rq->rb_node); 199 rq->rq_disk = NULL; 200 rq->part = NULL; 201 rq->start_time = jiffies; 202 #ifdef CONFIG_BLK_CGROUP 203 rq->rl = NULL; 204 set_start_time_ns(rq); 205 rq->io_start_time_ns = 0; 206 #endif 207 rq->nr_phys_segments = 0; 208 #if defined(CONFIG_BLK_DEV_INTEGRITY) 209 rq->nr_integrity_segments = 0; 210 #endif 211 rq->special = NULL; 212 /* tag was already set */ 213 rq->errors = 0; 214 rq->extra_len = 0; 215 216 INIT_LIST_HEAD(&rq->timeout_list); 217 rq->timeout = 0; 218 219 rq->end_io = NULL; 220 rq->end_io_data = NULL; 221 rq->next_rq = NULL; 222 223 ctx->rq_dispatched[op_is_sync(op)]++; 224 } 225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init); 226 227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data, 228 unsigned int op) 229 { 230 struct request *rq; 231 unsigned int tag; 232 233 tag = blk_mq_get_tag(data); 234 if (tag != BLK_MQ_TAG_FAIL) { 235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 236 237 rq = tags->static_rqs[tag]; 238 239 if (data->flags & BLK_MQ_REQ_INTERNAL) { 240 rq->tag = -1; 241 rq->internal_tag = tag; 242 } else { 243 if (blk_mq_tag_busy(data->hctx)) { 244 rq->rq_flags = RQF_MQ_INFLIGHT; 245 atomic_inc(&data->hctx->nr_active); 246 } 247 rq->tag = tag; 248 rq->internal_tag = -1; 249 data->hctx->tags->rqs[rq->tag] = rq; 250 } 251 252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 253 return rq; 254 } 255 256 return NULL; 257 } 258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request); 259 260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 261 unsigned int flags) 262 { 263 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 264 struct request *rq; 265 int ret; 266 267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 268 if (ret) 269 return ERR_PTR(ret); 270 271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 272 273 blk_mq_put_ctx(alloc_data.ctx); 274 blk_queue_exit(q); 275 276 if (!rq) 277 return ERR_PTR(-EWOULDBLOCK); 278 279 rq->__data_len = 0; 280 rq->__sector = (sector_t) -1; 281 rq->bio = rq->biotail = NULL; 282 return rq; 283 } 284 EXPORT_SYMBOL(blk_mq_alloc_request); 285 286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 287 unsigned int flags, unsigned int hctx_idx) 288 { 289 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 290 struct request *rq; 291 unsigned int cpu; 292 int ret; 293 294 /* 295 * If the tag allocator sleeps we could get an allocation for a 296 * different hardware context. No need to complicate the low level 297 * allocator for this for the rare use case of a command tied to 298 * a specific queue. 299 */ 300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 301 return ERR_PTR(-EINVAL); 302 303 if (hctx_idx >= q->nr_hw_queues) 304 return ERR_PTR(-EIO); 305 306 ret = blk_queue_enter(q, true); 307 if (ret) 308 return ERR_PTR(ret); 309 310 /* 311 * Check if the hardware context is actually mapped to anything. 312 * If not tell the caller that it should skip this queue. 313 */ 314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 316 blk_queue_exit(q); 317 return ERR_PTR(-EXDEV); 318 } 319 cpu = cpumask_first(alloc_data.hctx->cpumask); 320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 321 322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 323 324 blk_mq_put_ctx(alloc_data.ctx); 325 blk_queue_exit(q); 326 327 if (!rq) 328 return ERR_PTR(-EWOULDBLOCK); 329 330 return rq; 331 } 332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 333 334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 335 struct request *rq) 336 { 337 const int sched_tag = rq->internal_tag; 338 struct request_queue *q = rq->q; 339 340 if (rq->rq_flags & RQF_MQ_INFLIGHT) 341 atomic_dec(&hctx->nr_active); 342 343 wbt_done(q->rq_wb, &rq->issue_stat); 344 rq->rq_flags = 0; 345 346 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 347 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 348 if (rq->tag != -1) 349 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 350 if (sched_tag != -1) 351 blk_mq_sched_completed_request(hctx, rq); 352 blk_mq_sched_restart_queues(hctx); 353 blk_queue_exit(q); 354 } 355 356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx, 357 struct request *rq) 358 { 359 struct blk_mq_ctx *ctx = rq->mq_ctx; 360 361 ctx->rq_completed[rq_is_sync(rq)]++; 362 __blk_mq_finish_request(hctx, ctx, rq); 363 } 364 365 void blk_mq_finish_request(struct request *rq) 366 { 367 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 368 } 369 370 void blk_mq_free_request(struct request *rq) 371 { 372 blk_mq_sched_put_request(rq); 373 } 374 EXPORT_SYMBOL_GPL(blk_mq_free_request); 375 376 inline void __blk_mq_end_request(struct request *rq, int error) 377 { 378 blk_account_io_done(rq); 379 380 if (rq->end_io) { 381 wbt_done(rq->q->rq_wb, &rq->issue_stat); 382 rq->end_io(rq, error); 383 } else { 384 if (unlikely(blk_bidi_rq(rq))) 385 blk_mq_free_request(rq->next_rq); 386 blk_mq_free_request(rq); 387 } 388 } 389 EXPORT_SYMBOL(__blk_mq_end_request); 390 391 void blk_mq_end_request(struct request *rq, int error) 392 { 393 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 394 BUG(); 395 __blk_mq_end_request(rq, error); 396 } 397 EXPORT_SYMBOL(blk_mq_end_request); 398 399 static void __blk_mq_complete_request_remote(void *data) 400 { 401 struct request *rq = data; 402 403 rq->q->softirq_done_fn(rq); 404 } 405 406 static void blk_mq_ipi_complete_request(struct request *rq) 407 { 408 struct blk_mq_ctx *ctx = rq->mq_ctx; 409 bool shared = false; 410 int cpu; 411 412 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 413 rq->q->softirq_done_fn(rq); 414 return; 415 } 416 417 cpu = get_cpu(); 418 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 419 shared = cpus_share_cache(cpu, ctx->cpu); 420 421 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 422 rq->csd.func = __blk_mq_complete_request_remote; 423 rq->csd.info = rq; 424 rq->csd.flags = 0; 425 smp_call_function_single_async(ctx->cpu, &rq->csd); 426 } else { 427 rq->q->softirq_done_fn(rq); 428 } 429 put_cpu(); 430 } 431 432 static void blk_mq_stat_add(struct request *rq) 433 { 434 if (rq->rq_flags & RQF_STATS) { 435 /* 436 * We could rq->mq_ctx here, but there's less of a risk 437 * of races if we have the completion event add the stats 438 * to the local software queue. 439 */ 440 struct blk_mq_ctx *ctx; 441 442 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); 443 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); 444 } 445 } 446 447 static void __blk_mq_complete_request(struct request *rq) 448 { 449 struct request_queue *q = rq->q; 450 451 blk_mq_stat_add(rq); 452 453 if (!q->softirq_done_fn) 454 blk_mq_end_request(rq, rq->errors); 455 else 456 blk_mq_ipi_complete_request(rq); 457 } 458 459 /** 460 * blk_mq_complete_request - end I/O on a request 461 * @rq: the request being processed 462 * 463 * Description: 464 * Ends all I/O on a request. It does not handle partial completions. 465 * The actual completion happens out-of-order, through a IPI handler. 466 **/ 467 void blk_mq_complete_request(struct request *rq, int error) 468 { 469 struct request_queue *q = rq->q; 470 471 if (unlikely(blk_should_fake_timeout(q))) 472 return; 473 if (!blk_mark_rq_complete(rq)) { 474 rq->errors = error; 475 __blk_mq_complete_request(rq); 476 } 477 } 478 EXPORT_SYMBOL(blk_mq_complete_request); 479 480 int blk_mq_request_started(struct request *rq) 481 { 482 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 483 } 484 EXPORT_SYMBOL_GPL(blk_mq_request_started); 485 486 void blk_mq_start_request(struct request *rq) 487 { 488 struct request_queue *q = rq->q; 489 490 blk_mq_sched_started_request(rq); 491 492 trace_block_rq_issue(q, rq); 493 494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 495 blk_stat_set_issue_time(&rq->issue_stat); 496 rq->rq_flags |= RQF_STATS; 497 wbt_issue(q->rq_wb, &rq->issue_stat); 498 } 499 500 blk_add_timer(rq); 501 502 /* 503 * Ensure that ->deadline is visible before set the started 504 * flag and clear the completed flag. 505 */ 506 smp_mb__before_atomic(); 507 508 /* 509 * Mark us as started and clear complete. Complete might have been 510 * set if requeue raced with timeout, which then marked it as 511 * complete. So be sure to clear complete again when we start 512 * the request, otherwise we'll ignore the completion event. 513 */ 514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 518 519 if (q->dma_drain_size && blk_rq_bytes(rq)) { 520 /* 521 * Make sure space for the drain appears. We know we can do 522 * this because max_hw_segments has been adjusted to be one 523 * fewer than the device can handle. 524 */ 525 rq->nr_phys_segments++; 526 } 527 } 528 EXPORT_SYMBOL(blk_mq_start_request); 529 530 static void __blk_mq_requeue_request(struct request *rq) 531 { 532 struct request_queue *q = rq->q; 533 534 trace_block_rq_requeue(q, rq); 535 wbt_requeue(q->rq_wb, &rq->issue_stat); 536 blk_mq_sched_requeue_request(rq); 537 538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 539 if (q->dma_drain_size && blk_rq_bytes(rq)) 540 rq->nr_phys_segments--; 541 } 542 } 543 544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 545 { 546 __blk_mq_requeue_request(rq); 547 548 BUG_ON(blk_queued_rq(rq)); 549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 550 } 551 EXPORT_SYMBOL(blk_mq_requeue_request); 552 553 static void blk_mq_requeue_work(struct work_struct *work) 554 { 555 struct request_queue *q = 556 container_of(work, struct request_queue, requeue_work.work); 557 LIST_HEAD(rq_list); 558 struct request *rq, *next; 559 unsigned long flags; 560 561 spin_lock_irqsave(&q->requeue_lock, flags); 562 list_splice_init(&q->requeue_list, &rq_list); 563 spin_unlock_irqrestore(&q->requeue_lock, flags); 564 565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 566 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 567 continue; 568 569 rq->rq_flags &= ~RQF_SOFTBARRIER; 570 list_del_init(&rq->queuelist); 571 blk_mq_sched_insert_request(rq, true, false, false, true); 572 } 573 574 while (!list_empty(&rq_list)) { 575 rq = list_entry(rq_list.next, struct request, queuelist); 576 list_del_init(&rq->queuelist); 577 blk_mq_sched_insert_request(rq, false, false, false, true); 578 } 579 580 blk_mq_run_hw_queues(q, false); 581 } 582 583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 584 bool kick_requeue_list) 585 { 586 struct request_queue *q = rq->q; 587 unsigned long flags; 588 589 /* 590 * We abuse this flag that is otherwise used by the I/O scheduler to 591 * request head insertation from the workqueue. 592 */ 593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 594 595 spin_lock_irqsave(&q->requeue_lock, flags); 596 if (at_head) { 597 rq->rq_flags |= RQF_SOFTBARRIER; 598 list_add(&rq->queuelist, &q->requeue_list); 599 } else { 600 list_add_tail(&rq->queuelist, &q->requeue_list); 601 } 602 spin_unlock_irqrestore(&q->requeue_lock, flags); 603 604 if (kick_requeue_list) 605 blk_mq_kick_requeue_list(q); 606 } 607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 608 609 void blk_mq_kick_requeue_list(struct request_queue *q) 610 { 611 kblockd_schedule_delayed_work(&q->requeue_work, 0); 612 } 613 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 614 615 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 616 unsigned long msecs) 617 { 618 kblockd_schedule_delayed_work(&q->requeue_work, 619 msecs_to_jiffies(msecs)); 620 } 621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 622 623 void blk_mq_abort_requeue_list(struct request_queue *q) 624 { 625 unsigned long flags; 626 LIST_HEAD(rq_list); 627 628 spin_lock_irqsave(&q->requeue_lock, flags); 629 list_splice_init(&q->requeue_list, &rq_list); 630 spin_unlock_irqrestore(&q->requeue_lock, flags); 631 632 while (!list_empty(&rq_list)) { 633 struct request *rq; 634 635 rq = list_first_entry(&rq_list, struct request, queuelist); 636 list_del_init(&rq->queuelist); 637 rq->errors = -EIO; 638 blk_mq_end_request(rq, rq->errors); 639 } 640 } 641 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 642 643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 644 { 645 if (tag < tags->nr_tags) { 646 prefetch(tags->rqs[tag]); 647 return tags->rqs[tag]; 648 } 649 650 return NULL; 651 } 652 EXPORT_SYMBOL(blk_mq_tag_to_rq); 653 654 struct blk_mq_timeout_data { 655 unsigned long next; 656 unsigned int next_set; 657 }; 658 659 void blk_mq_rq_timed_out(struct request *req, bool reserved) 660 { 661 const struct blk_mq_ops *ops = req->q->mq_ops; 662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 663 664 /* 665 * We know that complete is set at this point. If STARTED isn't set 666 * anymore, then the request isn't active and the "timeout" should 667 * just be ignored. This can happen due to the bitflag ordering. 668 * Timeout first checks if STARTED is set, and if it is, assumes 669 * the request is active. But if we race with completion, then 670 * we both flags will get cleared. So check here again, and ignore 671 * a timeout event with a request that isn't active. 672 */ 673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 674 return; 675 676 if (ops->timeout) 677 ret = ops->timeout(req, reserved); 678 679 switch (ret) { 680 case BLK_EH_HANDLED: 681 __blk_mq_complete_request(req); 682 break; 683 case BLK_EH_RESET_TIMER: 684 blk_add_timer(req); 685 blk_clear_rq_complete(req); 686 break; 687 case BLK_EH_NOT_HANDLED: 688 break; 689 default: 690 printk(KERN_ERR "block: bad eh return: %d\n", ret); 691 break; 692 } 693 } 694 695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 696 struct request *rq, void *priv, bool reserved) 697 { 698 struct blk_mq_timeout_data *data = priv; 699 700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 701 /* 702 * If a request wasn't started before the queue was 703 * marked dying, kill it here or it'll go unnoticed. 704 */ 705 if (unlikely(blk_queue_dying(rq->q))) { 706 rq->errors = -EIO; 707 blk_mq_end_request(rq, rq->errors); 708 } 709 return; 710 } 711 712 if (time_after_eq(jiffies, rq->deadline)) { 713 if (!blk_mark_rq_complete(rq)) 714 blk_mq_rq_timed_out(rq, reserved); 715 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 716 data->next = rq->deadline; 717 data->next_set = 1; 718 } 719 } 720 721 static void blk_mq_timeout_work(struct work_struct *work) 722 { 723 struct request_queue *q = 724 container_of(work, struct request_queue, timeout_work); 725 struct blk_mq_timeout_data data = { 726 .next = 0, 727 .next_set = 0, 728 }; 729 int i; 730 731 /* A deadlock might occur if a request is stuck requiring a 732 * timeout at the same time a queue freeze is waiting 733 * completion, since the timeout code would not be able to 734 * acquire the queue reference here. 735 * 736 * That's why we don't use blk_queue_enter here; instead, we use 737 * percpu_ref_tryget directly, because we need to be able to 738 * obtain a reference even in the short window between the queue 739 * starting to freeze, by dropping the first reference in 740 * blk_mq_freeze_queue_start, and the moment the last request is 741 * consumed, marked by the instant q_usage_counter reaches 742 * zero. 743 */ 744 if (!percpu_ref_tryget(&q->q_usage_counter)) 745 return; 746 747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 748 749 if (data.next_set) { 750 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 751 mod_timer(&q->timeout, data.next); 752 } else { 753 struct blk_mq_hw_ctx *hctx; 754 755 queue_for_each_hw_ctx(q, hctx, i) { 756 /* the hctx may be unmapped, so check it here */ 757 if (blk_mq_hw_queue_mapped(hctx)) 758 blk_mq_tag_idle(hctx); 759 } 760 } 761 blk_queue_exit(q); 762 } 763 764 /* 765 * Reverse check our software queue for entries that we could potentially 766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 767 * too much time checking for merges. 768 */ 769 static bool blk_mq_attempt_merge(struct request_queue *q, 770 struct blk_mq_ctx *ctx, struct bio *bio) 771 { 772 struct request *rq; 773 int checked = 8; 774 775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 776 bool merged = false; 777 778 if (!checked--) 779 break; 780 781 if (!blk_rq_merge_ok(rq, bio)) 782 continue; 783 784 switch (blk_try_merge(rq, bio)) { 785 case ELEVATOR_BACK_MERGE: 786 if (blk_mq_sched_allow_merge(q, rq, bio)) 787 merged = bio_attempt_back_merge(q, rq, bio); 788 break; 789 case ELEVATOR_FRONT_MERGE: 790 if (blk_mq_sched_allow_merge(q, rq, bio)) 791 merged = bio_attempt_front_merge(q, rq, bio); 792 break; 793 case ELEVATOR_DISCARD_MERGE: 794 merged = bio_attempt_discard_merge(q, rq, bio); 795 break; 796 default: 797 continue; 798 } 799 800 if (merged) 801 ctx->rq_merged++; 802 return merged; 803 } 804 805 return false; 806 } 807 808 struct flush_busy_ctx_data { 809 struct blk_mq_hw_ctx *hctx; 810 struct list_head *list; 811 }; 812 813 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 814 { 815 struct flush_busy_ctx_data *flush_data = data; 816 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 817 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 818 819 sbitmap_clear_bit(sb, bitnr); 820 spin_lock(&ctx->lock); 821 list_splice_tail_init(&ctx->rq_list, flush_data->list); 822 spin_unlock(&ctx->lock); 823 return true; 824 } 825 826 /* 827 * Process software queues that have been marked busy, splicing them 828 * to the for-dispatch 829 */ 830 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 831 { 832 struct flush_busy_ctx_data data = { 833 .hctx = hctx, 834 .list = list, 835 }; 836 837 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 838 } 839 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 840 841 static inline unsigned int queued_to_index(unsigned int queued) 842 { 843 if (!queued) 844 return 0; 845 846 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 847 } 848 849 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 850 bool wait) 851 { 852 struct blk_mq_alloc_data data = { 853 .q = rq->q, 854 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 855 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 856 }; 857 858 if (rq->tag != -1) { 859 done: 860 if (hctx) 861 *hctx = data.hctx; 862 return true; 863 } 864 865 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 866 data.flags |= BLK_MQ_REQ_RESERVED; 867 868 rq->tag = blk_mq_get_tag(&data); 869 if (rq->tag >= 0) { 870 if (blk_mq_tag_busy(data.hctx)) { 871 rq->rq_flags |= RQF_MQ_INFLIGHT; 872 atomic_inc(&data.hctx->nr_active); 873 } 874 data.hctx->tags->rqs[rq->tag] = rq; 875 goto done; 876 } 877 878 return false; 879 } 880 881 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 882 struct request *rq) 883 { 884 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 885 rq->tag = -1; 886 887 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 888 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 889 atomic_dec(&hctx->nr_active); 890 } 891 } 892 893 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx, 894 struct request *rq) 895 { 896 if (rq->tag == -1 || rq->internal_tag == -1) 897 return; 898 899 __blk_mq_put_driver_tag(hctx, rq); 900 } 901 902 static void blk_mq_put_driver_tag(struct request *rq) 903 { 904 struct blk_mq_hw_ctx *hctx; 905 906 if (rq->tag == -1 || rq->internal_tag == -1) 907 return; 908 909 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 910 __blk_mq_put_driver_tag(hctx, rq); 911 } 912 913 /* 914 * If we fail getting a driver tag because all the driver tags are already 915 * assigned and on the dispatch list, BUT the first entry does not have a 916 * tag, then we could deadlock. For that case, move entries with assigned 917 * driver tags to the front, leaving the set of tagged requests in the 918 * same order, and the untagged set in the same order. 919 */ 920 static bool reorder_tags_to_front(struct list_head *list) 921 { 922 struct request *rq, *tmp, *first = NULL; 923 924 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 925 if (rq == first) 926 break; 927 if (rq->tag != -1) { 928 list_move(&rq->queuelist, list); 929 if (!first) 930 first = rq; 931 } 932 } 933 934 return first != NULL; 935 } 936 937 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags, 938 void *key) 939 { 940 struct blk_mq_hw_ctx *hctx; 941 942 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 943 944 list_del(&wait->task_list); 945 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state); 946 blk_mq_run_hw_queue(hctx, true); 947 return 1; 948 } 949 950 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx) 951 { 952 struct sbq_wait_state *ws; 953 954 /* 955 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait. 956 * The thread which wins the race to grab this bit adds the hardware 957 * queue to the wait queue. 958 */ 959 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) || 960 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state)) 961 return false; 962 963 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 964 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx); 965 966 /* 967 * As soon as this returns, it's no longer safe to fiddle with 968 * hctx->dispatch_wait, since a completion can wake up the wait queue 969 * and unlock the bit. 970 */ 971 add_wait_queue(&ws->wait, &hctx->dispatch_wait); 972 return true; 973 } 974 975 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) 976 { 977 struct request_queue *q = hctx->queue; 978 struct request *rq; 979 LIST_HEAD(driver_list); 980 struct list_head *dptr; 981 int queued, ret = BLK_MQ_RQ_QUEUE_OK; 982 983 /* 984 * Start off with dptr being NULL, so we start the first request 985 * immediately, even if we have more pending. 986 */ 987 dptr = NULL; 988 989 /* 990 * Now process all the entries, sending them to the driver. 991 */ 992 queued = 0; 993 while (!list_empty(list)) { 994 struct blk_mq_queue_data bd; 995 996 rq = list_first_entry(list, struct request, queuelist); 997 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 998 if (!queued && reorder_tags_to_front(list)) 999 continue; 1000 1001 /* 1002 * The initial allocation attempt failed, so we need to 1003 * rerun the hardware queue when a tag is freed. 1004 */ 1005 if (blk_mq_dispatch_wait_add(hctx)) { 1006 /* 1007 * It's possible that a tag was freed in the 1008 * window between the allocation failure and 1009 * adding the hardware queue to the wait queue. 1010 */ 1011 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1012 break; 1013 } else { 1014 break; 1015 } 1016 } 1017 1018 list_del_init(&rq->queuelist); 1019 1020 bd.rq = rq; 1021 bd.list = dptr; 1022 1023 /* 1024 * Flag last if we have no more requests, or if we have more 1025 * but can't assign a driver tag to it. 1026 */ 1027 if (list_empty(list)) 1028 bd.last = true; 1029 else { 1030 struct request *nxt; 1031 1032 nxt = list_first_entry(list, struct request, queuelist); 1033 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1034 } 1035 1036 ret = q->mq_ops->queue_rq(hctx, &bd); 1037 switch (ret) { 1038 case BLK_MQ_RQ_QUEUE_OK: 1039 queued++; 1040 break; 1041 case BLK_MQ_RQ_QUEUE_BUSY: 1042 blk_mq_put_driver_tag_hctx(hctx, rq); 1043 list_add(&rq->queuelist, list); 1044 __blk_mq_requeue_request(rq); 1045 break; 1046 default: 1047 pr_err("blk-mq: bad return on queue: %d\n", ret); 1048 case BLK_MQ_RQ_QUEUE_ERROR: 1049 rq->errors = -EIO; 1050 blk_mq_end_request(rq, rq->errors); 1051 break; 1052 } 1053 1054 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 1055 break; 1056 1057 /* 1058 * We've done the first request. If we have more than 1 1059 * left in the list, set dptr to defer issue. 1060 */ 1061 if (!dptr && list->next != list->prev) 1062 dptr = &driver_list; 1063 } 1064 1065 hctx->dispatched[queued_to_index(queued)]++; 1066 1067 /* 1068 * Any items that need requeuing? Stuff them into hctx->dispatch, 1069 * that is where we will continue on next queue run. 1070 */ 1071 if (!list_empty(list)) { 1072 /* 1073 * If we got a driver tag for the next request already, 1074 * free it again. 1075 */ 1076 rq = list_first_entry(list, struct request, queuelist); 1077 blk_mq_put_driver_tag(rq); 1078 1079 spin_lock(&hctx->lock); 1080 list_splice_init(list, &hctx->dispatch); 1081 spin_unlock(&hctx->lock); 1082 1083 /* 1084 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 1085 * it's possible the queue is stopped and restarted again 1086 * before this. Queue restart will dispatch requests. And since 1087 * requests in rq_list aren't added into hctx->dispatch yet, 1088 * the requests in rq_list might get lost. 1089 * 1090 * blk_mq_run_hw_queue() already checks the STOPPED bit 1091 * 1092 * If RESTART or TAG_WAITING is set, then let completion restart 1093 * the queue instead of potentially looping here. 1094 */ 1095 if (!blk_mq_sched_needs_restart(hctx) && 1096 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) 1097 blk_mq_run_hw_queue(hctx, true); 1098 } 1099 1100 return queued != 0; 1101 } 1102 1103 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1104 { 1105 int srcu_idx; 1106 1107 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1108 cpu_online(hctx->next_cpu)); 1109 1110 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1111 rcu_read_lock(); 1112 blk_mq_sched_dispatch_requests(hctx); 1113 rcu_read_unlock(); 1114 } else { 1115 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 1116 blk_mq_sched_dispatch_requests(hctx); 1117 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 1118 } 1119 } 1120 1121 /* 1122 * It'd be great if the workqueue API had a way to pass 1123 * in a mask and had some smarts for more clever placement. 1124 * For now we just round-robin here, switching for every 1125 * BLK_MQ_CPU_WORK_BATCH queued items. 1126 */ 1127 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1128 { 1129 if (hctx->queue->nr_hw_queues == 1) 1130 return WORK_CPU_UNBOUND; 1131 1132 if (--hctx->next_cpu_batch <= 0) { 1133 int next_cpu; 1134 1135 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1136 if (next_cpu >= nr_cpu_ids) 1137 next_cpu = cpumask_first(hctx->cpumask); 1138 1139 hctx->next_cpu = next_cpu; 1140 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1141 } 1142 1143 return hctx->next_cpu; 1144 } 1145 1146 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1147 { 1148 if (unlikely(blk_mq_hctx_stopped(hctx) || 1149 !blk_mq_hw_queue_mapped(hctx))) 1150 return; 1151 1152 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1153 int cpu = get_cpu(); 1154 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1155 __blk_mq_run_hw_queue(hctx); 1156 put_cpu(); 1157 return; 1158 } 1159 1160 put_cpu(); 1161 } 1162 1163 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); 1164 } 1165 1166 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1167 { 1168 struct blk_mq_hw_ctx *hctx; 1169 int i; 1170 1171 queue_for_each_hw_ctx(q, hctx, i) { 1172 if (!blk_mq_hctx_has_pending(hctx) || 1173 blk_mq_hctx_stopped(hctx)) 1174 continue; 1175 1176 blk_mq_run_hw_queue(hctx, async); 1177 } 1178 } 1179 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1180 1181 /** 1182 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1183 * @q: request queue. 1184 * 1185 * The caller is responsible for serializing this function against 1186 * blk_mq_{start,stop}_hw_queue(). 1187 */ 1188 bool blk_mq_queue_stopped(struct request_queue *q) 1189 { 1190 struct blk_mq_hw_ctx *hctx; 1191 int i; 1192 1193 queue_for_each_hw_ctx(q, hctx, i) 1194 if (blk_mq_hctx_stopped(hctx)) 1195 return true; 1196 1197 return false; 1198 } 1199 EXPORT_SYMBOL(blk_mq_queue_stopped); 1200 1201 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1202 { 1203 cancel_work(&hctx->run_work); 1204 cancel_delayed_work(&hctx->delay_work); 1205 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1206 } 1207 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1208 1209 void blk_mq_stop_hw_queues(struct request_queue *q) 1210 { 1211 struct blk_mq_hw_ctx *hctx; 1212 int i; 1213 1214 queue_for_each_hw_ctx(q, hctx, i) 1215 blk_mq_stop_hw_queue(hctx); 1216 } 1217 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1218 1219 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1220 { 1221 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1222 1223 blk_mq_run_hw_queue(hctx, false); 1224 } 1225 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1226 1227 void blk_mq_start_hw_queues(struct request_queue *q) 1228 { 1229 struct blk_mq_hw_ctx *hctx; 1230 int i; 1231 1232 queue_for_each_hw_ctx(q, hctx, i) 1233 blk_mq_start_hw_queue(hctx); 1234 } 1235 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1236 1237 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1238 { 1239 if (!blk_mq_hctx_stopped(hctx)) 1240 return; 1241 1242 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1243 blk_mq_run_hw_queue(hctx, async); 1244 } 1245 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1246 1247 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1248 { 1249 struct blk_mq_hw_ctx *hctx; 1250 int i; 1251 1252 queue_for_each_hw_ctx(q, hctx, i) 1253 blk_mq_start_stopped_hw_queue(hctx, async); 1254 } 1255 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1256 1257 static void blk_mq_run_work_fn(struct work_struct *work) 1258 { 1259 struct blk_mq_hw_ctx *hctx; 1260 1261 hctx = container_of(work, struct blk_mq_hw_ctx, run_work); 1262 1263 __blk_mq_run_hw_queue(hctx); 1264 } 1265 1266 static void blk_mq_delay_work_fn(struct work_struct *work) 1267 { 1268 struct blk_mq_hw_ctx *hctx; 1269 1270 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1271 1272 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1273 __blk_mq_run_hw_queue(hctx); 1274 } 1275 1276 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1277 { 1278 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1279 return; 1280 1281 blk_mq_stop_hw_queue(hctx); 1282 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1283 &hctx->delay_work, msecs_to_jiffies(msecs)); 1284 } 1285 EXPORT_SYMBOL(blk_mq_delay_queue); 1286 1287 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1288 struct request *rq, 1289 bool at_head) 1290 { 1291 struct blk_mq_ctx *ctx = rq->mq_ctx; 1292 1293 trace_block_rq_insert(hctx->queue, rq); 1294 1295 if (at_head) 1296 list_add(&rq->queuelist, &ctx->rq_list); 1297 else 1298 list_add_tail(&rq->queuelist, &ctx->rq_list); 1299 } 1300 1301 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1302 bool at_head) 1303 { 1304 struct blk_mq_ctx *ctx = rq->mq_ctx; 1305 1306 __blk_mq_insert_req_list(hctx, rq, at_head); 1307 blk_mq_hctx_mark_pending(hctx, ctx); 1308 } 1309 1310 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1311 struct list_head *list) 1312 1313 { 1314 /* 1315 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1316 * offline now 1317 */ 1318 spin_lock(&ctx->lock); 1319 while (!list_empty(list)) { 1320 struct request *rq; 1321 1322 rq = list_first_entry(list, struct request, queuelist); 1323 BUG_ON(rq->mq_ctx != ctx); 1324 list_del_init(&rq->queuelist); 1325 __blk_mq_insert_req_list(hctx, rq, false); 1326 } 1327 blk_mq_hctx_mark_pending(hctx, ctx); 1328 spin_unlock(&ctx->lock); 1329 } 1330 1331 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1332 { 1333 struct request *rqa = container_of(a, struct request, queuelist); 1334 struct request *rqb = container_of(b, struct request, queuelist); 1335 1336 return !(rqa->mq_ctx < rqb->mq_ctx || 1337 (rqa->mq_ctx == rqb->mq_ctx && 1338 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1339 } 1340 1341 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1342 { 1343 struct blk_mq_ctx *this_ctx; 1344 struct request_queue *this_q; 1345 struct request *rq; 1346 LIST_HEAD(list); 1347 LIST_HEAD(ctx_list); 1348 unsigned int depth; 1349 1350 list_splice_init(&plug->mq_list, &list); 1351 1352 list_sort(NULL, &list, plug_ctx_cmp); 1353 1354 this_q = NULL; 1355 this_ctx = NULL; 1356 depth = 0; 1357 1358 while (!list_empty(&list)) { 1359 rq = list_entry_rq(list.next); 1360 list_del_init(&rq->queuelist); 1361 BUG_ON(!rq->q); 1362 if (rq->mq_ctx != this_ctx) { 1363 if (this_ctx) { 1364 trace_block_unplug(this_q, depth, from_schedule); 1365 blk_mq_sched_insert_requests(this_q, this_ctx, 1366 &ctx_list, 1367 from_schedule); 1368 } 1369 1370 this_ctx = rq->mq_ctx; 1371 this_q = rq->q; 1372 depth = 0; 1373 } 1374 1375 depth++; 1376 list_add_tail(&rq->queuelist, &ctx_list); 1377 } 1378 1379 /* 1380 * If 'this_ctx' is set, we know we have entries to complete 1381 * on 'ctx_list'. Do those. 1382 */ 1383 if (this_ctx) { 1384 trace_block_unplug(this_q, depth, from_schedule); 1385 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1386 from_schedule); 1387 } 1388 } 1389 1390 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1391 { 1392 init_request_from_bio(rq, bio); 1393 1394 blk_account_io_start(rq, true); 1395 } 1396 1397 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1398 { 1399 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1400 !blk_queue_nomerges(hctx->queue); 1401 } 1402 1403 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1404 struct blk_mq_ctx *ctx, 1405 struct request *rq, struct bio *bio) 1406 { 1407 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1408 blk_mq_bio_to_request(rq, bio); 1409 spin_lock(&ctx->lock); 1410 insert_rq: 1411 __blk_mq_insert_request(hctx, rq, false); 1412 spin_unlock(&ctx->lock); 1413 return false; 1414 } else { 1415 struct request_queue *q = hctx->queue; 1416 1417 spin_lock(&ctx->lock); 1418 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1419 blk_mq_bio_to_request(rq, bio); 1420 goto insert_rq; 1421 } 1422 1423 spin_unlock(&ctx->lock); 1424 __blk_mq_finish_request(hctx, ctx, rq); 1425 return true; 1426 } 1427 } 1428 1429 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1430 { 1431 if (rq->tag != -1) 1432 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1433 1434 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1435 } 1436 1437 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie) 1438 { 1439 struct request_queue *q = rq->q; 1440 struct blk_mq_queue_data bd = { 1441 .rq = rq, 1442 .list = NULL, 1443 .last = 1 1444 }; 1445 struct blk_mq_hw_ctx *hctx; 1446 blk_qc_t new_cookie; 1447 int ret; 1448 1449 if (q->elevator) 1450 goto insert; 1451 1452 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1453 goto insert; 1454 1455 new_cookie = request_to_qc_t(hctx, rq); 1456 1457 /* 1458 * For OK queue, we are done. For error, kill it. Any other 1459 * error (busy), just add it to our list as we previously 1460 * would have done 1461 */ 1462 ret = q->mq_ops->queue_rq(hctx, &bd); 1463 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1464 *cookie = new_cookie; 1465 return; 1466 } 1467 1468 __blk_mq_requeue_request(rq); 1469 1470 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1471 *cookie = BLK_QC_T_NONE; 1472 rq->errors = -EIO; 1473 blk_mq_end_request(rq, rq->errors); 1474 return; 1475 } 1476 1477 insert: 1478 blk_mq_sched_insert_request(rq, false, true, true, false); 1479 } 1480 1481 /* 1482 * Multiple hardware queue variant. This will not use per-process plugs, 1483 * but will attempt to bypass the hctx queueing if we can go straight to 1484 * hardware for SYNC IO. 1485 */ 1486 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1487 { 1488 const int is_sync = op_is_sync(bio->bi_opf); 1489 const int is_flush_fua = op_is_flush(bio->bi_opf); 1490 struct blk_mq_alloc_data data = { .flags = 0 }; 1491 struct request *rq; 1492 unsigned int request_count = 0, srcu_idx; 1493 struct blk_plug *plug; 1494 struct request *same_queue_rq = NULL; 1495 blk_qc_t cookie; 1496 unsigned int wb_acct; 1497 1498 blk_queue_bounce(q, &bio); 1499 1500 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1501 bio_io_error(bio); 1502 return BLK_QC_T_NONE; 1503 } 1504 1505 blk_queue_split(q, &bio, q->bio_split); 1506 1507 if (!is_flush_fua && !blk_queue_nomerges(q) && 1508 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1509 return BLK_QC_T_NONE; 1510 1511 if (blk_mq_sched_bio_merge(q, bio)) 1512 return BLK_QC_T_NONE; 1513 1514 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1515 1516 trace_block_getrq(q, bio, bio->bi_opf); 1517 1518 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1519 if (unlikely(!rq)) { 1520 __wbt_done(q->rq_wb, wb_acct); 1521 return BLK_QC_T_NONE; 1522 } 1523 1524 wbt_track(&rq->issue_stat, wb_acct); 1525 1526 cookie = request_to_qc_t(data.hctx, rq); 1527 1528 if (unlikely(is_flush_fua)) { 1529 if (q->elevator) 1530 goto elv_insert; 1531 blk_mq_bio_to_request(rq, bio); 1532 blk_insert_flush(rq); 1533 goto run_queue; 1534 } 1535 1536 plug = current->plug; 1537 /* 1538 * If the driver supports defer issued based on 'last', then 1539 * queue it up like normal since we can potentially save some 1540 * CPU this way. 1541 */ 1542 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1543 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1544 struct request *old_rq = NULL; 1545 1546 blk_mq_bio_to_request(rq, bio); 1547 1548 /* 1549 * We do limited plugging. If the bio can be merged, do that. 1550 * Otherwise the existing request in the plug list will be 1551 * issued. So the plug list will have one request at most 1552 */ 1553 if (plug) { 1554 /* 1555 * The plug list might get flushed before this. If that 1556 * happens, same_queue_rq is invalid and plug list is 1557 * empty 1558 */ 1559 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1560 old_rq = same_queue_rq; 1561 list_del_init(&old_rq->queuelist); 1562 } 1563 list_add_tail(&rq->queuelist, &plug->mq_list); 1564 } else /* is_sync */ 1565 old_rq = rq; 1566 blk_mq_put_ctx(data.ctx); 1567 if (!old_rq) 1568 goto done; 1569 1570 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { 1571 rcu_read_lock(); 1572 blk_mq_try_issue_directly(old_rq, &cookie); 1573 rcu_read_unlock(); 1574 } else { 1575 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); 1576 blk_mq_try_issue_directly(old_rq, &cookie); 1577 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); 1578 } 1579 goto done; 1580 } 1581 1582 if (q->elevator) { 1583 elv_insert: 1584 blk_mq_put_ctx(data.ctx); 1585 blk_mq_bio_to_request(rq, bio); 1586 blk_mq_sched_insert_request(rq, false, true, 1587 !is_sync || is_flush_fua, true); 1588 goto done; 1589 } 1590 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1591 /* 1592 * For a SYNC request, send it to the hardware immediately. For 1593 * an ASYNC request, just ensure that we run it later on. The 1594 * latter allows for merging opportunities and more efficient 1595 * dispatching. 1596 */ 1597 run_queue: 1598 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1599 } 1600 blk_mq_put_ctx(data.ctx); 1601 done: 1602 return cookie; 1603 } 1604 1605 /* 1606 * Single hardware queue variant. This will attempt to use any per-process 1607 * plug for merging and IO deferral. 1608 */ 1609 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1610 { 1611 const int is_sync = op_is_sync(bio->bi_opf); 1612 const int is_flush_fua = op_is_flush(bio->bi_opf); 1613 struct blk_plug *plug; 1614 unsigned int request_count = 0; 1615 struct blk_mq_alloc_data data = { .flags = 0 }; 1616 struct request *rq; 1617 blk_qc_t cookie; 1618 unsigned int wb_acct; 1619 1620 blk_queue_bounce(q, &bio); 1621 1622 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1623 bio_io_error(bio); 1624 return BLK_QC_T_NONE; 1625 } 1626 1627 blk_queue_split(q, &bio, q->bio_split); 1628 1629 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1630 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1631 return BLK_QC_T_NONE; 1632 } else 1633 request_count = blk_plug_queued_count(q); 1634 1635 if (blk_mq_sched_bio_merge(q, bio)) 1636 return BLK_QC_T_NONE; 1637 1638 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1639 1640 trace_block_getrq(q, bio, bio->bi_opf); 1641 1642 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1643 if (unlikely(!rq)) { 1644 __wbt_done(q->rq_wb, wb_acct); 1645 return BLK_QC_T_NONE; 1646 } 1647 1648 wbt_track(&rq->issue_stat, wb_acct); 1649 1650 cookie = request_to_qc_t(data.hctx, rq); 1651 1652 if (unlikely(is_flush_fua)) { 1653 if (q->elevator) 1654 goto elv_insert; 1655 blk_mq_bio_to_request(rq, bio); 1656 blk_insert_flush(rq); 1657 goto run_queue; 1658 } 1659 1660 /* 1661 * A task plug currently exists. Since this is completely lockless, 1662 * utilize that to temporarily store requests until the task is 1663 * either done or scheduled away. 1664 */ 1665 plug = current->plug; 1666 if (plug) { 1667 struct request *last = NULL; 1668 1669 blk_mq_bio_to_request(rq, bio); 1670 1671 /* 1672 * @request_count may become stale because of schedule 1673 * out, so check the list again. 1674 */ 1675 if (list_empty(&plug->mq_list)) 1676 request_count = 0; 1677 if (!request_count) 1678 trace_block_plug(q); 1679 else 1680 last = list_entry_rq(plug->mq_list.prev); 1681 1682 blk_mq_put_ctx(data.ctx); 1683 1684 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1685 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1686 blk_flush_plug_list(plug, false); 1687 trace_block_plug(q); 1688 } 1689 1690 list_add_tail(&rq->queuelist, &plug->mq_list); 1691 return cookie; 1692 } 1693 1694 if (q->elevator) { 1695 elv_insert: 1696 blk_mq_put_ctx(data.ctx); 1697 blk_mq_bio_to_request(rq, bio); 1698 blk_mq_sched_insert_request(rq, false, true, 1699 !is_sync || is_flush_fua, true); 1700 goto done; 1701 } 1702 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1703 /* 1704 * For a SYNC request, send it to the hardware immediately. For 1705 * an ASYNC request, just ensure that we run it later on. The 1706 * latter allows for merging opportunities and more efficient 1707 * dispatching. 1708 */ 1709 run_queue: 1710 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1711 } 1712 1713 blk_mq_put_ctx(data.ctx); 1714 done: 1715 return cookie; 1716 } 1717 1718 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1719 unsigned int hctx_idx) 1720 { 1721 struct page *page; 1722 1723 if (tags->rqs && set->ops->exit_request) { 1724 int i; 1725 1726 for (i = 0; i < tags->nr_tags; i++) { 1727 struct request *rq = tags->static_rqs[i]; 1728 1729 if (!rq) 1730 continue; 1731 set->ops->exit_request(set->driver_data, rq, 1732 hctx_idx, i); 1733 tags->static_rqs[i] = NULL; 1734 } 1735 } 1736 1737 while (!list_empty(&tags->page_list)) { 1738 page = list_first_entry(&tags->page_list, struct page, lru); 1739 list_del_init(&page->lru); 1740 /* 1741 * Remove kmemleak object previously allocated in 1742 * blk_mq_init_rq_map(). 1743 */ 1744 kmemleak_free(page_address(page)); 1745 __free_pages(page, page->private); 1746 } 1747 } 1748 1749 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1750 { 1751 kfree(tags->rqs); 1752 tags->rqs = NULL; 1753 kfree(tags->static_rqs); 1754 tags->static_rqs = NULL; 1755 1756 blk_mq_free_tags(tags); 1757 } 1758 1759 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1760 unsigned int hctx_idx, 1761 unsigned int nr_tags, 1762 unsigned int reserved_tags) 1763 { 1764 struct blk_mq_tags *tags; 1765 int node; 1766 1767 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1768 if (node == NUMA_NO_NODE) 1769 node = set->numa_node; 1770 1771 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1772 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1773 if (!tags) 1774 return NULL; 1775 1776 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1777 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1778 node); 1779 if (!tags->rqs) { 1780 blk_mq_free_tags(tags); 1781 return NULL; 1782 } 1783 1784 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1785 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1786 node); 1787 if (!tags->static_rqs) { 1788 kfree(tags->rqs); 1789 blk_mq_free_tags(tags); 1790 return NULL; 1791 } 1792 1793 return tags; 1794 } 1795 1796 static size_t order_to_size(unsigned int order) 1797 { 1798 return (size_t)PAGE_SIZE << order; 1799 } 1800 1801 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1802 unsigned int hctx_idx, unsigned int depth) 1803 { 1804 unsigned int i, j, entries_per_page, max_order = 4; 1805 size_t rq_size, left; 1806 int node; 1807 1808 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1809 if (node == NUMA_NO_NODE) 1810 node = set->numa_node; 1811 1812 INIT_LIST_HEAD(&tags->page_list); 1813 1814 /* 1815 * rq_size is the size of the request plus driver payload, rounded 1816 * to the cacheline size 1817 */ 1818 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1819 cache_line_size()); 1820 left = rq_size * depth; 1821 1822 for (i = 0; i < depth; ) { 1823 int this_order = max_order; 1824 struct page *page; 1825 int to_do; 1826 void *p; 1827 1828 while (this_order && left < order_to_size(this_order - 1)) 1829 this_order--; 1830 1831 do { 1832 page = alloc_pages_node(node, 1833 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1834 this_order); 1835 if (page) 1836 break; 1837 if (!this_order--) 1838 break; 1839 if (order_to_size(this_order) < rq_size) 1840 break; 1841 } while (1); 1842 1843 if (!page) 1844 goto fail; 1845 1846 page->private = this_order; 1847 list_add_tail(&page->lru, &tags->page_list); 1848 1849 p = page_address(page); 1850 /* 1851 * Allow kmemleak to scan these pages as they contain pointers 1852 * to additional allocations like via ops->init_request(). 1853 */ 1854 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1855 entries_per_page = order_to_size(this_order) / rq_size; 1856 to_do = min(entries_per_page, depth - i); 1857 left -= to_do * rq_size; 1858 for (j = 0; j < to_do; j++) { 1859 struct request *rq = p; 1860 1861 tags->static_rqs[i] = rq; 1862 if (set->ops->init_request) { 1863 if (set->ops->init_request(set->driver_data, 1864 rq, hctx_idx, i, 1865 node)) { 1866 tags->static_rqs[i] = NULL; 1867 goto fail; 1868 } 1869 } 1870 1871 p += rq_size; 1872 i++; 1873 } 1874 } 1875 return 0; 1876 1877 fail: 1878 blk_mq_free_rqs(set, tags, hctx_idx); 1879 return -ENOMEM; 1880 } 1881 1882 /* 1883 * 'cpu' is going away. splice any existing rq_list entries from this 1884 * software queue to the hw queue dispatch list, and ensure that it 1885 * gets run. 1886 */ 1887 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1888 { 1889 struct blk_mq_hw_ctx *hctx; 1890 struct blk_mq_ctx *ctx; 1891 LIST_HEAD(tmp); 1892 1893 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1894 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1895 1896 spin_lock(&ctx->lock); 1897 if (!list_empty(&ctx->rq_list)) { 1898 list_splice_init(&ctx->rq_list, &tmp); 1899 blk_mq_hctx_clear_pending(hctx, ctx); 1900 } 1901 spin_unlock(&ctx->lock); 1902 1903 if (list_empty(&tmp)) 1904 return 0; 1905 1906 spin_lock(&hctx->lock); 1907 list_splice_tail_init(&tmp, &hctx->dispatch); 1908 spin_unlock(&hctx->lock); 1909 1910 blk_mq_run_hw_queue(hctx, true); 1911 return 0; 1912 } 1913 1914 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1915 { 1916 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1917 &hctx->cpuhp_dead); 1918 } 1919 1920 /* hctx->ctxs will be freed in queue's release handler */ 1921 static void blk_mq_exit_hctx(struct request_queue *q, 1922 struct blk_mq_tag_set *set, 1923 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1924 { 1925 unsigned flush_start_tag = set->queue_depth; 1926 1927 blk_mq_tag_idle(hctx); 1928 1929 if (set->ops->exit_request) 1930 set->ops->exit_request(set->driver_data, 1931 hctx->fq->flush_rq, hctx_idx, 1932 flush_start_tag + hctx_idx); 1933 1934 if (set->ops->exit_hctx) 1935 set->ops->exit_hctx(hctx, hctx_idx); 1936 1937 if (hctx->flags & BLK_MQ_F_BLOCKING) 1938 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1939 1940 blk_mq_remove_cpuhp(hctx); 1941 blk_free_flush_queue(hctx->fq); 1942 sbitmap_free(&hctx->ctx_map); 1943 } 1944 1945 static void blk_mq_exit_hw_queues(struct request_queue *q, 1946 struct blk_mq_tag_set *set, int nr_queue) 1947 { 1948 struct blk_mq_hw_ctx *hctx; 1949 unsigned int i; 1950 1951 queue_for_each_hw_ctx(q, hctx, i) { 1952 if (i == nr_queue) 1953 break; 1954 blk_mq_exit_hctx(q, set, hctx, i); 1955 } 1956 } 1957 1958 static void blk_mq_free_hw_queues(struct request_queue *q, 1959 struct blk_mq_tag_set *set) 1960 { 1961 struct blk_mq_hw_ctx *hctx; 1962 unsigned int i; 1963 1964 queue_for_each_hw_ctx(q, hctx, i) 1965 free_cpumask_var(hctx->cpumask); 1966 } 1967 1968 static int blk_mq_init_hctx(struct request_queue *q, 1969 struct blk_mq_tag_set *set, 1970 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1971 { 1972 int node; 1973 unsigned flush_start_tag = set->queue_depth; 1974 1975 node = hctx->numa_node; 1976 if (node == NUMA_NO_NODE) 1977 node = hctx->numa_node = set->numa_node; 1978 1979 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); 1980 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1981 spin_lock_init(&hctx->lock); 1982 INIT_LIST_HEAD(&hctx->dispatch); 1983 hctx->queue = q; 1984 hctx->queue_num = hctx_idx; 1985 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1986 1987 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1988 1989 hctx->tags = set->tags[hctx_idx]; 1990 1991 /* 1992 * Allocate space for all possible cpus to avoid allocation at 1993 * runtime 1994 */ 1995 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1996 GFP_KERNEL, node); 1997 if (!hctx->ctxs) 1998 goto unregister_cpu_notifier; 1999 2000 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2001 node)) 2002 goto free_ctxs; 2003 2004 hctx->nr_ctx = 0; 2005 2006 if (set->ops->init_hctx && 2007 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2008 goto free_bitmap; 2009 2010 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2011 if (!hctx->fq) 2012 goto exit_hctx; 2013 2014 if (set->ops->init_request && 2015 set->ops->init_request(set->driver_data, 2016 hctx->fq->flush_rq, hctx_idx, 2017 flush_start_tag + hctx_idx, node)) 2018 goto free_fq; 2019 2020 if (hctx->flags & BLK_MQ_F_BLOCKING) 2021 init_srcu_struct(&hctx->queue_rq_srcu); 2022 2023 return 0; 2024 2025 free_fq: 2026 kfree(hctx->fq); 2027 exit_hctx: 2028 if (set->ops->exit_hctx) 2029 set->ops->exit_hctx(hctx, hctx_idx); 2030 free_bitmap: 2031 sbitmap_free(&hctx->ctx_map); 2032 free_ctxs: 2033 kfree(hctx->ctxs); 2034 unregister_cpu_notifier: 2035 blk_mq_remove_cpuhp(hctx); 2036 return -1; 2037 } 2038 2039 static void blk_mq_init_cpu_queues(struct request_queue *q, 2040 unsigned int nr_hw_queues) 2041 { 2042 unsigned int i; 2043 2044 for_each_possible_cpu(i) { 2045 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2046 struct blk_mq_hw_ctx *hctx; 2047 2048 memset(__ctx, 0, sizeof(*__ctx)); 2049 __ctx->cpu = i; 2050 spin_lock_init(&__ctx->lock); 2051 INIT_LIST_HEAD(&__ctx->rq_list); 2052 __ctx->queue = q; 2053 blk_stat_init(&__ctx->stat[BLK_STAT_READ]); 2054 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); 2055 2056 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2057 if (!cpu_online(i)) 2058 continue; 2059 2060 hctx = blk_mq_map_queue(q, i); 2061 2062 /* 2063 * Set local node, IFF we have more than one hw queue. If 2064 * not, we remain on the home node of the device 2065 */ 2066 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2067 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2068 } 2069 } 2070 2071 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2072 { 2073 int ret = 0; 2074 2075 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2076 set->queue_depth, set->reserved_tags); 2077 if (!set->tags[hctx_idx]) 2078 return false; 2079 2080 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2081 set->queue_depth); 2082 if (!ret) 2083 return true; 2084 2085 blk_mq_free_rq_map(set->tags[hctx_idx]); 2086 set->tags[hctx_idx] = NULL; 2087 return false; 2088 } 2089 2090 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2091 unsigned int hctx_idx) 2092 { 2093 if (set->tags[hctx_idx]) { 2094 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2095 blk_mq_free_rq_map(set->tags[hctx_idx]); 2096 set->tags[hctx_idx] = NULL; 2097 } 2098 } 2099 2100 static void blk_mq_map_swqueue(struct request_queue *q, 2101 const struct cpumask *online_mask) 2102 { 2103 unsigned int i, hctx_idx; 2104 struct blk_mq_hw_ctx *hctx; 2105 struct blk_mq_ctx *ctx; 2106 struct blk_mq_tag_set *set = q->tag_set; 2107 2108 /* 2109 * Avoid others reading imcomplete hctx->cpumask through sysfs 2110 */ 2111 mutex_lock(&q->sysfs_lock); 2112 2113 queue_for_each_hw_ctx(q, hctx, i) { 2114 cpumask_clear(hctx->cpumask); 2115 hctx->nr_ctx = 0; 2116 } 2117 2118 /* 2119 * Map software to hardware queues 2120 */ 2121 for_each_possible_cpu(i) { 2122 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2123 if (!cpumask_test_cpu(i, online_mask)) 2124 continue; 2125 2126 hctx_idx = q->mq_map[i]; 2127 /* unmapped hw queue can be remapped after CPU topo changed */ 2128 if (!set->tags[hctx_idx] && 2129 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2130 /* 2131 * If tags initialization fail for some hctx, 2132 * that hctx won't be brought online. In this 2133 * case, remap the current ctx to hctx[0] which 2134 * is guaranteed to always have tags allocated 2135 */ 2136 q->mq_map[i] = 0; 2137 } 2138 2139 ctx = per_cpu_ptr(q->queue_ctx, i); 2140 hctx = blk_mq_map_queue(q, i); 2141 2142 cpumask_set_cpu(i, hctx->cpumask); 2143 ctx->index_hw = hctx->nr_ctx; 2144 hctx->ctxs[hctx->nr_ctx++] = ctx; 2145 } 2146 2147 mutex_unlock(&q->sysfs_lock); 2148 2149 queue_for_each_hw_ctx(q, hctx, i) { 2150 /* 2151 * If no software queues are mapped to this hardware queue, 2152 * disable it and free the request entries. 2153 */ 2154 if (!hctx->nr_ctx) { 2155 /* Never unmap queue 0. We need it as a 2156 * fallback in case of a new remap fails 2157 * allocation 2158 */ 2159 if (i && set->tags[i]) 2160 blk_mq_free_map_and_requests(set, i); 2161 2162 hctx->tags = NULL; 2163 continue; 2164 } 2165 2166 hctx->tags = set->tags[i]; 2167 WARN_ON(!hctx->tags); 2168 2169 /* 2170 * Set the map size to the number of mapped software queues. 2171 * This is more accurate and more efficient than looping 2172 * over all possibly mapped software queues. 2173 */ 2174 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2175 2176 /* 2177 * Initialize batch roundrobin counts 2178 */ 2179 hctx->next_cpu = cpumask_first(hctx->cpumask); 2180 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2181 } 2182 } 2183 2184 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2185 { 2186 struct blk_mq_hw_ctx *hctx; 2187 int i; 2188 2189 queue_for_each_hw_ctx(q, hctx, i) { 2190 if (shared) 2191 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2192 else 2193 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2194 } 2195 } 2196 2197 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 2198 { 2199 struct request_queue *q; 2200 2201 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2202 blk_mq_freeze_queue(q); 2203 queue_set_hctx_shared(q, shared); 2204 blk_mq_unfreeze_queue(q); 2205 } 2206 } 2207 2208 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2209 { 2210 struct blk_mq_tag_set *set = q->tag_set; 2211 2212 mutex_lock(&set->tag_list_lock); 2213 list_del_init(&q->tag_set_list); 2214 if (list_is_singular(&set->tag_list)) { 2215 /* just transitioned to unshared */ 2216 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2217 /* update existing queue */ 2218 blk_mq_update_tag_set_depth(set, false); 2219 } 2220 mutex_unlock(&set->tag_list_lock); 2221 } 2222 2223 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2224 struct request_queue *q) 2225 { 2226 q->tag_set = set; 2227 2228 mutex_lock(&set->tag_list_lock); 2229 2230 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2231 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2232 set->flags |= BLK_MQ_F_TAG_SHARED; 2233 /* update existing queue */ 2234 blk_mq_update_tag_set_depth(set, true); 2235 } 2236 if (set->flags & BLK_MQ_F_TAG_SHARED) 2237 queue_set_hctx_shared(q, true); 2238 list_add_tail(&q->tag_set_list, &set->tag_list); 2239 2240 mutex_unlock(&set->tag_list_lock); 2241 } 2242 2243 /* 2244 * It is the actual release handler for mq, but we do it from 2245 * request queue's release handler for avoiding use-after-free 2246 * and headache because q->mq_kobj shouldn't have been introduced, 2247 * but we can't group ctx/kctx kobj without it. 2248 */ 2249 void blk_mq_release(struct request_queue *q) 2250 { 2251 struct blk_mq_hw_ctx *hctx; 2252 unsigned int i; 2253 2254 blk_mq_sched_teardown(q); 2255 2256 /* hctx kobj stays in hctx */ 2257 queue_for_each_hw_ctx(q, hctx, i) { 2258 if (!hctx) 2259 continue; 2260 kfree(hctx->ctxs); 2261 kfree(hctx); 2262 } 2263 2264 q->mq_map = NULL; 2265 2266 kfree(q->queue_hw_ctx); 2267 2268 /* ctx kobj stays in queue_ctx */ 2269 free_percpu(q->queue_ctx); 2270 } 2271 2272 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2273 { 2274 struct request_queue *uninit_q, *q; 2275 2276 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2277 if (!uninit_q) 2278 return ERR_PTR(-ENOMEM); 2279 2280 q = blk_mq_init_allocated_queue(set, uninit_q); 2281 if (IS_ERR(q)) 2282 blk_cleanup_queue(uninit_q); 2283 2284 return q; 2285 } 2286 EXPORT_SYMBOL(blk_mq_init_queue); 2287 2288 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2289 struct request_queue *q) 2290 { 2291 int i, j; 2292 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2293 2294 blk_mq_sysfs_unregister(q); 2295 for (i = 0; i < set->nr_hw_queues; i++) { 2296 int node; 2297 2298 if (hctxs[i]) 2299 continue; 2300 2301 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2302 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2303 GFP_KERNEL, node); 2304 if (!hctxs[i]) 2305 break; 2306 2307 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2308 node)) { 2309 kfree(hctxs[i]); 2310 hctxs[i] = NULL; 2311 break; 2312 } 2313 2314 atomic_set(&hctxs[i]->nr_active, 0); 2315 hctxs[i]->numa_node = node; 2316 hctxs[i]->queue_num = i; 2317 2318 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2319 free_cpumask_var(hctxs[i]->cpumask); 2320 kfree(hctxs[i]); 2321 hctxs[i] = NULL; 2322 break; 2323 } 2324 blk_mq_hctx_kobj_init(hctxs[i]); 2325 } 2326 for (j = i; j < q->nr_hw_queues; j++) { 2327 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2328 2329 if (hctx) { 2330 if (hctx->tags) 2331 blk_mq_free_map_and_requests(set, j); 2332 blk_mq_exit_hctx(q, set, hctx, j); 2333 free_cpumask_var(hctx->cpumask); 2334 kobject_put(&hctx->kobj); 2335 kfree(hctx->ctxs); 2336 kfree(hctx); 2337 hctxs[j] = NULL; 2338 2339 } 2340 } 2341 q->nr_hw_queues = i; 2342 blk_mq_sysfs_register(q); 2343 } 2344 2345 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2346 struct request_queue *q) 2347 { 2348 /* mark the queue as mq asap */ 2349 q->mq_ops = set->ops; 2350 2351 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2352 if (!q->queue_ctx) 2353 goto err_exit; 2354 2355 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2356 GFP_KERNEL, set->numa_node); 2357 if (!q->queue_hw_ctx) 2358 goto err_percpu; 2359 2360 q->mq_map = set->mq_map; 2361 2362 blk_mq_realloc_hw_ctxs(set, q); 2363 if (!q->nr_hw_queues) 2364 goto err_hctxs; 2365 2366 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2367 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2368 2369 q->nr_queues = nr_cpu_ids; 2370 2371 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2372 2373 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2374 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2375 2376 q->sg_reserved_size = INT_MAX; 2377 2378 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2379 INIT_LIST_HEAD(&q->requeue_list); 2380 spin_lock_init(&q->requeue_lock); 2381 2382 if (q->nr_hw_queues > 1) 2383 blk_queue_make_request(q, blk_mq_make_request); 2384 else 2385 blk_queue_make_request(q, blk_sq_make_request); 2386 2387 /* 2388 * Do this after blk_queue_make_request() overrides it... 2389 */ 2390 q->nr_requests = set->queue_depth; 2391 2392 /* 2393 * Default to classic polling 2394 */ 2395 q->poll_nsec = -1; 2396 2397 if (set->ops->complete) 2398 blk_queue_softirq_done(q, set->ops->complete); 2399 2400 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2401 2402 get_online_cpus(); 2403 mutex_lock(&all_q_mutex); 2404 2405 list_add_tail(&q->all_q_node, &all_q_list); 2406 blk_mq_add_queue_tag_set(set, q); 2407 blk_mq_map_swqueue(q, cpu_online_mask); 2408 2409 mutex_unlock(&all_q_mutex); 2410 put_online_cpus(); 2411 2412 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2413 int ret; 2414 2415 ret = blk_mq_sched_init(q); 2416 if (ret) 2417 return ERR_PTR(ret); 2418 } 2419 2420 return q; 2421 2422 err_hctxs: 2423 kfree(q->queue_hw_ctx); 2424 err_percpu: 2425 free_percpu(q->queue_ctx); 2426 err_exit: 2427 q->mq_ops = NULL; 2428 return ERR_PTR(-ENOMEM); 2429 } 2430 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2431 2432 void blk_mq_free_queue(struct request_queue *q) 2433 { 2434 struct blk_mq_tag_set *set = q->tag_set; 2435 2436 mutex_lock(&all_q_mutex); 2437 list_del_init(&q->all_q_node); 2438 mutex_unlock(&all_q_mutex); 2439 2440 wbt_exit(q); 2441 2442 blk_mq_del_queue_tag_set(q); 2443 2444 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2445 blk_mq_free_hw_queues(q, set); 2446 } 2447 2448 /* Basically redo blk_mq_init_queue with queue frozen */ 2449 static void blk_mq_queue_reinit(struct request_queue *q, 2450 const struct cpumask *online_mask) 2451 { 2452 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2453 2454 blk_mq_sysfs_unregister(q); 2455 2456 /* 2457 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2458 * we should change hctx numa_node according to new topology (this 2459 * involves free and re-allocate memory, worthy doing?) 2460 */ 2461 2462 blk_mq_map_swqueue(q, online_mask); 2463 2464 blk_mq_sysfs_register(q); 2465 } 2466 2467 /* 2468 * New online cpumask which is going to be set in this hotplug event. 2469 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2470 * one-by-one and dynamically allocating this could result in a failure. 2471 */ 2472 static struct cpumask cpuhp_online_new; 2473 2474 static void blk_mq_queue_reinit_work(void) 2475 { 2476 struct request_queue *q; 2477 2478 mutex_lock(&all_q_mutex); 2479 /* 2480 * We need to freeze and reinit all existing queues. Freezing 2481 * involves synchronous wait for an RCU grace period and doing it 2482 * one by one may take a long time. Start freezing all queues in 2483 * one swoop and then wait for the completions so that freezing can 2484 * take place in parallel. 2485 */ 2486 list_for_each_entry(q, &all_q_list, all_q_node) 2487 blk_mq_freeze_queue_start(q); 2488 list_for_each_entry(q, &all_q_list, all_q_node) 2489 blk_mq_freeze_queue_wait(q); 2490 2491 list_for_each_entry(q, &all_q_list, all_q_node) 2492 blk_mq_queue_reinit(q, &cpuhp_online_new); 2493 2494 list_for_each_entry(q, &all_q_list, all_q_node) 2495 blk_mq_unfreeze_queue(q); 2496 2497 mutex_unlock(&all_q_mutex); 2498 } 2499 2500 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2501 { 2502 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2503 blk_mq_queue_reinit_work(); 2504 return 0; 2505 } 2506 2507 /* 2508 * Before hotadded cpu starts handling requests, new mappings must be 2509 * established. Otherwise, these requests in hw queue might never be 2510 * dispatched. 2511 * 2512 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2513 * for CPU0, and ctx1 for CPU1). 2514 * 2515 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2516 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2517 * 2518 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set 2519 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2520 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is 2521 * ignored. 2522 */ 2523 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2524 { 2525 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2526 cpumask_set_cpu(cpu, &cpuhp_online_new); 2527 blk_mq_queue_reinit_work(); 2528 return 0; 2529 } 2530 2531 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2532 { 2533 int i; 2534 2535 for (i = 0; i < set->nr_hw_queues; i++) 2536 if (!__blk_mq_alloc_rq_map(set, i)) 2537 goto out_unwind; 2538 2539 return 0; 2540 2541 out_unwind: 2542 while (--i >= 0) 2543 blk_mq_free_rq_map(set->tags[i]); 2544 2545 return -ENOMEM; 2546 } 2547 2548 /* 2549 * Allocate the request maps associated with this tag_set. Note that this 2550 * may reduce the depth asked for, if memory is tight. set->queue_depth 2551 * will be updated to reflect the allocated depth. 2552 */ 2553 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2554 { 2555 unsigned int depth; 2556 int err; 2557 2558 depth = set->queue_depth; 2559 do { 2560 err = __blk_mq_alloc_rq_maps(set); 2561 if (!err) 2562 break; 2563 2564 set->queue_depth >>= 1; 2565 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2566 err = -ENOMEM; 2567 break; 2568 } 2569 } while (set->queue_depth); 2570 2571 if (!set->queue_depth || err) { 2572 pr_err("blk-mq: failed to allocate request map\n"); 2573 return -ENOMEM; 2574 } 2575 2576 if (depth != set->queue_depth) 2577 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2578 depth, set->queue_depth); 2579 2580 return 0; 2581 } 2582 2583 /* 2584 * Alloc a tag set to be associated with one or more request queues. 2585 * May fail with EINVAL for various error conditions. May adjust the 2586 * requested depth down, if if it too large. In that case, the set 2587 * value will be stored in set->queue_depth. 2588 */ 2589 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2590 { 2591 int ret; 2592 2593 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2594 2595 if (!set->nr_hw_queues) 2596 return -EINVAL; 2597 if (!set->queue_depth) 2598 return -EINVAL; 2599 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2600 return -EINVAL; 2601 2602 if (!set->ops->queue_rq) 2603 return -EINVAL; 2604 2605 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2606 pr_info("blk-mq: reduced tag depth to %u\n", 2607 BLK_MQ_MAX_DEPTH); 2608 set->queue_depth = BLK_MQ_MAX_DEPTH; 2609 } 2610 2611 /* 2612 * If a crashdump is active, then we are potentially in a very 2613 * memory constrained environment. Limit us to 1 queue and 2614 * 64 tags to prevent using too much memory. 2615 */ 2616 if (is_kdump_kernel()) { 2617 set->nr_hw_queues = 1; 2618 set->queue_depth = min(64U, set->queue_depth); 2619 } 2620 /* 2621 * There is no use for more h/w queues than cpus. 2622 */ 2623 if (set->nr_hw_queues > nr_cpu_ids) 2624 set->nr_hw_queues = nr_cpu_ids; 2625 2626 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2627 GFP_KERNEL, set->numa_node); 2628 if (!set->tags) 2629 return -ENOMEM; 2630 2631 ret = -ENOMEM; 2632 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2633 GFP_KERNEL, set->numa_node); 2634 if (!set->mq_map) 2635 goto out_free_tags; 2636 2637 if (set->ops->map_queues) 2638 ret = set->ops->map_queues(set); 2639 else 2640 ret = blk_mq_map_queues(set); 2641 if (ret) 2642 goto out_free_mq_map; 2643 2644 ret = blk_mq_alloc_rq_maps(set); 2645 if (ret) 2646 goto out_free_mq_map; 2647 2648 mutex_init(&set->tag_list_lock); 2649 INIT_LIST_HEAD(&set->tag_list); 2650 2651 return 0; 2652 2653 out_free_mq_map: 2654 kfree(set->mq_map); 2655 set->mq_map = NULL; 2656 out_free_tags: 2657 kfree(set->tags); 2658 set->tags = NULL; 2659 return ret; 2660 } 2661 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2662 2663 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2664 { 2665 int i; 2666 2667 for (i = 0; i < nr_cpu_ids; i++) 2668 blk_mq_free_map_and_requests(set, i); 2669 2670 kfree(set->mq_map); 2671 set->mq_map = NULL; 2672 2673 kfree(set->tags); 2674 set->tags = NULL; 2675 } 2676 EXPORT_SYMBOL(blk_mq_free_tag_set); 2677 2678 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2679 { 2680 struct blk_mq_tag_set *set = q->tag_set; 2681 struct blk_mq_hw_ctx *hctx; 2682 int i, ret; 2683 2684 if (!set) 2685 return -EINVAL; 2686 2687 blk_mq_freeze_queue(q); 2688 blk_mq_quiesce_queue(q); 2689 2690 ret = 0; 2691 queue_for_each_hw_ctx(q, hctx, i) { 2692 if (!hctx->tags) 2693 continue; 2694 /* 2695 * If we're using an MQ scheduler, just update the scheduler 2696 * queue depth. This is similar to what the old code would do. 2697 */ 2698 if (!hctx->sched_tags) { 2699 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, 2700 min(nr, set->queue_depth), 2701 false); 2702 } else { 2703 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2704 nr, true); 2705 } 2706 if (ret) 2707 break; 2708 } 2709 2710 if (!ret) 2711 q->nr_requests = nr; 2712 2713 blk_mq_unfreeze_queue(q); 2714 blk_mq_start_stopped_hw_queues(q, true); 2715 2716 return ret; 2717 } 2718 2719 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2720 { 2721 struct request_queue *q; 2722 2723 if (nr_hw_queues > nr_cpu_ids) 2724 nr_hw_queues = nr_cpu_ids; 2725 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2726 return; 2727 2728 list_for_each_entry(q, &set->tag_list, tag_set_list) 2729 blk_mq_freeze_queue(q); 2730 2731 set->nr_hw_queues = nr_hw_queues; 2732 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2733 blk_mq_realloc_hw_ctxs(set, q); 2734 2735 /* 2736 * Manually set the make_request_fn as blk_queue_make_request 2737 * resets a lot of the queue settings. 2738 */ 2739 if (q->nr_hw_queues > 1) 2740 q->make_request_fn = blk_mq_make_request; 2741 else 2742 q->make_request_fn = blk_sq_make_request; 2743 2744 blk_mq_queue_reinit(q, cpu_online_mask); 2745 } 2746 2747 list_for_each_entry(q, &set->tag_list, tag_set_list) 2748 blk_mq_unfreeze_queue(q); 2749 } 2750 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2751 2752 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2753 struct blk_mq_hw_ctx *hctx, 2754 struct request *rq) 2755 { 2756 struct blk_rq_stat stat[2]; 2757 unsigned long ret = 0; 2758 2759 /* 2760 * If stats collection isn't on, don't sleep but turn it on for 2761 * future users 2762 */ 2763 if (!blk_stat_enable(q)) 2764 return 0; 2765 2766 /* 2767 * We don't have to do this once per IO, should optimize this 2768 * to just use the current window of stats until it changes 2769 */ 2770 memset(&stat, 0, sizeof(stat)); 2771 blk_hctx_stat_get(hctx, stat); 2772 2773 /* 2774 * As an optimistic guess, use half of the mean service time 2775 * for this type of request. We can (and should) make this smarter. 2776 * For instance, if the completion latencies are tight, we can 2777 * get closer than just half the mean. This is especially 2778 * important on devices where the completion latencies are longer 2779 * than ~10 usec. 2780 */ 2781 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) 2782 ret = (stat[BLK_STAT_READ].mean + 1) / 2; 2783 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) 2784 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; 2785 2786 return ret; 2787 } 2788 2789 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2790 struct blk_mq_hw_ctx *hctx, 2791 struct request *rq) 2792 { 2793 struct hrtimer_sleeper hs; 2794 enum hrtimer_mode mode; 2795 unsigned int nsecs; 2796 ktime_t kt; 2797 2798 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2799 return false; 2800 2801 /* 2802 * poll_nsec can be: 2803 * 2804 * -1: don't ever hybrid sleep 2805 * 0: use half of prev avg 2806 * >0: use this specific value 2807 */ 2808 if (q->poll_nsec == -1) 2809 return false; 2810 else if (q->poll_nsec > 0) 2811 nsecs = q->poll_nsec; 2812 else 2813 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2814 2815 if (!nsecs) 2816 return false; 2817 2818 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2819 2820 /* 2821 * This will be replaced with the stats tracking code, using 2822 * 'avg_completion_time / 2' as the pre-sleep target. 2823 */ 2824 kt = nsecs; 2825 2826 mode = HRTIMER_MODE_REL; 2827 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2828 hrtimer_set_expires(&hs.timer, kt); 2829 2830 hrtimer_init_sleeper(&hs, current); 2831 do { 2832 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2833 break; 2834 set_current_state(TASK_UNINTERRUPTIBLE); 2835 hrtimer_start_expires(&hs.timer, mode); 2836 if (hs.task) 2837 io_schedule(); 2838 hrtimer_cancel(&hs.timer); 2839 mode = HRTIMER_MODE_ABS; 2840 } while (hs.task && !signal_pending(current)); 2841 2842 __set_current_state(TASK_RUNNING); 2843 destroy_hrtimer_on_stack(&hs.timer); 2844 return true; 2845 } 2846 2847 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2848 { 2849 struct request_queue *q = hctx->queue; 2850 long state; 2851 2852 /* 2853 * If we sleep, have the caller restart the poll loop to reset 2854 * the state. Like for the other success return cases, the 2855 * caller is responsible for checking if the IO completed. If 2856 * the IO isn't complete, we'll get called again and will go 2857 * straight to the busy poll loop. 2858 */ 2859 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2860 return true; 2861 2862 hctx->poll_considered++; 2863 2864 state = current->state; 2865 while (!need_resched()) { 2866 int ret; 2867 2868 hctx->poll_invoked++; 2869 2870 ret = q->mq_ops->poll(hctx, rq->tag); 2871 if (ret > 0) { 2872 hctx->poll_success++; 2873 set_current_state(TASK_RUNNING); 2874 return true; 2875 } 2876 2877 if (signal_pending_state(state, current)) 2878 set_current_state(TASK_RUNNING); 2879 2880 if (current->state == TASK_RUNNING) 2881 return true; 2882 if (ret < 0) 2883 break; 2884 cpu_relax(); 2885 } 2886 2887 return false; 2888 } 2889 2890 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2891 { 2892 struct blk_mq_hw_ctx *hctx; 2893 struct blk_plug *plug; 2894 struct request *rq; 2895 2896 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2897 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2898 return false; 2899 2900 plug = current->plug; 2901 if (plug) 2902 blk_flush_plug_list(plug, false); 2903 2904 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2905 if (!blk_qc_t_is_internal(cookie)) 2906 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2907 else 2908 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2909 2910 return __blk_mq_poll(hctx, rq); 2911 } 2912 EXPORT_SYMBOL_GPL(blk_mq_poll); 2913 2914 void blk_mq_disable_hotplug(void) 2915 { 2916 mutex_lock(&all_q_mutex); 2917 } 2918 2919 void blk_mq_enable_hotplug(void) 2920 { 2921 mutex_unlock(&all_q_mutex); 2922 } 2923 2924 static int __init blk_mq_init(void) 2925 { 2926 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2927 blk_mq_hctx_notify_dead); 2928 2929 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2930 blk_mq_queue_reinit_prepare, 2931 blk_mq_queue_reinit_dead); 2932 return 0; 2933 } 2934 subsys_initcall(blk_mq_init); 2935