xref: /openbmc/linux/block/blk-mq.c (revision aa6159ab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if (rq->part == mi->part && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
109 		mi->inflight[rq_data_dir(rq)]++;
110 
111 	return true;
112 }
113 
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 
120 	return mi.inflight[0] + mi.inflight[1];
121 }
122 
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 			 unsigned int inflight[2])
125 {
126 	struct mq_inflight mi = { .part = part };
127 
128 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 	inflight[0] = mi.inflight[0];
130 	inflight[1] = mi.inflight[1];
131 }
132 
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135 	mutex_lock(&q->mq_freeze_lock);
136 	if (++q->mq_freeze_depth == 1) {
137 		percpu_ref_kill(&q->q_usage_counter);
138 		mutex_unlock(&q->mq_freeze_lock);
139 		if (queue_is_mq(q))
140 			blk_mq_run_hw_queues(q, false);
141 	} else {
142 		mutex_unlock(&q->mq_freeze_lock);
143 	}
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146 
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152 
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 				     unsigned long timeout)
155 {
156 	return wait_event_timeout(q->mq_freeze_wq,
157 					percpu_ref_is_zero(&q->q_usage_counter),
158 					timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161 
162 /*
163  * Guarantee no request is in use, so we can change any data structure of
164  * the queue afterward.
165  */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168 	/*
169 	 * In the !blk_mq case we are only calling this to kill the
170 	 * q_usage_counter, otherwise this increases the freeze depth
171 	 * and waits for it to return to zero.  For this reason there is
172 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 	 * exported to drivers as the only user for unfreeze is blk_mq.
174 	 */
175 	blk_freeze_queue_start(q);
176 	blk_mq_freeze_queue_wait(q);
177 }
178 
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181 	/*
182 	 * ...just an alias to keep freeze and unfreeze actions balanced
183 	 * in the blk_mq_* namespace
184 	 */
185 	blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188 
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191 	mutex_lock(&q->mq_freeze_lock);
192 	q->mq_freeze_depth--;
193 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 	if (!q->mq_freeze_depth) {
195 		percpu_ref_resurrect(&q->q_usage_counter);
196 		wake_up_all(&q->mq_freeze_wq);
197 	}
198 	mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201 
202 /*
203  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204  * mpt3sas driver such that this function can be removed.
205  */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211 
212 /**
213  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214  * @q: request queue.
215  *
216  * Note: this function does not prevent that the struct request end_io()
217  * callback function is invoked. Once this function is returned, we make
218  * sure no dispatch can happen until the queue is unquiesced via
219  * blk_mq_unquiesce_queue().
220  */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223 	struct blk_mq_hw_ctx *hctx;
224 	unsigned int i;
225 	bool rcu = false;
226 
227 	blk_mq_quiesce_queue_nowait(q);
228 
229 	queue_for_each_hw_ctx(q, hctx, i) {
230 		if (hctx->flags & BLK_MQ_F_BLOCKING)
231 			synchronize_srcu(hctx->srcu);
232 		else
233 			rcu = true;
234 	}
235 	if (rcu)
236 		synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239 
240 /*
241  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242  * @q: request queue.
243  *
244  * This function recovers queue into the state before quiescing
245  * which is done by blk_mq_quiesce_queue.
246  */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250 
251 	/* dispatch requests which are inserted during quiescing */
252 	blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255 
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258 	struct blk_mq_hw_ctx *hctx;
259 	unsigned int i;
260 
261 	queue_for_each_hw_ctx(q, hctx, i)
262 		if (blk_mq_hw_queue_mapped(hctx))
263 			blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265 
266 /*
267  * Only need start/end time stamping if we have iostat or
268  * blk stats enabled, or using an IO scheduler.
269  */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274 
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 		unsigned int tag, u64 alloc_time_ns)
277 {
278 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 	struct request *rq = tags->static_rqs[tag];
280 
281 	if (data->q->elevator) {
282 		rq->tag = BLK_MQ_NO_TAG;
283 		rq->internal_tag = tag;
284 	} else {
285 		rq->tag = tag;
286 		rq->internal_tag = BLK_MQ_NO_TAG;
287 	}
288 
289 	/* csd/requeue_work/fifo_time is initialized before use */
290 	rq->q = data->q;
291 	rq->mq_ctx = data->ctx;
292 	rq->mq_hctx = data->hctx;
293 	rq->rq_flags = 0;
294 	rq->cmd_flags = data->cmd_flags;
295 	if (data->flags & BLK_MQ_REQ_PREEMPT)
296 		rq->rq_flags |= RQF_PREEMPT;
297 	if (blk_queue_io_stat(data->q))
298 		rq->rq_flags |= RQF_IO_STAT;
299 	INIT_LIST_HEAD(&rq->queuelist);
300 	INIT_HLIST_NODE(&rq->hash);
301 	RB_CLEAR_NODE(&rq->rb_node);
302 	rq->rq_disk = NULL;
303 	rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305 	rq->alloc_time_ns = alloc_time_ns;
306 #endif
307 	if (blk_mq_need_time_stamp(rq))
308 		rq->start_time_ns = ktime_get_ns();
309 	else
310 		rq->start_time_ns = 0;
311 	rq->io_start_time_ns = 0;
312 	rq->stats_sectors = 0;
313 	rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 	rq->nr_integrity_segments = 0;
316 #endif
317 	blk_crypto_rq_set_defaults(rq);
318 	/* tag was already set */
319 	WRITE_ONCE(rq->deadline, 0);
320 
321 	rq->timeout = 0;
322 
323 	rq->end_io = NULL;
324 	rq->end_io_data = NULL;
325 
326 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327 	refcount_set(&rq->ref, 1);
328 
329 	if (!op_is_flush(data->cmd_flags)) {
330 		struct elevator_queue *e = data->q->elevator;
331 
332 		rq->elv.icq = NULL;
333 		if (e && e->type->ops.prepare_request) {
334 			if (e->type->icq_cache)
335 				blk_mq_sched_assign_ioc(rq);
336 
337 			e->type->ops.prepare_request(rq);
338 			rq->rq_flags |= RQF_ELVPRIV;
339 		}
340 	}
341 
342 	data->hctx->queued++;
343 	return rq;
344 }
345 
346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348 	struct request_queue *q = data->q;
349 	struct elevator_queue *e = q->elevator;
350 	u64 alloc_time_ns = 0;
351 	unsigned int tag;
352 
353 	/* alloc_time includes depth and tag waits */
354 	if (blk_queue_rq_alloc_time(q))
355 		alloc_time_ns = ktime_get_ns();
356 
357 	if (data->cmd_flags & REQ_NOWAIT)
358 		data->flags |= BLK_MQ_REQ_NOWAIT;
359 
360 	if (e) {
361 		/*
362 		 * Flush requests are special and go directly to the
363 		 * dispatch list. Don't include reserved tags in the
364 		 * limiting, as it isn't useful.
365 		 */
366 		if (!op_is_flush(data->cmd_flags) &&
367 		    e->type->ops.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.limit_depth(data->cmd_flags, data);
370 	}
371 
372 retry:
373 	data->ctx = blk_mq_get_ctx(q);
374 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375 	if (!e)
376 		blk_mq_tag_busy(data->hctx);
377 
378 	/*
379 	 * Waiting allocations only fail because of an inactive hctx.  In that
380 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
381 	 * should have migrated us to an online CPU by now.
382 	 */
383 	tag = blk_mq_get_tag(data);
384 	if (tag == BLK_MQ_NO_TAG) {
385 		if (data->flags & BLK_MQ_REQ_NOWAIT)
386 			return NULL;
387 
388 		/*
389 		 * Give up the CPU and sleep for a random short time to ensure
390 		 * that thread using a realtime scheduling class are migrated
391 		 * off the CPU, and thus off the hctx that is going away.
392 		 */
393 		msleep(3);
394 		goto retry;
395 	}
396 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398 
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 		blk_mq_req_flags_t flags)
401 {
402 	struct blk_mq_alloc_data data = {
403 		.q		= q,
404 		.flags		= flags,
405 		.cmd_flags	= op,
406 	};
407 	struct request *rq;
408 	int ret;
409 
410 	ret = blk_queue_enter(q, flags);
411 	if (ret)
412 		return ERR_PTR(ret);
413 
414 	rq = __blk_mq_alloc_request(&data);
415 	if (!rq)
416 		goto out_queue_exit;
417 	rq->__data_len = 0;
418 	rq->__sector = (sector_t) -1;
419 	rq->bio = rq->biotail = NULL;
420 	return rq;
421 out_queue_exit:
422 	blk_queue_exit(q);
423 	return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426 
427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430 	struct blk_mq_alloc_data data = {
431 		.q		= q,
432 		.flags		= flags,
433 		.cmd_flags	= op,
434 	};
435 	u64 alloc_time_ns = 0;
436 	unsigned int cpu;
437 	unsigned int tag;
438 	int ret;
439 
440 	/* alloc_time includes depth and tag waits */
441 	if (blk_queue_rq_alloc_time(q))
442 		alloc_time_ns = ktime_get_ns();
443 
444 	/*
445 	 * If the tag allocator sleeps we could get an allocation for a
446 	 * different hardware context.  No need to complicate the low level
447 	 * allocator for this for the rare use case of a command tied to
448 	 * a specific queue.
449 	 */
450 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451 		return ERR_PTR(-EINVAL);
452 
453 	if (hctx_idx >= q->nr_hw_queues)
454 		return ERR_PTR(-EIO);
455 
456 	ret = blk_queue_enter(q, flags);
457 	if (ret)
458 		return ERR_PTR(ret);
459 
460 	/*
461 	 * Check if the hardware context is actually mapped to anything.
462 	 * If not tell the caller that it should skip this queue.
463 	 */
464 	ret = -EXDEV;
465 	data.hctx = q->queue_hw_ctx[hctx_idx];
466 	if (!blk_mq_hw_queue_mapped(data.hctx))
467 		goto out_queue_exit;
468 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469 	data.ctx = __blk_mq_get_ctx(q, cpu);
470 
471 	if (!q->elevator)
472 		blk_mq_tag_busy(data.hctx);
473 
474 	ret = -EWOULDBLOCK;
475 	tag = blk_mq_get_tag(&data);
476 	if (tag == BLK_MQ_NO_TAG)
477 		goto out_queue_exit;
478 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479 
480 out_queue_exit:
481 	blk_queue_exit(q);
482 	return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485 
486 static void __blk_mq_free_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 	struct blk_mq_ctx *ctx = rq->mq_ctx;
490 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 	const int sched_tag = rq->internal_tag;
492 
493 	blk_crypto_free_request(rq);
494 	blk_pm_mark_last_busy(rq);
495 	rq->mq_hctx = NULL;
496 	if (rq->tag != BLK_MQ_NO_TAG)
497 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498 	if (sched_tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500 	blk_mq_sched_restart(hctx);
501 	blk_queue_exit(q);
502 }
503 
504 void blk_mq_free_request(struct request *rq)
505 {
506 	struct request_queue *q = rq->q;
507 	struct elevator_queue *e = q->elevator;
508 	struct blk_mq_ctx *ctx = rq->mq_ctx;
509 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510 
511 	if (rq->rq_flags & RQF_ELVPRIV) {
512 		if (e && e->type->ops.finish_request)
513 			e->type->ops.finish_request(rq);
514 		if (rq->elv.icq) {
515 			put_io_context(rq->elv.icq->ioc);
516 			rq->elv.icq = NULL;
517 		}
518 	}
519 
520 	ctx->rq_completed[rq_is_sync(rq)]++;
521 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
522 		__blk_mq_dec_active_requests(hctx);
523 
524 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525 		laptop_io_completion(q->backing_dev_info);
526 
527 	rq_qos_done(q, rq);
528 
529 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530 	if (refcount_dec_and_test(&rq->ref))
531 		__blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534 
535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 	u64 now = 0;
538 
539 	if (blk_mq_need_time_stamp(rq))
540 		now = ktime_get_ns();
541 
542 	if (rq->rq_flags & RQF_STATS) {
543 		blk_mq_poll_stats_start(rq->q);
544 		blk_stat_add(rq, now);
545 	}
546 
547 	blk_mq_sched_completed_request(rq, now);
548 
549 	blk_account_io_done(rq, now);
550 
551 	if (rq->end_io) {
552 		rq_qos_done(rq->q, rq);
553 		rq->end_io(rq, error);
554 	} else {
555 		blk_mq_free_request(rq);
556 	}
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559 
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 		BUG();
564 	__blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567 
568 /*
569  * Softirq action handler - move entries to local list and loop over them
570  * while passing them to the queue registered handler.
571  */
572 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573 {
574 	struct list_head *cpu_list, local_list;
575 
576 	local_irq_disable();
577 	cpu_list = this_cpu_ptr(&blk_cpu_done);
578 	list_replace_init(cpu_list, &local_list);
579 	local_irq_enable();
580 
581 	while (!list_empty(&local_list)) {
582 		struct request *rq;
583 
584 		rq = list_entry(local_list.next, struct request, ipi_list);
585 		list_del_init(&rq->ipi_list);
586 		rq->q->mq_ops->complete(rq);
587 	}
588 }
589 
590 static void blk_mq_trigger_softirq(struct request *rq)
591 {
592 	struct list_head *list;
593 	unsigned long flags;
594 
595 	local_irq_save(flags);
596 	list = this_cpu_ptr(&blk_cpu_done);
597 	list_add_tail(&rq->ipi_list, list);
598 
599 	/*
600 	 * If the list only contains our just added request, signal a raise of
601 	 * the softirq.  If there are already entries there, someone already
602 	 * raised the irq but it hasn't run yet.
603 	 */
604 	if (list->next == &rq->ipi_list)
605 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
606 	local_irq_restore(flags);
607 }
608 
609 static int blk_softirq_cpu_dead(unsigned int cpu)
610 {
611 	/*
612 	 * If a CPU goes away, splice its entries to the current CPU
613 	 * and trigger a run of the softirq
614 	 */
615 	local_irq_disable();
616 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
617 			 this_cpu_ptr(&blk_cpu_done));
618 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
619 	local_irq_enable();
620 
621 	return 0;
622 }
623 
624 
625 static void __blk_mq_complete_request_remote(void *data)
626 {
627 	struct request *rq = data;
628 
629 	/*
630 	 * For most of single queue controllers, there is only one irq vector
631 	 * for handling I/O completion, and the only irq's affinity is set
632 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
633 	 * is handled on one specific CPU.
634 	 *
635 	 * So complete I/O requests in softirq context in case of single queue
636 	 * devices to avoid degrading I/O performance due to irqsoff latency.
637 	 */
638 	if (rq->q->nr_hw_queues == 1)
639 		blk_mq_trigger_softirq(rq);
640 	else
641 		rq->q->mq_ops->complete(rq);
642 }
643 
644 static inline bool blk_mq_complete_need_ipi(struct request *rq)
645 {
646 	int cpu = raw_smp_processor_id();
647 
648 	if (!IS_ENABLED(CONFIG_SMP) ||
649 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650 		return false;
651 
652 	/* same CPU or cache domain?  Complete locally */
653 	if (cpu == rq->mq_ctx->cpu ||
654 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656 		return false;
657 
658 	/* don't try to IPI to an offline CPU */
659 	return cpu_online(rq->mq_ctx->cpu);
660 }
661 
662 bool blk_mq_complete_request_remote(struct request *rq)
663 {
664 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665 
666 	/*
667 	 * For a polled request, always complete locallly, it's pointless
668 	 * to redirect the completion.
669 	 */
670 	if (rq->cmd_flags & REQ_HIPRI)
671 		return false;
672 
673 	if (blk_mq_complete_need_ipi(rq)) {
674 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
675 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
676 	} else {
677 		if (rq->q->nr_hw_queues > 1)
678 			return false;
679 		blk_mq_trigger_softirq(rq);
680 	}
681 
682 	return true;
683 }
684 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
685 
686 /**
687  * blk_mq_complete_request - end I/O on a request
688  * @rq:		the request being processed
689  *
690  * Description:
691  *	Complete a request by scheduling the ->complete_rq operation.
692  **/
693 void blk_mq_complete_request(struct request *rq)
694 {
695 	if (!blk_mq_complete_request_remote(rq))
696 		rq->q->mq_ops->complete(rq);
697 }
698 EXPORT_SYMBOL(blk_mq_complete_request);
699 
700 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
701 	__releases(hctx->srcu)
702 {
703 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
704 		rcu_read_unlock();
705 	else
706 		srcu_read_unlock(hctx->srcu, srcu_idx);
707 }
708 
709 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
710 	__acquires(hctx->srcu)
711 {
712 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
713 		/* shut up gcc false positive */
714 		*srcu_idx = 0;
715 		rcu_read_lock();
716 	} else
717 		*srcu_idx = srcu_read_lock(hctx->srcu);
718 }
719 
720 /**
721  * blk_mq_start_request - Start processing a request
722  * @rq: Pointer to request to be started
723  *
724  * Function used by device drivers to notify the block layer that a request
725  * is going to be processed now, so blk layer can do proper initializations
726  * such as starting the timeout timer.
727  */
728 void blk_mq_start_request(struct request *rq)
729 {
730 	struct request_queue *q = rq->q;
731 
732 	trace_block_rq_issue(q, rq);
733 
734 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
735 		rq->io_start_time_ns = ktime_get_ns();
736 		rq->stats_sectors = blk_rq_sectors(rq);
737 		rq->rq_flags |= RQF_STATS;
738 		rq_qos_issue(q, rq);
739 	}
740 
741 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
742 
743 	blk_add_timer(rq);
744 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
745 
746 #ifdef CONFIG_BLK_DEV_INTEGRITY
747 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
748 		q->integrity.profile->prepare_fn(rq);
749 #endif
750 }
751 EXPORT_SYMBOL(blk_mq_start_request);
752 
753 static void __blk_mq_requeue_request(struct request *rq)
754 {
755 	struct request_queue *q = rq->q;
756 
757 	blk_mq_put_driver_tag(rq);
758 
759 	trace_block_rq_requeue(q, rq);
760 	rq_qos_requeue(q, rq);
761 
762 	if (blk_mq_request_started(rq)) {
763 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
764 		rq->rq_flags &= ~RQF_TIMED_OUT;
765 	}
766 }
767 
768 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
769 {
770 	__blk_mq_requeue_request(rq);
771 
772 	/* this request will be re-inserted to io scheduler queue */
773 	blk_mq_sched_requeue_request(rq);
774 
775 	BUG_ON(!list_empty(&rq->queuelist));
776 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
777 }
778 EXPORT_SYMBOL(blk_mq_requeue_request);
779 
780 static void blk_mq_requeue_work(struct work_struct *work)
781 {
782 	struct request_queue *q =
783 		container_of(work, struct request_queue, requeue_work.work);
784 	LIST_HEAD(rq_list);
785 	struct request *rq, *next;
786 
787 	spin_lock_irq(&q->requeue_lock);
788 	list_splice_init(&q->requeue_list, &rq_list);
789 	spin_unlock_irq(&q->requeue_lock);
790 
791 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
792 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
793 			continue;
794 
795 		rq->rq_flags &= ~RQF_SOFTBARRIER;
796 		list_del_init(&rq->queuelist);
797 		/*
798 		 * If RQF_DONTPREP, rq has contained some driver specific
799 		 * data, so insert it to hctx dispatch list to avoid any
800 		 * merge.
801 		 */
802 		if (rq->rq_flags & RQF_DONTPREP)
803 			blk_mq_request_bypass_insert(rq, false, false);
804 		else
805 			blk_mq_sched_insert_request(rq, true, false, false);
806 	}
807 
808 	while (!list_empty(&rq_list)) {
809 		rq = list_entry(rq_list.next, struct request, queuelist);
810 		list_del_init(&rq->queuelist);
811 		blk_mq_sched_insert_request(rq, false, false, false);
812 	}
813 
814 	blk_mq_run_hw_queues(q, false);
815 }
816 
817 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
818 				bool kick_requeue_list)
819 {
820 	struct request_queue *q = rq->q;
821 	unsigned long flags;
822 
823 	/*
824 	 * We abuse this flag that is otherwise used by the I/O scheduler to
825 	 * request head insertion from the workqueue.
826 	 */
827 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
828 
829 	spin_lock_irqsave(&q->requeue_lock, flags);
830 	if (at_head) {
831 		rq->rq_flags |= RQF_SOFTBARRIER;
832 		list_add(&rq->queuelist, &q->requeue_list);
833 	} else {
834 		list_add_tail(&rq->queuelist, &q->requeue_list);
835 	}
836 	spin_unlock_irqrestore(&q->requeue_lock, flags);
837 
838 	if (kick_requeue_list)
839 		blk_mq_kick_requeue_list(q);
840 }
841 
842 void blk_mq_kick_requeue_list(struct request_queue *q)
843 {
844 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
845 }
846 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
847 
848 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
849 				    unsigned long msecs)
850 {
851 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
852 				    msecs_to_jiffies(msecs));
853 }
854 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
855 
856 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
857 {
858 	if (tag < tags->nr_tags) {
859 		prefetch(tags->rqs[tag]);
860 		return tags->rqs[tag];
861 	}
862 
863 	return NULL;
864 }
865 EXPORT_SYMBOL(blk_mq_tag_to_rq);
866 
867 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
868 			       void *priv, bool reserved)
869 {
870 	/*
871 	 * If we find a request that isn't idle and the queue matches,
872 	 * we know the queue is busy. Return false to stop the iteration.
873 	 */
874 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
875 		bool *busy = priv;
876 
877 		*busy = true;
878 		return false;
879 	}
880 
881 	return true;
882 }
883 
884 bool blk_mq_queue_inflight(struct request_queue *q)
885 {
886 	bool busy = false;
887 
888 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
889 	return busy;
890 }
891 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
892 
893 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
894 {
895 	req->rq_flags |= RQF_TIMED_OUT;
896 	if (req->q->mq_ops->timeout) {
897 		enum blk_eh_timer_return ret;
898 
899 		ret = req->q->mq_ops->timeout(req, reserved);
900 		if (ret == BLK_EH_DONE)
901 			return;
902 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
903 	}
904 
905 	blk_add_timer(req);
906 }
907 
908 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
909 {
910 	unsigned long deadline;
911 
912 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
913 		return false;
914 	if (rq->rq_flags & RQF_TIMED_OUT)
915 		return false;
916 
917 	deadline = READ_ONCE(rq->deadline);
918 	if (time_after_eq(jiffies, deadline))
919 		return true;
920 
921 	if (*next == 0)
922 		*next = deadline;
923 	else if (time_after(*next, deadline))
924 		*next = deadline;
925 	return false;
926 }
927 
928 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
929 		struct request *rq, void *priv, bool reserved)
930 {
931 	unsigned long *next = priv;
932 
933 	/*
934 	 * Just do a quick check if it is expired before locking the request in
935 	 * so we're not unnecessarilly synchronizing across CPUs.
936 	 */
937 	if (!blk_mq_req_expired(rq, next))
938 		return true;
939 
940 	/*
941 	 * We have reason to believe the request may be expired. Take a
942 	 * reference on the request to lock this request lifetime into its
943 	 * currently allocated context to prevent it from being reallocated in
944 	 * the event the completion by-passes this timeout handler.
945 	 *
946 	 * If the reference was already released, then the driver beat the
947 	 * timeout handler to posting a natural completion.
948 	 */
949 	if (!refcount_inc_not_zero(&rq->ref))
950 		return true;
951 
952 	/*
953 	 * The request is now locked and cannot be reallocated underneath the
954 	 * timeout handler's processing. Re-verify this exact request is truly
955 	 * expired; if it is not expired, then the request was completed and
956 	 * reallocated as a new request.
957 	 */
958 	if (blk_mq_req_expired(rq, next))
959 		blk_mq_rq_timed_out(rq, reserved);
960 
961 	if (is_flush_rq(rq, hctx))
962 		rq->end_io(rq, 0);
963 	else if (refcount_dec_and_test(&rq->ref))
964 		__blk_mq_free_request(rq);
965 
966 	return true;
967 }
968 
969 static void blk_mq_timeout_work(struct work_struct *work)
970 {
971 	struct request_queue *q =
972 		container_of(work, struct request_queue, timeout_work);
973 	unsigned long next = 0;
974 	struct blk_mq_hw_ctx *hctx;
975 	int i;
976 
977 	/* A deadlock might occur if a request is stuck requiring a
978 	 * timeout at the same time a queue freeze is waiting
979 	 * completion, since the timeout code would not be able to
980 	 * acquire the queue reference here.
981 	 *
982 	 * That's why we don't use blk_queue_enter here; instead, we use
983 	 * percpu_ref_tryget directly, because we need to be able to
984 	 * obtain a reference even in the short window between the queue
985 	 * starting to freeze, by dropping the first reference in
986 	 * blk_freeze_queue_start, and the moment the last request is
987 	 * consumed, marked by the instant q_usage_counter reaches
988 	 * zero.
989 	 */
990 	if (!percpu_ref_tryget(&q->q_usage_counter))
991 		return;
992 
993 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
994 
995 	if (next != 0) {
996 		mod_timer(&q->timeout, next);
997 	} else {
998 		/*
999 		 * Request timeouts are handled as a forward rolling timer. If
1000 		 * we end up here it means that no requests are pending and
1001 		 * also that no request has been pending for a while. Mark
1002 		 * each hctx as idle.
1003 		 */
1004 		queue_for_each_hw_ctx(q, hctx, i) {
1005 			/* the hctx may be unmapped, so check it here */
1006 			if (blk_mq_hw_queue_mapped(hctx))
1007 				blk_mq_tag_idle(hctx);
1008 		}
1009 	}
1010 	blk_queue_exit(q);
1011 }
1012 
1013 struct flush_busy_ctx_data {
1014 	struct blk_mq_hw_ctx *hctx;
1015 	struct list_head *list;
1016 };
1017 
1018 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1019 {
1020 	struct flush_busy_ctx_data *flush_data = data;
1021 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1022 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1023 	enum hctx_type type = hctx->type;
1024 
1025 	spin_lock(&ctx->lock);
1026 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1027 	sbitmap_clear_bit(sb, bitnr);
1028 	spin_unlock(&ctx->lock);
1029 	return true;
1030 }
1031 
1032 /*
1033  * Process software queues that have been marked busy, splicing them
1034  * to the for-dispatch
1035  */
1036 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1037 {
1038 	struct flush_busy_ctx_data data = {
1039 		.hctx = hctx,
1040 		.list = list,
1041 	};
1042 
1043 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1044 }
1045 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1046 
1047 struct dispatch_rq_data {
1048 	struct blk_mq_hw_ctx *hctx;
1049 	struct request *rq;
1050 };
1051 
1052 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1053 		void *data)
1054 {
1055 	struct dispatch_rq_data *dispatch_data = data;
1056 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1057 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1058 	enum hctx_type type = hctx->type;
1059 
1060 	spin_lock(&ctx->lock);
1061 	if (!list_empty(&ctx->rq_lists[type])) {
1062 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1063 		list_del_init(&dispatch_data->rq->queuelist);
1064 		if (list_empty(&ctx->rq_lists[type]))
1065 			sbitmap_clear_bit(sb, bitnr);
1066 	}
1067 	spin_unlock(&ctx->lock);
1068 
1069 	return !dispatch_data->rq;
1070 }
1071 
1072 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1073 					struct blk_mq_ctx *start)
1074 {
1075 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1076 	struct dispatch_rq_data data = {
1077 		.hctx = hctx,
1078 		.rq   = NULL,
1079 	};
1080 
1081 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1082 			       dispatch_rq_from_ctx, &data);
1083 
1084 	return data.rq;
1085 }
1086 
1087 static inline unsigned int queued_to_index(unsigned int queued)
1088 {
1089 	if (!queued)
1090 		return 0;
1091 
1092 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1093 }
1094 
1095 static bool __blk_mq_get_driver_tag(struct request *rq)
1096 {
1097 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1098 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1099 	int tag;
1100 
1101 	blk_mq_tag_busy(rq->mq_hctx);
1102 
1103 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1104 		bt = rq->mq_hctx->tags->breserved_tags;
1105 		tag_offset = 0;
1106 	} else {
1107 		if (!hctx_may_queue(rq->mq_hctx, bt))
1108 			return false;
1109 	}
1110 
1111 	tag = __sbitmap_queue_get(bt);
1112 	if (tag == BLK_MQ_NO_TAG)
1113 		return false;
1114 
1115 	rq->tag = tag + tag_offset;
1116 	return true;
1117 }
1118 
1119 static bool blk_mq_get_driver_tag(struct request *rq)
1120 {
1121 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1122 
1123 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1124 		return false;
1125 
1126 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1127 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1128 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1129 		__blk_mq_inc_active_requests(hctx);
1130 	}
1131 	hctx->tags->rqs[rq->tag] = rq;
1132 	return true;
1133 }
1134 
1135 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1136 				int flags, void *key)
1137 {
1138 	struct blk_mq_hw_ctx *hctx;
1139 
1140 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1141 
1142 	spin_lock(&hctx->dispatch_wait_lock);
1143 	if (!list_empty(&wait->entry)) {
1144 		struct sbitmap_queue *sbq;
1145 
1146 		list_del_init(&wait->entry);
1147 		sbq = hctx->tags->bitmap_tags;
1148 		atomic_dec(&sbq->ws_active);
1149 	}
1150 	spin_unlock(&hctx->dispatch_wait_lock);
1151 
1152 	blk_mq_run_hw_queue(hctx, true);
1153 	return 1;
1154 }
1155 
1156 /*
1157  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1158  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1159  * restart. For both cases, take care to check the condition again after
1160  * marking us as waiting.
1161  */
1162 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1163 				 struct request *rq)
1164 {
1165 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1166 	struct wait_queue_head *wq;
1167 	wait_queue_entry_t *wait;
1168 	bool ret;
1169 
1170 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1171 		blk_mq_sched_mark_restart_hctx(hctx);
1172 
1173 		/*
1174 		 * It's possible that a tag was freed in the window between the
1175 		 * allocation failure and adding the hardware queue to the wait
1176 		 * queue.
1177 		 *
1178 		 * Don't clear RESTART here, someone else could have set it.
1179 		 * At most this will cost an extra queue run.
1180 		 */
1181 		return blk_mq_get_driver_tag(rq);
1182 	}
1183 
1184 	wait = &hctx->dispatch_wait;
1185 	if (!list_empty_careful(&wait->entry))
1186 		return false;
1187 
1188 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1189 
1190 	spin_lock_irq(&wq->lock);
1191 	spin_lock(&hctx->dispatch_wait_lock);
1192 	if (!list_empty(&wait->entry)) {
1193 		spin_unlock(&hctx->dispatch_wait_lock);
1194 		spin_unlock_irq(&wq->lock);
1195 		return false;
1196 	}
1197 
1198 	atomic_inc(&sbq->ws_active);
1199 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1200 	__add_wait_queue(wq, wait);
1201 
1202 	/*
1203 	 * It's possible that a tag was freed in the window between the
1204 	 * allocation failure and adding the hardware queue to the wait
1205 	 * queue.
1206 	 */
1207 	ret = blk_mq_get_driver_tag(rq);
1208 	if (!ret) {
1209 		spin_unlock(&hctx->dispatch_wait_lock);
1210 		spin_unlock_irq(&wq->lock);
1211 		return false;
1212 	}
1213 
1214 	/*
1215 	 * We got a tag, remove ourselves from the wait queue to ensure
1216 	 * someone else gets the wakeup.
1217 	 */
1218 	list_del_init(&wait->entry);
1219 	atomic_dec(&sbq->ws_active);
1220 	spin_unlock(&hctx->dispatch_wait_lock);
1221 	spin_unlock_irq(&wq->lock);
1222 
1223 	return true;
1224 }
1225 
1226 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1227 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1228 /*
1229  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1230  * - EWMA is one simple way to compute running average value
1231  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1232  * - take 4 as factor for avoiding to get too small(0) result, and this
1233  *   factor doesn't matter because EWMA decreases exponentially
1234  */
1235 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1236 {
1237 	unsigned int ewma;
1238 
1239 	if (hctx->queue->elevator)
1240 		return;
1241 
1242 	ewma = hctx->dispatch_busy;
1243 
1244 	if (!ewma && !busy)
1245 		return;
1246 
1247 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1248 	if (busy)
1249 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1250 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1251 
1252 	hctx->dispatch_busy = ewma;
1253 }
1254 
1255 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1256 
1257 static void blk_mq_handle_dev_resource(struct request *rq,
1258 				       struct list_head *list)
1259 {
1260 	struct request *next =
1261 		list_first_entry_or_null(list, struct request, queuelist);
1262 
1263 	/*
1264 	 * If an I/O scheduler has been configured and we got a driver tag for
1265 	 * the next request already, free it.
1266 	 */
1267 	if (next)
1268 		blk_mq_put_driver_tag(next);
1269 
1270 	list_add(&rq->queuelist, list);
1271 	__blk_mq_requeue_request(rq);
1272 }
1273 
1274 static void blk_mq_handle_zone_resource(struct request *rq,
1275 					struct list_head *zone_list)
1276 {
1277 	/*
1278 	 * If we end up here it is because we cannot dispatch a request to a
1279 	 * specific zone due to LLD level zone-write locking or other zone
1280 	 * related resource not being available. In this case, set the request
1281 	 * aside in zone_list for retrying it later.
1282 	 */
1283 	list_add(&rq->queuelist, zone_list);
1284 	__blk_mq_requeue_request(rq);
1285 }
1286 
1287 enum prep_dispatch {
1288 	PREP_DISPATCH_OK,
1289 	PREP_DISPATCH_NO_TAG,
1290 	PREP_DISPATCH_NO_BUDGET,
1291 };
1292 
1293 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1294 						  bool need_budget)
1295 {
1296 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1297 
1298 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1299 		blk_mq_put_driver_tag(rq);
1300 		return PREP_DISPATCH_NO_BUDGET;
1301 	}
1302 
1303 	if (!blk_mq_get_driver_tag(rq)) {
1304 		/*
1305 		 * The initial allocation attempt failed, so we need to
1306 		 * rerun the hardware queue when a tag is freed. The
1307 		 * waitqueue takes care of that. If the queue is run
1308 		 * before we add this entry back on the dispatch list,
1309 		 * we'll re-run it below.
1310 		 */
1311 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1312 			/*
1313 			 * All budgets not got from this function will be put
1314 			 * together during handling partial dispatch
1315 			 */
1316 			if (need_budget)
1317 				blk_mq_put_dispatch_budget(rq->q);
1318 			return PREP_DISPATCH_NO_TAG;
1319 		}
1320 	}
1321 
1322 	return PREP_DISPATCH_OK;
1323 }
1324 
1325 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1326 static void blk_mq_release_budgets(struct request_queue *q,
1327 		unsigned int nr_budgets)
1328 {
1329 	int i;
1330 
1331 	for (i = 0; i < nr_budgets; i++)
1332 		blk_mq_put_dispatch_budget(q);
1333 }
1334 
1335 /*
1336  * Returns true if we did some work AND can potentially do more.
1337  */
1338 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1339 			     unsigned int nr_budgets)
1340 {
1341 	enum prep_dispatch prep;
1342 	struct request_queue *q = hctx->queue;
1343 	struct request *rq, *nxt;
1344 	int errors, queued;
1345 	blk_status_t ret = BLK_STS_OK;
1346 	LIST_HEAD(zone_list);
1347 
1348 	if (list_empty(list))
1349 		return false;
1350 
1351 	/*
1352 	 * Now process all the entries, sending them to the driver.
1353 	 */
1354 	errors = queued = 0;
1355 	do {
1356 		struct blk_mq_queue_data bd;
1357 
1358 		rq = list_first_entry(list, struct request, queuelist);
1359 
1360 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1361 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1362 		if (prep != PREP_DISPATCH_OK)
1363 			break;
1364 
1365 		list_del_init(&rq->queuelist);
1366 
1367 		bd.rq = rq;
1368 
1369 		/*
1370 		 * Flag last if we have no more requests, or if we have more
1371 		 * but can't assign a driver tag to it.
1372 		 */
1373 		if (list_empty(list))
1374 			bd.last = true;
1375 		else {
1376 			nxt = list_first_entry(list, struct request, queuelist);
1377 			bd.last = !blk_mq_get_driver_tag(nxt);
1378 		}
1379 
1380 		/*
1381 		 * once the request is queued to lld, no need to cover the
1382 		 * budget any more
1383 		 */
1384 		if (nr_budgets)
1385 			nr_budgets--;
1386 		ret = q->mq_ops->queue_rq(hctx, &bd);
1387 		switch (ret) {
1388 		case BLK_STS_OK:
1389 			queued++;
1390 			break;
1391 		case BLK_STS_RESOURCE:
1392 		case BLK_STS_DEV_RESOURCE:
1393 			blk_mq_handle_dev_resource(rq, list);
1394 			goto out;
1395 		case BLK_STS_ZONE_RESOURCE:
1396 			/*
1397 			 * Move the request to zone_list and keep going through
1398 			 * the dispatch list to find more requests the drive can
1399 			 * accept.
1400 			 */
1401 			blk_mq_handle_zone_resource(rq, &zone_list);
1402 			break;
1403 		default:
1404 			errors++;
1405 			blk_mq_end_request(rq, BLK_STS_IOERR);
1406 		}
1407 	} while (!list_empty(list));
1408 out:
1409 	if (!list_empty(&zone_list))
1410 		list_splice_tail_init(&zone_list, list);
1411 
1412 	hctx->dispatched[queued_to_index(queued)]++;
1413 
1414 	/* If we didn't flush the entire list, we could have told the driver
1415 	 * there was more coming, but that turned out to be a lie.
1416 	 */
1417 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1418 		q->mq_ops->commit_rqs(hctx);
1419 	/*
1420 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1421 	 * that is where we will continue on next queue run.
1422 	 */
1423 	if (!list_empty(list)) {
1424 		bool needs_restart;
1425 		/* For non-shared tags, the RESTART check will suffice */
1426 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1427 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1428 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1429 
1430 		blk_mq_release_budgets(q, nr_budgets);
1431 
1432 		spin_lock(&hctx->lock);
1433 		list_splice_tail_init(list, &hctx->dispatch);
1434 		spin_unlock(&hctx->lock);
1435 
1436 		/*
1437 		 * Order adding requests to hctx->dispatch and checking
1438 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1439 		 * in blk_mq_sched_restart(). Avoid restart code path to
1440 		 * miss the new added requests to hctx->dispatch, meantime
1441 		 * SCHED_RESTART is observed here.
1442 		 */
1443 		smp_mb();
1444 
1445 		/*
1446 		 * If SCHED_RESTART was set by the caller of this function and
1447 		 * it is no longer set that means that it was cleared by another
1448 		 * thread and hence that a queue rerun is needed.
1449 		 *
1450 		 * If 'no_tag' is set, that means that we failed getting
1451 		 * a driver tag with an I/O scheduler attached. If our dispatch
1452 		 * waitqueue is no longer active, ensure that we run the queue
1453 		 * AFTER adding our entries back to the list.
1454 		 *
1455 		 * If no I/O scheduler has been configured it is possible that
1456 		 * the hardware queue got stopped and restarted before requests
1457 		 * were pushed back onto the dispatch list. Rerun the queue to
1458 		 * avoid starvation. Notes:
1459 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1460 		 *   been stopped before rerunning a queue.
1461 		 * - Some but not all block drivers stop a queue before
1462 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1463 		 *   and dm-rq.
1464 		 *
1465 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1466 		 * bit is set, run queue after a delay to avoid IO stalls
1467 		 * that could otherwise occur if the queue is idle.  We'll do
1468 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1469 		 */
1470 		needs_restart = blk_mq_sched_needs_restart(hctx);
1471 		if (!needs_restart ||
1472 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1473 			blk_mq_run_hw_queue(hctx, true);
1474 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1475 					   no_budget_avail))
1476 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1477 
1478 		blk_mq_update_dispatch_busy(hctx, true);
1479 		return false;
1480 	} else
1481 		blk_mq_update_dispatch_busy(hctx, false);
1482 
1483 	return (queued + errors) != 0;
1484 }
1485 
1486 /**
1487  * __blk_mq_run_hw_queue - Run a hardware queue.
1488  * @hctx: Pointer to the hardware queue to run.
1489  *
1490  * Send pending requests to the hardware.
1491  */
1492 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1493 {
1494 	int srcu_idx;
1495 
1496 	/*
1497 	 * We should be running this queue from one of the CPUs that
1498 	 * are mapped to it.
1499 	 *
1500 	 * There are at least two related races now between setting
1501 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1502 	 * __blk_mq_run_hw_queue():
1503 	 *
1504 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1505 	 *   but later it becomes online, then this warning is harmless
1506 	 *   at all
1507 	 *
1508 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1509 	 *   but later it becomes offline, then the warning can't be
1510 	 *   triggered, and we depend on blk-mq timeout handler to
1511 	 *   handle dispatched requests to this hctx
1512 	 */
1513 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1514 		cpu_online(hctx->next_cpu)) {
1515 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1516 			raw_smp_processor_id(),
1517 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1518 		dump_stack();
1519 	}
1520 
1521 	/*
1522 	 * We can't run the queue inline with ints disabled. Ensure that
1523 	 * we catch bad users of this early.
1524 	 */
1525 	WARN_ON_ONCE(in_interrupt());
1526 
1527 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1528 
1529 	hctx_lock(hctx, &srcu_idx);
1530 	blk_mq_sched_dispatch_requests(hctx);
1531 	hctx_unlock(hctx, srcu_idx);
1532 }
1533 
1534 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1535 {
1536 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1537 
1538 	if (cpu >= nr_cpu_ids)
1539 		cpu = cpumask_first(hctx->cpumask);
1540 	return cpu;
1541 }
1542 
1543 /*
1544  * It'd be great if the workqueue API had a way to pass
1545  * in a mask and had some smarts for more clever placement.
1546  * For now we just round-robin here, switching for every
1547  * BLK_MQ_CPU_WORK_BATCH queued items.
1548  */
1549 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1550 {
1551 	bool tried = false;
1552 	int next_cpu = hctx->next_cpu;
1553 
1554 	if (hctx->queue->nr_hw_queues == 1)
1555 		return WORK_CPU_UNBOUND;
1556 
1557 	if (--hctx->next_cpu_batch <= 0) {
1558 select_cpu:
1559 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1560 				cpu_online_mask);
1561 		if (next_cpu >= nr_cpu_ids)
1562 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1563 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1564 	}
1565 
1566 	/*
1567 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1568 	 * and it should only happen in the path of handling CPU DEAD.
1569 	 */
1570 	if (!cpu_online(next_cpu)) {
1571 		if (!tried) {
1572 			tried = true;
1573 			goto select_cpu;
1574 		}
1575 
1576 		/*
1577 		 * Make sure to re-select CPU next time once after CPUs
1578 		 * in hctx->cpumask become online again.
1579 		 */
1580 		hctx->next_cpu = next_cpu;
1581 		hctx->next_cpu_batch = 1;
1582 		return WORK_CPU_UNBOUND;
1583 	}
1584 
1585 	hctx->next_cpu = next_cpu;
1586 	return next_cpu;
1587 }
1588 
1589 /**
1590  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1591  * @hctx: Pointer to the hardware queue to run.
1592  * @async: If we want to run the queue asynchronously.
1593  * @msecs: Microseconds of delay to wait before running the queue.
1594  *
1595  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1596  * with a delay of @msecs.
1597  */
1598 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1599 					unsigned long msecs)
1600 {
1601 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1602 		return;
1603 
1604 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1605 		int cpu = get_cpu();
1606 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1607 			__blk_mq_run_hw_queue(hctx);
1608 			put_cpu();
1609 			return;
1610 		}
1611 
1612 		put_cpu();
1613 	}
1614 
1615 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1616 				    msecs_to_jiffies(msecs));
1617 }
1618 
1619 /**
1620  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1621  * @hctx: Pointer to the hardware queue to run.
1622  * @msecs: Microseconds of delay to wait before running the queue.
1623  *
1624  * Run a hardware queue asynchronously with a delay of @msecs.
1625  */
1626 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1627 {
1628 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1629 }
1630 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1631 
1632 /**
1633  * blk_mq_run_hw_queue - Start to run a hardware queue.
1634  * @hctx: Pointer to the hardware queue to run.
1635  * @async: If we want to run the queue asynchronously.
1636  *
1637  * Check if the request queue is not in a quiesced state and if there are
1638  * pending requests to be sent. If this is true, run the queue to send requests
1639  * to hardware.
1640  */
1641 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1642 {
1643 	int srcu_idx;
1644 	bool need_run;
1645 
1646 	/*
1647 	 * When queue is quiesced, we may be switching io scheduler, or
1648 	 * updating nr_hw_queues, or other things, and we can't run queue
1649 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1650 	 *
1651 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1652 	 * quiesced.
1653 	 */
1654 	hctx_lock(hctx, &srcu_idx);
1655 	need_run = !blk_queue_quiesced(hctx->queue) &&
1656 		blk_mq_hctx_has_pending(hctx);
1657 	hctx_unlock(hctx, srcu_idx);
1658 
1659 	if (need_run)
1660 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1661 }
1662 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1663 
1664 /**
1665  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1666  * @q: Pointer to the request queue to run.
1667  * @async: If we want to run the queue asynchronously.
1668  */
1669 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1670 {
1671 	struct blk_mq_hw_ctx *hctx;
1672 	int i;
1673 
1674 	queue_for_each_hw_ctx(q, hctx, i) {
1675 		if (blk_mq_hctx_stopped(hctx))
1676 			continue;
1677 
1678 		blk_mq_run_hw_queue(hctx, async);
1679 	}
1680 }
1681 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1682 
1683 /**
1684  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1685  * @q: Pointer to the request queue to run.
1686  * @msecs: Microseconds of delay to wait before running the queues.
1687  */
1688 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1689 {
1690 	struct blk_mq_hw_ctx *hctx;
1691 	int i;
1692 
1693 	queue_for_each_hw_ctx(q, hctx, i) {
1694 		if (blk_mq_hctx_stopped(hctx))
1695 			continue;
1696 
1697 		blk_mq_delay_run_hw_queue(hctx, msecs);
1698 	}
1699 }
1700 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1701 
1702 /**
1703  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1704  * @q: request queue.
1705  *
1706  * The caller is responsible for serializing this function against
1707  * blk_mq_{start,stop}_hw_queue().
1708  */
1709 bool blk_mq_queue_stopped(struct request_queue *q)
1710 {
1711 	struct blk_mq_hw_ctx *hctx;
1712 	int i;
1713 
1714 	queue_for_each_hw_ctx(q, hctx, i)
1715 		if (blk_mq_hctx_stopped(hctx))
1716 			return true;
1717 
1718 	return false;
1719 }
1720 EXPORT_SYMBOL(blk_mq_queue_stopped);
1721 
1722 /*
1723  * This function is often used for pausing .queue_rq() by driver when
1724  * there isn't enough resource or some conditions aren't satisfied, and
1725  * BLK_STS_RESOURCE is usually returned.
1726  *
1727  * We do not guarantee that dispatch can be drained or blocked
1728  * after blk_mq_stop_hw_queue() returns. Please use
1729  * blk_mq_quiesce_queue() for that requirement.
1730  */
1731 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1732 {
1733 	cancel_delayed_work(&hctx->run_work);
1734 
1735 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1736 }
1737 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1738 
1739 /*
1740  * This function is often used for pausing .queue_rq() by driver when
1741  * there isn't enough resource or some conditions aren't satisfied, and
1742  * BLK_STS_RESOURCE is usually returned.
1743  *
1744  * We do not guarantee that dispatch can be drained or blocked
1745  * after blk_mq_stop_hw_queues() returns. Please use
1746  * blk_mq_quiesce_queue() for that requirement.
1747  */
1748 void blk_mq_stop_hw_queues(struct request_queue *q)
1749 {
1750 	struct blk_mq_hw_ctx *hctx;
1751 	int i;
1752 
1753 	queue_for_each_hw_ctx(q, hctx, i)
1754 		blk_mq_stop_hw_queue(hctx);
1755 }
1756 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1757 
1758 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1759 {
1760 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1761 
1762 	blk_mq_run_hw_queue(hctx, false);
1763 }
1764 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1765 
1766 void blk_mq_start_hw_queues(struct request_queue *q)
1767 {
1768 	struct blk_mq_hw_ctx *hctx;
1769 	int i;
1770 
1771 	queue_for_each_hw_ctx(q, hctx, i)
1772 		blk_mq_start_hw_queue(hctx);
1773 }
1774 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1775 
1776 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1777 {
1778 	if (!blk_mq_hctx_stopped(hctx))
1779 		return;
1780 
1781 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1782 	blk_mq_run_hw_queue(hctx, async);
1783 }
1784 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1785 
1786 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1787 {
1788 	struct blk_mq_hw_ctx *hctx;
1789 	int i;
1790 
1791 	queue_for_each_hw_ctx(q, hctx, i)
1792 		blk_mq_start_stopped_hw_queue(hctx, async);
1793 }
1794 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1795 
1796 static void blk_mq_run_work_fn(struct work_struct *work)
1797 {
1798 	struct blk_mq_hw_ctx *hctx;
1799 
1800 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1801 
1802 	/*
1803 	 * If we are stopped, don't run the queue.
1804 	 */
1805 	if (blk_mq_hctx_stopped(hctx))
1806 		return;
1807 
1808 	__blk_mq_run_hw_queue(hctx);
1809 }
1810 
1811 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1812 					    struct request *rq,
1813 					    bool at_head)
1814 {
1815 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1816 	enum hctx_type type = hctx->type;
1817 
1818 	lockdep_assert_held(&ctx->lock);
1819 
1820 	trace_block_rq_insert(hctx->queue, rq);
1821 
1822 	if (at_head)
1823 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1824 	else
1825 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1826 }
1827 
1828 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1829 			     bool at_head)
1830 {
1831 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1832 
1833 	lockdep_assert_held(&ctx->lock);
1834 
1835 	__blk_mq_insert_req_list(hctx, rq, at_head);
1836 	blk_mq_hctx_mark_pending(hctx, ctx);
1837 }
1838 
1839 /**
1840  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1841  * @rq: Pointer to request to be inserted.
1842  * @at_head: true if the request should be inserted at the head of the list.
1843  * @run_queue: If we should run the hardware queue after inserting the request.
1844  *
1845  * Should only be used carefully, when the caller knows we want to
1846  * bypass a potential IO scheduler on the target device.
1847  */
1848 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1849 				  bool run_queue)
1850 {
1851 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1852 
1853 	spin_lock(&hctx->lock);
1854 	if (at_head)
1855 		list_add(&rq->queuelist, &hctx->dispatch);
1856 	else
1857 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1858 	spin_unlock(&hctx->lock);
1859 
1860 	if (run_queue)
1861 		blk_mq_run_hw_queue(hctx, false);
1862 }
1863 
1864 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1865 			    struct list_head *list)
1866 
1867 {
1868 	struct request *rq;
1869 	enum hctx_type type = hctx->type;
1870 
1871 	/*
1872 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1873 	 * offline now
1874 	 */
1875 	list_for_each_entry(rq, list, queuelist) {
1876 		BUG_ON(rq->mq_ctx != ctx);
1877 		trace_block_rq_insert(hctx->queue, rq);
1878 	}
1879 
1880 	spin_lock(&ctx->lock);
1881 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1882 	blk_mq_hctx_mark_pending(hctx, ctx);
1883 	spin_unlock(&ctx->lock);
1884 }
1885 
1886 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1887 {
1888 	struct request *rqa = container_of(a, struct request, queuelist);
1889 	struct request *rqb = container_of(b, struct request, queuelist);
1890 
1891 	if (rqa->mq_ctx != rqb->mq_ctx)
1892 		return rqa->mq_ctx > rqb->mq_ctx;
1893 	if (rqa->mq_hctx != rqb->mq_hctx)
1894 		return rqa->mq_hctx > rqb->mq_hctx;
1895 
1896 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1897 }
1898 
1899 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1900 {
1901 	LIST_HEAD(list);
1902 
1903 	if (list_empty(&plug->mq_list))
1904 		return;
1905 	list_splice_init(&plug->mq_list, &list);
1906 
1907 	if (plug->rq_count > 2 && plug->multiple_queues)
1908 		list_sort(NULL, &list, plug_rq_cmp);
1909 
1910 	plug->rq_count = 0;
1911 
1912 	do {
1913 		struct list_head rq_list;
1914 		struct request *rq, *head_rq = list_entry_rq(list.next);
1915 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1916 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1917 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1918 		unsigned int depth = 1;
1919 
1920 		list_for_each_continue(pos, &list) {
1921 			rq = list_entry_rq(pos);
1922 			BUG_ON(!rq->q);
1923 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1924 				break;
1925 			depth++;
1926 		}
1927 
1928 		list_cut_before(&rq_list, &list, pos);
1929 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1930 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1931 						from_schedule);
1932 	} while(!list_empty(&list));
1933 }
1934 
1935 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1936 		unsigned int nr_segs)
1937 {
1938 	int err;
1939 
1940 	if (bio->bi_opf & REQ_RAHEAD)
1941 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1942 
1943 	rq->__sector = bio->bi_iter.bi_sector;
1944 	rq->write_hint = bio->bi_write_hint;
1945 	blk_rq_bio_prep(rq, bio, nr_segs);
1946 
1947 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1948 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1949 	WARN_ON_ONCE(err);
1950 
1951 	blk_account_io_start(rq);
1952 }
1953 
1954 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1955 					    struct request *rq,
1956 					    blk_qc_t *cookie, bool last)
1957 {
1958 	struct request_queue *q = rq->q;
1959 	struct blk_mq_queue_data bd = {
1960 		.rq = rq,
1961 		.last = last,
1962 	};
1963 	blk_qc_t new_cookie;
1964 	blk_status_t ret;
1965 
1966 	new_cookie = request_to_qc_t(hctx, rq);
1967 
1968 	/*
1969 	 * For OK queue, we are done. For error, caller may kill it.
1970 	 * Any other error (busy), just add it to our list as we
1971 	 * previously would have done.
1972 	 */
1973 	ret = q->mq_ops->queue_rq(hctx, &bd);
1974 	switch (ret) {
1975 	case BLK_STS_OK:
1976 		blk_mq_update_dispatch_busy(hctx, false);
1977 		*cookie = new_cookie;
1978 		break;
1979 	case BLK_STS_RESOURCE:
1980 	case BLK_STS_DEV_RESOURCE:
1981 		blk_mq_update_dispatch_busy(hctx, true);
1982 		__blk_mq_requeue_request(rq);
1983 		break;
1984 	default:
1985 		blk_mq_update_dispatch_busy(hctx, false);
1986 		*cookie = BLK_QC_T_NONE;
1987 		break;
1988 	}
1989 
1990 	return ret;
1991 }
1992 
1993 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1994 						struct request *rq,
1995 						blk_qc_t *cookie,
1996 						bool bypass_insert, bool last)
1997 {
1998 	struct request_queue *q = rq->q;
1999 	bool run_queue = true;
2000 
2001 	/*
2002 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2003 	 *
2004 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2005 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2006 	 * and avoid driver to try to dispatch again.
2007 	 */
2008 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2009 		run_queue = false;
2010 		bypass_insert = false;
2011 		goto insert;
2012 	}
2013 
2014 	if (q->elevator && !bypass_insert)
2015 		goto insert;
2016 
2017 	if (!blk_mq_get_dispatch_budget(q))
2018 		goto insert;
2019 
2020 	if (!blk_mq_get_driver_tag(rq)) {
2021 		blk_mq_put_dispatch_budget(q);
2022 		goto insert;
2023 	}
2024 
2025 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2026 insert:
2027 	if (bypass_insert)
2028 		return BLK_STS_RESOURCE;
2029 
2030 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2031 
2032 	return BLK_STS_OK;
2033 }
2034 
2035 /**
2036  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2037  * @hctx: Pointer of the associated hardware queue.
2038  * @rq: Pointer to request to be sent.
2039  * @cookie: Request queue cookie.
2040  *
2041  * If the device has enough resources to accept a new request now, send the
2042  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2043  * we can try send it another time in the future. Requests inserted at this
2044  * queue have higher priority.
2045  */
2046 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2047 		struct request *rq, blk_qc_t *cookie)
2048 {
2049 	blk_status_t ret;
2050 	int srcu_idx;
2051 
2052 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2053 
2054 	hctx_lock(hctx, &srcu_idx);
2055 
2056 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2057 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2058 		blk_mq_request_bypass_insert(rq, false, true);
2059 	else if (ret != BLK_STS_OK)
2060 		blk_mq_end_request(rq, ret);
2061 
2062 	hctx_unlock(hctx, srcu_idx);
2063 }
2064 
2065 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2066 {
2067 	blk_status_t ret;
2068 	int srcu_idx;
2069 	blk_qc_t unused_cookie;
2070 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2071 
2072 	hctx_lock(hctx, &srcu_idx);
2073 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2074 	hctx_unlock(hctx, srcu_idx);
2075 
2076 	return ret;
2077 }
2078 
2079 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2080 		struct list_head *list)
2081 {
2082 	int queued = 0;
2083 	int errors = 0;
2084 
2085 	while (!list_empty(list)) {
2086 		blk_status_t ret;
2087 		struct request *rq = list_first_entry(list, struct request,
2088 				queuelist);
2089 
2090 		list_del_init(&rq->queuelist);
2091 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2092 		if (ret != BLK_STS_OK) {
2093 			if (ret == BLK_STS_RESOURCE ||
2094 					ret == BLK_STS_DEV_RESOURCE) {
2095 				blk_mq_request_bypass_insert(rq, false,
2096 							list_empty(list));
2097 				break;
2098 			}
2099 			blk_mq_end_request(rq, ret);
2100 			errors++;
2101 		} else
2102 			queued++;
2103 	}
2104 
2105 	/*
2106 	 * If we didn't flush the entire list, we could have told
2107 	 * the driver there was more coming, but that turned out to
2108 	 * be a lie.
2109 	 */
2110 	if ((!list_empty(list) || errors) &&
2111 	     hctx->queue->mq_ops->commit_rqs && queued)
2112 		hctx->queue->mq_ops->commit_rqs(hctx);
2113 }
2114 
2115 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2116 {
2117 	list_add_tail(&rq->queuelist, &plug->mq_list);
2118 	plug->rq_count++;
2119 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2120 		struct request *tmp;
2121 
2122 		tmp = list_first_entry(&plug->mq_list, struct request,
2123 						queuelist);
2124 		if (tmp->q != rq->q)
2125 			plug->multiple_queues = true;
2126 	}
2127 }
2128 
2129 /**
2130  * blk_mq_submit_bio - Create and send a request to block device.
2131  * @bio: Bio pointer.
2132  *
2133  * Builds up a request structure from @q and @bio and send to the device. The
2134  * request may not be queued directly to hardware if:
2135  * * This request can be merged with another one
2136  * * We want to place request at plug queue for possible future merging
2137  * * There is an IO scheduler active at this queue
2138  *
2139  * It will not queue the request if there is an error with the bio, or at the
2140  * request creation.
2141  *
2142  * Returns: Request queue cookie.
2143  */
2144 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2145 {
2146 	struct request_queue *q = bio->bi_disk->queue;
2147 	const int is_sync = op_is_sync(bio->bi_opf);
2148 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2149 	struct blk_mq_alloc_data data = {
2150 		.q		= q,
2151 	};
2152 	struct request *rq;
2153 	struct blk_plug *plug;
2154 	struct request *same_queue_rq = NULL;
2155 	unsigned int nr_segs;
2156 	blk_qc_t cookie;
2157 	blk_status_t ret;
2158 
2159 	blk_queue_bounce(q, &bio);
2160 	__blk_queue_split(&bio, &nr_segs);
2161 
2162 	if (!bio_integrity_prep(bio))
2163 		goto queue_exit;
2164 
2165 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2166 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2167 		goto queue_exit;
2168 
2169 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2170 		goto queue_exit;
2171 
2172 	rq_qos_throttle(q, bio);
2173 
2174 	data.cmd_flags = bio->bi_opf;
2175 	rq = __blk_mq_alloc_request(&data);
2176 	if (unlikely(!rq)) {
2177 		rq_qos_cleanup(q, bio);
2178 		if (bio->bi_opf & REQ_NOWAIT)
2179 			bio_wouldblock_error(bio);
2180 		goto queue_exit;
2181 	}
2182 
2183 	trace_block_getrq(q, bio, bio->bi_opf);
2184 
2185 	rq_qos_track(q, rq, bio);
2186 
2187 	cookie = request_to_qc_t(data.hctx, rq);
2188 
2189 	blk_mq_bio_to_request(rq, bio, nr_segs);
2190 
2191 	ret = blk_crypto_init_request(rq);
2192 	if (ret != BLK_STS_OK) {
2193 		bio->bi_status = ret;
2194 		bio_endio(bio);
2195 		blk_mq_free_request(rq);
2196 		return BLK_QC_T_NONE;
2197 	}
2198 
2199 	plug = blk_mq_plug(q, bio);
2200 	if (unlikely(is_flush_fua)) {
2201 		/* Bypass scheduler for flush requests */
2202 		blk_insert_flush(rq);
2203 		blk_mq_run_hw_queue(data.hctx, true);
2204 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2205 				!blk_queue_nonrot(q))) {
2206 		/*
2207 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2208 		 * we know the driver uses bd->last in a smart fashion.
2209 		 *
2210 		 * Use normal plugging if this disk is slow HDD, as sequential
2211 		 * IO may benefit a lot from plug merging.
2212 		 */
2213 		unsigned int request_count = plug->rq_count;
2214 		struct request *last = NULL;
2215 
2216 		if (!request_count)
2217 			trace_block_plug(q);
2218 		else
2219 			last = list_entry_rq(plug->mq_list.prev);
2220 
2221 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2222 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2223 			blk_flush_plug_list(plug, false);
2224 			trace_block_plug(q);
2225 		}
2226 
2227 		blk_add_rq_to_plug(plug, rq);
2228 	} else if (q->elevator) {
2229 		/* Insert the request at the IO scheduler queue */
2230 		blk_mq_sched_insert_request(rq, false, true, true);
2231 	} else if (plug && !blk_queue_nomerges(q)) {
2232 		/*
2233 		 * We do limited plugging. If the bio can be merged, do that.
2234 		 * Otherwise the existing request in the plug list will be
2235 		 * issued. So the plug list will have one request at most
2236 		 * The plug list might get flushed before this. If that happens,
2237 		 * the plug list is empty, and same_queue_rq is invalid.
2238 		 */
2239 		if (list_empty(&plug->mq_list))
2240 			same_queue_rq = NULL;
2241 		if (same_queue_rq) {
2242 			list_del_init(&same_queue_rq->queuelist);
2243 			plug->rq_count--;
2244 		}
2245 		blk_add_rq_to_plug(plug, rq);
2246 		trace_block_plug(q);
2247 
2248 		if (same_queue_rq) {
2249 			data.hctx = same_queue_rq->mq_hctx;
2250 			trace_block_unplug(q, 1, true);
2251 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2252 					&cookie);
2253 		}
2254 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2255 			!data.hctx->dispatch_busy) {
2256 		/*
2257 		 * There is no scheduler and we can try to send directly
2258 		 * to the hardware.
2259 		 */
2260 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2261 	} else {
2262 		/* Default case. */
2263 		blk_mq_sched_insert_request(rq, false, true, true);
2264 	}
2265 
2266 	return cookie;
2267 queue_exit:
2268 	blk_queue_exit(q);
2269 	return BLK_QC_T_NONE;
2270 }
2271 
2272 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2273 		     unsigned int hctx_idx)
2274 {
2275 	struct page *page;
2276 
2277 	if (tags->rqs && set->ops->exit_request) {
2278 		int i;
2279 
2280 		for (i = 0; i < tags->nr_tags; i++) {
2281 			struct request *rq = tags->static_rqs[i];
2282 
2283 			if (!rq)
2284 				continue;
2285 			set->ops->exit_request(set, rq, hctx_idx);
2286 			tags->static_rqs[i] = NULL;
2287 		}
2288 	}
2289 
2290 	while (!list_empty(&tags->page_list)) {
2291 		page = list_first_entry(&tags->page_list, struct page, lru);
2292 		list_del_init(&page->lru);
2293 		/*
2294 		 * Remove kmemleak object previously allocated in
2295 		 * blk_mq_alloc_rqs().
2296 		 */
2297 		kmemleak_free(page_address(page));
2298 		__free_pages(page, page->private);
2299 	}
2300 }
2301 
2302 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2303 {
2304 	kfree(tags->rqs);
2305 	tags->rqs = NULL;
2306 	kfree(tags->static_rqs);
2307 	tags->static_rqs = NULL;
2308 
2309 	blk_mq_free_tags(tags, flags);
2310 }
2311 
2312 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2313 					unsigned int hctx_idx,
2314 					unsigned int nr_tags,
2315 					unsigned int reserved_tags,
2316 					unsigned int flags)
2317 {
2318 	struct blk_mq_tags *tags;
2319 	int node;
2320 
2321 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2322 	if (node == NUMA_NO_NODE)
2323 		node = set->numa_node;
2324 
2325 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2326 	if (!tags)
2327 		return NULL;
2328 
2329 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2330 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2331 				 node);
2332 	if (!tags->rqs) {
2333 		blk_mq_free_tags(tags, flags);
2334 		return NULL;
2335 	}
2336 
2337 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2338 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2339 					node);
2340 	if (!tags->static_rqs) {
2341 		kfree(tags->rqs);
2342 		blk_mq_free_tags(tags, flags);
2343 		return NULL;
2344 	}
2345 
2346 	return tags;
2347 }
2348 
2349 static size_t order_to_size(unsigned int order)
2350 {
2351 	return (size_t)PAGE_SIZE << order;
2352 }
2353 
2354 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2355 			       unsigned int hctx_idx, int node)
2356 {
2357 	int ret;
2358 
2359 	if (set->ops->init_request) {
2360 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2361 		if (ret)
2362 			return ret;
2363 	}
2364 
2365 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2366 	return 0;
2367 }
2368 
2369 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2370 		     unsigned int hctx_idx, unsigned int depth)
2371 {
2372 	unsigned int i, j, entries_per_page, max_order = 4;
2373 	size_t rq_size, left;
2374 	int node;
2375 
2376 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2377 	if (node == NUMA_NO_NODE)
2378 		node = set->numa_node;
2379 
2380 	INIT_LIST_HEAD(&tags->page_list);
2381 
2382 	/*
2383 	 * rq_size is the size of the request plus driver payload, rounded
2384 	 * to the cacheline size
2385 	 */
2386 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2387 				cache_line_size());
2388 	left = rq_size * depth;
2389 
2390 	for (i = 0; i < depth; ) {
2391 		int this_order = max_order;
2392 		struct page *page;
2393 		int to_do;
2394 		void *p;
2395 
2396 		while (this_order && left < order_to_size(this_order - 1))
2397 			this_order--;
2398 
2399 		do {
2400 			page = alloc_pages_node(node,
2401 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2402 				this_order);
2403 			if (page)
2404 				break;
2405 			if (!this_order--)
2406 				break;
2407 			if (order_to_size(this_order) < rq_size)
2408 				break;
2409 		} while (1);
2410 
2411 		if (!page)
2412 			goto fail;
2413 
2414 		page->private = this_order;
2415 		list_add_tail(&page->lru, &tags->page_list);
2416 
2417 		p = page_address(page);
2418 		/*
2419 		 * Allow kmemleak to scan these pages as they contain pointers
2420 		 * to additional allocations like via ops->init_request().
2421 		 */
2422 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2423 		entries_per_page = order_to_size(this_order) / rq_size;
2424 		to_do = min(entries_per_page, depth - i);
2425 		left -= to_do * rq_size;
2426 		for (j = 0; j < to_do; j++) {
2427 			struct request *rq = p;
2428 
2429 			tags->static_rqs[i] = rq;
2430 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2431 				tags->static_rqs[i] = NULL;
2432 				goto fail;
2433 			}
2434 
2435 			p += rq_size;
2436 			i++;
2437 		}
2438 	}
2439 	return 0;
2440 
2441 fail:
2442 	blk_mq_free_rqs(set, tags, hctx_idx);
2443 	return -ENOMEM;
2444 }
2445 
2446 struct rq_iter_data {
2447 	struct blk_mq_hw_ctx *hctx;
2448 	bool has_rq;
2449 };
2450 
2451 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2452 {
2453 	struct rq_iter_data *iter_data = data;
2454 
2455 	if (rq->mq_hctx != iter_data->hctx)
2456 		return true;
2457 	iter_data->has_rq = true;
2458 	return false;
2459 }
2460 
2461 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2462 {
2463 	struct blk_mq_tags *tags = hctx->sched_tags ?
2464 			hctx->sched_tags : hctx->tags;
2465 	struct rq_iter_data data = {
2466 		.hctx	= hctx,
2467 	};
2468 
2469 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2470 	return data.has_rq;
2471 }
2472 
2473 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2474 		struct blk_mq_hw_ctx *hctx)
2475 {
2476 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2477 		return false;
2478 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2479 		return false;
2480 	return true;
2481 }
2482 
2483 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2484 {
2485 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2486 			struct blk_mq_hw_ctx, cpuhp_online);
2487 
2488 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2489 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2490 		return 0;
2491 
2492 	/*
2493 	 * Prevent new request from being allocated on the current hctx.
2494 	 *
2495 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2496 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2497 	 * seen once we return from the tag allocator.
2498 	 */
2499 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2500 	smp_mb__after_atomic();
2501 
2502 	/*
2503 	 * Try to grab a reference to the queue and wait for any outstanding
2504 	 * requests.  If we could not grab a reference the queue has been
2505 	 * frozen and there are no requests.
2506 	 */
2507 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2508 		while (blk_mq_hctx_has_requests(hctx))
2509 			msleep(5);
2510 		percpu_ref_put(&hctx->queue->q_usage_counter);
2511 	}
2512 
2513 	return 0;
2514 }
2515 
2516 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2517 {
2518 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2519 			struct blk_mq_hw_ctx, cpuhp_online);
2520 
2521 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2522 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2523 	return 0;
2524 }
2525 
2526 /*
2527  * 'cpu' is going away. splice any existing rq_list entries from this
2528  * software queue to the hw queue dispatch list, and ensure that it
2529  * gets run.
2530  */
2531 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2532 {
2533 	struct blk_mq_hw_ctx *hctx;
2534 	struct blk_mq_ctx *ctx;
2535 	LIST_HEAD(tmp);
2536 	enum hctx_type type;
2537 
2538 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2539 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2540 		return 0;
2541 
2542 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2543 	type = hctx->type;
2544 
2545 	spin_lock(&ctx->lock);
2546 	if (!list_empty(&ctx->rq_lists[type])) {
2547 		list_splice_init(&ctx->rq_lists[type], &tmp);
2548 		blk_mq_hctx_clear_pending(hctx, ctx);
2549 	}
2550 	spin_unlock(&ctx->lock);
2551 
2552 	if (list_empty(&tmp))
2553 		return 0;
2554 
2555 	spin_lock(&hctx->lock);
2556 	list_splice_tail_init(&tmp, &hctx->dispatch);
2557 	spin_unlock(&hctx->lock);
2558 
2559 	blk_mq_run_hw_queue(hctx, true);
2560 	return 0;
2561 }
2562 
2563 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2564 {
2565 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2566 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2567 						    &hctx->cpuhp_online);
2568 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2569 					    &hctx->cpuhp_dead);
2570 }
2571 
2572 /* hctx->ctxs will be freed in queue's release handler */
2573 static void blk_mq_exit_hctx(struct request_queue *q,
2574 		struct blk_mq_tag_set *set,
2575 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2576 {
2577 	if (blk_mq_hw_queue_mapped(hctx))
2578 		blk_mq_tag_idle(hctx);
2579 
2580 	if (set->ops->exit_request)
2581 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2582 
2583 	if (set->ops->exit_hctx)
2584 		set->ops->exit_hctx(hctx, hctx_idx);
2585 
2586 	blk_mq_remove_cpuhp(hctx);
2587 
2588 	spin_lock(&q->unused_hctx_lock);
2589 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2590 	spin_unlock(&q->unused_hctx_lock);
2591 }
2592 
2593 static void blk_mq_exit_hw_queues(struct request_queue *q,
2594 		struct blk_mq_tag_set *set, int nr_queue)
2595 {
2596 	struct blk_mq_hw_ctx *hctx;
2597 	unsigned int i;
2598 
2599 	queue_for_each_hw_ctx(q, hctx, i) {
2600 		if (i == nr_queue)
2601 			break;
2602 		blk_mq_debugfs_unregister_hctx(hctx);
2603 		blk_mq_exit_hctx(q, set, hctx, i);
2604 	}
2605 }
2606 
2607 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2608 {
2609 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2610 
2611 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2612 			   __alignof__(struct blk_mq_hw_ctx)) !=
2613 		     sizeof(struct blk_mq_hw_ctx));
2614 
2615 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2616 		hw_ctx_size += sizeof(struct srcu_struct);
2617 
2618 	return hw_ctx_size;
2619 }
2620 
2621 static int blk_mq_init_hctx(struct request_queue *q,
2622 		struct blk_mq_tag_set *set,
2623 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2624 {
2625 	hctx->queue_num = hctx_idx;
2626 
2627 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2628 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2629 				&hctx->cpuhp_online);
2630 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2631 
2632 	hctx->tags = set->tags[hctx_idx];
2633 
2634 	if (set->ops->init_hctx &&
2635 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2636 		goto unregister_cpu_notifier;
2637 
2638 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2639 				hctx->numa_node))
2640 		goto exit_hctx;
2641 	return 0;
2642 
2643  exit_hctx:
2644 	if (set->ops->exit_hctx)
2645 		set->ops->exit_hctx(hctx, hctx_idx);
2646  unregister_cpu_notifier:
2647 	blk_mq_remove_cpuhp(hctx);
2648 	return -1;
2649 }
2650 
2651 static struct blk_mq_hw_ctx *
2652 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2653 		int node)
2654 {
2655 	struct blk_mq_hw_ctx *hctx;
2656 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2657 
2658 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2659 	if (!hctx)
2660 		goto fail_alloc_hctx;
2661 
2662 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2663 		goto free_hctx;
2664 
2665 	atomic_set(&hctx->nr_active, 0);
2666 	atomic_set(&hctx->elevator_queued, 0);
2667 	if (node == NUMA_NO_NODE)
2668 		node = set->numa_node;
2669 	hctx->numa_node = node;
2670 
2671 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2672 	spin_lock_init(&hctx->lock);
2673 	INIT_LIST_HEAD(&hctx->dispatch);
2674 	hctx->queue = q;
2675 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2676 
2677 	INIT_LIST_HEAD(&hctx->hctx_list);
2678 
2679 	/*
2680 	 * Allocate space for all possible cpus to avoid allocation at
2681 	 * runtime
2682 	 */
2683 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2684 			gfp, node);
2685 	if (!hctx->ctxs)
2686 		goto free_cpumask;
2687 
2688 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2689 				gfp, node))
2690 		goto free_ctxs;
2691 	hctx->nr_ctx = 0;
2692 
2693 	spin_lock_init(&hctx->dispatch_wait_lock);
2694 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2695 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2696 
2697 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2698 	if (!hctx->fq)
2699 		goto free_bitmap;
2700 
2701 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2702 		init_srcu_struct(hctx->srcu);
2703 	blk_mq_hctx_kobj_init(hctx);
2704 
2705 	return hctx;
2706 
2707  free_bitmap:
2708 	sbitmap_free(&hctx->ctx_map);
2709  free_ctxs:
2710 	kfree(hctx->ctxs);
2711  free_cpumask:
2712 	free_cpumask_var(hctx->cpumask);
2713  free_hctx:
2714 	kfree(hctx);
2715  fail_alloc_hctx:
2716 	return NULL;
2717 }
2718 
2719 static void blk_mq_init_cpu_queues(struct request_queue *q,
2720 				   unsigned int nr_hw_queues)
2721 {
2722 	struct blk_mq_tag_set *set = q->tag_set;
2723 	unsigned int i, j;
2724 
2725 	for_each_possible_cpu(i) {
2726 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2727 		struct blk_mq_hw_ctx *hctx;
2728 		int k;
2729 
2730 		__ctx->cpu = i;
2731 		spin_lock_init(&__ctx->lock);
2732 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2733 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2734 
2735 		__ctx->queue = q;
2736 
2737 		/*
2738 		 * Set local node, IFF we have more than one hw queue. If
2739 		 * not, we remain on the home node of the device
2740 		 */
2741 		for (j = 0; j < set->nr_maps; j++) {
2742 			hctx = blk_mq_map_queue_type(q, j, i);
2743 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2744 				hctx->numa_node = cpu_to_node(i);
2745 		}
2746 	}
2747 }
2748 
2749 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2750 					int hctx_idx)
2751 {
2752 	unsigned int flags = set->flags;
2753 	int ret = 0;
2754 
2755 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2756 					set->queue_depth, set->reserved_tags, flags);
2757 	if (!set->tags[hctx_idx])
2758 		return false;
2759 
2760 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2761 				set->queue_depth);
2762 	if (!ret)
2763 		return true;
2764 
2765 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2766 	set->tags[hctx_idx] = NULL;
2767 	return false;
2768 }
2769 
2770 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2771 					 unsigned int hctx_idx)
2772 {
2773 	unsigned int flags = set->flags;
2774 
2775 	if (set->tags && set->tags[hctx_idx]) {
2776 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2777 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2778 		set->tags[hctx_idx] = NULL;
2779 	}
2780 }
2781 
2782 static void blk_mq_map_swqueue(struct request_queue *q)
2783 {
2784 	unsigned int i, j, hctx_idx;
2785 	struct blk_mq_hw_ctx *hctx;
2786 	struct blk_mq_ctx *ctx;
2787 	struct blk_mq_tag_set *set = q->tag_set;
2788 
2789 	queue_for_each_hw_ctx(q, hctx, i) {
2790 		cpumask_clear(hctx->cpumask);
2791 		hctx->nr_ctx = 0;
2792 		hctx->dispatch_from = NULL;
2793 	}
2794 
2795 	/*
2796 	 * Map software to hardware queues.
2797 	 *
2798 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2799 	 */
2800 	for_each_possible_cpu(i) {
2801 
2802 		ctx = per_cpu_ptr(q->queue_ctx, i);
2803 		for (j = 0; j < set->nr_maps; j++) {
2804 			if (!set->map[j].nr_queues) {
2805 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2806 						HCTX_TYPE_DEFAULT, i);
2807 				continue;
2808 			}
2809 			hctx_idx = set->map[j].mq_map[i];
2810 			/* unmapped hw queue can be remapped after CPU topo changed */
2811 			if (!set->tags[hctx_idx] &&
2812 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2813 				/*
2814 				 * If tags initialization fail for some hctx,
2815 				 * that hctx won't be brought online.  In this
2816 				 * case, remap the current ctx to hctx[0] which
2817 				 * is guaranteed to always have tags allocated
2818 				 */
2819 				set->map[j].mq_map[i] = 0;
2820 			}
2821 
2822 			hctx = blk_mq_map_queue_type(q, j, i);
2823 			ctx->hctxs[j] = hctx;
2824 			/*
2825 			 * If the CPU is already set in the mask, then we've
2826 			 * mapped this one already. This can happen if
2827 			 * devices share queues across queue maps.
2828 			 */
2829 			if (cpumask_test_cpu(i, hctx->cpumask))
2830 				continue;
2831 
2832 			cpumask_set_cpu(i, hctx->cpumask);
2833 			hctx->type = j;
2834 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2835 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2836 
2837 			/*
2838 			 * If the nr_ctx type overflows, we have exceeded the
2839 			 * amount of sw queues we can support.
2840 			 */
2841 			BUG_ON(!hctx->nr_ctx);
2842 		}
2843 
2844 		for (; j < HCTX_MAX_TYPES; j++)
2845 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2846 					HCTX_TYPE_DEFAULT, i);
2847 	}
2848 
2849 	queue_for_each_hw_ctx(q, hctx, i) {
2850 		/*
2851 		 * If no software queues are mapped to this hardware queue,
2852 		 * disable it and free the request entries.
2853 		 */
2854 		if (!hctx->nr_ctx) {
2855 			/* Never unmap queue 0.  We need it as a
2856 			 * fallback in case of a new remap fails
2857 			 * allocation
2858 			 */
2859 			if (i && set->tags[i])
2860 				blk_mq_free_map_and_requests(set, i);
2861 
2862 			hctx->tags = NULL;
2863 			continue;
2864 		}
2865 
2866 		hctx->tags = set->tags[i];
2867 		WARN_ON(!hctx->tags);
2868 
2869 		/*
2870 		 * Set the map size to the number of mapped software queues.
2871 		 * This is more accurate and more efficient than looping
2872 		 * over all possibly mapped software queues.
2873 		 */
2874 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2875 
2876 		/*
2877 		 * Initialize batch roundrobin counts
2878 		 */
2879 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2880 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2881 	}
2882 }
2883 
2884 /*
2885  * Caller needs to ensure that we're either frozen/quiesced, or that
2886  * the queue isn't live yet.
2887  */
2888 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2889 {
2890 	struct blk_mq_hw_ctx *hctx;
2891 	int i;
2892 
2893 	queue_for_each_hw_ctx(q, hctx, i) {
2894 		if (shared)
2895 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2896 		else
2897 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2898 	}
2899 }
2900 
2901 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2902 					 bool shared)
2903 {
2904 	struct request_queue *q;
2905 
2906 	lockdep_assert_held(&set->tag_list_lock);
2907 
2908 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2909 		blk_mq_freeze_queue(q);
2910 		queue_set_hctx_shared(q, shared);
2911 		blk_mq_unfreeze_queue(q);
2912 	}
2913 }
2914 
2915 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2916 {
2917 	struct blk_mq_tag_set *set = q->tag_set;
2918 
2919 	mutex_lock(&set->tag_list_lock);
2920 	list_del(&q->tag_set_list);
2921 	if (list_is_singular(&set->tag_list)) {
2922 		/* just transitioned to unshared */
2923 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2924 		/* update existing queue */
2925 		blk_mq_update_tag_set_shared(set, false);
2926 	}
2927 	mutex_unlock(&set->tag_list_lock);
2928 	INIT_LIST_HEAD(&q->tag_set_list);
2929 }
2930 
2931 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2932 				     struct request_queue *q)
2933 {
2934 	mutex_lock(&set->tag_list_lock);
2935 
2936 	/*
2937 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2938 	 */
2939 	if (!list_empty(&set->tag_list) &&
2940 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2941 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2942 		/* update existing queue */
2943 		blk_mq_update_tag_set_shared(set, true);
2944 	}
2945 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2946 		queue_set_hctx_shared(q, true);
2947 	list_add_tail(&q->tag_set_list, &set->tag_list);
2948 
2949 	mutex_unlock(&set->tag_list_lock);
2950 }
2951 
2952 /* All allocations will be freed in release handler of q->mq_kobj */
2953 static int blk_mq_alloc_ctxs(struct request_queue *q)
2954 {
2955 	struct blk_mq_ctxs *ctxs;
2956 	int cpu;
2957 
2958 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2959 	if (!ctxs)
2960 		return -ENOMEM;
2961 
2962 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2963 	if (!ctxs->queue_ctx)
2964 		goto fail;
2965 
2966 	for_each_possible_cpu(cpu) {
2967 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2968 		ctx->ctxs = ctxs;
2969 	}
2970 
2971 	q->mq_kobj = &ctxs->kobj;
2972 	q->queue_ctx = ctxs->queue_ctx;
2973 
2974 	return 0;
2975  fail:
2976 	kfree(ctxs);
2977 	return -ENOMEM;
2978 }
2979 
2980 /*
2981  * It is the actual release handler for mq, but we do it from
2982  * request queue's release handler for avoiding use-after-free
2983  * and headache because q->mq_kobj shouldn't have been introduced,
2984  * but we can't group ctx/kctx kobj without it.
2985  */
2986 void blk_mq_release(struct request_queue *q)
2987 {
2988 	struct blk_mq_hw_ctx *hctx, *next;
2989 	int i;
2990 
2991 	queue_for_each_hw_ctx(q, hctx, i)
2992 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2993 
2994 	/* all hctx are in .unused_hctx_list now */
2995 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2996 		list_del_init(&hctx->hctx_list);
2997 		kobject_put(&hctx->kobj);
2998 	}
2999 
3000 	kfree(q->queue_hw_ctx);
3001 
3002 	/*
3003 	 * release .mq_kobj and sw queue's kobject now because
3004 	 * both share lifetime with request queue.
3005 	 */
3006 	blk_mq_sysfs_deinit(q);
3007 }
3008 
3009 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3010 		void *queuedata)
3011 {
3012 	struct request_queue *uninit_q, *q;
3013 
3014 	uninit_q = blk_alloc_queue(set->numa_node);
3015 	if (!uninit_q)
3016 		return ERR_PTR(-ENOMEM);
3017 	uninit_q->queuedata = queuedata;
3018 
3019 	/*
3020 	 * Initialize the queue without an elevator. device_add_disk() will do
3021 	 * the initialization.
3022 	 */
3023 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3024 	if (IS_ERR(q))
3025 		blk_cleanup_queue(uninit_q);
3026 
3027 	return q;
3028 }
3029 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3030 
3031 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3032 {
3033 	return blk_mq_init_queue_data(set, NULL);
3034 }
3035 EXPORT_SYMBOL(blk_mq_init_queue);
3036 
3037 /*
3038  * Helper for setting up a queue with mq ops, given queue depth, and
3039  * the passed in mq ops flags.
3040  */
3041 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3042 					   const struct blk_mq_ops *ops,
3043 					   unsigned int queue_depth,
3044 					   unsigned int set_flags)
3045 {
3046 	struct request_queue *q;
3047 	int ret;
3048 
3049 	memset(set, 0, sizeof(*set));
3050 	set->ops = ops;
3051 	set->nr_hw_queues = 1;
3052 	set->nr_maps = 1;
3053 	set->queue_depth = queue_depth;
3054 	set->numa_node = NUMA_NO_NODE;
3055 	set->flags = set_flags;
3056 
3057 	ret = blk_mq_alloc_tag_set(set);
3058 	if (ret)
3059 		return ERR_PTR(ret);
3060 
3061 	q = blk_mq_init_queue(set);
3062 	if (IS_ERR(q)) {
3063 		blk_mq_free_tag_set(set);
3064 		return q;
3065 	}
3066 
3067 	return q;
3068 }
3069 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3070 
3071 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3072 		struct blk_mq_tag_set *set, struct request_queue *q,
3073 		int hctx_idx, int node)
3074 {
3075 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3076 
3077 	/* reuse dead hctx first */
3078 	spin_lock(&q->unused_hctx_lock);
3079 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3080 		if (tmp->numa_node == node) {
3081 			hctx = tmp;
3082 			break;
3083 		}
3084 	}
3085 	if (hctx)
3086 		list_del_init(&hctx->hctx_list);
3087 	spin_unlock(&q->unused_hctx_lock);
3088 
3089 	if (!hctx)
3090 		hctx = blk_mq_alloc_hctx(q, set, node);
3091 	if (!hctx)
3092 		goto fail;
3093 
3094 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3095 		goto free_hctx;
3096 
3097 	return hctx;
3098 
3099  free_hctx:
3100 	kobject_put(&hctx->kobj);
3101  fail:
3102 	return NULL;
3103 }
3104 
3105 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3106 						struct request_queue *q)
3107 {
3108 	int i, j, end;
3109 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3110 
3111 	if (q->nr_hw_queues < set->nr_hw_queues) {
3112 		struct blk_mq_hw_ctx **new_hctxs;
3113 
3114 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3115 				       sizeof(*new_hctxs), GFP_KERNEL,
3116 				       set->numa_node);
3117 		if (!new_hctxs)
3118 			return;
3119 		if (hctxs)
3120 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3121 			       sizeof(*hctxs));
3122 		q->queue_hw_ctx = new_hctxs;
3123 		kfree(hctxs);
3124 		hctxs = new_hctxs;
3125 	}
3126 
3127 	/* protect against switching io scheduler  */
3128 	mutex_lock(&q->sysfs_lock);
3129 	for (i = 0; i < set->nr_hw_queues; i++) {
3130 		int node;
3131 		struct blk_mq_hw_ctx *hctx;
3132 
3133 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3134 		/*
3135 		 * If the hw queue has been mapped to another numa node,
3136 		 * we need to realloc the hctx. If allocation fails, fallback
3137 		 * to use the previous one.
3138 		 */
3139 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3140 			continue;
3141 
3142 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3143 		if (hctx) {
3144 			if (hctxs[i])
3145 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3146 			hctxs[i] = hctx;
3147 		} else {
3148 			if (hctxs[i])
3149 				pr_warn("Allocate new hctx on node %d fails,\
3150 						fallback to previous one on node %d\n",
3151 						node, hctxs[i]->numa_node);
3152 			else
3153 				break;
3154 		}
3155 	}
3156 	/*
3157 	 * Increasing nr_hw_queues fails. Free the newly allocated
3158 	 * hctxs and keep the previous q->nr_hw_queues.
3159 	 */
3160 	if (i != set->nr_hw_queues) {
3161 		j = q->nr_hw_queues;
3162 		end = i;
3163 	} else {
3164 		j = i;
3165 		end = q->nr_hw_queues;
3166 		q->nr_hw_queues = set->nr_hw_queues;
3167 	}
3168 
3169 	for (; j < end; j++) {
3170 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3171 
3172 		if (hctx) {
3173 			if (hctx->tags)
3174 				blk_mq_free_map_and_requests(set, j);
3175 			blk_mq_exit_hctx(q, set, hctx, j);
3176 			hctxs[j] = NULL;
3177 		}
3178 	}
3179 	mutex_unlock(&q->sysfs_lock);
3180 }
3181 
3182 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3183 						  struct request_queue *q,
3184 						  bool elevator_init)
3185 {
3186 	/* mark the queue as mq asap */
3187 	q->mq_ops = set->ops;
3188 
3189 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3190 					     blk_mq_poll_stats_bkt,
3191 					     BLK_MQ_POLL_STATS_BKTS, q);
3192 	if (!q->poll_cb)
3193 		goto err_exit;
3194 
3195 	if (blk_mq_alloc_ctxs(q))
3196 		goto err_poll;
3197 
3198 	/* init q->mq_kobj and sw queues' kobjects */
3199 	blk_mq_sysfs_init(q);
3200 
3201 	INIT_LIST_HEAD(&q->unused_hctx_list);
3202 	spin_lock_init(&q->unused_hctx_lock);
3203 
3204 	blk_mq_realloc_hw_ctxs(set, q);
3205 	if (!q->nr_hw_queues)
3206 		goto err_hctxs;
3207 
3208 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3209 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3210 
3211 	q->tag_set = set;
3212 
3213 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3214 	if (set->nr_maps > HCTX_TYPE_POLL &&
3215 	    set->map[HCTX_TYPE_POLL].nr_queues)
3216 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3217 
3218 	q->sg_reserved_size = INT_MAX;
3219 
3220 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3221 	INIT_LIST_HEAD(&q->requeue_list);
3222 	spin_lock_init(&q->requeue_lock);
3223 
3224 	q->nr_requests = set->queue_depth;
3225 
3226 	/*
3227 	 * Default to classic polling
3228 	 */
3229 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3230 
3231 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3232 	blk_mq_add_queue_tag_set(set, q);
3233 	blk_mq_map_swqueue(q);
3234 
3235 	if (elevator_init)
3236 		elevator_init_mq(q);
3237 
3238 	return q;
3239 
3240 err_hctxs:
3241 	kfree(q->queue_hw_ctx);
3242 	q->nr_hw_queues = 0;
3243 	blk_mq_sysfs_deinit(q);
3244 err_poll:
3245 	blk_stat_free_callback(q->poll_cb);
3246 	q->poll_cb = NULL;
3247 err_exit:
3248 	q->mq_ops = NULL;
3249 	return ERR_PTR(-ENOMEM);
3250 }
3251 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3252 
3253 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3254 void blk_mq_exit_queue(struct request_queue *q)
3255 {
3256 	struct blk_mq_tag_set	*set = q->tag_set;
3257 
3258 	blk_mq_del_queue_tag_set(q);
3259 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3260 }
3261 
3262 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3263 {
3264 	int i;
3265 
3266 	for (i = 0; i < set->nr_hw_queues; i++) {
3267 		if (!__blk_mq_alloc_map_and_request(set, i))
3268 			goto out_unwind;
3269 		cond_resched();
3270 	}
3271 
3272 	return 0;
3273 
3274 out_unwind:
3275 	while (--i >= 0)
3276 		blk_mq_free_map_and_requests(set, i);
3277 
3278 	return -ENOMEM;
3279 }
3280 
3281 /*
3282  * Allocate the request maps associated with this tag_set. Note that this
3283  * may reduce the depth asked for, if memory is tight. set->queue_depth
3284  * will be updated to reflect the allocated depth.
3285  */
3286 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3287 {
3288 	unsigned int depth;
3289 	int err;
3290 
3291 	depth = set->queue_depth;
3292 	do {
3293 		err = __blk_mq_alloc_rq_maps(set);
3294 		if (!err)
3295 			break;
3296 
3297 		set->queue_depth >>= 1;
3298 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3299 			err = -ENOMEM;
3300 			break;
3301 		}
3302 	} while (set->queue_depth);
3303 
3304 	if (!set->queue_depth || err) {
3305 		pr_err("blk-mq: failed to allocate request map\n");
3306 		return -ENOMEM;
3307 	}
3308 
3309 	if (depth != set->queue_depth)
3310 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3311 						depth, set->queue_depth);
3312 
3313 	return 0;
3314 }
3315 
3316 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3317 {
3318 	/*
3319 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3320 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3321 	 * number of hardware queues.
3322 	 */
3323 	if (set->nr_maps == 1)
3324 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3325 
3326 	if (set->ops->map_queues && !is_kdump_kernel()) {
3327 		int i;
3328 
3329 		/*
3330 		 * transport .map_queues is usually done in the following
3331 		 * way:
3332 		 *
3333 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3334 		 * 	mask = get_cpu_mask(queue)
3335 		 * 	for_each_cpu(cpu, mask)
3336 		 * 		set->map[x].mq_map[cpu] = queue;
3337 		 * }
3338 		 *
3339 		 * When we need to remap, the table has to be cleared for
3340 		 * killing stale mapping since one CPU may not be mapped
3341 		 * to any hw queue.
3342 		 */
3343 		for (i = 0; i < set->nr_maps; i++)
3344 			blk_mq_clear_mq_map(&set->map[i]);
3345 
3346 		return set->ops->map_queues(set);
3347 	} else {
3348 		BUG_ON(set->nr_maps > 1);
3349 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3350 	}
3351 }
3352 
3353 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3354 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3355 {
3356 	struct blk_mq_tags **new_tags;
3357 
3358 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3359 		return 0;
3360 
3361 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3362 				GFP_KERNEL, set->numa_node);
3363 	if (!new_tags)
3364 		return -ENOMEM;
3365 
3366 	if (set->tags)
3367 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3368 		       sizeof(*set->tags));
3369 	kfree(set->tags);
3370 	set->tags = new_tags;
3371 	set->nr_hw_queues = new_nr_hw_queues;
3372 
3373 	return 0;
3374 }
3375 
3376 /*
3377  * Alloc a tag set to be associated with one or more request queues.
3378  * May fail with EINVAL for various error conditions. May adjust the
3379  * requested depth down, if it's too large. In that case, the set
3380  * value will be stored in set->queue_depth.
3381  */
3382 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3383 {
3384 	int i, ret;
3385 
3386 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3387 
3388 	if (!set->nr_hw_queues)
3389 		return -EINVAL;
3390 	if (!set->queue_depth)
3391 		return -EINVAL;
3392 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3393 		return -EINVAL;
3394 
3395 	if (!set->ops->queue_rq)
3396 		return -EINVAL;
3397 
3398 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3399 		return -EINVAL;
3400 
3401 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3402 		pr_info("blk-mq: reduced tag depth to %u\n",
3403 			BLK_MQ_MAX_DEPTH);
3404 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3405 	}
3406 
3407 	if (!set->nr_maps)
3408 		set->nr_maps = 1;
3409 	else if (set->nr_maps > HCTX_MAX_TYPES)
3410 		return -EINVAL;
3411 
3412 	/*
3413 	 * If a crashdump is active, then we are potentially in a very
3414 	 * memory constrained environment. Limit us to 1 queue and
3415 	 * 64 tags to prevent using too much memory.
3416 	 */
3417 	if (is_kdump_kernel()) {
3418 		set->nr_hw_queues = 1;
3419 		set->nr_maps = 1;
3420 		set->queue_depth = min(64U, set->queue_depth);
3421 	}
3422 	/*
3423 	 * There is no use for more h/w queues than cpus if we just have
3424 	 * a single map
3425 	 */
3426 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3427 		set->nr_hw_queues = nr_cpu_ids;
3428 
3429 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3430 		return -ENOMEM;
3431 
3432 	ret = -ENOMEM;
3433 	for (i = 0; i < set->nr_maps; i++) {
3434 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3435 						  sizeof(set->map[i].mq_map[0]),
3436 						  GFP_KERNEL, set->numa_node);
3437 		if (!set->map[i].mq_map)
3438 			goto out_free_mq_map;
3439 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3440 	}
3441 
3442 	ret = blk_mq_update_queue_map(set);
3443 	if (ret)
3444 		goto out_free_mq_map;
3445 
3446 	ret = blk_mq_alloc_map_and_requests(set);
3447 	if (ret)
3448 		goto out_free_mq_map;
3449 
3450 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3451 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3452 
3453 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3454 			ret = -ENOMEM;
3455 			goto out_free_mq_rq_maps;
3456 		}
3457 	}
3458 
3459 	mutex_init(&set->tag_list_lock);
3460 	INIT_LIST_HEAD(&set->tag_list);
3461 
3462 	return 0;
3463 
3464 out_free_mq_rq_maps:
3465 	for (i = 0; i < set->nr_hw_queues; i++)
3466 		blk_mq_free_map_and_requests(set, i);
3467 out_free_mq_map:
3468 	for (i = 0; i < set->nr_maps; i++) {
3469 		kfree(set->map[i].mq_map);
3470 		set->map[i].mq_map = NULL;
3471 	}
3472 	kfree(set->tags);
3473 	set->tags = NULL;
3474 	return ret;
3475 }
3476 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3477 
3478 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3479 {
3480 	int i, j;
3481 
3482 	for (i = 0; i < set->nr_hw_queues; i++)
3483 		blk_mq_free_map_and_requests(set, i);
3484 
3485 	if (blk_mq_is_sbitmap_shared(set->flags))
3486 		blk_mq_exit_shared_sbitmap(set);
3487 
3488 	for (j = 0; j < set->nr_maps; j++) {
3489 		kfree(set->map[j].mq_map);
3490 		set->map[j].mq_map = NULL;
3491 	}
3492 
3493 	kfree(set->tags);
3494 	set->tags = NULL;
3495 }
3496 EXPORT_SYMBOL(blk_mq_free_tag_set);
3497 
3498 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3499 {
3500 	struct blk_mq_tag_set *set = q->tag_set;
3501 	struct blk_mq_hw_ctx *hctx;
3502 	int i, ret;
3503 
3504 	if (!set)
3505 		return -EINVAL;
3506 
3507 	if (q->nr_requests == nr)
3508 		return 0;
3509 
3510 	blk_mq_freeze_queue(q);
3511 	blk_mq_quiesce_queue(q);
3512 
3513 	ret = 0;
3514 	queue_for_each_hw_ctx(q, hctx, i) {
3515 		if (!hctx->tags)
3516 			continue;
3517 		/*
3518 		 * If we're using an MQ scheduler, just update the scheduler
3519 		 * queue depth. This is similar to what the old code would do.
3520 		 */
3521 		if (!hctx->sched_tags) {
3522 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3523 							false);
3524 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3525 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3526 		} else {
3527 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3528 							nr, true);
3529 		}
3530 		if (ret)
3531 			break;
3532 		if (q->elevator && q->elevator->type->ops.depth_updated)
3533 			q->elevator->type->ops.depth_updated(hctx);
3534 	}
3535 
3536 	if (!ret)
3537 		q->nr_requests = nr;
3538 
3539 	blk_mq_unquiesce_queue(q);
3540 	blk_mq_unfreeze_queue(q);
3541 
3542 	return ret;
3543 }
3544 
3545 /*
3546  * request_queue and elevator_type pair.
3547  * It is just used by __blk_mq_update_nr_hw_queues to cache
3548  * the elevator_type associated with a request_queue.
3549  */
3550 struct blk_mq_qe_pair {
3551 	struct list_head node;
3552 	struct request_queue *q;
3553 	struct elevator_type *type;
3554 };
3555 
3556 /*
3557  * Cache the elevator_type in qe pair list and switch the
3558  * io scheduler to 'none'
3559  */
3560 static bool blk_mq_elv_switch_none(struct list_head *head,
3561 		struct request_queue *q)
3562 {
3563 	struct blk_mq_qe_pair *qe;
3564 
3565 	if (!q->elevator)
3566 		return true;
3567 
3568 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3569 	if (!qe)
3570 		return false;
3571 
3572 	INIT_LIST_HEAD(&qe->node);
3573 	qe->q = q;
3574 	qe->type = q->elevator->type;
3575 	list_add(&qe->node, head);
3576 
3577 	mutex_lock(&q->sysfs_lock);
3578 	/*
3579 	 * After elevator_switch_mq, the previous elevator_queue will be
3580 	 * released by elevator_release. The reference of the io scheduler
3581 	 * module get by elevator_get will also be put. So we need to get
3582 	 * a reference of the io scheduler module here to prevent it to be
3583 	 * removed.
3584 	 */
3585 	__module_get(qe->type->elevator_owner);
3586 	elevator_switch_mq(q, NULL);
3587 	mutex_unlock(&q->sysfs_lock);
3588 
3589 	return true;
3590 }
3591 
3592 static void blk_mq_elv_switch_back(struct list_head *head,
3593 		struct request_queue *q)
3594 {
3595 	struct blk_mq_qe_pair *qe;
3596 	struct elevator_type *t = NULL;
3597 
3598 	list_for_each_entry(qe, head, node)
3599 		if (qe->q == q) {
3600 			t = qe->type;
3601 			break;
3602 		}
3603 
3604 	if (!t)
3605 		return;
3606 
3607 	list_del(&qe->node);
3608 	kfree(qe);
3609 
3610 	mutex_lock(&q->sysfs_lock);
3611 	elevator_switch_mq(q, t);
3612 	mutex_unlock(&q->sysfs_lock);
3613 }
3614 
3615 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3616 							int nr_hw_queues)
3617 {
3618 	struct request_queue *q;
3619 	LIST_HEAD(head);
3620 	int prev_nr_hw_queues;
3621 
3622 	lockdep_assert_held(&set->tag_list_lock);
3623 
3624 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3625 		nr_hw_queues = nr_cpu_ids;
3626 	if (nr_hw_queues < 1)
3627 		return;
3628 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3629 		return;
3630 
3631 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3632 		blk_mq_freeze_queue(q);
3633 	/*
3634 	 * Switch IO scheduler to 'none', cleaning up the data associated
3635 	 * with the previous scheduler. We will switch back once we are done
3636 	 * updating the new sw to hw queue mappings.
3637 	 */
3638 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3639 		if (!blk_mq_elv_switch_none(&head, q))
3640 			goto switch_back;
3641 
3642 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3643 		blk_mq_debugfs_unregister_hctxs(q);
3644 		blk_mq_sysfs_unregister(q);
3645 	}
3646 
3647 	prev_nr_hw_queues = set->nr_hw_queues;
3648 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3649 	    0)
3650 		goto reregister;
3651 
3652 	set->nr_hw_queues = nr_hw_queues;
3653 fallback:
3654 	blk_mq_update_queue_map(set);
3655 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3656 		blk_mq_realloc_hw_ctxs(set, q);
3657 		if (q->nr_hw_queues != set->nr_hw_queues) {
3658 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3659 					nr_hw_queues, prev_nr_hw_queues);
3660 			set->nr_hw_queues = prev_nr_hw_queues;
3661 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3662 			goto fallback;
3663 		}
3664 		blk_mq_map_swqueue(q);
3665 	}
3666 
3667 reregister:
3668 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3669 		blk_mq_sysfs_register(q);
3670 		blk_mq_debugfs_register_hctxs(q);
3671 	}
3672 
3673 switch_back:
3674 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3675 		blk_mq_elv_switch_back(&head, q);
3676 
3677 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3678 		blk_mq_unfreeze_queue(q);
3679 }
3680 
3681 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3682 {
3683 	mutex_lock(&set->tag_list_lock);
3684 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3685 	mutex_unlock(&set->tag_list_lock);
3686 }
3687 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3688 
3689 /* Enable polling stats and return whether they were already enabled. */
3690 static bool blk_poll_stats_enable(struct request_queue *q)
3691 {
3692 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3693 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3694 		return true;
3695 	blk_stat_add_callback(q, q->poll_cb);
3696 	return false;
3697 }
3698 
3699 static void blk_mq_poll_stats_start(struct request_queue *q)
3700 {
3701 	/*
3702 	 * We don't arm the callback if polling stats are not enabled or the
3703 	 * callback is already active.
3704 	 */
3705 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3706 	    blk_stat_is_active(q->poll_cb))
3707 		return;
3708 
3709 	blk_stat_activate_msecs(q->poll_cb, 100);
3710 }
3711 
3712 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3713 {
3714 	struct request_queue *q = cb->data;
3715 	int bucket;
3716 
3717 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3718 		if (cb->stat[bucket].nr_samples)
3719 			q->poll_stat[bucket] = cb->stat[bucket];
3720 	}
3721 }
3722 
3723 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3724 				       struct request *rq)
3725 {
3726 	unsigned long ret = 0;
3727 	int bucket;
3728 
3729 	/*
3730 	 * If stats collection isn't on, don't sleep but turn it on for
3731 	 * future users
3732 	 */
3733 	if (!blk_poll_stats_enable(q))
3734 		return 0;
3735 
3736 	/*
3737 	 * As an optimistic guess, use half of the mean service time
3738 	 * for this type of request. We can (and should) make this smarter.
3739 	 * For instance, if the completion latencies are tight, we can
3740 	 * get closer than just half the mean. This is especially
3741 	 * important on devices where the completion latencies are longer
3742 	 * than ~10 usec. We do use the stats for the relevant IO size
3743 	 * if available which does lead to better estimates.
3744 	 */
3745 	bucket = blk_mq_poll_stats_bkt(rq);
3746 	if (bucket < 0)
3747 		return ret;
3748 
3749 	if (q->poll_stat[bucket].nr_samples)
3750 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3751 
3752 	return ret;
3753 }
3754 
3755 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3756 				     struct request *rq)
3757 {
3758 	struct hrtimer_sleeper hs;
3759 	enum hrtimer_mode mode;
3760 	unsigned int nsecs;
3761 	ktime_t kt;
3762 
3763 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3764 		return false;
3765 
3766 	/*
3767 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3768 	 *
3769 	 *  0:	use half of prev avg
3770 	 * >0:	use this specific value
3771 	 */
3772 	if (q->poll_nsec > 0)
3773 		nsecs = q->poll_nsec;
3774 	else
3775 		nsecs = blk_mq_poll_nsecs(q, rq);
3776 
3777 	if (!nsecs)
3778 		return false;
3779 
3780 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3781 
3782 	/*
3783 	 * This will be replaced with the stats tracking code, using
3784 	 * 'avg_completion_time / 2' as the pre-sleep target.
3785 	 */
3786 	kt = nsecs;
3787 
3788 	mode = HRTIMER_MODE_REL;
3789 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3790 	hrtimer_set_expires(&hs.timer, kt);
3791 
3792 	do {
3793 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3794 			break;
3795 		set_current_state(TASK_UNINTERRUPTIBLE);
3796 		hrtimer_sleeper_start_expires(&hs, mode);
3797 		if (hs.task)
3798 			io_schedule();
3799 		hrtimer_cancel(&hs.timer);
3800 		mode = HRTIMER_MODE_ABS;
3801 	} while (hs.task && !signal_pending(current));
3802 
3803 	__set_current_state(TASK_RUNNING);
3804 	destroy_hrtimer_on_stack(&hs.timer);
3805 	return true;
3806 }
3807 
3808 static bool blk_mq_poll_hybrid(struct request_queue *q,
3809 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3810 {
3811 	struct request *rq;
3812 
3813 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3814 		return false;
3815 
3816 	if (!blk_qc_t_is_internal(cookie))
3817 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3818 	else {
3819 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3820 		/*
3821 		 * With scheduling, if the request has completed, we'll
3822 		 * get a NULL return here, as we clear the sched tag when
3823 		 * that happens. The request still remains valid, like always,
3824 		 * so we should be safe with just the NULL check.
3825 		 */
3826 		if (!rq)
3827 			return false;
3828 	}
3829 
3830 	return blk_mq_poll_hybrid_sleep(q, rq);
3831 }
3832 
3833 /**
3834  * blk_poll - poll for IO completions
3835  * @q:  the queue
3836  * @cookie: cookie passed back at IO submission time
3837  * @spin: whether to spin for completions
3838  *
3839  * Description:
3840  *    Poll for completions on the passed in queue. Returns number of
3841  *    completed entries found. If @spin is true, then blk_poll will continue
3842  *    looping until at least one completion is found, unless the task is
3843  *    otherwise marked running (or we need to reschedule).
3844  */
3845 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3846 {
3847 	struct blk_mq_hw_ctx *hctx;
3848 	long state;
3849 
3850 	if (!blk_qc_t_valid(cookie) ||
3851 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3852 		return 0;
3853 
3854 	if (current->plug)
3855 		blk_flush_plug_list(current->plug, false);
3856 
3857 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3858 
3859 	/*
3860 	 * If we sleep, have the caller restart the poll loop to reset
3861 	 * the state. Like for the other success return cases, the
3862 	 * caller is responsible for checking if the IO completed. If
3863 	 * the IO isn't complete, we'll get called again and will go
3864 	 * straight to the busy poll loop.
3865 	 */
3866 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3867 		return 1;
3868 
3869 	hctx->poll_considered++;
3870 
3871 	state = current->state;
3872 	do {
3873 		int ret;
3874 
3875 		hctx->poll_invoked++;
3876 
3877 		ret = q->mq_ops->poll(hctx);
3878 		if (ret > 0) {
3879 			hctx->poll_success++;
3880 			__set_current_state(TASK_RUNNING);
3881 			return ret;
3882 		}
3883 
3884 		if (signal_pending_state(state, current))
3885 			__set_current_state(TASK_RUNNING);
3886 
3887 		if (current->state == TASK_RUNNING)
3888 			return 1;
3889 		if (ret < 0 || !spin)
3890 			break;
3891 		cpu_relax();
3892 	} while (!need_resched());
3893 
3894 	__set_current_state(TASK_RUNNING);
3895 	return 0;
3896 }
3897 EXPORT_SYMBOL_GPL(blk_poll);
3898 
3899 unsigned int blk_mq_rq_cpu(struct request *rq)
3900 {
3901 	return rq->mq_ctx->cpu;
3902 }
3903 EXPORT_SYMBOL(blk_mq_rq_cpu);
3904 
3905 static int __init blk_mq_init(void)
3906 {
3907 	int i;
3908 
3909 	for_each_possible_cpu(i)
3910 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3911 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3912 
3913 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3914 				  "block/softirq:dead", NULL,
3915 				  blk_softirq_cpu_dead);
3916 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3917 				blk_mq_hctx_notify_dead);
3918 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3919 				blk_mq_hctx_notify_online,
3920 				blk_mq_hctx_notify_offline);
3921 	return 0;
3922 }
3923 subsys_initcall(blk_mq_init);
3924