1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 45 46 static void blk_mq_poll_stats_start(struct request_queue *q); 47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49 static int blk_mq_poll_stats_bkt(const struct request *rq) 50 { 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64 } 65 66 /* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71 { 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75 } 76 77 /* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87 } 88 89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91 { 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95 } 96 97 struct mq_inflight { 98 struct hd_struct *part; 99 unsigned int inflight[2]; 100 }; 101 102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105 { 106 struct mq_inflight *mi = priv; 107 108 if (rq->part == mi->part && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 109 mi->inflight[rq_data_dir(rq)]++; 110 111 return true; 112 } 113 114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 120 return mi.inflight[0] + mi.inflight[1]; 121 } 122 123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 124 unsigned int inflight[2]) 125 { 126 struct mq_inflight mi = { .part = part }; 127 128 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 129 inflight[0] = mi.inflight[0]; 130 inflight[1] = mi.inflight[1]; 131 } 132 133 void blk_freeze_queue_start(struct request_queue *q) 134 { 135 mutex_lock(&q->mq_freeze_lock); 136 if (++q->mq_freeze_depth == 1) { 137 percpu_ref_kill(&q->q_usage_counter); 138 mutex_unlock(&q->mq_freeze_lock); 139 if (queue_is_mq(q)) 140 blk_mq_run_hw_queues(q, false); 141 } else { 142 mutex_unlock(&q->mq_freeze_lock); 143 } 144 } 145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 146 147 void blk_mq_freeze_queue_wait(struct request_queue *q) 148 { 149 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 152 153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 154 unsigned long timeout) 155 { 156 return wait_event_timeout(q->mq_freeze_wq, 157 percpu_ref_is_zero(&q->q_usage_counter), 158 timeout); 159 } 160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 161 162 /* 163 * Guarantee no request is in use, so we can change any data structure of 164 * the queue afterward. 165 */ 166 void blk_freeze_queue(struct request_queue *q) 167 { 168 /* 169 * In the !blk_mq case we are only calling this to kill the 170 * q_usage_counter, otherwise this increases the freeze depth 171 * and waits for it to return to zero. For this reason there is 172 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 173 * exported to drivers as the only user for unfreeze is blk_mq. 174 */ 175 blk_freeze_queue_start(q); 176 blk_mq_freeze_queue_wait(q); 177 } 178 179 void blk_mq_freeze_queue(struct request_queue *q) 180 { 181 /* 182 * ...just an alias to keep freeze and unfreeze actions balanced 183 * in the blk_mq_* namespace 184 */ 185 blk_freeze_queue(q); 186 } 187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 188 189 void blk_mq_unfreeze_queue(struct request_queue *q) 190 { 191 mutex_lock(&q->mq_freeze_lock); 192 q->mq_freeze_depth--; 193 WARN_ON_ONCE(q->mq_freeze_depth < 0); 194 if (!q->mq_freeze_depth) { 195 percpu_ref_resurrect(&q->q_usage_counter); 196 wake_up_all(&q->mq_freeze_wq); 197 } 198 mutex_unlock(&q->mq_freeze_lock); 199 } 200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 201 202 /* 203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 204 * mpt3sas driver such that this function can be removed. 205 */ 206 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 207 { 208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 209 } 210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 211 212 /** 213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 214 * @q: request queue. 215 * 216 * Note: this function does not prevent that the struct request end_io() 217 * callback function is invoked. Once this function is returned, we make 218 * sure no dispatch can happen until the queue is unquiesced via 219 * blk_mq_unquiesce_queue(). 220 */ 221 void blk_mq_quiesce_queue(struct request_queue *q) 222 { 223 struct blk_mq_hw_ctx *hctx; 224 unsigned int i; 225 bool rcu = false; 226 227 blk_mq_quiesce_queue_nowait(q); 228 229 queue_for_each_hw_ctx(q, hctx, i) { 230 if (hctx->flags & BLK_MQ_F_BLOCKING) 231 synchronize_srcu(hctx->srcu); 232 else 233 rcu = true; 234 } 235 if (rcu) 236 synchronize_rcu(); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 239 240 /* 241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 242 * @q: request queue. 243 * 244 * This function recovers queue into the state before quiescing 245 * which is done by blk_mq_quiesce_queue. 246 */ 247 void blk_mq_unquiesce_queue(struct request_queue *q) 248 { 249 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 250 251 /* dispatch requests which are inserted during quiescing */ 252 blk_mq_run_hw_queues(q, true); 253 } 254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 255 256 void blk_mq_wake_waiters(struct request_queue *q) 257 { 258 struct blk_mq_hw_ctx *hctx; 259 unsigned int i; 260 261 queue_for_each_hw_ctx(q, hctx, i) 262 if (blk_mq_hw_queue_mapped(hctx)) 263 blk_mq_tag_wakeup_all(hctx->tags, true); 264 } 265 266 /* 267 * Only need start/end time stamping if we have iostat or 268 * blk stats enabled, or using an IO scheduler. 269 */ 270 static inline bool blk_mq_need_time_stamp(struct request *rq) 271 { 272 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 273 } 274 275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 276 unsigned int tag, u64 alloc_time_ns) 277 { 278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 279 struct request *rq = tags->static_rqs[tag]; 280 281 if (data->q->elevator) { 282 rq->tag = BLK_MQ_NO_TAG; 283 rq->internal_tag = tag; 284 } else { 285 rq->tag = tag; 286 rq->internal_tag = BLK_MQ_NO_TAG; 287 } 288 289 /* csd/requeue_work/fifo_time is initialized before use */ 290 rq->q = data->q; 291 rq->mq_ctx = data->ctx; 292 rq->mq_hctx = data->hctx; 293 rq->rq_flags = 0; 294 rq->cmd_flags = data->cmd_flags; 295 if (data->flags & BLK_MQ_REQ_PREEMPT) 296 rq->rq_flags |= RQF_PREEMPT; 297 if (blk_queue_io_stat(data->q)) 298 rq->rq_flags |= RQF_IO_STAT; 299 INIT_LIST_HEAD(&rq->queuelist); 300 INIT_HLIST_NODE(&rq->hash); 301 RB_CLEAR_NODE(&rq->rb_node); 302 rq->rq_disk = NULL; 303 rq->part = NULL; 304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 305 rq->alloc_time_ns = alloc_time_ns; 306 #endif 307 if (blk_mq_need_time_stamp(rq)) 308 rq->start_time_ns = ktime_get_ns(); 309 else 310 rq->start_time_ns = 0; 311 rq->io_start_time_ns = 0; 312 rq->stats_sectors = 0; 313 rq->nr_phys_segments = 0; 314 #if defined(CONFIG_BLK_DEV_INTEGRITY) 315 rq->nr_integrity_segments = 0; 316 #endif 317 blk_crypto_rq_set_defaults(rq); 318 /* tag was already set */ 319 WRITE_ONCE(rq->deadline, 0); 320 321 rq->timeout = 0; 322 323 rq->end_io = NULL; 324 rq->end_io_data = NULL; 325 326 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 327 refcount_set(&rq->ref, 1); 328 329 if (!op_is_flush(data->cmd_flags)) { 330 struct elevator_queue *e = data->q->elevator; 331 332 rq->elv.icq = NULL; 333 if (e && e->type->ops.prepare_request) { 334 if (e->type->icq_cache) 335 blk_mq_sched_assign_ioc(rq); 336 337 e->type->ops.prepare_request(rq); 338 rq->rq_flags |= RQF_ELVPRIV; 339 } 340 } 341 342 data->hctx->queued++; 343 return rq; 344 } 345 346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 347 { 348 struct request_queue *q = data->q; 349 struct elevator_queue *e = q->elevator; 350 u64 alloc_time_ns = 0; 351 unsigned int tag; 352 353 /* alloc_time includes depth and tag waits */ 354 if (blk_queue_rq_alloc_time(q)) 355 alloc_time_ns = ktime_get_ns(); 356 357 if (data->cmd_flags & REQ_NOWAIT) 358 data->flags |= BLK_MQ_REQ_NOWAIT; 359 360 if (e) { 361 /* 362 * Flush requests are special and go directly to the 363 * dispatch list. Don't include reserved tags in the 364 * limiting, as it isn't useful. 365 */ 366 if (!op_is_flush(data->cmd_flags) && 367 e->type->ops.limit_depth && 368 !(data->flags & BLK_MQ_REQ_RESERVED)) 369 e->type->ops.limit_depth(data->cmd_flags, data); 370 } 371 372 retry: 373 data->ctx = blk_mq_get_ctx(q); 374 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 375 if (!e) 376 blk_mq_tag_busy(data->hctx); 377 378 /* 379 * Waiting allocations only fail because of an inactive hctx. In that 380 * case just retry the hctx assignment and tag allocation as CPU hotplug 381 * should have migrated us to an online CPU by now. 382 */ 383 tag = blk_mq_get_tag(data); 384 if (tag == BLK_MQ_NO_TAG) { 385 if (data->flags & BLK_MQ_REQ_NOWAIT) 386 return NULL; 387 388 /* 389 * Give up the CPU and sleep for a random short time to ensure 390 * that thread using a realtime scheduling class are migrated 391 * off the CPU, and thus off the hctx that is going away. 392 */ 393 msleep(3); 394 goto retry; 395 } 396 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 397 } 398 399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 400 blk_mq_req_flags_t flags) 401 { 402 struct blk_mq_alloc_data data = { 403 .q = q, 404 .flags = flags, 405 .cmd_flags = op, 406 }; 407 struct request *rq; 408 int ret; 409 410 ret = blk_queue_enter(q, flags); 411 if (ret) 412 return ERR_PTR(ret); 413 414 rq = __blk_mq_alloc_request(&data); 415 if (!rq) 416 goto out_queue_exit; 417 rq->__data_len = 0; 418 rq->__sector = (sector_t) -1; 419 rq->bio = rq->biotail = NULL; 420 return rq; 421 out_queue_exit: 422 blk_queue_exit(q); 423 return ERR_PTR(-EWOULDBLOCK); 424 } 425 EXPORT_SYMBOL(blk_mq_alloc_request); 426 427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 428 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 429 { 430 struct blk_mq_alloc_data data = { 431 .q = q, 432 .flags = flags, 433 .cmd_flags = op, 434 }; 435 u64 alloc_time_ns = 0; 436 unsigned int cpu; 437 unsigned int tag; 438 int ret; 439 440 /* alloc_time includes depth and tag waits */ 441 if (blk_queue_rq_alloc_time(q)) 442 alloc_time_ns = ktime_get_ns(); 443 444 /* 445 * If the tag allocator sleeps we could get an allocation for a 446 * different hardware context. No need to complicate the low level 447 * allocator for this for the rare use case of a command tied to 448 * a specific queue. 449 */ 450 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 451 return ERR_PTR(-EINVAL); 452 453 if (hctx_idx >= q->nr_hw_queues) 454 return ERR_PTR(-EIO); 455 456 ret = blk_queue_enter(q, flags); 457 if (ret) 458 return ERR_PTR(ret); 459 460 /* 461 * Check if the hardware context is actually mapped to anything. 462 * If not tell the caller that it should skip this queue. 463 */ 464 ret = -EXDEV; 465 data.hctx = q->queue_hw_ctx[hctx_idx]; 466 if (!blk_mq_hw_queue_mapped(data.hctx)) 467 goto out_queue_exit; 468 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 469 data.ctx = __blk_mq_get_ctx(q, cpu); 470 471 if (!q->elevator) 472 blk_mq_tag_busy(data.hctx); 473 474 ret = -EWOULDBLOCK; 475 tag = blk_mq_get_tag(&data); 476 if (tag == BLK_MQ_NO_TAG) 477 goto out_queue_exit; 478 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 479 480 out_queue_exit: 481 blk_queue_exit(q); 482 return ERR_PTR(ret); 483 } 484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 485 486 static void __blk_mq_free_request(struct request *rq) 487 { 488 struct request_queue *q = rq->q; 489 struct blk_mq_ctx *ctx = rq->mq_ctx; 490 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 491 const int sched_tag = rq->internal_tag; 492 493 blk_crypto_free_request(rq); 494 blk_pm_mark_last_busy(rq); 495 rq->mq_hctx = NULL; 496 if (rq->tag != BLK_MQ_NO_TAG) 497 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 498 if (sched_tag != BLK_MQ_NO_TAG) 499 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 500 blk_mq_sched_restart(hctx); 501 blk_queue_exit(q); 502 } 503 504 void blk_mq_free_request(struct request *rq) 505 { 506 struct request_queue *q = rq->q; 507 struct elevator_queue *e = q->elevator; 508 struct blk_mq_ctx *ctx = rq->mq_ctx; 509 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 510 511 if (rq->rq_flags & RQF_ELVPRIV) { 512 if (e && e->type->ops.finish_request) 513 e->type->ops.finish_request(rq); 514 if (rq->elv.icq) { 515 put_io_context(rq->elv.icq->ioc); 516 rq->elv.icq = NULL; 517 } 518 } 519 520 ctx->rq_completed[rq_is_sync(rq)]++; 521 if (rq->rq_flags & RQF_MQ_INFLIGHT) 522 __blk_mq_dec_active_requests(hctx); 523 524 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 525 laptop_io_completion(q->backing_dev_info); 526 527 rq_qos_done(q, rq); 528 529 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 530 if (refcount_dec_and_test(&rq->ref)) 531 __blk_mq_free_request(rq); 532 } 533 EXPORT_SYMBOL_GPL(blk_mq_free_request); 534 535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 536 { 537 u64 now = 0; 538 539 if (blk_mq_need_time_stamp(rq)) 540 now = ktime_get_ns(); 541 542 if (rq->rq_flags & RQF_STATS) { 543 blk_mq_poll_stats_start(rq->q); 544 blk_stat_add(rq, now); 545 } 546 547 blk_mq_sched_completed_request(rq, now); 548 549 blk_account_io_done(rq, now); 550 551 if (rq->end_io) { 552 rq_qos_done(rq->q, rq); 553 rq->end_io(rq, error); 554 } else { 555 blk_mq_free_request(rq); 556 } 557 } 558 EXPORT_SYMBOL(__blk_mq_end_request); 559 560 void blk_mq_end_request(struct request *rq, blk_status_t error) 561 { 562 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 563 BUG(); 564 __blk_mq_end_request(rq, error); 565 } 566 EXPORT_SYMBOL(blk_mq_end_request); 567 568 /* 569 * Softirq action handler - move entries to local list and loop over them 570 * while passing them to the queue registered handler. 571 */ 572 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 573 { 574 struct list_head *cpu_list, local_list; 575 576 local_irq_disable(); 577 cpu_list = this_cpu_ptr(&blk_cpu_done); 578 list_replace_init(cpu_list, &local_list); 579 local_irq_enable(); 580 581 while (!list_empty(&local_list)) { 582 struct request *rq; 583 584 rq = list_entry(local_list.next, struct request, ipi_list); 585 list_del_init(&rq->ipi_list); 586 rq->q->mq_ops->complete(rq); 587 } 588 } 589 590 static void blk_mq_trigger_softirq(struct request *rq) 591 { 592 struct list_head *list; 593 unsigned long flags; 594 595 local_irq_save(flags); 596 list = this_cpu_ptr(&blk_cpu_done); 597 list_add_tail(&rq->ipi_list, list); 598 599 /* 600 * If the list only contains our just added request, signal a raise of 601 * the softirq. If there are already entries there, someone already 602 * raised the irq but it hasn't run yet. 603 */ 604 if (list->next == &rq->ipi_list) 605 raise_softirq_irqoff(BLOCK_SOFTIRQ); 606 local_irq_restore(flags); 607 } 608 609 static int blk_softirq_cpu_dead(unsigned int cpu) 610 { 611 /* 612 * If a CPU goes away, splice its entries to the current CPU 613 * and trigger a run of the softirq 614 */ 615 local_irq_disable(); 616 list_splice_init(&per_cpu(blk_cpu_done, cpu), 617 this_cpu_ptr(&blk_cpu_done)); 618 raise_softirq_irqoff(BLOCK_SOFTIRQ); 619 local_irq_enable(); 620 621 return 0; 622 } 623 624 625 static void __blk_mq_complete_request_remote(void *data) 626 { 627 struct request *rq = data; 628 629 /* 630 * For most of single queue controllers, there is only one irq vector 631 * for handling I/O completion, and the only irq's affinity is set 632 * to all possible CPUs. On most of ARCHs, this affinity means the irq 633 * is handled on one specific CPU. 634 * 635 * So complete I/O requests in softirq context in case of single queue 636 * devices to avoid degrading I/O performance due to irqsoff latency. 637 */ 638 if (rq->q->nr_hw_queues == 1) 639 blk_mq_trigger_softirq(rq); 640 else 641 rq->q->mq_ops->complete(rq); 642 } 643 644 static inline bool blk_mq_complete_need_ipi(struct request *rq) 645 { 646 int cpu = raw_smp_processor_id(); 647 648 if (!IS_ENABLED(CONFIG_SMP) || 649 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 650 return false; 651 652 /* same CPU or cache domain? Complete locally */ 653 if (cpu == rq->mq_ctx->cpu || 654 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 655 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 656 return false; 657 658 /* don't try to IPI to an offline CPU */ 659 return cpu_online(rq->mq_ctx->cpu); 660 } 661 662 bool blk_mq_complete_request_remote(struct request *rq) 663 { 664 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 665 666 /* 667 * For a polled request, always complete locallly, it's pointless 668 * to redirect the completion. 669 */ 670 if (rq->cmd_flags & REQ_HIPRI) 671 return false; 672 673 if (blk_mq_complete_need_ipi(rq)) { 674 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 675 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd); 676 } else { 677 if (rq->q->nr_hw_queues > 1) 678 return false; 679 blk_mq_trigger_softirq(rq); 680 } 681 682 return true; 683 } 684 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 685 686 /** 687 * blk_mq_complete_request - end I/O on a request 688 * @rq: the request being processed 689 * 690 * Description: 691 * Complete a request by scheduling the ->complete_rq operation. 692 **/ 693 void blk_mq_complete_request(struct request *rq) 694 { 695 if (!blk_mq_complete_request_remote(rq)) 696 rq->q->mq_ops->complete(rq); 697 } 698 EXPORT_SYMBOL(blk_mq_complete_request); 699 700 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 701 __releases(hctx->srcu) 702 { 703 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 704 rcu_read_unlock(); 705 else 706 srcu_read_unlock(hctx->srcu, srcu_idx); 707 } 708 709 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 710 __acquires(hctx->srcu) 711 { 712 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 713 /* shut up gcc false positive */ 714 *srcu_idx = 0; 715 rcu_read_lock(); 716 } else 717 *srcu_idx = srcu_read_lock(hctx->srcu); 718 } 719 720 /** 721 * blk_mq_start_request - Start processing a request 722 * @rq: Pointer to request to be started 723 * 724 * Function used by device drivers to notify the block layer that a request 725 * is going to be processed now, so blk layer can do proper initializations 726 * such as starting the timeout timer. 727 */ 728 void blk_mq_start_request(struct request *rq) 729 { 730 struct request_queue *q = rq->q; 731 732 trace_block_rq_issue(q, rq); 733 734 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 735 rq->io_start_time_ns = ktime_get_ns(); 736 rq->stats_sectors = blk_rq_sectors(rq); 737 rq->rq_flags |= RQF_STATS; 738 rq_qos_issue(q, rq); 739 } 740 741 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 742 743 blk_add_timer(rq); 744 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 745 746 #ifdef CONFIG_BLK_DEV_INTEGRITY 747 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 748 q->integrity.profile->prepare_fn(rq); 749 #endif 750 } 751 EXPORT_SYMBOL(blk_mq_start_request); 752 753 static void __blk_mq_requeue_request(struct request *rq) 754 { 755 struct request_queue *q = rq->q; 756 757 blk_mq_put_driver_tag(rq); 758 759 trace_block_rq_requeue(q, rq); 760 rq_qos_requeue(q, rq); 761 762 if (blk_mq_request_started(rq)) { 763 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 764 rq->rq_flags &= ~RQF_TIMED_OUT; 765 } 766 } 767 768 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 769 { 770 __blk_mq_requeue_request(rq); 771 772 /* this request will be re-inserted to io scheduler queue */ 773 blk_mq_sched_requeue_request(rq); 774 775 BUG_ON(!list_empty(&rq->queuelist)); 776 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 777 } 778 EXPORT_SYMBOL(blk_mq_requeue_request); 779 780 static void blk_mq_requeue_work(struct work_struct *work) 781 { 782 struct request_queue *q = 783 container_of(work, struct request_queue, requeue_work.work); 784 LIST_HEAD(rq_list); 785 struct request *rq, *next; 786 787 spin_lock_irq(&q->requeue_lock); 788 list_splice_init(&q->requeue_list, &rq_list); 789 spin_unlock_irq(&q->requeue_lock); 790 791 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 792 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 793 continue; 794 795 rq->rq_flags &= ~RQF_SOFTBARRIER; 796 list_del_init(&rq->queuelist); 797 /* 798 * If RQF_DONTPREP, rq has contained some driver specific 799 * data, so insert it to hctx dispatch list to avoid any 800 * merge. 801 */ 802 if (rq->rq_flags & RQF_DONTPREP) 803 blk_mq_request_bypass_insert(rq, false, false); 804 else 805 blk_mq_sched_insert_request(rq, true, false, false); 806 } 807 808 while (!list_empty(&rq_list)) { 809 rq = list_entry(rq_list.next, struct request, queuelist); 810 list_del_init(&rq->queuelist); 811 blk_mq_sched_insert_request(rq, false, false, false); 812 } 813 814 blk_mq_run_hw_queues(q, false); 815 } 816 817 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 818 bool kick_requeue_list) 819 { 820 struct request_queue *q = rq->q; 821 unsigned long flags; 822 823 /* 824 * We abuse this flag that is otherwise used by the I/O scheduler to 825 * request head insertion from the workqueue. 826 */ 827 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 828 829 spin_lock_irqsave(&q->requeue_lock, flags); 830 if (at_head) { 831 rq->rq_flags |= RQF_SOFTBARRIER; 832 list_add(&rq->queuelist, &q->requeue_list); 833 } else { 834 list_add_tail(&rq->queuelist, &q->requeue_list); 835 } 836 spin_unlock_irqrestore(&q->requeue_lock, flags); 837 838 if (kick_requeue_list) 839 blk_mq_kick_requeue_list(q); 840 } 841 842 void blk_mq_kick_requeue_list(struct request_queue *q) 843 { 844 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 845 } 846 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 847 848 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 849 unsigned long msecs) 850 { 851 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 852 msecs_to_jiffies(msecs)); 853 } 854 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 855 856 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 857 { 858 if (tag < tags->nr_tags) { 859 prefetch(tags->rqs[tag]); 860 return tags->rqs[tag]; 861 } 862 863 return NULL; 864 } 865 EXPORT_SYMBOL(blk_mq_tag_to_rq); 866 867 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 868 void *priv, bool reserved) 869 { 870 /* 871 * If we find a request that isn't idle and the queue matches, 872 * we know the queue is busy. Return false to stop the iteration. 873 */ 874 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 875 bool *busy = priv; 876 877 *busy = true; 878 return false; 879 } 880 881 return true; 882 } 883 884 bool blk_mq_queue_inflight(struct request_queue *q) 885 { 886 bool busy = false; 887 888 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 889 return busy; 890 } 891 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 892 893 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 894 { 895 req->rq_flags |= RQF_TIMED_OUT; 896 if (req->q->mq_ops->timeout) { 897 enum blk_eh_timer_return ret; 898 899 ret = req->q->mq_ops->timeout(req, reserved); 900 if (ret == BLK_EH_DONE) 901 return; 902 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 903 } 904 905 blk_add_timer(req); 906 } 907 908 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 909 { 910 unsigned long deadline; 911 912 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 913 return false; 914 if (rq->rq_flags & RQF_TIMED_OUT) 915 return false; 916 917 deadline = READ_ONCE(rq->deadline); 918 if (time_after_eq(jiffies, deadline)) 919 return true; 920 921 if (*next == 0) 922 *next = deadline; 923 else if (time_after(*next, deadline)) 924 *next = deadline; 925 return false; 926 } 927 928 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 929 struct request *rq, void *priv, bool reserved) 930 { 931 unsigned long *next = priv; 932 933 /* 934 * Just do a quick check if it is expired before locking the request in 935 * so we're not unnecessarilly synchronizing across CPUs. 936 */ 937 if (!blk_mq_req_expired(rq, next)) 938 return true; 939 940 /* 941 * We have reason to believe the request may be expired. Take a 942 * reference on the request to lock this request lifetime into its 943 * currently allocated context to prevent it from being reallocated in 944 * the event the completion by-passes this timeout handler. 945 * 946 * If the reference was already released, then the driver beat the 947 * timeout handler to posting a natural completion. 948 */ 949 if (!refcount_inc_not_zero(&rq->ref)) 950 return true; 951 952 /* 953 * The request is now locked and cannot be reallocated underneath the 954 * timeout handler's processing. Re-verify this exact request is truly 955 * expired; if it is not expired, then the request was completed and 956 * reallocated as a new request. 957 */ 958 if (blk_mq_req_expired(rq, next)) 959 blk_mq_rq_timed_out(rq, reserved); 960 961 if (is_flush_rq(rq, hctx)) 962 rq->end_io(rq, 0); 963 else if (refcount_dec_and_test(&rq->ref)) 964 __blk_mq_free_request(rq); 965 966 return true; 967 } 968 969 static void blk_mq_timeout_work(struct work_struct *work) 970 { 971 struct request_queue *q = 972 container_of(work, struct request_queue, timeout_work); 973 unsigned long next = 0; 974 struct blk_mq_hw_ctx *hctx; 975 int i; 976 977 /* A deadlock might occur if a request is stuck requiring a 978 * timeout at the same time a queue freeze is waiting 979 * completion, since the timeout code would not be able to 980 * acquire the queue reference here. 981 * 982 * That's why we don't use blk_queue_enter here; instead, we use 983 * percpu_ref_tryget directly, because we need to be able to 984 * obtain a reference even in the short window between the queue 985 * starting to freeze, by dropping the first reference in 986 * blk_freeze_queue_start, and the moment the last request is 987 * consumed, marked by the instant q_usage_counter reaches 988 * zero. 989 */ 990 if (!percpu_ref_tryget(&q->q_usage_counter)) 991 return; 992 993 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 994 995 if (next != 0) { 996 mod_timer(&q->timeout, next); 997 } else { 998 /* 999 * Request timeouts are handled as a forward rolling timer. If 1000 * we end up here it means that no requests are pending and 1001 * also that no request has been pending for a while. Mark 1002 * each hctx as idle. 1003 */ 1004 queue_for_each_hw_ctx(q, hctx, i) { 1005 /* the hctx may be unmapped, so check it here */ 1006 if (blk_mq_hw_queue_mapped(hctx)) 1007 blk_mq_tag_idle(hctx); 1008 } 1009 } 1010 blk_queue_exit(q); 1011 } 1012 1013 struct flush_busy_ctx_data { 1014 struct blk_mq_hw_ctx *hctx; 1015 struct list_head *list; 1016 }; 1017 1018 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1019 { 1020 struct flush_busy_ctx_data *flush_data = data; 1021 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1022 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1023 enum hctx_type type = hctx->type; 1024 1025 spin_lock(&ctx->lock); 1026 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1027 sbitmap_clear_bit(sb, bitnr); 1028 spin_unlock(&ctx->lock); 1029 return true; 1030 } 1031 1032 /* 1033 * Process software queues that have been marked busy, splicing them 1034 * to the for-dispatch 1035 */ 1036 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1037 { 1038 struct flush_busy_ctx_data data = { 1039 .hctx = hctx, 1040 .list = list, 1041 }; 1042 1043 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1044 } 1045 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1046 1047 struct dispatch_rq_data { 1048 struct blk_mq_hw_ctx *hctx; 1049 struct request *rq; 1050 }; 1051 1052 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1053 void *data) 1054 { 1055 struct dispatch_rq_data *dispatch_data = data; 1056 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1057 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1058 enum hctx_type type = hctx->type; 1059 1060 spin_lock(&ctx->lock); 1061 if (!list_empty(&ctx->rq_lists[type])) { 1062 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1063 list_del_init(&dispatch_data->rq->queuelist); 1064 if (list_empty(&ctx->rq_lists[type])) 1065 sbitmap_clear_bit(sb, bitnr); 1066 } 1067 spin_unlock(&ctx->lock); 1068 1069 return !dispatch_data->rq; 1070 } 1071 1072 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1073 struct blk_mq_ctx *start) 1074 { 1075 unsigned off = start ? start->index_hw[hctx->type] : 0; 1076 struct dispatch_rq_data data = { 1077 .hctx = hctx, 1078 .rq = NULL, 1079 }; 1080 1081 __sbitmap_for_each_set(&hctx->ctx_map, off, 1082 dispatch_rq_from_ctx, &data); 1083 1084 return data.rq; 1085 } 1086 1087 static inline unsigned int queued_to_index(unsigned int queued) 1088 { 1089 if (!queued) 1090 return 0; 1091 1092 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1093 } 1094 1095 static bool __blk_mq_get_driver_tag(struct request *rq) 1096 { 1097 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1098 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1099 int tag; 1100 1101 blk_mq_tag_busy(rq->mq_hctx); 1102 1103 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1104 bt = rq->mq_hctx->tags->breserved_tags; 1105 tag_offset = 0; 1106 } else { 1107 if (!hctx_may_queue(rq->mq_hctx, bt)) 1108 return false; 1109 } 1110 1111 tag = __sbitmap_queue_get(bt); 1112 if (tag == BLK_MQ_NO_TAG) 1113 return false; 1114 1115 rq->tag = tag + tag_offset; 1116 return true; 1117 } 1118 1119 static bool blk_mq_get_driver_tag(struct request *rq) 1120 { 1121 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1122 1123 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1124 return false; 1125 1126 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1127 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1128 rq->rq_flags |= RQF_MQ_INFLIGHT; 1129 __blk_mq_inc_active_requests(hctx); 1130 } 1131 hctx->tags->rqs[rq->tag] = rq; 1132 return true; 1133 } 1134 1135 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1136 int flags, void *key) 1137 { 1138 struct blk_mq_hw_ctx *hctx; 1139 1140 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1141 1142 spin_lock(&hctx->dispatch_wait_lock); 1143 if (!list_empty(&wait->entry)) { 1144 struct sbitmap_queue *sbq; 1145 1146 list_del_init(&wait->entry); 1147 sbq = hctx->tags->bitmap_tags; 1148 atomic_dec(&sbq->ws_active); 1149 } 1150 spin_unlock(&hctx->dispatch_wait_lock); 1151 1152 blk_mq_run_hw_queue(hctx, true); 1153 return 1; 1154 } 1155 1156 /* 1157 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1158 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1159 * restart. For both cases, take care to check the condition again after 1160 * marking us as waiting. 1161 */ 1162 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1163 struct request *rq) 1164 { 1165 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1166 struct wait_queue_head *wq; 1167 wait_queue_entry_t *wait; 1168 bool ret; 1169 1170 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1171 blk_mq_sched_mark_restart_hctx(hctx); 1172 1173 /* 1174 * It's possible that a tag was freed in the window between the 1175 * allocation failure and adding the hardware queue to the wait 1176 * queue. 1177 * 1178 * Don't clear RESTART here, someone else could have set it. 1179 * At most this will cost an extra queue run. 1180 */ 1181 return blk_mq_get_driver_tag(rq); 1182 } 1183 1184 wait = &hctx->dispatch_wait; 1185 if (!list_empty_careful(&wait->entry)) 1186 return false; 1187 1188 wq = &bt_wait_ptr(sbq, hctx)->wait; 1189 1190 spin_lock_irq(&wq->lock); 1191 spin_lock(&hctx->dispatch_wait_lock); 1192 if (!list_empty(&wait->entry)) { 1193 spin_unlock(&hctx->dispatch_wait_lock); 1194 spin_unlock_irq(&wq->lock); 1195 return false; 1196 } 1197 1198 atomic_inc(&sbq->ws_active); 1199 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1200 __add_wait_queue(wq, wait); 1201 1202 /* 1203 * It's possible that a tag was freed in the window between the 1204 * allocation failure and adding the hardware queue to the wait 1205 * queue. 1206 */ 1207 ret = blk_mq_get_driver_tag(rq); 1208 if (!ret) { 1209 spin_unlock(&hctx->dispatch_wait_lock); 1210 spin_unlock_irq(&wq->lock); 1211 return false; 1212 } 1213 1214 /* 1215 * We got a tag, remove ourselves from the wait queue to ensure 1216 * someone else gets the wakeup. 1217 */ 1218 list_del_init(&wait->entry); 1219 atomic_dec(&sbq->ws_active); 1220 spin_unlock(&hctx->dispatch_wait_lock); 1221 spin_unlock_irq(&wq->lock); 1222 1223 return true; 1224 } 1225 1226 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1227 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1228 /* 1229 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1230 * - EWMA is one simple way to compute running average value 1231 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1232 * - take 4 as factor for avoiding to get too small(0) result, and this 1233 * factor doesn't matter because EWMA decreases exponentially 1234 */ 1235 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1236 { 1237 unsigned int ewma; 1238 1239 if (hctx->queue->elevator) 1240 return; 1241 1242 ewma = hctx->dispatch_busy; 1243 1244 if (!ewma && !busy) 1245 return; 1246 1247 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1248 if (busy) 1249 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1250 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1251 1252 hctx->dispatch_busy = ewma; 1253 } 1254 1255 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1256 1257 static void blk_mq_handle_dev_resource(struct request *rq, 1258 struct list_head *list) 1259 { 1260 struct request *next = 1261 list_first_entry_or_null(list, struct request, queuelist); 1262 1263 /* 1264 * If an I/O scheduler has been configured and we got a driver tag for 1265 * the next request already, free it. 1266 */ 1267 if (next) 1268 blk_mq_put_driver_tag(next); 1269 1270 list_add(&rq->queuelist, list); 1271 __blk_mq_requeue_request(rq); 1272 } 1273 1274 static void blk_mq_handle_zone_resource(struct request *rq, 1275 struct list_head *zone_list) 1276 { 1277 /* 1278 * If we end up here it is because we cannot dispatch a request to a 1279 * specific zone due to LLD level zone-write locking or other zone 1280 * related resource not being available. In this case, set the request 1281 * aside in zone_list for retrying it later. 1282 */ 1283 list_add(&rq->queuelist, zone_list); 1284 __blk_mq_requeue_request(rq); 1285 } 1286 1287 enum prep_dispatch { 1288 PREP_DISPATCH_OK, 1289 PREP_DISPATCH_NO_TAG, 1290 PREP_DISPATCH_NO_BUDGET, 1291 }; 1292 1293 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1294 bool need_budget) 1295 { 1296 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1297 1298 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) { 1299 blk_mq_put_driver_tag(rq); 1300 return PREP_DISPATCH_NO_BUDGET; 1301 } 1302 1303 if (!blk_mq_get_driver_tag(rq)) { 1304 /* 1305 * The initial allocation attempt failed, so we need to 1306 * rerun the hardware queue when a tag is freed. The 1307 * waitqueue takes care of that. If the queue is run 1308 * before we add this entry back on the dispatch list, 1309 * we'll re-run it below. 1310 */ 1311 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1312 /* 1313 * All budgets not got from this function will be put 1314 * together during handling partial dispatch 1315 */ 1316 if (need_budget) 1317 blk_mq_put_dispatch_budget(rq->q); 1318 return PREP_DISPATCH_NO_TAG; 1319 } 1320 } 1321 1322 return PREP_DISPATCH_OK; 1323 } 1324 1325 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1326 static void blk_mq_release_budgets(struct request_queue *q, 1327 unsigned int nr_budgets) 1328 { 1329 int i; 1330 1331 for (i = 0; i < nr_budgets; i++) 1332 blk_mq_put_dispatch_budget(q); 1333 } 1334 1335 /* 1336 * Returns true if we did some work AND can potentially do more. 1337 */ 1338 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1339 unsigned int nr_budgets) 1340 { 1341 enum prep_dispatch prep; 1342 struct request_queue *q = hctx->queue; 1343 struct request *rq, *nxt; 1344 int errors, queued; 1345 blk_status_t ret = BLK_STS_OK; 1346 LIST_HEAD(zone_list); 1347 1348 if (list_empty(list)) 1349 return false; 1350 1351 /* 1352 * Now process all the entries, sending them to the driver. 1353 */ 1354 errors = queued = 0; 1355 do { 1356 struct blk_mq_queue_data bd; 1357 1358 rq = list_first_entry(list, struct request, queuelist); 1359 1360 WARN_ON_ONCE(hctx != rq->mq_hctx); 1361 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1362 if (prep != PREP_DISPATCH_OK) 1363 break; 1364 1365 list_del_init(&rq->queuelist); 1366 1367 bd.rq = rq; 1368 1369 /* 1370 * Flag last if we have no more requests, or if we have more 1371 * but can't assign a driver tag to it. 1372 */ 1373 if (list_empty(list)) 1374 bd.last = true; 1375 else { 1376 nxt = list_first_entry(list, struct request, queuelist); 1377 bd.last = !blk_mq_get_driver_tag(nxt); 1378 } 1379 1380 /* 1381 * once the request is queued to lld, no need to cover the 1382 * budget any more 1383 */ 1384 if (nr_budgets) 1385 nr_budgets--; 1386 ret = q->mq_ops->queue_rq(hctx, &bd); 1387 switch (ret) { 1388 case BLK_STS_OK: 1389 queued++; 1390 break; 1391 case BLK_STS_RESOURCE: 1392 case BLK_STS_DEV_RESOURCE: 1393 blk_mq_handle_dev_resource(rq, list); 1394 goto out; 1395 case BLK_STS_ZONE_RESOURCE: 1396 /* 1397 * Move the request to zone_list and keep going through 1398 * the dispatch list to find more requests the drive can 1399 * accept. 1400 */ 1401 blk_mq_handle_zone_resource(rq, &zone_list); 1402 break; 1403 default: 1404 errors++; 1405 blk_mq_end_request(rq, BLK_STS_IOERR); 1406 } 1407 } while (!list_empty(list)); 1408 out: 1409 if (!list_empty(&zone_list)) 1410 list_splice_tail_init(&zone_list, list); 1411 1412 hctx->dispatched[queued_to_index(queued)]++; 1413 1414 /* If we didn't flush the entire list, we could have told the driver 1415 * there was more coming, but that turned out to be a lie. 1416 */ 1417 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1418 q->mq_ops->commit_rqs(hctx); 1419 /* 1420 * Any items that need requeuing? Stuff them into hctx->dispatch, 1421 * that is where we will continue on next queue run. 1422 */ 1423 if (!list_empty(list)) { 1424 bool needs_restart; 1425 /* For non-shared tags, the RESTART check will suffice */ 1426 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1427 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1428 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET; 1429 1430 blk_mq_release_budgets(q, nr_budgets); 1431 1432 spin_lock(&hctx->lock); 1433 list_splice_tail_init(list, &hctx->dispatch); 1434 spin_unlock(&hctx->lock); 1435 1436 /* 1437 * Order adding requests to hctx->dispatch and checking 1438 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1439 * in blk_mq_sched_restart(). Avoid restart code path to 1440 * miss the new added requests to hctx->dispatch, meantime 1441 * SCHED_RESTART is observed here. 1442 */ 1443 smp_mb(); 1444 1445 /* 1446 * If SCHED_RESTART was set by the caller of this function and 1447 * it is no longer set that means that it was cleared by another 1448 * thread and hence that a queue rerun is needed. 1449 * 1450 * If 'no_tag' is set, that means that we failed getting 1451 * a driver tag with an I/O scheduler attached. If our dispatch 1452 * waitqueue is no longer active, ensure that we run the queue 1453 * AFTER adding our entries back to the list. 1454 * 1455 * If no I/O scheduler has been configured it is possible that 1456 * the hardware queue got stopped and restarted before requests 1457 * were pushed back onto the dispatch list. Rerun the queue to 1458 * avoid starvation. Notes: 1459 * - blk_mq_run_hw_queue() checks whether or not a queue has 1460 * been stopped before rerunning a queue. 1461 * - Some but not all block drivers stop a queue before 1462 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1463 * and dm-rq. 1464 * 1465 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1466 * bit is set, run queue after a delay to avoid IO stalls 1467 * that could otherwise occur if the queue is idle. We'll do 1468 * similar if we couldn't get budget and SCHED_RESTART is set. 1469 */ 1470 needs_restart = blk_mq_sched_needs_restart(hctx); 1471 if (!needs_restart || 1472 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1473 blk_mq_run_hw_queue(hctx, true); 1474 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1475 no_budget_avail)) 1476 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1477 1478 blk_mq_update_dispatch_busy(hctx, true); 1479 return false; 1480 } else 1481 blk_mq_update_dispatch_busy(hctx, false); 1482 1483 return (queued + errors) != 0; 1484 } 1485 1486 /** 1487 * __blk_mq_run_hw_queue - Run a hardware queue. 1488 * @hctx: Pointer to the hardware queue to run. 1489 * 1490 * Send pending requests to the hardware. 1491 */ 1492 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1493 { 1494 int srcu_idx; 1495 1496 /* 1497 * We should be running this queue from one of the CPUs that 1498 * are mapped to it. 1499 * 1500 * There are at least two related races now between setting 1501 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1502 * __blk_mq_run_hw_queue(): 1503 * 1504 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1505 * but later it becomes online, then this warning is harmless 1506 * at all 1507 * 1508 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1509 * but later it becomes offline, then the warning can't be 1510 * triggered, and we depend on blk-mq timeout handler to 1511 * handle dispatched requests to this hctx 1512 */ 1513 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1514 cpu_online(hctx->next_cpu)) { 1515 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1516 raw_smp_processor_id(), 1517 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1518 dump_stack(); 1519 } 1520 1521 /* 1522 * We can't run the queue inline with ints disabled. Ensure that 1523 * we catch bad users of this early. 1524 */ 1525 WARN_ON_ONCE(in_interrupt()); 1526 1527 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1528 1529 hctx_lock(hctx, &srcu_idx); 1530 blk_mq_sched_dispatch_requests(hctx); 1531 hctx_unlock(hctx, srcu_idx); 1532 } 1533 1534 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1535 { 1536 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1537 1538 if (cpu >= nr_cpu_ids) 1539 cpu = cpumask_first(hctx->cpumask); 1540 return cpu; 1541 } 1542 1543 /* 1544 * It'd be great if the workqueue API had a way to pass 1545 * in a mask and had some smarts for more clever placement. 1546 * For now we just round-robin here, switching for every 1547 * BLK_MQ_CPU_WORK_BATCH queued items. 1548 */ 1549 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1550 { 1551 bool tried = false; 1552 int next_cpu = hctx->next_cpu; 1553 1554 if (hctx->queue->nr_hw_queues == 1) 1555 return WORK_CPU_UNBOUND; 1556 1557 if (--hctx->next_cpu_batch <= 0) { 1558 select_cpu: 1559 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1560 cpu_online_mask); 1561 if (next_cpu >= nr_cpu_ids) 1562 next_cpu = blk_mq_first_mapped_cpu(hctx); 1563 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1564 } 1565 1566 /* 1567 * Do unbound schedule if we can't find a online CPU for this hctx, 1568 * and it should only happen in the path of handling CPU DEAD. 1569 */ 1570 if (!cpu_online(next_cpu)) { 1571 if (!tried) { 1572 tried = true; 1573 goto select_cpu; 1574 } 1575 1576 /* 1577 * Make sure to re-select CPU next time once after CPUs 1578 * in hctx->cpumask become online again. 1579 */ 1580 hctx->next_cpu = next_cpu; 1581 hctx->next_cpu_batch = 1; 1582 return WORK_CPU_UNBOUND; 1583 } 1584 1585 hctx->next_cpu = next_cpu; 1586 return next_cpu; 1587 } 1588 1589 /** 1590 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1591 * @hctx: Pointer to the hardware queue to run. 1592 * @async: If we want to run the queue asynchronously. 1593 * @msecs: Microseconds of delay to wait before running the queue. 1594 * 1595 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1596 * with a delay of @msecs. 1597 */ 1598 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1599 unsigned long msecs) 1600 { 1601 if (unlikely(blk_mq_hctx_stopped(hctx))) 1602 return; 1603 1604 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1605 int cpu = get_cpu(); 1606 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1607 __blk_mq_run_hw_queue(hctx); 1608 put_cpu(); 1609 return; 1610 } 1611 1612 put_cpu(); 1613 } 1614 1615 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1616 msecs_to_jiffies(msecs)); 1617 } 1618 1619 /** 1620 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1621 * @hctx: Pointer to the hardware queue to run. 1622 * @msecs: Microseconds of delay to wait before running the queue. 1623 * 1624 * Run a hardware queue asynchronously with a delay of @msecs. 1625 */ 1626 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1627 { 1628 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1629 } 1630 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1631 1632 /** 1633 * blk_mq_run_hw_queue - Start to run a hardware queue. 1634 * @hctx: Pointer to the hardware queue to run. 1635 * @async: If we want to run the queue asynchronously. 1636 * 1637 * Check if the request queue is not in a quiesced state and if there are 1638 * pending requests to be sent. If this is true, run the queue to send requests 1639 * to hardware. 1640 */ 1641 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1642 { 1643 int srcu_idx; 1644 bool need_run; 1645 1646 /* 1647 * When queue is quiesced, we may be switching io scheduler, or 1648 * updating nr_hw_queues, or other things, and we can't run queue 1649 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1650 * 1651 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1652 * quiesced. 1653 */ 1654 hctx_lock(hctx, &srcu_idx); 1655 need_run = !blk_queue_quiesced(hctx->queue) && 1656 blk_mq_hctx_has_pending(hctx); 1657 hctx_unlock(hctx, srcu_idx); 1658 1659 if (need_run) 1660 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1661 } 1662 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1663 1664 /** 1665 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1666 * @q: Pointer to the request queue to run. 1667 * @async: If we want to run the queue asynchronously. 1668 */ 1669 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1670 { 1671 struct blk_mq_hw_ctx *hctx; 1672 int i; 1673 1674 queue_for_each_hw_ctx(q, hctx, i) { 1675 if (blk_mq_hctx_stopped(hctx)) 1676 continue; 1677 1678 blk_mq_run_hw_queue(hctx, async); 1679 } 1680 } 1681 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1682 1683 /** 1684 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1685 * @q: Pointer to the request queue to run. 1686 * @msecs: Microseconds of delay to wait before running the queues. 1687 */ 1688 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1689 { 1690 struct blk_mq_hw_ctx *hctx; 1691 int i; 1692 1693 queue_for_each_hw_ctx(q, hctx, i) { 1694 if (blk_mq_hctx_stopped(hctx)) 1695 continue; 1696 1697 blk_mq_delay_run_hw_queue(hctx, msecs); 1698 } 1699 } 1700 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1701 1702 /** 1703 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1704 * @q: request queue. 1705 * 1706 * The caller is responsible for serializing this function against 1707 * blk_mq_{start,stop}_hw_queue(). 1708 */ 1709 bool blk_mq_queue_stopped(struct request_queue *q) 1710 { 1711 struct blk_mq_hw_ctx *hctx; 1712 int i; 1713 1714 queue_for_each_hw_ctx(q, hctx, i) 1715 if (blk_mq_hctx_stopped(hctx)) 1716 return true; 1717 1718 return false; 1719 } 1720 EXPORT_SYMBOL(blk_mq_queue_stopped); 1721 1722 /* 1723 * This function is often used for pausing .queue_rq() by driver when 1724 * there isn't enough resource or some conditions aren't satisfied, and 1725 * BLK_STS_RESOURCE is usually returned. 1726 * 1727 * We do not guarantee that dispatch can be drained or blocked 1728 * after blk_mq_stop_hw_queue() returns. Please use 1729 * blk_mq_quiesce_queue() for that requirement. 1730 */ 1731 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1732 { 1733 cancel_delayed_work(&hctx->run_work); 1734 1735 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1736 } 1737 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1738 1739 /* 1740 * This function is often used for pausing .queue_rq() by driver when 1741 * there isn't enough resource or some conditions aren't satisfied, and 1742 * BLK_STS_RESOURCE is usually returned. 1743 * 1744 * We do not guarantee that dispatch can be drained or blocked 1745 * after blk_mq_stop_hw_queues() returns. Please use 1746 * blk_mq_quiesce_queue() for that requirement. 1747 */ 1748 void blk_mq_stop_hw_queues(struct request_queue *q) 1749 { 1750 struct blk_mq_hw_ctx *hctx; 1751 int i; 1752 1753 queue_for_each_hw_ctx(q, hctx, i) 1754 blk_mq_stop_hw_queue(hctx); 1755 } 1756 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1757 1758 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1759 { 1760 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1761 1762 blk_mq_run_hw_queue(hctx, false); 1763 } 1764 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1765 1766 void blk_mq_start_hw_queues(struct request_queue *q) 1767 { 1768 struct blk_mq_hw_ctx *hctx; 1769 int i; 1770 1771 queue_for_each_hw_ctx(q, hctx, i) 1772 blk_mq_start_hw_queue(hctx); 1773 } 1774 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1775 1776 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1777 { 1778 if (!blk_mq_hctx_stopped(hctx)) 1779 return; 1780 1781 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1782 blk_mq_run_hw_queue(hctx, async); 1783 } 1784 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1785 1786 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1787 { 1788 struct blk_mq_hw_ctx *hctx; 1789 int i; 1790 1791 queue_for_each_hw_ctx(q, hctx, i) 1792 blk_mq_start_stopped_hw_queue(hctx, async); 1793 } 1794 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1795 1796 static void blk_mq_run_work_fn(struct work_struct *work) 1797 { 1798 struct blk_mq_hw_ctx *hctx; 1799 1800 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1801 1802 /* 1803 * If we are stopped, don't run the queue. 1804 */ 1805 if (blk_mq_hctx_stopped(hctx)) 1806 return; 1807 1808 __blk_mq_run_hw_queue(hctx); 1809 } 1810 1811 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1812 struct request *rq, 1813 bool at_head) 1814 { 1815 struct blk_mq_ctx *ctx = rq->mq_ctx; 1816 enum hctx_type type = hctx->type; 1817 1818 lockdep_assert_held(&ctx->lock); 1819 1820 trace_block_rq_insert(hctx->queue, rq); 1821 1822 if (at_head) 1823 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1824 else 1825 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1826 } 1827 1828 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1829 bool at_head) 1830 { 1831 struct blk_mq_ctx *ctx = rq->mq_ctx; 1832 1833 lockdep_assert_held(&ctx->lock); 1834 1835 __blk_mq_insert_req_list(hctx, rq, at_head); 1836 blk_mq_hctx_mark_pending(hctx, ctx); 1837 } 1838 1839 /** 1840 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1841 * @rq: Pointer to request to be inserted. 1842 * @at_head: true if the request should be inserted at the head of the list. 1843 * @run_queue: If we should run the hardware queue after inserting the request. 1844 * 1845 * Should only be used carefully, when the caller knows we want to 1846 * bypass a potential IO scheduler on the target device. 1847 */ 1848 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1849 bool run_queue) 1850 { 1851 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1852 1853 spin_lock(&hctx->lock); 1854 if (at_head) 1855 list_add(&rq->queuelist, &hctx->dispatch); 1856 else 1857 list_add_tail(&rq->queuelist, &hctx->dispatch); 1858 spin_unlock(&hctx->lock); 1859 1860 if (run_queue) 1861 blk_mq_run_hw_queue(hctx, false); 1862 } 1863 1864 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1865 struct list_head *list) 1866 1867 { 1868 struct request *rq; 1869 enum hctx_type type = hctx->type; 1870 1871 /* 1872 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1873 * offline now 1874 */ 1875 list_for_each_entry(rq, list, queuelist) { 1876 BUG_ON(rq->mq_ctx != ctx); 1877 trace_block_rq_insert(hctx->queue, rq); 1878 } 1879 1880 spin_lock(&ctx->lock); 1881 list_splice_tail_init(list, &ctx->rq_lists[type]); 1882 blk_mq_hctx_mark_pending(hctx, ctx); 1883 spin_unlock(&ctx->lock); 1884 } 1885 1886 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1887 { 1888 struct request *rqa = container_of(a, struct request, queuelist); 1889 struct request *rqb = container_of(b, struct request, queuelist); 1890 1891 if (rqa->mq_ctx != rqb->mq_ctx) 1892 return rqa->mq_ctx > rqb->mq_ctx; 1893 if (rqa->mq_hctx != rqb->mq_hctx) 1894 return rqa->mq_hctx > rqb->mq_hctx; 1895 1896 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1897 } 1898 1899 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1900 { 1901 LIST_HEAD(list); 1902 1903 if (list_empty(&plug->mq_list)) 1904 return; 1905 list_splice_init(&plug->mq_list, &list); 1906 1907 if (plug->rq_count > 2 && plug->multiple_queues) 1908 list_sort(NULL, &list, plug_rq_cmp); 1909 1910 plug->rq_count = 0; 1911 1912 do { 1913 struct list_head rq_list; 1914 struct request *rq, *head_rq = list_entry_rq(list.next); 1915 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1916 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1917 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1918 unsigned int depth = 1; 1919 1920 list_for_each_continue(pos, &list) { 1921 rq = list_entry_rq(pos); 1922 BUG_ON(!rq->q); 1923 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1924 break; 1925 depth++; 1926 } 1927 1928 list_cut_before(&rq_list, &list, pos); 1929 trace_block_unplug(head_rq->q, depth, !from_schedule); 1930 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1931 from_schedule); 1932 } while(!list_empty(&list)); 1933 } 1934 1935 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1936 unsigned int nr_segs) 1937 { 1938 int err; 1939 1940 if (bio->bi_opf & REQ_RAHEAD) 1941 rq->cmd_flags |= REQ_FAILFAST_MASK; 1942 1943 rq->__sector = bio->bi_iter.bi_sector; 1944 rq->write_hint = bio->bi_write_hint; 1945 blk_rq_bio_prep(rq, bio, nr_segs); 1946 1947 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1948 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1949 WARN_ON_ONCE(err); 1950 1951 blk_account_io_start(rq); 1952 } 1953 1954 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1955 struct request *rq, 1956 blk_qc_t *cookie, bool last) 1957 { 1958 struct request_queue *q = rq->q; 1959 struct blk_mq_queue_data bd = { 1960 .rq = rq, 1961 .last = last, 1962 }; 1963 blk_qc_t new_cookie; 1964 blk_status_t ret; 1965 1966 new_cookie = request_to_qc_t(hctx, rq); 1967 1968 /* 1969 * For OK queue, we are done. For error, caller may kill it. 1970 * Any other error (busy), just add it to our list as we 1971 * previously would have done. 1972 */ 1973 ret = q->mq_ops->queue_rq(hctx, &bd); 1974 switch (ret) { 1975 case BLK_STS_OK: 1976 blk_mq_update_dispatch_busy(hctx, false); 1977 *cookie = new_cookie; 1978 break; 1979 case BLK_STS_RESOURCE: 1980 case BLK_STS_DEV_RESOURCE: 1981 blk_mq_update_dispatch_busy(hctx, true); 1982 __blk_mq_requeue_request(rq); 1983 break; 1984 default: 1985 blk_mq_update_dispatch_busy(hctx, false); 1986 *cookie = BLK_QC_T_NONE; 1987 break; 1988 } 1989 1990 return ret; 1991 } 1992 1993 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1994 struct request *rq, 1995 blk_qc_t *cookie, 1996 bool bypass_insert, bool last) 1997 { 1998 struct request_queue *q = rq->q; 1999 bool run_queue = true; 2000 2001 /* 2002 * RCU or SRCU read lock is needed before checking quiesced flag. 2003 * 2004 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2005 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2006 * and avoid driver to try to dispatch again. 2007 */ 2008 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2009 run_queue = false; 2010 bypass_insert = false; 2011 goto insert; 2012 } 2013 2014 if (q->elevator && !bypass_insert) 2015 goto insert; 2016 2017 if (!blk_mq_get_dispatch_budget(q)) 2018 goto insert; 2019 2020 if (!blk_mq_get_driver_tag(rq)) { 2021 blk_mq_put_dispatch_budget(q); 2022 goto insert; 2023 } 2024 2025 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2026 insert: 2027 if (bypass_insert) 2028 return BLK_STS_RESOURCE; 2029 2030 blk_mq_sched_insert_request(rq, false, run_queue, false); 2031 2032 return BLK_STS_OK; 2033 } 2034 2035 /** 2036 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2037 * @hctx: Pointer of the associated hardware queue. 2038 * @rq: Pointer to request to be sent. 2039 * @cookie: Request queue cookie. 2040 * 2041 * If the device has enough resources to accept a new request now, send the 2042 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2043 * we can try send it another time in the future. Requests inserted at this 2044 * queue have higher priority. 2045 */ 2046 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2047 struct request *rq, blk_qc_t *cookie) 2048 { 2049 blk_status_t ret; 2050 int srcu_idx; 2051 2052 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2053 2054 hctx_lock(hctx, &srcu_idx); 2055 2056 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2057 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2058 blk_mq_request_bypass_insert(rq, false, true); 2059 else if (ret != BLK_STS_OK) 2060 blk_mq_end_request(rq, ret); 2061 2062 hctx_unlock(hctx, srcu_idx); 2063 } 2064 2065 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2066 { 2067 blk_status_t ret; 2068 int srcu_idx; 2069 blk_qc_t unused_cookie; 2070 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2071 2072 hctx_lock(hctx, &srcu_idx); 2073 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2074 hctx_unlock(hctx, srcu_idx); 2075 2076 return ret; 2077 } 2078 2079 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2080 struct list_head *list) 2081 { 2082 int queued = 0; 2083 int errors = 0; 2084 2085 while (!list_empty(list)) { 2086 blk_status_t ret; 2087 struct request *rq = list_first_entry(list, struct request, 2088 queuelist); 2089 2090 list_del_init(&rq->queuelist); 2091 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2092 if (ret != BLK_STS_OK) { 2093 if (ret == BLK_STS_RESOURCE || 2094 ret == BLK_STS_DEV_RESOURCE) { 2095 blk_mq_request_bypass_insert(rq, false, 2096 list_empty(list)); 2097 break; 2098 } 2099 blk_mq_end_request(rq, ret); 2100 errors++; 2101 } else 2102 queued++; 2103 } 2104 2105 /* 2106 * If we didn't flush the entire list, we could have told 2107 * the driver there was more coming, but that turned out to 2108 * be a lie. 2109 */ 2110 if ((!list_empty(list) || errors) && 2111 hctx->queue->mq_ops->commit_rqs && queued) 2112 hctx->queue->mq_ops->commit_rqs(hctx); 2113 } 2114 2115 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2116 { 2117 list_add_tail(&rq->queuelist, &plug->mq_list); 2118 plug->rq_count++; 2119 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2120 struct request *tmp; 2121 2122 tmp = list_first_entry(&plug->mq_list, struct request, 2123 queuelist); 2124 if (tmp->q != rq->q) 2125 plug->multiple_queues = true; 2126 } 2127 } 2128 2129 /** 2130 * blk_mq_submit_bio - Create and send a request to block device. 2131 * @bio: Bio pointer. 2132 * 2133 * Builds up a request structure from @q and @bio and send to the device. The 2134 * request may not be queued directly to hardware if: 2135 * * This request can be merged with another one 2136 * * We want to place request at plug queue for possible future merging 2137 * * There is an IO scheduler active at this queue 2138 * 2139 * It will not queue the request if there is an error with the bio, or at the 2140 * request creation. 2141 * 2142 * Returns: Request queue cookie. 2143 */ 2144 blk_qc_t blk_mq_submit_bio(struct bio *bio) 2145 { 2146 struct request_queue *q = bio->bi_disk->queue; 2147 const int is_sync = op_is_sync(bio->bi_opf); 2148 const int is_flush_fua = op_is_flush(bio->bi_opf); 2149 struct blk_mq_alloc_data data = { 2150 .q = q, 2151 }; 2152 struct request *rq; 2153 struct blk_plug *plug; 2154 struct request *same_queue_rq = NULL; 2155 unsigned int nr_segs; 2156 blk_qc_t cookie; 2157 blk_status_t ret; 2158 2159 blk_queue_bounce(q, &bio); 2160 __blk_queue_split(&bio, &nr_segs); 2161 2162 if (!bio_integrity_prep(bio)) 2163 goto queue_exit; 2164 2165 if (!is_flush_fua && !blk_queue_nomerges(q) && 2166 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2167 goto queue_exit; 2168 2169 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2170 goto queue_exit; 2171 2172 rq_qos_throttle(q, bio); 2173 2174 data.cmd_flags = bio->bi_opf; 2175 rq = __blk_mq_alloc_request(&data); 2176 if (unlikely(!rq)) { 2177 rq_qos_cleanup(q, bio); 2178 if (bio->bi_opf & REQ_NOWAIT) 2179 bio_wouldblock_error(bio); 2180 goto queue_exit; 2181 } 2182 2183 trace_block_getrq(q, bio, bio->bi_opf); 2184 2185 rq_qos_track(q, rq, bio); 2186 2187 cookie = request_to_qc_t(data.hctx, rq); 2188 2189 blk_mq_bio_to_request(rq, bio, nr_segs); 2190 2191 ret = blk_crypto_init_request(rq); 2192 if (ret != BLK_STS_OK) { 2193 bio->bi_status = ret; 2194 bio_endio(bio); 2195 blk_mq_free_request(rq); 2196 return BLK_QC_T_NONE; 2197 } 2198 2199 plug = blk_mq_plug(q, bio); 2200 if (unlikely(is_flush_fua)) { 2201 /* Bypass scheduler for flush requests */ 2202 blk_insert_flush(rq); 2203 blk_mq_run_hw_queue(data.hctx, true); 2204 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2205 !blk_queue_nonrot(q))) { 2206 /* 2207 * Use plugging if we have a ->commit_rqs() hook as well, as 2208 * we know the driver uses bd->last in a smart fashion. 2209 * 2210 * Use normal plugging if this disk is slow HDD, as sequential 2211 * IO may benefit a lot from plug merging. 2212 */ 2213 unsigned int request_count = plug->rq_count; 2214 struct request *last = NULL; 2215 2216 if (!request_count) 2217 trace_block_plug(q); 2218 else 2219 last = list_entry_rq(plug->mq_list.prev); 2220 2221 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2222 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2223 blk_flush_plug_list(plug, false); 2224 trace_block_plug(q); 2225 } 2226 2227 blk_add_rq_to_plug(plug, rq); 2228 } else if (q->elevator) { 2229 /* Insert the request at the IO scheduler queue */ 2230 blk_mq_sched_insert_request(rq, false, true, true); 2231 } else if (plug && !blk_queue_nomerges(q)) { 2232 /* 2233 * We do limited plugging. If the bio can be merged, do that. 2234 * Otherwise the existing request in the plug list will be 2235 * issued. So the plug list will have one request at most 2236 * The plug list might get flushed before this. If that happens, 2237 * the plug list is empty, and same_queue_rq is invalid. 2238 */ 2239 if (list_empty(&plug->mq_list)) 2240 same_queue_rq = NULL; 2241 if (same_queue_rq) { 2242 list_del_init(&same_queue_rq->queuelist); 2243 plug->rq_count--; 2244 } 2245 blk_add_rq_to_plug(plug, rq); 2246 trace_block_plug(q); 2247 2248 if (same_queue_rq) { 2249 data.hctx = same_queue_rq->mq_hctx; 2250 trace_block_unplug(q, 1, true); 2251 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2252 &cookie); 2253 } 2254 } else if ((q->nr_hw_queues > 1 && is_sync) || 2255 !data.hctx->dispatch_busy) { 2256 /* 2257 * There is no scheduler and we can try to send directly 2258 * to the hardware. 2259 */ 2260 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2261 } else { 2262 /* Default case. */ 2263 blk_mq_sched_insert_request(rq, false, true, true); 2264 } 2265 2266 return cookie; 2267 queue_exit: 2268 blk_queue_exit(q); 2269 return BLK_QC_T_NONE; 2270 } 2271 2272 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2273 unsigned int hctx_idx) 2274 { 2275 struct page *page; 2276 2277 if (tags->rqs && set->ops->exit_request) { 2278 int i; 2279 2280 for (i = 0; i < tags->nr_tags; i++) { 2281 struct request *rq = tags->static_rqs[i]; 2282 2283 if (!rq) 2284 continue; 2285 set->ops->exit_request(set, rq, hctx_idx); 2286 tags->static_rqs[i] = NULL; 2287 } 2288 } 2289 2290 while (!list_empty(&tags->page_list)) { 2291 page = list_first_entry(&tags->page_list, struct page, lru); 2292 list_del_init(&page->lru); 2293 /* 2294 * Remove kmemleak object previously allocated in 2295 * blk_mq_alloc_rqs(). 2296 */ 2297 kmemleak_free(page_address(page)); 2298 __free_pages(page, page->private); 2299 } 2300 } 2301 2302 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2303 { 2304 kfree(tags->rqs); 2305 tags->rqs = NULL; 2306 kfree(tags->static_rqs); 2307 tags->static_rqs = NULL; 2308 2309 blk_mq_free_tags(tags, flags); 2310 } 2311 2312 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2313 unsigned int hctx_idx, 2314 unsigned int nr_tags, 2315 unsigned int reserved_tags, 2316 unsigned int flags) 2317 { 2318 struct blk_mq_tags *tags; 2319 int node; 2320 2321 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2322 if (node == NUMA_NO_NODE) 2323 node = set->numa_node; 2324 2325 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2326 if (!tags) 2327 return NULL; 2328 2329 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2330 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2331 node); 2332 if (!tags->rqs) { 2333 blk_mq_free_tags(tags, flags); 2334 return NULL; 2335 } 2336 2337 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2338 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2339 node); 2340 if (!tags->static_rqs) { 2341 kfree(tags->rqs); 2342 blk_mq_free_tags(tags, flags); 2343 return NULL; 2344 } 2345 2346 return tags; 2347 } 2348 2349 static size_t order_to_size(unsigned int order) 2350 { 2351 return (size_t)PAGE_SIZE << order; 2352 } 2353 2354 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2355 unsigned int hctx_idx, int node) 2356 { 2357 int ret; 2358 2359 if (set->ops->init_request) { 2360 ret = set->ops->init_request(set, rq, hctx_idx, node); 2361 if (ret) 2362 return ret; 2363 } 2364 2365 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2366 return 0; 2367 } 2368 2369 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2370 unsigned int hctx_idx, unsigned int depth) 2371 { 2372 unsigned int i, j, entries_per_page, max_order = 4; 2373 size_t rq_size, left; 2374 int node; 2375 2376 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2377 if (node == NUMA_NO_NODE) 2378 node = set->numa_node; 2379 2380 INIT_LIST_HEAD(&tags->page_list); 2381 2382 /* 2383 * rq_size is the size of the request plus driver payload, rounded 2384 * to the cacheline size 2385 */ 2386 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2387 cache_line_size()); 2388 left = rq_size * depth; 2389 2390 for (i = 0; i < depth; ) { 2391 int this_order = max_order; 2392 struct page *page; 2393 int to_do; 2394 void *p; 2395 2396 while (this_order && left < order_to_size(this_order - 1)) 2397 this_order--; 2398 2399 do { 2400 page = alloc_pages_node(node, 2401 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2402 this_order); 2403 if (page) 2404 break; 2405 if (!this_order--) 2406 break; 2407 if (order_to_size(this_order) < rq_size) 2408 break; 2409 } while (1); 2410 2411 if (!page) 2412 goto fail; 2413 2414 page->private = this_order; 2415 list_add_tail(&page->lru, &tags->page_list); 2416 2417 p = page_address(page); 2418 /* 2419 * Allow kmemleak to scan these pages as they contain pointers 2420 * to additional allocations like via ops->init_request(). 2421 */ 2422 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2423 entries_per_page = order_to_size(this_order) / rq_size; 2424 to_do = min(entries_per_page, depth - i); 2425 left -= to_do * rq_size; 2426 for (j = 0; j < to_do; j++) { 2427 struct request *rq = p; 2428 2429 tags->static_rqs[i] = rq; 2430 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2431 tags->static_rqs[i] = NULL; 2432 goto fail; 2433 } 2434 2435 p += rq_size; 2436 i++; 2437 } 2438 } 2439 return 0; 2440 2441 fail: 2442 blk_mq_free_rqs(set, tags, hctx_idx); 2443 return -ENOMEM; 2444 } 2445 2446 struct rq_iter_data { 2447 struct blk_mq_hw_ctx *hctx; 2448 bool has_rq; 2449 }; 2450 2451 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2452 { 2453 struct rq_iter_data *iter_data = data; 2454 2455 if (rq->mq_hctx != iter_data->hctx) 2456 return true; 2457 iter_data->has_rq = true; 2458 return false; 2459 } 2460 2461 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2462 { 2463 struct blk_mq_tags *tags = hctx->sched_tags ? 2464 hctx->sched_tags : hctx->tags; 2465 struct rq_iter_data data = { 2466 .hctx = hctx, 2467 }; 2468 2469 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2470 return data.has_rq; 2471 } 2472 2473 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2474 struct blk_mq_hw_ctx *hctx) 2475 { 2476 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2477 return false; 2478 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2479 return false; 2480 return true; 2481 } 2482 2483 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2484 { 2485 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2486 struct blk_mq_hw_ctx, cpuhp_online); 2487 2488 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2489 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2490 return 0; 2491 2492 /* 2493 * Prevent new request from being allocated on the current hctx. 2494 * 2495 * The smp_mb__after_atomic() Pairs with the implied barrier in 2496 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2497 * seen once we return from the tag allocator. 2498 */ 2499 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2500 smp_mb__after_atomic(); 2501 2502 /* 2503 * Try to grab a reference to the queue and wait for any outstanding 2504 * requests. If we could not grab a reference the queue has been 2505 * frozen and there are no requests. 2506 */ 2507 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2508 while (blk_mq_hctx_has_requests(hctx)) 2509 msleep(5); 2510 percpu_ref_put(&hctx->queue->q_usage_counter); 2511 } 2512 2513 return 0; 2514 } 2515 2516 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2517 { 2518 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2519 struct blk_mq_hw_ctx, cpuhp_online); 2520 2521 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2522 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2523 return 0; 2524 } 2525 2526 /* 2527 * 'cpu' is going away. splice any existing rq_list entries from this 2528 * software queue to the hw queue dispatch list, and ensure that it 2529 * gets run. 2530 */ 2531 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2532 { 2533 struct blk_mq_hw_ctx *hctx; 2534 struct blk_mq_ctx *ctx; 2535 LIST_HEAD(tmp); 2536 enum hctx_type type; 2537 2538 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2539 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2540 return 0; 2541 2542 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2543 type = hctx->type; 2544 2545 spin_lock(&ctx->lock); 2546 if (!list_empty(&ctx->rq_lists[type])) { 2547 list_splice_init(&ctx->rq_lists[type], &tmp); 2548 blk_mq_hctx_clear_pending(hctx, ctx); 2549 } 2550 spin_unlock(&ctx->lock); 2551 2552 if (list_empty(&tmp)) 2553 return 0; 2554 2555 spin_lock(&hctx->lock); 2556 list_splice_tail_init(&tmp, &hctx->dispatch); 2557 spin_unlock(&hctx->lock); 2558 2559 blk_mq_run_hw_queue(hctx, true); 2560 return 0; 2561 } 2562 2563 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2564 { 2565 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2566 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2567 &hctx->cpuhp_online); 2568 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2569 &hctx->cpuhp_dead); 2570 } 2571 2572 /* hctx->ctxs will be freed in queue's release handler */ 2573 static void blk_mq_exit_hctx(struct request_queue *q, 2574 struct blk_mq_tag_set *set, 2575 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2576 { 2577 if (blk_mq_hw_queue_mapped(hctx)) 2578 blk_mq_tag_idle(hctx); 2579 2580 if (set->ops->exit_request) 2581 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2582 2583 if (set->ops->exit_hctx) 2584 set->ops->exit_hctx(hctx, hctx_idx); 2585 2586 blk_mq_remove_cpuhp(hctx); 2587 2588 spin_lock(&q->unused_hctx_lock); 2589 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2590 spin_unlock(&q->unused_hctx_lock); 2591 } 2592 2593 static void blk_mq_exit_hw_queues(struct request_queue *q, 2594 struct blk_mq_tag_set *set, int nr_queue) 2595 { 2596 struct blk_mq_hw_ctx *hctx; 2597 unsigned int i; 2598 2599 queue_for_each_hw_ctx(q, hctx, i) { 2600 if (i == nr_queue) 2601 break; 2602 blk_mq_debugfs_unregister_hctx(hctx); 2603 blk_mq_exit_hctx(q, set, hctx, i); 2604 } 2605 } 2606 2607 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2608 { 2609 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2610 2611 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2612 __alignof__(struct blk_mq_hw_ctx)) != 2613 sizeof(struct blk_mq_hw_ctx)); 2614 2615 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2616 hw_ctx_size += sizeof(struct srcu_struct); 2617 2618 return hw_ctx_size; 2619 } 2620 2621 static int blk_mq_init_hctx(struct request_queue *q, 2622 struct blk_mq_tag_set *set, 2623 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2624 { 2625 hctx->queue_num = hctx_idx; 2626 2627 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2628 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2629 &hctx->cpuhp_online); 2630 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2631 2632 hctx->tags = set->tags[hctx_idx]; 2633 2634 if (set->ops->init_hctx && 2635 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2636 goto unregister_cpu_notifier; 2637 2638 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2639 hctx->numa_node)) 2640 goto exit_hctx; 2641 return 0; 2642 2643 exit_hctx: 2644 if (set->ops->exit_hctx) 2645 set->ops->exit_hctx(hctx, hctx_idx); 2646 unregister_cpu_notifier: 2647 blk_mq_remove_cpuhp(hctx); 2648 return -1; 2649 } 2650 2651 static struct blk_mq_hw_ctx * 2652 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2653 int node) 2654 { 2655 struct blk_mq_hw_ctx *hctx; 2656 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2657 2658 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2659 if (!hctx) 2660 goto fail_alloc_hctx; 2661 2662 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2663 goto free_hctx; 2664 2665 atomic_set(&hctx->nr_active, 0); 2666 atomic_set(&hctx->elevator_queued, 0); 2667 if (node == NUMA_NO_NODE) 2668 node = set->numa_node; 2669 hctx->numa_node = node; 2670 2671 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2672 spin_lock_init(&hctx->lock); 2673 INIT_LIST_HEAD(&hctx->dispatch); 2674 hctx->queue = q; 2675 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2676 2677 INIT_LIST_HEAD(&hctx->hctx_list); 2678 2679 /* 2680 * Allocate space for all possible cpus to avoid allocation at 2681 * runtime 2682 */ 2683 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2684 gfp, node); 2685 if (!hctx->ctxs) 2686 goto free_cpumask; 2687 2688 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2689 gfp, node)) 2690 goto free_ctxs; 2691 hctx->nr_ctx = 0; 2692 2693 spin_lock_init(&hctx->dispatch_wait_lock); 2694 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2695 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2696 2697 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2698 if (!hctx->fq) 2699 goto free_bitmap; 2700 2701 if (hctx->flags & BLK_MQ_F_BLOCKING) 2702 init_srcu_struct(hctx->srcu); 2703 blk_mq_hctx_kobj_init(hctx); 2704 2705 return hctx; 2706 2707 free_bitmap: 2708 sbitmap_free(&hctx->ctx_map); 2709 free_ctxs: 2710 kfree(hctx->ctxs); 2711 free_cpumask: 2712 free_cpumask_var(hctx->cpumask); 2713 free_hctx: 2714 kfree(hctx); 2715 fail_alloc_hctx: 2716 return NULL; 2717 } 2718 2719 static void blk_mq_init_cpu_queues(struct request_queue *q, 2720 unsigned int nr_hw_queues) 2721 { 2722 struct blk_mq_tag_set *set = q->tag_set; 2723 unsigned int i, j; 2724 2725 for_each_possible_cpu(i) { 2726 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2727 struct blk_mq_hw_ctx *hctx; 2728 int k; 2729 2730 __ctx->cpu = i; 2731 spin_lock_init(&__ctx->lock); 2732 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2733 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2734 2735 __ctx->queue = q; 2736 2737 /* 2738 * Set local node, IFF we have more than one hw queue. If 2739 * not, we remain on the home node of the device 2740 */ 2741 for (j = 0; j < set->nr_maps; j++) { 2742 hctx = blk_mq_map_queue_type(q, j, i); 2743 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2744 hctx->numa_node = cpu_to_node(i); 2745 } 2746 } 2747 } 2748 2749 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2750 int hctx_idx) 2751 { 2752 unsigned int flags = set->flags; 2753 int ret = 0; 2754 2755 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2756 set->queue_depth, set->reserved_tags, flags); 2757 if (!set->tags[hctx_idx]) 2758 return false; 2759 2760 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2761 set->queue_depth); 2762 if (!ret) 2763 return true; 2764 2765 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2766 set->tags[hctx_idx] = NULL; 2767 return false; 2768 } 2769 2770 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2771 unsigned int hctx_idx) 2772 { 2773 unsigned int flags = set->flags; 2774 2775 if (set->tags && set->tags[hctx_idx]) { 2776 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2777 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2778 set->tags[hctx_idx] = NULL; 2779 } 2780 } 2781 2782 static void blk_mq_map_swqueue(struct request_queue *q) 2783 { 2784 unsigned int i, j, hctx_idx; 2785 struct blk_mq_hw_ctx *hctx; 2786 struct blk_mq_ctx *ctx; 2787 struct blk_mq_tag_set *set = q->tag_set; 2788 2789 queue_for_each_hw_ctx(q, hctx, i) { 2790 cpumask_clear(hctx->cpumask); 2791 hctx->nr_ctx = 0; 2792 hctx->dispatch_from = NULL; 2793 } 2794 2795 /* 2796 * Map software to hardware queues. 2797 * 2798 * If the cpu isn't present, the cpu is mapped to first hctx. 2799 */ 2800 for_each_possible_cpu(i) { 2801 2802 ctx = per_cpu_ptr(q->queue_ctx, i); 2803 for (j = 0; j < set->nr_maps; j++) { 2804 if (!set->map[j].nr_queues) { 2805 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2806 HCTX_TYPE_DEFAULT, i); 2807 continue; 2808 } 2809 hctx_idx = set->map[j].mq_map[i]; 2810 /* unmapped hw queue can be remapped after CPU topo changed */ 2811 if (!set->tags[hctx_idx] && 2812 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2813 /* 2814 * If tags initialization fail for some hctx, 2815 * that hctx won't be brought online. In this 2816 * case, remap the current ctx to hctx[0] which 2817 * is guaranteed to always have tags allocated 2818 */ 2819 set->map[j].mq_map[i] = 0; 2820 } 2821 2822 hctx = blk_mq_map_queue_type(q, j, i); 2823 ctx->hctxs[j] = hctx; 2824 /* 2825 * If the CPU is already set in the mask, then we've 2826 * mapped this one already. This can happen if 2827 * devices share queues across queue maps. 2828 */ 2829 if (cpumask_test_cpu(i, hctx->cpumask)) 2830 continue; 2831 2832 cpumask_set_cpu(i, hctx->cpumask); 2833 hctx->type = j; 2834 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2835 hctx->ctxs[hctx->nr_ctx++] = ctx; 2836 2837 /* 2838 * If the nr_ctx type overflows, we have exceeded the 2839 * amount of sw queues we can support. 2840 */ 2841 BUG_ON(!hctx->nr_ctx); 2842 } 2843 2844 for (; j < HCTX_MAX_TYPES; j++) 2845 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2846 HCTX_TYPE_DEFAULT, i); 2847 } 2848 2849 queue_for_each_hw_ctx(q, hctx, i) { 2850 /* 2851 * If no software queues are mapped to this hardware queue, 2852 * disable it and free the request entries. 2853 */ 2854 if (!hctx->nr_ctx) { 2855 /* Never unmap queue 0. We need it as a 2856 * fallback in case of a new remap fails 2857 * allocation 2858 */ 2859 if (i && set->tags[i]) 2860 blk_mq_free_map_and_requests(set, i); 2861 2862 hctx->tags = NULL; 2863 continue; 2864 } 2865 2866 hctx->tags = set->tags[i]; 2867 WARN_ON(!hctx->tags); 2868 2869 /* 2870 * Set the map size to the number of mapped software queues. 2871 * This is more accurate and more efficient than looping 2872 * over all possibly mapped software queues. 2873 */ 2874 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2875 2876 /* 2877 * Initialize batch roundrobin counts 2878 */ 2879 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2880 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2881 } 2882 } 2883 2884 /* 2885 * Caller needs to ensure that we're either frozen/quiesced, or that 2886 * the queue isn't live yet. 2887 */ 2888 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2889 { 2890 struct blk_mq_hw_ctx *hctx; 2891 int i; 2892 2893 queue_for_each_hw_ctx(q, hctx, i) { 2894 if (shared) 2895 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2896 else 2897 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2898 } 2899 } 2900 2901 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 2902 bool shared) 2903 { 2904 struct request_queue *q; 2905 2906 lockdep_assert_held(&set->tag_list_lock); 2907 2908 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2909 blk_mq_freeze_queue(q); 2910 queue_set_hctx_shared(q, shared); 2911 blk_mq_unfreeze_queue(q); 2912 } 2913 } 2914 2915 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2916 { 2917 struct blk_mq_tag_set *set = q->tag_set; 2918 2919 mutex_lock(&set->tag_list_lock); 2920 list_del(&q->tag_set_list); 2921 if (list_is_singular(&set->tag_list)) { 2922 /* just transitioned to unshared */ 2923 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2924 /* update existing queue */ 2925 blk_mq_update_tag_set_shared(set, false); 2926 } 2927 mutex_unlock(&set->tag_list_lock); 2928 INIT_LIST_HEAD(&q->tag_set_list); 2929 } 2930 2931 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2932 struct request_queue *q) 2933 { 2934 mutex_lock(&set->tag_list_lock); 2935 2936 /* 2937 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2938 */ 2939 if (!list_empty(&set->tag_list) && 2940 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2941 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2942 /* update existing queue */ 2943 blk_mq_update_tag_set_shared(set, true); 2944 } 2945 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 2946 queue_set_hctx_shared(q, true); 2947 list_add_tail(&q->tag_set_list, &set->tag_list); 2948 2949 mutex_unlock(&set->tag_list_lock); 2950 } 2951 2952 /* All allocations will be freed in release handler of q->mq_kobj */ 2953 static int blk_mq_alloc_ctxs(struct request_queue *q) 2954 { 2955 struct blk_mq_ctxs *ctxs; 2956 int cpu; 2957 2958 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2959 if (!ctxs) 2960 return -ENOMEM; 2961 2962 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2963 if (!ctxs->queue_ctx) 2964 goto fail; 2965 2966 for_each_possible_cpu(cpu) { 2967 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2968 ctx->ctxs = ctxs; 2969 } 2970 2971 q->mq_kobj = &ctxs->kobj; 2972 q->queue_ctx = ctxs->queue_ctx; 2973 2974 return 0; 2975 fail: 2976 kfree(ctxs); 2977 return -ENOMEM; 2978 } 2979 2980 /* 2981 * It is the actual release handler for mq, but we do it from 2982 * request queue's release handler for avoiding use-after-free 2983 * and headache because q->mq_kobj shouldn't have been introduced, 2984 * but we can't group ctx/kctx kobj without it. 2985 */ 2986 void blk_mq_release(struct request_queue *q) 2987 { 2988 struct blk_mq_hw_ctx *hctx, *next; 2989 int i; 2990 2991 queue_for_each_hw_ctx(q, hctx, i) 2992 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2993 2994 /* all hctx are in .unused_hctx_list now */ 2995 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2996 list_del_init(&hctx->hctx_list); 2997 kobject_put(&hctx->kobj); 2998 } 2999 3000 kfree(q->queue_hw_ctx); 3001 3002 /* 3003 * release .mq_kobj and sw queue's kobject now because 3004 * both share lifetime with request queue. 3005 */ 3006 blk_mq_sysfs_deinit(q); 3007 } 3008 3009 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3010 void *queuedata) 3011 { 3012 struct request_queue *uninit_q, *q; 3013 3014 uninit_q = blk_alloc_queue(set->numa_node); 3015 if (!uninit_q) 3016 return ERR_PTR(-ENOMEM); 3017 uninit_q->queuedata = queuedata; 3018 3019 /* 3020 * Initialize the queue without an elevator. device_add_disk() will do 3021 * the initialization. 3022 */ 3023 q = blk_mq_init_allocated_queue(set, uninit_q, false); 3024 if (IS_ERR(q)) 3025 blk_cleanup_queue(uninit_q); 3026 3027 return q; 3028 } 3029 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 3030 3031 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3032 { 3033 return blk_mq_init_queue_data(set, NULL); 3034 } 3035 EXPORT_SYMBOL(blk_mq_init_queue); 3036 3037 /* 3038 * Helper for setting up a queue with mq ops, given queue depth, and 3039 * the passed in mq ops flags. 3040 */ 3041 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 3042 const struct blk_mq_ops *ops, 3043 unsigned int queue_depth, 3044 unsigned int set_flags) 3045 { 3046 struct request_queue *q; 3047 int ret; 3048 3049 memset(set, 0, sizeof(*set)); 3050 set->ops = ops; 3051 set->nr_hw_queues = 1; 3052 set->nr_maps = 1; 3053 set->queue_depth = queue_depth; 3054 set->numa_node = NUMA_NO_NODE; 3055 set->flags = set_flags; 3056 3057 ret = blk_mq_alloc_tag_set(set); 3058 if (ret) 3059 return ERR_PTR(ret); 3060 3061 q = blk_mq_init_queue(set); 3062 if (IS_ERR(q)) { 3063 blk_mq_free_tag_set(set); 3064 return q; 3065 } 3066 3067 return q; 3068 } 3069 EXPORT_SYMBOL(blk_mq_init_sq_queue); 3070 3071 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3072 struct blk_mq_tag_set *set, struct request_queue *q, 3073 int hctx_idx, int node) 3074 { 3075 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3076 3077 /* reuse dead hctx first */ 3078 spin_lock(&q->unused_hctx_lock); 3079 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3080 if (tmp->numa_node == node) { 3081 hctx = tmp; 3082 break; 3083 } 3084 } 3085 if (hctx) 3086 list_del_init(&hctx->hctx_list); 3087 spin_unlock(&q->unused_hctx_lock); 3088 3089 if (!hctx) 3090 hctx = blk_mq_alloc_hctx(q, set, node); 3091 if (!hctx) 3092 goto fail; 3093 3094 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3095 goto free_hctx; 3096 3097 return hctx; 3098 3099 free_hctx: 3100 kobject_put(&hctx->kobj); 3101 fail: 3102 return NULL; 3103 } 3104 3105 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3106 struct request_queue *q) 3107 { 3108 int i, j, end; 3109 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3110 3111 if (q->nr_hw_queues < set->nr_hw_queues) { 3112 struct blk_mq_hw_ctx **new_hctxs; 3113 3114 new_hctxs = kcalloc_node(set->nr_hw_queues, 3115 sizeof(*new_hctxs), GFP_KERNEL, 3116 set->numa_node); 3117 if (!new_hctxs) 3118 return; 3119 if (hctxs) 3120 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3121 sizeof(*hctxs)); 3122 q->queue_hw_ctx = new_hctxs; 3123 kfree(hctxs); 3124 hctxs = new_hctxs; 3125 } 3126 3127 /* protect against switching io scheduler */ 3128 mutex_lock(&q->sysfs_lock); 3129 for (i = 0; i < set->nr_hw_queues; i++) { 3130 int node; 3131 struct blk_mq_hw_ctx *hctx; 3132 3133 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3134 /* 3135 * If the hw queue has been mapped to another numa node, 3136 * we need to realloc the hctx. If allocation fails, fallback 3137 * to use the previous one. 3138 */ 3139 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3140 continue; 3141 3142 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3143 if (hctx) { 3144 if (hctxs[i]) 3145 blk_mq_exit_hctx(q, set, hctxs[i], i); 3146 hctxs[i] = hctx; 3147 } else { 3148 if (hctxs[i]) 3149 pr_warn("Allocate new hctx on node %d fails,\ 3150 fallback to previous one on node %d\n", 3151 node, hctxs[i]->numa_node); 3152 else 3153 break; 3154 } 3155 } 3156 /* 3157 * Increasing nr_hw_queues fails. Free the newly allocated 3158 * hctxs and keep the previous q->nr_hw_queues. 3159 */ 3160 if (i != set->nr_hw_queues) { 3161 j = q->nr_hw_queues; 3162 end = i; 3163 } else { 3164 j = i; 3165 end = q->nr_hw_queues; 3166 q->nr_hw_queues = set->nr_hw_queues; 3167 } 3168 3169 for (; j < end; j++) { 3170 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3171 3172 if (hctx) { 3173 if (hctx->tags) 3174 blk_mq_free_map_and_requests(set, j); 3175 blk_mq_exit_hctx(q, set, hctx, j); 3176 hctxs[j] = NULL; 3177 } 3178 } 3179 mutex_unlock(&q->sysfs_lock); 3180 } 3181 3182 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3183 struct request_queue *q, 3184 bool elevator_init) 3185 { 3186 /* mark the queue as mq asap */ 3187 q->mq_ops = set->ops; 3188 3189 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3190 blk_mq_poll_stats_bkt, 3191 BLK_MQ_POLL_STATS_BKTS, q); 3192 if (!q->poll_cb) 3193 goto err_exit; 3194 3195 if (blk_mq_alloc_ctxs(q)) 3196 goto err_poll; 3197 3198 /* init q->mq_kobj and sw queues' kobjects */ 3199 blk_mq_sysfs_init(q); 3200 3201 INIT_LIST_HEAD(&q->unused_hctx_list); 3202 spin_lock_init(&q->unused_hctx_lock); 3203 3204 blk_mq_realloc_hw_ctxs(set, q); 3205 if (!q->nr_hw_queues) 3206 goto err_hctxs; 3207 3208 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3209 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3210 3211 q->tag_set = set; 3212 3213 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3214 if (set->nr_maps > HCTX_TYPE_POLL && 3215 set->map[HCTX_TYPE_POLL].nr_queues) 3216 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3217 3218 q->sg_reserved_size = INT_MAX; 3219 3220 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3221 INIT_LIST_HEAD(&q->requeue_list); 3222 spin_lock_init(&q->requeue_lock); 3223 3224 q->nr_requests = set->queue_depth; 3225 3226 /* 3227 * Default to classic polling 3228 */ 3229 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3230 3231 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3232 blk_mq_add_queue_tag_set(set, q); 3233 blk_mq_map_swqueue(q); 3234 3235 if (elevator_init) 3236 elevator_init_mq(q); 3237 3238 return q; 3239 3240 err_hctxs: 3241 kfree(q->queue_hw_ctx); 3242 q->nr_hw_queues = 0; 3243 blk_mq_sysfs_deinit(q); 3244 err_poll: 3245 blk_stat_free_callback(q->poll_cb); 3246 q->poll_cb = NULL; 3247 err_exit: 3248 q->mq_ops = NULL; 3249 return ERR_PTR(-ENOMEM); 3250 } 3251 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3252 3253 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3254 void blk_mq_exit_queue(struct request_queue *q) 3255 { 3256 struct blk_mq_tag_set *set = q->tag_set; 3257 3258 blk_mq_del_queue_tag_set(q); 3259 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3260 } 3261 3262 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3263 { 3264 int i; 3265 3266 for (i = 0; i < set->nr_hw_queues; i++) { 3267 if (!__blk_mq_alloc_map_and_request(set, i)) 3268 goto out_unwind; 3269 cond_resched(); 3270 } 3271 3272 return 0; 3273 3274 out_unwind: 3275 while (--i >= 0) 3276 blk_mq_free_map_and_requests(set, i); 3277 3278 return -ENOMEM; 3279 } 3280 3281 /* 3282 * Allocate the request maps associated with this tag_set. Note that this 3283 * may reduce the depth asked for, if memory is tight. set->queue_depth 3284 * will be updated to reflect the allocated depth. 3285 */ 3286 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3287 { 3288 unsigned int depth; 3289 int err; 3290 3291 depth = set->queue_depth; 3292 do { 3293 err = __blk_mq_alloc_rq_maps(set); 3294 if (!err) 3295 break; 3296 3297 set->queue_depth >>= 1; 3298 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3299 err = -ENOMEM; 3300 break; 3301 } 3302 } while (set->queue_depth); 3303 3304 if (!set->queue_depth || err) { 3305 pr_err("blk-mq: failed to allocate request map\n"); 3306 return -ENOMEM; 3307 } 3308 3309 if (depth != set->queue_depth) 3310 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3311 depth, set->queue_depth); 3312 3313 return 0; 3314 } 3315 3316 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3317 { 3318 /* 3319 * blk_mq_map_queues() and multiple .map_queues() implementations 3320 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3321 * number of hardware queues. 3322 */ 3323 if (set->nr_maps == 1) 3324 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3325 3326 if (set->ops->map_queues && !is_kdump_kernel()) { 3327 int i; 3328 3329 /* 3330 * transport .map_queues is usually done in the following 3331 * way: 3332 * 3333 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3334 * mask = get_cpu_mask(queue) 3335 * for_each_cpu(cpu, mask) 3336 * set->map[x].mq_map[cpu] = queue; 3337 * } 3338 * 3339 * When we need to remap, the table has to be cleared for 3340 * killing stale mapping since one CPU may not be mapped 3341 * to any hw queue. 3342 */ 3343 for (i = 0; i < set->nr_maps; i++) 3344 blk_mq_clear_mq_map(&set->map[i]); 3345 3346 return set->ops->map_queues(set); 3347 } else { 3348 BUG_ON(set->nr_maps > 1); 3349 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3350 } 3351 } 3352 3353 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3354 int cur_nr_hw_queues, int new_nr_hw_queues) 3355 { 3356 struct blk_mq_tags **new_tags; 3357 3358 if (cur_nr_hw_queues >= new_nr_hw_queues) 3359 return 0; 3360 3361 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3362 GFP_KERNEL, set->numa_node); 3363 if (!new_tags) 3364 return -ENOMEM; 3365 3366 if (set->tags) 3367 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3368 sizeof(*set->tags)); 3369 kfree(set->tags); 3370 set->tags = new_tags; 3371 set->nr_hw_queues = new_nr_hw_queues; 3372 3373 return 0; 3374 } 3375 3376 /* 3377 * Alloc a tag set to be associated with one or more request queues. 3378 * May fail with EINVAL for various error conditions. May adjust the 3379 * requested depth down, if it's too large. In that case, the set 3380 * value will be stored in set->queue_depth. 3381 */ 3382 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3383 { 3384 int i, ret; 3385 3386 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3387 3388 if (!set->nr_hw_queues) 3389 return -EINVAL; 3390 if (!set->queue_depth) 3391 return -EINVAL; 3392 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3393 return -EINVAL; 3394 3395 if (!set->ops->queue_rq) 3396 return -EINVAL; 3397 3398 if (!set->ops->get_budget ^ !set->ops->put_budget) 3399 return -EINVAL; 3400 3401 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3402 pr_info("blk-mq: reduced tag depth to %u\n", 3403 BLK_MQ_MAX_DEPTH); 3404 set->queue_depth = BLK_MQ_MAX_DEPTH; 3405 } 3406 3407 if (!set->nr_maps) 3408 set->nr_maps = 1; 3409 else if (set->nr_maps > HCTX_MAX_TYPES) 3410 return -EINVAL; 3411 3412 /* 3413 * If a crashdump is active, then we are potentially in a very 3414 * memory constrained environment. Limit us to 1 queue and 3415 * 64 tags to prevent using too much memory. 3416 */ 3417 if (is_kdump_kernel()) { 3418 set->nr_hw_queues = 1; 3419 set->nr_maps = 1; 3420 set->queue_depth = min(64U, set->queue_depth); 3421 } 3422 /* 3423 * There is no use for more h/w queues than cpus if we just have 3424 * a single map 3425 */ 3426 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3427 set->nr_hw_queues = nr_cpu_ids; 3428 3429 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3430 return -ENOMEM; 3431 3432 ret = -ENOMEM; 3433 for (i = 0; i < set->nr_maps; i++) { 3434 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3435 sizeof(set->map[i].mq_map[0]), 3436 GFP_KERNEL, set->numa_node); 3437 if (!set->map[i].mq_map) 3438 goto out_free_mq_map; 3439 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3440 } 3441 3442 ret = blk_mq_update_queue_map(set); 3443 if (ret) 3444 goto out_free_mq_map; 3445 3446 ret = blk_mq_alloc_map_and_requests(set); 3447 if (ret) 3448 goto out_free_mq_map; 3449 3450 if (blk_mq_is_sbitmap_shared(set->flags)) { 3451 atomic_set(&set->active_queues_shared_sbitmap, 0); 3452 3453 if (blk_mq_init_shared_sbitmap(set, set->flags)) { 3454 ret = -ENOMEM; 3455 goto out_free_mq_rq_maps; 3456 } 3457 } 3458 3459 mutex_init(&set->tag_list_lock); 3460 INIT_LIST_HEAD(&set->tag_list); 3461 3462 return 0; 3463 3464 out_free_mq_rq_maps: 3465 for (i = 0; i < set->nr_hw_queues; i++) 3466 blk_mq_free_map_and_requests(set, i); 3467 out_free_mq_map: 3468 for (i = 0; i < set->nr_maps; i++) { 3469 kfree(set->map[i].mq_map); 3470 set->map[i].mq_map = NULL; 3471 } 3472 kfree(set->tags); 3473 set->tags = NULL; 3474 return ret; 3475 } 3476 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3477 3478 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3479 { 3480 int i, j; 3481 3482 for (i = 0; i < set->nr_hw_queues; i++) 3483 blk_mq_free_map_and_requests(set, i); 3484 3485 if (blk_mq_is_sbitmap_shared(set->flags)) 3486 blk_mq_exit_shared_sbitmap(set); 3487 3488 for (j = 0; j < set->nr_maps; j++) { 3489 kfree(set->map[j].mq_map); 3490 set->map[j].mq_map = NULL; 3491 } 3492 3493 kfree(set->tags); 3494 set->tags = NULL; 3495 } 3496 EXPORT_SYMBOL(blk_mq_free_tag_set); 3497 3498 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3499 { 3500 struct blk_mq_tag_set *set = q->tag_set; 3501 struct blk_mq_hw_ctx *hctx; 3502 int i, ret; 3503 3504 if (!set) 3505 return -EINVAL; 3506 3507 if (q->nr_requests == nr) 3508 return 0; 3509 3510 blk_mq_freeze_queue(q); 3511 blk_mq_quiesce_queue(q); 3512 3513 ret = 0; 3514 queue_for_each_hw_ctx(q, hctx, i) { 3515 if (!hctx->tags) 3516 continue; 3517 /* 3518 * If we're using an MQ scheduler, just update the scheduler 3519 * queue depth. This is similar to what the old code would do. 3520 */ 3521 if (!hctx->sched_tags) { 3522 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3523 false); 3524 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3525 blk_mq_tag_resize_shared_sbitmap(set, nr); 3526 } else { 3527 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3528 nr, true); 3529 } 3530 if (ret) 3531 break; 3532 if (q->elevator && q->elevator->type->ops.depth_updated) 3533 q->elevator->type->ops.depth_updated(hctx); 3534 } 3535 3536 if (!ret) 3537 q->nr_requests = nr; 3538 3539 blk_mq_unquiesce_queue(q); 3540 blk_mq_unfreeze_queue(q); 3541 3542 return ret; 3543 } 3544 3545 /* 3546 * request_queue and elevator_type pair. 3547 * It is just used by __blk_mq_update_nr_hw_queues to cache 3548 * the elevator_type associated with a request_queue. 3549 */ 3550 struct blk_mq_qe_pair { 3551 struct list_head node; 3552 struct request_queue *q; 3553 struct elevator_type *type; 3554 }; 3555 3556 /* 3557 * Cache the elevator_type in qe pair list and switch the 3558 * io scheduler to 'none' 3559 */ 3560 static bool blk_mq_elv_switch_none(struct list_head *head, 3561 struct request_queue *q) 3562 { 3563 struct blk_mq_qe_pair *qe; 3564 3565 if (!q->elevator) 3566 return true; 3567 3568 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3569 if (!qe) 3570 return false; 3571 3572 INIT_LIST_HEAD(&qe->node); 3573 qe->q = q; 3574 qe->type = q->elevator->type; 3575 list_add(&qe->node, head); 3576 3577 mutex_lock(&q->sysfs_lock); 3578 /* 3579 * After elevator_switch_mq, the previous elevator_queue will be 3580 * released by elevator_release. The reference of the io scheduler 3581 * module get by elevator_get will also be put. So we need to get 3582 * a reference of the io scheduler module here to prevent it to be 3583 * removed. 3584 */ 3585 __module_get(qe->type->elevator_owner); 3586 elevator_switch_mq(q, NULL); 3587 mutex_unlock(&q->sysfs_lock); 3588 3589 return true; 3590 } 3591 3592 static void blk_mq_elv_switch_back(struct list_head *head, 3593 struct request_queue *q) 3594 { 3595 struct blk_mq_qe_pair *qe; 3596 struct elevator_type *t = NULL; 3597 3598 list_for_each_entry(qe, head, node) 3599 if (qe->q == q) { 3600 t = qe->type; 3601 break; 3602 } 3603 3604 if (!t) 3605 return; 3606 3607 list_del(&qe->node); 3608 kfree(qe); 3609 3610 mutex_lock(&q->sysfs_lock); 3611 elevator_switch_mq(q, t); 3612 mutex_unlock(&q->sysfs_lock); 3613 } 3614 3615 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3616 int nr_hw_queues) 3617 { 3618 struct request_queue *q; 3619 LIST_HEAD(head); 3620 int prev_nr_hw_queues; 3621 3622 lockdep_assert_held(&set->tag_list_lock); 3623 3624 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3625 nr_hw_queues = nr_cpu_ids; 3626 if (nr_hw_queues < 1) 3627 return; 3628 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3629 return; 3630 3631 list_for_each_entry(q, &set->tag_list, tag_set_list) 3632 blk_mq_freeze_queue(q); 3633 /* 3634 * Switch IO scheduler to 'none', cleaning up the data associated 3635 * with the previous scheduler. We will switch back once we are done 3636 * updating the new sw to hw queue mappings. 3637 */ 3638 list_for_each_entry(q, &set->tag_list, tag_set_list) 3639 if (!blk_mq_elv_switch_none(&head, q)) 3640 goto switch_back; 3641 3642 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3643 blk_mq_debugfs_unregister_hctxs(q); 3644 blk_mq_sysfs_unregister(q); 3645 } 3646 3647 prev_nr_hw_queues = set->nr_hw_queues; 3648 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3649 0) 3650 goto reregister; 3651 3652 set->nr_hw_queues = nr_hw_queues; 3653 fallback: 3654 blk_mq_update_queue_map(set); 3655 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3656 blk_mq_realloc_hw_ctxs(set, q); 3657 if (q->nr_hw_queues != set->nr_hw_queues) { 3658 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3659 nr_hw_queues, prev_nr_hw_queues); 3660 set->nr_hw_queues = prev_nr_hw_queues; 3661 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3662 goto fallback; 3663 } 3664 blk_mq_map_swqueue(q); 3665 } 3666 3667 reregister: 3668 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3669 blk_mq_sysfs_register(q); 3670 blk_mq_debugfs_register_hctxs(q); 3671 } 3672 3673 switch_back: 3674 list_for_each_entry(q, &set->tag_list, tag_set_list) 3675 blk_mq_elv_switch_back(&head, q); 3676 3677 list_for_each_entry(q, &set->tag_list, tag_set_list) 3678 blk_mq_unfreeze_queue(q); 3679 } 3680 3681 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3682 { 3683 mutex_lock(&set->tag_list_lock); 3684 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3685 mutex_unlock(&set->tag_list_lock); 3686 } 3687 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3688 3689 /* Enable polling stats and return whether they were already enabled. */ 3690 static bool blk_poll_stats_enable(struct request_queue *q) 3691 { 3692 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3693 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3694 return true; 3695 blk_stat_add_callback(q, q->poll_cb); 3696 return false; 3697 } 3698 3699 static void blk_mq_poll_stats_start(struct request_queue *q) 3700 { 3701 /* 3702 * We don't arm the callback if polling stats are not enabled or the 3703 * callback is already active. 3704 */ 3705 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3706 blk_stat_is_active(q->poll_cb)) 3707 return; 3708 3709 blk_stat_activate_msecs(q->poll_cb, 100); 3710 } 3711 3712 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3713 { 3714 struct request_queue *q = cb->data; 3715 int bucket; 3716 3717 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3718 if (cb->stat[bucket].nr_samples) 3719 q->poll_stat[bucket] = cb->stat[bucket]; 3720 } 3721 } 3722 3723 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3724 struct request *rq) 3725 { 3726 unsigned long ret = 0; 3727 int bucket; 3728 3729 /* 3730 * If stats collection isn't on, don't sleep but turn it on for 3731 * future users 3732 */ 3733 if (!blk_poll_stats_enable(q)) 3734 return 0; 3735 3736 /* 3737 * As an optimistic guess, use half of the mean service time 3738 * for this type of request. We can (and should) make this smarter. 3739 * For instance, if the completion latencies are tight, we can 3740 * get closer than just half the mean. This is especially 3741 * important on devices where the completion latencies are longer 3742 * than ~10 usec. We do use the stats for the relevant IO size 3743 * if available which does lead to better estimates. 3744 */ 3745 bucket = blk_mq_poll_stats_bkt(rq); 3746 if (bucket < 0) 3747 return ret; 3748 3749 if (q->poll_stat[bucket].nr_samples) 3750 ret = (q->poll_stat[bucket].mean + 1) / 2; 3751 3752 return ret; 3753 } 3754 3755 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3756 struct request *rq) 3757 { 3758 struct hrtimer_sleeper hs; 3759 enum hrtimer_mode mode; 3760 unsigned int nsecs; 3761 ktime_t kt; 3762 3763 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3764 return false; 3765 3766 /* 3767 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3768 * 3769 * 0: use half of prev avg 3770 * >0: use this specific value 3771 */ 3772 if (q->poll_nsec > 0) 3773 nsecs = q->poll_nsec; 3774 else 3775 nsecs = blk_mq_poll_nsecs(q, rq); 3776 3777 if (!nsecs) 3778 return false; 3779 3780 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3781 3782 /* 3783 * This will be replaced with the stats tracking code, using 3784 * 'avg_completion_time / 2' as the pre-sleep target. 3785 */ 3786 kt = nsecs; 3787 3788 mode = HRTIMER_MODE_REL; 3789 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3790 hrtimer_set_expires(&hs.timer, kt); 3791 3792 do { 3793 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3794 break; 3795 set_current_state(TASK_UNINTERRUPTIBLE); 3796 hrtimer_sleeper_start_expires(&hs, mode); 3797 if (hs.task) 3798 io_schedule(); 3799 hrtimer_cancel(&hs.timer); 3800 mode = HRTIMER_MODE_ABS; 3801 } while (hs.task && !signal_pending(current)); 3802 3803 __set_current_state(TASK_RUNNING); 3804 destroy_hrtimer_on_stack(&hs.timer); 3805 return true; 3806 } 3807 3808 static bool blk_mq_poll_hybrid(struct request_queue *q, 3809 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3810 { 3811 struct request *rq; 3812 3813 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3814 return false; 3815 3816 if (!blk_qc_t_is_internal(cookie)) 3817 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3818 else { 3819 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3820 /* 3821 * With scheduling, if the request has completed, we'll 3822 * get a NULL return here, as we clear the sched tag when 3823 * that happens. The request still remains valid, like always, 3824 * so we should be safe with just the NULL check. 3825 */ 3826 if (!rq) 3827 return false; 3828 } 3829 3830 return blk_mq_poll_hybrid_sleep(q, rq); 3831 } 3832 3833 /** 3834 * blk_poll - poll for IO completions 3835 * @q: the queue 3836 * @cookie: cookie passed back at IO submission time 3837 * @spin: whether to spin for completions 3838 * 3839 * Description: 3840 * Poll for completions on the passed in queue. Returns number of 3841 * completed entries found. If @spin is true, then blk_poll will continue 3842 * looping until at least one completion is found, unless the task is 3843 * otherwise marked running (or we need to reschedule). 3844 */ 3845 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3846 { 3847 struct blk_mq_hw_ctx *hctx; 3848 long state; 3849 3850 if (!blk_qc_t_valid(cookie) || 3851 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3852 return 0; 3853 3854 if (current->plug) 3855 blk_flush_plug_list(current->plug, false); 3856 3857 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3858 3859 /* 3860 * If we sleep, have the caller restart the poll loop to reset 3861 * the state. Like for the other success return cases, the 3862 * caller is responsible for checking if the IO completed. If 3863 * the IO isn't complete, we'll get called again and will go 3864 * straight to the busy poll loop. 3865 */ 3866 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3867 return 1; 3868 3869 hctx->poll_considered++; 3870 3871 state = current->state; 3872 do { 3873 int ret; 3874 3875 hctx->poll_invoked++; 3876 3877 ret = q->mq_ops->poll(hctx); 3878 if (ret > 0) { 3879 hctx->poll_success++; 3880 __set_current_state(TASK_RUNNING); 3881 return ret; 3882 } 3883 3884 if (signal_pending_state(state, current)) 3885 __set_current_state(TASK_RUNNING); 3886 3887 if (current->state == TASK_RUNNING) 3888 return 1; 3889 if (ret < 0 || !spin) 3890 break; 3891 cpu_relax(); 3892 } while (!need_resched()); 3893 3894 __set_current_state(TASK_RUNNING); 3895 return 0; 3896 } 3897 EXPORT_SYMBOL_GPL(blk_poll); 3898 3899 unsigned int blk_mq_rq_cpu(struct request *rq) 3900 { 3901 return rq->mq_ctx->cpu; 3902 } 3903 EXPORT_SYMBOL(blk_mq_rq_cpu); 3904 3905 static int __init blk_mq_init(void) 3906 { 3907 int i; 3908 3909 for_each_possible_cpu(i) 3910 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 3911 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 3912 3913 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 3914 "block/softirq:dead", NULL, 3915 blk_softirq_cpu_dead); 3916 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3917 blk_mq_hctx_notify_dead); 3918 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 3919 blk_mq_hctx_notify_online, 3920 blk_mq_hctx_notify_offline); 3921 return 0; 3922 } 3923 subsys_initcall(blk_mq_init); 3924