xref: /openbmc/linux/block/blk-mq.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static void blk_mq_poll_stats_start(struct request_queue *q);
45 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
46 
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 	int ddir, sectors, bucket;
50 
51 	ddir = rq_data_dir(rq);
52 	sectors = blk_rq_stats_sectors(rq);
53 
54 	bucket = ddir + 2 * ilog2(sectors);
55 
56 	if (bucket < 0)
57 		return -1;
58 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60 
61 	return bucket;
62 }
63 
64 /*
65  * Check if any of the ctx, dispatch list or elevator
66  * have pending work in this hardware queue.
67  */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70 	return !list_empty_careful(&hctx->dispatch) ||
71 		sbitmap_any_bit_set(&hctx->ctx_map) ||
72 			blk_mq_sched_has_work(hctx);
73 }
74 
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 				     struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84 		sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86 
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 				      struct blk_mq_ctx *ctx)
89 {
90 	const int bit = ctx->index_hw[hctx->type];
91 
92 	sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94 
95 struct mq_inflight {
96 	struct hd_struct *part;
97 	unsigned int inflight[2];
98 };
99 
100 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
101 				  struct request *rq, void *priv,
102 				  bool reserved)
103 {
104 	struct mq_inflight *mi = priv;
105 
106 	if (rq->part == mi->part)
107 		mi->inflight[rq_data_dir(rq)]++;
108 
109 	return true;
110 }
111 
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114 	struct mq_inflight mi = { .part = part };
115 
116 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 
118 	return mi.inflight[0] + mi.inflight[1];
119 }
120 
121 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
122 			 unsigned int inflight[2])
123 {
124 	struct mq_inflight mi = { .part = part };
125 
126 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
127 	inflight[0] = mi.inflight[0];
128 	inflight[1] = mi.inflight[1];
129 }
130 
131 void blk_freeze_queue_start(struct request_queue *q)
132 {
133 	mutex_lock(&q->mq_freeze_lock);
134 	if (++q->mq_freeze_depth == 1) {
135 		percpu_ref_kill(&q->q_usage_counter);
136 		mutex_unlock(&q->mq_freeze_lock);
137 		if (queue_is_mq(q))
138 			blk_mq_run_hw_queues(q, false);
139 	} else {
140 		mutex_unlock(&q->mq_freeze_lock);
141 	}
142 }
143 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144 
145 void blk_mq_freeze_queue_wait(struct request_queue *q)
146 {
147 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150 
151 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
152 				     unsigned long timeout)
153 {
154 	return wait_event_timeout(q->mq_freeze_wq,
155 					percpu_ref_is_zero(&q->q_usage_counter),
156 					timeout);
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
159 
160 /*
161  * Guarantee no request is in use, so we can change any data structure of
162  * the queue afterward.
163  */
164 void blk_freeze_queue(struct request_queue *q)
165 {
166 	/*
167 	 * In the !blk_mq case we are only calling this to kill the
168 	 * q_usage_counter, otherwise this increases the freeze depth
169 	 * and waits for it to return to zero.  For this reason there is
170 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
171 	 * exported to drivers as the only user for unfreeze is blk_mq.
172 	 */
173 	blk_freeze_queue_start(q);
174 	blk_mq_freeze_queue_wait(q);
175 }
176 
177 void blk_mq_freeze_queue(struct request_queue *q)
178 {
179 	/*
180 	 * ...just an alias to keep freeze and unfreeze actions balanced
181 	 * in the blk_mq_* namespace
182 	 */
183 	blk_freeze_queue(q);
184 }
185 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186 
187 void blk_mq_unfreeze_queue(struct request_queue *q)
188 {
189 	mutex_lock(&q->mq_freeze_lock);
190 	q->mq_freeze_depth--;
191 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
192 	if (!q->mq_freeze_depth) {
193 		percpu_ref_resurrect(&q->q_usage_counter);
194 		wake_up_all(&q->mq_freeze_wq);
195 	}
196 	mutex_unlock(&q->mq_freeze_lock);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
209 
210 /**
211  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
212  * @q: request queue.
213  *
214  * Note: this function does not prevent that the struct request end_io()
215  * callback function is invoked. Once this function is returned, we make
216  * sure no dispatch can happen until the queue is unquiesced via
217  * blk_mq_unquiesce_queue().
218  */
219 void blk_mq_quiesce_queue(struct request_queue *q)
220 {
221 	struct blk_mq_hw_ctx *hctx;
222 	unsigned int i;
223 	bool rcu = false;
224 
225 	blk_mq_quiesce_queue_nowait(q);
226 
227 	queue_for_each_hw_ctx(q, hctx, i) {
228 		if (hctx->flags & BLK_MQ_F_BLOCKING)
229 			synchronize_srcu(hctx->srcu);
230 		else
231 			rcu = true;
232 	}
233 	if (rcu)
234 		synchronize_rcu();
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
237 
238 /*
239  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
240  * @q: request queue.
241  *
242  * This function recovers queue into the state before quiescing
243  * which is done by blk_mq_quiesce_queue.
244  */
245 void blk_mq_unquiesce_queue(struct request_queue *q)
246 {
247 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248 
249 	/* dispatch requests which are inserted during quiescing */
250 	blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253 
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 	struct blk_mq_hw_ctx *hctx;
257 	unsigned int i;
258 
259 	queue_for_each_hw_ctx(q, hctx, i)
260 		if (blk_mq_hw_queue_mapped(hctx))
261 			blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263 
264 /*
265  * Only need start/end time stamping if we have iostat or
266  * blk stats enabled, or using an IO scheduler.
267  */
268 static inline bool blk_mq_need_time_stamp(struct request *rq)
269 {
270 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
271 }
272 
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 		unsigned int tag, u64 alloc_time_ns)
275 {
276 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 	struct request *rq = tags->static_rqs[tag];
278 	req_flags_t rq_flags = 0;
279 
280 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
281 		rq->tag = BLK_MQ_NO_TAG;
282 		rq->internal_tag = tag;
283 	} else {
284 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
285 			rq_flags = RQF_MQ_INFLIGHT;
286 			atomic_inc(&data->hctx->nr_active);
287 		}
288 		rq->tag = tag;
289 		rq->internal_tag = BLK_MQ_NO_TAG;
290 		data->hctx->tags->rqs[rq->tag] = rq;
291 	}
292 
293 	/* csd/requeue_work/fifo_time is initialized before use */
294 	rq->q = data->q;
295 	rq->mq_ctx = data->ctx;
296 	rq->mq_hctx = data->hctx;
297 	rq->rq_flags = rq_flags;
298 	rq->cmd_flags = data->cmd_flags;
299 	if (data->flags & BLK_MQ_REQ_PREEMPT)
300 		rq->rq_flags |= RQF_PREEMPT;
301 	if (blk_queue_io_stat(data->q))
302 		rq->rq_flags |= RQF_IO_STAT;
303 	INIT_LIST_HEAD(&rq->queuelist);
304 	INIT_HLIST_NODE(&rq->hash);
305 	RB_CLEAR_NODE(&rq->rb_node);
306 	rq->rq_disk = NULL;
307 	rq->part = NULL;
308 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
309 	rq->alloc_time_ns = alloc_time_ns;
310 #endif
311 	if (blk_mq_need_time_stamp(rq))
312 		rq->start_time_ns = ktime_get_ns();
313 	else
314 		rq->start_time_ns = 0;
315 	rq->io_start_time_ns = 0;
316 	rq->stats_sectors = 0;
317 	rq->nr_phys_segments = 0;
318 #if defined(CONFIG_BLK_DEV_INTEGRITY)
319 	rq->nr_integrity_segments = 0;
320 #endif
321 	blk_crypto_rq_set_defaults(rq);
322 	/* tag was already set */
323 	WRITE_ONCE(rq->deadline, 0);
324 
325 	rq->timeout = 0;
326 
327 	rq->end_io = NULL;
328 	rq->end_io_data = NULL;
329 
330 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
331 	refcount_set(&rq->ref, 1);
332 
333 	if (!op_is_flush(data->cmd_flags)) {
334 		struct elevator_queue *e = data->q->elevator;
335 
336 		rq->elv.icq = NULL;
337 		if (e && e->type->ops.prepare_request) {
338 			if (e->type->icq_cache)
339 				blk_mq_sched_assign_ioc(rq);
340 
341 			e->type->ops.prepare_request(rq);
342 			rq->rq_flags |= RQF_ELVPRIV;
343 		}
344 	}
345 
346 	data->hctx->queued++;
347 	return rq;
348 }
349 
350 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
351 {
352 	struct request_queue *q = data->q;
353 	struct elevator_queue *e = q->elevator;
354 	u64 alloc_time_ns = 0;
355 	unsigned int tag;
356 
357 	/* alloc_time includes depth and tag waits */
358 	if (blk_queue_rq_alloc_time(q))
359 		alloc_time_ns = ktime_get_ns();
360 
361 	if (data->cmd_flags & REQ_NOWAIT)
362 		data->flags |= BLK_MQ_REQ_NOWAIT;
363 
364 	if (e) {
365 		data->flags |= BLK_MQ_REQ_INTERNAL;
366 
367 		/*
368 		 * Flush requests are special and go directly to the
369 		 * dispatch list. Don't include reserved tags in the
370 		 * limiting, as it isn't useful.
371 		 */
372 		if (!op_is_flush(data->cmd_flags) &&
373 		    e->type->ops.limit_depth &&
374 		    !(data->flags & BLK_MQ_REQ_RESERVED))
375 			e->type->ops.limit_depth(data->cmd_flags, data);
376 	}
377 
378 retry:
379 	data->ctx = blk_mq_get_ctx(q);
380 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
381 	if (!(data->flags & BLK_MQ_REQ_INTERNAL))
382 		blk_mq_tag_busy(data->hctx);
383 
384 	/*
385 	 * Waiting allocations only fail because of an inactive hctx.  In that
386 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
387 	 * should have migrated us to an online CPU by now.
388 	 */
389 	tag = blk_mq_get_tag(data);
390 	if (tag == BLK_MQ_NO_TAG) {
391 		if (data->flags & BLK_MQ_REQ_NOWAIT)
392 			return NULL;
393 
394 		/*
395 		 * Give up the CPU and sleep for a random short time to ensure
396 		 * that thread using a realtime scheduling class are migrated
397 		 * off the the CPU, and thus off the hctx that is going away.
398 		 */
399 		msleep(3);
400 		goto retry;
401 	}
402 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
403 }
404 
405 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
406 		blk_mq_req_flags_t flags)
407 {
408 	struct blk_mq_alloc_data data = {
409 		.q		= q,
410 		.flags		= flags,
411 		.cmd_flags	= op,
412 	};
413 	struct request *rq;
414 	int ret;
415 
416 	ret = blk_queue_enter(q, flags);
417 	if (ret)
418 		return ERR_PTR(ret);
419 
420 	rq = __blk_mq_alloc_request(&data);
421 	if (!rq)
422 		goto out_queue_exit;
423 	rq->__data_len = 0;
424 	rq->__sector = (sector_t) -1;
425 	rq->bio = rq->biotail = NULL;
426 	return rq;
427 out_queue_exit:
428 	blk_queue_exit(q);
429 	return ERR_PTR(-EWOULDBLOCK);
430 }
431 EXPORT_SYMBOL(blk_mq_alloc_request);
432 
433 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
434 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
435 {
436 	struct blk_mq_alloc_data data = {
437 		.q		= q,
438 		.flags		= flags,
439 		.cmd_flags	= op,
440 	};
441 	u64 alloc_time_ns = 0;
442 	unsigned int cpu;
443 	unsigned int tag;
444 	int ret;
445 
446 	/* alloc_time includes depth and tag waits */
447 	if (blk_queue_rq_alloc_time(q))
448 		alloc_time_ns = ktime_get_ns();
449 
450 	/*
451 	 * If the tag allocator sleeps we could get an allocation for a
452 	 * different hardware context.  No need to complicate the low level
453 	 * allocator for this for the rare use case of a command tied to
454 	 * a specific queue.
455 	 */
456 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
457 		return ERR_PTR(-EINVAL);
458 
459 	if (hctx_idx >= q->nr_hw_queues)
460 		return ERR_PTR(-EIO);
461 
462 	ret = blk_queue_enter(q, flags);
463 	if (ret)
464 		return ERR_PTR(ret);
465 
466 	/*
467 	 * Check if the hardware context is actually mapped to anything.
468 	 * If not tell the caller that it should skip this queue.
469 	 */
470 	ret = -EXDEV;
471 	data.hctx = q->queue_hw_ctx[hctx_idx];
472 	if (!blk_mq_hw_queue_mapped(data.hctx))
473 		goto out_queue_exit;
474 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
475 	data.ctx = __blk_mq_get_ctx(q, cpu);
476 
477 	if (q->elevator)
478 		data.flags |= BLK_MQ_REQ_INTERNAL;
479 	else
480 		blk_mq_tag_busy(data.hctx);
481 
482 	ret = -EWOULDBLOCK;
483 	tag = blk_mq_get_tag(&data);
484 	if (tag == BLK_MQ_NO_TAG)
485 		goto out_queue_exit;
486 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
487 
488 out_queue_exit:
489 	blk_queue_exit(q);
490 	return ERR_PTR(ret);
491 }
492 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
493 
494 static void __blk_mq_free_request(struct request *rq)
495 {
496 	struct request_queue *q = rq->q;
497 	struct blk_mq_ctx *ctx = rq->mq_ctx;
498 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
499 	const int sched_tag = rq->internal_tag;
500 
501 	blk_crypto_free_request(rq);
502 	blk_pm_mark_last_busy(rq);
503 	rq->mq_hctx = NULL;
504 	if (rq->tag != BLK_MQ_NO_TAG)
505 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
506 	if (sched_tag != BLK_MQ_NO_TAG)
507 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
508 	blk_mq_sched_restart(hctx);
509 	blk_queue_exit(q);
510 }
511 
512 void blk_mq_free_request(struct request *rq)
513 {
514 	struct request_queue *q = rq->q;
515 	struct elevator_queue *e = q->elevator;
516 	struct blk_mq_ctx *ctx = rq->mq_ctx;
517 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
518 
519 	if (rq->rq_flags & RQF_ELVPRIV) {
520 		if (e && e->type->ops.finish_request)
521 			e->type->ops.finish_request(rq);
522 		if (rq->elv.icq) {
523 			put_io_context(rq->elv.icq->ioc);
524 			rq->elv.icq = NULL;
525 		}
526 	}
527 
528 	ctx->rq_completed[rq_is_sync(rq)]++;
529 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
530 		atomic_dec(&hctx->nr_active);
531 
532 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
533 		laptop_io_completion(q->backing_dev_info);
534 
535 	rq_qos_done(q, rq);
536 
537 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
538 	if (refcount_dec_and_test(&rq->ref))
539 		__blk_mq_free_request(rq);
540 }
541 EXPORT_SYMBOL_GPL(blk_mq_free_request);
542 
543 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
544 {
545 	u64 now = 0;
546 
547 	if (blk_mq_need_time_stamp(rq))
548 		now = ktime_get_ns();
549 
550 	if (rq->rq_flags & RQF_STATS) {
551 		blk_mq_poll_stats_start(rq->q);
552 		blk_stat_add(rq, now);
553 	}
554 
555 	if (rq->internal_tag != BLK_MQ_NO_TAG)
556 		blk_mq_sched_completed_request(rq, now);
557 
558 	blk_account_io_done(rq, now);
559 
560 	if (rq->end_io) {
561 		rq_qos_done(rq->q, rq);
562 		rq->end_io(rq, error);
563 	} else {
564 		blk_mq_free_request(rq);
565 	}
566 }
567 EXPORT_SYMBOL(__blk_mq_end_request);
568 
569 void blk_mq_end_request(struct request *rq, blk_status_t error)
570 {
571 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
572 		BUG();
573 	__blk_mq_end_request(rq, error);
574 }
575 EXPORT_SYMBOL(blk_mq_end_request);
576 
577 static void __blk_mq_complete_request_remote(void *data)
578 {
579 	struct request *rq = data;
580 	struct request_queue *q = rq->q;
581 
582 	q->mq_ops->complete(rq);
583 }
584 
585 /**
586  * blk_mq_force_complete_rq() - Force complete the request, bypassing any error
587  * 				injection that could drop the completion.
588  * @rq: Request to be force completed
589  *
590  * Drivers should use blk_mq_complete_request() to complete requests in their
591  * normal IO path. For timeout error recovery, drivers may call this forced
592  * completion routine after they've reclaimed timed out requests to bypass
593  * potentially subsequent fake timeouts.
594  */
595 void blk_mq_force_complete_rq(struct request *rq)
596 {
597 	struct blk_mq_ctx *ctx = rq->mq_ctx;
598 	struct request_queue *q = rq->q;
599 	bool shared = false;
600 	int cpu;
601 
602 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
603 	/*
604 	 * Most of single queue controllers, there is only one irq vector
605 	 * for handling IO completion, and the only irq's affinity is set
606 	 * as all possible CPUs. On most of ARCHs, this affinity means the
607 	 * irq is handled on one specific CPU.
608 	 *
609 	 * So complete IO reqeust in softirq context in case of single queue
610 	 * for not degrading IO performance by irqsoff latency.
611 	 */
612 	if (q->nr_hw_queues == 1) {
613 		__blk_complete_request(rq);
614 		return;
615 	}
616 
617 	/*
618 	 * For a polled request, always complete locallly, it's pointless
619 	 * to redirect the completion.
620 	 */
621 	if ((rq->cmd_flags & REQ_HIPRI) ||
622 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
623 		q->mq_ops->complete(rq);
624 		return;
625 	}
626 
627 	cpu = get_cpu();
628 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
629 		shared = cpus_share_cache(cpu, ctx->cpu);
630 
631 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
632 		rq->csd.func = __blk_mq_complete_request_remote;
633 		rq->csd.info = rq;
634 		rq->csd.flags = 0;
635 		smp_call_function_single_async(ctx->cpu, &rq->csd);
636 	} else {
637 		q->mq_ops->complete(rq);
638 	}
639 	put_cpu();
640 }
641 EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq);
642 
643 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
644 	__releases(hctx->srcu)
645 {
646 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
647 		rcu_read_unlock();
648 	else
649 		srcu_read_unlock(hctx->srcu, srcu_idx);
650 }
651 
652 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
653 	__acquires(hctx->srcu)
654 {
655 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
656 		/* shut up gcc false positive */
657 		*srcu_idx = 0;
658 		rcu_read_lock();
659 	} else
660 		*srcu_idx = srcu_read_lock(hctx->srcu);
661 }
662 
663 /**
664  * blk_mq_complete_request - end I/O on a request
665  * @rq:		the request being processed
666  *
667  * Description:
668  *	Ends all I/O on a request. It does not handle partial completions.
669  *	The actual completion happens out-of-order, through a IPI handler.
670  **/
671 bool blk_mq_complete_request(struct request *rq)
672 {
673 	if (unlikely(blk_should_fake_timeout(rq->q)))
674 		return false;
675 	blk_mq_force_complete_rq(rq);
676 	return true;
677 }
678 EXPORT_SYMBOL(blk_mq_complete_request);
679 
680 /**
681  * blk_mq_start_request - Start processing a request
682  * @rq: Pointer to request to be started
683  *
684  * Function used by device drivers to notify the block layer that a request
685  * is going to be processed now, so blk layer can do proper initializations
686  * such as starting the timeout timer.
687  */
688 void blk_mq_start_request(struct request *rq)
689 {
690 	struct request_queue *q = rq->q;
691 
692 	trace_block_rq_issue(q, rq);
693 
694 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
695 		rq->io_start_time_ns = ktime_get_ns();
696 		rq->stats_sectors = blk_rq_sectors(rq);
697 		rq->rq_flags |= RQF_STATS;
698 		rq_qos_issue(q, rq);
699 	}
700 
701 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
702 
703 	blk_add_timer(rq);
704 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
705 
706 #ifdef CONFIG_BLK_DEV_INTEGRITY
707 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
708 		q->integrity.profile->prepare_fn(rq);
709 #endif
710 }
711 EXPORT_SYMBOL(blk_mq_start_request);
712 
713 static void __blk_mq_requeue_request(struct request *rq)
714 {
715 	struct request_queue *q = rq->q;
716 
717 	blk_mq_put_driver_tag(rq);
718 
719 	trace_block_rq_requeue(q, rq);
720 	rq_qos_requeue(q, rq);
721 
722 	if (blk_mq_request_started(rq)) {
723 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
724 		rq->rq_flags &= ~RQF_TIMED_OUT;
725 	}
726 }
727 
728 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
729 {
730 	__blk_mq_requeue_request(rq);
731 
732 	/* this request will be re-inserted to io scheduler queue */
733 	blk_mq_sched_requeue_request(rq);
734 
735 	BUG_ON(!list_empty(&rq->queuelist));
736 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
737 }
738 EXPORT_SYMBOL(blk_mq_requeue_request);
739 
740 static void blk_mq_requeue_work(struct work_struct *work)
741 {
742 	struct request_queue *q =
743 		container_of(work, struct request_queue, requeue_work.work);
744 	LIST_HEAD(rq_list);
745 	struct request *rq, *next;
746 
747 	spin_lock_irq(&q->requeue_lock);
748 	list_splice_init(&q->requeue_list, &rq_list);
749 	spin_unlock_irq(&q->requeue_lock);
750 
751 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
752 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
753 			continue;
754 
755 		rq->rq_flags &= ~RQF_SOFTBARRIER;
756 		list_del_init(&rq->queuelist);
757 		/*
758 		 * If RQF_DONTPREP, rq has contained some driver specific
759 		 * data, so insert it to hctx dispatch list to avoid any
760 		 * merge.
761 		 */
762 		if (rq->rq_flags & RQF_DONTPREP)
763 			blk_mq_request_bypass_insert(rq, false, false);
764 		else
765 			blk_mq_sched_insert_request(rq, true, false, false);
766 	}
767 
768 	while (!list_empty(&rq_list)) {
769 		rq = list_entry(rq_list.next, struct request, queuelist);
770 		list_del_init(&rq->queuelist);
771 		blk_mq_sched_insert_request(rq, false, false, false);
772 	}
773 
774 	blk_mq_run_hw_queues(q, false);
775 }
776 
777 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
778 				bool kick_requeue_list)
779 {
780 	struct request_queue *q = rq->q;
781 	unsigned long flags;
782 
783 	/*
784 	 * We abuse this flag that is otherwise used by the I/O scheduler to
785 	 * request head insertion from the workqueue.
786 	 */
787 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
788 
789 	spin_lock_irqsave(&q->requeue_lock, flags);
790 	if (at_head) {
791 		rq->rq_flags |= RQF_SOFTBARRIER;
792 		list_add(&rq->queuelist, &q->requeue_list);
793 	} else {
794 		list_add_tail(&rq->queuelist, &q->requeue_list);
795 	}
796 	spin_unlock_irqrestore(&q->requeue_lock, flags);
797 
798 	if (kick_requeue_list)
799 		blk_mq_kick_requeue_list(q);
800 }
801 
802 void blk_mq_kick_requeue_list(struct request_queue *q)
803 {
804 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
805 }
806 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
807 
808 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
809 				    unsigned long msecs)
810 {
811 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
812 				    msecs_to_jiffies(msecs));
813 }
814 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
815 
816 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
817 {
818 	if (tag < tags->nr_tags) {
819 		prefetch(tags->rqs[tag]);
820 		return tags->rqs[tag];
821 	}
822 
823 	return NULL;
824 }
825 EXPORT_SYMBOL(blk_mq_tag_to_rq);
826 
827 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
828 			       void *priv, bool reserved)
829 {
830 	/*
831 	 * If we find a request that is inflight and the queue matches,
832 	 * we know the queue is busy. Return false to stop the iteration.
833 	 */
834 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
835 		bool *busy = priv;
836 
837 		*busy = true;
838 		return false;
839 	}
840 
841 	return true;
842 }
843 
844 bool blk_mq_queue_inflight(struct request_queue *q)
845 {
846 	bool busy = false;
847 
848 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
849 	return busy;
850 }
851 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
852 
853 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
854 {
855 	req->rq_flags |= RQF_TIMED_OUT;
856 	if (req->q->mq_ops->timeout) {
857 		enum blk_eh_timer_return ret;
858 
859 		ret = req->q->mq_ops->timeout(req, reserved);
860 		if (ret == BLK_EH_DONE)
861 			return;
862 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
863 	}
864 
865 	blk_add_timer(req);
866 }
867 
868 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
869 {
870 	unsigned long deadline;
871 
872 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
873 		return false;
874 	if (rq->rq_flags & RQF_TIMED_OUT)
875 		return false;
876 
877 	deadline = READ_ONCE(rq->deadline);
878 	if (time_after_eq(jiffies, deadline))
879 		return true;
880 
881 	if (*next == 0)
882 		*next = deadline;
883 	else if (time_after(*next, deadline))
884 		*next = deadline;
885 	return false;
886 }
887 
888 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
889 		struct request *rq, void *priv, bool reserved)
890 {
891 	unsigned long *next = priv;
892 
893 	/*
894 	 * Just do a quick check if it is expired before locking the request in
895 	 * so we're not unnecessarilly synchronizing across CPUs.
896 	 */
897 	if (!blk_mq_req_expired(rq, next))
898 		return true;
899 
900 	/*
901 	 * We have reason to believe the request may be expired. Take a
902 	 * reference on the request to lock this request lifetime into its
903 	 * currently allocated context to prevent it from being reallocated in
904 	 * the event the completion by-passes this timeout handler.
905 	 *
906 	 * If the reference was already released, then the driver beat the
907 	 * timeout handler to posting a natural completion.
908 	 */
909 	if (!refcount_inc_not_zero(&rq->ref))
910 		return true;
911 
912 	/*
913 	 * The request is now locked and cannot be reallocated underneath the
914 	 * timeout handler's processing. Re-verify this exact request is truly
915 	 * expired; if it is not expired, then the request was completed and
916 	 * reallocated as a new request.
917 	 */
918 	if (blk_mq_req_expired(rq, next))
919 		blk_mq_rq_timed_out(rq, reserved);
920 
921 	if (is_flush_rq(rq, hctx))
922 		rq->end_io(rq, 0);
923 	else if (refcount_dec_and_test(&rq->ref))
924 		__blk_mq_free_request(rq);
925 
926 	return true;
927 }
928 
929 static void blk_mq_timeout_work(struct work_struct *work)
930 {
931 	struct request_queue *q =
932 		container_of(work, struct request_queue, timeout_work);
933 	unsigned long next = 0;
934 	struct blk_mq_hw_ctx *hctx;
935 	int i;
936 
937 	/* A deadlock might occur if a request is stuck requiring a
938 	 * timeout at the same time a queue freeze is waiting
939 	 * completion, since the timeout code would not be able to
940 	 * acquire the queue reference here.
941 	 *
942 	 * That's why we don't use blk_queue_enter here; instead, we use
943 	 * percpu_ref_tryget directly, because we need to be able to
944 	 * obtain a reference even in the short window between the queue
945 	 * starting to freeze, by dropping the first reference in
946 	 * blk_freeze_queue_start, and the moment the last request is
947 	 * consumed, marked by the instant q_usage_counter reaches
948 	 * zero.
949 	 */
950 	if (!percpu_ref_tryget(&q->q_usage_counter))
951 		return;
952 
953 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
954 
955 	if (next != 0) {
956 		mod_timer(&q->timeout, next);
957 	} else {
958 		/*
959 		 * Request timeouts are handled as a forward rolling timer. If
960 		 * we end up here it means that no requests are pending and
961 		 * also that no request has been pending for a while. Mark
962 		 * each hctx as idle.
963 		 */
964 		queue_for_each_hw_ctx(q, hctx, i) {
965 			/* the hctx may be unmapped, so check it here */
966 			if (blk_mq_hw_queue_mapped(hctx))
967 				blk_mq_tag_idle(hctx);
968 		}
969 	}
970 	blk_queue_exit(q);
971 }
972 
973 struct flush_busy_ctx_data {
974 	struct blk_mq_hw_ctx *hctx;
975 	struct list_head *list;
976 };
977 
978 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
979 {
980 	struct flush_busy_ctx_data *flush_data = data;
981 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
982 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
983 	enum hctx_type type = hctx->type;
984 
985 	spin_lock(&ctx->lock);
986 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
987 	sbitmap_clear_bit(sb, bitnr);
988 	spin_unlock(&ctx->lock);
989 	return true;
990 }
991 
992 /*
993  * Process software queues that have been marked busy, splicing them
994  * to the for-dispatch
995  */
996 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
997 {
998 	struct flush_busy_ctx_data data = {
999 		.hctx = hctx,
1000 		.list = list,
1001 	};
1002 
1003 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1004 }
1005 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1006 
1007 struct dispatch_rq_data {
1008 	struct blk_mq_hw_ctx *hctx;
1009 	struct request *rq;
1010 };
1011 
1012 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1013 		void *data)
1014 {
1015 	struct dispatch_rq_data *dispatch_data = data;
1016 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1017 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1018 	enum hctx_type type = hctx->type;
1019 
1020 	spin_lock(&ctx->lock);
1021 	if (!list_empty(&ctx->rq_lists[type])) {
1022 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1023 		list_del_init(&dispatch_data->rq->queuelist);
1024 		if (list_empty(&ctx->rq_lists[type]))
1025 			sbitmap_clear_bit(sb, bitnr);
1026 	}
1027 	spin_unlock(&ctx->lock);
1028 
1029 	return !dispatch_data->rq;
1030 }
1031 
1032 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1033 					struct blk_mq_ctx *start)
1034 {
1035 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1036 	struct dispatch_rq_data data = {
1037 		.hctx = hctx,
1038 		.rq   = NULL,
1039 	};
1040 
1041 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1042 			       dispatch_rq_from_ctx, &data);
1043 
1044 	return data.rq;
1045 }
1046 
1047 static inline unsigned int queued_to_index(unsigned int queued)
1048 {
1049 	if (!queued)
1050 		return 0;
1051 
1052 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1053 }
1054 
1055 bool blk_mq_get_driver_tag(struct request *rq)
1056 {
1057 	struct blk_mq_alloc_data data = {
1058 		.q = rq->q,
1059 		.hctx = rq->mq_hctx,
1060 		.flags = BLK_MQ_REQ_NOWAIT,
1061 		.cmd_flags = rq->cmd_flags,
1062 	};
1063 	bool shared;
1064 
1065 	if (rq->tag != BLK_MQ_NO_TAG)
1066 		return true;
1067 
1068 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1069 		data.flags |= BLK_MQ_REQ_RESERVED;
1070 
1071 	shared = blk_mq_tag_busy(data.hctx);
1072 	rq->tag = blk_mq_get_tag(&data);
1073 	if (rq->tag >= 0) {
1074 		if (shared) {
1075 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1076 			atomic_inc(&data.hctx->nr_active);
1077 		}
1078 		data.hctx->tags->rqs[rq->tag] = rq;
1079 	}
1080 
1081 	return rq->tag != BLK_MQ_NO_TAG;
1082 }
1083 
1084 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1085 				int flags, void *key)
1086 {
1087 	struct blk_mq_hw_ctx *hctx;
1088 
1089 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1090 
1091 	spin_lock(&hctx->dispatch_wait_lock);
1092 	if (!list_empty(&wait->entry)) {
1093 		struct sbitmap_queue *sbq;
1094 
1095 		list_del_init(&wait->entry);
1096 		sbq = &hctx->tags->bitmap_tags;
1097 		atomic_dec(&sbq->ws_active);
1098 	}
1099 	spin_unlock(&hctx->dispatch_wait_lock);
1100 
1101 	blk_mq_run_hw_queue(hctx, true);
1102 	return 1;
1103 }
1104 
1105 /*
1106  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1107  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1108  * restart. For both cases, take care to check the condition again after
1109  * marking us as waiting.
1110  */
1111 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1112 				 struct request *rq)
1113 {
1114 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1115 	struct wait_queue_head *wq;
1116 	wait_queue_entry_t *wait;
1117 	bool ret;
1118 
1119 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1120 		blk_mq_sched_mark_restart_hctx(hctx);
1121 
1122 		/*
1123 		 * It's possible that a tag was freed in the window between the
1124 		 * allocation failure and adding the hardware queue to the wait
1125 		 * queue.
1126 		 *
1127 		 * Don't clear RESTART here, someone else could have set it.
1128 		 * At most this will cost an extra queue run.
1129 		 */
1130 		return blk_mq_get_driver_tag(rq);
1131 	}
1132 
1133 	wait = &hctx->dispatch_wait;
1134 	if (!list_empty_careful(&wait->entry))
1135 		return false;
1136 
1137 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1138 
1139 	spin_lock_irq(&wq->lock);
1140 	spin_lock(&hctx->dispatch_wait_lock);
1141 	if (!list_empty(&wait->entry)) {
1142 		spin_unlock(&hctx->dispatch_wait_lock);
1143 		spin_unlock_irq(&wq->lock);
1144 		return false;
1145 	}
1146 
1147 	atomic_inc(&sbq->ws_active);
1148 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1149 	__add_wait_queue(wq, wait);
1150 
1151 	/*
1152 	 * It's possible that a tag was freed in the window between the
1153 	 * allocation failure and adding the hardware queue to the wait
1154 	 * queue.
1155 	 */
1156 	ret = blk_mq_get_driver_tag(rq);
1157 	if (!ret) {
1158 		spin_unlock(&hctx->dispatch_wait_lock);
1159 		spin_unlock_irq(&wq->lock);
1160 		return false;
1161 	}
1162 
1163 	/*
1164 	 * We got a tag, remove ourselves from the wait queue to ensure
1165 	 * someone else gets the wakeup.
1166 	 */
1167 	list_del_init(&wait->entry);
1168 	atomic_dec(&sbq->ws_active);
1169 	spin_unlock(&hctx->dispatch_wait_lock);
1170 	spin_unlock_irq(&wq->lock);
1171 
1172 	return true;
1173 }
1174 
1175 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1176 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1177 /*
1178  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1179  * - EWMA is one simple way to compute running average value
1180  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1181  * - take 4 as factor for avoiding to get too small(0) result, and this
1182  *   factor doesn't matter because EWMA decreases exponentially
1183  */
1184 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1185 {
1186 	unsigned int ewma;
1187 
1188 	if (hctx->queue->elevator)
1189 		return;
1190 
1191 	ewma = hctx->dispatch_busy;
1192 
1193 	if (!ewma && !busy)
1194 		return;
1195 
1196 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1197 	if (busy)
1198 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1199 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1200 
1201 	hctx->dispatch_busy = ewma;
1202 }
1203 
1204 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1205 
1206 static void blk_mq_handle_dev_resource(struct request *rq,
1207 				       struct list_head *list)
1208 {
1209 	struct request *next =
1210 		list_first_entry_or_null(list, struct request, queuelist);
1211 
1212 	/*
1213 	 * If an I/O scheduler has been configured and we got a driver tag for
1214 	 * the next request already, free it.
1215 	 */
1216 	if (next)
1217 		blk_mq_put_driver_tag(next);
1218 
1219 	list_add(&rq->queuelist, list);
1220 	__blk_mq_requeue_request(rq);
1221 }
1222 
1223 static void blk_mq_handle_zone_resource(struct request *rq,
1224 					struct list_head *zone_list)
1225 {
1226 	/*
1227 	 * If we end up here it is because we cannot dispatch a request to a
1228 	 * specific zone due to LLD level zone-write locking or other zone
1229 	 * related resource not being available. In this case, set the request
1230 	 * aside in zone_list for retrying it later.
1231 	 */
1232 	list_add(&rq->queuelist, zone_list);
1233 	__blk_mq_requeue_request(rq);
1234 }
1235 
1236 /*
1237  * Returns true if we did some work AND can potentially do more.
1238  */
1239 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1240 			     bool got_budget)
1241 {
1242 	struct blk_mq_hw_ctx *hctx;
1243 	struct request *rq, *nxt;
1244 	bool no_tag = false;
1245 	int errors, queued;
1246 	blk_status_t ret = BLK_STS_OK;
1247 	bool no_budget_avail = false;
1248 	LIST_HEAD(zone_list);
1249 
1250 	if (list_empty(list))
1251 		return false;
1252 
1253 	WARN_ON(!list_is_singular(list) && got_budget);
1254 
1255 	/*
1256 	 * Now process all the entries, sending them to the driver.
1257 	 */
1258 	errors = queued = 0;
1259 	do {
1260 		struct blk_mq_queue_data bd;
1261 
1262 		rq = list_first_entry(list, struct request, queuelist);
1263 
1264 		hctx = rq->mq_hctx;
1265 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1266 			blk_mq_put_driver_tag(rq);
1267 			no_budget_avail = true;
1268 			break;
1269 		}
1270 
1271 		if (!blk_mq_get_driver_tag(rq)) {
1272 			/*
1273 			 * The initial allocation attempt failed, so we need to
1274 			 * rerun the hardware queue when a tag is freed. The
1275 			 * waitqueue takes care of that. If the queue is run
1276 			 * before we add this entry back on the dispatch list,
1277 			 * we'll re-run it below.
1278 			 */
1279 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1280 				blk_mq_put_dispatch_budget(hctx);
1281 				/*
1282 				 * For non-shared tags, the RESTART check
1283 				 * will suffice.
1284 				 */
1285 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1286 					no_tag = true;
1287 				break;
1288 			}
1289 		}
1290 
1291 		list_del_init(&rq->queuelist);
1292 
1293 		bd.rq = rq;
1294 
1295 		/*
1296 		 * Flag last if we have no more requests, or if we have more
1297 		 * but can't assign a driver tag to it.
1298 		 */
1299 		if (list_empty(list))
1300 			bd.last = true;
1301 		else {
1302 			nxt = list_first_entry(list, struct request, queuelist);
1303 			bd.last = !blk_mq_get_driver_tag(nxt);
1304 		}
1305 
1306 		ret = q->mq_ops->queue_rq(hctx, &bd);
1307 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1308 			blk_mq_handle_dev_resource(rq, list);
1309 			break;
1310 		} else if (ret == BLK_STS_ZONE_RESOURCE) {
1311 			/*
1312 			 * Move the request to zone_list and keep going through
1313 			 * the dispatch list to find more requests the drive can
1314 			 * accept.
1315 			 */
1316 			blk_mq_handle_zone_resource(rq, &zone_list);
1317 			if (list_empty(list))
1318 				break;
1319 			continue;
1320 		}
1321 
1322 		if (unlikely(ret != BLK_STS_OK)) {
1323 			errors++;
1324 			blk_mq_end_request(rq, BLK_STS_IOERR);
1325 			continue;
1326 		}
1327 
1328 		queued++;
1329 	} while (!list_empty(list));
1330 
1331 	if (!list_empty(&zone_list))
1332 		list_splice_tail_init(&zone_list, list);
1333 
1334 	hctx->dispatched[queued_to_index(queued)]++;
1335 
1336 	/*
1337 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1338 	 * that is where we will continue on next queue run.
1339 	 */
1340 	if (!list_empty(list)) {
1341 		bool needs_restart;
1342 
1343 		/*
1344 		 * If we didn't flush the entire list, we could have told
1345 		 * the driver there was more coming, but that turned out to
1346 		 * be a lie.
1347 		 */
1348 		if (q->mq_ops->commit_rqs && queued)
1349 			q->mq_ops->commit_rqs(hctx);
1350 
1351 		spin_lock(&hctx->lock);
1352 		list_splice_tail_init(list, &hctx->dispatch);
1353 		spin_unlock(&hctx->lock);
1354 
1355 		/*
1356 		 * If SCHED_RESTART was set by the caller of this function and
1357 		 * it is no longer set that means that it was cleared by another
1358 		 * thread and hence that a queue rerun is needed.
1359 		 *
1360 		 * If 'no_tag' is set, that means that we failed getting
1361 		 * a driver tag with an I/O scheduler attached. If our dispatch
1362 		 * waitqueue is no longer active, ensure that we run the queue
1363 		 * AFTER adding our entries back to the list.
1364 		 *
1365 		 * If no I/O scheduler has been configured it is possible that
1366 		 * the hardware queue got stopped and restarted before requests
1367 		 * were pushed back onto the dispatch list. Rerun the queue to
1368 		 * avoid starvation. Notes:
1369 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1370 		 *   been stopped before rerunning a queue.
1371 		 * - Some but not all block drivers stop a queue before
1372 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1373 		 *   and dm-rq.
1374 		 *
1375 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1376 		 * bit is set, run queue after a delay to avoid IO stalls
1377 		 * that could otherwise occur if the queue is idle.  We'll do
1378 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1379 		 */
1380 		needs_restart = blk_mq_sched_needs_restart(hctx);
1381 		if (!needs_restart ||
1382 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1383 			blk_mq_run_hw_queue(hctx, true);
1384 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1385 					   no_budget_avail))
1386 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1387 
1388 		blk_mq_update_dispatch_busy(hctx, true);
1389 		return false;
1390 	} else
1391 		blk_mq_update_dispatch_busy(hctx, false);
1392 
1393 	/*
1394 	 * If the host/device is unable to accept more work, inform the
1395 	 * caller of that.
1396 	 */
1397 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1398 		return false;
1399 
1400 	return (queued + errors) != 0;
1401 }
1402 
1403 /**
1404  * __blk_mq_run_hw_queue - Run a hardware queue.
1405  * @hctx: Pointer to the hardware queue to run.
1406  *
1407  * Send pending requests to the hardware.
1408  */
1409 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1410 {
1411 	int srcu_idx;
1412 
1413 	/*
1414 	 * We should be running this queue from one of the CPUs that
1415 	 * are mapped to it.
1416 	 *
1417 	 * There are at least two related races now between setting
1418 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1419 	 * __blk_mq_run_hw_queue():
1420 	 *
1421 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1422 	 *   but later it becomes online, then this warning is harmless
1423 	 *   at all
1424 	 *
1425 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1426 	 *   but later it becomes offline, then the warning can't be
1427 	 *   triggered, and we depend on blk-mq timeout handler to
1428 	 *   handle dispatched requests to this hctx
1429 	 */
1430 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1431 		cpu_online(hctx->next_cpu)) {
1432 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1433 			raw_smp_processor_id(),
1434 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1435 		dump_stack();
1436 	}
1437 
1438 	/*
1439 	 * We can't run the queue inline with ints disabled. Ensure that
1440 	 * we catch bad users of this early.
1441 	 */
1442 	WARN_ON_ONCE(in_interrupt());
1443 
1444 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1445 
1446 	hctx_lock(hctx, &srcu_idx);
1447 	blk_mq_sched_dispatch_requests(hctx);
1448 	hctx_unlock(hctx, srcu_idx);
1449 }
1450 
1451 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1452 {
1453 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1454 
1455 	if (cpu >= nr_cpu_ids)
1456 		cpu = cpumask_first(hctx->cpumask);
1457 	return cpu;
1458 }
1459 
1460 /*
1461  * It'd be great if the workqueue API had a way to pass
1462  * in a mask and had some smarts for more clever placement.
1463  * For now we just round-robin here, switching for every
1464  * BLK_MQ_CPU_WORK_BATCH queued items.
1465  */
1466 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1467 {
1468 	bool tried = false;
1469 	int next_cpu = hctx->next_cpu;
1470 
1471 	if (hctx->queue->nr_hw_queues == 1)
1472 		return WORK_CPU_UNBOUND;
1473 
1474 	if (--hctx->next_cpu_batch <= 0) {
1475 select_cpu:
1476 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1477 				cpu_online_mask);
1478 		if (next_cpu >= nr_cpu_ids)
1479 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1480 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1481 	}
1482 
1483 	/*
1484 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1485 	 * and it should only happen in the path of handling CPU DEAD.
1486 	 */
1487 	if (!cpu_online(next_cpu)) {
1488 		if (!tried) {
1489 			tried = true;
1490 			goto select_cpu;
1491 		}
1492 
1493 		/*
1494 		 * Make sure to re-select CPU next time once after CPUs
1495 		 * in hctx->cpumask become online again.
1496 		 */
1497 		hctx->next_cpu = next_cpu;
1498 		hctx->next_cpu_batch = 1;
1499 		return WORK_CPU_UNBOUND;
1500 	}
1501 
1502 	hctx->next_cpu = next_cpu;
1503 	return next_cpu;
1504 }
1505 
1506 /**
1507  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1508  * @hctx: Pointer to the hardware queue to run.
1509  * @async: If we want to run the queue asynchronously.
1510  * @msecs: Microseconds of delay to wait before running the queue.
1511  *
1512  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1513  * with a delay of @msecs.
1514  */
1515 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1516 					unsigned long msecs)
1517 {
1518 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1519 		return;
1520 
1521 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1522 		int cpu = get_cpu();
1523 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1524 			__blk_mq_run_hw_queue(hctx);
1525 			put_cpu();
1526 			return;
1527 		}
1528 
1529 		put_cpu();
1530 	}
1531 
1532 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1533 				    msecs_to_jiffies(msecs));
1534 }
1535 
1536 /**
1537  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1538  * @hctx: Pointer to the hardware queue to run.
1539  * @msecs: Microseconds of delay to wait before running the queue.
1540  *
1541  * Run a hardware queue asynchronously with a delay of @msecs.
1542  */
1543 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1544 {
1545 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1546 }
1547 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1548 
1549 /**
1550  * blk_mq_run_hw_queue - Start to run a hardware queue.
1551  * @hctx: Pointer to the hardware queue to run.
1552  * @async: If we want to run the queue asynchronously.
1553  *
1554  * Check if the request queue is not in a quiesced state and if there are
1555  * pending requests to be sent. If this is true, run the queue to send requests
1556  * to hardware.
1557  */
1558 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1559 {
1560 	int srcu_idx;
1561 	bool need_run;
1562 
1563 	/*
1564 	 * When queue is quiesced, we may be switching io scheduler, or
1565 	 * updating nr_hw_queues, or other things, and we can't run queue
1566 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1567 	 *
1568 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1569 	 * quiesced.
1570 	 */
1571 	hctx_lock(hctx, &srcu_idx);
1572 	need_run = !blk_queue_quiesced(hctx->queue) &&
1573 		blk_mq_hctx_has_pending(hctx);
1574 	hctx_unlock(hctx, srcu_idx);
1575 
1576 	if (need_run)
1577 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1578 }
1579 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1580 
1581 /**
1582  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1583  * @q: Pointer to the request queue to run.
1584  * @async: If we want to run the queue asynchronously.
1585  */
1586 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1587 {
1588 	struct blk_mq_hw_ctx *hctx;
1589 	int i;
1590 
1591 	queue_for_each_hw_ctx(q, hctx, i) {
1592 		if (blk_mq_hctx_stopped(hctx))
1593 			continue;
1594 
1595 		blk_mq_run_hw_queue(hctx, async);
1596 	}
1597 }
1598 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1599 
1600 /**
1601  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1602  * @q: Pointer to the request queue to run.
1603  * @msecs: Microseconds of delay to wait before running the queues.
1604  */
1605 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1606 {
1607 	struct blk_mq_hw_ctx *hctx;
1608 	int i;
1609 
1610 	queue_for_each_hw_ctx(q, hctx, i) {
1611 		if (blk_mq_hctx_stopped(hctx))
1612 			continue;
1613 
1614 		blk_mq_delay_run_hw_queue(hctx, msecs);
1615 	}
1616 }
1617 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1618 
1619 /**
1620  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1621  * @q: request queue.
1622  *
1623  * The caller is responsible for serializing this function against
1624  * blk_mq_{start,stop}_hw_queue().
1625  */
1626 bool blk_mq_queue_stopped(struct request_queue *q)
1627 {
1628 	struct blk_mq_hw_ctx *hctx;
1629 	int i;
1630 
1631 	queue_for_each_hw_ctx(q, hctx, i)
1632 		if (blk_mq_hctx_stopped(hctx))
1633 			return true;
1634 
1635 	return false;
1636 }
1637 EXPORT_SYMBOL(blk_mq_queue_stopped);
1638 
1639 /*
1640  * This function is often used for pausing .queue_rq() by driver when
1641  * there isn't enough resource or some conditions aren't satisfied, and
1642  * BLK_STS_RESOURCE is usually returned.
1643  *
1644  * We do not guarantee that dispatch can be drained or blocked
1645  * after blk_mq_stop_hw_queue() returns. Please use
1646  * blk_mq_quiesce_queue() for that requirement.
1647  */
1648 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1649 {
1650 	cancel_delayed_work(&hctx->run_work);
1651 
1652 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1653 }
1654 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1655 
1656 /*
1657  * This function is often used for pausing .queue_rq() by driver when
1658  * there isn't enough resource or some conditions aren't satisfied, and
1659  * BLK_STS_RESOURCE is usually returned.
1660  *
1661  * We do not guarantee that dispatch can be drained or blocked
1662  * after blk_mq_stop_hw_queues() returns. Please use
1663  * blk_mq_quiesce_queue() for that requirement.
1664  */
1665 void blk_mq_stop_hw_queues(struct request_queue *q)
1666 {
1667 	struct blk_mq_hw_ctx *hctx;
1668 	int i;
1669 
1670 	queue_for_each_hw_ctx(q, hctx, i)
1671 		blk_mq_stop_hw_queue(hctx);
1672 }
1673 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1674 
1675 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1676 {
1677 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1678 
1679 	blk_mq_run_hw_queue(hctx, false);
1680 }
1681 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1682 
1683 void blk_mq_start_hw_queues(struct request_queue *q)
1684 {
1685 	struct blk_mq_hw_ctx *hctx;
1686 	int i;
1687 
1688 	queue_for_each_hw_ctx(q, hctx, i)
1689 		blk_mq_start_hw_queue(hctx);
1690 }
1691 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1692 
1693 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1694 {
1695 	if (!blk_mq_hctx_stopped(hctx))
1696 		return;
1697 
1698 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1699 	blk_mq_run_hw_queue(hctx, async);
1700 }
1701 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1702 
1703 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1704 {
1705 	struct blk_mq_hw_ctx *hctx;
1706 	int i;
1707 
1708 	queue_for_each_hw_ctx(q, hctx, i)
1709 		blk_mq_start_stopped_hw_queue(hctx, async);
1710 }
1711 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1712 
1713 static void blk_mq_run_work_fn(struct work_struct *work)
1714 {
1715 	struct blk_mq_hw_ctx *hctx;
1716 
1717 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1718 
1719 	/*
1720 	 * If we are stopped, don't run the queue.
1721 	 */
1722 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1723 		return;
1724 
1725 	__blk_mq_run_hw_queue(hctx);
1726 }
1727 
1728 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1729 					    struct request *rq,
1730 					    bool at_head)
1731 {
1732 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1733 	enum hctx_type type = hctx->type;
1734 
1735 	lockdep_assert_held(&ctx->lock);
1736 
1737 	trace_block_rq_insert(hctx->queue, rq);
1738 
1739 	if (at_head)
1740 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1741 	else
1742 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1743 }
1744 
1745 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1746 			     bool at_head)
1747 {
1748 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1749 
1750 	lockdep_assert_held(&ctx->lock);
1751 
1752 	__blk_mq_insert_req_list(hctx, rq, at_head);
1753 	blk_mq_hctx_mark_pending(hctx, ctx);
1754 }
1755 
1756 /**
1757  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1758  * @rq: Pointer to request to be inserted.
1759  * @run_queue: If we should run the hardware queue after inserting the request.
1760  *
1761  * Should only be used carefully, when the caller knows we want to
1762  * bypass a potential IO scheduler on the target device.
1763  */
1764 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1765 				  bool run_queue)
1766 {
1767 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1768 
1769 	spin_lock(&hctx->lock);
1770 	if (at_head)
1771 		list_add(&rq->queuelist, &hctx->dispatch);
1772 	else
1773 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1774 	spin_unlock(&hctx->lock);
1775 
1776 	if (run_queue)
1777 		blk_mq_run_hw_queue(hctx, false);
1778 }
1779 
1780 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1781 			    struct list_head *list)
1782 
1783 {
1784 	struct request *rq;
1785 	enum hctx_type type = hctx->type;
1786 
1787 	/*
1788 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1789 	 * offline now
1790 	 */
1791 	list_for_each_entry(rq, list, queuelist) {
1792 		BUG_ON(rq->mq_ctx != ctx);
1793 		trace_block_rq_insert(hctx->queue, rq);
1794 	}
1795 
1796 	spin_lock(&ctx->lock);
1797 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1798 	blk_mq_hctx_mark_pending(hctx, ctx);
1799 	spin_unlock(&ctx->lock);
1800 }
1801 
1802 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1803 {
1804 	struct request *rqa = container_of(a, struct request, queuelist);
1805 	struct request *rqb = container_of(b, struct request, queuelist);
1806 
1807 	if (rqa->mq_ctx != rqb->mq_ctx)
1808 		return rqa->mq_ctx > rqb->mq_ctx;
1809 	if (rqa->mq_hctx != rqb->mq_hctx)
1810 		return rqa->mq_hctx > rqb->mq_hctx;
1811 
1812 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1813 }
1814 
1815 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1816 {
1817 	LIST_HEAD(list);
1818 
1819 	if (list_empty(&plug->mq_list))
1820 		return;
1821 	list_splice_init(&plug->mq_list, &list);
1822 
1823 	if (plug->rq_count > 2 && plug->multiple_queues)
1824 		list_sort(NULL, &list, plug_rq_cmp);
1825 
1826 	plug->rq_count = 0;
1827 
1828 	do {
1829 		struct list_head rq_list;
1830 		struct request *rq, *head_rq = list_entry_rq(list.next);
1831 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1832 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1833 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1834 		unsigned int depth = 1;
1835 
1836 		list_for_each_continue(pos, &list) {
1837 			rq = list_entry_rq(pos);
1838 			BUG_ON(!rq->q);
1839 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1840 				break;
1841 			depth++;
1842 		}
1843 
1844 		list_cut_before(&rq_list, &list, pos);
1845 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1846 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1847 						from_schedule);
1848 	} while(!list_empty(&list));
1849 }
1850 
1851 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1852 		unsigned int nr_segs)
1853 {
1854 	if (bio->bi_opf & REQ_RAHEAD)
1855 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1856 
1857 	rq->__sector = bio->bi_iter.bi_sector;
1858 	rq->write_hint = bio->bi_write_hint;
1859 	blk_rq_bio_prep(rq, bio, nr_segs);
1860 	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1861 
1862 	blk_account_io_start(rq);
1863 }
1864 
1865 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1866 					    struct request *rq,
1867 					    blk_qc_t *cookie, bool last)
1868 {
1869 	struct request_queue *q = rq->q;
1870 	struct blk_mq_queue_data bd = {
1871 		.rq = rq,
1872 		.last = last,
1873 	};
1874 	blk_qc_t new_cookie;
1875 	blk_status_t ret;
1876 
1877 	new_cookie = request_to_qc_t(hctx, rq);
1878 
1879 	/*
1880 	 * For OK queue, we are done. For error, caller may kill it.
1881 	 * Any other error (busy), just add it to our list as we
1882 	 * previously would have done.
1883 	 */
1884 	ret = q->mq_ops->queue_rq(hctx, &bd);
1885 	switch (ret) {
1886 	case BLK_STS_OK:
1887 		blk_mq_update_dispatch_busy(hctx, false);
1888 		*cookie = new_cookie;
1889 		break;
1890 	case BLK_STS_RESOURCE:
1891 	case BLK_STS_DEV_RESOURCE:
1892 		blk_mq_update_dispatch_busy(hctx, true);
1893 		__blk_mq_requeue_request(rq);
1894 		break;
1895 	default:
1896 		blk_mq_update_dispatch_busy(hctx, false);
1897 		*cookie = BLK_QC_T_NONE;
1898 		break;
1899 	}
1900 
1901 	return ret;
1902 }
1903 
1904 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1905 						struct request *rq,
1906 						blk_qc_t *cookie,
1907 						bool bypass_insert, bool last)
1908 {
1909 	struct request_queue *q = rq->q;
1910 	bool run_queue = true;
1911 
1912 	/*
1913 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1914 	 *
1915 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1916 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1917 	 * and avoid driver to try to dispatch again.
1918 	 */
1919 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1920 		run_queue = false;
1921 		bypass_insert = false;
1922 		goto insert;
1923 	}
1924 
1925 	if (q->elevator && !bypass_insert)
1926 		goto insert;
1927 
1928 	if (!blk_mq_get_dispatch_budget(hctx))
1929 		goto insert;
1930 
1931 	if (!blk_mq_get_driver_tag(rq)) {
1932 		blk_mq_put_dispatch_budget(hctx);
1933 		goto insert;
1934 	}
1935 
1936 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1937 insert:
1938 	if (bypass_insert)
1939 		return BLK_STS_RESOURCE;
1940 
1941 	blk_mq_request_bypass_insert(rq, false, run_queue);
1942 	return BLK_STS_OK;
1943 }
1944 
1945 /**
1946  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1947  * @hctx: Pointer of the associated hardware queue.
1948  * @rq: Pointer to request to be sent.
1949  * @cookie: Request queue cookie.
1950  *
1951  * If the device has enough resources to accept a new request now, send the
1952  * request directly to device driver. Else, insert at hctx->dispatch queue, so
1953  * we can try send it another time in the future. Requests inserted at this
1954  * queue have higher priority.
1955  */
1956 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1957 		struct request *rq, blk_qc_t *cookie)
1958 {
1959 	blk_status_t ret;
1960 	int srcu_idx;
1961 
1962 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1963 
1964 	hctx_lock(hctx, &srcu_idx);
1965 
1966 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1967 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1968 		blk_mq_request_bypass_insert(rq, false, true);
1969 	else if (ret != BLK_STS_OK)
1970 		blk_mq_end_request(rq, ret);
1971 
1972 	hctx_unlock(hctx, srcu_idx);
1973 }
1974 
1975 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1976 {
1977 	blk_status_t ret;
1978 	int srcu_idx;
1979 	blk_qc_t unused_cookie;
1980 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1981 
1982 	hctx_lock(hctx, &srcu_idx);
1983 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1984 	hctx_unlock(hctx, srcu_idx);
1985 
1986 	return ret;
1987 }
1988 
1989 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1990 		struct list_head *list)
1991 {
1992 	int queued = 0;
1993 
1994 	while (!list_empty(list)) {
1995 		blk_status_t ret;
1996 		struct request *rq = list_first_entry(list, struct request,
1997 				queuelist);
1998 
1999 		list_del_init(&rq->queuelist);
2000 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2001 		if (ret != BLK_STS_OK) {
2002 			if (ret == BLK_STS_RESOURCE ||
2003 					ret == BLK_STS_DEV_RESOURCE) {
2004 				blk_mq_request_bypass_insert(rq, false,
2005 							list_empty(list));
2006 				break;
2007 			}
2008 			blk_mq_end_request(rq, ret);
2009 		} else
2010 			queued++;
2011 	}
2012 
2013 	/*
2014 	 * If we didn't flush the entire list, we could have told
2015 	 * the driver there was more coming, but that turned out to
2016 	 * be a lie.
2017 	 */
2018 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
2019 		hctx->queue->mq_ops->commit_rqs(hctx);
2020 }
2021 
2022 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2023 {
2024 	list_add_tail(&rq->queuelist, &plug->mq_list);
2025 	plug->rq_count++;
2026 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2027 		struct request *tmp;
2028 
2029 		tmp = list_first_entry(&plug->mq_list, struct request,
2030 						queuelist);
2031 		if (tmp->q != rq->q)
2032 			plug->multiple_queues = true;
2033 	}
2034 }
2035 
2036 /**
2037  * blk_mq_make_request - Create and send a request to block device.
2038  * @q: Request queue pointer.
2039  * @bio: Bio pointer.
2040  *
2041  * Builds up a request structure from @q and @bio and send to the device. The
2042  * request may not be queued directly to hardware if:
2043  * * This request can be merged with another one
2044  * * We want to place request at plug queue for possible future merging
2045  * * There is an IO scheduler active at this queue
2046  *
2047  * It will not queue the request if there is an error with the bio, or at the
2048  * request creation.
2049  *
2050  * Returns: Request queue cookie.
2051  */
2052 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2053 {
2054 	const int is_sync = op_is_sync(bio->bi_opf);
2055 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2056 	struct blk_mq_alloc_data data = {
2057 		.q		= q,
2058 	};
2059 	struct request *rq;
2060 	struct blk_plug *plug;
2061 	struct request *same_queue_rq = NULL;
2062 	unsigned int nr_segs;
2063 	blk_qc_t cookie;
2064 	blk_status_t ret;
2065 
2066 	blk_queue_bounce(q, &bio);
2067 	__blk_queue_split(q, &bio, &nr_segs);
2068 
2069 	if (!bio_integrity_prep(bio))
2070 		goto queue_exit;
2071 
2072 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2073 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2074 		goto queue_exit;
2075 
2076 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2077 		goto queue_exit;
2078 
2079 	rq_qos_throttle(q, bio);
2080 
2081 	data.cmd_flags = bio->bi_opf;
2082 	rq = __blk_mq_alloc_request(&data);
2083 	if (unlikely(!rq)) {
2084 		rq_qos_cleanup(q, bio);
2085 		if (bio->bi_opf & REQ_NOWAIT)
2086 			bio_wouldblock_error(bio);
2087 		goto queue_exit;
2088 	}
2089 
2090 	trace_block_getrq(q, bio, bio->bi_opf);
2091 
2092 	rq_qos_track(q, rq, bio);
2093 
2094 	cookie = request_to_qc_t(data.hctx, rq);
2095 
2096 	blk_mq_bio_to_request(rq, bio, nr_segs);
2097 
2098 	ret = blk_crypto_init_request(rq);
2099 	if (ret != BLK_STS_OK) {
2100 		bio->bi_status = ret;
2101 		bio_endio(bio);
2102 		blk_mq_free_request(rq);
2103 		return BLK_QC_T_NONE;
2104 	}
2105 
2106 	plug = blk_mq_plug(q, bio);
2107 	if (unlikely(is_flush_fua)) {
2108 		/* Bypass scheduler for flush requests */
2109 		blk_insert_flush(rq);
2110 		blk_mq_run_hw_queue(data.hctx, true);
2111 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2112 				!blk_queue_nonrot(q))) {
2113 		/*
2114 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2115 		 * we know the driver uses bd->last in a smart fashion.
2116 		 *
2117 		 * Use normal plugging if this disk is slow HDD, as sequential
2118 		 * IO may benefit a lot from plug merging.
2119 		 */
2120 		unsigned int request_count = plug->rq_count;
2121 		struct request *last = NULL;
2122 
2123 		if (!request_count)
2124 			trace_block_plug(q);
2125 		else
2126 			last = list_entry_rq(plug->mq_list.prev);
2127 
2128 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2129 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2130 			blk_flush_plug_list(plug, false);
2131 			trace_block_plug(q);
2132 		}
2133 
2134 		blk_add_rq_to_plug(plug, rq);
2135 	} else if (q->elevator) {
2136 		/* Insert the request at the IO scheduler queue */
2137 		blk_mq_sched_insert_request(rq, false, true, true);
2138 	} else if (plug && !blk_queue_nomerges(q)) {
2139 		/*
2140 		 * We do limited plugging. If the bio can be merged, do that.
2141 		 * Otherwise the existing request in the plug list will be
2142 		 * issued. So the plug list will have one request at most
2143 		 * The plug list might get flushed before this. If that happens,
2144 		 * the plug list is empty, and same_queue_rq is invalid.
2145 		 */
2146 		if (list_empty(&plug->mq_list))
2147 			same_queue_rq = NULL;
2148 		if (same_queue_rq) {
2149 			list_del_init(&same_queue_rq->queuelist);
2150 			plug->rq_count--;
2151 		}
2152 		blk_add_rq_to_plug(plug, rq);
2153 		trace_block_plug(q);
2154 
2155 		if (same_queue_rq) {
2156 			data.hctx = same_queue_rq->mq_hctx;
2157 			trace_block_unplug(q, 1, true);
2158 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2159 					&cookie);
2160 		}
2161 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2162 			!data.hctx->dispatch_busy) {
2163 		/*
2164 		 * There is no scheduler and we can try to send directly
2165 		 * to the hardware.
2166 		 */
2167 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2168 	} else {
2169 		/* Default case. */
2170 		blk_mq_sched_insert_request(rq, false, true, true);
2171 	}
2172 
2173 	return cookie;
2174 queue_exit:
2175 	blk_queue_exit(q);
2176 	return BLK_QC_T_NONE;
2177 }
2178 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2179 
2180 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2181 		     unsigned int hctx_idx)
2182 {
2183 	struct page *page;
2184 
2185 	if (tags->rqs && set->ops->exit_request) {
2186 		int i;
2187 
2188 		for (i = 0; i < tags->nr_tags; i++) {
2189 			struct request *rq = tags->static_rqs[i];
2190 
2191 			if (!rq)
2192 				continue;
2193 			set->ops->exit_request(set, rq, hctx_idx);
2194 			tags->static_rqs[i] = NULL;
2195 		}
2196 	}
2197 
2198 	while (!list_empty(&tags->page_list)) {
2199 		page = list_first_entry(&tags->page_list, struct page, lru);
2200 		list_del_init(&page->lru);
2201 		/*
2202 		 * Remove kmemleak object previously allocated in
2203 		 * blk_mq_alloc_rqs().
2204 		 */
2205 		kmemleak_free(page_address(page));
2206 		__free_pages(page, page->private);
2207 	}
2208 }
2209 
2210 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2211 {
2212 	kfree(tags->rqs);
2213 	tags->rqs = NULL;
2214 	kfree(tags->static_rqs);
2215 	tags->static_rqs = NULL;
2216 
2217 	blk_mq_free_tags(tags);
2218 }
2219 
2220 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2221 					unsigned int hctx_idx,
2222 					unsigned int nr_tags,
2223 					unsigned int reserved_tags)
2224 {
2225 	struct blk_mq_tags *tags;
2226 	int node;
2227 
2228 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2229 	if (node == NUMA_NO_NODE)
2230 		node = set->numa_node;
2231 
2232 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2233 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2234 	if (!tags)
2235 		return NULL;
2236 
2237 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2238 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2239 				 node);
2240 	if (!tags->rqs) {
2241 		blk_mq_free_tags(tags);
2242 		return NULL;
2243 	}
2244 
2245 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2246 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2247 					node);
2248 	if (!tags->static_rqs) {
2249 		kfree(tags->rqs);
2250 		blk_mq_free_tags(tags);
2251 		return NULL;
2252 	}
2253 
2254 	return tags;
2255 }
2256 
2257 static size_t order_to_size(unsigned int order)
2258 {
2259 	return (size_t)PAGE_SIZE << order;
2260 }
2261 
2262 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2263 			       unsigned int hctx_idx, int node)
2264 {
2265 	int ret;
2266 
2267 	if (set->ops->init_request) {
2268 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2269 		if (ret)
2270 			return ret;
2271 	}
2272 
2273 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2274 	return 0;
2275 }
2276 
2277 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2278 		     unsigned int hctx_idx, unsigned int depth)
2279 {
2280 	unsigned int i, j, entries_per_page, max_order = 4;
2281 	size_t rq_size, left;
2282 	int node;
2283 
2284 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2285 	if (node == NUMA_NO_NODE)
2286 		node = set->numa_node;
2287 
2288 	INIT_LIST_HEAD(&tags->page_list);
2289 
2290 	/*
2291 	 * rq_size is the size of the request plus driver payload, rounded
2292 	 * to the cacheline size
2293 	 */
2294 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2295 				cache_line_size());
2296 	left = rq_size * depth;
2297 
2298 	for (i = 0; i < depth; ) {
2299 		int this_order = max_order;
2300 		struct page *page;
2301 		int to_do;
2302 		void *p;
2303 
2304 		while (this_order && left < order_to_size(this_order - 1))
2305 			this_order--;
2306 
2307 		do {
2308 			page = alloc_pages_node(node,
2309 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2310 				this_order);
2311 			if (page)
2312 				break;
2313 			if (!this_order--)
2314 				break;
2315 			if (order_to_size(this_order) < rq_size)
2316 				break;
2317 		} while (1);
2318 
2319 		if (!page)
2320 			goto fail;
2321 
2322 		page->private = this_order;
2323 		list_add_tail(&page->lru, &tags->page_list);
2324 
2325 		p = page_address(page);
2326 		/*
2327 		 * Allow kmemleak to scan these pages as they contain pointers
2328 		 * to additional allocations like via ops->init_request().
2329 		 */
2330 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2331 		entries_per_page = order_to_size(this_order) / rq_size;
2332 		to_do = min(entries_per_page, depth - i);
2333 		left -= to_do * rq_size;
2334 		for (j = 0; j < to_do; j++) {
2335 			struct request *rq = p;
2336 
2337 			tags->static_rqs[i] = rq;
2338 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2339 				tags->static_rqs[i] = NULL;
2340 				goto fail;
2341 			}
2342 
2343 			p += rq_size;
2344 			i++;
2345 		}
2346 	}
2347 	return 0;
2348 
2349 fail:
2350 	blk_mq_free_rqs(set, tags, hctx_idx);
2351 	return -ENOMEM;
2352 }
2353 
2354 struct rq_iter_data {
2355 	struct blk_mq_hw_ctx *hctx;
2356 	bool has_rq;
2357 };
2358 
2359 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2360 {
2361 	struct rq_iter_data *iter_data = data;
2362 
2363 	if (rq->mq_hctx != iter_data->hctx)
2364 		return true;
2365 	iter_data->has_rq = true;
2366 	return false;
2367 }
2368 
2369 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2370 {
2371 	struct blk_mq_tags *tags = hctx->sched_tags ?
2372 			hctx->sched_tags : hctx->tags;
2373 	struct rq_iter_data data = {
2374 		.hctx	= hctx,
2375 	};
2376 
2377 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2378 	return data.has_rq;
2379 }
2380 
2381 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2382 		struct blk_mq_hw_ctx *hctx)
2383 {
2384 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2385 		return false;
2386 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2387 		return false;
2388 	return true;
2389 }
2390 
2391 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2392 {
2393 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2394 			struct blk_mq_hw_ctx, cpuhp_online);
2395 
2396 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2397 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2398 		return 0;
2399 
2400 	/*
2401 	 * Prevent new request from being allocated on the current hctx.
2402 	 *
2403 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2404 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2405 	 * seen once we return from the tag allocator.
2406 	 */
2407 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2408 	smp_mb__after_atomic();
2409 
2410 	/*
2411 	 * Try to grab a reference to the queue and wait for any outstanding
2412 	 * requests.  If we could not grab a reference the queue has been
2413 	 * frozen and there are no requests.
2414 	 */
2415 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2416 		while (blk_mq_hctx_has_requests(hctx))
2417 			msleep(5);
2418 		percpu_ref_put(&hctx->queue->q_usage_counter);
2419 	}
2420 
2421 	return 0;
2422 }
2423 
2424 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2425 {
2426 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2427 			struct blk_mq_hw_ctx, cpuhp_online);
2428 
2429 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2430 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2431 	return 0;
2432 }
2433 
2434 /*
2435  * 'cpu' is going away. splice any existing rq_list entries from this
2436  * software queue to the hw queue dispatch list, and ensure that it
2437  * gets run.
2438  */
2439 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2440 {
2441 	struct blk_mq_hw_ctx *hctx;
2442 	struct blk_mq_ctx *ctx;
2443 	LIST_HEAD(tmp);
2444 	enum hctx_type type;
2445 
2446 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2447 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2448 		return 0;
2449 
2450 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2451 	type = hctx->type;
2452 
2453 	spin_lock(&ctx->lock);
2454 	if (!list_empty(&ctx->rq_lists[type])) {
2455 		list_splice_init(&ctx->rq_lists[type], &tmp);
2456 		blk_mq_hctx_clear_pending(hctx, ctx);
2457 	}
2458 	spin_unlock(&ctx->lock);
2459 
2460 	if (list_empty(&tmp))
2461 		return 0;
2462 
2463 	spin_lock(&hctx->lock);
2464 	list_splice_tail_init(&tmp, &hctx->dispatch);
2465 	spin_unlock(&hctx->lock);
2466 
2467 	blk_mq_run_hw_queue(hctx, true);
2468 	return 0;
2469 }
2470 
2471 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2472 {
2473 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2474 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2475 						    &hctx->cpuhp_online);
2476 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2477 					    &hctx->cpuhp_dead);
2478 }
2479 
2480 /* hctx->ctxs will be freed in queue's release handler */
2481 static void blk_mq_exit_hctx(struct request_queue *q,
2482 		struct blk_mq_tag_set *set,
2483 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2484 {
2485 	if (blk_mq_hw_queue_mapped(hctx))
2486 		blk_mq_tag_idle(hctx);
2487 
2488 	if (set->ops->exit_request)
2489 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2490 
2491 	if (set->ops->exit_hctx)
2492 		set->ops->exit_hctx(hctx, hctx_idx);
2493 
2494 	blk_mq_remove_cpuhp(hctx);
2495 
2496 	spin_lock(&q->unused_hctx_lock);
2497 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2498 	spin_unlock(&q->unused_hctx_lock);
2499 }
2500 
2501 static void blk_mq_exit_hw_queues(struct request_queue *q,
2502 		struct blk_mq_tag_set *set, int nr_queue)
2503 {
2504 	struct blk_mq_hw_ctx *hctx;
2505 	unsigned int i;
2506 
2507 	queue_for_each_hw_ctx(q, hctx, i) {
2508 		if (i == nr_queue)
2509 			break;
2510 		blk_mq_debugfs_unregister_hctx(hctx);
2511 		blk_mq_exit_hctx(q, set, hctx, i);
2512 	}
2513 }
2514 
2515 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2516 {
2517 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2518 
2519 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2520 			   __alignof__(struct blk_mq_hw_ctx)) !=
2521 		     sizeof(struct blk_mq_hw_ctx));
2522 
2523 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2524 		hw_ctx_size += sizeof(struct srcu_struct);
2525 
2526 	return hw_ctx_size;
2527 }
2528 
2529 static int blk_mq_init_hctx(struct request_queue *q,
2530 		struct blk_mq_tag_set *set,
2531 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2532 {
2533 	hctx->queue_num = hctx_idx;
2534 
2535 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2536 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2537 				&hctx->cpuhp_online);
2538 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2539 
2540 	hctx->tags = set->tags[hctx_idx];
2541 
2542 	if (set->ops->init_hctx &&
2543 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2544 		goto unregister_cpu_notifier;
2545 
2546 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2547 				hctx->numa_node))
2548 		goto exit_hctx;
2549 	return 0;
2550 
2551  exit_hctx:
2552 	if (set->ops->exit_hctx)
2553 		set->ops->exit_hctx(hctx, hctx_idx);
2554  unregister_cpu_notifier:
2555 	blk_mq_remove_cpuhp(hctx);
2556 	return -1;
2557 }
2558 
2559 static struct blk_mq_hw_ctx *
2560 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2561 		int node)
2562 {
2563 	struct blk_mq_hw_ctx *hctx;
2564 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2565 
2566 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2567 	if (!hctx)
2568 		goto fail_alloc_hctx;
2569 
2570 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2571 		goto free_hctx;
2572 
2573 	atomic_set(&hctx->nr_active, 0);
2574 	if (node == NUMA_NO_NODE)
2575 		node = set->numa_node;
2576 	hctx->numa_node = node;
2577 
2578 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2579 	spin_lock_init(&hctx->lock);
2580 	INIT_LIST_HEAD(&hctx->dispatch);
2581 	hctx->queue = q;
2582 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2583 
2584 	INIT_LIST_HEAD(&hctx->hctx_list);
2585 
2586 	/*
2587 	 * Allocate space for all possible cpus to avoid allocation at
2588 	 * runtime
2589 	 */
2590 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2591 			gfp, node);
2592 	if (!hctx->ctxs)
2593 		goto free_cpumask;
2594 
2595 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2596 				gfp, node))
2597 		goto free_ctxs;
2598 	hctx->nr_ctx = 0;
2599 
2600 	spin_lock_init(&hctx->dispatch_wait_lock);
2601 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2602 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2603 
2604 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2605 	if (!hctx->fq)
2606 		goto free_bitmap;
2607 
2608 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2609 		init_srcu_struct(hctx->srcu);
2610 	blk_mq_hctx_kobj_init(hctx);
2611 
2612 	return hctx;
2613 
2614  free_bitmap:
2615 	sbitmap_free(&hctx->ctx_map);
2616  free_ctxs:
2617 	kfree(hctx->ctxs);
2618  free_cpumask:
2619 	free_cpumask_var(hctx->cpumask);
2620  free_hctx:
2621 	kfree(hctx);
2622  fail_alloc_hctx:
2623 	return NULL;
2624 }
2625 
2626 static void blk_mq_init_cpu_queues(struct request_queue *q,
2627 				   unsigned int nr_hw_queues)
2628 {
2629 	struct blk_mq_tag_set *set = q->tag_set;
2630 	unsigned int i, j;
2631 
2632 	for_each_possible_cpu(i) {
2633 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2634 		struct blk_mq_hw_ctx *hctx;
2635 		int k;
2636 
2637 		__ctx->cpu = i;
2638 		spin_lock_init(&__ctx->lock);
2639 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2640 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2641 
2642 		__ctx->queue = q;
2643 
2644 		/*
2645 		 * Set local node, IFF we have more than one hw queue. If
2646 		 * not, we remain on the home node of the device
2647 		 */
2648 		for (j = 0; j < set->nr_maps; j++) {
2649 			hctx = blk_mq_map_queue_type(q, j, i);
2650 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2651 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2652 		}
2653 	}
2654 }
2655 
2656 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2657 					int hctx_idx)
2658 {
2659 	int ret = 0;
2660 
2661 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2662 					set->queue_depth, set->reserved_tags);
2663 	if (!set->tags[hctx_idx])
2664 		return false;
2665 
2666 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2667 				set->queue_depth);
2668 	if (!ret)
2669 		return true;
2670 
2671 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2672 	set->tags[hctx_idx] = NULL;
2673 	return false;
2674 }
2675 
2676 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2677 					 unsigned int hctx_idx)
2678 {
2679 	if (set->tags && set->tags[hctx_idx]) {
2680 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2681 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2682 		set->tags[hctx_idx] = NULL;
2683 	}
2684 }
2685 
2686 static void blk_mq_map_swqueue(struct request_queue *q)
2687 {
2688 	unsigned int i, j, hctx_idx;
2689 	struct blk_mq_hw_ctx *hctx;
2690 	struct blk_mq_ctx *ctx;
2691 	struct blk_mq_tag_set *set = q->tag_set;
2692 
2693 	queue_for_each_hw_ctx(q, hctx, i) {
2694 		cpumask_clear(hctx->cpumask);
2695 		hctx->nr_ctx = 0;
2696 		hctx->dispatch_from = NULL;
2697 	}
2698 
2699 	/*
2700 	 * Map software to hardware queues.
2701 	 *
2702 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2703 	 */
2704 	for_each_possible_cpu(i) {
2705 
2706 		ctx = per_cpu_ptr(q->queue_ctx, i);
2707 		for (j = 0; j < set->nr_maps; j++) {
2708 			if (!set->map[j].nr_queues) {
2709 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2710 						HCTX_TYPE_DEFAULT, i);
2711 				continue;
2712 			}
2713 			hctx_idx = set->map[j].mq_map[i];
2714 			/* unmapped hw queue can be remapped after CPU topo changed */
2715 			if (!set->tags[hctx_idx] &&
2716 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2717 				/*
2718 				 * If tags initialization fail for some hctx,
2719 				 * that hctx won't be brought online.  In this
2720 				 * case, remap the current ctx to hctx[0] which
2721 				 * is guaranteed to always have tags allocated
2722 				 */
2723 				set->map[j].mq_map[i] = 0;
2724 			}
2725 
2726 			hctx = blk_mq_map_queue_type(q, j, i);
2727 			ctx->hctxs[j] = hctx;
2728 			/*
2729 			 * If the CPU is already set in the mask, then we've
2730 			 * mapped this one already. This can happen if
2731 			 * devices share queues across queue maps.
2732 			 */
2733 			if (cpumask_test_cpu(i, hctx->cpumask))
2734 				continue;
2735 
2736 			cpumask_set_cpu(i, hctx->cpumask);
2737 			hctx->type = j;
2738 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2739 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2740 
2741 			/*
2742 			 * If the nr_ctx type overflows, we have exceeded the
2743 			 * amount of sw queues we can support.
2744 			 */
2745 			BUG_ON(!hctx->nr_ctx);
2746 		}
2747 
2748 		for (; j < HCTX_MAX_TYPES; j++)
2749 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2750 					HCTX_TYPE_DEFAULT, i);
2751 	}
2752 
2753 	queue_for_each_hw_ctx(q, hctx, i) {
2754 		/*
2755 		 * If no software queues are mapped to this hardware queue,
2756 		 * disable it and free the request entries.
2757 		 */
2758 		if (!hctx->nr_ctx) {
2759 			/* Never unmap queue 0.  We need it as a
2760 			 * fallback in case of a new remap fails
2761 			 * allocation
2762 			 */
2763 			if (i && set->tags[i])
2764 				blk_mq_free_map_and_requests(set, i);
2765 
2766 			hctx->tags = NULL;
2767 			continue;
2768 		}
2769 
2770 		hctx->tags = set->tags[i];
2771 		WARN_ON(!hctx->tags);
2772 
2773 		/*
2774 		 * Set the map size to the number of mapped software queues.
2775 		 * This is more accurate and more efficient than looping
2776 		 * over all possibly mapped software queues.
2777 		 */
2778 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2779 
2780 		/*
2781 		 * Initialize batch roundrobin counts
2782 		 */
2783 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2784 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2785 	}
2786 }
2787 
2788 /*
2789  * Caller needs to ensure that we're either frozen/quiesced, or that
2790  * the queue isn't live yet.
2791  */
2792 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2793 {
2794 	struct blk_mq_hw_ctx *hctx;
2795 	int i;
2796 
2797 	queue_for_each_hw_ctx(q, hctx, i) {
2798 		if (shared)
2799 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2800 		else
2801 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2802 	}
2803 }
2804 
2805 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2806 					bool shared)
2807 {
2808 	struct request_queue *q;
2809 
2810 	lockdep_assert_held(&set->tag_list_lock);
2811 
2812 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2813 		blk_mq_freeze_queue(q);
2814 		queue_set_hctx_shared(q, shared);
2815 		blk_mq_unfreeze_queue(q);
2816 	}
2817 }
2818 
2819 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2820 {
2821 	struct blk_mq_tag_set *set = q->tag_set;
2822 
2823 	mutex_lock(&set->tag_list_lock);
2824 	list_del_rcu(&q->tag_set_list);
2825 	if (list_is_singular(&set->tag_list)) {
2826 		/* just transitioned to unshared */
2827 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2828 		/* update existing queue */
2829 		blk_mq_update_tag_set_depth(set, false);
2830 	}
2831 	mutex_unlock(&set->tag_list_lock);
2832 	INIT_LIST_HEAD(&q->tag_set_list);
2833 }
2834 
2835 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2836 				     struct request_queue *q)
2837 {
2838 	mutex_lock(&set->tag_list_lock);
2839 
2840 	/*
2841 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2842 	 */
2843 	if (!list_empty(&set->tag_list) &&
2844 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2845 		set->flags |= BLK_MQ_F_TAG_SHARED;
2846 		/* update existing queue */
2847 		blk_mq_update_tag_set_depth(set, true);
2848 	}
2849 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2850 		queue_set_hctx_shared(q, true);
2851 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2852 
2853 	mutex_unlock(&set->tag_list_lock);
2854 }
2855 
2856 /* All allocations will be freed in release handler of q->mq_kobj */
2857 static int blk_mq_alloc_ctxs(struct request_queue *q)
2858 {
2859 	struct blk_mq_ctxs *ctxs;
2860 	int cpu;
2861 
2862 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2863 	if (!ctxs)
2864 		return -ENOMEM;
2865 
2866 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2867 	if (!ctxs->queue_ctx)
2868 		goto fail;
2869 
2870 	for_each_possible_cpu(cpu) {
2871 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2872 		ctx->ctxs = ctxs;
2873 	}
2874 
2875 	q->mq_kobj = &ctxs->kobj;
2876 	q->queue_ctx = ctxs->queue_ctx;
2877 
2878 	return 0;
2879  fail:
2880 	kfree(ctxs);
2881 	return -ENOMEM;
2882 }
2883 
2884 /*
2885  * It is the actual release handler for mq, but we do it from
2886  * request queue's release handler for avoiding use-after-free
2887  * and headache because q->mq_kobj shouldn't have been introduced,
2888  * but we can't group ctx/kctx kobj without it.
2889  */
2890 void blk_mq_release(struct request_queue *q)
2891 {
2892 	struct blk_mq_hw_ctx *hctx, *next;
2893 	int i;
2894 
2895 	queue_for_each_hw_ctx(q, hctx, i)
2896 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2897 
2898 	/* all hctx are in .unused_hctx_list now */
2899 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2900 		list_del_init(&hctx->hctx_list);
2901 		kobject_put(&hctx->kobj);
2902 	}
2903 
2904 	kfree(q->queue_hw_ctx);
2905 
2906 	/*
2907 	 * release .mq_kobj and sw queue's kobject now because
2908 	 * both share lifetime with request queue.
2909 	 */
2910 	blk_mq_sysfs_deinit(q);
2911 }
2912 
2913 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2914 		void *queuedata)
2915 {
2916 	struct request_queue *uninit_q, *q;
2917 
2918 	uninit_q = __blk_alloc_queue(set->numa_node);
2919 	if (!uninit_q)
2920 		return ERR_PTR(-ENOMEM);
2921 	uninit_q->queuedata = queuedata;
2922 
2923 	/*
2924 	 * Initialize the queue without an elevator. device_add_disk() will do
2925 	 * the initialization.
2926 	 */
2927 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2928 	if (IS_ERR(q))
2929 		blk_cleanup_queue(uninit_q);
2930 
2931 	return q;
2932 }
2933 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2934 
2935 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2936 {
2937 	return blk_mq_init_queue_data(set, NULL);
2938 }
2939 EXPORT_SYMBOL(blk_mq_init_queue);
2940 
2941 /*
2942  * Helper for setting up a queue with mq ops, given queue depth, and
2943  * the passed in mq ops flags.
2944  */
2945 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2946 					   const struct blk_mq_ops *ops,
2947 					   unsigned int queue_depth,
2948 					   unsigned int set_flags)
2949 {
2950 	struct request_queue *q;
2951 	int ret;
2952 
2953 	memset(set, 0, sizeof(*set));
2954 	set->ops = ops;
2955 	set->nr_hw_queues = 1;
2956 	set->nr_maps = 1;
2957 	set->queue_depth = queue_depth;
2958 	set->numa_node = NUMA_NO_NODE;
2959 	set->flags = set_flags;
2960 
2961 	ret = blk_mq_alloc_tag_set(set);
2962 	if (ret)
2963 		return ERR_PTR(ret);
2964 
2965 	q = blk_mq_init_queue(set);
2966 	if (IS_ERR(q)) {
2967 		blk_mq_free_tag_set(set);
2968 		return q;
2969 	}
2970 
2971 	return q;
2972 }
2973 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2974 
2975 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2976 		struct blk_mq_tag_set *set, struct request_queue *q,
2977 		int hctx_idx, int node)
2978 {
2979 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2980 
2981 	/* reuse dead hctx first */
2982 	spin_lock(&q->unused_hctx_lock);
2983 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2984 		if (tmp->numa_node == node) {
2985 			hctx = tmp;
2986 			break;
2987 		}
2988 	}
2989 	if (hctx)
2990 		list_del_init(&hctx->hctx_list);
2991 	spin_unlock(&q->unused_hctx_lock);
2992 
2993 	if (!hctx)
2994 		hctx = blk_mq_alloc_hctx(q, set, node);
2995 	if (!hctx)
2996 		goto fail;
2997 
2998 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2999 		goto free_hctx;
3000 
3001 	return hctx;
3002 
3003  free_hctx:
3004 	kobject_put(&hctx->kobj);
3005  fail:
3006 	return NULL;
3007 }
3008 
3009 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3010 						struct request_queue *q)
3011 {
3012 	int i, j, end;
3013 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3014 
3015 	if (q->nr_hw_queues < set->nr_hw_queues) {
3016 		struct blk_mq_hw_ctx **new_hctxs;
3017 
3018 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3019 				       sizeof(*new_hctxs), GFP_KERNEL,
3020 				       set->numa_node);
3021 		if (!new_hctxs)
3022 			return;
3023 		if (hctxs)
3024 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3025 			       sizeof(*hctxs));
3026 		q->queue_hw_ctx = new_hctxs;
3027 		kfree(hctxs);
3028 		hctxs = new_hctxs;
3029 	}
3030 
3031 	/* protect against switching io scheduler  */
3032 	mutex_lock(&q->sysfs_lock);
3033 	for (i = 0; i < set->nr_hw_queues; i++) {
3034 		int node;
3035 		struct blk_mq_hw_ctx *hctx;
3036 
3037 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3038 		/*
3039 		 * If the hw queue has been mapped to another numa node,
3040 		 * we need to realloc the hctx. If allocation fails, fallback
3041 		 * to use the previous one.
3042 		 */
3043 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3044 			continue;
3045 
3046 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3047 		if (hctx) {
3048 			if (hctxs[i])
3049 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3050 			hctxs[i] = hctx;
3051 		} else {
3052 			if (hctxs[i])
3053 				pr_warn("Allocate new hctx on node %d fails,\
3054 						fallback to previous one on node %d\n",
3055 						node, hctxs[i]->numa_node);
3056 			else
3057 				break;
3058 		}
3059 	}
3060 	/*
3061 	 * Increasing nr_hw_queues fails. Free the newly allocated
3062 	 * hctxs and keep the previous q->nr_hw_queues.
3063 	 */
3064 	if (i != set->nr_hw_queues) {
3065 		j = q->nr_hw_queues;
3066 		end = i;
3067 	} else {
3068 		j = i;
3069 		end = q->nr_hw_queues;
3070 		q->nr_hw_queues = set->nr_hw_queues;
3071 	}
3072 
3073 	for (; j < end; j++) {
3074 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3075 
3076 		if (hctx) {
3077 			if (hctx->tags)
3078 				blk_mq_free_map_and_requests(set, j);
3079 			blk_mq_exit_hctx(q, set, hctx, j);
3080 			hctxs[j] = NULL;
3081 		}
3082 	}
3083 	mutex_unlock(&q->sysfs_lock);
3084 }
3085 
3086 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3087 						  struct request_queue *q,
3088 						  bool elevator_init)
3089 {
3090 	/* mark the queue as mq asap */
3091 	q->mq_ops = set->ops;
3092 
3093 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3094 					     blk_mq_poll_stats_bkt,
3095 					     BLK_MQ_POLL_STATS_BKTS, q);
3096 	if (!q->poll_cb)
3097 		goto err_exit;
3098 
3099 	if (blk_mq_alloc_ctxs(q))
3100 		goto err_poll;
3101 
3102 	/* init q->mq_kobj and sw queues' kobjects */
3103 	blk_mq_sysfs_init(q);
3104 
3105 	INIT_LIST_HEAD(&q->unused_hctx_list);
3106 	spin_lock_init(&q->unused_hctx_lock);
3107 
3108 	blk_mq_realloc_hw_ctxs(set, q);
3109 	if (!q->nr_hw_queues)
3110 		goto err_hctxs;
3111 
3112 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3113 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3114 
3115 	q->tag_set = set;
3116 
3117 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3118 	if (set->nr_maps > HCTX_TYPE_POLL &&
3119 	    set->map[HCTX_TYPE_POLL].nr_queues)
3120 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3121 
3122 	q->sg_reserved_size = INT_MAX;
3123 
3124 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3125 	INIT_LIST_HEAD(&q->requeue_list);
3126 	spin_lock_init(&q->requeue_lock);
3127 
3128 	q->nr_requests = set->queue_depth;
3129 
3130 	/*
3131 	 * Default to classic polling
3132 	 */
3133 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3134 
3135 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3136 	blk_mq_add_queue_tag_set(set, q);
3137 	blk_mq_map_swqueue(q);
3138 
3139 	if (elevator_init)
3140 		elevator_init_mq(q);
3141 
3142 	return q;
3143 
3144 err_hctxs:
3145 	kfree(q->queue_hw_ctx);
3146 	q->nr_hw_queues = 0;
3147 	blk_mq_sysfs_deinit(q);
3148 err_poll:
3149 	blk_stat_free_callback(q->poll_cb);
3150 	q->poll_cb = NULL;
3151 err_exit:
3152 	q->mq_ops = NULL;
3153 	return ERR_PTR(-ENOMEM);
3154 }
3155 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3156 
3157 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3158 void blk_mq_exit_queue(struct request_queue *q)
3159 {
3160 	struct blk_mq_tag_set	*set = q->tag_set;
3161 
3162 	blk_mq_del_queue_tag_set(q);
3163 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3164 }
3165 
3166 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3167 {
3168 	int i;
3169 
3170 	for (i = 0; i < set->nr_hw_queues; i++)
3171 		if (!__blk_mq_alloc_map_and_request(set, i))
3172 			goto out_unwind;
3173 
3174 	return 0;
3175 
3176 out_unwind:
3177 	while (--i >= 0)
3178 		blk_mq_free_map_and_requests(set, i);
3179 
3180 	return -ENOMEM;
3181 }
3182 
3183 /*
3184  * Allocate the request maps associated with this tag_set. Note that this
3185  * may reduce the depth asked for, if memory is tight. set->queue_depth
3186  * will be updated to reflect the allocated depth.
3187  */
3188 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3189 {
3190 	unsigned int depth;
3191 	int err;
3192 
3193 	depth = set->queue_depth;
3194 	do {
3195 		err = __blk_mq_alloc_rq_maps(set);
3196 		if (!err)
3197 			break;
3198 
3199 		set->queue_depth >>= 1;
3200 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3201 			err = -ENOMEM;
3202 			break;
3203 		}
3204 	} while (set->queue_depth);
3205 
3206 	if (!set->queue_depth || err) {
3207 		pr_err("blk-mq: failed to allocate request map\n");
3208 		return -ENOMEM;
3209 	}
3210 
3211 	if (depth != set->queue_depth)
3212 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3213 						depth, set->queue_depth);
3214 
3215 	return 0;
3216 }
3217 
3218 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3219 {
3220 	/*
3221 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3222 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3223 	 * number of hardware queues.
3224 	 */
3225 	if (set->nr_maps == 1)
3226 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3227 
3228 	if (set->ops->map_queues && !is_kdump_kernel()) {
3229 		int i;
3230 
3231 		/*
3232 		 * transport .map_queues is usually done in the following
3233 		 * way:
3234 		 *
3235 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3236 		 * 	mask = get_cpu_mask(queue)
3237 		 * 	for_each_cpu(cpu, mask)
3238 		 * 		set->map[x].mq_map[cpu] = queue;
3239 		 * }
3240 		 *
3241 		 * When we need to remap, the table has to be cleared for
3242 		 * killing stale mapping since one CPU may not be mapped
3243 		 * to any hw queue.
3244 		 */
3245 		for (i = 0; i < set->nr_maps; i++)
3246 			blk_mq_clear_mq_map(&set->map[i]);
3247 
3248 		return set->ops->map_queues(set);
3249 	} else {
3250 		BUG_ON(set->nr_maps > 1);
3251 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3252 	}
3253 }
3254 
3255 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3256 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3257 {
3258 	struct blk_mq_tags **new_tags;
3259 
3260 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3261 		return 0;
3262 
3263 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3264 				GFP_KERNEL, set->numa_node);
3265 	if (!new_tags)
3266 		return -ENOMEM;
3267 
3268 	if (set->tags)
3269 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3270 		       sizeof(*set->tags));
3271 	kfree(set->tags);
3272 	set->tags = new_tags;
3273 	set->nr_hw_queues = new_nr_hw_queues;
3274 
3275 	return 0;
3276 }
3277 
3278 /*
3279  * Alloc a tag set to be associated with one or more request queues.
3280  * May fail with EINVAL for various error conditions. May adjust the
3281  * requested depth down, if it's too large. In that case, the set
3282  * value will be stored in set->queue_depth.
3283  */
3284 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3285 {
3286 	int i, ret;
3287 
3288 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3289 
3290 	if (!set->nr_hw_queues)
3291 		return -EINVAL;
3292 	if (!set->queue_depth)
3293 		return -EINVAL;
3294 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3295 		return -EINVAL;
3296 
3297 	if (!set->ops->queue_rq)
3298 		return -EINVAL;
3299 
3300 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3301 		return -EINVAL;
3302 
3303 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3304 		pr_info("blk-mq: reduced tag depth to %u\n",
3305 			BLK_MQ_MAX_DEPTH);
3306 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3307 	}
3308 
3309 	if (!set->nr_maps)
3310 		set->nr_maps = 1;
3311 	else if (set->nr_maps > HCTX_MAX_TYPES)
3312 		return -EINVAL;
3313 
3314 	/*
3315 	 * If a crashdump is active, then we are potentially in a very
3316 	 * memory constrained environment. Limit us to 1 queue and
3317 	 * 64 tags to prevent using too much memory.
3318 	 */
3319 	if (is_kdump_kernel()) {
3320 		set->nr_hw_queues = 1;
3321 		set->nr_maps = 1;
3322 		set->queue_depth = min(64U, set->queue_depth);
3323 	}
3324 	/*
3325 	 * There is no use for more h/w queues than cpus if we just have
3326 	 * a single map
3327 	 */
3328 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3329 		set->nr_hw_queues = nr_cpu_ids;
3330 
3331 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3332 		return -ENOMEM;
3333 
3334 	ret = -ENOMEM;
3335 	for (i = 0; i < set->nr_maps; i++) {
3336 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3337 						  sizeof(set->map[i].mq_map[0]),
3338 						  GFP_KERNEL, set->numa_node);
3339 		if (!set->map[i].mq_map)
3340 			goto out_free_mq_map;
3341 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3342 	}
3343 
3344 	ret = blk_mq_update_queue_map(set);
3345 	if (ret)
3346 		goto out_free_mq_map;
3347 
3348 	ret = blk_mq_alloc_map_and_requests(set);
3349 	if (ret)
3350 		goto out_free_mq_map;
3351 
3352 	mutex_init(&set->tag_list_lock);
3353 	INIT_LIST_HEAD(&set->tag_list);
3354 
3355 	return 0;
3356 
3357 out_free_mq_map:
3358 	for (i = 0; i < set->nr_maps; i++) {
3359 		kfree(set->map[i].mq_map);
3360 		set->map[i].mq_map = NULL;
3361 	}
3362 	kfree(set->tags);
3363 	set->tags = NULL;
3364 	return ret;
3365 }
3366 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3367 
3368 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3369 {
3370 	int i, j;
3371 
3372 	for (i = 0; i < set->nr_hw_queues; i++)
3373 		blk_mq_free_map_and_requests(set, i);
3374 
3375 	for (j = 0; j < set->nr_maps; j++) {
3376 		kfree(set->map[j].mq_map);
3377 		set->map[j].mq_map = NULL;
3378 	}
3379 
3380 	kfree(set->tags);
3381 	set->tags = NULL;
3382 }
3383 EXPORT_SYMBOL(blk_mq_free_tag_set);
3384 
3385 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3386 {
3387 	struct blk_mq_tag_set *set = q->tag_set;
3388 	struct blk_mq_hw_ctx *hctx;
3389 	int i, ret;
3390 
3391 	if (!set)
3392 		return -EINVAL;
3393 
3394 	if (q->nr_requests == nr)
3395 		return 0;
3396 
3397 	blk_mq_freeze_queue(q);
3398 	blk_mq_quiesce_queue(q);
3399 
3400 	ret = 0;
3401 	queue_for_each_hw_ctx(q, hctx, i) {
3402 		if (!hctx->tags)
3403 			continue;
3404 		/*
3405 		 * If we're using an MQ scheduler, just update the scheduler
3406 		 * queue depth. This is similar to what the old code would do.
3407 		 */
3408 		if (!hctx->sched_tags) {
3409 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3410 							false);
3411 		} else {
3412 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3413 							nr, true);
3414 		}
3415 		if (ret)
3416 			break;
3417 		if (q->elevator && q->elevator->type->ops.depth_updated)
3418 			q->elevator->type->ops.depth_updated(hctx);
3419 	}
3420 
3421 	if (!ret)
3422 		q->nr_requests = nr;
3423 
3424 	blk_mq_unquiesce_queue(q);
3425 	blk_mq_unfreeze_queue(q);
3426 
3427 	return ret;
3428 }
3429 
3430 /*
3431  * request_queue and elevator_type pair.
3432  * It is just used by __blk_mq_update_nr_hw_queues to cache
3433  * the elevator_type associated with a request_queue.
3434  */
3435 struct blk_mq_qe_pair {
3436 	struct list_head node;
3437 	struct request_queue *q;
3438 	struct elevator_type *type;
3439 };
3440 
3441 /*
3442  * Cache the elevator_type in qe pair list and switch the
3443  * io scheduler to 'none'
3444  */
3445 static bool blk_mq_elv_switch_none(struct list_head *head,
3446 		struct request_queue *q)
3447 {
3448 	struct blk_mq_qe_pair *qe;
3449 
3450 	if (!q->elevator)
3451 		return true;
3452 
3453 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3454 	if (!qe)
3455 		return false;
3456 
3457 	INIT_LIST_HEAD(&qe->node);
3458 	qe->q = q;
3459 	qe->type = q->elevator->type;
3460 	list_add(&qe->node, head);
3461 
3462 	mutex_lock(&q->sysfs_lock);
3463 	/*
3464 	 * After elevator_switch_mq, the previous elevator_queue will be
3465 	 * released by elevator_release. The reference of the io scheduler
3466 	 * module get by elevator_get will also be put. So we need to get
3467 	 * a reference of the io scheduler module here to prevent it to be
3468 	 * removed.
3469 	 */
3470 	__module_get(qe->type->elevator_owner);
3471 	elevator_switch_mq(q, NULL);
3472 	mutex_unlock(&q->sysfs_lock);
3473 
3474 	return true;
3475 }
3476 
3477 static void blk_mq_elv_switch_back(struct list_head *head,
3478 		struct request_queue *q)
3479 {
3480 	struct blk_mq_qe_pair *qe;
3481 	struct elevator_type *t = NULL;
3482 
3483 	list_for_each_entry(qe, head, node)
3484 		if (qe->q == q) {
3485 			t = qe->type;
3486 			break;
3487 		}
3488 
3489 	if (!t)
3490 		return;
3491 
3492 	list_del(&qe->node);
3493 	kfree(qe);
3494 
3495 	mutex_lock(&q->sysfs_lock);
3496 	elevator_switch_mq(q, t);
3497 	mutex_unlock(&q->sysfs_lock);
3498 }
3499 
3500 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3501 							int nr_hw_queues)
3502 {
3503 	struct request_queue *q;
3504 	LIST_HEAD(head);
3505 	int prev_nr_hw_queues;
3506 
3507 	lockdep_assert_held(&set->tag_list_lock);
3508 
3509 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3510 		nr_hw_queues = nr_cpu_ids;
3511 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3512 		return;
3513 
3514 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3515 		blk_mq_freeze_queue(q);
3516 	/*
3517 	 * Switch IO scheduler to 'none', cleaning up the data associated
3518 	 * with the previous scheduler. We will switch back once we are done
3519 	 * updating the new sw to hw queue mappings.
3520 	 */
3521 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3522 		if (!blk_mq_elv_switch_none(&head, q))
3523 			goto switch_back;
3524 
3525 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3526 		blk_mq_debugfs_unregister_hctxs(q);
3527 		blk_mq_sysfs_unregister(q);
3528 	}
3529 
3530 	prev_nr_hw_queues = set->nr_hw_queues;
3531 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3532 	    0)
3533 		goto reregister;
3534 
3535 	set->nr_hw_queues = nr_hw_queues;
3536 fallback:
3537 	blk_mq_update_queue_map(set);
3538 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3539 		blk_mq_realloc_hw_ctxs(set, q);
3540 		if (q->nr_hw_queues != set->nr_hw_queues) {
3541 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3542 					nr_hw_queues, prev_nr_hw_queues);
3543 			set->nr_hw_queues = prev_nr_hw_queues;
3544 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3545 			goto fallback;
3546 		}
3547 		blk_mq_map_swqueue(q);
3548 	}
3549 
3550 reregister:
3551 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3552 		blk_mq_sysfs_register(q);
3553 		blk_mq_debugfs_register_hctxs(q);
3554 	}
3555 
3556 switch_back:
3557 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3558 		blk_mq_elv_switch_back(&head, q);
3559 
3560 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3561 		blk_mq_unfreeze_queue(q);
3562 }
3563 
3564 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3565 {
3566 	mutex_lock(&set->tag_list_lock);
3567 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3568 	mutex_unlock(&set->tag_list_lock);
3569 }
3570 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3571 
3572 /* Enable polling stats and return whether they were already enabled. */
3573 static bool blk_poll_stats_enable(struct request_queue *q)
3574 {
3575 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3576 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3577 		return true;
3578 	blk_stat_add_callback(q, q->poll_cb);
3579 	return false;
3580 }
3581 
3582 static void blk_mq_poll_stats_start(struct request_queue *q)
3583 {
3584 	/*
3585 	 * We don't arm the callback if polling stats are not enabled or the
3586 	 * callback is already active.
3587 	 */
3588 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3589 	    blk_stat_is_active(q->poll_cb))
3590 		return;
3591 
3592 	blk_stat_activate_msecs(q->poll_cb, 100);
3593 }
3594 
3595 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3596 {
3597 	struct request_queue *q = cb->data;
3598 	int bucket;
3599 
3600 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3601 		if (cb->stat[bucket].nr_samples)
3602 			q->poll_stat[bucket] = cb->stat[bucket];
3603 	}
3604 }
3605 
3606 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3607 				       struct request *rq)
3608 {
3609 	unsigned long ret = 0;
3610 	int bucket;
3611 
3612 	/*
3613 	 * If stats collection isn't on, don't sleep but turn it on for
3614 	 * future users
3615 	 */
3616 	if (!blk_poll_stats_enable(q))
3617 		return 0;
3618 
3619 	/*
3620 	 * As an optimistic guess, use half of the mean service time
3621 	 * for this type of request. We can (and should) make this smarter.
3622 	 * For instance, if the completion latencies are tight, we can
3623 	 * get closer than just half the mean. This is especially
3624 	 * important on devices where the completion latencies are longer
3625 	 * than ~10 usec. We do use the stats for the relevant IO size
3626 	 * if available which does lead to better estimates.
3627 	 */
3628 	bucket = blk_mq_poll_stats_bkt(rq);
3629 	if (bucket < 0)
3630 		return ret;
3631 
3632 	if (q->poll_stat[bucket].nr_samples)
3633 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3634 
3635 	return ret;
3636 }
3637 
3638 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3639 				     struct request *rq)
3640 {
3641 	struct hrtimer_sleeper hs;
3642 	enum hrtimer_mode mode;
3643 	unsigned int nsecs;
3644 	ktime_t kt;
3645 
3646 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3647 		return false;
3648 
3649 	/*
3650 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3651 	 *
3652 	 *  0:	use half of prev avg
3653 	 * >0:	use this specific value
3654 	 */
3655 	if (q->poll_nsec > 0)
3656 		nsecs = q->poll_nsec;
3657 	else
3658 		nsecs = blk_mq_poll_nsecs(q, rq);
3659 
3660 	if (!nsecs)
3661 		return false;
3662 
3663 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3664 
3665 	/*
3666 	 * This will be replaced with the stats tracking code, using
3667 	 * 'avg_completion_time / 2' as the pre-sleep target.
3668 	 */
3669 	kt = nsecs;
3670 
3671 	mode = HRTIMER_MODE_REL;
3672 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3673 	hrtimer_set_expires(&hs.timer, kt);
3674 
3675 	do {
3676 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3677 			break;
3678 		set_current_state(TASK_UNINTERRUPTIBLE);
3679 		hrtimer_sleeper_start_expires(&hs, mode);
3680 		if (hs.task)
3681 			io_schedule();
3682 		hrtimer_cancel(&hs.timer);
3683 		mode = HRTIMER_MODE_ABS;
3684 	} while (hs.task && !signal_pending(current));
3685 
3686 	__set_current_state(TASK_RUNNING);
3687 	destroy_hrtimer_on_stack(&hs.timer);
3688 	return true;
3689 }
3690 
3691 static bool blk_mq_poll_hybrid(struct request_queue *q,
3692 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3693 {
3694 	struct request *rq;
3695 
3696 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3697 		return false;
3698 
3699 	if (!blk_qc_t_is_internal(cookie))
3700 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3701 	else {
3702 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3703 		/*
3704 		 * With scheduling, if the request has completed, we'll
3705 		 * get a NULL return here, as we clear the sched tag when
3706 		 * that happens. The request still remains valid, like always,
3707 		 * so we should be safe with just the NULL check.
3708 		 */
3709 		if (!rq)
3710 			return false;
3711 	}
3712 
3713 	return blk_mq_poll_hybrid_sleep(q, rq);
3714 }
3715 
3716 /**
3717  * blk_poll - poll for IO completions
3718  * @q:  the queue
3719  * @cookie: cookie passed back at IO submission time
3720  * @spin: whether to spin for completions
3721  *
3722  * Description:
3723  *    Poll for completions on the passed in queue. Returns number of
3724  *    completed entries found. If @spin is true, then blk_poll will continue
3725  *    looping until at least one completion is found, unless the task is
3726  *    otherwise marked running (or we need to reschedule).
3727  */
3728 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3729 {
3730 	struct blk_mq_hw_ctx *hctx;
3731 	long state;
3732 
3733 	if (!blk_qc_t_valid(cookie) ||
3734 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3735 		return 0;
3736 
3737 	if (current->plug)
3738 		blk_flush_plug_list(current->plug, false);
3739 
3740 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3741 
3742 	/*
3743 	 * If we sleep, have the caller restart the poll loop to reset
3744 	 * the state. Like for the other success return cases, the
3745 	 * caller is responsible for checking if the IO completed. If
3746 	 * the IO isn't complete, we'll get called again and will go
3747 	 * straight to the busy poll loop.
3748 	 */
3749 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3750 		return 1;
3751 
3752 	hctx->poll_considered++;
3753 
3754 	state = current->state;
3755 	do {
3756 		int ret;
3757 
3758 		hctx->poll_invoked++;
3759 
3760 		ret = q->mq_ops->poll(hctx);
3761 		if (ret > 0) {
3762 			hctx->poll_success++;
3763 			__set_current_state(TASK_RUNNING);
3764 			return ret;
3765 		}
3766 
3767 		if (signal_pending_state(state, current))
3768 			__set_current_state(TASK_RUNNING);
3769 
3770 		if (current->state == TASK_RUNNING)
3771 			return 1;
3772 		if (ret < 0 || !spin)
3773 			break;
3774 		cpu_relax();
3775 	} while (!need_resched());
3776 
3777 	__set_current_state(TASK_RUNNING);
3778 	return 0;
3779 }
3780 EXPORT_SYMBOL_GPL(blk_poll);
3781 
3782 unsigned int blk_mq_rq_cpu(struct request *rq)
3783 {
3784 	return rq->mq_ctx->cpu;
3785 }
3786 EXPORT_SYMBOL(blk_mq_rq_cpu);
3787 
3788 static int __init blk_mq_init(void)
3789 {
3790 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3791 				blk_mq_hctx_notify_dead);
3792 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3793 				blk_mq_hctx_notify_online,
3794 				blk_mq_hctx_notify_offline);
3795 	return 0;
3796 }
3797 subsys_initcall(blk_mq_init);
3798