1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static void blk_mq_poll_stats_start(struct request_queue *q); 45 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 46 47 static int blk_mq_poll_stats_bkt(const struct request *rq) 48 { 49 int ddir, sectors, bucket; 50 51 ddir = rq_data_dir(rq); 52 sectors = blk_rq_stats_sectors(rq); 53 54 bucket = ddir + 2 * ilog2(sectors); 55 56 if (bucket < 0) 57 return -1; 58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 60 61 return bucket; 62 } 63 64 /* 65 * Check if any of the ctx, dispatch list or elevator 66 * have pending work in this hardware queue. 67 */ 68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 69 { 70 return !list_empty_careful(&hctx->dispatch) || 71 sbitmap_any_bit_set(&hctx->ctx_map) || 72 blk_mq_sched_has_work(hctx); 73 } 74 75 /* 76 * Mark this ctx as having pending work in this hardware queue 77 */ 78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 84 sbitmap_set_bit(&hctx->ctx_map, bit); 85 } 86 87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 88 struct blk_mq_ctx *ctx) 89 { 90 const int bit = ctx->index_hw[hctx->type]; 91 92 sbitmap_clear_bit(&hctx->ctx_map, bit); 93 } 94 95 struct mq_inflight { 96 struct hd_struct *part; 97 unsigned int inflight[2]; 98 }; 99 100 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 101 struct request *rq, void *priv, 102 bool reserved) 103 { 104 struct mq_inflight *mi = priv; 105 106 if (rq->part == mi->part) 107 mi->inflight[rq_data_dir(rq)]++; 108 109 return true; 110 } 111 112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 113 { 114 struct mq_inflight mi = { .part = part }; 115 116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 117 118 return mi.inflight[0] + mi.inflight[1]; 119 } 120 121 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 122 unsigned int inflight[2]) 123 { 124 struct mq_inflight mi = { .part = part }; 125 126 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 127 inflight[0] = mi.inflight[0]; 128 inflight[1] = mi.inflight[1]; 129 } 130 131 void blk_freeze_queue_start(struct request_queue *q) 132 { 133 mutex_lock(&q->mq_freeze_lock); 134 if (++q->mq_freeze_depth == 1) { 135 percpu_ref_kill(&q->q_usage_counter); 136 mutex_unlock(&q->mq_freeze_lock); 137 if (queue_is_mq(q)) 138 blk_mq_run_hw_queues(q, false); 139 } else { 140 mutex_unlock(&q->mq_freeze_lock); 141 } 142 } 143 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 144 145 void blk_mq_freeze_queue_wait(struct request_queue *q) 146 { 147 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 148 } 149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 150 151 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 152 unsigned long timeout) 153 { 154 return wait_event_timeout(q->mq_freeze_wq, 155 percpu_ref_is_zero(&q->q_usage_counter), 156 timeout); 157 } 158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 159 160 /* 161 * Guarantee no request is in use, so we can change any data structure of 162 * the queue afterward. 163 */ 164 void blk_freeze_queue(struct request_queue *q) 165 { 166 /* 167 * In the !blk_mq case we are only calling this to kill the 168 * q_usage_counter, otherwise this increases the freeze depth 169 * and waits for it to return to zero. For this reason there is 170 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 171 * exported to drivers as the only user for unfreeze is blk_mq. 172 */ 173 blk_freeze_queue_start(q); 174 blk_mq_freeze_queue_wait(q); 175 } 176 177 void blk_mq_freeze_queue(struct request_queue *q) 178 { 179 /* 180 * ...just an alias to keep freeze and unfreeze actions balanced 181 * in the blk_mq_* namespace 182 */ 183 blk_freeze_queue(q); 184 } 185 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 186 187 void blk_mq_unfreeze_queue(struct request_queue *q) 188 { 189 mutex_lock(&q->mq_freeze_lock); 190 q->mq_freeze_depth--; 191 WARN_ON_ONCE(q->mq_freeze_depth < 0); 192 if (!q->mq_freeze_depth) { 193 percpu_ref_resurrect(&q->q_usage_counter); 194 wake_up_all(&q->mq_freeze_wq); 195 } 196 mutex_unlock(&q->mq_freeze_lock); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 207 } 208 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 209 210 /** 211 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 212 * @q: request queue. 213 * 214 * Note: this function does not prevent that the struct request end_io() 215 * callback function is invoked. Once this function is returned, we make 216 * sure no dispatch can happen until the queue is unquiesced via 217 * blk_mq_unquiesce_queue(). 218 */ 219 void blk_mq_quiesce_queue(struct request_queue *q) 220 { 221 struct blk_mq_hw_ctx *hctx; 222 unsigned int i; 223 bool rcu = false; 224 225 blk_mq_quiesce_queue_nowait(q); 226 227 queue_for_each_hw_ctx(q, hctx, i) { 228 if (hctx->flags & BLK_MQ_F_BLOCKING) 229 synchronize_srcu(hctx->srcu); 230 else 231 rcu = true; 232 } 233 if (rcu) 234 synchronize_rcu(); 235 } 236 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 237 238 /* 239 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 240 * @q: request queue. 241 * 242 * This function recovers queue into the state before quiescing 243 * which is done by blk_mq_quiesce_queue. 244 */ 245 void blk_mq_unquiesce_queue(struct request_queue *q) 246 { 247 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 248 249 /* dispatch requests which are inserted during quiescing */ 250 blk_mq_run_hw_queues(q, true); 251 } 252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 253 254 void blk_mq_wake_waiters(struct request_queue *q) 255 { 256 struct blk_mq_hw_ctx *hctx; 257 unsigned int i; 258 259 queue_for_each_hw_ctx(q, hctx, i) 260 if (blk_mq_hw_queue_mapped(hctx)) 261 blk_mq_tag_wakeup_all(hctx->tags, true); 262 } 263 264 /* 265 * Only need start/end time stamping if we have iostat or 266 * blk stats enabled, or using an IO scheduler. 267 */ 268 static inline bool blk_mq_need_time_stamp(struct request *rq) 269 { 270 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 271 } 272 273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 274 unsigned int tag, u64 alloc_time_ns) 275 { 276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 277 struct request *rq = tags->static_rqs[tag]; 278 req_flags_t rq_flags = 0; 279 280 if (data->flags & BLK_MQ_REQ_INTERNAL) { 281 rq->tag = BLK_MQ_NO_TAG; 282 rq->internal_tag = tag; 283 } else { 284 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 285 rq_flags = RQF_MQ_INFLIGHT; 286 atomic_inc(&data->hctx->nr_active); 287 } 288 rq->tag = tag; 289 rq->internal_tag = BLK_MQ_NO_TAG; 290 data->hctx->tags->rqs[rq->tag] = rq; 291 } 292 293 /* csd/requeue_work/fifo_time is initialized before use */ 294 rq->q = data->q; 295 rq->mq_ctx = data->ctx; 296 rq->mq_hctx = data->hctx; 297 rq->rq_flags = rq_flags; 298 rq->cmd_flags = data->cmd_flags; 299 if (data->flags & BLK_MQ_REQ_PREEMPT) 300 rq->rq_flags |= RQF_PREEMPT; 301 if (blk_queue_io_stat(data->q)) 302 rq->rq_flags |= RQF_IO_STAT; 303 INIT_LIST_HEAD(&rq->queuelist); 304 INIT_HLIST_NODE(&rq->hash); 305 RB_CLEAR_NODE(&rq->rb_node); 306 rq->rq_disk = NULL; 307 rq->part = NULL; 308 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 309 rq->alloc_time_ns = alloc_time_ns; 310 #endif 311 if (blk_mq_need_time_stamp(rq)) 312 rq->start_time_ns = ktime_get_ns(); 313 else 314 rq->start_time_ns = 0; 315 rq->io_start_time_ns = 0; 316 rq->stats_sectors = 0; 317 rq->nr_phys_segments = 0; 318 #if defined(CONFIG_BLK_DEV_INTEGRITY) 319 rq->nr_integrity_segments = 0; 320 #endif 321 blk_crypto_rq_set_defaults(rq); 322 /* tag was already set */ 323 WRITE_ONCE(rq->deadline, 0); 324 325 rq->timeout = 0; 326 327 rq->end_io = NULL; 328 rq->end_io_data = NULL; 329 330 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 331 refcount_set(&rq->ref, 1); 332 333 if (!op_is_flush(data->cmd_flags)) { 334 struct elevator_queue *e = data->q->elevator; 335 336 rq->elv.icq = NULL; 337 if (e && e->type->ops.prepare_request) { 338 if (e->type->icq_cache) 339 blk_mq_sched_assign_ioc(rq); 340 341 e->type->ops.prepare_request(rq); 342 rq->rq_flags |= RQF_ELVPRIV; 343 } 344 } 345 346 data->hctx->queued++; 347 return rq; 348 } 349 350 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 351 { 352 struct request_queue *q = data->q; 353 struct elevator_queue *e = q->elevator; 354 u64 alloc_time_ns = 0; 355 unsigned int tag; 356 357 /* alloc_time includes depth and tag waits */ 358 if (blk_queue_rq_alloc_time(q)) 359 alloc_time_ns = ktime_get_ns(); 360 361 if (data->cmd_flags & REQ_NOWAIT) 362 data->flags |= BLK_MQ_REQ_NOWAIT; 363 364 if (e) { 365 data->flags |= BLK_MQ_REQ_INTERNAL; 366 367 /* 368 * Flush requests are special and go directly to the 369 * dispatch list. Don't include reserved tags in the 370 * limiting, as it isn't useful. 371 */ 372 if (!op_is_flush(data->cmd_flags) && 373 e->type->ops.limit_depth && 374 !(data->flags & BLK_MQ_REQ_RESERVED)) 375 e->type->ops.limit_depth(data->cmd_flags, data); 376 } 377 378 retry: 379 data->ctx = blk_mq_get_ctx(q); 380 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 381 if (!(data->flags & BLK_MQ_REQ_INTERNAL)) 382 blk_mq_tag_busy(data->hctx); 383 384 /* 385 * Waiting allocations only fail because of an inactive hctx. In that 386 * case just retry the hctx assignment and tag allocation as CPU hotplug 387 * should have migrated us to an online CPU by now. 388 */ 389 tag = blk_mq_get_tag(data); 390 if (tag == BLK_MQ_NO_TAG) { 391 if (data->flags & BLK_MQ_REQ_NOWAIT) 392 return NULL; 393 394 /* 395 * Give up the CPU and sleep for a random short time to ensure 396 * that thread using a realtime scheduling class are migrated 397 * off the the CPU, and thus off the hctx that is going away. 398 */ 399 msleep(3); 400 goto retry; 401 } 402 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 403 } 404 405 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 406 blk_mq_req_flags_t flags) 407 { 408 struct blk_mq_alloc_data data = { 409 .q = q, 410 .flags = flags, 411 .cmd_flags = op, 412 }; 413 struct request *rq; 414 int ret; 415 416 ret = blk_queue_enter(q, flags); 417 if (ret) 418 return ERR_PTR(ret); 419 420 rq = __blk_mq_alloc_request(&data); 421 if (!rq) 422 goto out_queue_exit; 423 rq->__data_len = 0; 424 rq->__sector = (sector_t) -1; 425 rq->bio = rq->biotail = NULL; 426 return rq; 427 out_queue_exit: 428 blk_queue_exit(q); 429 return ERR_PTR(-EWOULDBLOCK); 430 } 431 EXPORT_SYMBOL(blk_mq_alloc_request); 432 433 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 434 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 435 { 436 struct blk_mq_alloc_data data = { 437 .q = q, 438 .flags = flags, 439 .cmd_flags = op, 440 }; 441 u64 alloc_time_ns = 0; 442 unsigned int cpu; 443 unsigned int tag; 444 int ret; 445 446 /* alloc_time includes depth and tag waits */ 447 if (blk_queue_rq_alloc_time(q)) 448 alloc_time_ns = ktime_get_ns(); 449 450 /* 451 * If the tag allocator sleeps we could get an allocation for a 452 * different hardware context. No need to complicate the low level 453 * allocator for this for the rare use case of a command tied to 454 * a specific queue. 455 */ 456 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 457 return ERR_PTR(-EINVAL); 458 459 if (hctx_idx >= q->nr_hw_queues) 460 return ERR_PTR(-EIO); 461 462 ret = blk_queue_enter(q, flags); 463 if (ret) 464 return ERR_PTR(ret); 465 466 /* 467 * Check if the hardware context is actually mapped to anything. 468 * If not tell the caller that it should skip this queue. 469 */ 470 ret = -EXDEV; 471 data.hctx = q->queue_hw_ctx[hctx_idx]; 472 if (!blk_mq_hw_queue_mapped(data.hctx)) 473 goto out_queue_exit; 474 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 475 data.ctx = __blk_mq_get_ctx(q, cpu); 476 477 if (q->elevator) 478 data.flags |= BLK_MQ_REQ_INTERNAL; 479 else 480 blk_mq_tag_busy(data.hctx); 481 482 ret = -EWOULDBLOCK; 483 tag = blk_mq_get_tag(&data); 484 if (tag == BLK_MQ_NO_TAG) 485 goto out_queue_exit; 486 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 487 488 out_queue_exit: 489 blk_queue_exit(q); 490 return ERR_PTR(ret); 491 } 492 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 493 494 static void __blk_mq_free_request(struct request *rq) 495 { 496 struct request_queue *q = rq->q; 497 struct blk_mq_ctx *ctx = rq->mq_ctx; 498 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 499 const int sched_tag = rq->internal_tag; 500 501 blk_crypto_free_request(rq); 502 blk_pm_mark_last_busy(rq); 503 rq->mq_hctx = NULL; 504 if (rq->tag != BLK_MQ_NO_TAG) 505 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 506 if (sched_tag != BLK_MQ_NO_TAG) 507 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 508 blk_mq_sched_restart(hctx); 509 blk_queue_exit(q); 510 } 511 512 void blk_mq_free_request(struct request *rq) 513 { 514 struct request_queue *q = rq->q; 515 struct elevator_queue *e = q->elevator; 516 struct blk_mq_ctx *ctx = rq->mq_ctx; 517 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 518 519 if (rq->rq_flags & RQF_ELVPRIV) { 520 if (e && e->type->ops.finish_request) 521 e->type->ops.finish_request(rq); 522 if (rq->elv.icq) { 523 put_io_context(rq->elv.icq->ioc); 524 rq->elv.icq = NULL; 525 } 526 } 527 528 ctx->rq_completed[rq_is_sync(rq)]++; 529 if (rq->rq_flags & RQF_MQ_INFLIGHT) 530 atomic_dec(&hctx->nr_active); 531 532 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 533 laptop_io_completion(q->backing_dev_info); 534 535 rq_qos_done(q, rq); 536 537 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 538 if (refcount_dec_and_test(&rq->ref)) 539 __blk_mq_free_request(rq); 540 } 541 EXPORT_SYMBOL_GPL(blk_mq_free_request); 542 543 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 544 { 545 u64 now = 0; 546 547 if (blk_mq_need_time_stamp(rq)) 548 now = ktime_get_ns(); 549 550 if (rq->rq_flags & RQF_STATS) { 551 blk_mq_poll_stats_start(rq->q); 552 blk_stat_add(rq, now); 553 } 554 555 if (rq->internal_tag != BLK_MQ_NO_TAG) 556 blk_mq_sched_completed_request(rq, now); 557 558 blk_account_io_done(rq, now); 559 560 if (rq->end_io) { 561 rq_qos_done(rq->q, rq); 562 rq->end_io(rq, error); 563 } else { 564 blk_mq_free_request(rq); 565 } 566 } 567 EXPORT_SYMBOL(__blk_mq_end_request); 568 569 void blk_mq_end_request(struct request *rq, blk_status_t error) 570 { 571 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 572 BUG(); 573 __blk_mq_end_request(rq, error); 574 } 575 EXPORT_SYMBOL(blk_mq_end_request); 576 577 static void __blk_mq_complete_request_remote(void *data) 578 { 579 struct request *rq = data; 580 struct request_queue *q = rq->q; 581 582 q->mq_ops->complete(rq); 583 } 584 585 /** 586 * blk_mq_force_complete_rq() - Force complete the request, bypassing any error 587 * injection that could drop the completion. 588 * @rq: Request to be force completed 589 * 590 * Drivers should use blk_mq_complete_request() to complete requests in their 591 * normal IO path. For timeout error recovery, drivers may call this forced 592 * completion routine after they've reclaimed timed out requests to bypass 593 * potentially subsequent fake timeouts. 594 */ 595 void blk_mq_force_complete_rq(struct request *rq) 596 { 597 struct blk_mq_ctx *ctx = rq->mq_ctx; 598 struct request_queue *q = rq->q; 599 bool shared = false; 600 int cpu; 601 602 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 603 /* 604 * Most of single queue controllers, there is only one irq vector 605 * for handling IO completion, and the only irq's affinity is set 606 * as all possible CPUs. On most of ARCHs, this affinity means the 607 * irq is handled on one specific CPU. 608 * 609 * So complete IO reqeust in softirq context in case of single queue 610 * for not degrading IO performance by irqsoff latency. 611 */ 612 if (q->nr_hw_queues == 1) { 613 __blk_complete_request(rq); 614 return; 615 } 616 617 /* 618 * For a polled request, always complete locallly, it's pointless 619 * to redirect the completion. 620 */ 621 if ((rq->cmd_flags & REQ_HIPRI) || 622 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 623 q->mq_ops->complete(rq); 624 return; 625 } 626 627 cpu = get_cpu(); 628 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 629 shared = cpus_share_cache(cpu, ctx->cpu); 630 631 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 632 rq->csd.func = __blk_mq_complete_request_remote; 633 rq->csd.info = rq; 634 rq->csd.flags = 0; 635 smp_call_function_single_async(ctx->cpu, &rq->csd); 636 } else { 637 q->mq_ops->complete(rq); 638 } 639 put_cpu(); 640 } 641 EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq); 642 643 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 644 __releases(hctx->srcu) 645 { 646 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 647 rcu_read_unlock(); 648 else 649 srcu_read_unlock(hctx->srcu, srcu_idx); 650 } 651 652 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 653 __acquires(hctx->srcu) 654 { 655 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 656 /* shut up gcc false positive */ 657 *srcu_idx = 0; 658 rcu_read_lock(); 659 } else 660 *srcu_idx = srcu_read_lock(hctx->srcu); 661 } 662 663 /** 664 * blk_mq_complete_request - end I/O on a request 665 * @rq: the request being processed 666 * 667 * Description: 668 * Ends all I/O on a request. It does not handle partial completions. 669 * The actual completion happens out-of-order, through a IPI handler. 670 **/ 671 bool blk_mq_complete_request(struct request *rq) 672 { 673 if (unlikely(blk_should_fake_timeout(rq->q))) 674 return false; 675 blk_mq_force_complete_rq(rq); 676 return true; 677 } 678 EXPORT_SYMBOL(blk_mq_complete_request); 679 680 /** 681 * blk_mq_start_request - Start processing a request 682 * @rq: Pointer to request to be started 683 * 684 * Function used by device drivers to notify the block layer that a request 685 * is going to be processed now, so blk layer can do proper initializations 686 * such as starting the timeout timer. 687 */ 688 void blk_mq_start_request(struct request *rq) 689 { 690 struct request_queue *q = rq->q; 691 692 trace_block_rq_issue(q, rq); 693 694 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 695 rq->io_start_time_ns = ktime_get_ns(); 696 rq->stats_sectors = blk_rq_sectors(rq); 697 rq->rq_flags |= RQF_STATS; 698 rq_qos_issue(q, rq); 699 } 700 701 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 702 703 blk_add_timer(rq); 704 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 705 706 #ifdef CONFIG_BLK_DEV_INTEGRITY 707 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 708 q->integrity.profile->prepare_fn(rq); 709 #endif 710 } 711 EXPORT_SYMBOL(blk_mq_start_request); 712 713 static void __blk_mq_requeue_request(struct request *rq) 714 { 715 struct request_queue *q = rq->q; 716 717 blk_mq_put_driver_tag(rq); 718 719 trace_block_rq_requeue(q, rq); 720 rq_qos_requeue(q, rq); 721 722 if (blk_mq_request_started(rq)) { 723 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 724 rq->rq_flags &= ~RQF_TIMED_OUT; 725 } 726 } 727 728 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 729 { 730 __blk_mq_requeue_request(rq); 731 732 /* this request will be re-inserted to io scheduler queue */ 733 blk_mq_sched_requeue_request(rq); 734 735 BUG_ON(!list_empty(&rq->queuelist)); 736 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 737 } 738 EXPORT_SYMBOL(blk_mq_requeue_request); 739 740 static void blk_mq_requeue_work(struct work_struct *work) 741 { 742 struct request_queue *q = 743 container_of(work, struct request_queue, requeue_work.work); 744 LIST_HEAD(rq_list); 745 struct request *rq, *next; 746 747 spin_lock_irq(&q->requeue_lock); 748 list_splice_init(&q->requeue_list, &rq_list); 749 spin_unlock_irq(&q->requeue_lock); 750 751 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 752 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 753 continue; 754 755 rq->rq_flags &= ~RQF_SOFTBARRIER; 756 list_del_init(&rq->queuelist); 757 /* 758 * If RQF_DONTPREP, rq has contained some driver specific 759 * data, so insert it to hctx dispatch list to avoid any 760 * merge. 761 */ 762 if (rq->rq_flags & RQF_DONTPREP) 763 blk_mq_request_bypass_insert(rq, false, false); 764 else 765 blk_mq_sched_insert_request(rq, true, false, false); 766 } 767 768 while (!list_empty(&rq_list)) { 769 rq = list_entry(rq_list.next, struct request, queuelist); 770 list_del_init(&rq->queuelist); 771 blk_mq_sched_insert_request(rq, false, false, false); 772 } 773 774 blk_mq_run_hw_queues(q, false); 775 } 776 777 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 778 bool kick_requeue_list) 779 { 780 struct request_queue *q = rq->q; 781 unsigned long flags; 782 783 /* 784 * We abuse this flag that is otherwise used by the I/O scheduler to 785 * request head insertion from the workqueue. 786 */ 787 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 788 789 spin_lock_irqsave(&q->requeue_lock, flags); 790 if (at_head) { 791 rq->rq_flags |= RQF_SOFTBARRIER; 792 list_add(&rq->queuelist, &q->requeue_list); 793 } else { 794 list_add_tail(&rq->queuelist, &q->requeue_list); 795 } 796 spin_unlock_irqrestore(&q->requeue_lock, flags); 797 798 if (kick_requeue_list) 799 blk_mq_kick_requeue_list(q); 800 } 801 802 void blk_mq_kick_requeue_list(struct request_queue *q) 803 { 804 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 805 } 806 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 807 808 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 809 unsigned long msecs) 810 { 811 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 812 msecs_to_jiffies(msecs)); 813 } 814 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 815 816 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 817 { 818 if (tag < tags->nr_tags) { 819 prefetch(tags->rqs[tag]); 820 return tags->rqs[tag]; 821 } 822 823 return NULL; 824 } 825 EXPORT_SYMBOL(blk_mq_tag_to_rq); 826 827 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 828 void *priv, bool reserved) 829 { 830 /* 831 * If we find a request that is inflight and the queue matches, 832 * we know the queue is busy. Return false to stop the iteration. 833 */ 834 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 835 bool *busy = priv; 836 837 *busy = true; 838 return false; 839 } 840 841 return true; 842 } 843 844 bool blk_mq_queue_inflight(struct request_queue *q) 845 { 846 bool busy = false; 847 848 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 849 return busy; 850 } 851 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 852 853 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 854 { 855 req->rq_flags |= RQF_TIMED_OUT; 856 if (req->q->mq_ops->timeout) { 857 enum blk_eh_timer_return ret; 858 859 ret = req->q->mq_ops->timeout(req, reserved); 860 if (ret == BLK_EH_DONE) 861 return; 862 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 863 } 864 865 blk_add_timer(req); 866 } 867 868 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 869 { 870 unsigned long deadline; 871 872 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 873 return false; 874 if (rq->rq_flags & RQF_TIMED_OUT) 875 return false; 876 877 deadline = READ_ONCE(rq->deadline); 878 if (time_after_eq(jiffies, deadline)) 879 return true; 880 881 if (*next == 0) 882 *next = deadline; 883 else if (time_after(*next, deadline)) 884 *next = deadline; 885 return false; 886 } 887 888 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 889 struct request *rq, void *priv, bool reserved) 890 { 891 unsigned long *next = priv; 892 893 /* 894 * Just do a quick check if it is expired before locking the request in 895 * so we're not unnecessarilly synchronizing across CPUs. 896 */ 897 if (!blk_mq_req_expired(rq, next)) 898 return true; 899 900 /* 901 * We have reason to believe the request may be expired. Take a 902 * reference on the request to lock this request lifetime into its 903 * currently allocated context to prevent it from being reallocated in 904 * the event the completion by-passes this timeout handler. 905 * 906 * If the reference was already released, then the driver beat the 907 * timeout handler to posting a natural completion. 908 */ 909 if (!refcount_inc_not_zero(&rq->ref)) 910 return true; 911 912 /* 913 * The request is now locked and cannot be reallocated underneath the 914 * timeout handler's processing. Re-verify this exact request is truly 915 * expired; if it is not expired, then the request was completed and 916 * reallocated as a new request. 917 */ 918 if (blk_mq_req_expired(rq, next)) 919 blk_mq_rq_timed_out(rq, reserved); 920 921 if (is_flush_rq(rq, hctx)) 922 rq->end_io(rq, 0); 923 else if (refcount_dec_and_test(&rq->ref)) 924 __blk_mq_free_request(rq); 925 926 return true; 927 } 928 929 static void blk_mq_timeout_work(struct work_struct *work) 930 { 931 struct request_queue *q = 932 container_of(work, struct request_queue, timeout_work); 933 unsigned long next = 0; 934 struct blk_mq_hw_ctx *hctx; 935 int i; 936 937 /* A deadlock might occur if a request is stuck requiring a 938 * timeout at the same time a queue freeze is waiting 939 * completion, since the timeout code would not be able to 940 * acquire the queue reference here. 941 * 942 * That's why we don't use blk_queue_enter here; instead, we use 943 * percpu_ref_tryget directly, because we need to be able to 944 * obtain a reference even in the short window between the queue 945 * starting to freeze, by dropping the first reference in 946 * blk_freeze_queue_start, and the moment the last request is 947 * consumed, marked by the instant q_usage_counter reaches 948 * zero. 949 */ 950 if (!percpu_ref_tryget(&q->q_usage_counter)) 951 return; 952 953 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 954 955 if (next != 0) { 956 mod_timer(&q->timeout, next); 957 } else { 958 /* 959 * Request timeouts are handled as a forward rolling timer. If 960 * we end up here it means that no requests are pending and 961 * also that no request has been pending for a while. Mark 962 * each hctx as idle. 963 */ 964 queue_for_each_hw_ctx(q, hctx, i) { 965 /* the hctx may be unmapped, so check it here */ 966 if (blk_mq_hw_queue_mapped(hctx)) 967 blk_mq_tag_idle(hctx); 968 } 969 } 970 blk_queue_exit(q); 971 } 972 973 struct flush_busy_ctx_data { 974 struct blk_mq_hw_ctx *hctx; 975 struct list_head *list; 976 }; 977 978 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 979 { 980 struct flush_busy_ctx_data *flush_data = data; 981 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 982 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 983 enum hctx_type type = hctx->type; 984 985 spin_lock(&ctx->lock); 986 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 987 sbitmap_clear_bit(sb, bitnr); 988 spin_unlock(&ctx->lock); 989 return true; 990 } 991 992 /* 993 * Process software queues that have been marked busy, splicing them 994 * to the for-dispatch 995 */ 996 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 997 { 998 struct flush_busy_ctx_data data = { 999 .hctx = hctx, 1000 .list = list, 1001 }; 1002 1003 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1004 } 1005 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1006 1007 struct dispatch_rq_data { 1008 struct blk_mq_hw_ctx *hctx; 1009 struct request *rq; 1010 }; 1011 1012 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1013 void *data) 1014 { 1015 struct dispatch_rq_data *dispatch_data = data; 1016 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1017 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1018 enum hctx_type type = hctx->type; 1019 1020 spin_lock(&ctx->lock); 1021 if (!list_empty(&ctx->rq_lists[type])) { 1022 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1023 list_del_init(&dispatch_data->rq->queuelist); 1024 if (list_empty(&ctx->rq_lists[type])) 1025 sbitmap_clear_bit(sb, bitnr); 1026 } 1027 spin_unlock(&ctx->lock); 1028 1029 return !dispatch_data->rq; 1030 } 1031 1032 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1033 struct blk_mq_ctx *start) 1034 { 1035 unsigned off = start ? start->index_hw[hctx->type] : 0; 1036 struct dispatch_rq_data data = { 1037 .hctx = hctx, 1038 .rq = NULL, 1039 }; 1040 1041 __sbitmap_for_each_set(&hctx->ctx_map, off, 1042 dispatch_rq_from_ctx, &data); 1043 1044 return data.rq; 1045 } 1046 1047 static inline unsigned int queued_to_index(unsigned int queued) 1048 { 1049 if (!queued) 1050 return 0; 1051 1052 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1053 } 1054 1055 bool blk_mq_get_driver_tag(struct request *rq) 1056 { 1057 struct blk_mq_alloc_data data = { 1058 .q = rq->q, 1059 .hctx = rq->mq_hctx, 1060 .flags = BLK_MQ_REQ_NOWAIT, 1061 .cmd_flags = rq->cmd_flags, 1062 }; 1063 bool shared; 1064 1065 if (rq->tag != BLK_MQ_NO_TAG) 1066 return true; 1067 1068 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1069 data.flags |= BLK_MQ_REQ_RESERVED; 1070 1071 shared = blk_mq_tag_busy(data.hctx); 1072 rq->tag = blk_mq_get_tag(&data); 1073 if (rq->tag >= 0) { 1074 if (shared) { 1075 rq->rq_flags |= RQF_MQ_INFLIGHT; 1076 atomic_inc(&data.hctx->nr_active); 1077 } 1078 data.hctx->tags->rqs[rq->tag] = rq; 1079 } 1080 1081 return rq->tag != BLK_MQ_NO_TAG; 1082 } 1083 1084 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1085 int flags, void *key) 1086 { 1087 struct blk_mq_hw_ctx *hctx; 1088 1089 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1090 1091 spin_lock(&hctx->dispatch_wait_lock); 1092 if (!list_empty(&wait->entry)) { 1093 struct sbitmap_queue *sbq; 1094 1095 list_del_init(&wait->entry); 1096 sbq = &hctx->tags->bitmap_tags; 1097 atomic_dec(&sbq->ws_active); 1098 } 1099 spin_unlock(&hctx->dispatch_wait_lock); 1100 1101 blk_mq_run_hw_queue(hctx, true); 1102 return 1; 1103 } 1104 1105 /* 1106 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1107 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1108 * restart. For both cases, take care to check the condition again after 1109 * marking us as waiting. 1110 */ 1111 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1112 struct request *rq) 1113 { 1114 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1115 struct wait_queue_head *wq; 1116 wait_queue_entry_t *wait; 1117 bool ret; 1118 1119 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1120 blk_mq_sched_mark_restart_hctx(hctx); 1121 1122 /* 1123 * It's possible that a tag was freed in the window between the 1124 * allocation failure and adding the hardware queue to the wait 1125 * queue. 1126 * 1127 * Don't clear RESTART here, someone else could have set it. 1128 * At most this will cost an extra queue run. 1129 */ 1130 return blk_mq_get_driver_tag(rq); 1131 } 1132 1133 wait = &hctx->dispatch_wait; 1134 if (!list_empty_careful(&wait->entry)) 1135 return false; 1136 1137 wq = &bt_wait_ptr(sbq, hctx)->wait; 1138 1139 spin_lock_irq(&wq->lock); 1140 spin_lock(&hctx->dispatch_wait_lock); 1141 if (!list_empty(&wait->entry)) { 1142 spin_unlock(&hctx->dispatch_wait_lock); 1143 spin_unlock_irq(&wq->lock); 1144 return false; 1145 } 1146 1147 atomic_inc(&sbq->ws_active); 1148 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1149 __add_wait_queue(wq, wait); 1150 1151 /* 1152 * It's possible that a tag was freed in the window between the 1153 * allocation failure and adding the hardware queue to the wait 1154 * queue. 1155 */ 1156 ret = blk_mq_get_driver_tag(rq); 1157 if (!ret) { 1158 spin_unlock(&hctx->dispatch_wait_lock); 1159 spin_unlock_irq(&wq->lock); 1160 return false; 1161 } 1162 1163 /* 1164 * We got a tag, remove ourselves from the wait queue to ensure 1165 * someone else gets the wakeup. 1166 */ 1167 list_del_init(&wait->entry); 1168 atomic_dec(&sbq->ws_active); 1169 spin_unlock(&hctx->dispatch_wait_lock); 1170 spin_unlock_irq(&wq->lock); 1171 1172 return true; 1173 } 1174 1175 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1176 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1177 /* 1178 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1179 * - EWMA is one simple way to compute running average value 1180 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1181 * - take 4 as factor for avoiding to get too small(0) result, and this 1182 * factor doesn't matter because EWMA decreases exponentially 1183 */ 1184 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1185 { 1186 unsigned int ewma; 1187 1188 if (hctx->queue->elevator) 1189 return; 1190 1191 ewma = hctx->dispatch_busy; 1192 1193 if (!ewma && !busy) 1194 return; 1195 1196 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1197 if (busy) 1198 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1199 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1200 1201 hctx->dispatch_busy = ewma; 1202 } 1203 1204 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1205 1206 static void blk_mq_handle_dev_resource(struct request *rq, 1207 struct list_head *list) 1208 { 1209 struct request *next = 1210 list_first_entry_or_null(list, struct request, queuelist); 1211 1212 /* 1213 * If an I/O scheduler has been configured and we got a driver tag for 1214 * the next request already, free it. 1215 */ 1216 if (next) 1217 blk_mq_put_driver_tag(next); 1218 1219 list_add(&rq->queuelist, list); 1220 __blk_mq_requeue_request(rq); 1221 } 1222 1223 static void blk_mq_handle_zone_resource(struct request *rq, 1224 struct list_head *zone_list) 1225 { 1226 /* 1227 * If we end up here it is because we cannot dispatch a request to a 1228 * specific zone due to LLD level zone-write locking or other zone 1229 * related resource not being available. In this case, set the request 1230 * aside in zone_list for retrying it later. 1231 */ 1232 list_add(&rq->queuelist, zone_list); 1233 __blk_mq_requeue_request(rq); 1234 } 1235 1236 /* 1237 * Returns true if we did some work AND can potentially do more. 1238 */ 1239 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1240 bool got_budget) 1241 { 1242 struct blk_mq_hw_ctx *hctx; 1243 struct request *rq, *nxt; 1244 bool no_tag = false; 1245 int errors, queued; 1246 blk_status_t ret = BLK_STS_OK; 1247 bool no_budget_avail = false; 1248 LIST_HEAD(zone_list); 1249 1250 if (list_empty(list)) 1251 return false; 1252 1253 WARN_ON(!list_is_singular(list) && got_budget); 1254 1255 /* 1256 * Now process all the entries, sending them to the driver. 1257 */ 1258 errors = queued = 0; 1259 do { 1260 struct blk_mq_queue_data bd; 1261 1262 rq = list_first_entry(list, struct request, queuelist); 1263 1264 hctx = rq->mq_hctx; 1265 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) { 1266 blk_mq_put_driver_tag(rq); 1267 no_budget_avail = true; 1268 break; 1269 } 1270 1271 if (!blk_mq_get_driver_tag(rq)) { 1272 /* 1273 * The initial allocation attempt failed, so we need to 1274 * rerun the hardware queue when a tag is freed. The 1275 * waitqueue takes care of that. If the queue is run 1276 * before we add this entry back on the dispatch list, 1277 * we'll re-run it below. 1278 */ 1279 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1280 blk_mq_put_dispatch_budget(hctx); 1281 /* 1282 * For non-shared tags, the RESTART check 1283 * will suffice. 1284 */ 1285 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1286 no_tag = true; 1287 break; 1288 } 1289 } 1290 1291 list_del_init(&rq->queuelist); 1292 1293 bd.rq = rq; 1294 1295 /* 1296 * Flag last if we have no more requests, or if we have more 1297 * but can't assign a driver tag to it. 1298 */ 1299 if (list_empty(list)) 1300 bd.last = true; 1301 else { 1302 nxt = list_first_entry(list, struct request, queuelist); 1303 bd.last = !blk_mq_get_driver_tag(nxt); 1304 } 1305 1306 ret = q->mq_ops->queue_rq(hctx, &bd); 1307 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1308 blk_mq_handle_dev_resource(rq, list); 1309 break; 1310 } else if (ret == BLK_STS_ZONE_RESOURCE) { 1311 /* 1312 * Move the request to zone_list and keep going through 1313 * the dispatch list to find more requests the drive can 1314 * accept. 1315 */ 1316 blk_mq_handle_zone_resource(rq, &zone_list); 1317 if (list_empty(list)) 1318 break; 1319 continue; 1320 } 1321 1322 if (unlikely(ret != BLK_STS_OK)) { 1323 errors++; 1324 blk_mq_end_request(rq, BLK_STS_IOERR); 1325 continue; 1326 } 1327 1328 queued++; 1329 } while (!list_empty(list)); 1330 1331 if (!list_empty(&zone_list)) 1332 list_splice_tail_init(&zone_list, list); 1333 1334 hctx->dispatched[queued_to_index(queued)]++; 1335 1336 /* 1337 * Any items that need requeuing? Stuff them into hctx->dispatch, 1338 * that is where we will continue on next queue run. 1339 */ 1340 if (!list_empty(list)) { 1341 bool needs_restart; 1342 1343 /* 1344 * If we didn't flush the entire list, we could have told 1345 * the driver there was more coming, but that turned out to 1346 * be a lie. 1347 */ 1348 if (q->mq_ops->commit_rqs && queued) 1349 q->mq_ops->commit_rqs(hctx); 1350 1351 spin_lock(&hctx->lock); 1352 list_splice_tail_init(list, &hctx->dispatch); 1353 spin_unlock(&hctx->lock); 1354 1355 /* 1356 * If SCHED_RESTART was set by the caller of this function and 1357 * it is no longer set that means that it was cleared by another 1358 * thread and hence that a queue rerun is needed. 1359 * 1360 * If 'no_tag' is set, that means that we failed getting 1361 * a driver tag with an I/O scheduler attached. If our dispatch 1362 * waitqueue is no longer active, ensure that we run the queue 1363 * AFTER adding our entries back to the list. 1364 * 1365 * If no I/O scheduler has been configured it is possible that 1366 * the hardware queue got stopped and restarted before requests 1367 * were pushed back onto the dispatch list. Rerun the queue to 1368 * avoid starvation. Notes: 1369 * - blk_mq_run_hw_queue() checks whether or not a queue has 1370 * been stopped before rerunning a queue. 1371 * - Some but not all block drivers stop a queue before 1372 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1373 * and dm-rq. 1374 * 1375 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1376 * bit is set, run queue after a delay to avoid IO stalls 1377 * that could otherwise occur if the queue is idle. We'll do 1378 * similar if we couldn't get budget and SCHED_RESTART is set. 1379 */ 1380 needs_restart = blk_mq_sched_needs_restart(hctx); 1381 if (!needs_restart || 1382 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1383 blk_mq_run_hw_queue(hctx, true); 1384 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1385 no_budget_avail)) 1386 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1387 1388 blk_mq_update_dispatch_busy(hctx, true); 1389 return false; 1390 } else 1391 blk_mq_update_dispatch_busy(hctx, false); 1392 1393 /* 1394 * If the host/device is unable to accept more work, inform the 1395 * caller of that. 1396 */ 1397 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1398 return false; 1399 1400 return (queued + errors) != 0; 1401 } 1402 1403 /** 1404 * __blk_mq_run_hw_queue - Run a hardware queue. 1405 * @hctx: Pointer to the hardware queue to run. 1406 * 1407 * Send pending requests to the hardware. 1408 */ 1409 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1410 { 1411 int srcu_idx; 1412 1413 /* 1414 * We should be running this queue from one of the CPUs that 1415 * are mapped to it. 1416 * 1417 * There are at least two related races now between setting 1418 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1419 * __blk_mq_run_hw_queue(): 1420 * 1421 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1422 * but later it becomes online, then this warning is harmless 1423 * at all 1424 * 1425 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1426 * but later it becomes offline, then the warning can't be 1427 * triggered, and we depend on blk-mq timeout handler to 1428 * handle dispatched requests to this hctx 1429 */ 1430 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1431 cpu_online(hctx->next_cpu)) { 1432 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1433 raw_smp_processor_id(), 1434 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1435 dump_stack(); 1436 } 1437 1438 /* 1439 * We can't run the queue inline with ints disabled. Ensure that 1440 * we catch bad users of this early. 1441 */ 1442 WARN_ON_ONCE(in_interrupt()); 1443 1444 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1445 1446 hctx_lock(hctx, &srcu_idx); 1447 blk_mq_sched_dispatch_requests(hctx); 1448 hctx_unlock(hctx, srcu_idx); 1449 } 1450 1451 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1452 { 1453 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1454 1455 if (cpu >= nr_cpu_ids) 1456 cpu = cpumask_first(hctx->cpumask); 1457 return cpu; 1458 } 1459 1460 /* 1461 * It'd be great if the workqueue API had a way to pass 1462 * in a mask and had some smarts for more clever placement. 1463 * For now we just round-robin here, switching for every 1464 * BLK_MQ_CPU_WORK_BATCH queued items. 1465 */ 1466 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1467 { 1468 bool tried = false; 1469 int next_cpu = hctx->next_cpu; 1470 1471 if (hctx->queue->nr_hw_queues == 1) 1472 return WORK_CPU_UNBOUND; 1473 1474 if (--hctx->next_cpu_batch <= 0) { 1475 select_cpu: 1476 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1477 cpu_online_mask); 1478 if (next_cpu >= nr_cpu_ids) 1479 next_cpu = blk_mq_first_mapped_cpu(hctx); 1480 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1481 } 1482 1483 /* 1484 * Do unbound schedule if we can't find a online CPU for this hctx, 1485 * and it should only happen in the path of handling CPU DEAD. 1486 */ 1487 if (!cpu_online(next_cpu)) { 1488 if (!tried) { 1489 tried = true; 1490 goto select_cpu; 1491 } 1492 1493 /* 1494 * Make sure to re-select CPU next time once after CPUs 1495 * in hctx->cpumask become online again. 1496 */ 1497 hctx->next_cpu = next_cpu; 1498 hctx->next_cpu_batch = 1; 1499 return WORK_CPU_UNBOUND; 1500 } 1501 1502 hctx->next_cpu = next_cpu; 1503 return next_cpu; 1504 } 1505 1506 /** 1507 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1508 * @hctx: Pointer to the hardware queue to run. 1509 * @async: If we want to run the queue asynchronously. 1510 * @msecs: Microseconds of delay to wait before running the queue. 1511 * 1512 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1513 * with a delay of @msecs. 1514 */ 1515 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1516 unsigned long msecs) 1517 { 1518 if (unlikely(blk_mq_hctx_stopped(hctx))) 1519 return; 1520 1521 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1522 int cpu = get_cpu(); 1523 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1524 __blk_mq_run_hw_queue(hctx); 1525 put_cpu(); 1526 return; 1527 } 1528 1529 put_cpu(); 1530 } 1531 1532 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1533 msecs_to_jiffies(msecs)); 1534 } 1535 1536 /** 1537 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1538 * @hctx: Pointer to the hardware queue to run. 1539 * @msecs: Microseconds of delay to wait before running the queue. 1540 * 1541 * Run a hardware queue asynchronously with a delay of @msecs. 1542 */ 1543 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1544 { 1545 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1546 } 1547 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1548 1549 /** 1550 * blk_mq_run_hw_queue - Start to run a hardware queue. 1551 * @hctx: Pointer to the hardware queue to run. 1552 * @async: If we want to run the queue asynchronously. 1553 * 1554 * Check if the request queue is not in a quiesced state and if there are 1555 * pending requests to be sent. If this is true, run the queue to send requests 1556 * to hardware. 1557 */ 1558 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1559 { 1560 int srcu_idx; 1561 bool need_run; 1562 1563 /* 1564 * When queue is quiesced, we may be switching io scheduler, or 1565 * updating nr_hw_queues, or other things, and we can't run queue 1566 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1567 * 1568 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1569 * quiesced. 1570 */ 1571 hctx_lock(hctx, &srcu_idx); 1572 need_run = !blk_queue_quiesced(hctx->queue) && 1573 blk_mq_hctx_has_pending(hctx); 1574 hctx_unlock(hctx, srcu_idx); 1575 1576 if (need_run) 1577 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1578 } 1579 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1580 1581 /** 1582 * blk_mq_run_hw_queue - Run all hardware queues in a request queue. 1583 * @q: Pointer to the request queue to run. 1584 * @async: If we want to run the queue asynchronously. 1585 */ 1586 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1587 { 1588 struct blk_mq_hw_ctx *hctx; 1589 int i; 1590 1591 queue_for_each_hw_ctx(q, hctx, i) { 1592 if (blk_mq_hctx_stopped(hctx)) 1593 continue; 1594 1595 blk_mq_run_hw_queue(hctx, async); 1596 } 1597 } 1598 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1599 1600 /** 1601 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1602 * @q: Pointer to the request queue to run. 1603 * @msecs: Microseconds of delay to wait before running the queues. 1604 */ 1605 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1606 { 1607 struct blk_mq_hw_ctx *hctx; 1608 int i; 1609 1610 queue_for_each_hw_ctx(q, hctx, i) { 1611 if (blk_mq_hctx_stopped(hctx)) 1612 continue; 1613 1614 blk_mq_delay_run_hw_queue(hctx, msecs); 1615 } 1616 } 1617 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1618 1619 /** 1620 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1621 * @q: request queue. 1622 * 1623 * The caller is responsible for serializing this function against 1624 * blk_mq_{start,stop}_hw_queue(). 1625 */ 1626 bool blk_mq_queue_stopped(struct request_queue *q) 1627 { 1628 struct blk_mq_hw_ctx *hctx; 1629 int i; 1630 1631 queue_for_each_hw_ctx(q, hctx, i) 1632 if (blk_mq_hctx_stopped(hctx)) 1633 return true; 1634 1635 return false; 1636 } 1637 EXPORT_SYMBOL(blk_mq_queue_stopped); 1638 1639 /* 1640 * This function is often used for pausing .queue_rq() by driver when 1641 * there isn't enough resource or some conditions aren't satisfied, and 1642 * BLK_STS_RESOURCE is usually returned. 1643 * 1644 * We do not guarantee that dispatch can be drained or blocked 1645 * after blk_mq_stop_hw_queue() returns. Please use 1646 * blk_mq_quiesce_queue() for that requirement. 1647 */ 1648 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1649 { 1650 cancel_delayed_work(&hctx->run_work); 1651 1652 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1653 } 1654 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1655 1656 /* 1657 * This function is often used for pausing .queue_rq() by driver when 1658 * there isn't enough resource or some conditions aren't satisfied, and 1659 * BLK_STS_RESOURCE is usually returned. 1660 * 1661 * We do not guarantee that dispatch can be drained or blocked 1662 * after blk_mq_stop_hw_queues() returns. Please use 1663 * blk_mq_quiesce_queue() for that requirement. 1664 */ 1665 void blk_mq_stop_hw_queues(struct request_queue *q) 1666 { 1667 struct blk_mq_hw_ctx *hctx; 1668 int i; 1669 1670 queue_for_each_hw_ctx(q, hctx, i) 1671 blk_mq_stop_hw_queue(hctx); 1672 } 1673 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1674 1675 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1676 { 1677 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1678 1679 blk_mq_run_hw_queue(hctx, false); 1680 } 1681 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1682 1683 void blk_mq_start_hw_queues(struct request_queue *q) 1684 { 1685 struct blk_mq_hw_ctx *hctx; 1686 int i; 1687 1688 queue_for_each_hw_ctx(q, hctx, i) 1689 blk_mq_start_hw_queue(hctx); 1690 } 1691 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1692 1693 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1694 { 1695 if (!blk_mq_hctx_stopped(hctx)) 1696 return; 1697 1698 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1699 blk_mq_run_hw_queue(hctx, async); 1700 } 1701 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1702 1703 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1704 { 1705 struct blk_mq_hw_ctx *hctx; 1706 int i; 1707 1708 queue_for_each_hw_ctx(q, hctx, i) 1709 blk_mq_start_stopped_hw_queue(hctx, async); 1710 } 1711 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1712 1713 static void blk_mq_run_work_fn(struct work_struct *work) 1714 { 1715 struct blk_mq_hw_ctx *hctx; 1716 1717 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1718 1719 /* 1720 * If we are stopped, don't run the queue. 1721 */ 1722 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1723 return; 1724 1725 __blk_mq_run_hw_queue(hctx); 1726 } 1727 1728 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1729 struct request *rq, 1730 bool at_head) 1731 { 1732 struct blk_mq_ctx *ctx = rq->mq_ctx; 1733 enum hctx_type type = hctx->type; 1734 1735 lockdep_assert_held(&ctx->lock); 1736 1737 trace_block_rq_insert(hctx->queue, rq); 1738 1739 if (at_head) 1740 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1741 else 1742 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1743 } 1744 1745 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1746 bool at_head) 1747 { 1748 struct blk_mq_ctx *ctx = rq->mq_ctx; 1749 1750 lockdep_assert_held(&ctx->lock); 1751 1752 __blk_mq_insert_req_list(hctx, rq, at_head); 1753 blk_mq_hctx_mark_pending(hctx, ctx); 1754 } 1755 1756 /** 1757 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1758 * @rq: Pointer to request to be inserted. 1759 * @run_queue: If we should run the hardware queue after inserting the request. 1760 * 1761 * Should only be used carefully, when the caller knows we want to 1762 * bypass a potential IO scheduler on the target device. 1763 */ 1764 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1765 bool run_queue) 1766 { 1767 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1768 1769 spin_lock(&hctx->lock); 1770 if (at_head) 1771 list_add(&rq->queuelist, &hctx->dispatch); 1772 else 1773 list_add_tail(&rq->queuelist, &hctx->dispatch); 1774 spin_unlock(&hctx->lock); 1775 1776 if (run_queue) 1777 blk_mq_run_hw_queue(hctx, false); 1778 } 1779 1780 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1781 struct list_head *list) 1782 1783 { 1784 struct request *rq; 1785 enum hctx_type type = hctx->type; 1786 1787 /* 1788 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1789 * offline now 1790 */ 1791 list_for_each_entry(rq, list, queuelist) { 1792 BUG_ON(rq->mq_ctx != ctx); 1793 trace_block_rq_insert(hctx->queue, rq); 1794 } 1795 1796 spin_lock(&ctx->lock); 1797 list_splice_tail_init(list, &ctx->rq_lists[type]); 1798 blk_mq_hctx_mark_pending(hctx, ctx); 1799 spin_unlock(&ctx->lock); 1800 } 1801 1802 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1803 { 1804 struct request *rqa = container_of(a, struct request, queuelist); 1805 struct request *rqb = container_of(b, struct request, queuelist); 1806 1807 if (rqa->mq_ctx != rqb->mq_ctx) 1808 return rqa->mq_ctx > rqb->mq_ctx; 1809 if (rqa->mq_hctx != rqb->mq_hctx) 1810 return rqa->mq_hctx > rqb->mq_hctx; 1811 1812 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1813 } 1814 1815 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1816 { 1817 LIST_HEAD(list); 1818 1819 if (list_empty(&plug->mq_list)) 1820 return; 1821 list_splice_init(&plug->mq_list, &list); 1822 1823 if (plug->rq_count > 2 && plug->multiple_queues) 1824 list_sort(NULL, &list, plug_rq_cmp); 1825 1826 plug->rq_count = 0; 1827 1828 do { 1829 struct list_head rq_list; 1830 struct request *rq, *head_rq = list_entry_rq(list.next); 1831 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1832 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1833 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1834 unsigned int depth = 1; 1835 1836 list_for_each_continue(pos, &list) { 1837 rq = list_entry_rq(pos); 1838 BUG_ON(!rq->q); 1839 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1840 break; 1841 depth++; 1842 } 1843 1844 list_cut_before(&rq_list, &list, pos); 1845 trace_block_unplug(head_rq->q, depth, !from_schedule); 1846 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1847 from_schedule); 1848 } while(!list_empty(&list)); 1849 } 1850 1851 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1852 unsigned int nr_segs) 1853 { 1854 if (bio->bi_opf & REQ_RAHEAD) 1855 rq->cmd_flags |= REQ_FAILFAST_MASK; 1856 1857 rq->__sector = bio->bi_iter.bi_sector; 1858 rq->write_hint = bio->bi_write_hint; 1859 blk_rq_bio_prep(rq, bio, nr_segs); 1860 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1861 1862 blk_account_io_start(rq); 1863 } 1864 1865 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1866 struct request *rq, 1867 blk_qc_t *cookie, bool last) 1868 { 1869 struct request_queue *q = rq->q; 1870 struct blk_mq_queue_data bd = { 1871 .rq = rq, 1872 .last = last, 1873 }; 1874 blk_qc_t new_cookie; 1875 blk_status_t ret; 1876 1877 new_cookie = request_to_qc_t(hctx, rq); 1878 1879 /* 1880 * For OK queue, we are done. For error, caller may kill it. 1881 * Any other error (busy), just add it to our list as we 1882 * previously would have done. 1883 */ 1884 ret = q->mq_ops->queue_rq(hctx, &bd); 1885 switch (ret) { 1886 case BLK_STS_OK: 1887 blk_mq_update_dispatch_busy(hctx, false); 1888 *cookie = new_cookie; 1889 break; 1890 case BLK_STS_RESOURCE: 1891 case BLK_STS_DEV_RESOURCE: 1892 blk_mq_update_dispatch_busy(hctx, true); 1893 __blk_mq_requeue_request(rq); 1894 break; 1895 default: 1896 blk_mq_update_dispatch_busy(hctx, false); 1897 *cookie = BLK_QC_T_NONE; 1898 break; 1899 } 1900 1901 return ret; 1902 } 1903 1904 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1905 struct request *rq, 1906 blk_qc_t *cookie, 1907 bool bypass_insert, bool last) 1908 { 1909 struct request_queue *q = rq->q; 1910 bool run_queue = true; 1911 1912 /* 1913 * RCU or SRCU read lock is needed before checking quiesced flag. 1914 * 1915 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1916 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1917 * and avoid driver to try to dispatch again. 1918 */ 1919 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1920 run_queue = false; 1921 bypass_insert = false; 1922 goto insert; 1923 } 1924 1925 if (q->elevator && !bypass_insert) 1926 goto insert; 1927 1928 if (!blk_mq_get_dispatch_budget(hctx)) 1929 goto insert; 1930 1931 if (!blk_mq_get_driver_tag(rq)) { 1932 blk_mq_put_dispatch_budget(hctx); 1933 goto insert; 1934 } 1935 1936 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1937 insert: 1938 if (bypass_insert) 1939 return BLK_STS_RESOURCE; 1940 1941 blk_mq_request_bypass_insert(rq, false, run_queue); 1942 return BLK_STS_OK; 1943 } 1944 1945 /** 1946 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 1947 * @hctx: Pointer of the associated hardware queue. 1948 * @rq: Pointer to request to be sent. 1949 * @cookie: Request queue cookie. 1950 * 1951 * If the device has enough resources to accept a new request now, send the 1952 * request directly to device driver. Else, insert at hctx->dispatch queue, so 1953 * we can try send it another time in the future. Requests inserted at this 1954 * queue have higher priority. 1955 */ 1956 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1957 struct request *rq, blk_qc_t *cookie) 1958 { 1959 blk_status_t ret; 1960 int srcu_idx; 1961 1962 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1963 1964 hctx_lock(hctx, &srcu_idx); 1965 1966 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1967 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1968 blk_mq_request_bypass_insert(rq, false, true); 1969 else if (ret != BLK_STS_OK) 1970 blk_mq_end_request(rq, ret); 1971 1972 hctx_unlock(hctx, srcu_idx); 1973 } 1974 1975 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1976 { 1977 blk_status_t ret; 1978 int srcu_idx; 1979 blk_qc_t unused_cookie; 1980 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1981 1982 hctx_lock(hctx, &srcu_idx); 1983 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1984 hctx_unlock(hctx, srcu_idx); 1985 1986 return ret; 1987 } 1988 1989 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1990 struct list_head *list) 1991 { 1992 int queued = 0; 1993 1994 while (!list_empty(list)) { 1995 blk_status_t ret; 1996 struct request *rq = list_first_entry(list, struct request, 1997 queuelist); 1998 1999 list_del_init(&rq->queuelist); 2000 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2001 if (ret != BLK_STS_OK) { 2002 if (ret == BLK_STS_RESOURCE || 2003 ret == BLK_STS_DEV_RESOURCE) { 2004 blk_mq_request_bypass_insert(rq, false, 2005 list_empty(list)); 2006 break; 2007 } 2008 blk_mq_end_request(rq, ret); 2009 } else 2010 queued++; 2011 } 2012 2013 /* 2014 * If we didn't flush the entire list, we could have told 2015 * the driver there was more coming, but that turned out to 2016 * be a lie. 2017 */ 2018 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued) 2019 hctx->queue->mq_ops->commit_rqs(hctx); 2020 } 2021 2022 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2023 { 2024 list_add_tail(&rq->queuelist, &plug->mq_list); 2025 plug->rq_count++; 2026 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2027 struct request *tmp; 2028 2029 tmp = list_first_entry(&plug->mq_list, struct request, 2030 queuelist); 2031 if (tmp->q != rq->q) 2032 plug->multiple_queues = true; 2033 } 2034 } 2035 2036 /** 2037 * blk_mq_make_request - Create and send a request to block device. 2038 * @q: Request queue pointer. 2039 * @bio: Bio pointer. 2040 * 2041 * Builds up a request structure from @q and @bio and send to the device. The 2042 * request may not be queued directly to hardware if: 2043 * * This request can be merged with another one 2044 * * We want to place request at plug queue for possible future merging 2045 * * There is an IO scheduler active at this queue 2046 * 2047 * It will not queue the request if there is an error with the bio, or at the 2048 * request creation. 2049 * 2050 * Returns: Request queue cookie. 2051 */ 2052 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 2053 { 2054 const int is_sync = op_is_sync(bio->bi_opf); 2055 const int is_flush_fua = op_is_flush(bio->bi_opf); 2056 struct blk_mq_alloc_data data = { 2057 .q = q, 2058 }; 2059 struct request *rq; 2060 struct blk_plug *plug; 2061 struct request *same_queue_rq = NULL; 2062 unsigned int nr_segs; 2063 blk_qc_t cookie; 2064 blk_status_t ret; 2065 2066 blk_queue_bounce(q, &bio); 2067 __blk_queue_split(q, &bio, &nr_segs); 2068 2069 if (!bio_integrity_prep(bio)) 2070 goto queue_exit; 2071 2072 if (!is_flush_fua && !blk_queue_nomerges(q) && 2073 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2074 goto queue_exit; 2075 2076 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2077 goto queue_exit; 2078 2079 rq_qos_throttle(q, bio); 2080 2081 data.cmd_flags = bio->bi_opf; 2082 rq = __blk_mq_alloc_request(&data); 2083 if (unlikely(!rq)) { 2084 rq_qos_cleanup(q, bio); 2085 if (bio->bi_opf & REQ_NOWAIT) 2086 bio_wouldblock_error(bio); 2087 goto queue_exit; 2088 } 2089 2090 trace_block_getrq(q, bio, bio->bi_opf); 2091 2092 rq_qos_track(q, rq, bio); 2093 2094 cookie = request_to_qc_t(data.hctx, rq); 2095 2096 blk_mq_bio_to_request(rq, bio, nr_segs); 2097 2098 ret = blk_crypto_init_request(rq); 2099 if (ret != BLK_STS_OK) { 2100 bio->bi_status = ret; 2101 bio_endio(bio); 2102 blk_mq_free_request(rq); 2103 return BLK_QC_T_NONE; 2104 } 2105 2106 plug = blk_mq_plug(q, bio); 2107 if (unlikely(is_flush_fua)) { 2108 /* Bypass scheduler for flush requests */ 2109 blk_insert_flush(rq); 2110 blk_mq_run_hw_queue(data.hctx, true); 2111 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2112 !blk_queue_nonrot(q))) { 2113 /* 2114 * Use plugging if we have a ->commit_rqs() hook as well, as 2115 * we know the driver uses bd->last in a smart fashion. 2116 * 2117 * Use normal plugging if this disk is slow HDD, as sequential 2118 * IO may benefit a lot from plug merging. 2119 */ 2120 unsigned int request_count = plug->rq_count; 2121 struct request *last = NULL; 2122 2123 if (!request_count) 2124 trace_block_plug(q); 2125 else 2126 last = list_entry_rq(plug->mq_list.prev); 2127 2128 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2129 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2130 blk_flush_plug_list(plug, false); 2131 trace_block_plug(q); 2132 } 2133 2134 blk_add_rq_to_plug(plug, rq); 2135 } else if (q->elevator) { 2136 /* Insert the request at the IO scheduler queue */ 2137 blk_mq_sched_insert_request(rq, false, true, true); 2138 } else if (plug && !blk_queue_nomerges(q)) { 2139 /* 2140 * We do limited plugging. If the bio can be merged, do that. 2141 * Otherwise the existing request in the plug list will be 2142 * issued. So the plug list will have one request at most 2143 * The plug list might get flushed before this. If that happens, 2144 * the plug list is empty, and same_queue_rq is invalid. 2145 */ 2146 if (list_empty(&plug->mq_list)) 2147 same_queue_rq = NULL; 2148 if (same_queue_rq) { 2149 list_del_init(&same_queue_rq->queuelist); 2150 plug->rq_count--; 2151 } 2152 blk_add_rq_to_plug(plug, rq); 2153 trace_block_plug(q); 2154 2155 if (same_queue_rq) { 2156 data.hctx = same_queue_rq->mq_hctx; 2157 trace_block_unplug(q, 1, true); 2158 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2159 &cookie); 2160 } 2161 } else if ((q->nr_hw_queues > 1 && is_sync) || 2162 !data.hctx->dispatch_busy) { 2163 /* 2164 * There is no scheduler and we can try to send directly 2165 * to the hardware. 2166 */ 2167 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2168 } else { 2169 /* Default case. */ 2170 blk_mq_sched_insert_request(rq, false, true, true); 2171 } 2172 2173 return cookie; 2174 queue_exit: 2175 blk_queue_exit(q); 2176 return BLK_QC_T_NONE; 2177 } 2178 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */ 2179 2180 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2181 unsigned int hctx_idx) 2182 { 2183 struct page *page; 2184 2185 if (tags->rqs && set->ops->exit_request) { 2186 int i; 2187 2188 for (i = 0; i < tags->nr_tags; i++) { 2189 struct request *rq = tags->static_rqs[i]; 2190 2191 if (!rq) 2192 continue; 2193 set->ops->exit_request(set, rq, hctx_idx); 2194 tags->static_rqs[i] = NULL; 2195 } 2196 } 2197 2198 while (!list_empty(&tags->page_list)) { 2199 page = list_first_entry(&tags->page_list, struct page, lru); 2200 list_del_init(&page->lru); 2201 /* 2202 * Remove kmemleak object previously allocated in 2203 * blk_mq_alloc_rqs(). 2204 */ 2205 kmemleak_free(page_address(page)); 2206 __free_pages(page, page->private); 2207 } 2208 } 2209 2210 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2211 { 2212 kfree(tags->rqs); 2213 tags->rqs = NULL; 2214 kfree(tags->static_rqs); 2215 tags->static_rqs = NULL; 2216 2217 blk_mq_free_tags(tags); 2218 } 2219 2220 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2221 unsigned int hctx_idx, 2222 unsigned int nr_tags, 2223 unsigned int reserved_tags) 2224 { 2225 struct blk_mq_tags *tags; 2226 int node; 2227 2228 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2229 if (node == NUMA_NO_NODE) 2230 node = set->numa_node; 2231 2232 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2233 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2234 if (!tags) 2235 return NULL; 2236 2237 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2238 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2239 node); 2240 if (!tags->rqs) { 2241 blk_mq_free_tags(tags); 2242 return NULL; 2243 } 2244 2245 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2246 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2247 node); 2248 if (!tags->static_rqs) { 2249 kfree(tags->rqs); 2250 blk_mq_free_tags(tags); 2251 return NULL; 2252 } 2253 2254 return tags; 2255 } 2256 2257 static size_t order_to_size(unsigned int order) 2258 { 2259 return (size_t)PAGE_SIZE << order; 2260 } 2261 2262 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2263 unsigned int hctx_idx, int node) 2264 { 2265 int ret; 2266 2267 if (set->ops->init_request) { 2268 ret = set->ops->init_request(set, rq, hctx_idx, node); 2269 if (ret) 2270 return ret; 2271 } 2272 2273 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2274 return 0; 2275 } 2276 2277 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2278 unsigned int hctx_idx, unsigned int depth) 2279 { 2280 unsigned int i, j, entries_per_page, max_order = 4; 2281 size_t rq_size, left; 2282 int node; 2283 2284 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2285 if (node == NUMA_NO_NODE) 2286 node = set->numa_node; 2287 2288 INIT_LIST_HEAD(&tags->page_list); 2289 2290 /* 2291 * rq_size is the size of the request plus driver payload, rounded 2292 * to the cacheline size 2293 */ 2294 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2295 cache_line_size()); 2296 left = rq_size * depth; 2297 2298 for (i = 0; i < depth; ) { 2299 int this_order = max_order; 2300 struct page *page; 2301 int to_do; 2302 void *p; 2303 2304 while (this_order && left < order_to_size(this_order - 1)) 2305 this_order--; 2306 2307 do { 2308 page = alloc_pages_node(node, 2309 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2310 this_order); 2311 if (page) 2312 break; 2313 if (!this_order--) 2314 break; 2315 if (order_to_size(this_order) < rq_size) 2316 break; 2317 } while (1); 2318 2319 if (!page) 2320 goto fail; 2321 2322 page->private = this_order; 2323 list_add_tail(&page->lru, &tags->page_list); 2324 2325 p = page_address(page); 2326 /* 2327 * Allow kmemleak to scan these pages as they contain pointers 2328 * to additional allocations like via ops->init_request(). 2329 */ 2330 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2331 entries_per_page = order_to_size(this_order) / rq_size; 2332 to_do = min(entries_per_page, depth - i); 2333 left -= to_do * rq_size; 2334 for (j = 0; j < to_do; j++) { 2335 struct request *rq = p; 2336 2337 tags->static_rqs[i] = rq; 2338 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2339 tags->static_rqs[i] = NULL; 2340 goto fail; 2341 } 2342 2343 p += rq_size; 2344 i++; 2345 } 2346 } 2347 return 0; 2348 2349 fail: 2350 blk_mq_free_rqs(set, tags, hctx_idx); 2351 return -ENOMEM; 2352 } 2353 2354 struct rq_iter_data { 2355 struct blk_mq_hw_ctx *hctx; 2356 bool has_rq; 2357 }; 2358 2359 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2360 { 2361 struct rq_iter_data *iter_data = data; 2362 2363 if (rq->mq_hctx != iter_data->hctx) 2364 return true; 2365 iter_data->has_rq = true; 2366 return false; 2367 } 2368 2369 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2370 { 2371 struct blk_mq_tags *tags = hctx->sched_tags ? 2372 hctx->sched_tags : hctx->tags; 2373 struct rq_iter_data data = { 2374 .hctx = hctx, 2375 }; 2376 2377 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2378 return data.has_rq; 2379 } 2380 2381 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2382 struct blk_mq_hw_ctx *hctx) 2383 { 2384 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2385 return false; 2386 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2387 return false; 2388 return true; 2389 } 2390 2391 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2392 { 2393 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2394 struct blk_mq_hw_ctx, cpuhp_online); 2395 2396 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2397 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2398 return 0; 2399 2400 /* 2401 * Prevent new request from being allocated on the current hctx. 2402 * 2403 * The smp_mb__after_atomic() Pairs with the implied barrier in 2404 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2405 * seen once we return from the tag allocator. 2406 */ 2407 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2408 smp_mb__after_atomic(); 2409 2410 /* 2411 * Try to grab a reference to the queue and wait for any outstanding 2412 * requests. If we could not grab a reference the queue has been 2413 * frozen and there are no requests. 2414 */ 2415 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2416 while (blk_mq_hctx_has_requests(hctx)) 2417 msleep(5); 2418 percpu_ref_put(&hctx->queue->q_usage_counter); 2419 } 2420 2421 return 0; 2422 } 2423 2424 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2425 { 2426 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2427 struct blk_mq_hw_ctx, cpuhp_online); 2428 2429 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2430 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2431 return 0; 2432 } 2433 2434 /* 2435 * 'cpu' is going away. splice any existing rq_list entries from this 2436 * software queue to the hw queue dispatch list, and ensure that it 2437 * gets run. 2438 */ 2439 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2440 { 2441 struct blk_mq_hw_ctx *hctx; 2442 struct blk_mq_ctx *ctx; 2443 LIST_HEAD(tmp); 2444 enum hctx_type type; 2445 2446 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2447 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2448 return 0; 2449 2450 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2451 type = hctx->type; 2452 2453 spin_lock(&ctx->lock); 2454 if (!list_empty(&ctx->rq_lists[type])) { 2455 list_splice_init(&ctx->rq_lists[type], &tmp); 2456 blk_mq_hctx_clear_pending(hctx, ctx); 2457 } 2458 spin_unlock(&ctx->lock); 2459 2460 if (list_empty(&tmp)) 2461 return 0; 2462 2463 spin_lock(&hctx->lock); 2464 list_splice_tail_init(&tmp, &hctx->dispatch); 2465 spin_unlock(&hctx->lock); 2466 2467 blk_mq_run_hw_queue(hctx, true); 2468 return 0; 2469 } 2470 2471 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2472 { 2473 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2474 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2475 &hctx->cpuhp_online); 2476 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2477 &hctx->cpuhp_dead); 2478 } 2479 2480 /* hctx->ctxs will be freed in queue's release handler */ 2481 static void blk_mq_exit_hctx(struct request_queue *q, 2482 struct blk_mq_tag_set *set, 2483 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2484 { 2485 if (blk_mq_hw_queue_mapped(hctx)) 2486 blk_mq_tag_idle(hctx); 2487 2488 if (set->ops->exit_request) 2489 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2490 2491 if (set->ops->exit_hctx) 2492 set->ops->exit_hctx(hctx, hctx_idx); 2493 2494 blk_mq_remove_cpuhp(hctx); 2495 2496 spin_lock(&q->unused_hctx_lock); 2497 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2498 spin_unlock(&q->unused_hctx_lock); 2499 } 2500 2501 static void blk_mq_exit_hw_queues(struct request_queue *q, 2502 struct blk_mq_tag_set *set, int nr_queue) 2503 { 2504 struct blk_mq_hw_ctx *hctx; 2505 unsigned int i; 2506 2507 queue_for_each_hw_ctx(q, hctx, i) { 2508 if (i == nr_queue) 2509 break; 2510 blk_mq_debugfs_unregister_hctx(hctx); 2511 blk_mq_exit_hctx(q, set, hctx, i); 2512 } 2513 } 2514 2515 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2516 { 2517 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2518 2519 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2520 __alignof__(struct blk_mq_hw_ctx)) != 2521 sizeof(struct blk_mq_hw_ctx)); 2522 2523 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2524 hw_ctx_size += sizeof(struct srcu_struct); 2525 2526 return hw_ctx_size; 2527 } 2528 2529 static int blk_mq_init_hctx(struct request_queue *q, 2530 struct blk_mq_tag_set *set, 2531 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2532 { 2533 hctx->queue_num = hctx_idx; 2534 2535 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2536 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2537 &hctx->cpuhp_online); 2538 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2539 2540 hctx->tags = set->tags[hctx_idx]; 2541 2542 if (set->ops->init_hctx && 2543 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2544 goto unregister_cpu_notifier; 2545 2546 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2547 hctx->numa_node)) 2548 goto exit_hctx; 2549 return 0; 2550 2551 exit_hctx: 2552 if (set->ops->exit_hctx) 2553 set->ops->exit_hctx(hctx, hctx_idx); 2554 unregister_cpu_notifier: 2555 blk_mq_remove_cpuhp(hctx); 2556 return -1; 2557 } 2558 2559 static struct blk_mq_hw_ctx * 2560 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2561 int node) 2562 { 2563 struct blk_mq_hw_ctx *hctx; 2564 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2565 2566 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2567 if (!hctx) 2568 goto fail_alloc_hctx; 2569 2570 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2571 goto free_hctx; 2572 2573 atomic_set(&hctx->nr_active, 0); 2574 if (node == NUMA_NO_NODE) 2575 node = set->numa_node; 2576 hctx->numa_node = node; 2577 2578 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2579 spin_lock_init(&hctx->lock); 2580 INIT_LIST_HEAD(&hctx->dispatch); 2581 hctx->queue = q; 2582 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2583 2584 INIT_LIST_HEAD(&hctx->hctx_list); 2585 2586 /* 2587 * Allocate space for all possible cpus to avoid allocation at 2588 * runtime 2589 */ 2590 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2591 gfp, node); 2592 if (!hctx->ctxs) 2593 goto free_cpumask; 2594 2595 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2596 gfp, node)) 2597 goto free_ctxs; 2598 hctx->nr_ctx = 0; 2599 2600 spin_lock_init(&hctx->dispatch_wait_lock); 2601 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2602 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2603 2604 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2605 if (!hctx->fq) 2606 goto free_bitmap; 2607 2608 if (hctx->flags & BLK_MQ_F_BLOCKING) 2609 init_srcu_struct(hctx->srcu); 2610 blk_mq_hctx_kobj_init(hctx); 2611 2612 return hctx; 2613 2614 free_bitmap: 2615 sbitmap_free(&hctx->ctx_map); 2616 free_ctxs: 2617 kfree(hctx->ctxs); 2618 free_cpumask: 2619 free_cpumask_var(hctx->cpumask); 2620 free_hctx: 2621 kfree(hctx); 2622 fail_alloc_hctx: 2623 return NULL; 2624 } 2625 2626 static void blk_mq_init_cpu_queues(struct request_queue *q, 2627 unsigned int nr_hw_queues) 2628 { 2629 struct blk_mq_tag_set *set = q->tag_set; 2630 unsigned int i, j; 2631 2632 for_each_possible_cpu(i) { 2633 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2634 struct blk_mq_hw_ctx *hctx; 2635 int k; 2636 2637 __ctx->cpu = i; 2638 spin_lock_init(&__ctx->lock); 2639 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2640 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2641 2642 __ctx->queue = q; 2643 2644 /* 2645 * Set local node, IFF we have more than one hw queue. If 2646 * not, we remain on the home node of the device 2647 */ 2648 for (j = 0; j < set->nr_maps; j++) { 2649 hctx = blk_mq_map_queue_type(q, j, i); 2650 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2651 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2652 } 2653 } 2654 } 2655 2656 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2657 int hctx_idx) 2658 { 2659 int ret = 0; 2660 2661 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2662 set->queue_depth, set->reserved_tags); 2663 if (!set->tags[hctx_idx]) 2664 return false; 2665 2666 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2667 set->queue_depth); 2668 if (!ret) 2669 return true; 2670 2671 blk_mq_free_rq_map(set->tags[hctx_idx]); 2672 set->tags[hctx_idx] = NULL; 2673 return false; 2674 } 2675 2676 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2677 unsigned int hctx_idx) 2678 { 2679 if (set->tags && set->tags[hctx_idx]) { 2680 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2681 blk_mq_free_rq_map(set->tags[hctx_idx]); 2682 set->tags[hctx_idx] = NULL; 2683 } 2684 } 2685 2686 static void blk_mq_map_swqueue(struct request_queue *q) 2687 { 2688 unsigned int i, j, hctx_idx; 2689 struct blk_mq_hw_ctx *hctx; 2690 struct blk_mq_ctx *ctx; 2691 struct blk_mq_tag_set *set = q->tag_set; 2692 2693 queue_for_each_hw_ctx(q, hctx, i) { 2694 cpumask_clear(hctx->cpumask); 2695 hctx->nr_ctx = 0; 2696 hctx->dispatch_from = NULL; 2697 } 2698 2699 /* 2700 * Map software to hardware queues. 2701 * 2702 * If the cpu isn't present, the cpu is mapped to first hctx. 2703 */ 2704 for_each_possible_cpu(i) { 2705 2706 ctx = per_cpu_ptr(q->queue_ctx, i); 2707 for (j = 0; j < set->nr_maps; j++) { 2708 if (!set->map[j].nr_queues) { 2709 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2710 HCTX_TYPE_DEFAULT, i); 2711 continue; 2712 } 2713 hctx_idx = set->map[j].mq_map[i]; 2714 /* unmapped hw queue can be remapped after CPU topo changed */ 2715 if (!set->tags[hctx_idx] && 2716 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2717 /* 2718 * If tags initialization fail for some hctx, 2719 * that hctx won't be brought online. In this 2720 * case, remap the current ctx to hctx[0] which 2721 * is guaranteed to always have tags allocated 2722 */ 2723 set->map[j].mq_map[i] = 0; 2724 } 2725 2726 hctx = blk_mq_map_queue_type(q, j, i); 2727 ctx->hctxs[j] = hctx; 2728 /* 2729 * If the CPU is already set in the mask, then we've 2730 * mapped this one already. This can happen if 2731 * devices share queues across queue maps. 2732 */ 2733 if (cpumask_test_cpu(i, hctx->cpumask)) 2734 continue; 2735 2736 cpumask_set_cpu(i, hctx->cpumask); 2737 hctx->type = j; 2738 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2739 hctx->ctxs[hctx->nr_ctx++] = ctx; 2740 2741 /* 2742 * If the nr_ctx type overflows, we have exceeded the 2743 * amount of sw queues we can support. 2744 */ 2745 BUG_ON(!hctx->nr_ctx); 2746 } 2747 2748 for (; j < HCTX_MAX_TYPES; j++) 2749 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2750 HCTX_TYPE_DEFAULT, i); 2751 } 2752 2753 queue_for_each_hw_ctx(q, hctx, i) { 2754 /* 2755 * If no software queues are mapped to this hardware queue, 2756 * disable it and free the request entries. 2757 */ 2758 if (!hctx->nr_ctx) { 2759 /* Never unmap queue 0. We need it as a 2760 * fallback in case of a new remap fails 2761 * allocation 2762 */ 2763 if (i && set->tags[i]) 2764 blk_mq_free_map_and_requests(set, i); 2765 2766 hctx->tags = NULL; 2767 continue; 2768 } 2769 2770 hctx->tags = set->tags[i]; 2771 WARN_ON(!hctx->tags); 2772 2773 /* 2774 * Set the map size to the number of mapped software queues. 2775 * This is more accurate and more efficient than looping 2776 * over all possibly mapped software queues. 2777 */ 2778 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2779 2780 /* 2781 * Initialize batch roundrobin counts 2782 */ 2783 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2784 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2785 } 2786 } 2787 2788 /* 2789 * Caller needs to ensure that we're either frozen/quiesced, or that 2790 * the queue isn't live yet. 2791 */ 2792 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2793 { 2794 struct blk_mq_hw_ctx *hctx; 2795 int i; 2796 2797 queue_for_each_hw_ctx(q, hctx, i) { 2798 if (shared) 2799 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2800 else 2801 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2802 } 2803 } 2804 2805 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2806 bool shared) 2807 { 2808 struct request_queue *q; 2809 2810 lockdep_assert_held(&set->tag_list_lock); 2811 2812 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2813 blk_mq_freeze_queue(q); 2814 queue_set_hctx_shared(q, shared); 2815 blk_mq_unfreeze_queue(q); 2816 } 2817 } 2818 2819 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2820 { 2821 struct blk_mq_tag_set *set = q->tag_set; 2822 2823 mutex_lock(&set->tag_list_lock); 2824 list_del_rcu(&q->tag_set_list); 2825 if (list_is_singular(&set->tag_list)) { 2826 /* just transitioned to unshared */ 2827 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2828 /* update existing queue */ 2829 blk_mq_update_tag_set_depth(set, false); 2830 } 2831 mutex_unlock(&set->tag_list_lock); 2832 INIT_LIST_HEAD(&q->tag_set_list); 2833 } 2834 2835 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2836 struct request_queue *q) 2837 { 2838 mutex_lock(&set->tag_list_lock); 2839 2840 /* 2841 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2842 */ 2843 if (!list_empty(&set->tag_list) && 2844 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2845 set->flags |= BLK_MQ_F_TAG_SHARED; 2846 /* update existing queue */ 2847 blk_mq_update_tag_set_depth(set, true); 2848 } 2849 if (set->flags & BLK_MQ_F_TAG_SHARED) 2850 queue_set_hctx_shared(q, true); 2851 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2852 2853 mutex_unlock(&set->tag_list_lock); 2854 } 2855 2856 /* All allocations will be freed in release handler of q->mq_kobj */ 2857 static int blk_mq_alloc_ctxs(struct request_queue *q) 2858 { 2859 struct blk_mq_ctxs *ctxs; 2860 int cpu; 2861 2862 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2863 if (!ctxs) 2864 return -ENOMEM; 2865 2866 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2867 if (!ctxs->queue_ctx) 2868 goto fail; 2869 2870 for_each_possible_cpu(cpu) { 2871 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2872 ctx->ctxs = ctxs; 2873 } 2874 2875 q->mq_kobj = &ctxs->kobj; 2876 q->queue_ctx = ctxs->queue_ctx; 2877 2878 return 0; 2879 fail: 2880 kfree(ctxs); 2881 return -ENOMEM; 2882 } 2883 2884 /* 2885 * It is the actual release handler for mq, but we do it from 2886 * request queue's release handler for avoiding use-after-free 2887 * and headache because q->mq_kobj shouldn't have been introduced, 2888 * but we can't group ctx/kctx kobj without it. 2889 */ 2890 void blk_mq_release(struct request_queue *q) 2891 { 2892 struct blk_mq_hw_ctx *hctx, *next; 2893 int i; 2894 2895 queue_for_each_hw_ctx(q, hctx, i) 2896 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2897 2898 /* all hctx are in .unused_hctx_list now */ 2899 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2900 list_del_init(&hctx->hctx_list); 2901 kobject_put(&hctx->kobj); 2902 } 2903 2904 kfree(q->queue_hw_ctx); 2905 2906 /* 2907 * release .mq_kobj and sw queue's kobject now because 2908 * both share lifetime with request queue. 2909 */ 2910 blk_mq_sysfs_deinit(q); 2911 } 2912 2913 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 2914 void *queuedata) 2915 { 2916 struct request_queue *uninit_q, *q; 2917 2918 uninit_q = __blk_alloc_queue(set->numa_node); 2919 if (!uninit_q) 2920 return ERR_PTR(-ENOMEM); 2921 uninit_q->queuedata = queuedata; 2922 2923 /* 2924 * Initialize the queue without an elevator. device_add_disk() will do 2925 * the initialization. 2926 */ 2927 q = blk_mq_init_allocated_queue(set, uninit_q, false); 2928 if (IS_ERR(q)) 2929 blk_cleanup_queue(uninit_q); 2930 2931 return q; 2932 } 2933 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 2934 2935 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2936 { 2937 return blk_mq_init_queue_data(set, NULL); 2938 } 2939 EXPORT_SYMBOL(blk_mq_init_queue); 2940 2941 /* 2942 * Helper for setting up a queue with mq ops, given queue depth, and 2943 * the passed in mq ops flags. 2944 */ 2945 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2946 const struct blk_mq_ops *ops, 2947 unsigned int queue_depth, 2948 unsigned int set_flags) 2949 { 2950 struct request_queue *q; 2951 int ret; 2952 2953 memset(set, 0, sizeof(*set)); 2954 set->ops = ops; 2955 set->nr_hw_queues = 1; 2956 set->nr_maps = 1; 2957 set->queue_depth = queue_depth; 2958 set->numa_node = NUMA_NO_NODE; 2959 set->flags = set_flags; 2960 2961 ret = blk_mq_alloc_tag_set(set); 2962 if (ret) 2963 return ERR_PTR(ret); 2964 2965 q = blk_mq_init_queue(set); 2966 if (IS_ERR(q)) { 2967 blk_mq_free_tag_set(set); 2968 return q; 2969 } 2970 2971 return q; 2972 } 2973 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2974 2975 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2976 struct blk_mq_tag_set *set, struct request_queue *q, 2977 int hctx_idx, int node) 2978 { 2979 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2980 2981 /* reuse dead hctx first */ 2982 spin_lock(&q->unused_hctx_lock); 2983 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2984 if (tmp->numa_node == node) { 2985 hctx = tmp; 2986 break; 2987 } 2988 } 2989 if (hctx) 2990 list_del_init(&hctx->hctx_list); 2991 spin_unlock(&q->unused_hctx_lock); 2992 2993 if (!hctx) 2994 hctx = blk_mq_alloc_hctx(q, set, node); 2995 if (!hctx) 2996 goto fail; 2997 2998 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2999 goto free_hctx; 3000 3001 return hctx; 3002 3003 free_hctx: 3004 kobject_put(&hctx->kobj); 3005 fail: 3006 return NULL; 3007 } 3008 3009 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3010 struct request_queue *q) 3011 { 3012 int i, j, end; 3013 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3014 3015 if (q->nr_hw_queues < set->nr_hw_queues) { 3016 struct blk_mq_hw_ctx **new_hctxs; 3017 3018 new_hctxs = kcalloc_node(set->nr_hw_queues, 3019 sizeof(*new_hctxs), GFP_KERNEL, 3020 set->numa_node); 3021 if (!new_hctxs) 3022 return; 3023 if (hctxs) 3024 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3025 sizeof(*hctxs)); 3026 q->queue_hw_ctx = new_hctxs; 3027 kfree(hctxs); 3028 hctxs = new_hctxs; 3029 } 3030 3031 /* protect against switching io scheduler */ 3032 mutex_lock(&q->sysfs_lock); 3033 for (i = 0; i < set->nr_hw_queues; i++) { 3034 int node; 3035 struct blk_mq_hw_ctx *hctx; 3036 3037 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3038 /* 3039 * If the hw queue has been mapped to another numa node, 3040 * we need to realloc the hctx. If allocation fails, fallback 3041 * to use the previous one. 3042 */ 3043 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3044 continue; 3045 3046 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3047 if (hctx) { 3048 if (hctxs[i]) 3049 blk_mq_exit_hctx(q, set, hctxs[i], i); 3050 hctxs[i] = hctx; 3051 } else { 3052 if (hctxs[i]) 3053 pr_warn("Allocate new hctx on node %d fails,\ 3054 fallback to previous one on node %d\n", 3055 node, hctxs[i]->numa_node); 3056 else 3057 break; 3058 } 3059 } 3060 /* 3061 * Increasing nr_hw_queues fails. Free the newly allocated 3062 * hctxs and keep the previous q->nr_hw_queues. 3063 */ 3064 if (i != set->nr_hw_queues) { 3065 j = q->nr_hw_queues; 3066 end = i; 3067 } else { 3068 j = i; 3069 end = q->nr_hw_queues; 3070 q->nr_hw_queues = set->nr_hw_queues; 3071 } 3072 3073 for (; j < end; j++) { 3074 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3075 3076 if (hctx) { 3077 if (hctx->tags) 3078 blk_mq_free_map_and_requests(set, j); 3079 blk_mq_exit_hctx(q, set, hctx, j); 3080 hctxs[j] = NULL; 3081 } 3082 } 3083 mutex_unlock(&q->sysfs_lock); 3084 } 3085 3086 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3087 struct request_queue *q, 3088 bool elevator_init) 3089 { 3090 /* mark the queue as mq asap */ 3091 q->mq_ops = set->ops; 3092 3093 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3094 blk_mq_poll_stats_bkt, 3095 BLK_MQ_POLL_STATS_BKTS, q); 3096 if (!q->poll_cb) 3097 goto err_exit; 3098 3099 if (blk_mq_alloc_ctxs(q)) 3100 goto err_poll; 3101 3102 /* init q->mq_kobj and sw queues' kobjects */ 3103 blk_mq_sysfs_init(q); 3104 3105 INIT_LIST_HEAD(&q->unused_hctx_list); 3106 spin_lock_init(&q->unused_hctx_lock); 3107 3108 blk_mq_realloc_hw_ctxs(set, q); 3109 if (!q->nr_hw_queues) 3110 goto err_hctxs; 3111 3112 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3113 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3114 3115 q->tag_set = set; 3116 3117 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3118 if (set->nr_maps > HCTX_TYPE_POLL && 3119 set->map[HCTX_TYPE_POLL].nr_queues) 3120 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3121 3122 q->sg_reserved_size = INT_MAX; 3123 3124 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3125 INIT_LIST_HEAD(&q->requeue_list); 3126 spin_lock_init(&q->requeue_lock); 3127 3128 q->nr_requests = set->queue_depth; 3129 3130 /* 3131 * Default to classic polling 3132 */ 3133 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3134 3135 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3136 blk_mq_add_queue_tag_set(set, q); 3137 blk_mq_map_swqueue(q); 3138 3139 if (elevator_init) 3140 elevator_init_mq(q); 3141 3142 return q; 3143 3144 err_hctxs: 3145 kfree(q->queue_hw_ctx); 3146 q->nr_hw_queues = 0; 3147 blk_mq_sysfs_deinit(q); 3148 err_poll: 3149 blk_stat_free_callback(q->poll_cb); 3150 q->poll_cb = NULL; 3151 err_exit: 3152 q->mq_ops = NULL; 3153 return ERR_PTR(-ENOMEM); 3154 } 3155 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3156 3157 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3158 void blk_mq_exit_queue(struct request_queue *q) 3159 { 3160 struct blk_mq_tag_set *set = q->tag_set; 3161 3162 blk_mq_del_queue_tag_set(q); 3163 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3164 } 3165 3166 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3167 { 3168 int i; 3169 3170 for (i = 0; i < set->nr_hw_queues; i++) 3171 if (!__blk_mq_alloc_map_and_request(set, i)) 3172 goto out_unwind; 3173 3174 return 0; 3175 3176 out_unwind: 3177 while (--i >= 0) 3178 blk_mq_free_map_and_requests(set, i); 3179 3180 return -ENOMEM; 3181 } 3182 3183 /* 3184 * Allocate the request maps associated with this tag_set. Note that this 3185 * may reduce the depth asked for, if memory is tight. set->queue_depth 3186 * will be updated to reflect the allocated depth. 3187 */ 3188 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3189 { 3190 unsigned int depth; 3191 int err; 3192 3193 depth = set->queue_depth; 3194 do { 3195 err = __blk_mq_alloc_rq_maps(set); 3196 if (!err) 3197 break; 3198 3199 set->queue_depth >>= 1; 3200 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3201 err = -ENOMEM; 3202 break; 3203 } 3204 } while (set->queue_depth); 3205 3206 if (!set->queue_depth || err) { 3207 pr_err("blk-mq: failed to allocate request map\n"); 3208 return -ENOMEM; 3209 } 3210 3211 if (depth != set->queue_depth) 3212 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3213 depth, set->queue_depth); 3214 3215 return 0; 3216 } 3217 3218 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3219 { 3220 /* 3221 * blk_mq_map_queues() and multiple .map_queues() implementations 3222 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3223 * number of hardware queues. 3224 */ 3225 if (set->nr_maps == 1) 3226 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3227 3228 if (set->ops->map_queues && !is_kdump_kernel()) { 3229 int i; 3230 3231 /* 3232 * transport .map_queues is usually done in the following 3233 * way: 3234 * 3235 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3236 * mask = get_cpu_mask(queue) 3237 * for_each_cpu(cpu, mask) 3238 * set->map[x].mq_map[cpu] = queue; 3239 * } 3240 * 3241 * When we need to remap, the table has to be cleared for 3242 * killing stale mapping since one CPU may not be mapped 3243 * to any hw queue. 3244 */ 3245 for (i = 0; i < set->nr_maps; i++) 3246 blk_mq_clear_mq_map(&set->map[i]); 3247 3248 return set->ops->map_queues(set); 3249 } else { 3250 BUG_ON(set->nr_maps > 1); 3251 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3252 } 3253 } 3254 3255 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3256 int cur_nr_hw_queues, int new_nr_hw_queues) 3257 { 3258 struct blk_mq_tags **new_tags; 3259 3260 if (cur_nr_hw_queues >= new_nr_hw_queues) 3261 return 0; 3262 3263 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3264 GFP_KERNEL, set->numa_node); 3265 if (!new_tags) 3266 return -ENOMEM; 3267 3268 if (set->tags) 3269 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3270 sizeof(*set->tags)); 3271 kfree(set->tags); 3272 set->tags = new_tags; 3273 set->nr_hw_queues = new_nr_hw_queues; 3274 3275 return 0; 3276 } 3277 3278 /* 3279 * Alloc a tag set to be associated with one or more request queues. 3280 * May fail with EINVAL for various error conditions. May adjust the 3281 * requested depth down, if it's too large. In that case, the set 3282 * value will be stored in set->queue_depth. 3283 */ 3284 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3285 { 3286 int i, ret; 3287 3288 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3289 3290 if (!set->nr_hw_queues) 3291 return -EINVAL; 3292 if (!set->queue_depth) 3293 return -EINVAL; 3294 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3295 return -EINVAL; 3296 3297 if (!set->ops->queue_rq) 3298 return -EINVAL; 3299 3300 if (!set->ops->get_budget ^ !set->ops->put_budget) 3301 return -EINVAL; 3302 3303 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3304 pr_info("blk-mq: reduced tag depth to %u\n", 3305 BLK_MQ_MAX_DEPTH); 3306 set->queue_depth = BLK_MQ_MAX_DEPTH; 3307 } 3308 3309 if (!set->nr_maps) 3310 set->nr_maps = 1; 3311 else if (set->nr_maps > HCTX_MAX_TYPES) 3312 return -EINVAL; 3313 3314 /* 3315 * If a crashdump is active, then we are potentially in a very 3316 * memory constrained environment. Limit us to 1 queue and 3317 * 64 tags to prevent using too much memory. 3318 */ 3319 if (is_kdump_kernel()) { 3320 set->nr_hw_queues = 1; 3321 set->nr_maps = 1; 3322 set->queue_depth = min(64U, set->queue_depth); 3323 } 3324 /* 3325 * There is no use for more h/w queues than cpus if we just have 3326 * a single map 3327 */ 3328 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3329 set->nr_hw_queues = nr_cpu_ids; 3330 3331 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3332 return -ENOMEM; 3333 3334 ret = -ENOMEM; 3335 for (i = 0; i < set->nr_maps; i++) { 3336 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3337 sizeof(set->map[i].mq_map[0]), 3338 GFP_KERNEL, set->numa_node); 3339 if (!set->map[i].mq_map) 3340 goto out_free_mq_map; 3341 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3342 } 3343 3344 ret = blk_mq_update_queue_map(set); 3345 if (ret) 3346 goto out_free_mq_map; 3347 3348 ret = blk_mq_alloc_map_and_requests(set); 3349 if (ret) 3350 goto out_free_mq_map; 3351 3352 mutex_init(&set->tag_list_lock); 3353 INIT_LIST_HEAD(&set->tag_list); 3354 3355 return 0; 3356 3357 out_free_mq_map: 3358 for (i = 0; i < set->nr_maps; i++) { 3359 kfree(set->map[i].mq_map); 3360 set->map[i].mq_map = NULL; 3361 } 3362 kfree(set->tags); 3363 set->tags = NULL; 3364 return ret; 3365 } 3366 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3367 3368 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3369 { 3370 int i, j; 3371 3372 for (i = 0; i < set->nr_hw_queues; i++) 3373 blk_mq_free_map_and_requests(set, i); 3374 3375 for (j = 0; j < set->nr_maps; j++) { 3376 kfree(set->map[j].mq_map); 3377 set->map[j].mq_map = NULL; 3378 } 3379 3380 kfree(set->tags); 3381 set->tags = NULL; 3382 } 3383 EXPORT_SYMBOL(blk_mq_free_tag_set); 3384 3385 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3386 { 3387 struct blk_mq_tag_set *set = q->tag_set; 3388 struct blk_mq_hw_ctx *hctx; 3389 int i, ret; 3390 3391 if (!set) 3392 return -EINVAL; 3393 3394 if (q->nr_requests == nr) 3395 return 0; 3396 3397 blk_mq_freeze_queue(q); 3398 blk_mq_quiesce_queue(q); 3399 3400 ret = 0; 3401 queue_for_each_hw_ctx(q, hctx, i) { 3402 if (!hctx->tags) 3403 continue; 3404 /* 3405 * If we're using an MQ scheduler, just update the scheduler 3406 * queue depth. This is similar to what the old code would do. 3407 */ 3408 if (!hctx->sched_tags) { 3409 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3410 false); 3411 } else { 3412 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3413 nr, true); 3414 } 3415 if (ret) 3416 break; 3417 if (q->elevator && q->elevator->type->ops.depth_updated) 3418 q->elevator->type->ops.depth_updated(hctx); 3419 } 3420 3421 if (!ret) 3422 q->nr_requests = nr; 3423 3424 blk_mq_unquiesce_queue(q); 3425 blk_mq_unfreeze_queue(q); 3426 3427 return ret; 3428 } 3429 3430 /* 3431 * request_queue and elevator_type pair. 3432 * It is just used by __blk_mq_update_nr_hw_queues to cache 3433 * the elevator_type associated with a request_queue. 3434 */ 3435 struct blk_mq_qe_pair { 3436 struct list_head node; 3437 struct request_queue *q; 3438 struct elevator_type *type; 3439 }; 3440 3441 /* 3442 * Cache the elevator_type in qe pair list and switch the 3443 * io scheduler to 'none' 3444 */ 3445 static bool blk_mq_elv_switch_none(struct list_head *head, 3446 struct request_queue *q) 3447 { 3448 struct blk_mq_qe_pair *qe; 3449 3450 if (!q->elevator) 3451 return true; 3452 3453 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3454 if (!qe) 3455 return false; 3456 3457 INIT_LIST_HEAD(&qe->node); 3458 qe->q = q; 3459 qe->type = q->elevator->type; 3460 list_add(&qe->node, head); 3461 3462 mutex_lock(&q->sysfs_lock); 3463 /* 3464 * After elevator_switch_mq, the previous elevator_queue will be 3465 * released by elevator_release. The reference of the io scheduler 3466 * module get by elevator_get will also be put. So we need to get 3467 * a reference of the io scheduler module here to prevent it to be 3468 * removed. 3469 */ 3470 __module_get(qe->type->elevator_owner); 3471 elevator_switch_mq(q, NULL); 3472 mutex_unlock(&q->sysfs_lock); 3473 3474 return true; 3475 } 3476 3477 static void blk_mq_elv_switch_back(struct list_head *head, 3478 struct request_queue *q) 3479 { 3480 struct blk_mq_qe_pair *qe; 3481 struct elevator_type *t = NULL; 3482 3483 list_for_each_entry(qe, head, node) 3484 if (qe->q == q) { 3485 t = qe->type; 3486 break; 3487 } 3488 3489 if (!t) 3490 return; 3491 3492 list_del(&qe->node); 3493 kfree(qe); 3494 3495 mutex_lock(&q->sysfs_lock); 3496 elevator_switch_mq(q, t); 3497 mutex_unlock(&q->sysfs_lock); 3498 } 3499 3500 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3501 int nr_hw_queues) 3502 { 3503 struct request_queue *q; 3504 LIST_HEAD(head); 3505 int prev_nr_hw_queues; 3506 3507 lockdep_assert_held(&set->tag_list_lock); 3508 3509 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3510 nr_hw_queues = nr_cpu_ids; 3511 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3512 return; 3513 3514 list_for_each_entry(q, &set->tag_list, tag_set_list) 3515 blk_mq_freeze_queue(q); 3516 /* 3517 * Switch IO scheduler to 'none', cleaning up the data associated 3518 * with the previous scheduler. We will switch back once we are done 3519 * updating the new sw to hw queue mappings. 3520 */ 3521 list_for_each_entry(q, &set->tag_list, tag_set_list) 3522 if (!blk_mq_elv_switch_none(&head, q)) 3523 goto switch_back; 3524 3525 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3526 blk_mq_debugfs_unregister_hctxs(q); 3527 blk_mq_sysfs_unregister(q); 3528 } 3529 3530 prev_nr_hw_queues = set->nr_hw_queues; 3531 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3532 0) 3533 goto reregister; 3534 3535 set->nr_hw_queues = nr_hw_queues; 3536 fallback: 3537 blk_mq_update_queue_map(set); 3538 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3539 blk_mq_realloc_hw_ctxs(set, q); 3540 if (q->nr_hw_queues != set->nr_hw_queues) { 3541 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3542 nr_hw_queues, prev_nr_hw_queues); 3543 set->nr_hw_queues = prev_nr_hw_queues; 3544 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3545 goto fallback; 3546 } 3547 blk_mq_map_swqueue(q); 3548 } 3549 3550 reregister: 3551 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3552 blk_mq_sysfs_register(q); 3553 blk_mq_debugfs_register_hctxs(q); 3554 } 3555 3556 switch_back: 3557 list_for_each_entry(q, &set->tag_list, tag_set_list) 3558 blk_mq_elv_switch_back(&head, q); 3559 3560 list_for_each_entry(q, &set->tag_list, tag_set_list) 3561 blk_mq_unfreeze_queue(q); 3562 } 3563 3564 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3565 { 3566 mutex_lock(&set->tag_list_lock); 3567 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3568 mutex_unlock(&set->tag_list_lock); 3569 } 3570 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3571 3572 /* Enable polling stats and return whether they were already enabled. */ 3573 static bool blk_poll_stats_enable(struct request_queue *q) 3574 { 3575 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3576 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3577 return true; 3578 blk_stat_add_callback(q, q->poll_cb); 3579 return false; 3580 } 3581 3582 static void blk_mq_poll_stats_start(struct request_queue *q) 3583 { 3584 /* 3585 * We don't arm the callback if polling stats are not enabled or the 3586 * callback is already active. 3587 */ 3588 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3589 blk_stat_is_active(q->poll_cb)) 3590 return; 3591 3592 blk_stat_activate_msecs(q->poll_cb, 100); 3593 } 3594 3595 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3596 { 3597 struct request_queue *q = cb->data; 3598 int bucket; 3599 3600 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3601 if (cb->stat[bucket].nr_samples) 3602 q->poll_stat[bucket] = cb->stat[bucket]; 3603 } 3604 } 3605 3606 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3607 struct request *rq) 3608 { 3609 unsigned long ret = 0; 3610 int bucket; 3611 3612 /* 3613 * If stats collection isn't on, don't sleep but turn it on for 3614 * future users 3615 */ 3616 if (!blk_poll_stats_enable(q)) 3617 return 0; 3618 3619 /* 3620 * As an optimistic guess, use half of the mean service time 3621 * for this type of request. We can (and should) make this smarter. 3622 * For instance, if the completion latencies are tight, we can 3623 * get closer than just half the mean. This is especially 3624 * important on devices where the completion latencies are longer 3625 * than ~10 usec. We do use the stats for the relevant IO size 3626 * if available which does lead to better estimates. 3627 */ 3628 bucket = blk_mq_poll_stats_bkt(rq); 3629 if (bucket < 0) 3630 return ret; 3631 3632 if (q->poll_stat[bucket].nr_samples) 3633 ret = (q->poll_stat[bucket].mean + 1) / 2; 3634 3635 return ret; 3636 } 3637 3638 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3639 struct request *rq) 3640 { 3641 struct hrtimer_sleeper hs; 3642 enum hrtimer_mode mode; 3643 unsigned int nsecs; 3644 ktime_t kt; 3645 3646 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3647 return false; 3648 3649 /* 3650 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3651 * 3652 * 0: use half of prev avg 3653 * >0: use this specific value 3654 */ 3655 if (q->poll_nsec > 0) 3656 nsecs = q->poll_nsec; 3657 else 3658 nsecs = blk_mq_poll_nsecs(q, rq); 3659 3660 if (!nsecs) 3661 return false; 3662 3663 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3664 3665 /* 3666 * This will be replaced with the stats tracking code, using 3667 * 'avg_completion_time / 2' as the pre-sleep target. 3668 */ 3669 kt = nsecs; 3670 3671 mode = HRTIMER_MODE_REL; 3672 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3673 hrtimer_set_expires(&hs.timer, kt); 3674 3675 do { 3676 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3677 break; 3678 set_current_state(TASK_UNINTERRUPTIBLE); 3679 hrtimer_sleeper_start_expires(&hs, mode); 3680 if (hs.task) 3681 io_schedule(); 3682 hrtimer_cancel(&hs.timer); 3683 mode = HRTIMER_MODE_ABS; 3684 } while (hs.task && !signal_pending(current)); 3685 3686 __set_current_state(TASK_RUNNING); 3687 destroy_hrtimer_on_stack(&hs.timer); 3688 return true; 3689 } 3690 3691 static bool blk_mq_poll_hybrid(struct request_queue *q, 3692 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3693 { 3694 struct request *rq; 3695 3696 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3697 return false; 3698 3699 if (!blk_qc_t_is_internal(cookie)) 3700 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3701 else { 3702 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3703 /* 3704 * With scheduling, if the request has completed, we'll 3705 * get a NULL return here, as we clear the sched tag when 3706 * that happens. The request still remains valid, like always, 3707 * so we should be safe with just the NULL check. 3708 */ 3709 if (!rq) 3710 return false; 3711 } 3712 3713 return blk_mq_poll_hybrid_sleep(q, rq); 3714 } 3715 3716 /** 3717 * blk_poll - poll for IO completions 3718 * @q: the queue 3719 * @cookie: cookie passed back at IO submission time 3720 * @spin: whether to spin for completions 3721 * 3722 * Description: 3723 * Poll for completions on the passed in queue. Returns number of 3724 * completed entries found. If @spin is true, then blk_poll will continue 3725 * looping until at least one completion is found, unless the task is 3726 * otherwise marked running (or we need to reschedule). 3727 */ 3728 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3729 { 3730 struct blk_mq_hw_ctx *hctx; 3731 long state; 3732 3733 if (!blk_qc_t_valid(cookie) || 3734 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3735 return 0; 3736 3737 if (current->plug) 3738 blk_flush_plug_list(current->plug, false); 3739 3740 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3741 3742 /* 3743 * If we sleep, have the caller restart the poll loop to reset 3744 * the state. Like for the other success return cases, the 3745 * caller is responsible for checking if the IO completed. If 3746 * the IO isn't complete, we'll get called again and will go 3747 * straight to the busy poll loop. 3748 */ 3749 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3750 return 1; 3751 3752 hctx->poll_considered++; 3753 3754 state = current->state; 3755 do { 3756 int ret; 3757 3758 hctx->poll_invoked++; 3759 3760 ret = q->mq_ops->poll(hctx); 3761 if (ret > 0) { 3762 hctx->poll_success++; 3763 __set_current_state(TASK_RUNNING); 3764 return ret; 3765 } 3766 3767 if (signal_pending_state(state, current)) 3768 __set_current_state(TASK_RUNNING); 3769 3770 if (current->state == TASK_RUNNING) 3771 return 1; 3772 if (ret < 0 || !spin) 3773 break; 3774 cpu_relax(); 3775 } while (!need_resched()); 3776 3777 __set_current_state(TASK_RUNNING); 3778 return 0; 3779 } 3780 EXPORT_SYMBOL_GPL(blk_poll); 3781 3782 unsigned int blk_mq_rq_cpu(struct request *rq) 3783 { 3784 return rq->mq_ctx->cpu; 3785 } 3786 EXPORT_SYMBOL(blk_mq_rq_cpu); 3787 3788 static int __init blk_mq_init(void) 3789 { 3790 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3791 blk_mq_hctx_notify_dead); 3792 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 3793 blk_mq_hctx_notify_online, 3794 blk_mq_hctx_notify_offline); 3795 return 0; 3796 } 3797 subsys_initcall(blk_mq_init); 3798