1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static DEFINE_MUTEX(all_q_mutex); 41 static LIST_HEAD(all_q_list); 42 43 static void blk_mq_poll_stats_start(struct request_queue *q); 44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync); 46 47 static int blk_mq_poll_stats_bkt(const struct request *rq) 48 { 49 int ddir, bytes, bucket; 50 51 ddir = rq_data_dir(rq); 52 bytes = blk_rq_bytes(rq); 53 54 bucket = ddir + 2*(ilog2(bytes) - 9); 55 56 if (bucket < 0) 57 return -1; 58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 60 61 return bucket; 62 } 63 64 /* 65 * Check if any of the ctx's have pending work in this hardware queue 66 */ 67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 68 { 69 return sbitmap_any_bit_set(&hctx->ctx_map) || 70 !list_empty_careful(&hctx->dispatch) || 71 blk_mq_sched_has_work(hctx); 72 } 73 74 /* 75 * Mark this ctx as having pending work in this hardware queue 76 */ 77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 78 struct blk_mq_ctx *ctx) 79 { 80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 82 } 83 84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 85 struct blk_mq_ctx *ctx) 86 { 87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 88 } 89 90 void blk_freeze_queue_start(struct request_queue *q) 91 { 92 int freeze_depth; 93 94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 95 if (freeze_depth == 1) { 96 percpu_ref_kill(&q->q_usage_counter); 97 blk_mq_run_hw_queues(q, false); 98 } 99 } 100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 101 102 void blk_mq_freeze_queue_wait(struct request_queue *q) 103 { 104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 105 } 106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 107 108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 109 unsigned long timeout) 110 { 111 return wait_event_timeout(q->mq_freeze_wq, 112 percpu_ref_is_zero(&q->q_usage_counter), 113 timeout); 114 } 115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 116 117 /* 118 * Guarantee no request is in use, so we can change any data structure of 119 * the queue afterward. 120 */ 121 void blk_freeze_queue(struct request_queue *q) 122 { 123 /* 124 * In the !blk_mq case we are only calling this to kill the 125 * q_usage_counter, otherwise this increases the freeze depth 126 * and waits for it to return to zero. For this reason there is 127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 128 * exported to drivers as the only user for unfreeze is blk_mq. 129 */ 130 blk_freeze_queue_start(q); 131 blk_mq_freeze_queue_wait(q); 132 } 133 134 void blk_mq_freeze_queue(struct request_queue *q) 135 { 136 /* 137 * ...just an alias to keep freeze and unfreeze actions balanced 138 * in the blk_mq_* namespace 139 */ 140 blk_freeze_queue(q); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 143 144 void blk_mq_unfreeze_queue(struct request_queue *q) 145 { 146 int freeze_depth; 147 148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 149 WARN_ON_ONCE(freeze_depth < 0); 150 if (!freeze_depth) { 151 percpu_ref_reinit(&q->q_usage_counter); 152 wake_up_all(&q->mq_freeze_wq); 153 } 154 } 155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 156 157 /** 158 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 159 * @q: request queue. 160 * 161 * Note: this function does not prevent that the struct request end_io() 162 * callback function is invoked. Additionally, it is not prevented that 163 * new queue_rq() calls occur unless the queue has been stopped first. 164 */ 165 void blk_mq_quiesce_queue(struct request_queue *q) 166 { 167 struct blk_mq_hw_ctx *hctx; 168 unsigned int i; 169 bool rcu = false; 170 171 __blk_mq_stop_hw_queues(q, true); 172 173 queue_for_each_hw_ctx(q, hctx, i) { 174 if (hctx->flags & BLK_MQ_F_BLOCKING) 175 synchronize_srcu(&hctx->queue_rq_srcu); 176 else 177 rcu = true; 178 } 179 if (rcu) 180 synchronize_rcu(); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 183 184 void blk_mq_wake_waiters(struct request_queue *q) 185 { 186 struct blk_mq_hw_ctx *hctx; 187 unsigned int i; 188 189 queue_for_each_hw_ctx(q, hctx, i) 190 if (blk_mq_hw_queue_mapped(hctx)) 191 blk_mq_tag_wakeup_all(hctx->tags, true); 192 193 /* 194 * If we are called because the queue has now been marked as 195 * dying, we need to ensure that processes currently waiting on 196 * the queue are notified as well. 197 */ 198 wake_up_all(&q->mq_freeze_wq); 199 } 200 201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 202 { 203 return blk_mq_has_free_tags(hctx->tags); 204 } 205 EXPORT_SYMBOL(blk_mq_can_queue); 206 207 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 208 struct request *rq, unsigned int op) 209 { 210 INIT_LIST_HEAD(&rq->queuelist); 211 /* csd/requeue_work/fifo_time is initialized before use */ 212 rq->q = q; 213 rq->mq_ctx = ctx; 214 rq->cmd_flags = op; 215 if (blk_queue_io_stat(q)) 216 rq->rq_flags |= RQF_IO_STAT; 217 /* do not touch atomic flags, it needs atomic ops against the timer */ 218 rq->cpu = -1; 219 INIT_HLIST_NODE(&rq->hash); 220 RB_CLEAR_NODE(&rq->rb_node); 221 rq->rq_disk = NULL; 222 rq->part = NULL; 223 rq->start_time = jiffies; 224 #ifdef CONFIG_BLK_CGROUP 225 rq->rl = NULL; 226 set_start_time_ns(rq); 227 rq->io_start_time_ns = 0; 228 #endif 229 rq->nr_phys_segments = 0; 230 #if defined(CONFIG_BLK_DEV_INTEGRITY) 231 rq->nr_integrity_segments = 0; 232 #endif 233 rq->special = NULL; 234 /* tag was already set */ 235 rq->extra_len = 0; 236 237 INIT_LIST_HEAD(&rq->timeout_list); 238 rq->timeout = 0; 239 240 rq->end_io = NULL; 241 rq->end_io_data = NULL; 242 rq->next_rq = NULL; 243 244 ctx->rq_dispatched[op_is_sync(op)]++; 245 } 246 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init); 247 248 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data, 249 unsigned int op) 250 { 251 struct request *rq; 252 unsigned int tag; 253 254 tag = blk_mq_get_tag(data); 255 if (tag != BLK_MQ_TAG_FAIL) { 256 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 257 258 rq = tags->static_rqs[tag]; 259 260 if (data->flags & BLK_MQ_REQ_INTERNAL) { 261 rq->tag = -1; 262 rq->internal_tag = tag; 263 } else { 264 if (blk_mq_tag_busy(data->hctx)) { 265 rq->rq_flags = RQF_MQ_INFLIGHT; 266 atomic_inc(&data->hctx->nr_active); 267 } 268 rq->tag = tag; 269 rq->internal_tag = -1; 270 data->hctx->tags->rqs[rq->tag] = rq; 271 } 272 273 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 274 return rq; 275 } 276 277 return NULL; 278 } 279 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request); 280 281 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 282 unsigned int flags) 283 { 284 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 285 struct request *rq; 286 int ret; 287 288 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 289 if (ret) 290 return ERR_PTR(ret); 291 292 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 293 294 blk_mq_put_ctx(alloc_data.ctx); 295 blk_queue_exit(q); 296 297 if (!rq) 298 return ERR_PTR(-EWOULDBLOCK); 299 300 rq->__data_len = 0; 301 rq->__sector = (sector_t) -1; 302 rq->bio = rq->biotail = NULL; 303 return rq; 304 } 305 EXPORT_SYMBOL(blk_mq_alloc_request); 306 307 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 308 unsigned int flags, unsigned int hctx_idx) 309 { 310 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 311 struct request *rq; 312 unsigned int cpu; 313 int ret; 314 315 /* 316 * If the tag allocator sleeps we could get an allocation for a 317 * different hardware context. No need to complicate the low level 318 * allocator for this for the rare use case of a command tied to 319 * a specific queue. 320 */ 321 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 322 return ERR_PTR(-EINVAL); 323 324 if (hctx_idx >= q->nr_hw_queues) 325 return ERR_PTR(-EIO); 326 327 ret = blk_queue_enter(q, true); 328 if (ret) 329 return ERR_PTR(ret); 330 331 /* 332 * Check if the hardware context is actually mapped to anything. 333 * If not tell the caller that it should skip this queue. 334 */ 335 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 336 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 337 blk_queue_exit(q); 338 return ERR_PTR(-EXDEV); 339 } 340 cpu = cpumask_first(alloc_data.hctx->cpumask); 341 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 342 343 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 344 345 blk_queue_exit(q); 346 347 if (!rq) 348 return ERR_PTR(-EWOULDBLOCK); 349 350 return rq; 351 } 352 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 353 354 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 355 struct request *rq) 356 { 357 const int sched_tag = rq->internal_tag; 358 struct request_queue *q = rq->q; 359 360 if (rq->rq_flags & RQF_MQ_INFLIGHT) 361 atomic_dec(&hctx->nr_active); 362 363 wbt_done(q->rq_wb, &rq->issue_stat); 364 rq->rq_flags = 0; 365 366 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 367 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 368 if (rq->tag != -1) 369 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 370 if (sched_tag != -1) 371 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 372 blk_mq_sched_restart(hctx); 373 blk_queue_exit(q); 374 } 375 376 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx, 377 struct request *rq) 378 { 379 struct blk_mq_ctx *ctx = rq->mq_ctx; 380 381 ctx->rq_completed[rq_is_sync(rq)]++; 382 __blk_mq_finish_request(hctx, ctx, rq); 383 } 384 385 void blk_mq_finish_request(struct request *rq) 386 { 387 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 388 } 389 EXPORT_SYMBOL_GPL(blk_mq_finish_request); 390 391 void blk_mq_free_request(struct request *rq) 392 { 393 blk_mq_sched_put_request(rq); 394 } 395 EXPORT_SYMBOL_GPL(blk_mq_free_request); 396 397 inline void __blk_mq_end_request(struct request *rq, int error) 398 { 399 blk_account_io_done(rq); 400 401 if (rq->end_io) { 402 wbt_done(rq->q->rq_wb, &rq->issue_stat); 403 rq->end_io(rq, error); 404 } else { 405 if (unlikely(blk_bidi_rq(rq))) 406 blk_mq_free_request(rq->next_rq); 407 blk_mq_free_request(rq); 408 } 409 } 410 EXPORT_SYMBOL(__blk_mq_end_request); 411 412 void blk_mq_end_request(struct request *rq, int error) 413 { 414 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 415 BUG(); 416 __blk_mq_end_request(rq, error); 417 } 418 EXPORT_SYMBOL(blk_mq_end_request); 419 420 static void __blk_mq_complete_request_remote(void *data) 421 { 422 struct request *rq = data; 423 424 rq->q->softirq_done_fn(rq); 425 } 426 427 static void __blk_mq_complete_request(struct request *rq) 428 { 429 struct blk_mq_ctx *ctx = rq->mq_ctx; 430 bool shared = false; 431 int cpu; 432 433 if (rq->internal_tag != -1) 434 blk_mq_sched_completed_request(rq); 435 if (rq->rq_flags & RQF_STATS) { 436 blk_mq_poll_stats_start(rq->q); 437 blk_stat_add(rq); 438 } 439 440 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 441 rq->q->softirq_done_fn(rq); 442 return; 443 } 444 445 cpu = get_cpu(); 446 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 447 shared = cpus_share_cache(cpu, ctx->cpu); 448 449 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 450 rq->csd.func = __blk_mq_complete_request_remote; 451 rq->csd.info = rq; 452 rq->csd.flags = 0; 453 smp_call_function_single_async(ctx->cpu, &rq->csd); 454 } else { 455 rq->q->softirq_done_fn(rq); 456 } 457 put_cpu(); 458 } 459 460 /** 461 * blk_mq_complete_request - end I/O on a request 462 * @rq: the request being processed 463 * 464 * Description: 465 * Ends all I/O on a request. It does not handle partial completions. 466 * The actual completion happens out-of-order, through a IPI handler. 467 **/ 468 void blk_mq_complete_request(struct request *rq) 469 { 470 struct request_queue *q = rq->q; 471 472 if (unlikely(blk_should_fake_timeout(q))) 473 return; 474 if (!blk_mark_rq_complete(rq)) 475 __blk_mq_complete_request(rq); 476 } 477 EXPORT_SYMBOL(blk_mq_complete_request); 478 479 int blk_mq_request_started(struct request *rq) 480 { 481 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 482 } 483 EXPORT_SYMBOL_GPL(blk_mq_request_started); 484 485 void blk_mq_start_request(struct request *rq) 486 { 487 struct request_queue *q = rq->q; 488 489 blk_mq_sched_started_request(rq); 490 491 trace_block_rq_issue(q, rq); 492 493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 494 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq)); 495 rq->rq_flags |= RQF_STATS; 496 wbt_issue(q->rq_wb, &rq->issue_stat); 497 } 498 499 blk_add_timer(rq); 500 501 /* 502 * Ensure that ->deadline is visible before set the started 503 * flag and clear the completed flag. 504 */ 505 smp_mb__before_atomic(); 506 507 /* 508 * Mark us as started and clear complete. Complete might have been 509 * set if requeue raced with timeout, which then marked it as 510 * complete. So be sure to clear complete again when we start 511 * the request, otherwise we'll ignore the completion event. 512 */ 513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 517 518 if (q->dma_drain_size && blk_rq_bytes(rq)) { 519 /* 520 * Make sure space for the drain appears. We know we can do 521 * this because max_hw_segments has been adjusted to be one 522 * fewer than the device can handle. 523 */ 524 rq->nr_phys_segments++; 525 } 526 } 527 EXPORT_SYMBOL(blk_mq_start_request); 528 529 /* 530 * When we reach here because queue is busy, REQ_ATOM_COMPLETE 531 * flag isn't set yet, so there may be race with timeout handler, 532 * but given rq->deadline is just set in .queue_rq() under 533 * this situation, the race won't be possible in reality because 534 * rq->timeout should be set as big enough to cover the window 535 * between blk_mq_start_request() called from .queue_rq() and 536 * clearing REQ_ATOM_STARTED here. 537 */ 538 static void __blk_mq_requeue_request(struct request *rq) 539 { 540 struct request_queue *q = rq->q; 541 542 trace_block_rq_requeue(q, rq); 543 wbt_requeue(q->rq_wb, &rq->issue_stat); 544 blk_mq_sched_requeue_request(rq); 545 546 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 547 if (q->dma_drain_size && blk_rq_bytes(rq)) 548 rq->nr_phys_segments--; 549 } 550 } 551 552 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 553 { 554 __blk_mq_requeue_request(rq); 555 556 BUG_ON(blk_queued_rq(rq)); 557 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 558 } 559 EXPORT_SYMBOL(blk_mq_requeue_request); 560 561 static void blk_mq_requeue_work(struct work_struct *work) 562 { 563 struct request_queue *q = 564 container_of(work, struct request_queue, requeue_work.work); 565 LIST_HEAD(rq_list); 566 struct request *rq, *next; 567 unsigned long flags; 568 569 spin_lock_irqsave(&q->requeue_lock, flags); 570 list_splice_init(&q->requeue_list, &rq_list); 571 spin_unlock_irqrestore(&q->requeue_lock, flags); 572 573 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 574 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 575 continue; 576 577 rq->rq_flags &= ~RQF_SOFTBARRIER; 578 list_del_init(&rq->queuelist); 579 blk_mq_sched_insert_request(rq, true, false, false, true); 580 } 581 582 while (!list_empty(&rq_list)) { 583 rq = list_entry(rq_list.next, struct request, queuelist); 584 list_del_init(&rq->queuelist); 585 blk_mq_sched_insert_request(rq, false, false, false, true); 586 } 587 588 blk_mq_run_hw_queues(q, false); 589 } 590 591 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 592 bool kick_requeue_list) 593 { 594 struct request_queue *q = rq->q; 595 unsigned long flags; 596 597 /* 598 * We abuse this flag that is otherwise used by the I/O scheduler to 599 * request head insertation from the workqueue. 600 */ 601 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 602 603 spin_lock_irqsave(&q->requeue_lock, flags); 604 if (at_head) { 605 rq->rq_flags |= RQF_SOFTBARRIER; 606 list_add(&rq->queuelist, &q->requeue_list); 607 } else { 608 list_add_tail(&rq->queuelist, &q->requeue_list); 609 } 610 spin_unlock_irqrestore(&q->requeue_lock, flags); 611 612 if (kick_requeue_list) 613 blk_mq_kick_requeue_list(q); 614 } 615 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 616 617 void blk_mq_kick_requeue_list(struct request_queue *q) 618 { 619 kblockd_schedule_delayed_work(&q->requeue_work, 0); 620 } 621 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 622 623 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 624 unsigned long msecs) 625 { 626 kblockd_schedule_delayed_work(&q->requeue_work, 627 msecs_to_jiffies(msecs)); 628 } 629 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 630 631 void blk_mq_abort_requeue_list(struct request_queue *q) 632 { 633 unsigned long flags; 634 LIST_HEAD(rq_list); 635 636 spin_lock_irqsave(&q->requeue_lock, flags); 637 list_splice_init(&q->requeue_list, &rq_list); 638 spin_unlock_irqrestore(&q->requeue_lock, flags); 639 640 while (!list_empty(&rq_list)) { 641 struct request *rq; 642 643 rq = list_first_entry(&rq_list, struct request, queuelist); 644 list_del_init(&rq->queuelist); 645 blk_mq_end_request(rq, -EIO); 646 } 647 } 648 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 649 650 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 651 { 652 if (tag < tags->nr_tags) { 653 prefetch(tags->rqs[tag]); 654 return tags->rqs[tag]; 655 } 656 657 return NULL; 658 } 659 EXPORT_SYMBOL(blk_mq_tag_to_rq); 660 661 struct blk_mq_timeout_data { 662 unsigned long next; 663 unsigned int next_set; 664 }; 665 666 void blk_mq_rq_timed_out(struct request *req, bool reserved) 667 { 668 const struct blk_mq_ops *ops = req->q->mq_ops; 669 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 670 671 /* 672 * We know that complete is set at this point. If STARTED isn't set 673 * anymore, then the request isn't active and the "timeout" should 674 * just be ignored. This can happen due to the bitflag ordering. 675 * Timeout first checks if STARTED is set, and if it is, assumes 676 * the request is active. But if we race with completion, then 677 * both flags will get cleared. So check here again, and ignore 678 * a timeout event with a request that isn't active. 679 */ 680 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 681 return; 682 683 if (ops->timeout) 684 ret = ops->timeout(req, reserved); 685 686 switch (ret) { 687 case BLK_EH_HANDLED: 688 __blk_mq_complete_request(req); 689 break; 690 case BLK_EH_RESET_TIMER: 691 blk_add_timer(req); 692 blk_clear_rq_complete(req); 693 break; 694 case BLK_EH_NOT_HANDLED: 695 break; 696 default: 697 printk(KERN_ERR "block: bad eh return: %d\n", ret); 698 break; 699 } 700 } 701 702 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 703 struct request *rq, void *priv, bool reserved) 704 { 705 struct blk_mq_timeout_data *data = priv; 706 707 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 708 return; 709 710 /* 711 * The rq being checked may have been freed and reallocated 712 * out already here, we avoid this race by checking rq->deadline 713 * and REQ_ATOM_COMPLETE flag together: 714 * 715 * - if rq->deadline is observed as new value because of 716 * reusing, the rq won't be timed out because of timing. 717 * - if rq->deadline is observed as previous value, 718 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path 719 * because we put a barrier between setting rq->deadline 720 * and clearing the flag in blk_mq_start_request(), so 721 * this rq won't be timed out too. 722 */ 723 if (time_after_eq(jiffies, rq->deadline)) { 724 if (!blk_mark_rq_complete(rq)) 725 blk_mq_rq_timed_out(rq, reserved); 726 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 727 data->next = rq->deadline; 728 data->next_set = 1; 729 } 730 } 731 732 static void blk_mq_timeout_work(struct work_struct *work) 733 { 734 struct request_queue *q = 735 container_of(work, struct request_queue, timeout_work); 736 struct blk_mq_timeout_data data = { 737 .next = 0, 738 .next_set = 0, 739 }; 740 int i; 741 742 /* A deadlock might occur if a request is stuck requiring a 743 * timeout at the same time a queue freeze is waiting 744 * completion, since the timeout code would not be able to 745 * acquire the queue reference here. 746 * 747 * That's why we don't use blk_queue_enter here; instead, we use 748 * percpu_ref_tryget directly, because we need to be able to 749 * obtain a reference even in the short window between the queue 750 * starting to freeze, by dropping the first reference in 751 * blk_freeze_queue_start, and the moment the last request is 752 * consumed, marked by the instant q_usage_counter reaches 753 * zero. 754 */ 755 if (!percpu_ref_tryget(&q->q_usage_counter)) 756 return; 757 758 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 759 760 if (data.next_set) { 761 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 762 mod_timer(&q->timeout, data.next); 763 } else { 764 struct blk_mq_hw_ctx *hctx; 765 766 queue_for_each_hw_ctx(q, hctx, i) { 767 /* the hctx may be unmapped, so check it here */ 768 if (blk_mq_hw_queue_mapped(hctx)) 769 blk_mq_tag_idle(hctx); 770 } 771 } 772 blk_queue_exit(q); 773 } 774 775 /* 776 * Reverse check our software queue for entries that we could potentially 777 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 778 * too much time checking for merges. 779 */ 780 static bool blk_mq_attempt_merge(struct request_queue *q, 781 struct blk_mq_ctx *ctx, struct bio *bio) 782 { 783 struct request *rq; 784 int checked = 8; 785 786 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 787 bool merged = false; 788 789 if (!checked--) 790 break; 791 792 if (!blk_rq_merge_ok(rq, bio)) 793 continue; 794 795 switch (blk_try_merge(rq, bio)) { 796 case ELEVATOR_BACK_MERGE: 797 if (blk_mq_sched_allow_merge(q, rq, bio)) 798 merged = bio_attempt_back_merge(q, rq, bio); 799 break; 800 case ELEVATOR_FRONT_MERGE: 801 if (blk_mq_sched_allow_merge(q, rq, bio)) 802 merged = bio_attempt_front_merge(q, rq, bio); 803 break; 804 case ELEVATOR_DISCARD_MERGE: 805 merged = bio_attempt_discard_merge(q, rq, bio); 806 break; 807 default: 808 continue; 809 } 810 811 if (merged) 812 ctx->rq_merged++; 813 return merged; 814 } 815 816 return false; 817 } 818 819 struct flush_busy_ctx_data { 820 struct blk_mq_hw_ctx *hctx; 821 struct list_head *list; 822 }; 823 824 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 825 { 826 struct flush_busy_ctx_data *flush_data = data; 827 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 828 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 829 830 sbitmap_clear_bit(sb, bitnr); 831 spin_lock(&ctx->lock); 832 list_splice_tail_init(&ctx->rq_list, flush_data->list); 833 spin_unlock(&ctx->lock); 834 return true; 835 } 836 837 /* 838 * Process software queues that have been marked busy, splicing them 839 * to the for-dispatch 840 */ 841 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 842 { 843 struct flush_busy_ctx_data data = { 844 .hctx = hctx, 845 .list = list, 846 }; 847 848 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 849 } 850 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 851 852 static inline unsigned int queued_to_index(unsigned int queued) 853 { 854 if (!queued) 855 return 0; 856 857 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 858 } 859 860 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 861 bool wait) 862 { 863 struct blk_mq_alloc_data data = { 864 .q = rq->q, 865 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 866 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 867 }; 868 869 might_sleep_if(wait); 870 871 if (rq->tag != -1) 872 goto done; 873 874 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 875 data.flags |= BLK_MQ_REQ_RESERVED; 876 877 rq->tag = blk_mq_get_tag(&data); 878 if (rq->tag >= 0) { 879 if (blk_mq_tag_busy(data.hctx)) { 880 rq->rq_flags |= RQF_MQ_INFLIGHT; 881 atomic_inc(&data.hctx->nr_active); 882 } 883 data.hctx->tags->rqs[rq->tag] = rq; 884 } 885 886 done: 887 if (hctx) 888 *hctx = data.hctx; 889 return rq->tag != -1; 890 } 891 892 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 893 struct request *rq) 894 { 895 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 896 rq->tag = -1; 897 898 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 899 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 900 atomic_dec(&hctx->nr_active); 901 } 902 } 903 904 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx, 905 struct request *rq) 906 { 907 if (rq->tag == -1 || rq->internal_tag == -1) 908 return; 909 910 __blk_mq_put_driver_tag(hctx, rq); 911 } 912 913 static void blk_mq_put_driver_tag(struct request *rq) 914 { 915 struct blk_mq_hw_ctx *hctx; 916 917 if (rq->tag == -1 || rq->internal_tag == -1) 918 return; 919 920 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 921 __blk_mq_put_driver_tag(hctx, rq); 922 } 923 924 /* 925 * If we fail getting a driver tag because all the driver tags are already 926 * assigned and on the dispatch list, BUT the first entry does not have a 927 * tag, then we could deadlock. For that case, move entries with assigned 928 * driver tags to the front, leaving the set of tagged requests in the 929 * same order, and the untagged set in the same order. 930 */ 931 static bool reorder_tags_to_front(struct list_head *list) 932 { 933 struct request *rq, *tmp, *first = NULL; 934 935 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 936 if (rq == first) 937 break; 938 if (rq->tag != -1) { 939 list_move(&rq->queuelist, list); 940 if (!first) 941 first = rq; 942 } 943 } 944 945 return first != NULL; 946 } 947 948 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags, 949 void *key) 950 { 951 struct blk_mq_hw_ctx *hctx; 952 953 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 954 955 list_del(&wait->task_list); 956 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state); 957 blk_mq_run_hw_queue(hctx, true); 958 return 1; 959 } 960 961 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx) 962 { 963 struct sbq_wait_state *ws; 964 965 /* 966 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait. 967 * The thread which wins the race to grab this bit adds the hardware 968 * queue to the wait queue. 969 */ 970 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) || 971 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state)) 972 return false; 973 974 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 975 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx); 976 977 /* 978 * As soon as this returns, it's no longer safe to fiddle with 979 * hctx->dispatch_wait, since a completion can wake up the wait queue 980 * and unlock the bit. 981 */ 982 add_wait_queue(&ws->wait, &hctx->dispatch_wait); 983 return true; 984 } 985 986 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list) 987 { 988 struct blk_mq_hw_ctx *hctx; 989 struct request *rq; 990 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK; 991 992 if (list_empty(list)) 993 return false; 994 995 /* 996 * Now process all the entries, sending them to the driver. 997 */ 998 errors = queued = 0; 999 do { 1000 struct blk_mq_queue_data bd; 1001 1002 rq = list_first_entry(list, struct request, queuelist); 1003 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 1004 if (!queued && reorder_tags_to_front(list)) 1005 continue; 1006 1007 /* 1008 * The initial allocation attempt failed, so we need to 1009 * rerun the hardware queue when a tag is freed. 1010 */ 1011 if (!blk_mq_dispatch_wait_add(hctx)) 1012 break; 1013 1014 /* 1015 * It's possible that a tag was freed in the window 1016 * between the allocation failure and adding the 1017 * hardware queue to the wait queue. 1018 */ 1019 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1020 break; 1021 } 1022 1023 list_del_init(&rq->queuelist); 1024 1025 bd.rq = rq; 1026 1027 /* 1028 * Flag last if we have no more requests, or if we have more 1029 * but can't assign a driver tag to it. 1030 */ 1031 if (list_empty(list)) 1032 bd.last = true; 1033 else { 1034 struct request *nxt; 1035 1036 nxt = list_first_entry(list, struct request, queuelist); 1037 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1038 } 1039 1040 ret = q->mq_ops->queue_rq(hctx, &bd); 1041 switch (ret) { 1042 case BLK_MQ_RQ_QUEUE_OK: 1043 queued++; 1044 break; 1045 case BLK_MQ_RQ_QUEUE_BUSY: 1046 blk_mq_put_driver_tag_hctx(hctx, rq); 1047 list_add(&rq->queuelist, list); 1048 __blk_mq_requeue_request(rq); 1049 break; 1050 default: 1051 pr_err("blk-mq: bad return on queue: %d\n", ret); 1052 case BLK_MQ_RQ_QUEUE_ERROR: 1053 errors++; 1054 blk_mq_end_request(rq, -EIO); 1055 break; 1056 } 1057 1058 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 1059 break; 1060 } while (!list_empty(list)); 1061 1062 hctx->dispatched[queued_to_index(queued)]++; 1063 1064 /* 1065 * Any items that need requeuing? Stuff them into hctx->dispatch, 1066 * that is where we will continue on next queue run. 1067 */ 1068 if (!list_empty(list)) { 1069 /* 1070 * If an I/O scheduler has been configured and we got a driver 1071 * tag for the next request already, free it again. 1072 */ 1073 rq = list_first_entry(list, struct request, queuelist); 1074 blk_mq_put_driver_tag(rq); 1075 1076 spin_lock(&hctx->lock); 1077 list_splice_init(list, &hctx->dispatch); 1078 spin_unlock(&hctx->lock); 1079 1080 /* 1081 * If SCHED_RESTART was set by the caller of this function and 1082 * it is no longer set that means that it was cleared by another 1083 * thread and hence that a queue rerun is needed. 1084 * 1085 * If TAG_WAITING is set that means that an I/O scheduler has 1086 * been configured and another thread is waiting for a driver 1087 * tag. To guarantee fairness, do not rerun this hardware queue 1088 * but let the other thread grab the driver tag. 1089 * 1090 * If no I/O scheduler has been configured it is possible that 1091 * the hardware queue got stopped and restarted before requests 1092 * were pushed back onto the dispatch list. Rerun the queue to 1093 * avoid starvation. Notes: 1094 * - blk_mq_run_hw_queue() checks whether or not a queue has 1095 * been stopped before rerunning a queue. 1096 * - Some but not all block drivers stop a queue before 1097 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq 1098 * and dm-rq. 1099 */ 1100 if (!blk_mq_sched_needs_restart(hctx) && 1101 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) 1102 blk_mq_run_hw_queue(hctx, true); 1103 } 1104 1105 return (queued + errors) != 0; 1106 } 1107 1108 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1109 { 1110 int srcu_idx; 1111 1112 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1113 cpu_online(hctx->next_cpu)); 1114 1115 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1116 rcu_read_lock(); 1117 blk_mq_sched_dispatch_requests(hctx); 1118 rcu_read_unlock(); 1119 } else { 1120 might_sleep(); 1121 1122 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 1123 blk_mq_sched_dispatch_requests(hctx); 1124 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 1125 } 1126 } 1127 1128 /* 1129 * It'd be great if the workqueue API had a way to pass 1130 * in a mask and had some smarts for more clever placement. 1131 * For now we just round-robin here, switching for every 1132 * BLK_MQ_CPU_WORK_BATCH queued items. 1133 */ 1134 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1135 { 1136 if (hctx->queue->nr_hw_queues == 1) 1137 return WORK_CPU_UNBOUND; 1138 1139 if (--hctx->next_cpu_batch <= 0) { 1140 int next_cpu; 1141 1142 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1143 if (next_cpu >= nr_cpu_ids) 1144 next_cpu = cpumask_first(hctx->cpumask); 1145 1146 hctx->next_cpu = next_cpu; 1147 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1148 } 1149 1150 return hctx->next_cpu; 1151 } 1152 1153 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1154 unsigned long msecs) 1155 { 1156 if (unlikely(blk_mq_hctx_stopped(hctx) || 1157 !blk_mq_hw_queue_mapped(hctx))) 1158 return; 1159 1160 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1161 int cpu = get_cpu(); 1162 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1163 __blk_mq_run_hw_queue(hctx); 1164 put_cpu(); 1165 return; 1166 } 1167 1168 put_cpu(); 1169 } 1170 1171 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1172 &hctx->run_work, 1173 msecs_to_jiffies(msecs)); 1174 } 1175 1176 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1177 { 1178 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1179 } 1180 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1181 1182 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1183 { 1184 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1185 } 1186 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1187 1188 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1189 { 1190 struct blk_mq_hw_ctx *hctx; 1191 int i; 1192 1193 queue_for_each_hw_ctx(q, hctx, i) { 1194 if (!blk_mq_hctx_has_pending(hctx) || 1195 blk_mq_hctx_stopped(hctx)) 1196 continue; 1197 1198 blk_mq_run_hw_queue(hctx, async); 1199 } 1200 } 1201 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1202 1203 /** 1204 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1205 * @q: request queue. 1206 * 1207 * The caller is responsible for serializing this function against 1208 * blk_mq_{start,stop}_hw_queue(). 1209 */ 1210 bool blk_mq_queue_stopped(struct request_queue *q) 1211 { 1212 struct blk_mq_hw_ctx *hctx; 1213 int i; 1214 1215 queue_for_each_hw_ctx(q, hctx, i) 1216 if (blk_mq_hctx_stopped(hctx)) 1217 return true; 1218 1219 return false; 1220 } 1221 EXPORT_SYMBOL(blk_mq_queue_stopped); 1222 1223 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync) 1224 { 1225 if (sync) 1226 cancel_delayed_work_sync(&hctx->run_work); 1227 else 1228 cancel_delayed_work(&hctx->run_work); 1229 1230 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1231 } 1232 1233 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1234 { 1235 __blk_mq_stop_hw_queue(hctx, false); 1236 } 1237 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1238 1239 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync) 1240 { 1241 struct blk_mq_hw_ctx *hctx; 1242 int i; 1243 1244 queue_for_each_hw_ctx(q, hctx, i) 1245 __blk_mq_stop_hw_queue(hctx, sync); 1246 } 1247 1248 void blk_mq_stop_hw_queues(struct request_queue *q) 1249 { 1250 __blk_mq_stop_hw_queues(q, false); 1251 } 1252 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1253 1254 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1255 { 1256 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1257 1258 blk_mq_run_hw_queue(hctx, false); 1259 } 1260 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1261 1262 void blk_mq_start_hw_queues(struct request_queue *q) 1263 { 1264 struct blk_mq_hw_ctx *hctx; 1265 int i; 1266 1267 queue_for_each_hw_ctx(q, hctx, i) 1268 blk_mq_start_hw_queue(hctx); 1269 } 1270 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1271 1272 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1273 { 1274 if (!blk_mq_hctx_stopped(hctx)) 1275 return; 1276 1277 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1278 blk_mq_run_hw_queue(hctx, async); 1279 } 1280 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1281 1282 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1283 { 1284 struct blk_mq_hw_ctx *hctx; 1285 int i; 1286 1287 queue_for_each_hw_ctx(q, hctx, i) 1288 blk_mq_start_stopped_hw_queue(hctx, async); 1289 } 1290 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1291 1292 static void blk_mq_run_work_fn(struct work_struct *work) 1293 { 1294 struct blk_mq_hw_ctx *hctx; 1295 1296 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1297 1298 /* 1299 * If we are stopped, don't run the queue. The exception is if 1300 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear 1301 * the STOPPED bit and run it. 1302 */ 1303 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) { 1304 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state)) 1305 return; 1306 1307 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1308 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1309 } 1310 1311 __blk_mq_run_hw_queue(hctx); 1312 } 1313 1314 1315 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1316 { 1317 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1318 return; 1319 1320 /* 1321 * Stop the hw queue, then modify currently delayed work. 1322 * This should prevent us from running the queue prematurely. 1323 * Mark the queue as auto-clearing STOPPED when it runs. 1324 */ 1325 blk_mq_stop_hw_queue(hctx); 1326 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1327 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1328 &hctx->run_work, 1329 msecs_to_jiffies(msecs)); 1330 } 1331 EXPORT_SYMBOL(blk_mq_delay_queue); 1332 1333 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1334 struct request *rq, 1335 bool at_head) 1336 { 1337 struct blk_mq_ctx *ctx = rq->mq_ctx; 1338 1339 trace_block_rq_insert(hctx->queue, rq); 1340 1341 if (at_head) 1342 list_add(&rq->queuelist, &ctx->rq_list); 1343 else 1344 list_add_tail(&rq->queuelist, &ctx->rq_list); 1345 } 1346 1347 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1348 bool at_head) 1349 { 1350 struct blk_mq_ctx *ctx = rq->mq_ctx; 1351 1352 __blk_mq_insert_req_list(hctx, rq, at_head); 1353 blk_mq_hctx_mark_pending(hctx, ctx); 1354 } 1355 1356 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1357 struct list_head *list) 1358 1359 { 1360 /* 1361 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1362 * offline now 1363 */ 1364 spin_lock(&ctx->lock); 1365 while (!list_empty(list)) { 1366 struct request *rq; 1367 1368 rq = list_first_entry(list, struct request, queuelist); 1369 BUG_ON(rq->mq_ctx != ctx); 1370 list_del_init(&rq->queuelist); 1371 __blk_mq_insert_req_list(hctx, rq, false); 1372 } 1373 blk_mq_hctx_mark_pending(hctx, ctx); 1374 spin_unlock(&ctx->lock); 1375 } 1376 1377 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1378 { 1379 struct request *rqa = container_of(a, struct request, queuelist); 1380 struct request *rqb = container_of(b, struct request, queuelist); 1381 1382 return !(rqa->mq_ctx < rqb->mq_ctx || 1383 (rqa->mq_ctx == rqb->mq_ctx && 1384 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1385 } 1386 1387 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1388 { 1389 struct blk_mq_ctx *this_ctx; 1390 struct request_queue *this_q; 1391 struct request *rq; 1392 LIST_HEAD(list); 1393 LIST_HEAD(ctx_list); 1394 unsigned int depth; 1395 1396 list_splice_init(&plug->mq_list, &list); 1397 1398 list_sort(NULL, &list, plug_ctx_cmp); 1399 1400 this_q = NULL; 1401 this_ctx = NULL; 1402 depth = 0; 1403 1404 while (!list_empty(&list)) { 1405 rq = list_entry_rq(list.next); 1406 list_del_init(&rq->queuelist); 1407 BUG_ON(!rq->q); 1408 if (rq->mq_ctx != this_ctx) { 1409 if (this_ctx) { 1410 trace_block_unplug(this_q, depth, from_schedule); 1411 blk_mq_sched_insert_requests(this_q, this_ctx, 1412 &ctx_list, 1413 from_schedule); 1414 } 1415 1416 this_ctx = rq->mq_ctx; 1417 this_q = rq->q; 1418 depth = 0; 1419 } 1420 1421 depth++; 1422 list_add_tail(&rq->queuelist, &ctx_list); 1423 } 1424 1425 /* 1426 * If 'this_ctx' is set, we know we have entries to complete 1427 * on 'ctx_list'. Do those. 1428 */ 1429 if (this_ctx) { 1430 trace_block_unplug(this_q, depth, from_schedule); 1431 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1432 from_schedule); 1433 } 1434 } 1435 1436 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1437 { 1438 blk_init_request_from_bio(rq, bio); 1439 1440 blk_account_io_start(rq, true); 1441 } 1442 1443 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1444 { 1445 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1446 !blk_queue_nomerges(hctx->queue); 1447 } 1448 1449 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1450 struct blk_mq_ctx *ctx, 1451 struct request *rq, struct bio *bio) 1452 { 1453 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1454 blk_mq_bio_to_request(rq, bio); 1455 spin_lock(&ctx->lock); 1456 insert_rq: 1457 __blk_mq_insert_request(hctx, rq, false); 1458 spin_unlock(&ctx->lock); 1459 return false; 1460 } else { 1461 struct request_queue *q = hctx->queue; 1462 1463 spin_lock(&ctx->lock); 1464 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1465 blk_mq_bio_to_request(rq, bio); 1466 goto insert_rq; 1467 } 1468 1469 spin_unlock(&ctx->lock); 1470 __blk_mq_finish_request(hctx, ctx, rq); 1471 return true; 1472 } 1473 } 1474 1475 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1476 { 1477 if (rq->tag != -1) 1478 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1479 1480 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1481 } 1482 1483 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie, 1484 bool may_sleep) 1485 { 1486 struct request_queue *q = rq->q; 1487 struct blk_mq_queue_data bd = { 1488 .rq = rq, 1489 .last = true, 1490 }; 1491 struct blk_mq_hw_ctx *hctx; 1492 blk_qc_t new_cookie; 1493 int ret; 1494 1495 if (q->elevator) 1496 goto insert; 1497 1498 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1499 goto insert; 1500 1501 new_cookie = request_to_qc_t(hctx, rq); 1502 1503 /* 1504 * For OK queue, we are done. For error, kill it. Any other 1505 * error (busy), just add it to our list as we previously 1506 * would have done 1507 */ 1508 ret = q->mq_ops->queue_rq(hctx, &bd); 1509 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1510 *cookie = new_cookie; 1511 return; 1512 } 1513 1514 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1515 *cookie = BLK_QC_T_NONE; 1516 blk_mq_end_request(rq, -EIO); 1517 return; 1518 } 1519 1520 __blk_mq_requeue_request(rq); 1521 insert: 1522 blk_mq_sched_insert_request(rq, false, true, false, may_sleep); 1523 } 1524 1525 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1526 struct request *rq, blk_qc_t *cookie) 1527 { 1528 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1529 rcu_read_lock(); 1530 __blk_mq_try_issue_directly(rq, cookie, false); 1531 rcu_read_unlock(); 1532 } else { 1533 unsigned int srcu_idx; 1534 1535 might_sleep(); 1536 1537 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 1538 __blk_mq_try_issue_directly(rq, cookie, true); 1539 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 1540 } 1541 } 1542 1543 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1544 { 1545 const int is_sync = op_is_sync(bio->bi_opf); 1546 const int is_flush_fua = op_is_flush(bio->bi_opf); 1547 struct blk_mq_alloc_data data = { .flags = 0 }; 1548 struct request *rq; 1549 unsigned int request_count = 0; 1550 struct blk_plug *plug; 1551 struct request *same_queue_rq = NULL; 1552 blk_qc_t cookie; 1553 unsigned int wb_acct; 1554 1555 blk_queue_bounce(q, &bio); 1556 1557 blk_queue_split(q, &bio, q->bio_split); 1558 1559 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1560 bio_io_error(bio); 1561 return BLK_QC_T_NONE; 1562 } 1563 1564 if (!is_flush_fua && !blk_queue_nomerges(q) && 1565 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1566 return BLK_QC_T_NONE; 1567 1568 if (blk_mq_sched_bio_merge(q, bio)) 1569 return BLK_QC_T_NONE; 1570 1571 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1572 1573 trace_block_getrq(q, bio, bio->bi_opf); 1574 1575 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1576 if (unlikely(!rq)) { 1577 __wbt_done(q->rq_wb, wb_acct); 1578 return BLK_QC_T_NONE; 1579 } 1580 1581 wbt_track(&rq->issue_stat, wb_acct); 1582 1583 cookie = request_to_qc_t(data.hctx, rq); 1584 1585 plug = current->plug; 1586 if (unlikely(is_flush_fua)) { 1587 blk_mq_put_ctx(data.ctx); 1588 blk_mq_bio_to_request(rq, bio); 1589 if (q->elevator) { 1590 blk_mq_sched_insert_request(rq, false, true, true, 1591 true); 1592 } else { 1593 blk_insert_flush(rq); 1594 blk_mq_run_hw_queue(data.hctx, true); 1595 } 1596 } else if (plug && q->nr_hw_queues == 1) { 1597 struct request *last = NULL; 1598 1599 blk_mq_put_ctx(data.ctx); 1600 blk_mq_bio_to_request(rq, bio); 1601 1602 /* 1603 * @request_count may become stale because of schedule 1604 * out, so check the list again. 1605 */ 1606 if (list_empty(&plug->mq_list)) 1607 request_count = 0; 1608 else if (blk_queue_nomerges(q)) 1609 request_count = blk_plug_queued_count(q); 1610 1611 if (!request_count) 1612 trace_block_plug(q); 1613 else 1614 last = list_entry_rq(plug->mq_list.prev); 1615 1616 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1617 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1618 blk_flush_plug_list(plug, false); 1619 trace_block_plug(q); 1620 } 1621 1622 list_add_tail(&rq->queuelist, &plug->mq_list); 1623 } else if (plug && !blk_queue_nomerges(q)) { 1624 blk_mq_bio_to_request(rq, bio); 1625 1626 /* 1627 * We do limited plugging. If the bio can be merged, do that. 1628 * Otherwise the existing request in the plug list will be 1629 * issued. So the plug list will have one request at most 1630 * The plug list might get flushed before this. If that happens, 1631 * the plug list is empty, and same_queue_rq is invalid. 1632 */ 1633 if (list_empty(&plug->mq_list)) 1634 same_queue_rq = NULL; 1635 if (same_queue_rq) 1636 list_del_init(&same_queue_rq->queuelist); 1637 list_add_tail(&rq->queuelist, &plug->mq_list); 1638 1639 blk_mq_put_ctx(data.ctx); 1640 1641 if (same_queue_rq) 1642 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1643 &cookie); 1644 } else if (q->nr_hw_queues > 1 && is_sync) { 1645 blk_mq_put_ctx(data.ctx); 1646 blk_mq_bio_to_request(rq, bio); 1647 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1648 } else if (q->elevator) { 1649 blk_mq_put_ctx(data.ctx); 1650 blk_mq_bio_to_request(rq, bio); 1651 blk_mq_sched_insert_request(rq, false, true, true, true); 1652 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1653 blk_mq_put_ctx(data.ctx); 1654 blk_mq_run_hw_queue(data.hctx, true); 1655 } else 1656 blk_mq_put_ctx(data.ctx); 1657 1658 return cookie; 1659 } 1660 1661 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1662 unsigned int hctx_idx) 1663 { 1664 struct page *page; 1665 1666 if (tags->rqs && set->ops->exit_request) { 1667 int i; 1668 1669 for (i = 0; i < tags->nr_tags; i++) { 1670 struct request *rq = tags->static_rqs[i]; 1671 1672 if (!rq) 1673 continue; 1674 set->ops->exit_request(set, rq, hctx_idx); 1675 tags->static_rqs[i] = NULL; 1676 } 1677 } 1678 1679 while (!list_empty(&tags->page_list)) { 1680 page = list_first_entry(&tags->page_list, struct page, lru); 1681 list_del_init(&page->lru); 1682 /* 1683 * Remove kmemleak object previously allocated in 1684 * blk_mq_init_rq_map(). 1685 */ 1686 kmemleak_free(page_address(page)); 1687 __free_pages(page, page->private); 1688 } 1689 } 1690 1691 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1692 { 1693 kfree(tags->rqs); 1694 tags->rqs = NULL; 1695 kfree(tags->static_rqs); 1696 tags->static_rqs = NULL; 1697 1698 blk_mq_free_tags(tags); 1699 } 1700 1701 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1702 unsigned int hctx_idx, 1703 unsigned int nr_tags, 1704 unsigned int reserved_tags) 1705 { 1706 struct blk_mq_tags *tags; 1707 int node; 1708 1709 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1710 if (node == NUMA_NO_NODE) 1711 node = set->numa_node; 1712 1713 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1714 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1715 if (!tags) 1716 return NULL; 1717 1718 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1719 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1720 node); 1721 if (!tags->rqs) { 1722 blk_mq_free_tags(tags); 1723 return NULL; 1724 } 1725 1726 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1727 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1728 node); 1729 if (!tags->static_rqs) { 1730 kfree(tags->rqs); 1731 blk_mq_free_tags(tags); 1732 return NULL; 1733 } 1734 1735 return tags; 1736 } 1737 1738 static size_t order_to_size(unsigned int order) 1739 { 1740 return (size_t)PAGE_SIZE << order; 1741 } 1742 1743 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1744 unsigned int hctx_idx, unsigned int depth) 1745 { 1746 unsigned int i, j, entries_per_page, max_order = 4; 1747 size_t rq_size, left; 1748 int node; 1749 1750 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1751 if (node == NUMA_NO_NODE) 1752 node = set->numa_node; 1753 1754 INIT_LIST_HEAD(&tags->page_list); 1755 1756 /* 1757 * rq_size is the size of the request plus driver payload, rounded 1758 * to the cacheline size 1759 */ 1760 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1761 cache_line_size()); 1762 left = rq_size * depth; 1763 1764 for (i = 0; i < depth; ) { 1765 int this_order = max_order; 1766 struct page *page; 1767 int to_do; 1768 void *p; 1769 1770 while (this_order && left < order_to_size(this_order - 1)) 1771 this_order--; 1772 1773 do { 1774 page = alloc_pages_node(node, 1775 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1776 this_order); 1777 if (page) 1778 break; 1779 if (!this_order--) 1780 break; 1781 if (order_to_size(this_order) < rq_size) 1782 break; 1783 } while (1); 1784 1785 if (!page) 1786 goto fail; 1787 1788 page->private = this_order; 1789 list_add_tail(&page->lru, &tags->page_list); 1790 1791 p = page_address(page); 1792 /* 1793 * Allow kmemleak to scan these pages as they contain pointers 1794 * to additional allocations like via ops->init_request(). 1795 */ 1796 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1797 entries_per_page = order_to_size(this_order) / rq_size; 1798 to_do = min(entries_per_page, depth - i); 1799 left -= to_do * rq_size; 1800 for (j = 0; j < to_do; j++) { 1801 struct request *rq = p; 1802 1803 tags->static_rqs[i] = rq; 1804 if (set->ops->init_request) { 1805 if (set->ops->init_request(set, rq, hctx_idx, 1806 node)) { 1807 tags->static_rqs[i] = NULL; 1808 goto fail; 1809 } 1810 } 1811 1812 p += rq_size; 1813 i++; 1814 } 1815 } 1816 return 0; 1817 1818 fail: 1819 blk_mq_free_rqs(set, tags, hctx_idx); 1820 return -ENOMEM; 1821 } 1822 1823 /* 1824 * 'cpu' is going away. splice any existing rq_list entries from this 1825 * software queue to the hw queue dispatch list, and ensure that it 1826 * gets run. 1827 */ 1828 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1829 { 1830 struct blk_mq_hw_ctx *hctx; 1831 struct blk_mq_ctx *ctx; 1832 LIST_HEAD(tmp); 1833 1834 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1835 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1836 1837 spin_lock(&ctx->lock); 1838 if (!list_empty(&ctx->rq_list)) { 1839 list_splice_init(&ctx->rq_list, &tmp); 1840 blk_mq_hctx_clear_pending(hctx, ctx); 1841 } 1842 spin_unlock(&ctx->lock); 1843 1844 if (list_empty(&tmp)) 1845 return 0; 1846 1847 spin_lock(&hctx->lock); 1848 list_splice_tail_init(&tmp, &hctx->dispatch); 1849 spin_unlock(&hctx->lock); 1850 1851 blk_mq_run_hw_queue(hctx, true); 1852 return 0; 1853 } 1854 1855 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1856 { 1857 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1858 &hctx->cpuhp_dead); 1859 } 1860 1861 /* hctx->ctxs will be freed in queue's release handler */ 1862 static void blk_mq_exit_hctx(struct request_queue *q, 1863 struct blk_mq_tag_set *set, 1864 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1865 { 1866 blk_mq_debugfs_unregister_hctx(hctx); 1867 1868 blk_mq_tag_idle(hctx); 1869 1870 if (set->ops->exit_request) 1871 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 1872 1873 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 1874 1875 if (set->ops->exit_hctx) 1876 set->ops->exit_hctx(hctx, hctx_idx); 1877 1878 if (hctx->flags & BLK_MQ_F_BLOCKING) 1879 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1880 1881 blk_mq_remove_cpuhp(hctx); 1882 blk_free_flush_queue(hctx->fq); 1883 sbitmap_free(&hctx->ctx_map); 1884 } 1885 1886 static void blk_mq_exit_hw_queues(struct request_queue *q, 1887 struct blk_mq_tag_set *set, int nr_queue) 1888 { 1889 struct blk_mq_hw_ctx *hctx; 1890 unsigned int i; 1891 1892 queue_for_each_hw_ctx(q, hctx, i) { 1893 if (i == nr_queue) 1894 break; 1895 blk_mq_exit_hctx(q, set, hctx, i); 1896 } 1897 } 1898 1899 static int blk_mq_init_hctx(struct request_queue *q, 1900 struct blk_mq_tag_set *set, 1901 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1902 { 1903 int node; 1904 1905 node = hctx->numa_node; 1906 if (node == NUMA_NO_NODE) 1907 node = hctx->numa_node = set->numa_node; 1908 1909 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1910 spin_lock_init(&hctx->lock); 1911 INIT_LIST_HEAD(&hctx->dispatch); 1912 hctx->queue = q; 1913 hctx->queue_num = hctx_idx; 1914 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1915 1916 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1917 1918 hctx->tags = set->tags[hctx_idx]; 1919 1920 /* 1921 * Allocate space for all possible cpus to avoid allocation at 1922 * runtime 1923 */ 1924 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1925 GFP_KERNEL, node); 1926 if (!hctx->ctxs) 1927 goto unregister_cpu_notifier; 1928 1929 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1930 node)) 1931 goto free_ctxs; 1932 1933 hctx->nr_ctx = 0; 1934 1935 if (set->ops->init_hctx && 1936 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1937 goto free_bitmap; 1938 1939 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 1940 goto exit_hctx; 1941 1942 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1943 if (!hctx->fq) 1944 goto sched_exit_hctx; 1945 1946 if (set->ops->init_request && 1947 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx, 1948 node)) 1949 goto free_fq; 1950 1951 if (hctx->flags & BLK_MQ_F_BLOCKING) 1952 init_srcu_struct(&hctx->queue_rq_srcu); 1953 1954 blk_mq_debugfs_register_hctx(q, hctx); 1955 1956 return 0; 1957 1958 free_fq: 1959 kfree(hctx->fq); 1960 sched_exit_hctx: 1961 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 1962 exit_hctx: 1963 if (set->ops->exit_hctx) 1964 set->ops->exit_hctx(hctx, hctx_idx); 1965 free_bitmap: 1966 sbitmap_free(&hctx->ctx_map); 1967 free_ctxs: 1968 kfree(hctx->ctxs); 1969 unregister_cpu_notifier: 1970 blk_mq_remove_cpuhp(hctx); 1971 return -1; 1972 } 1973 1974 static void blk_mq_init_cpu_queues(struct request_queue *q, 1975 unsigned int nr_hw_queues) 1976 { 1977 unsigned int i; 1978 1979 for_each_possible_cpu(i) { 1980 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1981 struct blk_mq_hw_ctx *hctx; 1982 1983 __ctx->cpu = i; 1984 spin_lock_init(&__ctx->lock); 1985 INIT_LIST_HEAD(&__ctx->rq_list); 1986 __ctx->queue = q; 1987 1988 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1989 if (!cpu_online(i)) 1990 continue; 1991 1992 hctx = blk_mq_map_queue(q, i); 1993 1994 /* 1995 * Set local node, IFF we have more than one hw queue. If 1996 * not, we remain on the home node of the device 1997 */ 1998 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1999 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2000 } 2001 } 2002 2003 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2004 { 2005 int ret = 0; 2006 2007 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2008 set->queue_depth, set->reserved_tags); 2009 if (!set->tags[hctx_idx]) 2010 return false; 2011 2012 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2013 set->queue_depth); 2014 if (!ret) 2015 return true; 2016 2017 blk_mq_free_rq_map(set->tags[hctx_idx]); 2018 set->tags[hctx_idx] = NULL; 2019 return false; 2020 } 2021 2022 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2023 unsigned int hctx_idx) 2024 { 2025 if (set->tags[hctx_idx]) { 2026 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2027 blk_mq_free_rq_map(set->tags[hctx_idx]); 2028 set->tags[hctx_idx] = NULL; 2029 } 2030 } 2031 2032 static void blk_mq_map_swqueue(struct request_queue *q, 2033 const struct cpumask *online_mask) 2034 { 2035 unsigned int i, hctx_idx; 2036 struct blk_mq_hw_ctx *hctx; 2037 struct blk_mq_ctx *ctx; 2038 struct blk_mq_tag_set *set = q->tag_set; 2039 2040 /* 2041 * Avoid others reading imcomplete hctx->cpumask through sysfs 2042 */ 2043 mutex_lock(&q->sysfs_lock); 2044 2045 queue_for_each_hw_ctx(q, hctx, i) { 2046 cpumask_clear(hctx->cpumask); 2047 hctx->nr_ctx = 0; 2048 } 2049 2050 /* 2051 * Map software to hardware queues 2052 */ 2053 for_each_possible_cpu(i) { 2054 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2055 if (!cpumask_test_cpu(i, online_mask)) 2056 continue; 2057 2058 hctx_idx = q->mq_map[i]; 2059 /* unmapped hw queue can be remapped after CPU topo changed */ 2060 if (!set->tags[hctx_idx] && 2061 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2062 /* 2063 * If tags initialization fail for some hctx, 2064 * that hctx won't be brought online. In this 2065 * case, remap the current ctx to hctx[0] which 2066 * is guaranteed to always have tags allocated 2067 */ 2068 q->mq_map[i] = 0; 2069 } 2070 2071 ctx = per_cpu_ptr(q->queue_ctx, i); 2072 hctx = blk_mq_map_queue(q, i); 2073 2074 cpumask_set_cpu(i, hctx->cpumask); 2075 ctx->index_hw = hctx->nr_ctx; 2076 hctx->ctxs[hctx->nr_ctx++] = ctx; 2077 } 2078 2079 mutex_unlock(&q->sysfs_lock); 2080 2081 queue_for_each_hw_ctx(q, hctx, i) { 2082 /* 2083 * If no software queues are mapped to this hardware queue, 2084 * disable it and free the request entries. 2085 */ 2086 if (!hctx->nr_ctx) { 2087 /* Never unmap queue 0. We need it as a 2088 * fallback in case of a new remap fails 2089 * allocation 2090 */ 2091 if (i && set->tags[i]) 2092 blk_mq_free_map_and_requests(set, i); 2093 2094 hctx->tags = NULL; 2095 continue; 2096 } 2097 2098 hctx->tags = set->tags[i]; 2099 WARN_ON(!hctx->tags); 2100 2101 /* 2102 * Set the map size to the number of mapped software queues. 2103 * This is more accurate and more efficient than looping 2104 * over all possibly mapped software queues. 2105 */ 2106 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2107 2108 /* 2109 * Initialize batch roundrobin counts 2110 */ 2111 hctx->next_cpu = cpumask_first(hctx->cpumask); 2112 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2113 } 2114 } 2115 2116 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2117 { 2118 struct blk_mq_hw_ctx *hctx; 2119 int i; 2120 2121 queue_for_each_hw_ctx(q, hctx, i) { 2122 if (shared) 2123 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2124 else 2125 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2126 } 2127 } 2128 2129 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 2130 { 2131 struct request_queue *q; 2132 2133 lockdep_assert_held(&set->tag_list_lock); 2134 2135 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2136 blk_mq_freeze_queue(q); 2137 queue_set_hctx_shared(q, shared); 2138 blk_mq_unfreeze_queue(q); 2139 } 2140 } 2141 2142 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2143 { 2144 struct blk_mq_tag_set *set = q->tag_set; 2145 2146 mutex_lock(&set->tag_list_lock); 2147 list_del_rcu(&q->tag_set_list); 2148 INIT_LIST_HEAD(&q->tag_set_list); 2149 if (list_is_singular(&set->tag_list)) { 2150 /* just transitioned to unshared */ 2151 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2152 /* update existing queue */ 2153 blk_mq_update_tag_set_depth(set, false); 2154 } 2155 mutex_unlock(&set->tag_list_lock); 2156 2157 synchronize_rcu(); 2158 } 2159 2160 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2161 struct request_queue *q) 2162 { 2163 q->tag_set = set; 2164 2165 mutex_lock(&set->tag_list_lock); 2166 2167 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2168 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2169 set->flags |= BLK_MQ_F_TAG_SHARED; 2170 /* update existing queue */ 2171 blk_mq_update_tag_set_depth(set, true); 2172 } 2173 if (set->flags & BLK_MQ_F_TAG_SHARED) 2174 queue_set_hctx_shared(q, true); 2175 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2176 2177 mutex_unlock(&set->tag_list_lock); 2178 } 2179 2180 /* 2181 * It is the actual release handler for mq, but we do it from 2182 * request queue's release handler for avoiding use-after-free 2183 * and headache because q->mq_kobj shouldn't have been introduced, 2184 * but we can't group ctx/kctx kobj without it. 2185 */ 2186 void blk_mq_release(struct request_queue *q) 2187 { 2188 struct blk_mq_hw_ctx *hctx; 2189 unsigned int i; 2190 2191 /* hctx kobj stays in hctx */ 2192 queue_for_each_hw_ctx(q, hctx, i) { 2193 if (!hctx) 2194 continue; 2195 kobject_put(&hctx->kobj); 2196 } 2197 2198 q->mq_map = NULL; 2199 2200 kfree(q->queue_hw_ctx); 2201 2202 /* 2203 * release .mq_kobj and sw queue's kobject now because 2204 * both share lifetime with request queue. 2205 */ 2206 blk_mq_sysfs_deinit(q); 2207 2208 free_percpu(q->queue_ctx); 2209 } 2210 2211 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2212 { 2213 struct request_queue *uninit_q, *q; 2214 2215 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2216 if (!uninit_q) 2217 return ERR_PTR(-ENOMEM); 2218 2219 q = blk_mq_init_allocated_queue(set, uninit_q); 2220 if (IS_ERR(q)) 2221 blk_cleanup_queue(uninit_q); 2222 2223 return q; 2224 } 2225 EXPORT_SYMBOL(blk_mq_init_queue); 2226 2227 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2228 struct request_queue *q) 2229 { 2230 int i, j; 2231 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2232 2233 blk_mq_sysfs_unregister(q); 2234 for (i = 0; i < set->nr_hw_queues; i++) { 2235 int node; 2236 2237 if (hctxs[i]) 2238 continue; 2239 2240 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2241 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2242 GFP_KERNEL, node); 2243 if (!hctxs[i]) 2244 break; 2245 2246 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2247 node)) { 2248 kfree(hctxs[i]); 2249 hctxs[i] = NULL; 2250 break; 2251 } 2252 2253 atomic_set(&hctxs[i]->nr_active, 0); 2254 hctxs[i]->numa_node = node; 2255 hctxs[i]->queue_num = i; 2256 2257 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2258 free_cpumask_var(hctxs[i]->cpumask); 2259 kfree(hctxs[i]); 2260 hctxs[i] = NULL; 2261 break; 2262 } 2263 blk_mq_hctx_kobj_init(hctxs[i]); 2264 } 2265 for (j = i; j < q->nr_hw_queues; j++) { 2266 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2267 2268 if (hctx) { 2269 if (hctx->tags) 2270 blk_mq_free_map_and_requests(set, j); 2271 blk_mq_exit_hctx(q, set, hctx, j); 2272 kobject_put(&hctx->kobj); 2273 hctxs[j] = NULL; 2274 2275 } 2276 } 2277 q->nr_hw_queues = i; 2278 blk_mq_sysfs_register(q); 2279 } 2280 2281 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2282 struct request_queue *q) 2283 { 2284 /* mark the queue as mq asap */ 2285 q->mq_ops = set->ops; 2286 2287 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2288 blk_mq_poll_stats_bkt, 2289 BLK_MQ_POLL_STATS_BKTS, q); 2290 if (!q->poll_cb) 2291 goto err_exit; 2292 2293 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2294 if (!q->queue_ctx) 2295 goto err_exit; 2296 2297 /* init q->mq_kobj and sw queues' kobjects */ 2298 blk_mq_sysfs_init(q); 2299 2300 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2301 GFP_KERNEL, set->numa_node); 2302 if (!q->queue_hw_ctx) 2303 goto err_percpu; 2304 2305 q->mq_map = set->mq_map; 2306 2307 blk_mq_realloc_hw_ctxs(set, q); 2308 if (!q->nr_hw_queues) 2309 goto err_hctxs; 2310 2311 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2312 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2313 2314 q->nr_queues = nr_cpu_ids; 2315 2316 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2317 2318 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2319 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2320 2321 q->sg_reserved_size = INT_MAX; 2322 2323 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2324 INIT_LIST_HEAD(&q->requeue_list); 2325 spin_lock_init(&q->requeue_lock); 2326 2327 blk_queue_make_request(q, blk_mq_make_request); 2328 2329 /* 2330 * Do this after blk_queue_make_request() overrides it... 2331 */ 2332 q->nr_requests = set->queue_depth; 2333 2334 /* 2335 * Default to classic polling 2336 */ 2337 q->poll_nsec = -1; 2338 2339 if (set->ops->complete) 2340 blk_queue_softirq_done(q, set->ops->complete); 2341 2342 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2343 2344 get_online_cpus(); 2345 mutex_lock(&all_q_mutex); 2346 2347 list_add_tail(&q->all_q_node, &all_q_list); 2348 blk_mq_add_queue_tag_set(set, q); 2349 blk_mq_map_swqueue(q, cpu_online_mask); 2350 2351 mutex_unlock(&all_q_mutex); 2352 put_online_cpus(); 2353 2354 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2355 int ret; 2356 2357 ret = blk_mq_sched_init(q); 2358 if (ret) 2359 return ERR_PTR(ret); 2360 } 2361 2362 return q; 2363 2364 err_hctxs: 2365 kfree(q->queue_hw_ctx); 2366 err_percpu: 2367 free_percpu(q->queue_ctx); 2368 err_exit: 2369 q->mq_ops = NULL; 2370 return ERR_PTR(-ENOMEM); 2371 } 2372 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2373 2374 void blk_mq_free_queue(struct request_queue *q) 2375 { 2376 struct blk_mq_tag_set *set = q->tag_set; 2377 2378 mutex_lock(&all_q_mutex); 2379 list_del_init(&q->all_q_node); 2380 mutex_unlock(&all_q_mutex); 2381 2382 blk_mq_del_queue_tag_set(q); 2383 2384 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2385 } 2386 2387 /* Basically redo blk_mq_init_queue with queue frozen */ 2388 static void blk_mq_queue_reinit(struct request_queue *q, 2389 const struct cpumask *online_mask) 2390 { 2391 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2392 2393 blk_mq_debugfs_unregister_hctxs(q); 2394 blk_mq_sysfs_unregister(q); 2395 2396 /* 2397 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2398 * we should change hctx numa_node according to new topology (this 2399 * involves free and re-allocate memory, worthy doing?) 2400 */ 2401 2402 blk_mq_map_swqueue(q, online_mask); 2403 2404 blk_mq_sysfs_register(q); 2405 blk_mq_debugfs_register_hctxs(q); 2406 } 2407 2408 /* 2409 * New online cpumask which is going to be set in this hotplug event. 2410 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2411 * one-by-one and dynamically allocating this could result in a failure. 2412 */ 2413 static struct cpumask cpuhp_online_new; 2414 2415 static void blk_mq_queue_reinit_work(void) 2416 { 2417 struct request_queue *q; 2418 2419 mutex_lock(&all_q_mutex); 2420 /* 2421 * We need to freeze and reinit all existing queues. Freezing 2422 * involves synchronous wait for an RCU grace period and doing it 2423 * one by one may take a long time. Start freezing all queues in 2424 * one swoop and then wait for the completions so that freezing can 2425 * take place in parallel. 2426 */ 2427 list_for_each_entry(q, &all_q_list, all_q_node) 2428 blk_freeze_queue_start(q); 2429 list_for_each_entry(q, &all_q_list, all_q_node) 2430 blk_mq_freeze_queue_wait(q); 2431 2432 list_for_each_entry(q, &all_q_list, all_q_node) 2433 blk_mq_queue_reinit(q, &cpuhp_online_new); 2434 2435 list_for_each_entry(q, &all_q_list, all_q_node) 2436 blk_mq_unfreeze_queue(q); 2437 2438 mutex_unlock(&all_q_mutex); 2439 } 2440 2441 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2442 { 2443 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2444 blk_mq_queue_reinit_work(); 2445 return 0; 2446 } 2447 2448 /* 2449 * Before hotadded cpu starts handling requests, new mappings must be 2450 * established. Otherwise, these requests in hw queue might never be 2451 * dispatched. 2452 * 2453 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2454 * for CPU0, and ctx1 for CPU1). 2455 * 2456 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2457 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2458 * 2459 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set 2460 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2461 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is 2462 * ignored. 2463 */ 2464 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2465 { 2466 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2467 cpumask_set_cpu(cpu, &cpuhp_online_new); 2468 blk_mq_queue_reinit_work(); 2469 return 0; 2470 } 2471 2472 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2473 { 2474 int i; 2475 2476 for (i = 0; i < set->nr_hw_queues; i++) 2477 if (!__blk_mq_alloc_rq_map(set, i)) 2478 goto out_unwind; 2479 2480 return 0; 2481 2482 out_unwind: 2483 while (--i >= 0) 2484 blk_mq_free_rq_map(set->tags[i]); 2485 2486 return -ENOMEM; 2487 } 2488 2489 /* 2490 * Allocate the request maps associated with this tag_set. Note that this 2491 * may reduce the depth asked for, if memory is tight. set->queue_depth 2492 * will be updated to reflect the allocated depth. 2493 */ 2494 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2495 { 2496 unsigned int depth; 2497 int err; 2498 2499 depth = set->queue_depth; 2500 do { 2501 err = __blk_mq_alloc_rq_maps(set); 2502 if (!err) 2503 break; 2504 2505 set->queue_depth >>= 1; 2506 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2507 err = -ENOMEM; 2508 break; 2509 } 2510 } while (set->queue_depth); 2511 2512 if (!set->queue_depth || err) { 2513 pr_err("blk-mq: failed to allocate request map\n"); 2514 return -ENOMEM; 2515 } 2516 2517 if (depth != set->queue_depth) 2518 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2519 depth, set->queue_depth); 2520 2521 return 0; 2522 } 2523 2524 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2525 { 2526 if (set->ops->map_queues) 2527 return set->ops->map_queues(set); 2528 else 2529 return blk_mq_map_queues(set); 2530 } 2531 2532 /* 2533 * Alloc a tag set to be associated with one or more request queues. 2534 * May fail with EINVAL for various error conditions. May adjust the 2535 * requested depth down, if if it too large. In that case, the set 2536 * value will be stored in set->queue_depth. 2537 */ 2538 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2539 { 2540 int ret; 2541 2542 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2543 2544 if (!set->nr_hw_queues) 2545 return -EINVAL; 2546 if (!set->queue_depth) 2547 return -EINVAL; 2548 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2549 return -EINVAL; 2550 2551 if (!set->ops->queue_rq) 2552 return -EINVAL; 2553 2554 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2555 pr_info("blk-mq: reduced tag depth to %u\n", 2556 BLK_MQ_MAX_DEPTH); 2557 set->queue_depth = BLK_MQ_MAX_DEPTH; 2558 } 2559 2560 /* 2561 * If a crashdump is active, then we are potentially in a very 2562 * memory constrained environment. Limit us to 1 queue and 2563 * 64 tags to prevent using too much memory. 2564 */ 2565 if (is_kdump_kernel()) { 2566 set->nr_hw_queues = 1; 2567 set->queue_depth = min(64U, set->queue_depth); 2568 } 2569 /* 2570 * There is no use for more h/w queues than cpus. 2571 */ 2572 if (set->nr_hw_queues > nr_cpu_ids) 2573 set->nr_hw_queues = nr_cpu_ids; 2574 2575 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2576 GFP_KERNEL, set->numa_node); 2577 if (!set->tags) 2578 return -ENOMEM; 2579 2580 ret = -ENOMEM; 2581 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2582 GFP_KERNEL, set->numa_node); 2583 if (!set->mq_map) 2584 goto out_free_tags; 2585 2586 ret = blk_mq_update_queue_map(set); 2587 if (ret) 2588 goto out_free_mq_map; 2589 2590 ret = blk_mq_alloc_rq_maps(set); 2591 if (ret) 2592 goto out_free_mq_map; 2593 2594 mutex_init(&set->tag_list_lock); 2595 INIT_LIST_HEAD(&set->tag_list); 2596 2597 return 0; 2598 2599 out_free_mq_map: 2600 kfree(set->mq_map); 2601 set->mq_map = NULL; 2602 out_free_tags: 2603 kfree(set->tags); 2604 set->tags = NULL; 2605 return ret; 2606 } 2607 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2608 2609 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2610 { 2611 int i; 2612 2613 for (i = 0; i < nr_cpu_ids; i++) 2614 blk_mq_free_map_and_requests(set, i); 2615 2616 kfree(set->mq_map); 2617 set->mq_map = NULL; 2618 2619 kfree(set->tags); 2620 set->tags = NULL; 2621 } 2622 EXPORT_SYMBOL(blk_mq_free_tag_set); 2623 2624 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2625 { 2626 struct blk_mq_tag_set *set = q->tag_set; 2627 struct blk_mq_hw_ctx *hctx; 2628 int i, ret; 2629 2630 if (!set) 2631 return -EINVAL; 2632 2633 blk_mq_freeze_queue(q); 2634 2635 ret = 0; 2636 queue_for_each_hw_ctx(q, hctx, i) { 2637 if (!hctx->tags) 2638 continue; 2639 /* 2640 * If we're using an MQ scheduler, just update the scheduler 2641 * queue depth. This is similar to what the old code would do. 2642 */ 2643 if (!hctx->sched_tags) { 2644 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, 2645 min(nr, set->queue_depth), 2646 false); 2647 } else { 2648 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2649 nr, true); 2650 } 2651 if (ret) 2652 break; 2653 } 2654 2655 if (!ret) 2656 q->nr_requests = nr; 2657 2658 blk_mq_unfreeze_queue(q); 2659 2660 return ret; 2661 } 2662 2663 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2664 { 2665 struct request_queue *q; 2666 2667 lockdep_assert_held(&set->tag_list_lock); 2668 2669 if (nr_hw_queues > nr_cpu_ids) 2670 nr_hw_queues = nr_cpu_ids; 2671 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2672 return; 2673 2674 list_for_each_entry(q, &set->tag_list, tag_set_list) 2675 blk_mq_freeze_queue(q); 2676 2677 set->nr_hw_queues = nr_hw_queues; 2678 blk_mq_update_queue_map(set); 2679 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2680 blk_mq_realloc_hw_ctxs(set, q); 2681 blk_mq_queue_reinit(q, cpu_online_mask); 2682 } 2683 2684 list_for_each_entry(q, &set->tag_list, tag_set_list) 2685 blk_mq_unfreeze_queue(q); 2686 } 2687 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2688 2689 /* Enable polling stats and return whether they were already enabled. */ 2690 static bool blk_poll_stats_enable(struct request_queue *q) 2691 { 2692 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2693 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags)) 2694 return true; 2695 blk_stat_add_callback(q, q->poll_cb); 2696 return false; 2697 } 2698 2699 static void blk_mq_poll_stats_start(struct request_queue *q) 2700 { 2701 /* 2702 * We don't arm the callback if polling stats are not enabled or the 2703 * callback is already active. 2704 */ 2705 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2706 blk_stat_is_active(q->poll_cb)) 2707 return; 2708 2709 blk_stat_activate_msecs(q->poll_cb, 100); 2710 } 2711 2712 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 2713 { 2714 struct request_queue *q = cb->data; 2715 int bucket; 2716 2717 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 2718 if (cb->stat[bucket].nr_samples) 2719 q->poll_stat[bucket] = cb->stat[bucket]; 2720 } 2721 } 2722 2723 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2724 struct blk_mq_hw_ctx *hctx, 2725 struct request *rq) 2726 { 2727 unsigned long ret = 0; 2728 int bucket; 2729 2730 /* 2731 * If stats collection isn't on, don't sleep but turn it on for 2732 * future users 2733 */ 2734 if (!blk_poll_stats_enable(q)) 2735 return 0; 2736 2737 /* 2738 * As an optimistic guess, use half of the mean service time 2739 * for this type of request. We can (and should) make this smarter. 2740 * For instance, if the completion latencies are tight, we can 2741 * get closer than just half the mean. This is especially 2742 * important on devices where the completion latencies are longer 2743 * than ~10 usec. We do use the stats for the relevant IO size 2744 * if available which does lead to better estimates. 2745 */ 2746 bucket = blk_mq_poll_stats_bkt(rq); 2747 if (bucket < 0) 2748 return ret; 2749 2750 if (q->poll_stat[bucket].nr_samples) 2751 ret = (q->poll_stat[bucket].mean + 1) / 2; 2752 2753 return ret; 2754 } 2755 2756 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2757 struct blk_mq_hw_ctx *hctx, 2758 struct request *rq) 2759 { 2760 struct hrtimer_sleeper hs; 2761 enum hrtimer_mode mode; 2762 unsigned int nsecs; 2763 ktime_t kt; 2764 2765 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2766 return false; 2767 2768 /* 2769 * poll_nsec can be: 2770 * 2771 * -1: don't ever hybrid sleep 2772 * 0: use half of prev avg 2773 * >0: use this specific value 2774 */ 2775 if (q->poll_nsec == -1) 2776 return false; 2777 else if (q->poll_nsec > 0) 2778 nsecs = q->poll_nsec; 2779 else 2780 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2781 2782 if (!nsecs) 2783 return false; 2784 2785 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2786 2787 /* 2788 * This will be replaced with the stats tracking code, using 2789 * 'avg_completion_time / 2' as the pre-sleep target. 2790 */ 2791 kt = nsecs; 2792 2793 mode = HRTIMER_MODE_REL; 2794 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2795 hrtimer_set_expires(&hs.timer, kt); 2796 2797 hrtimer_init_sleeper(&hs, current); 2798 do { 2799 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2800 break; 2801 set_current_state(TASK_UNINTERRUPTIBLE); 2802 hrtimer_start_expires(&hs.timer, mode); 2803 if (hs.task) 2804 io_schedule(); 2805 hrtimer_cancel(&hs.timer); 2806 mode = HRTIMER_MODE_ABS; 2807 } while (hs.task && !signal_pending(current)); 2808 2809 __set_current_state(TASK_RUNNING); 2810 destroy_hrtimer_on_stack(&hs.timer); 2811 return true; 2812 } 2813 2814 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2815 { 2816 struct request_queue *q = hctx->queue; 2817 long state; 2818 2819 /* 2820 * If we sleep, have the caller restart the poll loop to reset 2821 * the state. Like for the other success return cases, the 2822 * caller is responsible for checking if the IO completed. If 2823 * the IO isn't complete, we'll get called again and will go 2824 * straight to the busy poll loop. 2825 */ 2826 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2827 return true; 2828 2829 hctx->poll_considered++; 2830 2831 state = current->state; 2832 while (!need_resched()) { 2833 int ret; 2834 2835 hctx->poll_invoked++; 2836 2837 ret = q->mq_ops->poll(hctx, rq->tag); 2838 if (ret > 0) { 2839 hctx->poll_success++; 2840 set_current_state(TASK_RUNNING); 2841 return true; 2842 } 2843 2844 if (signal_pending_state(state, current)) 2845 set_current_state(TASK_RUNNING); 2846 2847 if (current->state == TASK_RUNNING) 2848 return true; 2849 if (ret < 0) 2850 break; 2851 cpu_relax(); 2852 } 2853 2854 return false; 2855 } 2856 2857 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2858 { 2859 struct blk_mq_hw_ctx *hctx; 2860 struct blk_plug *plug; 2861 struct request *rq; 2862 2863 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2864 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2865 return false; 2866 2867 plug = current->plug; 2868 if (plug) 2869 blk_flush_plug_list(plug, false); 2870 2871 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2872 if (!blk_qc_t_is_internal(cookie)) 2873 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2874 else { 2875 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2876 /* 2877 * With scheduling, if the request has completed, we'll 2878 * get a NULL return here, as we clear the sched tag when 2879 * that happens. The request still remains valid, like always, 2880 * so we should be safe with just the NULL check. 2881 */ 2882 if (!rq) 2883 return false; 2884 } 2885 2886 return __blk_mq_poll(hctx, rq); 2887 } 2888 EXPORT_SYMBOL_GPL(blk_mq_poll); 2889 2890 void blk_mq_disable_hotplug(void) 2891 { 2892 mutex_lock(&all_q_mutex); 2893 } 2894 2895 void blk_mq_enable_hotplug(void) 2896 { 2897 mutex_unlock(&all_q_mutex); 2898 } 2899 2900 static int __init blk_mq_init(void) 2901 { 2902 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2903 blk_mq_hctx_notify_dead); 2904 2905 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2906 blk_mq_queue_reinit_prepare, 2907 blk_mq_queue_reinit_dead); 2908 return 0; 2909 } 2910 subsys_initcall(blk_mq_init); 2911