xref: /openbmc/linux/block/blk-mq.c (revision a36954f5)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42 
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46 
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 	int ddir, bytes, bucket;
50 
51 	ddir = rq_data_dir(rq);
52 	bytes = blk_rq_bytes(rq);
53 
54 	bucket = ddir + 2*(ilog2(bytes) - 9);
55 
56 	if (bucket < 0)
57 		return -1;
58 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60 
61 	return bucket;
62 }
63 
64 /*
65  * Check if any of the ctx's have pending work in this hardware queue
66  */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 	return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			!list_empty_careful(&hctx->dispatch) ||
71 			blk_mq_sched_has_work(hctx);
72 }
73 
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 				     struct blk_mq_ctx *ctx)
79 {
80 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83 
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 				      struct blk_mq_ctx *ctx)
86 {
87 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89 
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92 	int freeze_depth;
93 
94 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 	if (freeze_depth == 1) {
96 		percpu_ref_kill(&q->q_usage_counter);
97 		blk_mq_run_hw_queues(q, false);
98 	}
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101 
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107 
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 				     unsigned long timeout)
110 {
111 	return wait_event_timeout(q->mq_freeze_wq,
112 					percpu_ref_is_zero(&q->q_usage_counter),
113 					timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116 
117 /*
118  * Guarantee no request is in use, so we can change any data structure of
119  * the queue afterward.
120  */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123 	/*
124 	 * In the !blk_mq case we are only calling this to kill the
125 	 * q_usage_counter, otherwise this increases the freeze depth
126 	 * and waits for it to return to zero.  For this reason there is
127 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 	 * exported to drivers as the only user for unfreeze is blk_mq.
129 	 */
130 	blk_freeze_queue_start(q);
131 	blk_mq_freeze_queue_wait(q);
132 }
133 
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 	/*
137 	 * ...just an alias to keep freeze and unfreeze actions balanced
138 	 * in the blk_mq_* namespace
139 	 */
140 	blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143 
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 	int freeze_depth;
147 
148 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 	WARN_ON_ONCE(freeze_depth < 0);
150 	if (!freeze_depth) {
151 		percpu_ref_reinit(&q->q_usage_counter);
152 		wake_up_all(&q->mq_freeze_wq);
153 	}
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156 
157 /**
158  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159  * @q: request queue.
160  *
161  * Note: this function does not prevent that the struct request end_io()
162  * callback function is invoked. Additionally, it is not prevented that
163  * new queue_rq() calls occur unless the queue has been stopped first.
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167 	struct blk_mq_hw_ctx *hctx;
168 	unsigned int i;
169 	bool rcu = false;
170 
171 	__blk_mq_stop_hw_queues(q, true);
172 
173 	queue_for_each_hw_ctx(q, hctx, i) {
174 		if (hctx->flags & BLK_MQ_F_BLOCKING)
175 			synchronize_srcu(&hctx->queue_rq_srcu);
176 		else
177 			rcu = true;
178 	}
179 	if (rcu)
180 		synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183 
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186 	struct blk_mq_hw_ctx *hctx;
187 	unsigned int i;
188 
189 	queue_for_each_hw_ctx(q, hctx, i)
190 		if (blk_mq_hw_queue_mapped(hctx))
191 			blk_mq_tag_wakeup_all(hctx->tags, true);
192 
193 	/*
194 	 * If we are called because the queue has now been marked as
195 	 * dying, we need to ensure that processes currently waiting on
196 	 * the queue are notified as well.
197 	 */
198 	wake_up_all(&q->mq_freeze_wq);
199 }
200 
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203 	return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206 
207 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208 			struct request *rq, unsigned int op)
209 {
210 	INIT_LIST_HEAD(&rq->queuelist);
211 	/* csd/requeue_work/fifo_time is initialized before use */
212 	rq->q = q;
213 	rq->mq_ctx = ctx;
214 	rq->cmd_flags = op;
215 	if (blk_queue_io_stat(q))
216 		rq->rq_flags |= RQF_IO_STAT;
217 	/* do not touch atomic flags, it needs atomic ops against the timer */
218 	rq->cpu = -1;
219 	INIT_HLIST_NODE(&rq->hash);
220 	RB_CLEAR_NODE(&rq->rb_node);
221 	rq->rq_disk = NULL;
222 	rq->part = NULL;
223 	rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225 	rq->rl = NULL;
226 	set_start_time_ns(rq);
227 	rq->io_start_time_ns = 0;
228 #endif
229 	rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231 	rq->nr_integrity_segments = 0;
232 #endif
233 	rq->special = NULL;
234 	/* tag was already set */
235 	rq->extra_len = 0;
236 
237 	INIT_LIST_HEAD(&rq->timeout_list);
238 	rq->timeout = 0;
239 
240 	rq->end_io = NULL;
241 	rq->end_io_data = NULL;
242 	rq->next_rq = NULL;
243 
244 	ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
247 
248 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
249 				       unsigned int op)
250 {
251 	struct request *rq;
252 	unsigned int tag;
253 
254 	tag = blk_mq_get_tag(data);
255 	if (tag != BLK_MQ_TAG_FAIL) {
256 		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
257 
258 		rq = tags->static_rqs[tag];
259 
260 		if (data->flags & BLK_MQ_REQ_INTERNAL) {
261 			rq->tag = -1;
262 			rq->internal_tag = tag;
263 		} else {
264 			if (blk_mq_tag_busy(data->hctx)) {
265 				rq->rq_flags = RQF_MQ_INFLIGHT;
266 				atomic_inc(&data->hctx->nr_active);
267 			}
268 			rq->tag = tag;
269 			rq->internal_tag = -1;
270 			data->hctx->tags->rqs[rq->tag] = rq;
271 		}
272 
273 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
274 		return rq;
275 	}
276 
277 	return NULL;
278 }
279 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
280 
281 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
282 		unsigned int flags)
283 {
284 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
285 	struct request *rq;
286 	int ret;
287 
288 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
289 	if (ret)
290 		return ERR_PTR(ret);
291 
292 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
293 
294 	blk_mq_put_ctx(alloc_data.ctx);
295 	blk_queue_exit(q);
296 
297 	if (!rq)
298 		return ERR_PTR(-EWOULDBLOCK);
299 
300 	rq->__data_len = 0;
301 	rq->__sector = (sector_t) -1;
302 	rq->bio = rq->biotail = NULL;
303 	return rq;
304 }
305 EXPORT_SYMBOL(blk_mq_alloc_request);
306 
307 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
308 		unsigned int flags, unsigned int hctx_idx)
309 {
310 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
311 	struct request *rq;
312 	unsigned int cpu;
313 	int ret;
314 
315 	/*
316 	 * If the tag allocator sleeps we could get an allocation for a
317 	 * different hardware context.  No need to complicate the low level
318 	 * allocator for this for the rare use case of a command tied to
319 	 * a specific queue.
320 	 */
321 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
322 		return ERR_PTR(-EINVAL);
323 
324 	if (hctx_idx >= q->nr_hw_queues)
325 		return ERR_PTR(-EIO);
326 
327 	ret = blk_queue_enter(q, true);
328 	if (ret)
329 		return ERR_PTR(ret);
330 
331 	/*
332 	 * Check if the hardware context is actually mapped to anything.
333 	 * If not tell the caller that it should skip this queue.
334 	 */
335 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
336 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
337 		blk_queue_exit(q);
338 		return ERR_PTR(-EXDEV);
339 	}
340 	cpu = cpumask_first(alloc_data.hctx->cpumask);
341 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
342 
343 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
344 
345 	blk_queue_exit(q);
346 
347 	if (!rq)
348 		return ERR_PTR(-EWOULDBLOCK);
349 
350 	return rq;
351 }
352 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
353 
354 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
355 			     struct request *rq)
356 {
357 	const int sched_tag = rq->internal_tag;
358 	struct request_queue *q = rq->q;
359 
360 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
361 		atomic_dec(&hctx->nr_active);
362 
363 	wbt_done(q->rq_wb, &rq->issue_stat);
364 	rq->rq_flags = 0;
365 
366 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
367 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
368 	if (rq->tag != -1)
369 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
370 	if (sched_tag != -1)
371 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
372 	blk_mq_sched_restart(hctx);
373 	blk_queue_exit(q);
374 }
375 
376 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
377 				     struct request *rq)
378 {
379 	struct blk_mq_ctx *ctx = rq->mq_ctx;
380 
381 	ctx->rq_completed[rq_is_sync(rq)]++;
382 	__blk_mq_finish_request(hctx, ctx, rq);
383 }
384 
385 void blk_mq_finish_request(struct request *rq)
386 {
387 	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
388 }
389 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
390 
391 void blk_mq_free_request(struct request *rq)
392 {
393 	blk_mq_sched_put_request(rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_free_request);
396 
397 inline void __blk_mq_end_request(struct request *rq, int error)
398 {
399 	blk_account_io_done(rq);
400 
401 	if (rq->end_io) {
402 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
403 		rq->end_io(rq, error);
404 	} else {
405 		if (unlikely(blk_bidi_rq(rq)))
406 			blk_mq_free_request(rq->next_rq);
407 		blk_mq_free_request(rq);
408 	}
409 }
410 EXPORT_SYMBOL(__blk_mq_end_request);
411 
412 void blk_mq_end_request(struct request *rq, int error)
413 {
414 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
415 		BUG();
416 	__blk_mq_end_request(rq, error);
417 }
418 EXPORT_SYMBOL(blk_mq_end_request);
419 
420 static void __blk_mq_complete_request_remote(void *data)
421 {
422 	struct request *rq = data;
423 
424 	rq->q->softirq_done_fn(rq);
425 }
426 
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429 	struct blk_mq_ctx *ctx = rq->mq_ctx;
430 	bool shared = false;
431 	int cpu;
432 
433 	if (rq->internal_tag != -1)
434 		blk_mq_sched_completed_request(rq);
435 	if (rq->rq_flags & RQF_STATS) {
436 		blk_mq_poll_stats_start(rq->q);
437 		blk_stat_add(rq);
438 	}
439 
440 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
441 		rq->q->softirq_done_fn(rq);
442 		return;
443 	}
444 
445 	cpu = get_cpu();
446 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
447 		shared = cpus_share_cache(cpu, ctx->cpu);
448 
449 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
450 		rq->csd.func = __blk_mq_complete_request_remote;
451 		rq->csd.info = rq;
452 		rq->csd.flags = 0;
453 		smp_call_function_single_async(ctx->cpu, &rq->csd);
454 	} else {
455 		rq->q->softirq_done_fn(rq);
456 	}
457 	put_cpu();
458 }
459 
460 /**
461  * blk_mq_complete_request - end I/O on a request
462  * @rq:		the request being processed
463  *
464  * Description:
465  *	Ends all I/O on a request. It does not handle partial completions.
466  *	The actual completion happens out-of-order, through a IPI handler.
467  **/
468 void blk_mq_complete_request(struct request *rq)
469 {
470 	struct request_queue *q = rq->q;
471 
472 	if (unlikely(blk_should_fake_timeout(q)))
473 		return;
474 	if (!blk_mark_rq_complete(rq))
475 		__blk_mq_complete_request(rq);
476 }
477 EXPORT_SYMBOL(blk_mq_complete_request);
478 
479 int blk_mq_request_started(struct request *rq)
480 {
481 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
484 
485 void blk_mq_start_request(struct request *rq)
486 {
487 	struct request_queue *q = rq->q;
488 
489 	blk_mq_sched_started_request(rq);
490 
491 	trace_block_rq_issue(q, rq);
492 
493 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495 		rq->rq_flags |= RQF_STATS;
496 		wbt_issue(q->rq_wb, &rq->issue_stat);
497 	}
498 
499 	blk_add_timer(rq);
500 
501 	/*
502 	 * Ensure that ->deadline is visible before set the started
503 	 * flag and clear the completed flag.
504 	 */
505 	smp_mb__before_atomic();
506 
507 	/*
508 	 * Mark us as started and clear complete. Complete might have been
509 	 * set if requeue raced with timeout, which then marked it as
510 	 * complete. So be sure to clear complete again when we start
511 	 * the request, otherwise we'll ignore the completion event.
512 	 */
513 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517 
518 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 		/*
520 		 * Make sure space for the drain appears.  We know we can do
521 		 * this because max_hw_segments has been adjusted to be one
522 		 * fewer than the device can handle.
523 		 */
524 		rq->nr_phys_segments++;
525 	}
526 }
527 EXPORT_SYMBOL(blk_mq_start_request);
528 
529 /*
530  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531  * flag isn't set yet, so there may be race with timeout handler,
532  * but given rq->deadline is just set in .queue_rq() under
533  * this situation, the race won't be possible in reality because
534  * rq->timeout should be set as big enough to cover the window
535  * between blk_mq_start_request() called from .queue_rq() and
536  * clearing REQ_ATOM_STARTED here.
537  */
538 static void __blk_mq_requeue_request(struct request *rq)
539 {
540 	struct request_queue *q = rq->q;
541 
542 	trace_block_rq_requeue(q, rq);
543 	wbt_requeue(q->rq_wb, &rq->issue_stat);
544 	blk_mq_sched_requeue_request(rq);
545 
546 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
547 		if (q->dma_drain_size && blk_rq_bytes(rq))
548 			rq->nr_phys_segments--;
549 	}
550 }
551 
552 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 {
554 	__blk_mq_requeue_request(rq);
555 
556 	BUG_ON(blk_queued_rq(rq));
557 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 }
559 EXPORT_SYMBOL(blk_mq_requeue_request);
560 
561 static void blk_mq_requeue_work(struct work_struct *work)
562 {
563 	struct request_queue *q =
564 		container_of(work, struct request_queue, requeue_work.work);
565 	LIST_HEAD(rq_list);
566 	struct request *rq, *next;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&q->requeue_lock, flags);
570 	list_splice_init(&q->requeue_list, &rq_list);
571 	spin_unlock_irqrestore(&q->requeue_lock, flags);
572 
573 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
575 			continue;
576 
577 		rq->rq_flags &= ~RQF_SOFTBARRIER;
578 		list_del_init(&rq->queuelist);
579 		blk_mq_sched_insert_request(rq, true, false, false, true);
580 	}
581 
582 	while (!list_empty(&rq_list)) {
583 		rq = list_entry(rq_list.next, struct request, queuelist);
584 		list_del_init(&rq->queuelist);
585 		blk_mq_sched_insert_request(rq, false, false, false, true);
586 	}
587 
588 	blk_mq_run_hw_queues(q, false);
589 }
590 
591 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
592 				bool kick_requeue_list)
593 {
594 	struct request_queue *q = rq->q;
595 	unsigned long flags;
596 
597 	/*
598 	 * We abuse this flag that is otherwise used by the I/O scheduler to
599 	 * request head insertation from the workqueue.
600 	 */
601 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602 
603 	spin_lock_irqsave(&q->requeue_lock, flags);
604 	if (at_head) {
605 		rq->rq_flags |= RQF_SOFTBARRIER;
606 		list_add(&rq->queuelist, &q->requeue_list);
607 	} else {
608 		list_add_tail(&rq->queuelist, &q->requeue_list);
609 	}
610 	spin_unlock_irqrestore(&q->requeue_lock, flags);
611 
612 	if (kick_requeue_list)
613 		blk_mq_kick_requeue_list(q);
614 }
615 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
616 
617 void blk_mq_kick_requeue_list(struct request_queue *q)
618 {
619 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 }
621 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
622 
623 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
624 				    unsigned long msecs)
625 {
626 	kblockd_schedule_delayed_work(&q->requeue_work,
627 				      msecs_to_jiffies(msecs));
628 }
629 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
630 
631 void blk_mq_abort_requeue_list(struct request_queue *q)
632 {
633 	unsigned long flags;
634 	LIST_HEAD(rq_list);
635 
636 	spin_lock_irqsave(&q->requeue_lock, flags);
637 	list_splice_init(&q->requeue_list, &rq_list);
638 	spin_unlock_irqrestore(&q->requeue_lock, flags);
639 
640 	while (!list_empty(&rq_list)) {
641 		struct request *rq;
642 
643 		rq = list_first_entry(&rq_list, struct request, queuelist);
644 		list_del_init(&rq->queuelist);
645 		blk_mq_end_request(rq, -EIO);
646 	}
647 }
648 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
649 
650 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
651 {
652 	if (tag < tags->nr_tags) {
653 		prefetch(tags->rqs[tag]);
654 		return tags->rqs[tag];
655 	}
656 
657 	return NULL;
658 }
659 EXPORT_SYMBOL(blk_mq_tag_to_rq);
660 
661 struct blk_mq_timeout_data {
662 	unsigned long next;
663 	unsigned int next_set;
664 };
665 
666 void blk_mq_rq_timed_out(struct request *req, bool reserved)
667 {
668 	const struct blk_mq_ops *ops = req->q->mq_ops;
669 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
670 
671 	/*
672 	 * We know that complete is set at this point. If STARTED isn't set
673 	 * anymore, then the request isn't active and the "timeout" should
674 	 * just be ignored. This can happen due to the bitflag ordering.
675 	 * Timeout first checks if STARTED is set, and if it is, assumes
676 	 * the request is active. But if we race with completion, then
677 	 * both flags will get cleared. So check here again, and ignore
678 	 * a timeout event with a request that isn't active.
679 	 */
680 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
681 		return;
682 
683 	if (ops->timeout)
684 		ret = ops->timeout(req, reserved);
685 
686 	switch (ret) {
687 	case BLK_EH_HANDLED:
688 		__blk_mq_complete_request(req);
689 		break;
690 	case BLK_EH_RESET_TIMER:
691 		blk_add_timer(req);
692 		blk_clear_rq_complete(req);
693 		break;
694 	case BLK_EH_NOT_HANDLED:
695 		break;
696 	default:
697 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
698 		break;
699 	}
700 }
701 
702 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
703 		struct request *rq, void *priv, bool reserved)
704 {
705 	struct blk_mq_timeout_data *data = priv;
706 
707 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
708 		return;
709 
710 	/*
711 	 * The rq being checked may have been freed and reallocated
712 	 * out already here, we avoid this race by checking rq->deadline
713 	 * and REQ_ATOM_COMPLETE flag together:
714 	 *
715 	 * - if rq->deadline is observed as new value because of
716 	 *   reusing, the rq won't be timed out because of timing.
717 	 * - if rq->deadline is observed as previous value,
718 	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
719 	 *   because we put a barrier between setting rq->deadline
720 	 *   and clearing the flag in blk_mq_start_request(), so
721 	 *   this rq won't be timed out too.
722 	 */
723 	if (time_after_eq(jiffies, rq->deadline)) {
724 		if (!blk_mark_rq_complete(rq))
725 			blk_mq_rq_timed_out(rq, reserved);
726 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
727 		data->next = rq->deadline;
728 		data->next_set = 1;
729 	}
730 }
731 
732 static void blk_mq_timeout_work(struct work_struct *work)
733 {
734 	struct request_queue *q =
735 		container_of(work, struct request_queue, timeout_work);
736 	struct blk_mq_timeout_data data = {
737 		.next		= 0,
738 		.next_set	= 0,
739 	};
740 	int i;
741 
742 	/* A deadlock might occur if a request is stuck requiring a
743 	 * timeout at the same time a queue freeze is waiting
744 	 * completion, since the timeout code would not be able to
745 	 * acquire the queue reference here.
746 	 *
747 	 * That's why we don't use blk_queue_enter here; instead, we use
748 	 * percpu_ref_tryget directly, because we need to be able to
749 	 * obtain a reference even in the short window between the queue
750 	 * starting to freeze, by dropping the first reference in
751 	 * blk_freeze_queue_start, and the moment the last request is
752 	 * consumed, marked by the instant q_usage_counter reaches
753 	 * zero.
754 	 */
755 	if (!percpu_ref_tryget(&q->q_usage_counter))
756 		return;
757 
758 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
759 
760 	if (data.next_set) {
761 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
762 		mod_timer(&q->timeout, data.next);
763 	} else {
764 		struct blk_mq_hw_ctx *hctx;
765 
766 		queue_for_each_hw_ctx(q, hctx, i) {
767 			/* the hctx may be unmapped, so check it here */
768 			if (blk_mq_hw_queue_mapped(hctx))
769 				blk_mq_tag_idle(hctx);
770 		}
771 	}
772 	blk_queue_exit(q);
773 }
774 
775 /*
776  * Reverse check our software queue for entries that we could potentially
777  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
778  * too much time checking for merges.
779  */
780 static bool blk_mq_attempt_merge(struct request_queue *q,
781 				 struct blk_mq_ctx *ctx, struct bio *bio)
782 {
783 	struct request *rq;
784 	int checked = 8;
785 
786 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
787 		bool merged = false;
788 
789 		if (!checked--)
790 			break;
791 
792 		if (!blk_rq_merge_ok(rq, bio))
793 			continue;
794 
795 		switch (blk_try_merge(rq, bio)) {
796 		case ELEVATOR_BACK_MERGE:
797 			if (blk_mq_sched_allow_merge(q, rq, bio))
798 				merged = bio_attempt_back_merge(q, rq, bio);
799 			break;
800 		case ELEVATOR_FRONT_MERGE:
801 			if (blk_mq_sched_allow_merge(q, rq, bio))
802 				merged = bio_attempt_front_merge(q, rq, bio);
803 			break;
804 		case ELEVATOR_DISCARD_MERGE:
805 			merged = bio_attempt_discard_merge(q, rq, bio);
806 			break;
807 		default:
808 			continue;
809 		}
810 
811 		if (merged)
812 			ctx->rq_merged++;
813 		return merged;
814 	}
815 
816 	return false;
817 }
818 
819 struct flush_busy_ctx_data {
820 	struct blk_mq_hw_ctx *hctx;
821 	struct list_head *list;
822 };
823 
824 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
825 {
826 	struct flush_busy_ctx_data *flush_data = data;
827 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
828 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
829 
830 	sbitmap_clear_bit(sb, bitnr);
831 	spin_lock(&ctx->lock);
832 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
833 	spin_unlock(&ctx->lock);
834 	return true;
835 }
836 
837 /*
838  * Process software queues that have been marked busy, splicing them
839  * to the for-dispatch
840  */
841 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
842 {
843 	struct flush_busy_ctx_data data = {
844 		.hctx = hctx,
845 		.list = list,
846 	};
847 
848 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
849 }
850 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
851 
852 static inline unsigned int queued_to_index(unsigned int queued)
853 {
854 	if (!queued)
855 		return 0;
856 
857 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
858 }
859 
860 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
861 			   bool wait)
862 {
863 	struct blk_mq_alloc_data data = {
864 		.q = rq->q,
865 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
866 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
867 	};
868 
869 	might_sleep_if(wait);
870 
871 	if (rq->tag != -1)
872 		goto done;
873 
874 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
875 		data.flags |= BLK_MQ_REQ_RESERVED;
876 
877 	rq->tag = blk_mq_get_tag(&data);
878 	if (rq->tag >= 0) {
879 		if (blk_mq_tag_busy(data.hctx)) {
880 			rq->rq_flags |= RQF_MQ_INFLIGHT;
881 			atomic_inc(&data.hctx->nr_active);
882 		}
883 		data.hctx->tags->rqs[rq->tag] = rq;
884 	}
885 
886 done:
887 	if (hctx)
888 		*hctx = data.hctx;
889 	return rq->tag != -1;
890 }
891 
892 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
893 				    struct request *rq)
894 {
895 	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
896 	rq->tag = -1;
897 
898 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
899 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
900 		atomic_dec(&hctx->nr_active);
901 	}
902 }
903 
904 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
905 				       struct request *rq)
906 {
907 	if (rq->tag == -1 || rq->internal_tag == -1)
908 		return;
909 
910 	__blk_mq_put_driver_tag(hctx, rq);
911 }
912 
913 static void blk_mq_put_driver_tag(struct request *rq)
914 {
915 	struct blk_mq_hw_ctx *hctx;
916 
917 	if (rq->tag == -1 || rq->internal_tag == -1)
918 		return;
919 
920 	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
921 	__blk_mq_put_driver_tag(hctx, rq);
922 }
923 
924 /*
925  * If we fail getting a driver tag because all the driver tags are already
926  * assigned and on the dispatch list, BUT the first entry does not have a
927  * tag, then we could deadlock. For that case, move entries with assigned
928  * driver tags to the front, leaving the set of tagged requests in the
929  * same order, and the untagged set in the same order.
930  */
931 static bool reorder_tags_to_front(struct list_head *list)
932 {
933 	struct request *rq, *tmp, *first = NULL;
934 
935 	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
936 		if (rq == first)
937 			break;
938 		if (rq->tag != -1) {
939 			list_move(&rq->queuelist, list);
940 			if (!first)
941 				first = rq;
942 		}
943 	}
944 
945 	return first != NULL;
946 }
947 
948 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
949 				void *key)
950 {
951 	struct blk_mq_hw_ctx *hctx;
952 
953 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
954 
955 	list_del(&wait->task_list);
956 	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
957 	blk_mq_run_hw_queue(hctx, true);
958 	return 1;
959 }
960 
961 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
962 {
963 	struct sbq_wait_state *ws;
964 
965 	/*
966 	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
967 	 * The thread which wins the race to grab this bit adds the hardware
968 	 * queue to the wait queue.
969 	 */
970 	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
971 	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
972 		return false;
973 
974 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
975 	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
976 
977 	/*
978 	 * As soon as this returns, it's no longer safe to fiddle with
979 	 * hctx->dispatch_wait, since a completion can wake up the wait queue
980 	 * and unlock the bit.
981 	 */
982 	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
983 	return true;
984 }
985 
986 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
987 {
988 	struct blk_mq_hw_ctx *hctx;
989 	struct request *rq;
990 	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
991 
992 	if (list_empty(list))
993 		return false;
994 
995 	/*
996 	 * Now process all the entries, sending them to the driver.
997 	 */
998 	errors = queued = 0;
999 	do {
1000 		struct blk_mq_queue_data bd;
1001 
1002 		rq = list_first_entry(list, struct request, queuelist);
1003 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1004 			if (!queued && reorder_tags_to_front(list))
1005 				continue;
1006 
1007 			/*
1008 			 * The initial allocation attempt failed, so we need to
1009 			 * rerun the hardware queue when a tag is freed.
1010 			 */
1011 			if (!blk_mq_dispatch_wait_add(hctx))
1012 				break;
1013 
1014 			/*
1015 			 * It's possible that a tag was freed in the window
1016 			 * between the allocation failure and adding the
1017 			 * hardware queue to the wait queue.
1018 			 */
1019 			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1020 				break;
1021 		}
1022 
1023 		list_del_init(&rq->queuelist);
1024 
1025 		bd.rq = rq;
1026 
1027 		/*
1028 		 * Flag last if we have no more requests, or if we have more
1029 		 * but can't assign a driver tag to it.
1030 		 */
1031 		if (list_empty(list))
1032 			bd.last = true;
1033 		else {
1034 			struct request *nxt;
1035 
1036 			nxt = list_first_entry(list, struct request, queuelist);
1037 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1038 		}
1039 
1040 		ret = q->mq_ops->queue_rq(hctx, &bd);
1041 		switch (ret) {
1042 		case BLK_MQ_RQ_QUEUE_OK:
1043 			queued++;
1044 			break;
1045 		case BLK_MQ_RQ_QUEUE_BUSY:
1046 			blk_mq_put_driver_tag_hctx(hctx, rq);
1047 			list_add(&rq->queuelist, list);
1048 			__blk_mq_requeue_request(rq);
1049 			break;
1050 		default:
1051 			pr_err("blk-mq: bad return on queue: %d\n", ret);
1052 		case BLK_MQ_RQ_QUEUE_ERROR:
1053 			errors++;
1054 			blk_mq_end_request(rq, -EIO);
1055 			break;
1056 		}
1057 
1058 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1059 			break;
1060 	} while (!list_empty(list));
1061 
1062 	hctx->dispatched[queued_to_index(queued)]++;
1063 
1064 	/*
1065 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1066 	 * that is where we will continue on next queue run.
1067 	 */
1068 	if (!list_empty(list)) {
1069 		/*
1070 		 * If an I/O scheduler has been configured and we got a driver
1071 		 * tag for the next request already, free it again.
1072 		 */
1073 		rq = list_first_entry(list, struct request, queuelist);
1074 		blk_mq_put_driver_tag(rq);
1075 
1076 		spin_lock(&hctx->lock);
1077 		list_splice_init(list, &hctx->dispatch);
1078 		spin_unlock(&hctx->lock);
1079 
1080 		/*
1081 		 * If SCHED_RESTART was set by the caller of this function and
1082 		 * it is no longer set that means that it was cleared by another
1083 		 * thread and hence that a queue rerun is needed.
1084 		 *
1085 		 * If TAG_WAITING is set that means that an I/O scheduler has
1086 		 * been configured and another thread is waiting for a driver
1087 		 * tag. To guarantee fairness, do not rerun this hardware queue
1088 		 * but let the other thread grab the driver tag.
1089 		 *
1090 		 * If no I/O scheduler has been configured it is possible that
1091 		 * the hardware queue got stopped and restarted before requests
1092 		 * were pushed back onto the dispatch list. Rerun the queue to
1093 		 * avoid starvation. Notes:
1094 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1095 		 *   been stopped before rerunning a queue.
1096 		 * - Some but not all block drivers stop a queue before
1097 		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1098 		 *   and dm-rq.
1099 		 */
1100 		if (!blk_mq_sched_needs_restart(hctx) &&
1101 		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1102 			blk_mq_run_hw_queue(hctx, true);
1103 	}
1104 
1105 	return (queued + errors) != 0;
1106 }
1107 
1108 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1109 {
1110 	int srcu_idx;
1111 
1112 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1113 		cpu_online(hctx->next_cpu));
1114 
1115 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1116 		rcu_read_lock();
1117 		blk_mq_sched_dispatch_requests(hctx);
1118 		rcu_read_unlock();
1119 	} else {
1120 		might_sleep();
1121 
1122 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1123 		blk_mq_sched_dispatch_requests(hctx);
1124 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1125 	}
1126 }
1127 
1128 /*
1129  * It'd be great if the workqueue API had a way to pass
1130  * in a mask and had some smarts for more clever placement.
1131  * For now we just round-robin here, switching for every
1132  * BLK_MQ_CPU_WORK_BATCH queued items.
1133  */
1134 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1135 {
1136 	if (hctx->queue->nr_hw_queues == 1)
1137 		return WORK_CPU_UNBOUND;
1138 
1139 	if (--hctx->next_cpu_batch <= 0) {
1140 		int next_cpu;
1141 
1142 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1143 		if (next_cpu >= nr_cpu_ids)
1144 			next_cpu = cpumask_first(hctx->cpumask);
1145 
1146 		hctx->next_cpu = next_cpu;
1147 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1148 	}
1149 
1150 	return hctx->next_cpu;
1151 }
1152 
1153 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1154 					unsigned long msecs)
1155 {
1156 	if (unlikely(blk_mq_hctx_stopped(hctx) ||
1157 		     !blk_mq_hw_queue_mapped(hctx)))
1158 		return;
1159 
1160 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1161 		int cpu = get_cpu();
1162 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1163 			__blk_mq_run_hw_queue(hctx);
1164 			put_cpu();
1165 			return;
1166 		}
1167 
1168 		put_cpu();
1169 	}
1170 
1171 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1172 					 &hctx->run_work,
1173 					 msecs_to_jiffies(msecs));
1174 }
1175 
1176 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1177 {
1178 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1179 }
1180 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1181 
1182 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1183 {
1184 	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1185 }
1186 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1187 
1188 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1189 {
1190 	struct blk_mq_hw_ctx *hctx;
1191 	int i;
1192 
1193 	queue_for_each_hw_ctx(q, hctx, i) {
1194 		if (!blk_mq_hctx_has_pending(hctx) ||
1195 		    blk_mq_hctx_stopped(hctx))
1196 			continue;
1197 
1198 		blk_mq_run_hw_queue(hctx, async);
1199 	}
1200 }
1201 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1202 
1203 /**
1204  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1205  * @q: request queue.
1206  *
1207  * The caller is responsible for serializing this function against
1208  * blk_mq_{start,stop}_hw_queue().
1209  */
1210 bool blk_mq_queue_stopped(struct request_queue *q)
1211 {
1212 	struct blk_mq_hw_ctx *hctx;
1213 	int i;
1214 
1215 	queue_for_each_hw_ctx(q, hctx, i)
1216 		if (blk_mq_hctx_stopped(hctx))
1217 			return true;
1218 
1219 	return false;
1220 }
1221 EXPORT_SYMBOL(blk_mq_queue_stopped);
1222 
1223 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1224 {
1225 	if (sync)
1226 		cancel_delayed_work_sync(&hctx->run_work);
1227 	else
1228 		cancel_delayed_work(&hctx->run_work);
1229 
1230 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231 }
1232 
1233 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1234 {
1235 	__blk_mq_stop_hw_queue(hctx, false);
1236 }
1237 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1238 
1239 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1240 {
1241 	struct blk_mq_hw_ctx *hctx;
1242 	int i;
1243 
1244 	queue_for_each_hw_ctx(q, hctx, i)
1245 		__blk_mq_stop_hw_queue(hctx, sync);
1246 }
1247 
1248 void blk_mq_stop_hw_queues(struct request_queue *q)
1249 {
1250 	__blk_mq_stop_hw_queues(q, false);
1251 }
1252 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1253 
1254 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1255 {
1256 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1257 
1258 	blk_mq_run_hw_queue(hctx, false);
1259 }
1260 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1261 
1262 void blk_mq_start_hw_queues(struct request_queue *q)
1263 {
1264 	struct blk_mq_hw_ctx *hctx;
1265 	int i;
1266 
1267 	queue_for_each_hw_ctx(q, hctx, i)
1268 		blk_mq_start_hw_queue(hctx);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1271 
1272 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1273 {
1274 	if (!blk_mq_hctx_stopped(hctx))
1275 		return;
1276 
1277 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1278 	blk_mq_run_hw_queue(hctx, async);
1279 }
1280 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1281 
1282 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1283 {
1284 	struct blk_mq_hw_ctx *hctx;
1285 	int i;
1286 
1287 	queue_for_each_hw_ctx(q, hctx, i)
1288 		blk_mq_start_stopped_hw_queue(hctx, async);
1289 }
1290 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1291 
1292 static void blk_mq_run_work_fn(struct work_struct *work)
1293 {
1294 	struct blk_mq_hw_ctx *hctx;
1295 
1296 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1297 
1298 	/*
1299 	 * If we are stopped, don't run the queue. The exception is if
1300 	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1301 	 * the STOPPED bit and run it.
1302 	 */
1303 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1304 		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1305 			return;
1306 
1307 		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1308 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1309 	}
1310 
1311 	__blk_mq_run_hw_queue(hctx);
1312 }
1313 
1314 
1315 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1316 {
1317 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1318 		return;
1319 
1320 	/*
1321 	 * Stop the hw queue, then modify currently delayed work.
1322 	 * This should prevent us from running the queue prematurely.
1323 	 * Mark the queue as auto-clearing STOPPED when it runs.
1324 	 */
1325 	blk_mq_stop_hw_queue(hctx);
1326 	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1327 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1328 					&hctx->run_work,
1329 					msecs_to_jiffies(msecs));
1330 }
1331 EXPORT_SYMBOL(blk_mq_delay_queue);
1332 
1333 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1334 					    struct request *rq,
1335 					    bool at_head)
1336 {
1337 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1338 
1339 	trace_block_rq_insert(hctx->queue, rq);
1340 
1341 	if (at_head)
1342 		list_add(&rq->queuelist, &ctx->rq_list);
1343 	else
1344 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1345 }
1346 
1347 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1348 			     bool at_head)
1349 {
1350 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1351 
1352 	__blk_mq_insert_req_list(hctx, rq, at_head);
1353 	blk_mq_hctx_mark_pending(hctx, ctx);
1354 }
1355 
1356 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1357 			    struct list_head *list)
1358 
1359 {
1360 	/*
1361 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1362 	 * offline now
1363 	 */
1364 	spin_lock(&ctx->lock);
1365 	while (!list_empty(list)) {
1366 		struct request *rq;
1367 
1368 		rq = list_first_entry(list, struct request, queuelist);
1369 		BUG_ON(rq->mq_ctx != ctx);
1370 		list_del_init(&rq->queuelist);
1371 		__blk_mq_insert_req_list(hctx, rq, false);
1372 	}
1373 	blk_mq_hctx_mark_pending(hctx, ctx);
1374 	spin_unlock(&ctx->lock);
1375 }
1376 
1377 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1378 {
1379 	struct request *rqa = container_of(a, struct request, queuelist);
1380 	struct request *rqb = container_of(b, struct request, queuelist);
1381 
1382 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1383 		 (rqa->mq_ctx == rqb->mq_ctx &&
1384 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1385 }
1386 
1387 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1388 {
1389 	struct blk_mq_ctx *this_ctx;
1390 	struct request_queue *this_q;
1391 	struct request *rq;
1392 	LIST_HEAD(list);
1393 	LIST_HEAD(ctx_list);
1394 	unsigned int depth;
1395 
1396 	list_splice_init(&plug->mq_list, &list);
1397 
1398 	list_sort(NULL, &list, plug_ctx_cmp);
1399 
1400 	this_q = NULL;
1401 	this_ctx = NULL;
1402 	depth = 0;
1403 
1404 	while (!list_empty(&list)) {
1405 		rq = list_entry_rq(list.next);
1406 		list_del_init(&rq->queuelist);
1407 		BUG_ON(!rq->q);
1408 		if (rq->mq_ctx != this_ctx) {
1409 			if (this_ctx) {
1410 				trace_block_unplug(this_q, depth, from_schedule);
1411 				blk_mq_sched_insert_requests(this_q, this_ctx,
1412 								&ctx_list,
1413 								from_schedule);
1414 			}
1415 
1416 			this_ctx = rq->mq_ctx;
1417 			this_q = rq->q;
1418 			depth = 0;
1419 		}
1420 
1421 		depth++;
1422 		list_add_tail(&rq->queuelist, &ctx_list);
1423 	}
1424 
1425 	/*
1426 	 * If 'this_ctx' is set, we know we have entries to complete
1427 	 * on 'ctx_list'. Do those.
1428 	 */
1429 	if (this_ctx) {
1430 		trace_block_unplug(this_q, depth, from_schedule);
1431 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1432 						from_schedule);
1433 	}
1434 }
1435 
1436 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1437 {
1438 	blk_init_request_from_bio(rq, bio);
1439 
1440 	blk_account_io_start(rq, true);
1441 }
1442 
1443 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1444 {
1445 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1446 		!blk_queue_nomerges(hctx->queue);
1447 }
1448 
1449 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1450 					 struct blk_mq_ctx *ctx,
1451 					 struct request *rq, struct bio *bio)
1452 {
1453 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1454 		blk_mq_bio_to_request(rq, bio);
1455 		spin_lock(&ctx->lock);
1456 insert_rq:
1457 		__blk_mq_insert_request(hctx, rq, false);
1458 		spin_unlock(&ctx->lock);
1459 		return false;
1460 	} else {
1461 		struct request_queue *q = hctx->queue;
1462 
1463 		spin_lock(&ctx->lock);
1464 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1465 			blk_mq_bio_to_request(rq, bio);
1466 			goto insert_rq;
1467 		}
1468 
1469 		spin_unlock(&ctx->lock);
1470 		__blk_mq_finish_request(hctx, ctx, rq);
1471 		return true;
1472 	}
1473 }
1474 
1475 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1476 {
1477 	if (rq->tag != -1)
1478 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1479 
1480 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1481 }
1482 
1483 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1484 				      bool may_sleep)
1485 {
1486 	struct request_queue *q = rq->q;
1487 	struct blk_mq_queue_data bd = {
1488 		.rq = rq,
1489 		.last = true,
1490 	};
1491 	struct blk_mq_hw_ctx *hctx;
1492 	blk_qc_t new_cookie;
1493 	int ret;
1494 
1495 	if (q->elevator)
1496 		goto insert;
1497 
1498 	if (!blk_mq_get_driver_tag(rq, &hctx, false))
1499 		goto insert;
1500 
1501 	new_cookie = request_to_qc_t(hctx, rq);
1502 
1503 	/*
1504 	 * For OK queue, we are done. For error, kill it. Any other
1505 	 * error (busy), just add it to our list as we previously
1506 	 * would have done
1507 	 */
1508 	ret = q->mq_ops->queue_rq(hctx, &bd);
1509 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1510 		*cookie = new_cookie;
1511 		return;
1512 	}
1513 
1514 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1515 		*cookie = BLK_QC_T_NONE;
1516 		blk_mq_end_request(rq, -EIO);
1517 		return;
1518 	}
1519 
1520 	__blk_mq_requeue_request(rq);
1521 insert:
1522 	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1523 }
1524 
1525 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1526 		struct request *rq, blk_qc_t *cookie)
1527 {
1528 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1529 		rcu_read_lock();
1530 		__blk_mq_try_issue_directly(rq, cookie, false);
1531 		rcu_read_unlock();
1532 	} else {
1533 		unsigned int srcu_idx;
1534 
1535 		might_sleep();
1536 
1537 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1538 		__blk_mq_try_issue_directly(rq, cookie, true);
1539 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1540 	}
1541 }
1542 
1543 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1544 {
1545 	const int is_sync = op_is_sync(bio->bi_opf);
1546 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1547 	struct blk_mq_alloc_data data = { .flags = 0 };
1548 	struct request *rq;
1549 	unsigned int request_count = 0;
1550 	struct blk_plug *plug;
1551 	struct request *same_queue_rq = NULL;
1552 	blk_qc_t cookie;
1553 	unsigned int wb_acct;
1554 
1555 	blk_queue_bounce(q, &bio);
1556 
1557 	blk_queue_split(q, &bio, q->bio_split);
1558 
1559 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1560 		bio_io_error(bio);
1561 		return BLK_QC_T_NONE;
1562 	}
1563 
1564 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1565 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1566 		return BLK_QC_T_NONE;
1567 
1568 	if (blk_mq_sched_bio_merge(q, bio))
1569 		return BLK_QC_T_NONE;
1570 
1571 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1572 
1573 	trace_block_getrq(q, bio, bio->bi_opf);
1574 
1575 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1576 	if (unlikely(!rq)) {
1577 		__wbt_done(q->rq_wb, wb_acct);
1578 		return BLK_QC_T_NONE;
1579 	}
1580 
1581 	wbt_track(&rq->issue_stat, wb_acct);
1582 
1583 	cookie = request_to_qc_t(data.hctx, rq);
1584 
1585 	plug = current->plug;
1586 	if (unlikely(is_flush_fua)) {
1587 		blk_mq_put_ctx(data.ctx);
1588 		blk_mq_bio_to_request(rq, bio);
1589 		if (q->elevator) {
1590 			blk_mq_sched_insert_request(rq, false, true, true,
1591 					true);
1592 		} else {
1593 			blk_insert_flush(rq);
1594 			blk_mq_run_hw_queue(data.hctx, true);
1595 		}
1596 	} else if (plug && q->nr_hw_queues == 1) {
1597 		struct request *last = NULL;
1598 
1599 		blk_mq_put_ctx(data.ctx);
1600 		blk_mq_bio_to_request(rq, bio);
1601 
1602 		/*
1603 		 * @request_count may become stale because of schedule
1604 		 * out, so check the list again.
1605 		 */
1606 		if (list_empty(&plug->mq_list))
1607 			request_count = 0;
1608 		else if (blk_queue_nomerges(q))
1609 			request_count = blk_plug_queued_count(q);
1610 
1611 		if (!request_count)
1612 			trace_block_plug(q);
1613 		else
1614 			last = list_entry_rq(plug->mq_list.prev);
1615 
1616 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1617 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1618 			blk_flush_plug_list(plug, false);
1619 			trace_block_plug(q);
1620 		}
1621 
1622 		list_add_tail(&rq->queuelist, &plug->mq_list);
1623 	} else if (plug && !blk_queue_nomerges(q)) {
1624 		blk_mq_bio_to_request(rq, bio);
1625 
1626 		/*
1627 		 * We do limited plugging. If the bio can be merged, do that.
1628 		 * Otherwise the existing request in the plug list will be
1629 		 * issued. So the plug list will have one request at most
1630 		 * The plug list might get flushed before this. If that happens,
1631 		 * the plug list is empty, and same_queue_rq is invalid.
1632 		 */
1633 		if (list_empty(&plug->mq_list))
1634 			same_queue_rq = NULL;
1635 		if (same_queue_rq)
1636 			list_del_init(&same_queue_rq->queuelist);
1637 		list_add_tail(&rq->queuelist, &plug->mq_list);
1638 
1639 		blk_mq_put_ctx(data.ctx);
1640 
1641 		if (same_queue_rq)
1642 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1643 					&cookie);
1644 	} else if (q->nr_hw_queues > 1 && is_sync) {
1645 		blk_mq_put_ctx(data.ctx);
1646 		blk_mq_bio_to_request(rq, bio);
1647 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1648 	} else if (q->elevator) {
1649 		blk_mq_put_ctx(data.ctx);
1650 		blk_mq_bio_to_request(rq, bio);
1651 		blk_mq_sched_insert_request(rq, false, true, true, true);
1652 	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1653 		blk_mq_put_ctx(data.ctx);
1654 		blk_mq_run_hw_queue(data.hctx, true);
1655 	} else
1656 		blk_mq_put_ctx(data.ctx);
1657 
1658 	return cookie;
1659 }
1660 
1661 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1662 		     unsigned int hctx_idx)
1663 {
1664 	struct page *page;
1665 
1666 	if (tags->rqs && set->ops->exit_request) {
1667 		int i;
1668 
1669 		for (i = 0; i < tags->nr_tags; i++) {
1670 			struct request *rq = tags->static_rqs[i];
1671 
1672 			if (!rq)
1673 				continue;
1674 			set->ops->exit_request(set, rq, hctx_idx);
1675 			tags->static_rqs[i] = NULL;
1676 		}
1677 	}
1678 
1679 	while (!list_empty(&tags->page_list)) {
1680 		page = list_first_entry(&tags->page_list, struct page, lru);
1681 		list_del_init(&page->lru);
1682 		/*
1683 		 * Remove kmemleak object previously allocated in
1684 		 * blk_mq_init_rq_map().
1685 		 */
1686 		kmemleak_free(page_address(page));
1687 		__free_pages(page, page->private);
1688 	}
1689 }
1690 
1691 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1692 {
1693 	kfree(tags->rqs);
1694 	tags->rqs = NULL;
1695 	kfree(tags->static_rqs);
1696 	tags->static_rqs = NULL;
1697 
1698 	blk_mq_free_tags(tags);
1699 }
1700 
1701 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1702 					unsigned int hctx_idx,
1703 					unsigned int nr_tags,
1704 					unsigned int reserved_tags)
1705 {
1706 	struct blk_mq_tags *tags;
1707 	int node;
1708 
1709 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1710 	if (node == NUMA_NO_NODE)
1711 		node = set->numa_node;
1712 
1713 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1714 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1715 	if (!tags)
1716 		return NULL;
1717 
1718 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1719 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1720 				 node);
1721 	if (!tags->rqs) {
1722 		blk_mq_free_tags(tags);
1723 		return NULL;
1724 	}
1725 
1726 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1727 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1728 				 node);
1729 	if (!tags->static_rqs) {
1730 		kfree(tags->rqs);
1731 		blk_mq_free_tags(tags);
1732 		return NULL;
1733 	}
1734 
1735 	return tags;
1736 }
1737 
1738 static size_t order_to_size(unsigned int order)
1739 {
1740 	return (size_t)PAGE_SIZE << order;
1741 }
1742 
1743 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1744 		     unsigned int hctx_idx, unsigned int depth)
1745 {
1746 	unsigned int i, j, entries_per_page, max_order = 4;
1747 	size_t rq_size, left;
1748 	int node;
1749 
1750 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1751 	if (node == NUMA_NO_NODE)
1752 		node = set->numa_node;
1753 
1754 	INIT_LIST_HEAD(&tags->page_list);
1755 
1756 	/*
1757 	 * rq_size is the size of the request plus driver payload, rounded
1758 	 * to the cacheline size
1759 	 */
1760 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1761 				cache_line_size());
1762 	left = rq_size * depth;
1763 
1764 	for (i = 0; i < depth; ) {
1765 		int this_order = max_order;
1766 		struct page *page;
1767 		int to_do;
1768 		void *p;
1769 
1770 		while (this_order && left < order_to_size(this_order - 1))
1771 			this_order--;
1772 
1773 		do {
1774 			page = alloc_pages_node(node,
1775 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1776 				this_order);
1777 			if (page)
1778 				break;
1779 			if (!this_order--)
1780 				break;
1781 			if (order_to_size(this_order) < rq_size)
1782 				break;
1783 		} while (1);
1784 
1785 		if (!page)
1786 			goto fail;
1787 
1788 		page->private = this_order;
1789 		list_add_tail(&page->lru, &tags->page_list);
1790 
1791 		p = page_address(page);
1792 		/*
1793 		 * Allow kmemleak to scan these pages as they contain pointers
1794 		 * to additional allocations like via ops->init_request().
1795 		 */
1796 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1797 		entries_per_page = order_to_size(this_order) / rq_size;
1798 		to_do = min(entries_per_page, depth - i);
1799 		left -= to_do * rq_size;
1800 		for (j = 0; j < to_do; j++) {
1801 			struct request *rq = p;
1802 
1803 			tags->static_rqs[i] = rq;
1804 			if (set->ops->init_request) {
1805 				if (set->ops->init_request(set, rq, hctx_idx,
1806 						node)) {
1807 					tags->static_rqs[i] = NULL;
1808 					goto fail;
1809 				}
1810 			}
1811 
1812 			p += rq_size;
1813 			i++;
1814 		}
1815 	}
1816 	return 0;
1817 
1818 fail:
1819 	blk_mq_free_rqs(set, tags, hctx_idx);
1820 	return -ENOMEM;
1821 }
1822 
1823 /*
1824  * 'cpu' is going away. splice any existing rq_list entries from this
1825  * software queue to the hw queue dispatch list, and ensure that it
1826  * gets run.
1827  */
1828 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1829 {
1830 	struct blk_mq_hw_ctx *hctx;
1831 	struct blk_mq_ctx *ctx;
1832 	LIST_HEAD(tmp);
1833 
1834 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1835 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1836 
1837 	spin_lock(&ctx->lock);
1838 	if (!list_empty(&ctx->rq_list)) {
1839 		list_splice_init(&ctx->rq_list, &tmp);
1840 		blk_mq_hctx_clear_pending(hctx, ctx);
1841 	}
1842 	spin_unlock(&ctx->lock);
1843 
1844 	if (list_empty(&tmp))
1845 		return 0;
1846 
1847 	spin_lock(&hctx->lock);
1848 	list_splice_tail_init(&tmp, &hctx->dispatch);
1849 	spin_unlock(&hctx->lock);
1850 
1851 	blk_mq_run_hw_queue(hctx, true);
1852 	return 0;
1853 }
1854 
1855 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1856 {
1857 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1858 					    &hctx->cpuhp_dead);
1859 }
1860 
1861 /* hctx->ctxs will be freed in queue's release handler */
1862 static void blk_mq_exit_hctx(struct request_queue *q,
1863 		struct blk_mq_tag_set *set,
1864 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1865 {
1866 	blk_mq_debugfs_unregister_hctx(hctx);
1867 
1868 	blk_mq_tag_idle(hctx);
1869 
1870 	if (set->ops->exit_request)
1871 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1872 
1873 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1874 
1875 	if (set->ops->exit_hctx)
1876 		set->ops->exit_hctx(hctx, hctx_idx);
1877 
1878 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1879 		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1880 
1881 	blk_mq_remove_cpuhp(hctx);
1882 	blk_free_flush_queue(hctx->fq);
1883 	sbitmap_free(&hctx->ctx_map);
1884 }
1885 
1886 static void blk_mq_exit_hw_queues(struct request_queue *q,
1887 		struct blk_mq_tag_set *set, int nr_queue)
1888 {
1889 	struct blk_mq_hw_ctx *hctx;
1890 	unsigned int i;
1891 
1892 	queue_for_each_hw_ctx(q, hctx, i) {
1893 		if (i == nr_queue)
1894 			break;
1895 		blk_mq_exit_hctx(q, set, hctx, i);
1896 	}
1897 }
1898 
1899 static int blk_mq_init_hctx(struct request_queue *q,
1900 		struct blk_mq_tag_set *set,
1901 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1902 {
1903 	int node;
1904 
1905 	node = hctx->numa_node;
1906 	if (node == NUMA_NO_NODE)
1907 		node = hctx->numa_node = set->numa_node;
1908 
1909 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1910 	spin_lock_init(&hctx->lock);
1911 	INIT_LIST_HEAD(&hctx->dispatch);
1912 	hctx->queue = q;
1913 	hctx->queue_num = hctx_idx;
1914 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1915 
1916 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1917 
1918 	hctx->tags = set->tags[hctx_idx];
1919 
1920 	/*
1921 	 * Allocate space for all possible cpus to avoid allocation at
1922 	 * runtime
1923 	 */
1924 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1925 					GFP_KERNEL, node);
1926 	if (!hctx->ctxs)
1927 		goto unregister_cpu_notifier;
1928 
1929 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1930 			      node))
1931 		goto free_ctxs;
1932 
1933 	hctx->nr_ctx = 0;
1934 
1935 	if (set->ops->init_hctx &&
1936 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1937 		goto free_bitmap;
1938 
1939 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1940 		goto exit_hctx;
1941 
1942 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1943 	if (!hctx->fq)
1944 		goto sched_exit_hctx;
1945 
1946 	if (set->ops->init_request &&
1947 	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1948 				   node))
1949 		goto free_fq;
1950 
1951 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1952 		init_srcu_struct(&hctx->queue_rq_srcu);
1953 
1954 	blk_mq_debugfs_register_hctx(q, hctx);
1955 
1956 	return 0;
1957 
1958  free_fq:
1959 	kfree(hctx->fq);
1960  sched_exit_hctx:
1961 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1962  exit_hctx:
1963 	if (set->ops->exit_hctx)
1964 		set->ops->exit_hctx(hctx, hctx_idx);
1965  free_bitmap:
1966 	sbitmap_free(&hctx->ctx_map);
1967  free_ctxs:
1968 	kfree(hctx->ctxs);
1969  unregister_cpu_notifier:
1970 	blk_mq_remove_cpuhp(hctx);
1971 	return -1;
1972 }
1973 
1974 static void blk_mq_init_cpu_queues(struct request_queue *q,
1975 				   unsigned int nr_hw_queues)
1976 {
1977 	unsigned int i;
1978 
1979 	for_each_possible_cpu(i) {
1980 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1981 		struct blk_mq_hw_ctx *hctx;
1982 
1983 		__ctx->cpu = i;
1984 		spin_lock_init(&__ctx->lock);
1985 		INIT_LIST_HEAD(&__ctx->rq_list);
1986 		__ctx->queue = q;
1987 
1988 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1989 		if (!cpu_online(i))
1990 			continue;
1991 
1992 		hctx = blk_mq_map_queue(q, i);
1993 
1994 		/*
1995 		 * Set local node, IFF we have more than one hw queue. If
1996 		 * not, we remain on the home node of the device
1997 		 */
1998 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1999 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2000 	}
2001 }
2002 
2003 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2004 {
2005 	int ret = 0;
2006 
2007 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2008 					set->queue_depth, set->reserved_tags);
2009 	if (!set->tags[hctx_idx])
2010 		return false;
2011 
2012 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2013 				set->queue_depth);
2014 	if (!ret)
2015 		return true;
2016 
2017 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2018 	set->tags[hctx_idx] = NULL;
2019 	return false;
2020 }
2021 
2022 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2023 					 unsigned int hctx_idx)
2024 {
2025 	if (set->tags[hctx_idx]) {
2026 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2027 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2028 		set->tags[hctx_idx] = NULL;
2029 	}
2030 }
2031 
2032 static void blk_mq_map_swqueue(struct request_queue *q,
2033 			       const struct cpumask *online_mask)
2034 {
2035 	unsigned int i, hctx_idx;
2036 	struct blk_mq_hw_ctx *hctx;
2037 	struct blk_mq_ctx *ctx;
2038 	struct blk_mq_tag_set *set = q->tag_set;
2039 
2040 	/*
2041 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2042 	 */
2043 	mutex_lock(&q->sysfs_lock);
2044 
2045 	queue_for_each_hw_ctx(q, hctx, i) {
2046 		cpumask_clear(hctx->cpumask);
2047 		hctx->nr_ctx = 0;
2048 	}
2049 
2050 	/*
2051 	 * Map software to hardware queues
2052 	 */
2053 	for_each_possible_cpu(i) {
2054 		/* If the cpu isn't online, the cpu is mapped to first hctx */
2055 		if (!cpumask_test_cpu(i, online_mask))
2056 			continue;
2057 
2058 		hctx_idx = q->mq_map[i];
2059 		/* unmapped hw queue can be remapped after CPU topo changed */
2060 		if (!set->tags[hctx_idx] &&
2061 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2062 			/*
2063 			 * If tags initialization fail for some hctx,
2064 			 * that hctx won't be brought online.  In this
2065 			 * case, remap the current ctx to hctx[0] which
2066 			 * is guaranteed to always have tags allocated
2067 			 */
2068 			q->mq_map[i] = 0;
2069 		}
2070 
2071 		ctx = per_cpu_ptr(q->queue_ctx, i);
2072 		hctx = blk_mq_map_queue(q, i);
2073 
2074 		cpumask_set_cpu(i, hctx->cpumask);
2075 		ctx->index_hw = hctx->nr_ctx;
2076 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2077 	}
2078 
2079 	mutex_unlock(&q->sysfs_lock);
2080 
2081 	queue_for_each_hw_ctx(q, hctx, i) {
2082 		/*
2083 		 * If no software queues are mapped to this hardware queue,
2084 		 * disable it and free the request entries.
2085 		 */
2086 		if (!hctx->nr_ctx) {
2087 			/* Never unmap queue 0.  We need it as a
2088 			 * fallback in case of a new remap fails
2089 			 * allocation
2090 			 */
2091 			if (i && set->tags[i])
2092 				blk_mq_free_map_and_requests(set, i);
2093 
2094 			hctx->tags = NULL;
2095 			continue;
2096 		}
2097 
2098 		hctx->tags = set->tags[i];
2099 		WARN_ON(!hctx->tags);
2100 
2101 		/*
2102 		 * Set the map size to the number of mapped software queues.
2103 		 * This is more accurate and more efficient than looping
2104 		 * over all possibly mapped software queues.
2105 		 */
2106 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2107 
2108 		/*
2109 		 * Initialize batch roundrobin counts
2110 		 */
2111 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2112 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2113 	}
2114 }
2115 
2116 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2117 {
2118 	struct blk_mq_hw_ctx *hctx;
2119 	int i;
2120 
2121 	queue_for_each_hw_ctx(q, hctx, i) {
2122 		if (shared)
2123 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2124 		else
2125 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2126 	}
2127 }
2128 
2129 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2130 {
2131 	struct request_queue *q;
2132 
2133 	lockdep_assert_held(&set->tag_list_lock);
2134 
2135 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2136 		blk_mq_freeze_queue(q);
2137 		queue_set_hctx_shared(q, shared);
2138 		blk_mq_unfreeze_queue(q);
2139 	}
2140 }
2141 
2142 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2143 {
2144 	struct blk_mq_tag_set *set = q->tag_set;
2145 
2146 	mutex_lock(&set->tag_list_lock);
2147 	list_del_rcu(&q->tag_set_list);
2148 	INIT_LIST_HEAD(&q->tag_set_list);
2149 	if (list_is_singular(&set->tag_list)) {
2150 		/* just transitioned to unshared */
2151 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2152 		/* update existing queue */
2153 		blk_mq_update_tag_set_depth(set, false);
2154 	}
2155 	mutex_unlock(&set->tag_list_lock);
2156 
2157 	synchronize_rcu();
2158 }
2159 
2160 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2161 				     struct request_queue *q)
2162 {
2163 	q->tag_set = set;
2164 
2165 	mutex_lock(&set->tag_list_lock);
2166 
2167 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2168 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2169 		set->flags |= BLK_MQ_F_TAG_SHARED;
2170 		/* update existing queue */
2171 		blk_mq_update_tag_set_depth(set, true);
2172 	}
2173 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2174 		queue_set_hctx_shared(q, true);
2175 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2176 
2177 	mutex_unlock(&set->tag_list_lock);
2178 }
2179 
2180 /*
2181  * It is the actual release handler for mq, but we do it from
2182  * request queue's release handler for avoiding use-after-free
2183  * and headache because q->mq_kobj shouldn't have been introduced,
2184  * but we can't group ctx/kctx kobj without it.
2185  */
2186 void blk_mq_release(struct request_queue *q)
2187 {
2188 	struct blk_mq_hw_ctx *hctx;
2189 	unsigned int i;
2190 
2191 	/* hctx kobj stays in hctx */
2192 	queue_for_each_hw_ctx(q, hctx, i) {
2193 		if (!hctx)
2194 			continue;
2195 		kobject_put(&hctx->kobj);
2196 	}
2197 
2198 	q->mq_map = NULL;
2199 
2200 	kfree(q->queue_hw_ctx);
2201 
2202 	/*
2203 	 * release .mq_kobj and sw queue's kobject now because
2204 	 * both share lifetime with request queue.
2205 	 */
2206 	blk_mq_sysfs_deinit(q);
2207 
2208 	free_percpu(q->queue_ctx);
2209 }
2210 
2211 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2212 {
2213 	struct request_queue *uninit_q, *q;
2214 
2215 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2216 	if (!uninit_q)
2217 		return ERR_PTR(-ENOMEM);
2218 
2219 	q = blk_mq_init_allocated_queue(set, uninit_q);
2220 	if (IS_ERR(q))
2221 		blk_cleanup_queue(uninit_q);
2222 
2223 	return q;
2224 }
2225 EXPORT_SYMBOL(blk_mq_init_queue);
2226 
2227 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2228 						struct request_queue *q)
2229 {
2230 	int i, j;
2231 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2232 
2233 	blk_mq_sysfs_unregister(q);
2234 	for (i = 0; i < set->nr_hw_queues; i++) {
2235 		int node;
2236 
2237 		if (hctxs[i])
2238 			continue;
2239 
2240 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2241 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2242 					GFP_KERNEL, node);
2243 		if (!hctxs[i])
2244 			break;
2245 
2246 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2247 						node)) {
2248 			kfree(hctxs[i]);
2249 			hctxs[i] = NULL;
2250 			break;
2251 		}
2252 
2253 		atomic_set(&hctxs[i]->nr_active, 0);
2254 		hctxs[i]->numa_node = node;
2255 		hctxs[i]->queue_num = i;
2256 
2257 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2258 			free_cpumask_var(hctxs[i]->cpumask);
2259 			kfree(hctxs[i]);
2260 			hctxs[i] = NULL;
2261 			break;
2262 		}
2263 		blk_mq_hctx_kobj_init(hctxs[i]);
2264 	}
2265 	for (j = i; j < q->nr_hw_queues; j++) {
2266 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2267 
2268 		if (hctx) {
2269 			if (hctx->tags)
2270 				blk_mq_free_map_and_requests(set, j);
2271 			blk_mq_exit_hctx(q, set, hctx, j);
2272 			kobject_put(&hctx->kobj);
2273 			hctxs[j] = NULL;
2274 
2275 		}
2276 	}
2277 	q->nr_hw_queues = i;
2278 	blk_mq_sysfs_register(q);
2279 }
2280 
2281 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2282 						  struct request_queue *q)
2283 {
2284 	/* mark the queue as mq asap */
2285 	q->mq_ops = set->ops;
2286 
2287 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2288 					     blk_mq_poll_stats_bkt,
2289 					     BLK_MQ_POLL_STATS_BKTS, q);
2290 	if (!q->poll_cb)
2291 		goto err_exit;
2292 
2293 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2294 	if (!q->queue_ctx)
2295 		goto err_exit;
2296 
2297 	/* init q->mq_kobj and sw queues' kobjects */
2298 	blk_mq_sysfs_init(q);
2299 
2300 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2301 						GFP_KERNEL, set->numa_node);
2302 	if (!q->queue_hw_ctx)
2303 		goto err_percpu;
2304 
2305 	q->mq_map = set->mq_map;
2306 
2307 	blk_mq_realloc_hw_ctxs(set, q);
2308 	if (!q->nr_hw_queues)
2309 		goto err_hctxs;
2310 
2311 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2312 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2313 
2314 	q->nr_queues = nr_cpu_ids;
2315 
2316 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2317 
2318 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2319 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2320 
2321 	q->sg_reserved_size = INT_MAX;
2322 
2323 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2324 	INIT_LIST_HEAD(&q->requeue_list);
2325 	spin_lock_init(&q->requeue_lock);
2326 
2327 	blk_queue_make_request(q, blk_mq_make_request);
2328 
2329 	/*
2330 	 * Do this after blk_queue_make_request() overrides it...
2331 	 */
2332 	q->nr_requests = set->queue_depth;
2333 
2334 	/*
2335 	 * Default to classic polling
2336 	 */
2337 	q->poll_nsec = -1;
2338 
2339 	if (set->ops->complete)
2340 		blk_queue_softirq_done(q, set->ops->complete);
2341 
2342 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2343 
2344 	get_online_cpus();
2345 	mutex_lock(&all_q_mutex);
2346 
2347 	list_add_tail(&q->all_q_node, &all_q_list);
2348 	blk_mq_add_queue_tag_set(set, q);
2349 	blk_mq_map_swqueue(q, cpu_online_mask);
2350 
2351 	mutex_unlock(&all_q_mutex);
2352 	put_online_cpus();
2353 
2354 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2355 		int ret;
2356 
2357 		ret = blk_mq_sched_init(q);
2358 		if (ret)
2359 			return ERR_PTR(ret);
2360 	}
2361 
2362 	return q;
2363 
2364 err_hctxs:
2365 	kfree(q->queue_hw_ctx);
2366 err_percpu:
2367 	free_percpu(q->queue_ctx);
2368 err_exit:
2369 	q->mq_ops = NULL;
2370 	return ERR_PTR(-ENOMEM);
2371 }
2372 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2373 
2374 void blk_mq_free_queue(struct request_queue *q)
2375 {
2376 	struct blk_mq_tag_set	*set = q->tag_set;
2377 
2378 	mutex_lock(&all_q_mutex);
2379 	list_del_init(&q->all_q_node);
2380 	mutex_unlock(&all_q_mutex);
2381 
2382 	blk_mq_del_queue_tag_set(q);
2383 
2384 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2385 }
2386 
2387 /* Basically redo blk_mq_init_queue with queue frozen */
2388 static void blk_mq_queue_reinit(struct request_queue *q,
2389 				const struct cpumask *online_mask)
2390 {
2391 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2392 
2393 	blk_mq_debugfs_unregister_hctxs(q);
2394 	blk_mq_sysfs_unregister(q);
2395 
2396 	/*
2397 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2398 	 * we should change hctx numa_node according to new topology (this
2399 	 * involves free and re-allocate memory, worthy doing?)
2400 	 */
2401 
2402 	blk_mq_map_swqueue(q, online_mask);
2403 
2404 	blk_mq_sysfs_register(q);
2405 	blk_mq_debugfs_register_hctxs(q);
2406 }
2407 
2408 /*
2409  * New online cpumask which is going to be set in this hotplug event.
2410  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2411  * one-by-one and dynamically allocating this could result in a failure.
2412  */
2413 static struct cpumask cpuhp_online_new;
2414 
2415 static void blk_mq_queue_reinit_work(void)
2416 {
2417 	struct request_queue *q;
2418 
2419 	mutex_lock(&all_q_mutex);
2420 	/*
2421 	 * We need to freeze and reinit all existing queues.  Freezing
2422 	 * involves synchronous wait for an RCU grace period and doing it
2423 	 * one by one may take a long time.  Start freezing all queues in
2424 	 * one swoop and then wait for the completions so that freezing can
2425 	 * take place in parallel.
2426 	 */
2427 	list_for_each_entry(q, &all_q_list, all_q_node)
2428 		blk_freeze_queue_start(q);
2429 	list_for_each_entry(q, &all_q_list, all_q_node)
2430 		blk_mq_freeze_queue_wait(q);
2431 
2432 	list_for_each_entry(q, &all_q_list, all_q_node)
2433 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2434 
2435 	list_for_each_entry(q, &all_q_list, all_q_node)
2436 		blk_mq_unfreeze_queue(q);
2437 
2438 	mutex_unlock(&all_q_mutex);
2439 }
2440 
2441 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2442 {
2443 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2444 	blk_mq_queue_reinit_work();
2445 	return 0;
2446 }
2447 
2448 /*
2449  * Before hotadded cpu starts handling requests, new mappings must be
2450  * established.  Otherwise, these requests in hw queue might never be
2451  * dispatched.
2452  *
2453  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2454  * for CPU0, and ctx1 for CPU1).
2455  *
2456  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2457  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2458  *
2459  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2460  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2461  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2462  * ignored.
2463  */
2464 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2465 {
2466 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2467 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2468 	blk_mq_queue_reinit_work();
2469 	return 0;
2470 }
2471 
2472 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2473 {
2474 	int i;
2475 
2476 	for (i = 0; i < set->nr_hw_queues; i++)
2477 		if (!__blk_mq_alloc_rq_map(set, i))
2478 			goto out_unwind;
2479 
2480 	return 0;
2481 
2482 out_unwind:
2483 	while (--i >= 0)
2484 		blk_mq_free_rq_map(set->tags[i]);
2485 
2486 	return -ENOMEM;
2487 }
2488 
2489 /*
2490  * Allocate the request maps associated with this tag_set. Note that this
2491  * may reduce the depth asked for, if memory is tight. set->queue_depth
2492  * will be updated to reflect the allocated depth.
2493  */
2494 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2495 {
2496 	unsigned int depth;
2497 	int err;
2498 
2499 	depth = set->queue_depth;
2500 	do {
2501 		err = __blk_mq_alloc_rq_maps(set);
2502 		if (!err)
2503 			break;
2504 
2505 		set->queue_depth >>= 1;
2506 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2507 			err = -ENOMEM;
2508 			break;
2509 		}
2510 	} while (set->queue_depth);
2511 
2512 	if (!set->queue_depth || err) {
2513 		pr_err("blk-mq: failed to allocate request map\n");
2514 		return -ENOMEM;
2515 	}
2516 
2517 	if (depth != set->queue_depth)
2518 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2519 						depth, set->queue_depth);
2520 
2521 	return 0;
2522 }
2523 
2524 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2525 {
2526 	if (set->ops->map_queues)
2527 		return set->ops->map_queues(set);
2528 	else
2529 		return blk_mq_map_queues(set);
2530 }
2531 
2532 /*
2533  * Alloc a tag set to be associated with one or more request queues.
2534  * May fail with EINVAL for various error conditions. May adjust the
2535  * requested depth down, if if it too large. In that case, the set
2536  * value will be stored in set->queue_depth.
2537  */
2538 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2539 {
2540 	int ret;
2541 
2542 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2543 
2544 	if (!set->nr_hw_queues)
2545 		return -EINVAL;
2546 	if (!set->queue_depth)
2547 		return -EINVAL;
2548 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2549 		return -EINVAL;
2550 
2551 	if (!set->ops->queue_rq)
2552 		return -EINVAL;
2553 
2554 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2555 		pr_info("blk-mq: reduced tag depth to %u\n",
2556 			BLK_MQ_MAX_DEPTH);
2557 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2558 	}
2559 
2560 	/*
2561 	 * If a crashdump is active, then we are potentially in a very
2562 	 * memory constrained environment. Limit us to 1 queue and
2563 	 * 64 tags to prevent using too much memory.
2564 	 */
2565 	if (is_kdump_kernel()) {
2566 		set->nr_hw_queues = 1;
2567 		set->queue_depth = min(64U, set->queue_depth);
2568 	}
2569 	/*
2570 	 * There is no use for more h/w queues than cpus.
2571 	 */
2572 	if (set->nr_hw_queues > nr_cpu_ids)
2573 		set->nr_hw_queues = nr_cpu_ids;
2574 
2575 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2576 				 GFP_KERNEL, set->numa_node);
2577 	if (!set->tags)
2578 		return -ENOMEM;
2579 
2580 	ret = -ENOMEM;
2581 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2582 			GFP_KERNEL, set->numa_node);
2583 	if (!set->mq_map)
2584 		goto out_free_tags;
2585 
2586 	ret = blk_mq_update_queue_map(set);
2587 	if (ret)
2588 		goto out_free_mq_map;
2589 
2590 	ret = blk_mq_alloc_rq_maps(set);
2591 	if (ret)
2592 		goto out_free_mq_map;
2593 
2594 	mutex_init(&set->tag_list_lock);
2595 	INIT_LIST_HEAD(&set->tag_list);
2596 
2597 	return 0;
2598 
2599 out_free_mq_map:
2600 	kfree(set->mq_map);
2601 	set->mq_map = NULL;
2602 out_free_tags:
2603 	kfree(set->tags);
2604 	set->tags = NULL;
2605 	return ret;
2606 }
2607 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2608 
2609 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2610 {
2611 	int i;
2612 
2613 	for (i = 0; i < nr_cpu_ids; i++)
2614 		blk_mq_free_map_and_requests(set, i);
2615 
2616 	kfree(set->mq_map);
2617 	set->mq_map = NULL;
2618 
2619 	kfree(set->tags);
2620 	set->tags = NULL;
2621 }
2622 EXPORT_SYMBOL(blk_mq_free_tag_set);
2623 
2624 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2625 {
2626 	struct blk_mq_tag_set *set = q->tag_set;
2627 	struct blk_mq_hw_ctx *hctx;
2628 	int i, ret;
2629 
2630 	if (!set)
2631 		return -EINVAL;
2632 
2633 	blk_mq_freeze_queue(q);
2634 
2635 	ret = 0;
2636 	queue_for_each_hw_ctx(q, hctx, i) {
2637 		if (!hctx->tags)
2638 			continue;
2639 		/*
2640 		 * If we're using an MQ scheduler, just update the scheduler
2641 		 * queue depth. This is similar to what the old code would do.
2642 		 */
2643 		if (!hctx->sched_tags) {
2644 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2645 							min(nr, set->queue_depth),
2646 							false);
2647 		} else {
2648 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2649 							nr, true);
2650 		}
2651 		if (ret)
2652 			break;
2653 	}
2654 
2655 	if (!ret)
2656 		q->nr_requests = nr;
2657 
2658 	blk_mq_unfreeze_queue(q);
2659 
2660 	return ret;
2661 }
2662 
2663 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2664 {
2665 	struct request_queue *q;
2666 
2667 	lockdep_assert_held(&set->tag_list_lock);
2668 
2669 	if (nr_hw_queues > nr_cpu_ids)
2670 		nr_hw_queues = nr_cpu_ids;
2671 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2672 		return;
2673 
2674 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2675 		blk_mq_freeze_queue(q);
2676 
2677 	set->nr_hw_queues = nr_hw_queues;
2678 	blk_mq_update_queue_map(set);
2679 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2680 		blk_mq_realloc_hw_ctxs(set, q);
2681 		blk_mq_queue_reinit(q, cpu_online_mask);
2682 	}
2683 
2684 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2685 		blk_mq_unfreeze_queue(q);
2686 }
2687 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2688 
2689 /* Enable polling stats and return whether they were already enabled. */
2690 static bool blk_poll_stats_enable(struct request_queue *q)
2691 {
2692 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2693 	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2694 		return true;
2695 	blk_stat_add_callback(q, q->poll_cb);
2696 	return false;
2697 }
2698 
2699 static void blk_mq_poll_stats_start(struct request_queue *q)
2700 {
2701 	/*
2702 	 * We don't arm the callback if polling stats are not enabled or the
2703 	 * callback is already active.
2704 	 */
2705 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2706 	    blk_stat_is_active(q->poll_cb))
2707 		return;
2708 
2709 	blk_stat_activate_msecs(q->poll_cb, 100);
2710 }
2711 
2712 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2713 {
2714 	struct request_queue *q = cb->data;
2715 	int bucket;
2716 
2717 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2718 		if (cb->stat[bucket].nr_samples)
2719 			q->poll_stat[bucket] = cb->stat[bucket];
2720 	}
2721 }
2722 
2723 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2724 				       struct blk_mq_hw_ctx *hctx,
2725 				       struct request *rq)
2726 {
2727 	unsigned long ret = 0;
2728 	int bucket;
2729 
2730 	/*
2731 	 * If stats collection isn't on, don't sleep but turn it on for
2732 	 * future users
2733 	 */
2734 	if (!blk_poll_stats_enable(q))
2735 		return 0;
2736 
2737 	/*
2738 	 * As an optimistic guess, use half of the mean service time
2739 	 * for this type of request. We can (and should) make this smarter.
2740 	 * For instance, if the completion latencies are tight, we can
2741 	 * get closer than just half the mean. This is especially
2742 	 * important on devices where the completion latencies are longer
2743 	 * than ~10 usec. We do use the stats for the relevant IO size
2744 	 * if available which does lead to better estimates.
2745 	 */
2746 	bucket = blk_mq_poll_stats_bkt(rq);
2747 	if (bucket < 0)
2748 		return ret;
2749 
2750 	if (q->poll_stat[bucket].nr_samples)
2751 		ret = (q->poll_stat[bucket].mean + 1) / 2;
2752 
2753 	return ret;
2754 }
2755 
2756 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2757 				     struct blk_mq_hw_ctx *hctx,
2758 				     struct request *rq)
2759 {
2760 	struct hrtimer_sleeper hs;
2761 	enum hrtimer_mode mode;
2762 	unsigned int nsecs;
2763 	ktime_t kt;
2764 
2765 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2766 		return false;
2767 
2768 	/*
2769 	 * poll_nsec can be:
2770 	 *
2771 	 * -1:	don't ever hybrid sleep
2772 	 *  0:	use half of prev avg
2773 	 * >0:	use this specific value
2774 	 */
2775 	if (q->poll_nsec == -1)
2776 		return false;
2777 	else if (q->poll_nsec > 0)
2778 		nsecs = q->poll_nsec;
2779 	else
2780 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2781 
2782 	if (!nsecs)
2783 		return false;
2784 
2785 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2786 
2787 	/*
2788 	 * This will be replaced with the stats tracking code, using
2789 	 * 'avg_completion_time / 2' as the pre-sleep target.
2790 	 */
2791 	kt = nsecs;
2792 
2793 	mode = HRTIMER_MODE_REL;
2794 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2795 	hrtimer_set_expires(&hs.timer, kt);
2796 
2797 	hrtimer_init_sleeper(&hs, current);
2798 	do {
2799 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2800 			break;
2801 		set_current_state(TASK_UNINTERRUPTIBLE);
2802 		hrtimer_start_expires(&hs.timer, mode);
2803 		if (hs.task)
2804 			io_schedule();
2805 		hrtimer_cancel(&hs.timer);
2806 		mode = HRTIMER_MODE_ABS;
2807 	} while (hs.task && !signal_pending(current));
2808 
2809 	__set_current_state(TASK_RUNNING);
2810 	destroy_hrtimer_on_stack(&hs.timer);
2811 	return true;
2812 }
2813 
2814 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2815 {
2816 	struct request_queue *q = hctx->queue;
2817 	long state;
2818 
2819 	/*
2820 	 * If we sleep, have the caller restart the poll loop to reset
2821 	 * the state. Like for the other success return cases, the
2822 	 * caller is responsible for checking if the IO completed. If
2823 	 * the IO isn't complete, we'll get called again and will go
2824 	 * straight to the busy poll loop.
2825 	 */
2826 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2827 		return true;
2828 
2829 	hctx->poll_considered++;
2830 
2831 	state = current->state;
2832 	while (!need_resched()) {
2833 		int ret;
2834 
2835 		hctx->poll_invoked++;
2836 
2837 		ret = q->mq_ops->poll(hctx, rq->tag);
2838 		if (ret > 0) {
2839 			hctx->poll_success++;
2840 			set_current_state(TASK_RUNNING);
2841 			return true;
2842 		}
2843 
2844 		if (signal_pending_state(state, current))
2845 			set_current_state(TASK_RUNNING);
2846 
2847 		if (current->state == TASK_RUNNING)
2848 			return true;
2849 		if (ret < 0)
2850 			break;
2851 		cpu_relax();
2852 	}
2853 
2854 	return false;
2855 }
2856 
2857 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2858 {
2859 	struct blk_mq_hw_ctx *hctx;
2860 	struct blk_plug *plug;
2861 	struct request *rq;
2862 
2863 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2864 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2865 		return false;
2866 
2867 	plug = current->plug;
2868 	if (plug)
2869 		blk_flush_plug_list(plug, false);
2870 
2871 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2872 	if (!blk_qc_t_is_internal(cookie))
2873 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2874 	else {
2875 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2876 		/*
2877 		 * With scheduling, if the request has completed, we'll
2878 		 * get a NULL return here, as we clear the sched tag when
2879 		 * that happens. The request still remains valid, like always,
2880 		 * so we should be safe with just the NULL check.
2881 		 */
2882 		if (!rq)
2883 			return false;
2884 	}
2885 
2886 	return __blk_mq_poll(hctx, rq);
2887 }
2888 EXPORT_SYMBOL_GPL(blk_mq_poll);
2889 
2890 void blk_mq_disable_hotplug(void)
2891 {
2892 	mutex_lock(&all_q_mutex);
2893 }
2894 
2895 void blk_mq_enable_hotplug(void)
2896 {
2897 	mutex_unlock(&all_q_mutex);
2898 }
2899 
2900 static int __init blk_mq_init(void)
2901 {
2902 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2903 				blk_mq_hctx_notify_dead);
2904 
2905 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2906 				  blk_mq_queue_reinit_prepare,
2907 				  blk_mq_queue_reinit_dead);
2908 	return 0;
2909 }
2910 subsys_initcall(blk_mq_init);
2911