1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 #include <linux/crash_dump.h> 24 25 #include <trace/events/block.h> 26 27 #include <linux/blk-mq.h> 28 #include "blk.h" 29 #include "blk-mq.h" 30 #include "blk-mq-tag.h" 31 32 static DEFINE_MUTEX(all_q_mutex); 33 static LIST_HEAD(all_q_list); 34 35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 36 37 /* 38 * Check if any of the ctx's have pending work in this hardware queue 39 */ 40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int i; 43 44 for (i = 0; i < hctx->ctx_map.size; i++) 45 if (hctx->ctx_map.map[i].word) 46 return true; 47 48 return false; 49 } 50 51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 52 struct blk_mq_ctx *ctx) 53 { 54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 55 } 56 57 #define CTX_TO_BIT(hctx, ctx) \ 58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 59 60 /* 61 * Mark this ctx as having pending work in this hardware queue 62 */ 63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 64 struct blk_mq_ctx *ctx) 65 { 66 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 67 68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 70 } 71 72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 76 77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 78 } 79 80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp) 81 { 82 while (true) { 83 int ret; 84 85 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 86 return 0; 87 88 if (!(gfp & __GFP_WAIT)) 89 return -EBUSY; 90 91 ret = wait_event_interruptible(q->mq_freeze_wq, 92 !atomic_read(&q->mq_freeze_depth) || 93 blk_queue_dying(q)); 94 if (blk_queue_dying(q)) 95 return -ENODEV; 96 if (ret) 97 return ret; 98 } 99 } 100 101 static void blk_mq_queue_exit(struct request_queue *q) 102 { 103 percpu_ref_put(&q->mq_usage_counter); 104 } 105 106 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 107 { 108 struct request_queue *q = 109 container_of(ref, struct request_queue, mq_usage_counter); 110 111 wake_up_all(&q->mq_freeze_wq); 112 } 113 114 void blk_mq_freeze_queue_start(struct request_queue *q) 115 { 116 int freeze_depth; 117 118 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 119 if (freeze_depth == 1) { 120 percpu_ref_kill(&q->mq_usage_counter); 121 blk_mq_run_hw_queues(q, false); 122 } 123 } 124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 125 126 static void blk_mq_freeze_queue_wait(struct request_queue *q) 127 { 128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 129 } 130 131 /* 132 * Guarantee no request is in use, so we can change any data structure of 133 * the queue afterward. 134 */ 135 void blk_mq_freeze_queue(struct request_queue *q) 136 { 137 blk_mq_freeze_queue_start(q); 138 blk_mq_freeze_queue_wait(q); 139 } 140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 141 142 void blk_mq_unfreeze_queue(struct request_queue *q) 143 { 144 int freeze_depth; 145 146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 147 WARN_ON_ONCE(freeze_depth < 0); 148 if (!freeze_depth) { 149 percpu_ref_reinit(&q->mq_usage_counter); 150 wake_up_all(&q->mq_freeze_wq); 151 } 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 154 155 void blk_mq_wake_waiters(struct request_queue *q) 156 { 157 struct blk_mq_hw_ctx *hctx; 158 unsigned int i; 159 160 queue_for_each_hw_ctx(q, hctx, i) 161 if (blk_mq_hw_queue_mapped(hctx)) 162 blk_mq_tag_wakeup_all(hctx->tags, true); 163 164 /* 165 * If we are called because the queue has now been marked as 166 * dying, we need to ensure that processes currently waiting on 167 * the queue are notified as well. 168 */ 169 wake_up_all(&q->mq_freeze_wq); 170 } 171 172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 173 { 174 return blk_mq_has_free_tags(hctx->tags); 175 } 176 EXPORT_SYMBOL(blk_mq_can_queue); 177 178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 179 struct request *rq, unsigned int rw_flags) 180 { 181 if (blk_queue_io_stat(q)) 182 rw_flags |= REQ_IO_STAT; 183 184 INIT_LIST_HEAD(&rq->queuelist); 185 /* csd/requeue_work/fifo_time is initialized before use */ 186 rq->q = q; 187 rq->mq_ctx = ctx; 188 rq->cmd_flags |= rw_flags; 189 /* do not touch atomic flags, it needs atomic ops against the timer */ 190 rq->cpu = -1; 191 INIT_HLIST_NODE(&rq->hash); 192 RB_CLEAR_NODE(&rq->rb_node); 193 rq->rq_disk = NULL; 194 rq->part = NULL; 195 rq->start_time = jiffies; 196 #ifdef CONFIG_BLK_CGROUP 197 rq->rl = NULL; 198 set_start_time_ns(rq); 199 rq->io_start_time_ns = 0; 200 #endif 201 rq->nr_phys_segments = 0; 202 #if defined(CONFIG_BLK_DEV_INTEGRITY) 203 rq->nr_integrity_segments = 0; 204 #endif 205 rq->special = NULL; 206 /* tag was already set */ 207 rq->errors = 0; 208 209 rq->cmd = rq->__cmd; 210 211 rq->extra_len = 0; 212 rq->sense_len = 0; 213 rq->resid_len = 0; 214 rq->sense = NULL; 215 216 INIT_LIST_HEAD(&rq->timeout_list); 217 rq->timeout = 0; 218 219 rq->end_io = NULL; 220 rq->end_io_data = NULL; 221 rq->next_rq = NULL; 222 223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 224 } 225 226 static struct request * 227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 228 { 229 struct request *rq; 230 unsigned int tag; 231 232 tag = blk_mq_get_tag(data); 233 if (tag != BLK_MQ_TAG_FAIL) { 234 rq = data->hctx->tags->rqs[tag]; 235 236 if (blk_mq_tag_busy(data->hctx)) { 237 rq->cmd_flags = REQ_MQ_INFLIGHT; 238 atomic_inc(&data->hctx->nr_active); 239 } 240 241 rq->tag = tag; 242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 243 return rq; 244 } 245 246 return NULL; 247 } 248 249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 250 bool reserved) 251 { 252 struct blk_mq_ctx *ctx; 253 struct blk_mq_hw_ctx *hctx; 254 struct request *rq; 255 struct blk_mq_alloc_data alloc_data; 256 int ret; 257 258 ret = blk_mq_queue_enter(q, gfp); 259 if (ret) 260 return ERR_PTR(ret); 261 262 ctx = blk_mq_get_ctx(q); 263 hctx = q->mq_ops->map_queue(q, ctx->cpu); 264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 265 reserved, ctx, hctx); 266 267 rq = __blk_mq_alloc_request(&alloc_data, rw); 268 if (!rq && (gfp & __GFP_WAIT)) { 269 __blk_mq_run_hw_queue(hctx); 270 blk_mq_put_ctx(ctx); 271 272 ctx = blk_mq_get_ctx(q); 273 hctx = q->mq_ops->map_queue(q, ctx->cpu); 274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 275 hctx); 276 rq = __blk_mq_alloc_request(&alloc_data, rw); 277 ctx = alloc_data.ctx; 278 } 279 blk_mq_put_ctx(ctx); 280 if (!rq) { 281 blk_mq_queue_exit(q); 282 return ERR_PTR(-EWOULDBLOCK); 283 } 284 return rq; 285 } 286 EXPORT_SYMBOL(blk_mq_alloc_request); 287 288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 289 struct blk_mq_ctx *ctx, struct request *rq) 290 { 291 const int tag = rq->tag; 292 struct request_queue *q = rq->q; 293 294 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 295 atomic_dec(&hctx->nr_active); 296 rq->cmd_flags = 0; 297 298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 299 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 300 blk_mq_queue_exit(q); 301 } 302 303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 304 { 305 struct blk_mq_ctx *ctx = rq->mq_ctx; 306 307 ctx->rq_completed[rq_is_sync(rq)]++; 308 __blk_mq_free_request(hctx, ctx, rq); 309 310 } 311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 312 313 void blk_mq_free_request(struct request *rq) 314 { 315 struct blk_mq_hw_ctx *hctx; 316 struct request_queue *q = rq->q; 317 318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 319 blk_mq_free_hctx_request(hctx, rq); 320 } 321 EXPORT_SYMBOL_GPL(blk_mq_free_request); 322 323 inline void __blk_mq_end_request(struct request *rq, int error) 324 { 325 blk_account_io_done(rq); 326 327 if (rq->end_io) { 328 rq->end_io(rq, error); 329 } else { 330 if (unlikely(blk_bidi_rq(rq))) 331 blk_mq_free_request(rq->next_rq); 332 blk_mq_free_request(rq); 333 } 334 } 335 EXPORT_SYMBOL(__blk_mq_end_request); 336 337 void blk_mq_end_request(struct request *rq, int error) 338 { 339 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 340 BUG(); 341 __blk_mq_end_request(rq, error); 342 } 343 EXPORT_SYMBOL(blk_mq_end_request); 344 345 static void __blk_mq_complete_request_remote(void *data) 346 { 347 struct request *rq = data; 348 349 rq->q->softirq_done_fn(rq); 350 } 351 352 static void blk_mq_ipi_complete_request(struct request *rq) 353 { 354 struct blk_mq_ctx *ctx = rq->mq_ctx; 355 bool shared = false; 356 int cpu; 357 358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 359 rq->q->softirq_done_fn(rq); 360 return; 361 } 362 363 cpu = get_cpu(); 364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 365 shared = cpus_share_cache(cpu, ctx->cpu); 366 367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 368 rq->csd.func = __blk_mq_complete_request_remote; 369 rq->csd.info = rq; 370 rq->csd.flags = 0; 371 smp_call_function_single_async(ctx->cpu, &rq->csd); 372 } else { 373 rq->q->softirq_done_fn(rq); 374 } 375 put_cpu(); 376 } 377 378 void __blk_mq_complete_request(struct request *rq) 379 { 380 struct request_queue *q = rq->q; 381 382 if (!q->softirq_done_fn) 383 blk_mq_end_request(rq, rq->errors); 384 else 385 blk_mq_ipi_complete_request(rq); 386 } 387 388 /** 389 * blk_mq_complete_request - end I/O on a request 390 * @rq: the request being processed 391 * 392 * Description: 393 * Ends all I/O on a request. It does not handle partial completions. 394 * The actual completion happens out-of-order, through a IPI handler. 395 **/ 396 void blk_mq_complete_request(struct request *rq, int error) 397 { 398 struct request_queue *q = rq->q; 399 400 if (unlikely(blk_should_fake_timeout(q))) 401 return; 402 if (!blk_mark_rq_complete(rq)) { 403 rq->errors = error; 404 __blk_mq_complete_request(rq); 405 } 406 } 407 EXPORT_SYMBOL(blk_mq_complete_request); 408 409 int blk_mq_request_started(struct request *rq) 410 { 411 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 412 } 413 EXPORT_SYMBOL_GPL(blk_mq_request_started); 414 415 void blk_mq_start_request(struct request *rq) 416 { 417 struct request_queue *q = rq->q; 418 419 trace_block_rq_issue(q, rq); 420 421 rq->resid_len = blk_rq_bytes(rq); 422 if (unlikely(blk_bidi_rq(rq))) 423 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 424 425 blk_add_timer(rq); 426 427 /* 428 * Ensure that ->deadline is visible before set the started 429 * flag and clear the completed flag. 430 */ 431 smp_mb__before_atomic(); 432 433 /* 434 * Mark us as started and clear complete. Complete might have been 435 * set if requeue raced with timeout, which then marked it as 436 * complete. So be sure to clear complete again when we start 437 * the request, otherwise we'll ignore the completion event. 438 */ 439 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 440 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 441 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 442 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 443 444 if (q->dma_drain_size && blk_rq_bytes(rq)) { 445 /* 446 * Make sure space for the drain appears. We know we can do 447 * this because max_hw_segments has been adjusted to be one 448 * fewer than the device can handle. 449 */ 450 rq->nr_phys_segments++; 451 } 452 } 453 EXPORT_SYMBOL(blk_mq_start_request); 454 455 static void __blk_mq_requeue_request(struct request *rq) 456 { 457 struct request_queue *q = rq->q; 458 459 trace_block_rq_requeue(q, rq); 460 461 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 462 if (q->dma_drain_size && blk_rq_bytes(rq)) 463 rq->nr_phys_segments--; 464 } 465 } 466 467 void blk_mq_requeue_request(struct request *rq) 468 { 469 __blk_mq_requeue_request(rq); 470 471 BUG_ON(blk_queued_rq(rq)); 472 blk_mq_add_to_requeue_list(rq, true); 473 } 474 EXPORT_SYMBOL(blk_mq_requeue_request); 475 476 static void blk_mq_requeue_work(struct work_struct *work) 477 { 478 struct request_queue *q = 479 container_of(work, struct request_queue, requeue_work); 480 LIST_HEAD(rq_list); 481 struct request *rq, *next; 482 unsigned long flags; 483 484 spin_lock_irqsave(&q->requeue_lock, flags); 485 list_splice_init(&q->requeue_list, &rq_list); 486 spin_unlock_irqrestore(&q->requeue_lock, flags); 487 488 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 489 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 490 continue; 491 492 rq->cmd_flags &= ~REQ_SOFTBARRIER; 493 list_del_init(&rq->queuelist); 494 blk_mq_insert_request(rq, true, false, false); 495 } 496 497 while (!list_empty(&rq_list)) { 498 rq = list_entry(rq_list.next, struct request, queuelist); 499 list_del_init(&rq->queuelist); 500 blk_mq_insert_request(rq, false, false, false); 501 } 502 503 /* 504 * Use the start variant of queue running here, so that running 505 * the requeue work will kick stopped queues. 506 */ 507 blk_mq_start_hw_queues(q); 508 } 509 510 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 511 { 512 struct request_queue *q = rq->q; 513 unsigned long flags; 514 515 /* 516 * We abuse this flag that is otherwise used by the I/O scheduler to 517 * request head insertation from the workqueue. 518 */ 519 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 520 521 spin_lock_irqsave(&q->requeue_lock, flags); 522 if (at_head) { 523 rq->cmd_flags |= REQ_SOFTBARRIER; 524 list_add(&rq->queuelist, &q->requeue_list); 525 } else { 526 list_add_tail(&rq->queuelist, &q->requeue_list); 527 } 528 spin_unlock_irqrestore(&q->requeue_lock, flags); 529 } 530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 531 532 void blk_mq_cancel_requeue_work(struct request_queue *q) 533 { 534 cancel_work_sync(&q->requeue_work); 535 } 536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 537 538 void blk_mq_kick_requeue_list(struct request_queue *q) 539 { 540 kblockd_schedule_work(&q->requeue_work); 541 } 542 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 543 544 void blk_mq_abort_requeue_list(struct request_queue *q) 545 { 546 unsigned long flags; 547 LIST_HEAD(rq_list); 548 549 spin_lock_irqsave(&q->requeue_lock, flags); 550 list_splice_init(&q->requeue_list, &rq_list); 551 spin_unlock_irqrestore(&q->requeue_lock, flags); 552 553 while (!list_empty(&rq_list)) { 554 struct request *rq; 555 556 rq = list_first_entry(&rq_list, struct request, queuelist); 557 list_del_init(&rq->queuelist); 558 rq->errors = -EIO; 559 blk_mq_end_request(rq, rq->errors); 560 } 561 } 562 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 563 564 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 565 { 566 return tags->rqs[tag]; 567 } 568 EXPORT_SYMBOL(blk_mq_tag_to_rq); 569 570 struct blk_mq_timeout_data { 571 unsigned long next; 572 unsigned int next_set; 573 }; 574 575 void blk_mq_rq_timed_out(struct request *req, bool reserved) 576 { 577 struct blk_mq_ops *ops = req->q->mq_ops; 578 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 579 580 /* 581 * We know that complete is set at this point. If STARTED isn't set 582 * anymore, then the request isn't active and the "timeout" should 583 * just be ignored. This can happen due to the bitflag ordering. 584 * Timeout first checks if STARTED is set, and if it is, assumes 585 * the request is active. But if we race with completion, then 586 * we both flags will get cleared. So check here again, and ignore 587 * a timeout event with a request that isn't active. 588 */ 589 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 590 return; 591 592 if (ops->timeout) 593 ret = ops->timeout(req, reserved); 594 595 switch (ret) { 596 case BLK_EH_HANDLED: 597 __blk_mq_complete_request(req); 598 break; 599 case BLK_EH_RESET_TIMER: 600 blk_add_timer(req); 601 blk_clear_rq_complete(req); 602 break; 603 case BLK_EH_NOT_HANDLED: 604 break; 605 default: 606 printk(KERN_ERR "block: bad eh return: %d\n", ret); 607 break; 608 } 609 } 610 611 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 612 struct request *rq, void *priv, bool reserved) 613 { 614 struct blk_mq_timeout_data *data = priv; 615 616 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 617 /* 618 * If a request wasn't started before the queue was 619 * marked dying, kill it here or it'll go unnoticed. 620 */ 621 if (unlikely(blk_queue_dying(rq->q))) 622 blk_mq_complete_request(rq, -EIO); 623 return; 624 } 625 if (rq->cmd_flags & REQ_NO_TIMEOUT) 626 return; 627 628 if (time_after_eq(jiffies, rq->deadline)) { 629 if (!blk_mark_rq_complete(rq)) 630 blk_mq_rq_timed_out(rq, reserved); 631 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 632 data->next = rq->deadline; 633 data->next_set = 1; 634 } 635 } 636 637 static void blk_mq_rq_timer(unsigned long priv) 638 { 639 struct request_queue *q = (struct request_queue *)priv; 640 struct blk_mq_timeout_data data = { 641 .next = 0, 642 .next_set = 0, 643 }; 644 int i; 645 646 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 647 648 if (data.next_set) { 649 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 650 mod_timer(&q->timeout, data.next); 651 } else { 652 struct blk_mq_hw_ctx *hctx; 653 654 queue_for_each_hw_ctx(q, hctx, i) { 655 /* the hctx may be unmapped, so check it here */ 656 if (blk_mq_hw_queue_mapped(hctx)) 657 blk_mq_tag_idle(hctx); 658 } 659 } 660 } 661 662 /* 663 * Reverse check our software queue for entries that we could potentially 664 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 665 * too much time checking for merges. 666 */ 667 static bool blk_mq_attempt_merge(struct request_queue *q, 668 struct blk_mq_ctx *ctx, struct bio *bio) 669 { 670 struct request *rq; 671 int checked = 8; 672 673 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 674 int el_ret; 675 676 if (!checked--) 677 break; 678 679 if (!blk_rq_merge_ok(rq, bio)) 680 continue; 681 682 el_ret = blk_try_merge(rq, bio); 683 if (el_ret == ELEVATOR_BACK_MERGE) { 684 if (bio_attempt_back_merge(q, rq, bio)) { 685 ctx->rq_merged++; 686 return true; 687 } 688 break; 689 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 690 if (bio_attempt_front_merge(q, rq, bio)) { 691 ctx->rq_merged++; 692 return true; 693 } 694 break; 695 } 696 } 697 698 return false; 699 } 700 701 /* 702 * Process software queues that have been marked busy, splicing them 703 * to the for-dispatch 704 */ 705 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 706 { 707 struct blk_mq_ctx *ctx; 708 int i; 709 710 for (i = 0; i < hctx->ctx_map.size; i++) { 711 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 712 unsigned int off, bit; 713 714 if (!bm->word) 715 continue; 716 717 bit = 0; 718 off = i * hctx->ctx_map.bits_per_word; 719 do { 720 bit = find_next_bit(&bm->word, bm->depth, bit); 721 if (bit >= bm->depth) 722 break; 723 724 ctx = hctx->ctxs[bit + off]; 725 clear_bit(bit, &bm->word); 726 spin_lock(&ctx->lock); 727 list_splice_tail_init(&ctx->rq_list, list); 728 spin_unlock(&ctx->lock); 729 730 bit++; 731 } while (1); 732 } 733 } 734 735 /* 736 * Run this hardware queue, pulling any software queues mapped to it in. 737 * Note that this function currently has various problems around ordering 738 * of IO. In particular, we'd like FIFO behaviour on handling existing 739 * items on the hctx->dispatch list. Ignore that for now. 740 */ 741 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 742 { 743 struct request_queue *q = hctx->queue; 744 struct request *rq; 745 LIST_HEAD(rq_list); 746 LIST_HEAD(driver_list); 747 struct list_head *dptr; 748 int queued; 749 750 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 751 752 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 753 return; 754 755 hctx->run++; 756 757 /* 758 * Touch any software queue that has pending entries. 759 */ 760 flush_busy_ctxs(hctx, &rq_list); 761 762 /* 763 * If we have previous entries on our dispatch list, grab them 764 * and stuff them at the front for more fair dispatch. 765 */ 766 if (!list_empty_careful(&hctx->dispatch)) { 767 spin_lock(&hctx->lock); 768 if (!list_empty(&hctx->dispatch)) 769 list_splice_init(&hctx->dispatch, &rq_list); 770 spin_unlock(&hctx->lock); 771 } 772 773 /* 774 * Start off with dptr being NULL, so we start the first request 775 * immediately, even if we have more pending. 776 */ 777 dptr = NULL; 778 779 /* 780 * Now process all the entries, sending them to the driver. 781 */ 782 queued = 0; 783 while (!list_empty(&rq_list)) { 784 struct blk_mq_queue_data bd; 785 int ret; 786 787 rq = list_first_entry(&rq_list, struct request, queuelist); 788 list_del_init(&rq->queuelist); 789 790 bd.rq = rq; 791 bd.list = dptr; 792 bd.last = list_empty(&rq_list); 793 794 ret = q->mq_ops->queue_rq(hctx, &bd); 795 switch (ret) { 796 case BLK_MQ_RQ_QUEUE_OK: 797 queued++; 798 continue; 799 case BLK_MQ_RQ_QUEUE_BUSY: 800 list_add(&rq->queuelist, &rq_list); 801 __blk_mq_requeue_request(rq); 802 break; 803 default: 804 pr_err("blk-mq: bad return on queue: %d\n", ret); 805 case BLK_MQ_RQ_QUEUE_ERROR: 806 rq->errors = -EIO; 807 blk_mq_end_request(rq, rq->errors); 808 break; 809 } 810 811 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 812 break; 813 814 /* 815 * We've done the first request. If we have more than 1 816 * left in the list, set dptr to defer issue. 817 */ 818 if (!dptr && rq_list.next != rq_list.prev) 819 dptr = &driver_list; 820 } 821 822 if (!queued) 823 hctx->dispatched[0]++; 824 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 825 hctx->dispatched[ilog2(queued) + 1]++; 826 827 /* 828 * Any items that need requeuing? Stuff them into hctx->dispatch, 829 * that is where we will continue on next queue run. 830 */ 831 if (!list_empty(&rq_list)) { 832 spin_lock(&hctx->lock); 833 list_splice(&rq_list, &hctx->dispatch); 834 spin_unlock(&hctx->lock); 835 /* 836 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 837 * it's possible the queue is stopped and restarted again 838 * before this. Queue restart will dispatch requests. And since 839 * requests in rq_list aren't added into hctx->dispatch yet, 840 * the requests in rq_list might get lost. 841 * 842 * blk_mq_run_hw_queue() already checks the STOPPED bit 843 **/ 844 blk_mq_run_hw_queue(hctx, true); 845 } 846 } 847 848 /* 849 * It'd be great if the workqueue API had a way to pass 850 * in a mask and had some smarts for more clever placement. 851 * For now we just round-robin here, switching for every 852 * BLK_MQ_CPU_WORK_BATCH queued items. 853 */ 854 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 855 { 856 if (hctx->queue->nr_hw_queues == 1) 857 return WORK_CPU_UNBOUND; 858 859 if (--hctx->next_cpu_batch <= 0) { 860 int cpu = hctx->next_cpu, next_cpu; 861 862 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 863 if (next_cpu >= nr_cpu_ids) 864 next_cpu = cpumask_first(hctx->cpumask); 865 866 hctx->next_cpu = next_cpu; 867 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 868 869 return cpu; 870 } 871 872 return hctx->next_cpu; 873 } 874 875 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 876 { 877 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 878 !blk_mq_hw_queue_mapped(hctx))) 879 return; 880 881 if (!async) { 882 int cpu = get_cpu(); 883 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 884 __blk_mq_run_hw_queue(hctx); 885 put_cpu(); 886 return; 887 } 888 889 put_cpu(); 890 } 891 892 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 893 &hctx->run_work, 0); 894 } 895 896 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 897 { 898 struct blk_mq_hw_ctx *hctx; 899 int i; 900 901 queue_for_each_hw_ctx(q, hctx, i) { 902 if ((!blk_mq_hctx_has_pending(hctx) && 903 list_empty_careful(&hctx->dispatch)) || 904 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 905 continue; 906 907 blk_mq_run_hw_queue(hctx, async); 908 } 909 } 910 EXPORT_SYMBOL(blk_mq_run_hw_queues); 911 912 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 913 { 914 cancel_delayed_work(&hctx->run_work); 915 cancel_delayed_work(&hctx->delay_work); 916 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 917 } 918 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 919 920 void blk_mq_stop_hw_queues(struct request_queue *q) 921 { 922 struct blk_mq_hw_ctx *hctx; 923 int i; 924 925 queue_for_each_hw_ctx(q, hctx, i) 926 blk_mq_stop_hw_queue(hctx); 927 } 928 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 929 930 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 931 { 932 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 933 934 blk_mq_run_hw_queue(hctx, false); 935 } 936 EXPORT_SYMBOL(blk_mq_start_hw_queue); 937 938 void blk_mq_start_hw_queues(struct request_queue *q) 939 { 940 struct blk_mq_hw_ctx *hctx; 941 int i; 942 943 queue_for_each_hw_ctx(q, hctx, i) 944 blk_mq_start_hw_queue(hctx); 945 } 946 EXPORT_SYMBOL(blk_mq_start_hw_queues); 947 948 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 949 { 950 struct blk_mq_hw_ctx *hctx; 951 int i; 952 953 queue_for_each_hw_ctx(q, hctx, i) { 954 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 955 continue; 956 957 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 958 blk_mq_run_hw_queue(hctx, async); 959 } 960 } 961 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 962 963 static void blk_mq_run_work_fn(struct work_struct *work) 964 { 965 struct blk_mq_hw_ctx *hctx; 966 967 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 968 969 __blk_mq_run_hw_queue(hctx); 970 } 971 972 static void blk_mq_delay_work_fn(struct work_struct *work) 973 { 974 struct blk_mq_hw_ctx *hctx; 975 976 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 977 978 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 979 __blk_mq_run_hw_queue(hctx); 980 } 981 982 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 983 { 984 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 985 return; 986 987 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 988 &hctx->delay_work, msecs_to_jiffies(msecs)); 989 } 990 EXPORT_SYMBOL(blk_mq_delay_queue); 991 992 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 993 struct request *rq, bool at_head) 994 { 995 struct blk_mq_ctx *ctx = rq->mq_ctx; 996 997 trace_block_rq_insert(hctx->queue, rq); 998 999 if (at_head) 1000 list_add(&rq->queuelist, &ctx->rq_list); 1001 else 1002 list_add_tail(&rq->queuelist, &ctx->rq_list); 1003 1004 blk_mq_hctx_mark_pending(hctx, ctx); 1005 } 1006 1007 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1008 bool async) 1009 { 1010 struct request_queue *q = rq->q; 1011 struct blk_mq_hw_ctx *hctx; 1012 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1013 1014 current_ctx = blk_mq_get_ctx(q); 1015 if (!cpu_online(ctx->cpu)) 1016 rq->mq_ctx = ctx = current_ctx; 1017 1018 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1019 1020 spin_lock(&ctx->lock); 1021 __blk_mq_insert_request(hctx, rq, at_head); 1022 spin_unlock(&ctx->lock); 1023 1024 if (run_queue) 1025 blk_mq_run_hw_queue(hctx, async); 1026 1027 blk_mq_put_ctx(current_ctx); 1028 } 1029 1030 static void blk_mq_insert_requests(struct request_queue *q, 1031 struct blk_mq_ctx *ctx, 1032 struct list_head *list, 1033 int depth, 1034 bool from_schedule) 1035 1036 { 1037 struct blk_mq_hw_ctx *hctx; 1038 struct blk_mq_ctx *current_ctx; 1039 1040 trace_block_unplug(q, depth, !from_schedule); 1041 1042 current_ctx = blk_mq_get_ctx(q); 1043 1044 if (!cpu_online(ctx->cpu)) 1045 ctx = current_ctx; 1046 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1047 1048 /* 1049 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1050 * offline now 1051 */ 1052 spin_lock(&ctx->lock); 1053 while (!list_empty(list)) { 1054 struct request *rq; 1055 1056 rq = list_first_entry(list, struct request, queuelist); 1057 list_del_init(&rq->queuelist); 1058 rq->mq_ctx = ctx; 1059 __blk_mq_insert_request(hctx, rq, false); 1060 } 1061 spin_unlock(&ctx->lock); 1062 1063 blk_mq_run_hw_queue(hctx, from_schedule); 1064 blk_mq_put_ctx(current_ctx); 1065 } 1066 1067 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1068 { 1069 struct request *rqa = container_of(a, struct request, queuelist); 1070 struct request *rqb = container_of(b, struct request, queuelist); 1071 1072 return !(rqa->mq_ctx < rqb->mq_ctx || 1073 (rqa->mq_ctx == rqb->mq_ctx && 1074 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1075 } 1076 1077 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1078 { 1079 struct blk_mq_ctx *this_ctx; 1080 struct request_queue *this_q; 1081 struct request *rq; 1082 LIST_HEAD(list); 1083 LIST_HEAD(ctx_list); 1084 unsigned int depth; 1085 1086 list_splice_init(&plug->mq_list, &list); 1087 1088 list_sort(NULL, &list, plug_ctx_cmp); 1089 1090 this_q = NULL; 1091 this_ctx = NULL; 1092 depth = 0; 1093 1094 while (!list_empty(&list)) { 1095 rq = list_entry_rq(list.next); 1096 list_del_init(&rq->queuelist); 1097 BUG_ON(!rq->q); 1098 if (rq->mq_ctx != this_ctx) { 1099 if (this_ctx) { 1100 blk_mq_insert_requests(this_q, this_ctx, 1101 &ctx_list, depth, 1102 from_schedule); 1103 } 1104 1105 this_ctx = rq->mq_ctx; 1106 this_q = rq->q; 1107 depth = 0; 1108 } 1109 1110 depth++; 1111 list_add_tail(&rq->queuelist, &ctx_list); 1112 } 1113 1114 /* 1115 * If 'this_ctx' is set, we know we have entries to complete 1116 * on 'ctx_list'. Do those. 1117 */ 1118 if (this_ctx) { 1119 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1120 from_schedule); 1121 } 1122 } 1123 1124 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1125 { 1126 init_request_from_bio(rq, bio); 1127 1128 if (blk_do_io_stat(rq)) 1129 blk_account_io_start(rq, 1); 1130 } 1131 1132 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1133 { 1134 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1135 !blk_queue_nomerges(hctx->queue); 1136 } 1137 1138 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1139 struct blk_mq_ctx *ctx, 1140 struct request *rq, struct bio *bio) 1141 { 1142 if (!hctx_allow_merges(hctx)) { 1143 blk_mq_bio_to_request(rq, bio); 1144 spin_lock(&ctx->lock); 1145 insert_rq: 1146 __blk_mq_insert_request(hctx, rq, false); 1147 spin_unlock(&ctx->lock); 1148 return false; 1149 } else { 1150 struct request_queue *q = hctx->queue; 1151 1152 spin_lock(&ctx->lock); 1153 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1154 blk_mq_bio_to_request(rq, bio); 1155 goto insert_rq; 1156 } 1157 1158 spin_unlock(&ctx->lock); 1159 __blk_mq_free_request(hctx, ctx, rq); 1160 return true; 1161 } 1162 } 1163 1164 struct blk_map_ctx { 1165 struct blk_mq_hw_ctx *hctx; 1166 struct blk_mq_ctx *ctx; 1167 }; 1168 1169 static struct request *blk_mq_map_request(struct request_queue *q, 1170 struct bio *bio, 1171 struct blk_map_ctx *data) 1172 { 1173 struct blk_mq_hw_ctx *hctx; 1174 struct blk_mq_ctx *ctx; 1175 struct request *rq; 1176 int rw = bio_data_dir(bio); 1177 struct blk_mq_alloc_data alloc_data; 1178 1179 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) { 1180 bio_io_error(bio); 1181 return NULL; 1182 } 1183 1184 ctx = blk_mq_get_ctx(q); 1185 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1186 1187 if (rw_is_sync(bio->bi_rw)) 1188 rw |= REQ_SYNC; 1189 1190 trace_block_getrq(q, bio, rw); 1191 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1192 hctx); 1193 rq = __blk_mq_alloc_request(&alloc_data, rw); 1194 if (unlikely(!rq)) { 1195 __blk_mq_run_hw_queue(hctx); 1196 blk_mq_put_ctx(ctx); 1197 trace_block_sleeprq(q, bio, rw); 1198 1199 ctx = blk_mq_get_ctx(q); 1200 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1201 blk_mq_set_alloc_data(&alloc_data, q, 1202 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1203 rq = __blk_mq_alloc_request(&alloc_data, rw); 1204 ctx = alloc_data.ctx; 1205 hctx = alloc_data.hctx; 1206 } 1207 1208 hctx->queued++; 1209 data->hctx = hctx; 1210 data->ctx = ctx; 1211 return rq; 1212 } 1213 1214 static int blk_mq_direct_issue_request(struct request *rq) 1215 { 1216 int ret; 1217 struct request_queue *q = rq->q; 1218 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1219 rq->mq_ctx->cpu); 1220 struct blk_mq_queue_data bd = { 1221 .rq = rq, 1222 .list = NULL, 1223 .last = 1 1224 }; 1225 1226 /* 1227 * For OK queue, we are done. For error, kill it. Any other 1228 * error (busy), just add it to our list as we previously 1229 * would have done 1230 */ 1231 ret = q->mq_ops->queue_rq(hctx, &bd); 1232 if (ret == BLK_MQ_RQ_QUEUE_OK) 1233 return 0; 1234 else { 1235 __blk_mq_requeue_request(rq); 1236 1237 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1238 rq->errors = -EIO; 1239 blk_mq_end_request(rq, rq->errors); 1240 return 0; 1241 } 1242 return -1; 1243 } 1244 } 1245 1246 /* 1247 * Multiple hardware queue variant. This will not use per-process plugs, 1248 * but will attempt to bypass the hctx queueing if we can go straight to 1249 * hardware for SYNC IO. 1250 */ 1251 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1252 { 1253 const int is_sync = rw_is_sync(bio->bi_rw); 1254 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1255 struct blk_map_ctx data; 1256 struct request *rq; 1257 unsigned int request_count = 0; 1258 struct blk_plug *plug; 1259 struct request *same_queue_rq = NULL; 1260 1261 blk_queue_bounce(q, &bio); 1262 1263 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1264 bio_io_error(bio); 1265 return; 1266 } 1267 1268 blk_queue_split(q, &bio, q->bio_split); 1269 1270 if (!is_flush_fua && !blk_queue_nomerges(q) && 1271 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1272 return; 1273 1274 rq = blk_mq_map_request(q, bio, &data); 1275 if (unlikely(!rq)) 1276 return; 1277 1278 if (unlikely(is_flush_fua)) { 1279 blk_mq_bio_to_request(rq, bio); 1280 blk_insert_flush(rq); 1281 goto run_queue; 1282 } 1283 1284 plug = current->plug; 1285 /* 1286 * If the driver supports defer issued based on 'last', then 1287 * queue it up like normal since we can potentially save some 1288 * CPU this way. 1289 */ 1290 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1291 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1292 struct request *old_rq = NULL; 1293 1294 blk_mq_bio_to_request(rq, bio); 1295 1296 /* 1297 * we do limited pluging. If bio can be merged, do merge. 1298 * Otherwise the existing request in the plug list will be 1299 * issued. So the plug list will have one request at most 1300 */ 1301 if (plug) { 1302 /* 1303 * The plug list might get flushed before this. If that 1304 * happens, same_queue_rq is invalid and plug list is empty 1305 **/ 1306 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1307 old_rq = same_queue_rq; 1308 list_del_init(&old_rq->queuelist); 1309 } 1310 list_add_tail(&rq->queuelist, &plug->mq_list); 1311 } else /* is_sync */ 1312 old_rq = rq; 1313 blk_mq_put_ctx(data.ctx); 1314 if (!old_rq) 1315 return; 1316 if (!blk_mq_direct_issue_request(old_rq)) 1317 return; 1318 blk_mq_insert_request(old_rq, false, true, true); 1319 return; 1320 } 1321 1322 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1323 /* 1324 * For a SYNC request, send it to the hardware immediately. For 1325 * an ASYNC request, just ensure that we run it later on. The 1326 * latter allows for merging opportunities and more efficient 1327 * dispatching. 1328 */ 1329 run_queue: 1330 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1331 } 1332 blk_mq_put_ctx(data.ctx); 1333 } 1334 1335 /* 1336 * Single hardware queue variant. This will attempt to use any per-process 1337 * plug for merging and IO deferral. 1338 */ 1339 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1340 { 1341 const int is_sync = rw_is_sync(bio->bi_rw); 1342 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1343 struct blk_plug *plug; 1344 unsigned int request_count = 0; 1345 struct blk_map_ctx data; 1346 struct request *rq; 1347 1348 blk_queue_bounce(q, &bio); 1349 1350 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1351 bio_io_error(bio); 1352 return; 1353 } 1354 1355 blk_queue_split(q, &bio, q->bio_split); 1356 1357 if (!is_flush_fua && !blk_queue_nomerges(q) && 1358 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1359 return; 1360 1361 rq = blk_mq_map_request(q, bio, &data); 1362 if (unlikely(!rq)) 1363 return; 1364 1365 if (unlikely(is_flush_fua)) { 1366 blk_mq_bio_to_request(rq, bio); 1367 blk_insert_flush(rq); 1368 goto run_queue; 1369 } 1370 1371 /* 1372 * A task plug currently exists. Since this is completely lockless, 1373 * utilize that to temporarily store requests until the task is 1374 * either done or scheduled away. 1375 */ 1376 plug = current->plug; 1377 if (plug) { 1378 blk_mq_bio_to_request(rq, bio); 1379 if (list_empty(&plug->mq_list)) 1380 trace_block_plug(q); 1381 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1382 blk_flush_plug_list(plug, false); 1383 trace_block_plug(q); 1384 } 1385 list_add_tail(&rq->queuelist, &plug->mq_list); 1386 blk_mq_put_ctx(data.ctx); 1387 return; 1388 } 1389 1390 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1391 /* 1392 * For a SYNC request, send it to the hardware immediately. For 1393 * an ASYNC request, just ensure that we run it later on. The 1394 * latter allows for merging opportunities and more efficient 1395 * dispatching. 1396 */ 1397 run_queue: 1398 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1399 } 1400 1401 blk_mq_put_ctx(data.ctx); 1402 } 1403 1404 /* 1405 * Default mapping to a software queue, since we use one per CPU. 1406 */ 1407 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1408 { 1409 return q->queue_hw_ctx[q->mq_map[cpu]]; 1410 } 1411 EXPORT_SYMBOL(blk_mq_map_queue); 1412 1413 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1414 struct blk_mq_tags *tags, unsigned int hctx_idx) 1415 { 1416 struct page *page; 1417 1418 if (tags->rqs && set->ops->exit_request) { 1419 int i; 1420 1421 for (i = 0; i < tags->nr_tags; i++) { 1422 if (!tags->rqs[i]) 1423 continue; 1424 set->ops->exit_request(set->driver_data, tags->rqs[i], 1425 hctx_idx, i); 1426 tags->rqs[i] = NULL; 1427 } 1428 } 1429 1430 while (!list_empty(&tags->page_list)) { 1431 page = list_first_entry(&tags->page_list, struct page, lru); 1432 list_del_init(&page->lru); 1433 __free_pages(page, page->private); 1434 } 1435 1436 kfree(tags->rqs); 1437 1438 blk_mq_free_tags(tags); 1439 } 1440 1441 static size_t order_to_size(unsigned int order) 1442 { 1443 return (size_t)PAGE_SIZE << order; 1444 } 1445 1446 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1447 unsigned int hctx_idx) 1448 { 1449 struct blk_mq_tags *tags; 1450 unsigned int i, j, entries_per_page, max_order = 4; 1451 size_t rq_size, left; 1452 1453 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1454 set->numa_node, 1455 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1456 if (!tags) 1457 return NULL; 1458 1459 INIT_LIST_HEAD(&tags->page_list); 1460 1461 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1462 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1463 set->numa_node); 1464 if (!tags->rqs) { 1465 blk_mq_free_tags(tags); 1466 return NULL; 1467 } 1468 1469 /* 1470 * rq_size is the size of the request plus driver payload, rounded 1471 * to the cacheline size 1472 */ 1473 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1474 cache_line_size()); 1475 left = rq_size * set->queue_depth; 1476 1477 for (i = 0; i < set->queue_depth; ) { 1478 int this_order = max_order; 1479 struct page *page; 1480 int to_do; 1481 void *p; 1482 1483 while (left < order_to_size(this_order - 1) && this_order) 1484 this_order--; 1485 1486 do { 1487 page = alloc_pages_node(set->numa_node, 1488 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1489 this_order); 1490 if (page) 1491 break; 1492 if (!this_order--) 1493 break; 1494 if (order_to_size(this_order) < rq_size) 1495 break; 1496 } while (1); 1497 1498 if (!page) 1499 goto fail; 1500 1501 page->private = this_order; 1502 list_add_tail(&page->lru, &tags->page_list); 1503 1504 p = page_address(page); 1505 entries_per_page = order_to_size(this_order) / rq_size; 1506 to_do = min(entries_per_page, set->queue_depth - i); 1507 left -= to_do * rq_size; 1508 for (j = 0; j < to_do; j++) { 1509 tags->rqs[i] = p; 1510 if (set->ops->init_request) { 1511 if (set->ops->init_request(set->driver_data, 1512 tags->rqs[i], hctx_idx, i, 1513 set->numa_node)) { 1514 tags->rqs[i] = NULL; 1515 goto fail; 1516 } 1517 } 1518 1519 p += rq_size; 1520 i++; 1521 } 1522 } 1523 return tags; 1524 1525 fail: 1526 blk_mq_free_rq_map(set, tags, hctx_idx); 1527 return NULL; 1528 } 1529 1530 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1531 { 1532 kfree(bitmap->map); 1533 } 1534 1535 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1536 { 1537 unsigned int bpw = 8, total, num_maps, i; 1538 1539 bitmap->bits_per_word = bpw; 1540 1541 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1542 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1543 GFP_KERNEL, node); 1544 if (!bitmap->map) 1545 return -ENOMEM; 1546 1547 total = nr_cpu_ids; 1548 for (i = 0; i < num_maps; i++) { 1549 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1550 total -= bitmap->map[i].depth; 1551 } 1552 1553 return 0; 1554 } 1555 1556 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1557 { 1558 struct request_queue *q = hctx->queue; 1559 struct blk_mq_ctx *ctx; 1560 LIST_HEAD(tmp); 1561 1562 /* 1563 * Move ctx entries to new CPU, if this one is going away. 1564 */ 1565 ctx = __blk_mq_get_ctx(q, cpu); 1566 1567 spin_lock(&ctx->lock); 1568 if (!list_empty(&ctx->rq_list)) { 1569 list_splice_init(&ctx->rq_list, &tmp); 1570 blk_mq_hctx_clear_pending(hctx, ctx); 1571 } 1572 spin_unlock(&ctx->lock); 1573 1574 if (list_empty(&tmp)) 1575 return NOTIFY_OK; 1576 1577 ctx = blk_mq_get_ctx(q); 1578 spin_lock(&ctx->lock); 1579 1580 while (!list_empty(&tmp)) { 1581 struct request *rq; 1582 1583 rq = list_first_entry(&tmp, struct request, queuelist); 1584 rq->mq_ctx = ctx; 1585 list_move_tail(&rq->queuelist, &ctx->rq_list); 1586 } 1587 1588 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1589 blk_mq_hctx_mark_pending(hctx, ctx); 1590 1591 spin_unlock(&ctx->lock); 1592 1593 blk_mq_run_hw_queue(hctx, true); 1594 blk_mq_put_ctx(ctx); 1595 return NOTIFY_OK; 1596 } 1597 1598 static int blk_mq_hctx_notify(void *data, unsigned long action, 1599 unsigned int cpu) 1600 { 1601 struct blk_mq_hw_ctx *hctx = data; 1602 1603 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1604 return blk_mq_hctx_cpu_offline(hctx, cpu); 1605 1606 /* 1607 * In case of CPU online, tags may be reallocated 1608 * in blk_mq_map_swqueue() after mapping is updated. 1609 */ 1610 1611 return NOTIFY_OK; 1612 } 1613 1614 /* hctx->ctxs will be freed in queue's release handler */ 1615 static void blk_mq_exit_hctx(struct request_queue *q, 1616 struct blk_mq_tag_set *set, 1617 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1618 { 1619 unsigned flush_start_tag = set->queue_depth; 1620 1621 blk_mq_tag_idle(hctx); 1622 1623 if (set->ops->exit_request) 1624 set->ops->exit_request(set->driver_data, 1625 hctx->fq->flush_rq, hctx_idx, 1626 flush_start_tag + hctx_idx); 1627 1628 if (set->ops->exit_hctx) 1629 set->ops->exit_hctx(hctx, hctx_idx); 1630 1631 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1632 blk_free_flush_queue(hctx->fq); 1633 blk_mq_free_bitmap(&hctx->ctx_map); 1634 } 1635 1636 static void blk_mq_exit_hw_queues(struct request_queue *q, 1637 struct blk_mq_tag_set *set, int nr_queue) 1638 { 1639 struct blk_mq_hw_ctx *hctx; 1640 unsigned int i; 1641 1642 queue_for_each_hw_ctx(q, hctx, i) { 1643 if (i == nr_queue) 1644 break; 1645 blk_mq_exit_hctx(q, set, hctx, i); 1646 } 1647 } 1648 1649 static void blk_mq_free_hw_queues(struct request_queue *q, 1650 struct blk_mq_tag_set *set) 1651 { 1652 struct blk_mq_hw_ctx *hctx; 1653 unsigned int i; 1654 1655 queue_for_each_hw_ctx(q, hctx, i) 1656 free_cpumask_var(hctx->cpumask); 1657 } 1658 1659 static int blk_mq_init_hctx(struct request_queue *q, 1660 struct blk_mq_tag_set *set, 1661 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1662 { 1663 int node; 1664 unsigned flush_start_tag = set->queue_depth; 1665 1666 node = hctx->numa_node; 1667 if (node == NUMA_NO_NODE) 1668 node = hctx->numa_node = set->numa_node; 1669 1670 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1671 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1672 spin_lock_init(&hctx->lock); 1673 INIT_LIST_HEAD(&hctx->dispatch); 1674 hctx->queue = q; 1675 hctx->queue_num = hctx_idx; 1676 hctx->flags = set->flags; 1677 1678 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1679 blk_mq_hctx_notify, hctx); 1680 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1681 1682 hctx->tags = set->tags[hctx_idx]; 1683 1684 /* 1685 * Allocate space for all possible cpus to avoid allocation at 1686 * runtime 1687 */ 1688 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1689 GFP_KERNEL, node); 1690 if (!hctx->ctxs) 1691 goto unregister_cpu_notifier; 1692 1693 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1694 goto free_ctxs; 1695 1696 hctx->nr_ctx = 0; 1697 1698 if (set->ops->init_hctx && 1699 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1700 goto free_bitmap; 1701 1702 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1703 if (!hctx->fq) 1704 goto exit_hctx; 1705 1706 if (set->ops->init_request && 1707 set->ops->init_request(set->driver_data, 1708 hctx->fq->flush_rq, hctx_idx, 1709 flush_start_tag + hctx_idx, node)) 1710 goto free_fq; 1711 1712 return 0; 1713 1714 free_fq: 1715 kfree(hctx->fq); 1716 exit_hctx: 1717 if (set->ops->exit_hctx) 1718 set->ops->exit_hctx(hctx, hctx_idx); 1719 free_bitmap: 1720 blk_mq_free_bitmap(&hctx->ctx_map); 1721 free_ctxs: 1722 kfree(hctx->ctxs); 1723 unregister_cpu_notifier: 1724 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1725 1726 return -1; 1727 } 1728 1729 static int blk_mq_init_hw_queues(struct request_queue *q, 1730 struct blk_mq_tag_set *set) 1731 { 1732 struct blk_mq_hw_ctx *hctx; 1733 unsigned int i; 1734 1735 /* 1736 * Initialize hardware queues 1737 */ 1738 queue_for_each_hw_ctx(q, hctx, i) { 1739 if (blk_mq_init_hctx(q, set, hctx, i)) 1740 break; 1741 } 1742 1743 if (i == q->nr_hw_queues) 1744 return 0; 1745 1746 /* 1747 * Init failed 1748 */ 1749 blk_mq_exit_hw_queues(q, set, i); 1750 1751 return 1; 1752 } 1753 1754 static void blk_mq_init_cpu_queues(struct request_queue *q, 1755 unsigned int nr_hw_queues) 1756 { 1757 unsigned int i; 1758 1759 for_each_possible_cpu(i) { 1760 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1761 struct blk_mq_hw_ctx *hctx; 1762 1763 memset(__ctx, 0, sizeof(*__ctx)); 1764 __ctx->cpu = i; 1765 spin_lock_init(&__ctx->lock); 1766 INIT_LIST_HEAD(&__ctx->rq_list); 1767 __ctx->queue = q; 1768 1769 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1770 if (!cpu_online(i)) 1771 continue; 1772 1773 hctx = q->mq_ops->map_queue(q, i); 1774 1775 /* 1776 * Set local node, IFF we have more than one hw queue. If 1777 * not, we remain on the home node of the device 1778 */ 1779 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1780 hctx->numa_node = cpu_to_node(i); 1781 } 1782 } 1783 1784 static void blk_mq_map_swqueue(struct request_queue *q, 1785 const struct cpumask *online_mask) 1786 { 1787 unsigned int i; 1788 struct blk_mq_hw_ctx *hctx; 1789 struct blk_mq_ctx *ctx; 1790 struct blk_mq_tag_set *set = q->tag_set; 1791 1792 /* 1793 * Avoid others reading imcomplete hctx->cpumask through sysfs 1794 */ 1795 mutex_lock(&q->sysfs_lock); 1796 1797 queue_for_each_hw_ctx(q, hctx, i) { 1798 cpumask_clear(hctx->cpumask); 1799 hctx->nr_ctx = 0; 1800 } 1801 1802 /* 1803 * Map software to hardware queues 1804 */ 1805 queue_for_each_ctx(q, ctx, i) { 1806 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1807 if (!cpumask_test_cpu(i, online_mask)) 1808 continue; 1809 1810 hctx = q->mq_ops->map_queue(q, i); 1811 cpumask_set_cpu(i, hctx->cpumask); 1812 ctx->index_hw = hctx->nr_ctx; 1813 hctx->ctxs[hctx->nr_ctx++] = ctx; 1814 } 1815 1816 mutex_unlock(&q->sysfs_lock); 1817 1818 queue_for_each_hw_ctx(q, hctx, i) { 1819 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1820 1821 /* 1822 * If no software queues are mapped to this hardware queue, 1823 * disable it and free the request entries. 1824 */ 1825 if (!hctx->nr_ctx) { 1826 if (set->tags[i]) { 1827 blk_mq_free_rq_map(set, set->tags[i], i); 1828 set->tags[i] = NULL; 1829 } 1830 hctx->tags = NULL; 1831 continue; 1832 } 1833 1834 /* unmapped hw queue can be remapped after CPU topo changed */ 1835 if (!set->tags[i]) 1836 set->tags[i] = blk_mq_init_rq_map(set, i); 1837 hctx->tags = set->tags[i]; 1838 WARN_ON(!hctx->tags); 1839 1840 /* 1841 * Set the map size to the number of mapped software queues. 1842 * This is more accurate and more efficient than looping 1843 * over all possibly mapped software queues. 1844 */ 1845 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1846 1847 /* 1848 * Initialize batch roundrobin counts 1849 */ 1850 hctx->next_cpu = cpumask_first(hctx->cpumask); 1851 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1852 } 1853 1854 queue_for_each_ctx(q, ctx, i) { 1855 if (!cpumask_test_cpu(i, online_mask)) 1856 continue; 1857 1858 hctx = q->mq_ops->map_queue(q, i); 1859 cpumask_set_cpu(i, hctx->tags->cpumask); 1860 } 1861 } 1862 1863 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1864 { 1865 struct blk_mq_hw_ctx *hctx; 1866 struct request_queue *q; 1867 bool shared; 1868 int i; 1869 1870 if (set->tag_list.next == set->tag_list.prev) 1871 shared = false; 1872 else 1873 shared = true; 1874 1875 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1876 blk_mq_freeze_queue(q); 1877 1878 queue_for_each_hw_ctx(q, hctx, i) { 1879 if (shared) 1880 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1881 else 1882 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1883 } 1884 blk_mq_unfreeze_queue(q); 1885 } 1886 } 1887 1888 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1889 { 1890 struct blk_mq_tag_set *set = q->tag_set; 1891 1892 mutex_lock(&set->tag_list_lock); 1893 list_del_init(&q->tag_set_list); 1894 blk_mq_update_tag_set_depth(set); 1895 mutex_unlock(&set->tag_list_lock); 1896 } 1897 1898 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1899 struct request_queue *q) 1900 { 1901 q->tag_set = set; 1902 1903 mutex_lock(&set->tag_list_lock); 1904 list_add_tail(&q->tag_set_list, &set->tag_list); 1905 blk_mq_update_tag_set_depth(set); 1906 mutex_unlock(&set->tag_list_lock); 1907 } 1908 1909 /* 1910 * It is the actual release handler for mq, but we do it from 1911 * request queue's release handler for avoiding use-after-free 1912 * and headache because q->mq_kobj shouldn't have been introduced, 1913 * but we can't group ctx/kctx kobj without it. 1914 */ 1915 void blk_mq_release(struct request_queue *q) 1916 { 1917 struct blk_mq_hw_ctx *hctx; 1918 unsigned int i; 1919 1920 /* hctx kobj stays in hctx */ 1921 queue_for_each_hw_ctx(q, hctx, i) { 1922 if (!hctx) 1923 continue; 1924 kfree(hctx->ctxs); 1925 kfree(hctx); 1926 } 1927 1928 kfree(q->mq_map); 1929 q->mq_map = NULL; 1930 1931 kfree(q->queue_hw_ctx); 1932 1933 /* ctx kobj stays in queue_ctx */ 1934 free_percpu(q->queue_ctx); 1935 } 1936 1937 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1938 { 1939 struct request_queue *uninit_q, *q; 1940 1941 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1942 if (!uninit_q) 1943 return ERR_PTR(-ENOMEM); 1944 1945 q = blk_mq_init_allocated_queue(set, uninit_q); 1946 if (IS_ERR(q)) 1947 blk_cleanup_queue(uninit_q); 1948 1949 return q; 1950 } 1951 EXPORT_SYMBOL(blk_mq_init_queue); 1952 1953 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 1954 struct request_queue *q) 1955 { 1956 struct blk_mq_hw_ctx **hctxs; 1957 struct blk_mq_ctx __percpu *ctx; 1958 unsigned int *map; 1959 int i; 1960 1961 ctx = alloc_percpu(struct blk_mq_ctx); 1962 if (!ctx) 1963 return ERR_PTR(-ENOMEM); 1964 1965 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1966 set->numa_node); 1967 1968 if (!hctxs) 1969 goto err_percpu; 1970 1971 map = blk_mq_make_queue_map(set); 1972 if (!map) 1973 goto err_map; 1974 1975 for (i = 0; i < set->nr_hw_queues; i++) { 1976 int node = blk_mq_hw_queue_to_node(map, i); 1977 1978 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1979 GFP_KERNEL, node); 1980 if (!hctxs[i]) 1981 goto err_hctxs; 1982 1983 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1984 node)) 1985 goto err_hctxs; 1986 1987 atomic_set(&hctxs[i]->nr_active, 0); 1988 hctxs[i]->numa_node = node; 1989 hctxs[i]->queue_num = i; 1990 } 1991 1992 /* 1993 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1994 * See blk_register_queue() for details. 1995 */ 1996 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release, 1997 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1998 goto err_hctxs; 1999 2000 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 2001 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2002 2003 q->nr_queues = nr_cpu_ids; 2004 q->nr_hw_queues = set->nr_hw_queues; 2005 q->mq_map = map; 2006 2007 q->queue_ctx = ctx; 2008 q->queue_hw_ctx = hctxs; 2009 2010 q->mq_ops = set->ops; 2011 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2012 2013 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2014 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2015 2016 q->sg_reserved_size = INT_MAX; 2017 2018 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2019 INIT_LIST_HEAD(&q->requeue_list); 2020 spin_lock_init(&q->requeue_lock); 2021 2022 if (q->nr_hw_queues > 1) 2023 blk_queue_make_request(q, blk_mq_make_request); 2024 else 2025 blk_queue_make_request(q, blk_sq_make_request); 2026 2027 /* 2028 * Do this after blk_queue_make_request() overrides it... 2029 */ 2030 q->nr_requests = set->queue_depth; 2031 2032 if (set->ops->complete) 2033 blk_queue_softirq_done(q, set->ops->complete); 2034 2035 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2036 2037 if (blk_mq_init_hw_queues(q, set)) 2038 goto err_hctxs; 2039 2040 get_online_cpus(); 2041 mutex_lock(&all_q_mutex); 2042 2043 list_add_tail(&q->all_q_node, &all_q_list); 2044 blk_mq_add_queue_tag_set(set, q); 2045 blk_mq_map_swqueue(q, cpu_online_mask); 2046 2047 mutex_unlock(&all_q_mutex); 2048 put_online_cpus(); 2049 2050 return q; 2051 2052 err_hctxs: 2053 kfree(map); 2054 for (i = 0; i < set->nr_hw_queues; i++) { 2055 if (!hctxs[i]) 2056 break; 2057 free_cpumask_var(hctxs[i]->cpumask); 2058 kfree(hctxs[i]); 2059 } 2060 err_map: 2061 kfree(hctxs); 2062 err_percpu: 2063 free_percpu(ctx); 2064 return ERR_PTR(-ENOMEM); 2065 } 2066 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2067 2068 void blk_mq_free_queue(struct request_queue *q) 2069 { 2070 struct blk_mq_tag_set *set = q->tag_set; 2071 2072 mutex_lock(&all_q_mutex); 2073 list_del_init(&q->all_q_node); 2074 mutex_unlock(&all_q_mutex); 2075 2076 blk_mq_del_queue_tag_set(q); 2077 2078 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2079 blk_mq_free_hw_queues(q, set); 2080 2081 percpu_ref_exit(&q->mq_usage_counter); 2082 } 2083 2084 /* Basically redo blk_mq_init_queue with queue frozen */ 2085 static void blk_mq_queue_reinit(struct request_queue *q, 2086 const struct cpumask *online_mask) 2087 { 2088 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2089 2090 blk_mq_sysfs_unregister(q); 2091 2092 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask); 2093 2094 /* 2095 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2096 * we should change hctx numa_node according to new topology (this 2097 * involves free and re-allocate memory, worthy doing?) 2098 */ 2099 2100 blk_mq_map_swqueue(q, online_mask); 2101 2102 blk_mq_sysfs_register(q); 2103 } 2104 2105 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2106 unsigned long action, void *hcpu) 2107 { 2108 struct request_queue *q; 2109 int cpu = (unsigned long)hcpu; 2110 /* 2111 * New online cpumask which is going to be set in this hotplug event. 2112 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2113 * one-by-one and dynamically allocating this could result in a failure. 2114 */ 2115 static struct cpumask online_new; 2116 2117 /* 2118 * Before hotadded cpu starts handling requests, new mappings must 2119 * be established. Otherwise, these requests in hw queue might 2120 * never be dispatched. 2121 * 2122 * For example, there is a single hw queue (hctx) and two CPU queues 2123 * (ctx0 for CPU0, and ctx1 for CPU1). 2124 * 2125 * Now CPU1 is just onlined and a request is inserted into 2126 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is 2127 * still zero. 2128 * 2129 * And then while running hw queue, flush_busy_ctxs() finds bit0 is 2130 * set in pending bitmap and tries to retrieve requests in 2131 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0, 2132 * so the request in ctx1->rq_list is ignored. 2133 */ 2134 switch (action & ~CPU_TASKS_FROZEN) { 2135 case CPU_DEAD: 2136 case CPU_UP_CANCELED: 2137 cpumask_copy(&online_new, cpu_online_mask); 2138 break; 2139 case CPU_UP_PREPARE: 2140 cpumask_copy(&online_new, cpu_online_mask); 2141 cpumask_set_cpu(cpu, &online_new); 2142 break; 2143 default: 2144 return NOTIFY_OK; 2145 } 2146 2147 mutex_lock(&all_q_mutex); 2148 2149 /* 2150 * We need to freeze and reinit all existing queues. Freezing 2151 * involves synchronous wait for an RCU grace period and doing it 2152 * one by one may take a long time. Start freezing all queues in 2153 * one swoop and then wait for the completions so that freezing can 2154 * take place in parallel. 2155 */ 2156 list_for_each_entry(q, &all_q_list, all_q_node) 2157 blk_mq_freeze_queue_start(q); 2158 list_for_each_entry(q, &all_q_list, all_q_node) { 2159 blk_mq_freeze_queue_wait(q); 2160 2161 /* 2162 * timeout handler can't touch hw queue during the 2163 * reinitialization 2164 */ 2165 del_timer_sync(&q->timeout); 2166 } 2167 2168 list_for_each_entry(q, &all_q_list, all_q_node) 2169 blk_mq_queue_reinit(q, &online_new); 2170 2171 list_for_each_entry(q, &all_q_list, all_q_node) 2172 blk_mq_unfreeze_queue(q); 2173 2174 mutex_unlock(&all_q_mutex); 2175 return NOTIFY_OK; 2176 } 2177 2178 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2179 { 2180 int i; 2181 2182 for (i = 0; i < set->nr_hw_queues; i++) { 2183 set->tags[i] = blk_mq_init_rq_map(set, i); 2184 if (!set->tags[i]) 2185 goto out_unwind; 2186 } 2187 2188 return 0; 2189 2190 out_unwind: 2191 while (--i >= 0) 2192 blk_mq_free_rq_map(set, set->tags[i], i); 2193 2194 return -ENOMEM; 2195 } 2196 2197 /* 2198 * Allocate the request maps associated with this tag_set. Note that this 2199 * may reduce the depth asked for, if memory is tight. set->queue_depth 2200 * will be updated to reflect the allocated depth. 2201 */ 2202 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2203 { 2204 unsigned int depth; 2205 int err; 2206 2207 depth = set->queue_depth; 2208 do { 2209 err = __blk_mq_alloc_rq_maps(set); 2210 if (!err) 2211 break; 2212 2213 set->queue_depth >>= 1; 2214 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2215 err = -ENOMEM; 2216 break; 2217 } 2218 } while (set->queue_depth); 2219 2220 if (!set->queue_depth || err) { 2221 pr_err("blk-mq: failed to allocate request map\n"); 2222 return -ENOMEM; 2223 } 2224 2225 if (depth != set->queue_depth) 2226 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2227 depth, set->queue_depth); 2228 2229 return 0; 2230 } 2231 2232 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2233 { 2234 return tags->cpumask; 2235 } 2236 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2237 2238 /* 2239 * Alloc a tag set to be associated with one or more request queues. 2240 * May fail with EINVAL for various error conditions. May adjust the 2241 * requested depth down, if if it too large. In that case, the set 2242 * value will be stored in set->queue_depth. 2243 */ 2244 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2245 { 2246 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2247 2248 if (!set->nr_hw_queues) 2249 return -EINVAL; 2250 if (!set->queue_depth) 2251 return -EINVAL; 2252 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2253 return -EINVAL; 2254 2255 if (!set->ops->queue_rq || !set->ops->map_queue) 2256 return -EINVAL; 2257 2258 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2259 pr_info("blk-mq: reduced tag depth to %u\n", 2260 BLK_MQ_MAX_DEPTH); 2261 set->queue_depth = BLK_MQ_MAX_DEPTH; 2262 } 2263 2264 /* 2265 * If a crashdump is active, then we are potentially in a very 2266 * memory constrained environment. Limit us to 1 queue and 2267 * 64 tags to prevent using too much memory. 2268 */ 2269 if (is_kdump_kernel()) { 2270 set->nr_hw_queues = 1; 2271 set->queue_depth = min(64U, set->queue_depth); 2272 } 2273 2274 set->tags = kmalloc_node(set->nr_hw_queues * 2275 sizeof(struct blk_mq_tags *), 2276 GFP_KERNEL, set->numa_node); 2277 if (!set->tags) 2278 return -ENOMEM; 2279 2280 if (blk_mq_alloc_rq_maps(set)) 2281 goto enomem; 2282 2283 mutex_init(&set->tag_list_lock); 2284 INIT_LIST_HEAD(&set->tag_list); 2285 2286 return 0; 2287 enomem: 2288 kfree(set->tags); 2289 set->tags = NULL; 2290 return -ENOMEM; 2291 } 2292 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2293 2294 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2295 { 2296 int i; 2297 2298 for (i = 0; i < set->nr_hw_queues; i++) { 2299 if (set->tags[i]) { 2300 blk_mq_free_rq_map(set, set->tags[i], i); 2301 free_cpumask_var(set->tags[i]->cpumask); 2302 } 2303 } 2304 2305 kfree(set->tags); 2306 set->tags = NULL; 2307 } 2308 EXPORT_SYMBOL(blk_mq_free_tag_set); 2309 2310 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2311 { 2312 struct blk_mq_tag_set *set = q->tag_set; 2313 struct blk_mq_hw_ctx *hctx; 2314 int i, ret; 2315 2316 if (!set || nr > set->queue_depth) 2317 return -EINVAL; 2318 2319 ret = 0; 2320 queue_for_each_hw_ctx(q, hctx, i) { 2321 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2322 if (ret) 2323 break; 2324 } 2325 2326 if (!ret) 2327 q->nr_requests = nr; 2328 2329 return ret; 2330 } 2331 2332 void blk_mq_disable_hotplug(void) 2333 { 2334 mutex_lock(&all_q_mutex); 2335 } 2336 2337 void blk_mq_enable_hotplug(void) 2338 { 2339 mutex_unlock(&all_q_mutex); 2340 } 2341 2342 static int __init blk_mq_init(void) 2343 { 2344 blk_mq_cpu_init(); 2345 2346 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2347 2348 return 0; 2349 } 2350 subsys_initcall(blk_mq_init); 2351