xref: /openbmc/linux/block/blk-mq.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PM)
298 		rq->rq_flags |= RQF_PM;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush/passthrough requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    !blk_op_is_passthrough(data->cmd_flags) &&
370 		    e->type->ops.limit_depth &&
371 		    !(data->flags & BLK_MQ_REQ_RESERVED))
372 			e->type->ops.limit_depth(data->cmd_flags, data);
373 	}
374 
375 retry:
376 	data->ctx = blk_mq_get_ctx(q);
377 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378 	if (!e)
379 		blk_mq_tag_busy(data->hctx);
380 
381 	/*
382 	 * Waiting allocations only fail because of an inactive hctx.  In that
383 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
384 	 * should have migrated us to an online CPU by now.
385 	 */
386 	tag = blk_mq_get_tag(data);
387 	if (tag == BLK_MQ_NO_TAG) {
388 		if (data->flags & BLK_MQ_REQ_NOWAIT)
389 			return NULL;
390 
391 		/*
392 		 * Give up the CPU and sleep for a random short time to ensure
393 		 * that thread using a realtime scheduling class are migrated
394 		 * off the CPU, and thus off the hctx that is going away.
395 		 */
396 		msleep(3);
397 		goto retry;
398 	}
399 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401 
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403 		blk_mq_req_flags_t flags)
404 {
405 	struct blk_mq_alloc_data data = {
406 		.q		= q,
407 		.flags		= flags,
408 		.cmd_flags	= op,
409 	};
410 	struct request *rq;
411 	int ret;
412 
413 	ret = blk_queue_enter(q, flags);
414 	if (ret)
415 		return ERR_PTR(ret);
416 
417 	rq = __blk_mq_alloc_request(&data);
418 	if (!rq)
419 		goto out_queue_exit;
420 	rq->__data_len = 0;
421 	rq->__sector = (sector_t) -1;
422 	rq->bio = rq->biotail = NULL;
423 	return rq;
424 out_queue_exit:
425 	blk_queue_exit(q);
426 	return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429 
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433 	struct blk_mq_alloc_data data = {
434 		.q		= q,
435 		.flags		= flags,
436 		.cmd_flags	= op,
437 	};
438 	u64 alloc_time_ns = 0;
439 	unsigned int cpu;
440 	unsigned int tag;
441 	int ret;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	/*
448 	 * If the tag allocator sleeps we could get an allocation for a
449 	 * different hardware context.  No need to complicate the low level
450 	 * allocator for this for the rare use case of a command tied to
451 	 * a specific queue.
452 	 */
453 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454 		return ERR_PTR(-EINVAL);
455 
456 	if (hctx_idx >= q->nr_hw_queues)
457 		return ERR_PTR(-EIO);
458 
459 	ret = blk_queue_enter(q, flags);
460 	if (ret)
461 		return ERR_PTR(ret);
462 
463 	/*
464 	 * Check if the hardware context is actually mapped to anything.
465 	 * If not tell the caller that it should skip this queue.
466 	 */
467 	ret = -EXDEV;
468 	data.hctx = q->queue_hw_ctx[hctx_idx];
469 	if (!blk_mq_hw_queue_mapped(data.hctx))
470 		goto out_queue_exit;
471 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472 	data.ctx = __blk_mq_get_ctx(q, cpu);
473 
474 	if (!q->elevator)
475 		blk_mq_tag_busy(data.hctx);
476 
477 	ret = -EWOULDBLOCK;
478 	tag = blk_mq_get_tag(&data);
479 	if (tag == BLK_MQ_NO_TAG)
480 		goto out_queue_exit;
481 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482 
483 out_queue_exit:
484 	blk_queue_exit(q);
485 	return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488 
489 static void __blk_mq_free_request(struct request *rq)
490 {
491 	struct request_queue *q = rq->q;
492 	struct blk_mq_ctx *ctx = rq->mq_ctx;
493 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 	const int sched_tag = rq->internal_tag;
495 
496 	blk_crypto_free_request(rq);
497 	blk_pm_mark_last_busy(rq);
498 	rq->mq_hctx = NULL;
499 	if (rq->tag != BLK_MQ_NO_TAG)
500 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501 	if (sched_tag != BLK_MQ_NO_TAG)
502 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503 	blk_mq_sched_restart(hctx);
504 	blk_queue_exit(q);
505 }
506 
507 void blk_mq_free_request(struct request *rq)
508 {
509 	struct request_queue *q = rq->q;
510 	struct elevator_queue *e = q->elevator;
511 	struct blk_mq_ctx *ctx = rq->mq_ctx;
512 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513 
514 	if (rq->rq_flags & RQF_ELVPRIV) {
515 		if (e && e->type->ops.finish_request)
516 			e->type->ops.finish_request(rq);
517 		if (rq->elv.icq) {
518 			put_io_context(rq->elv.icq->ioc);
519 			rq->elv.icq = NULL;
520 		}
521 	}
522 
523 	ctx->rq_completed[rq_is_sync(rq)]++;
524 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
525 		__blk_mq_dec_active_requests(hctx);
526 
527 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 		laptop_io_completion(q->backing_dev_info);
529 
530 	rq_qos_done(q, rq);
531 
532 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 	if (refcount_dec_and_test(&rq->ref))
534 		__blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537 
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540 	u64 now = 0;
541 
542 	if (blk_mq_need_time_stamp(rq))
543 		now = ktime_get_ns();
544 
545 	if (rq->rq_flags & RQF_STATS) {
546 		blk_mq_poll_stats_start(rq->q);
547 		blk_stat_add(rq, now);
548 	}
549 
550 	blk_mq_sched_completed_request(rq, now);
551 
552 	blk_account_io_done(rq, now);
553 
554 	if (rq->end_io) {
555 		rq_qos_done(rq->q, rq);
556 		rq->end_io(rq, error);
557 	} else {
558 		blk_mq_free_request(rq);
559 	}
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562 
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566 		BUG();
567 	__blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570 
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574 	struct request *rq, *next;
575 
576 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
577 		rq->q->mq_ops->complete(rq);
578 }
579 
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584 
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588 	return 0;
589 }
590 
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595 
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598 	int cpu = raw_smp_processor_id();
599 
600 	if (!IS_ENABLED(CONFIG_SMP) ||
601 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602 		return false;
603 	/*
604 	 * With force threaded interrupts enabled, raising softirq from an SMP
605 	 * function call will always result in waking the ksoftirqd thread.
606 	 * This is probably worse than completing the request on a different
607 	 * cache domain.
608 	 */
609 	if (force_irqthreads)
610 		return false;
611 
612 	/* same CPU or cache domain?  Complete locally */
613 	if (cpu == rq->mq_ctx->cpu ||
614 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616 		return false;
617 
618 	/* don't try to IPI to an offline CPU */
619 	return cpu_online(rq->mq_ctx->cpu);
620 }
621 
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624 	struct llist_head *list;
625 	unsigned int cpu;
626 
627 	cpu = rq->mq_ctx->cpu;
628 	list = &per_cpu(blk_cpu_done, cpu);
629 	if (llist_add(&rq->ipi_list, list)) {
630 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631 		smp_call_function_single_async(cpu, &rq->csd);
632 	}
633 }
634 
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637 	struct llist_head *list;
638 
639 	preempt_disable();
640 	list = this_cpu_ptr(&blk_cpu_done);
641 	if (llist_add(&rq->ipi_list, list))
642 		raise_softirq(BLOCK_SOFTIRQ);
643 	preempt_enable();
644 }
645 
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649 
650 	/*
651 	 * For a polled request, always complete locallly, it's pointless
652 	 * to redirect the completion.
653 	 */
654 	if (rq->cmd_flags & REQ_HIPRI)
655 		return false;
656 
657 	if (blk_mq_complete_need_ipi(rq)) {
658 		blk_mq_complete_send_ipi(rq);
659 		return true;
660 	}
661 
662 	if (rq->q->nr_hw_queues == 1) {
663 		blk_mq_raise_softirq(rq);
664 		return true;
665 	}
666 	return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669 
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:		the request being processed
673  *
674  * Description:
675  *	Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679 	if (!blk_mq_complete_request_remote(rq))
680 		rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683 
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685 	__releases(hctx->srcu)
686 {
687 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688 		rcu_read_unlock();
689 	else
690 		srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692 
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694 	__acquires(hctx->srcu)
695 {
696 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697 		/* shut up gcc false positive */
698 		*srcu_idx = 0;
699 		rcu_read_lock();
700 	} else
701 		*srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703 
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714 	struct request_queue *q = rq->q;
715 
716 	trace_block_rq_issue(rq);
717 
718 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719 		rq->io_start_time_ns = ktime_get_ns();
720 		rq->stats_sectors = blk_rq_sectors(rq);
721 		rq->rq_flags |= RQF_STATS;
722 		rq_qos_issue(q, rq);
723 	}
724 
725 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726 
727 	blk_add_timer(rq);
728 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729 
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732 		q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736 
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739 	struct request_queue *q = rq->q;
740 
741 	blk_mq_put_driver_tag(rq);
742 
743 	trace_block_rq_requeue(rq);
744 	rq_qos_requeue(q, rq);
745 
746 	if (blk_mq_request_started(rq)) {
747 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748 		rq->rq_flags &= ~RQF_TIMED_OUT;
749 	}
750 }
751 
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754 	__blk_mq_requeue_request(rq);
755 
756 	/* this request will be re-inserted to io scheduler queue */
757 	blk_mq_sched_requeue_request(rq);
758 
759 	BUG_ON(!list_empty(&rq->queuelist));
760 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763 
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766 	struct request_queue *q =
767 		container_of(work, struct request_queue, requeue_work.work);
768 	LIST_HEAD(rq_list);
769 	struct request *rq, *next;
770 
771 	spin_lock_irq(&q->requeue_lock);
772 	list_splice_init(&q->requeue_list, &rq_list);
773 	spin_unlock_irq(&q->requeue_lock);
774 
775 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777 			continue;
778 
779 		rq->rq_flags &= ~RQF_SOFTBARRIER;
780 		list_del_init(&rq->queuelist);
781 		/*
782 		 * If RQF_DONTPREP, rq has contained some driver specific
783 		 * data, so insert it to hctx dispatch list to avoid any
784 		 * merge.
785 		 */
786 		if (rq->rq_flags & RQF_DONTPREP)
787 			blk_mq_request_bypass_insert(rq, false, false);
788 		else
789 			blk_mq_sched_insert_request(rq, true, false, false);
790 	}
791 
792 	while (!list_empty(&rq_list)) {
793 		rq = list_entry(rq_list.next, struct request, queuelist);
794 		list_del_init(&rq->queuelist);
795 		blk_mq_sched_insert_request(rq, false, false, false);
796 	}
797 
798 	blk_mq_run_hw_queues(q, false);
799 }
800 
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802 				bool kick_requeue_list)
803 {
804 	struct request_queue *q = rq->q;
805 	unsigned long flags;
806 
807 	/*
808 	 * We abuse this flag that is otherwise used by the I/O scheduler to
809 	 * request head insertion from the workqueue.
810 	 */
811 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812 
813 	spin_lock_irqsave(&q->requeue_lock, flags);
814 	if (at_head) {
815 		rq->rq_flags |= RQF_SOFTBARRIER;
816 		list_add(&rq->queuelist, &q->requeue_list);
817 	} else {
818 		list_add_tail(&rq->queuelist, &q->requeue_list);
819 	}
820 	spin_unlock_irqrestore(&q->requeue_lock, flags);
821 
822 	if (kick_requeue_list)
823 		blk_mq_kick_requeue_list(q);
824 }
825 
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831 
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833 				    unsigned long msecs)
834 {
835 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836 				    msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839 
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842 	if (tag < tags->nr_tags) {
843 		prefetch(tags->rqs[tag]);
844 		return tags->rqs[tag];
845 	}
846 
847 	return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850 
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852 			       void *priv, bool reserved)
853 {
854 	/*
855 	 * If we find a request that isn't idle and the queue matches,
856 	 * we know the queue is busy. Return false to stop the iteration.
857 	 */
858 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859 		bool *busy = priv;
860 
861 		*busy = true;
862 		return false;
863 	}
864 
865 	return true;
866 }
867 
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870 	bool busy = false;
871 
872 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873 	return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876 
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879 	req->rq_flags |= RQF_TIMED_OUT;
880 	if (req->q->mq_ops->timeout) {
881 		enum blk_eh_timer_return ret;
882 
883 		ret = req->q->mq_ops->timeout(req, reserved);
884 		if (ret == BLK_EH_DONE)
885 			return;
886 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887 	}
888 
889 	blk_add_timer(req);
890 }
891 
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894 	unsigned long deadline;
895 
896 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897 		return false;
898 	if (rq->rq_flags & RQF_TIMED_OUT)
899 		return false;
900 
901 	deadline = READ_ONCE(rq->deadline);
902 	if (time_after_eq(jiffies, deadline))
903 		return true;
904 
905 	if (*next == 0)
906 		*next = deadline;
907 	else if (time_after(*next, deadline))
908 		*next = deadline;
909 	return false;
910 }
911 
912 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
913 		struct request *rq, void *priv, bool reserved)
914 {
915 	unsigned long *next = priv;
916 
917 	/*
918 	 * Just do a quick check if it is expired before locking the request in
919 	 * so we're not unnecessarilly synchronizing across CPUs.
920 	 */
921 	if (!blk_mq_req_expired(rq, next))
922 		return true;
923 
924 	/*
925 	 * We have reason to believe the request may be expired. Take a
926 	 * reference on the request to lock this request lifetime into its
927 	 * currently allocated context to prevent it from being reallocated in
928 	 * the event the completion by-passes this timeout handler.
929 	 *
930 	 * If the reference was already released, then the driver beat the
931 	 * timeout handler to posting a natural completion.
932 	 */
933 	if (!refcount_inc_not_zero(&rq->ref))
934 		return true;
935 
936 	/*
937 	 * The request is now locked and cannot be reallocated underneath the
938 	 * timeout handler's processing. Re-verify this exact request is truly
939 	 * expired; if it is not expired, then the request was completed and
940 	 * reallocated as a new request.
941 	 */
942 	if (blk_mq_req_expired(rq, next))
943 		blk_mq_rq_timed_out(rq, reserved);
944 
945 	if (is_flush_rq(rq, hctx))
946 		rq->end_io(rq, 0);
947 	else if (refcount_dec_and_test(&rq->ref))
948 		__blk_mq_free_request(rq);
949 
950 	return true;
951 }
952 
953 static void blk_mq_timeout_work(struct work_struct *work)
954 {
955 	struct request_queue *q =
956 		container_of(work, struct request_queue, timeout_work);
957 	unsigned long next = 0;
958 	struct blk_mq_hw_ctx *hctx;
959 	int i;
960 
961 	/* A deadlock might occur if a request is stuck requiring a
962 	 * timeout at the same time a queue freeze is waiting
963 	 * completion, since the timeout code would not be able to
964 	 * acquire the queue reference here.
965 	 *
966 	 * That's why we don't use blk_queue_enter here; instead, we use
967 	 * percpu_ref_tryget directly, because we need to be able to
968 	 * obtain a reference even in the short window between the queue
969 	 * starting to freeze, by dropping the first reference in
970 	 * blk_freeze_queue_start, and the moment the last request is
971 	 * consumed, marked by the instant q_usage_counter reaches
972 	 * zero.
973 	 */
974 	if (!percpu_ref_tryget(&q->q_usage_counter))
975 		return;
976 
977 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
978 
979 	if (next != 0) {
980 		mod_timer(&q->timeout, next);
981 	} else {
982 		/*
983 		 * Request timeouts are handled as a forward rolling timer. If
984 		 * we end up here it means that no requests are pending and
985 		 * also that no request has been pending for a while. Mark
986 		 * each hctx as idle.
987 		 */
988 		queue_for_each_hw_ctx(q, hctx, i) {
989 			/* the hctx may be unmapped, so check it here */
990 			if (blk_mq_hw_queue_mapped(hctx))
991 				blk_mq_tag_idle(hctx);
992 		}
993 	}
994 	blk_queue_exit(q);
995 }
996 
997 struct flush_busy_ctx_data {
998 	struct blk_mq_hw_ctx *hctx;
999 	struct list_head *list;
1000 };
1001 
1002 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1003 {
1004 	struct flush_busy_ctx_data *flush_data = data;
1005 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1006 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1007 	enum hctx_type type = hctx->type;
1008 
1009 	spin_lock(&ctx->lock);
1010 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1011 	sbitmap_clear_bit(sb, bitnr);
1012 	spin_unlock(&ctx->lock);
1013 	return true;
1014 }
1015 
1016 /*
1017  * Process software queues that have been marked busy, splicing them
1018  * to the for-dispatch
1019  */
1020 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1021 {
1022 	struct flush_busy_ctx_data data = {
1023 		.hctx = hctx,
1024 		.list = list,
1025 	};
1026 
1027 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1028 }
1029 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1030 
1031 struct dispatch_rq_data {
1032 	struct blk_mq_hw_ctx *hctx;
1033 	struct request *rq;
1034 };
1035 
1036 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1037 		void *data)
1038 {
1039 	struct dispatch_rq_data *dispatch_data = data;
1040 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1041 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1042 	enum hctx_type type = hctx->type;
1043 
1044 	spin_lock(&ctx->lock);
1045 	if (!list_empty(&ctx->rq_lists[type])) {
1046 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1047 		list_del_init(&dispatch_data->rq->queuelist);
1048 		if (list_empty(&ctx->rq_lists[type]))
1049 			sbitmap_clear_bit(sb, bitnr);
1050 	}
1051 	spin_unlock(&ctx->lock);
1052 
1053 	return !dispatch_data->rq;
1054 }
1055 
1056 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1057 					struct blk_mq_ctx *start)
1058 {
1059 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1060 	struct dispatch_rq_data data = {
1061 		.hctx = hctx,
1062 		.rq   = NULL,
1063 	};
1064 
1065 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1066 			       dispatch_rq_from_ctx, &data);
1067 
1068 	return data.rq;
1069 }
1070 
1071 static inline unsigned int queued_to_index(unsigned int queued)
1072 {
1073 	if (!queued)
1074 		return 0;
1075 
1076 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1077 }
1078 
1079 static bool __blk_mq_get_driver_tag(struct request *rq)
1080 {
1081 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1082 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1083 	int tag;
1084 
1085 	blk_mq_tag_busy(rq->mq_hctx);
1086 
1087 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1088 		bt = rq->mq_hctx->tags->breserved_tags;
1089 		tag_offset = 0;
1090 	} else {
1091 		if (!hctx_may_queue(rq->mq_hctx, bt))
1092 			return false;
1093 	}
1094 
1095 	tag = __sbitmap_queue_get(bt);
1096 	if (tag == BLK_MQ_NO_TAG)
1097 		return false;
1098 
1099 	rq->tag = tag + tag_offset;
1100 	return true;
1101 }
1102 
1103 static bool blk_mq_get_driver_tag(struct request *rq)
1104 {
1105 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1106 
1107 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1108 		return false;
1109 
1110 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1111 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1112 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1113 		__blk_mq_inc_active_requests(hctx);
1114 	}
1115 	hctx->tags->rqs[rq->tag] = rq;
1116 	return true;
1117 }
1118 
1119 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1120 				int flags, void *key)
1121 {
1122 	struct blk_mq_hw_ctx *hctx;
1123 
1124 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1125 
1126 	spin_lock(&hctx->dispatch_wait_lock);
1127 	if (!list_empty(&wait->entry)) {
1128 		struct sbitmap_queue *sbq;
1129 
1130 		list_del_init(&wait->entry);
1131 		sbq = hctx->tags->bitmap_tags;
1132 		atomic_dec(&sbq->ws_active);
1133 	}
1134 	spin_unlock(&hctx->dispatch_wait_lock);
1135 
1136 	blk_mq_run_hw_queue(hctx, true);
1137 	return 1;
1138 }
1139 
1140 /*
1141  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1142  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1143  * restart. For both cases, take care to check the condition again after
1144  * marking us as waiting.
1145  */
1146 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1147 				 struct request *rq)
1148 {
1149 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1150 	struct wait_queue_head *wq;
1151 	wait_queue_entry_t *wait;
1152 	bool ret;
1153 
1154 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1155 		blk_mq_sched_mark_restart_hctx(hctx);
1156 
1157 		/*
1158 		 * It's possible that a tag was freed in the window between the
1159 		 * allocation failure and adding the hardware queue to the wait
1160 		 * queue.
1161 		 *
1162 		 * Don't clear RESTART here, someone else could have set it.
1163 		 * At most this will cost an extra queue run.
1164 		 */
1165 		return blk_mq_get_driver_tag(rq);
1166 	}
1167 
1168 	wait = &hctx->dispatch_wait;
1169 	if (!list_empty_careful(&wait->entry))
1170 		return false;
1171 
1172 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1173 
1174 	spin_lock_irq(&wq->lock);
1175 	spin_lock(&hctx->dispatch_wait_lock);
1176 	if (!list_empty(&wait->entry)) {
1177 		spin_unlock(&hctx->dispatch_wait_lock);
1178 		spin_unlock_irq(&wq->lock);
1179 		return false;
1180 	}
1181 
1182 	atomic_inc(&sbq->ws_active);
1183 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1184 	__add_wait_queue(wq, wait);
1185 
1186 	/*
1187 	 * It's possible that a tag was freed in the window between the
1188 	 * allocation failure and adding the hardware queue to the wait
1189 	 * queue.
1190 	 */
1191 	ret = blk_mq_get_driver_tag(rq);
1192 	if (!ret) {
1193 		spin_unlock(&hctx->dispatch_wait_lock);
1194 		spin_unlock_irq(&wq->lock);
1195 		return false;
1196 	}
1197 
1198 	/*
1199 	 * We got a tag, remove ourselves from the wait queue to ensure
1200 	 * someone else gets the wakeup.
1201 	 */
1202 	list_del_init(&wait->entry);
1203 	atomic_dec(&sbq->ws_active);
1204 	spin_unlock(&hctx->dispatch_wait_lock);
1205 	spin_unlock_irq(&wq->lock);
1206 
1207 	return true;
1208 }
1209 
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1211 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1212 /*
1213  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1214  * - EWMA is one simple way to compute running average value
1215  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1216  * - take 4 as factor for avoiding to get too small(0) result, and this
1217  *   factor doesn't matter because EWMA decreases exponentially
1218  */
1219 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1220 {
1221 	unsigned int ewma;
1222 
1223 	if (hctx->queue->elevator)
1224 		return;
1225 
1226 	ewma = hctx->dispatch_busy;
1227 
1228 	if (!ewma && !busy)
1229 		return;
1230 
1231 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1232 	if (busy)
1233 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1234 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1235 
1236 	hctx->dispatch_busy = ewma;
1237 }
1238 
1239 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1240 
1241 static void blk_mq_handle_dev_resource(struct request *rq,
1242 				       struct list_head *list)
1243 {
1244 	struct request *next =
1245 		list_first_entry_or_null(list, struct request, queuelist);
1246 
1247 	/*
1248 	 * If an I/O scheduler has been configured and we got a driver tag for
1249 	 * the next request already, free it.
1250 	 */
1251 	if (next)
1252 		blk_mq_put_driver_tag(next);
1253 
1254 	list_add(&rq->queuelist, list);
1255 	__blk_mq_requeue_request(rq);
1256 }
1257 
1258 static void blk_mq_handle_zone_resource(struct request *rq,
1259 					struct list_head *zone_list)
1260 {
1261 	/*
1262 	 * If we end up here it is because we cannot dispatch a request to a
1263 	 * specific zone due to LLD level zone-write locking or other zone
1264 	 * related resource not being available. In this case, set the request
1265 	 * aside in zone_list for retrying it later.
1266 	 */
1267 	list_add(&rq->queuelist, zone_list);
1268 	__blk_mq_requeue_request(rq);
1269 }
1270 
1271 enum prep_dispatch {
1272 	PREP_DISPATCH_OK,
1273 	PREP_DISPATCH_NO_TAG,
1274 	PREP_DISPATCH_NO_BUDGET,
1275 };
1276 
1277 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1278 						  bool need_budget)
1279 {
1280 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1281 	int budget_token = -1;
1282 
1283 	if (need_budget) {
1284 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1285 		if (budget_token < 0) {
1286 			blk_mq_put_driver_tag(rq);
1287 			return PREP_DISPATCH_NO_BUDGET;
1288 		}
1289 		blk_mq_set_rq_budget_token(rq, budget_token);
1290 	}
1291 
1292 	if (!blk_mq_get_driver_tag(rq)) {
1293 		/*
1294 		 * The initial allocation attempt failed, so we need to
1295 		 * rerun the hardware queue when a tag is freed. The
1296 		 * waitqueue takes care of that. If the queue is run
1297 		 * before we add this entry back on the dispatch list,
1298 		 * we'll re-run it below.
1299 		 */
1300 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1301 			/*
1302 			 * All budgets not got from this function will be put
1303 			 * together during handling partial dispatch
1304 			 */
1305 			if (need_budget)
1306 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1307 			return PREP_DISPATCH_NO_TAG;
1308 		}
1309 	}
1310 
1311 	return PREP_DISPATCH_OK;
1312 }
1313 
1314 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1315 static void blk_mq_release_budgets(struct request_queue *q,
1316 		struct list_head *list)
1317 {
1318 	struct request *rq;
1319 
1320 	list_for_each_entry(rq, list, queuelist) {
1321 		int budget_token = blk_mq_get_rq_budget_token(rq);
1322 
1323 		if (budget_token >= 0)
1324 			blk_mq_put_dispatch_budget(q, budget_token);
1325 	}
1326 }
1327 
1328 /*
1329  * Returns true if we did some work AND can potentially do more.
1330  */
1331 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1332 			     unsigned int nr_budgets)
1333 {
1334 	enum prep_dispatch prep;
1335 	struct request_queue *q = hctx->queue;
1336 	struct request *rq, *nxt;
1337 	int errors, queued;
1338 	blk_status_t ret = BLK_STS_OK;
1339 	LIST_HEAD(zone_list);
1340 
1341 	if (list_empty(list))
1342 		return false;
1343 
1344 	/*
1345 	 * Now process all the entries, sending them to the driver.
1346 	 */
1347 	errors = queued = 0;
1348 	do {
1349 		struct blk_mq_queue_data bd;
1350 
1351 		rq = list_first_entry(list, struct request, queuelist);
1352 
1353 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1354 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1355 		if (prep != PREP_DISPATCH_OK)
1356 			break;
1357 
1358 		list_del_init(&rq->queuelist);
1359 
1360 		bd.rq = rq;
1361 
1362 		/*
1363 		 * Flag last if we have no more requests, or if we have more
1364 		 * but can't assign a driver tag to it.
1365 		 */
1366 		if (list_empty(list))
1367 			bd.last = true;
1368 		else {
1369 			nxt = list_first_entry(list, struct request, queuelist);
1370 			bd.last = !blk_mq_get_driver_tag(nxt);
1371 		}
1372 
1373 		/*
1374 		 * once the request is queued to lld, no need to cover the
1375 		 * budget any more
1376 		 */
1377 		if (nr_budgets)
1378 			nr_budgets--;
1379 		ret = q->mq_ops->queue_rq(hctx, &bd);
1380 		switch (ret) {
1381 		case BLK_STS_OK:
1382 			queued++;
1383 			break;
1384 		case BLK_STS_RESOURCE:
1385 		case BLK_STS_DEV_RESOURCE:
1386 			blk_mq_handle_dev_resource(rq, list);
1387 			goto out;
1388 		case BLK_STS_ZONE_RESOURCE:
1389 			/*
1390 			 * Move the request to zone_list and keep going through
1391 			 * the dispatch list to find more requests the drive can
1392 			 * accept.
1393 			 */
1394 			blk_mq_handle_zone_resource(rq, &zone_list);
1395 			break;
1396 		default:
1397 			errors++;
1398 			blk_mq_end_request(rq, ret);
1399 		}
1400 	} while (!list_empty(list));
1401 out:
1402 	if (!list_empty(&zone_list))
1403 		list_splice_tail_init(&zone_list, list);
1404 
1405 	hctx->dispatched[queued_to_index(queued)]++;
1406 
1407 	/* If we didn't flush the entire list, we could have told the driver
1408 	 * there was more coming, but that turned out to be a lie.
1409 	 */
1410 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1411 		q->mq_ops->commit_rqs(hctx);
1412 	/*
1413 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1414 	 * that is where we will continue on next queue run.
1415 	 */
1416 	if (!list_empty(list)) {
1417 		bool needs_restart;
1418 		/* For non-shared tags, the RESTART check will suffice */
1419 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1420 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1421 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1422 
1423 		if (nr_budgets)
1424 			blk_mq_release_budgets(q, list);
1425 
1426 		spin_lock(&hctx->lock);
1427 		list_splice_tail_init(list, &hctx->dispatch);
1428 		spin_unlock(&hctx->lock);
1429 
1430 		/*
1431 		 * Order adding requests to hctx->dispatch and checking
1432 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1433 		 * in blk_mq_sched_restart(). Avoid restart code path to
1434 		 * miss the new added requests to hctx->dispatch, meantime
1435 		 * SCHED_RESTART is observed here.
1436 		 */
1437 		smp_mb();
1438 
1439 		/*
1440 		 * If SCHED_RESTART was set by the caller of this function and
1441 		 * it is no longer set that means that it was cleared by another
1442 		 * thread and hence that a queue rerun is needed.
1443 		 *
1444 		 * If 'no_tag' is set, that means that we failed getting
1445 		 * a driver tag with an I/O scheduler attached. If our dispatch
1446 		 * waitqueue is no longer active, ensure that we run the queue
1447 		 * AFTER adding our entries back to the list.
1448 		 *
1449 		 * If no I/O scheduler has been configured it is possible that
1450 		 * the hardware queue got stopped and restarted before requests
1451 		 * were pushed back onto the dispatch list. Rerun the queue to
1452 		 * avoid starvation. Notes:
1453 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1454 		 *   been stopped before rerunning a queue.
1455 		 * - Some but not all block drivers stop a queue before
1456 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1457 		 *   and dm-rq.
1458 		 *
1459 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1460 		 * bit is set, run queue after a delay to avoid IO stalls
1461 		 * that could otherwise occur if the queue is idle.  We'll do
1462 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1463 		 */
1464 		needs_restart = blk_mq_sched_needs_restart(hctx);
1465 		if (!needs_restart ||
1466 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1467 			blk_mq_run_hw_queue(hctx, true);
1468 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1469 					   no_budget_avail))
1470 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1471 
1472 		blk_mq_update_dispatch_busy(hctx, true);
1473 		return false;
1474 	} else
1475 		blk_mq_update_dispatch_busy(hctx, false);
1476 
1477 	return (queued + errors) != 0;
1478 }
1479 
1480 /**
1481  * __blk_mq_run_hw_queue - Run a hardware queue.
1482  * @hctx: Pointer to the hardware queue to run.
1483  *
1484  * Send pending requests to the hardware.
1485  */
1486 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1487 {
1488 	int srcu_idx;
1489 
1490 	/*
1491 	 * We can't run the queue inline with ints disabled. Ensure that
1492 	 * we catch bad users of this early.
1493 	 */
1494 	WARN_ON_ONCE(in_interrupt());
1495 
1496 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1497 
1498 	hctx_lock(hctx, &srcu_idx);
1499 	blk_mq_sched_dispatch_requests(hctx);
1500 	hctx_unlock(hctx, srcu_idx);
1501 }
1502 
1503 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1504 {
1505 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1506 
1507 	if (cpu >= nr_cpu_ids)
1508 		cpu = cpumask_first(hctx->cpumask);
1509 	return cpu;
1510 }
1511 
1512 /*
1513  * It'd be great if the workqueue API had a way to pass
1514  * in a mask and had some smarts for more clever placement.
1515  * For now we just round-robin here, switching for every
1516  * BLK_MQ_CPU_WORK_BATCH queued items.
1517  */
1518 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1519 {
1520 	bool tried = false;
1521 	int next_cpu = hctx->next_cpu;
1522 
1523 	if (hctx->queue->nr_hw_queues == 1)
1524 		return WORK_CPU_UNBOUND;
1525 
1526 	if (--hctx->next_cpu_batch <= 0) {
1527 select_cpu:
1528 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1529 				cpu_online_mask);
1530 		if (next_cpu >= nr_cpu_ids)
1531 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1532 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1533 	}
1534 
1535 	/*
1536 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1537 	 * and it should only happen in the path of handling CPU DEAD.
1538 	 */
1539 	if (!cpu_online(next_cpu)) {
1540 		if (!tried) {
1541 			tried = true;
1542 			goto select_cpu;
1543 		}
1544 
1545 		/*
1546 		 * Make sure to re-select CPU next time once after CPUs
1547 		 * in hctx->cpumask become online again.
1548 		 */
1549 		hctx->next_cpu = next_cpu;
1550 		hctx->next_cpu_batch = 1;
1551 		return WORK_CPU_UNBOUND;
1552 	}
1553 
1554 	hctx->next_cpu = next_cpu;
1555 	return next_cpu;
1556 }
1557 
1558 /**
1559  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1560  * @hctx: Pointer to the hardware queue to run.
1561  * @async: If we want to run the queue asynchronously.
1562  * @msecs: Milliseconds of delay to wait before running the queue.
1563  *
1564  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1565  * with a delay of @msecs.
1566  */
1567 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1568 					unsigned long msecs)
1569 {
1570 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1571 		return;
1572 
1573 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1574 		int cpu = get_cpu();
1575 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1576 			__blk_mq_run_hw_queue(hctx);
1577 			put_cpu();
1578 			return;
1579 		}
1580 
1581 		put_cpu();
1582 	}
1583 
1584 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1585 				    msecs_to_jiffies(msecs));
1586 }
1587 
1588 /**
1589  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1590  * @hctx: Pointer to the hardware queue to run.
1591  * @msecs: Milliseconds of delay to wait before running the queue.
1592  *
1593  * Run a hardware queue asynchronously with a delay of @msecs.
1594  */
1595 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1596 {
1597 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1598 }
1599 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1600 
1601 /**
1602  * blk_mq_run_hw_queue - Start to run a hardware queue.
1603  * @hctx: Pointer to the hardware queue to run.
1604  * @async: If we want to run the queue asynchronously.
1605  *
1606  * Check if the request queue is not in a quiesced state and if there are
1607  * pending requests to be sent. If this is true, run the queue to send requests
1608  * to hardware.
1609  */
1610 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1611 {
1612 	int srcu_idx;
1613 	bool need_run;
1614 
1615 	/*
1616 	 * When queue is quiesced, we may be switching io scheduler, or
1617 	 * updating nr_hw_queues, or other things, and we can't run queue
1618 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1619 	 *
1620 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1621 	 * quiesced.
1622 	 */
1623 	hctx_lock(hctx, &srcu_idx);
1624 	need_run = !blk_queue_quiesced(hctx->queue) &&
1625 		blk_mq_hctx_has_pending(hctx);
1626 	hctx_unlock(hctx, srcu_idx);
1627 
1628 	if (need_run)
1629 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1630 }
1631 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1632 
1633 /*
1634  * Is the request queue handled by an IO scheduler that does not respect
1635  * hardware queues when dispatching?
1636  */
1637 static bool blk_mq_has_sqsched(struct request_queue *q)
1638 {
1639 	struct elevator_queue *e = q->elevator;
1640 
1641 	if (e && e->type->ops.dispatch_request &&
1642 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1643 		return true;
1644 	return false;
1645 }
1646 
1647 /*
1648  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1649  * scheduler.
1650  */
1651 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1652 {
1653 	struct blk_mq_hw_ctx *hctx;
1654 
1655 	/*
1656 	 * If the IO scheduler does not respect hardware queues when
1657 	 * dispatching, we just don't bother with multiple HW queues and
1658 	 * dispatch from hctx for the current CPU since running multiple queues
1659 	 * just causes lock contention inside the scheduler and pointless cache
1660 	 * bouncing.
1661 	 */
1662 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1663 				     raw_smp_processor_id());
1664 	if (!blk_mq_hctx_stopped(hctx))
1665 		return hctx;
1666 	return NULL;
1667 }
1668 
1669 /**
1670  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1671  * @q: Pointer to the request queue to run.
1672  * @async: If we want to run the queue asynchronously.
1673  */
1674 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1675 {
1676 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1677 	int i;
1678 
1679 	sq_hctx = NULL;
1680 	if (blk_mq_has_sqsched(q))
1681 		sq_hctx = blk_mq_get_sq_hctx(q);
1682 	queue_for_each_hw_ctx(q, hctx, i) {
1683 		if (blk_mq_hctx_stopped(hctx))
1684 			continue;
1685 		/*
1686 		 * Dispatch from this hctx either if there's no hctx preferred
1687 		 * by IO scheduler or if it has requests that bypass the
1688 		 * scheduler.
1689 		 */
1690 		if (!sq_hctx || sq_hctx == hctx ||
1691 		    !list_empty_careful(&hctx->dispatch))
1692 			blk_mq_run_hw_queue(hctx, async);
1693 	}
1694 }
1695 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1696 
1697 /**
1698  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1699  * @q: Pointer to the request queue to run.
1700  * @msecs: Milliseconds of delay to wait before running the queues.
1701  */
1702 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1703 {
1704 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1705 	int i;
1706 
1707 	sq_hctx = NULL;
1708 	if (blk_mq_has_sqsched(q))
1709 		sq_hctx = blk_mq_get_sq_hctx(q);
1710 	queue_for_each_hw_ctx(q, hctx, i) {
1711 		if (blk_mq_hctx_stopped(hctx))
1712 			continue;
1713 		/*
1714 		 * Dispatch from this hctx either if there's no hctx preferred
1715 		 * by IO scheduler or if it has requests that bypass the
1716 		 * scheduler.
1717 		 */
1718 		if (!sq_hctx || sq_hctx == hctx ||
1719 		    !list_empty_careful(&hctx->dispatch))
1720 			blk_mq_delay_run_hw_queue(hctx, msecs);
1721 	}
1722 }
1723 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1724 
1725 /**
1726  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1727  * @q: request queue.
1728  *
1729  * The caller is responsible for serializing this function against
1730  * blk_mq_{start,stop}_hw_queue().
1731  */
1732 bool blk_mq_queue_stopped(struct request_queue *q)
1733 {
1734 	struct blk_mq_hw_ctx *hctx;
1735 	int i;
1736 
1737 	queue_for_each_hw_ctx(q, hctx, i)
1738 		if (blk_mq_hctx_stopped(hctx))
1739 			return true;
1740 
1741 	return false;
1742 }
1743 EXPORT_SYMBOL(blk_mq_queue_stopped);
1744 
1745 /*
1746  * This function is often used for pausing .queue_rq() by driver when
1747  * there isn't enough resource or some conditions aren't satisfied, and
1748  * BLK_STS_RESOURCE is usually returned.
1749  *
1750  * We do not guarantee that dispatch can be drained or blocked
1751  * after blk_mq_stop_hw_queue() returns. Please use
1752  * blk_mq_quiesce_queue() for that requirement.
1753  */
1754 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1755 {
1756 	cancel_delayed_work(&hctx->run_work);
1757 
1758 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1761 
1762 /*
1763  * This function is often used for pausing .queue_rq() by driver when
1764  * there isn't enough resource or some conditions aren't satisfied, and
1765  * BLK_STS_RESOURCE is usually returned.
1766  *
1767  * We do not guarantee that dispatch can be drained or blocked
1768  * after blk_mq_stop_hw_queues() returns. Please use
1769  * blk_mq_quiesce_queue() for that requirement.
1770  */
1771 void blk_mq_stop_hw_queues(struct request_queue *q)
1772 {
1773 	struct blk_mq_hw_ctx *hctx;
1774 	int i;
1775 
1776 	queue_for_each_hw_ctx(q, hctx, i)
1777 		blk_mq_stop_hw_queue(hctx);
1778 }
1779 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1780 
1781 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1782 {
1783 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1784 
1785 	blk_mq_run_hw_queue(hctx, false);
1786 }
1787 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1788 
1789 void blk_mq_start_hw_queues(struct request_queue *q)
1790 {
1791 	struct blk_mq_hw_ctx *hctx;
1792 	int i;
1793 
1794 	queue_for_each_hw_ctx(q, hctx, i)
1795 		blk_mq_start_hw_queue(hctx);
1796 }
1797 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1798 
1799 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1800 {
1801 	if (!blk_mq_hctx_stopped(hctx))
1802 		return;
1803 
1804 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1805 	blk_mq_run_hw_queue(hctx, async);
1806 }
1807 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1808 
1809 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1810 {
1811 	struct blk_mq_hw_ctx *hctx;
1812 	int i;
1813 
1814 	queue_for_each_hw_ctx(q, hctx, i)
1815 		blk_mq_start_stopped_hw_queue(hctx, async);
1816 }
1817 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1818 
1819 static void blk_mq_run_work_fn(struct work_struct *work)
1820 {
1821 	struct blk_mq_hw_ctx *hctx;
1822 
1823 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1824 
1825 	/*
1826 	 * If we are stopped, don't run the queue.
1827 	 */
1828 	if (blk_mq_hctx_stopped(hctx))
1829 		return;
1830 
1831 	__blk_mq_run_hw_queue(hctx);
1832 }
1833 
1834 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1835 					    struct request *rq,
1836 					    bool at_head)
1837 {
1838 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1839 	enum hctx_type type = hctx->type;
1840 
1841 	lockdep_assert_held(&ctx->lock);
1842 
1843 	trace_block_rq_insert(rq);
1844 
1845 	if (at_head)
1846 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1847 	else
1848 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1849 }
1850 
1851 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1852 			     bool at_head)
1853 {
1854 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1855 
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	__blk_mq_insert_req_list(hctx, rq, at_head);
1859 	blk_mq_hctx_mark_pending(hctx, ctx);
1860 }
1861 
1862 /**
1863  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1864  * @rq: Pointer to request to be inserted.
1865  * @at_head: true if the request should be inserted at the head of the list.
1866  * @run_queue: If we should run the hardware queue after inserting the request.
1867  *
1868  * Should only be used carefully, when the caller knows we want to
1869  * bypass a potential IO scheduler on the target device.
1870  */
1871 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1872 				  bool run_queue)
1873 {
1874 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1875 
1876 	spin_lock(&hctx->lock);
1877 	if (at_head)
1878 		list_add(&rq->queuelist, &hctx->dispatch);
1879 	else
1880 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1881 	spin_unlock(&hctx->lock);
1882 
1883 	if (run_queue)
1884 		blk_mq_run_hw_queue(hctx, false);
1885 }
1886 
1887 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1888 			    struct list_head *list)
1889 
1890 {
1891 	struct request *rq;
1892 	enum hctx_type type = hctx->type;
1893 
1894 	/*
1895 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1896 	 * offline now
1897 	 */
1898 	list_for_each_entry(rq, list, queuelist) {
1899 		BUG_ON(rq->mq_ctx != ctx);
1900 		trace_block_rq_insert(rq);
1901 	}
1902 
1903 	spin_lock(&ctx->lock);
1904 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1905 	blk_mq_hctx_mark_pending(hctx, ctx);
1906 	spin_unlock(&ctx->lock);
1907 }
1908 
1909 static int plug_rq_cmp(void *priv, const struct list_head *a,
1910 		       const struct list_head *b)
1911 {
1912 	struct request *rqa = container_of(a, struct request, queuelist);
1913 	struct request *rqb = container_of(b, struct request, queuelist);
1914 
1915 	if (rqa->mq_ctx != rqb->mq_ctx)
1916 		return rqa->mq_ctx > rqb->mq_ctx;
1917 	if (rqa->mq_hctx != rqb->mq_hctx)
1918 		return rqa->mq_hctx > rqb->mq_hctx;
1919 
1920 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1921 }
1922 
1923 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1924 {
1925 	LIST_HEAD(list);
1926 
1927 	if (list_empty(&plug->mq_list))
1928 		return;
1929 	list_splice_init(&plug->mq_list, &list);
1930 
1931 	if (plug->rq_count > 2 && plug->multiple_queues)
1932 		list_sort(NULL, &list, plug_rq_cmp);
1933 
1934 	plug->rq_count = 0;
1935 
1936 	do {
1937 		struct list_head rq_list;
1938 		struct request *rq, *head_rq = list_entry_rq(list.next);
1939 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1940 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1941 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1942 		unsigned int depth = 1;
1943 
1944 		list_for_each_continue(pos, &list) {
1945 			rq = list_entry_rq(pos);
1946 			BUG_ON(!rq->q);
1947 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1948 				break;
1949 			depth++;
1950 		}
1951 
1952 		list_cut_before(&rq_list, &list, pos);
1953 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1954 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1955 						from_schedule);
1956 	} while(!list_empty(&list));
1957 }
1958 
1959 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1960 		unsigned int nr_segs)
1961 {
1962 	int err;
1963 
1964 	if (bio->bi_opf & REQ_RAHEAD)
1965 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1966 
1967 	rq->__sector = bio->bi_iter.bi_sector;
1968 	rq->write_hint = bio->bi_write_hint;
1969 	blk_rq_bio_prep(rq, bio, nr_segs);
1970 
1971 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1972 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1973 	WARN_ON_ONCE(err);
1974 
1975 	blk_account_io_start(rq);
1976 }
1977 
1978 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1979 					    struct request *rq,
1980 					    blk_qc_t *cookie, bool last)
1981 {
1982 	struct request_queue *q = rq->q;
1983 	struct blk_mq_queue_data bd = {
1984 		.rq = rq,
1985 		.last = last,
1986 	};
1987 	blk_qc_t new_cookie;
1988 	blk_status_t ret;
1989 
1990 	new_cookie = request_to_qc_t(hctx, rq);
1991 
1992 	/*
1993 	 * For OK queue, we are done. For error, caller may kill it.
1994 	 * Any other error (busy), just add it to our list as we
1995 	 * previously would have done.
1996 	 */
1997 	ret = q->mq_ops->queue_rq(hctx, &bd);
1998 	switch (ret) {
1999 	case BLK_STS_OK:
2000 		blk_mq_update_dispatch_busy(hctx, false);
2001 		*cookie = new_cookie;
2002 		break;
2003 	case BLK_STS_RESOURCE:
2004 	case BLK_STS_DEV_RESOURCE:
2005 		blk_mq_update_dispatch_busy(hctx, true);
2006 		__blk_mq_requeue_request(rq);
2007 		break;
2008 	default:
2009 		blk_mq_update_dispatch_busy(hctx, false);
2010 		*cookie = BLK_QC_T_NONE;
2011 		break;
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2018 						struct request *rq,
2019 						blk_qc_t *cookie,
2020 						bool bypass_insert, bool last)
2021 {
2022 	struct request_queue *q = rq->q;
2023 	bool run_queue = true;
2024 	int budget_token;
2025 
2026 	/*
2027 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2028 	 *
2029 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2030 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2031 	 * and avoid driver to try to dispatch again.
2032 	 */
2033 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2034 		run_queue = false;
2035 		bypass_insert = false;
2036 		goto insert;
2037 	}
2038 
2039 	if (q->elevator && !bypass_insert)
2040 		goto insert;
2041 
2042 	budget_token = blk_mq_get_dispatch_budget(q);
2043 	if (budget_token < 0)
2044 		goto insert;
2045 
2046 	blk_mq_set_rq_budget_token(rq, budget_token);
2047 
2048 	if (!blk_mq_get_driver_tag(rq)) {
2049 		blk_mq_put_dispatch_budget(q, budget_token);
2050 		goto insert;
2051 	}
2052 
2053 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2054 insert:
2055 	if (bypass_insert)
2056 		return BLK_STS_RESOURCE;
2057 
2058 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2059 
2060 	return BLK_STS_OK;
2061 }
2062 
2063 /**
2064  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2065  * @hctx: Pointer of the associated hardware queue.
2066  * @rq: Pointer to request to be sent.
2067  * @cookie: Request queue cookie.
2068  *
2069  * If the device has enough resources to accept a new request now, send the
2070  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2071  * we can try send it another time in the future. Requests inserted at this
2072  * queue have higher priority.
2073  */
2074 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2075 		struct request *rq, blk_qc_t *cookie)
2076 {
2077 	blk_status_t ret;
2078 	int srcu_idx;
2079 
2080 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2081 
2082 	hctx_lock(hctx, &srcu_idx);
2083 
2084 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2085 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2086 		blk_mq_request_bypass_insert(rq, false, true);
2087 	else if (ret != BLK_STS_OK)
2088 		blk_mq_end_request(rq, ret);
2089 
2090 	hctx_unlock(hctx, srcu_idx);
2091 }
2092 
2093 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2094 {
2095 	blk_status_t ret;
2096 	int srcu_idx;
2097 	blk_qc_t unused_cookie;
2098 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2099 
2100 	hctx_lock(hctx, &srcu_idx);
2101 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2102 	hctx_unlock(hctx, srcu_idx);
2103 
2104 	return ret;
2105 }
2106 
2107 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2108 		struct list_head *list)
2109 {
2110 	int queued = 0;
2111 	int errors = 0;
2112 
2113 	while (!list_empty(list)) {
2114 		blk_status_t ret;
2115 		struct request *rq = list_first_entry(list, struct request,
2116 				queuelist);
2117 
2118 		list_del_init(&rq->queuelist);
2119 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2120 		if (ret != BLK_STS_OK) {
2121 			if (ret == BLK_STS_RESOURCE ||
2122 					ret == BLK_STS_DEV_RESOURCE) {
2123 				blk_mq_request_bypass_insert(rq, false,
2124 							list_empty(list));
2125 				break;
2126 			}
2127 			blk_mq_end_request(rq, ret);
2128 			errors++;
2129 		} else
2130 			queued++;
2131 	}
2132 
2133 	/*
2134 	 * If we didn't flush the entire list, we could have told
2135 	 * the driver there was more coming, but that turned out to
2136 	 * be a lie.
2137 	 */
2138 	if ((!list_empty(list) || errors) &&
2139 	     hctx->queue->mq_ops->commit_rqs && queued)
2140 		hctx->queue->mq_ops->commit_rqs(hctx);
2141 }
2142 
2143 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2144 {
2145 	list_add_tail(&rq->queuelist, &plug->mq_list);
2146 	plug->rq_count++;
2147 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2148 		struct request *tmp;
2149 
2150 		tmp = list_first_entry(&plug->mq_list, struct request,
2151 						queuelist);
2152 		if (tmp->q != rq->q)
2153 			plug->multiple_queues = true;
2154 	}
2155 }
2156 
2157 /**
2158  * blk_mq_submit_bio - Create and send a request to block device.
2159  * @bio: Bio pointer.
2160  *
2161  * Builds up a request structure from @q and @bio and send to the device. The
2162  * request may not be queued directly to hardware if:
2163  * * This request can be merged with another one
2164  * * We want to place request at plug queue for possible future merging
2165  * * There is an IO scheduler active at this queue
2166  *
2167  * It will not queue the request if there is an error with the bio, or at the
2168  * request creation.
2169  *
2170  * Returns: Request queue cookie.
2171  */
2172 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2173 {
2174 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2175 	const int is_sync = op_is_sync(bio->bi_opf);
2176 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2177 	struct blk_mq_alloc_data data = {
2178 		.q		= q,
2179 	};
2180 	struct request *rq;
2181 	struct blk_plug *plug;
2182 	struct request *same_queue_rq = NULL;
2183 	unsigned int nr_segs;
2184 	blk_qc_t cookie;
2185 	blk_status_t ret;
2186 	bool hipri;
2187 
2188 	blk_queue_bounce(q, &bio);
2189 	__blk_queue_split(&bio, &nr_segs);
2190 
2191 	if (!bio_integrity_prep(bio))
2192 		goto queue_exit;
2193 
2194 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2195 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2196 		goto queue_exit;
2197 
2198 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2199 		goto queue_exit;
2200 
2201 	rq_qos_throttle(q, bio);
2202 
2203 	hipri = bio->bi_opf & REQ_HIPRI;
2204 
2205 	data.cmd_flags = bio->bi_opf;
2206 	rq = __blk_mq_alloc_request(&data);
2207 	if (unlikely(!rq)) {
2208 		rq_qos_cleanup(q, bio);
2209 		if (bio->bi_opf & REQ_NOWAIT)
2210 			bio_wouldblock_error(bio);
2211 		goto queue_exit;
2212 	}
2213 
2214 	trace_block_getrq(bio);
2215 
2216 	rq_qos_track(q, rq, bio);
2217 
2218 	cookie = request_to_qc_t(data.hctx, rq);
2219 
2220 	blk_mq_bio_to_request(rq, bio, nr_segs);
2221 
2222 	ret = blk_crypto_init_request(rq);
2223 	if (ret != BLK_STS_OK) {
2224 		bio->bi_status = ret;
2225 		bio_endio(bio);
2226 		blk_mq_free_request(rq);
2227 		return BLK_QC_T_NONE;
2228 	}
2229 
2230 	plug = blk_mq_plug(q, bio);
2231 	if (unlikely(is_flush_fua)) {
2232 		/* Bypass scheduler for flush requests */
2233 		blk_insert_flush(rq);
2234 		blk_mq_run_hw_queue(data.hctx, true);
2235 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2236 				!blk_queue_nonrot(q))) {
2237 		/*
2238 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2239 		 * we know the driver uses bd->last in a smart fashion.
2240 		 *
2241 		 * Use normal plugging if this disk is slow HDD, as sequential
2242 		 * IO may benefit a lot from plug merging.
2243 		 */
2244 		unsigned int request_count = plug->rq_count;
2245 		struct request *last = NULL;
2246 
2247 		if (!request_count)
2248 			trace_block_plug(q);
2249 		else
2250 			last = list_entry_rq(plug->mq_list.prev);
2251 
2252 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2253 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2254 			blk_flush_plug_list(plug, false);
2255 			trace_block_plug(q);
2256 		}
2257 
2258 		blk_add_rq_to_plug(plug, rq);
2259 	} else if (q->elevator) {
2260 		/* Insert the request at the IO scheduler queue */
2261 		blk_mq_sched_insert_request(rq, false, true, true);
2262 	} else if (plug && !blk_queue_nomerges(q)) {
2263 		/*
2264 		 * We do limited plugging. If the bio can be merged, do that.
2265 		 * Otherwise the existing request in the plug list will be
2266 		 * issued. So the plug list will have one request at most
2267 		 * The plug list might get flushed before this. If that happens,
2268 		 * the plug list is empty, and same_queue_rq is invalid.
2269 		 */
2270 		if (list_empty(&plug->mq_list))
2271 			same_queue_rq = NULL;
2272 		if (same_queue_rq) {
2273 			list_del_init(&same_queue_rq->queuelist);
2274 			plug->rq_count--;
2275 		}
2276 		blk_add_rq_to_plug(plug, rq);
2277 		trace_block_plug(q);
2278 
2279 		if (same_queue_rq) {
2280 			data.hctx = same_queue_rq->mq_hctx;
2281 			trace_block_unplug(q, 1, true);
2282 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2283 					&cookie);
2284 		}
2285 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2286 			!data.hctx->dispatch_busy) {
2287 		/*
2288 		 * There is no scheduler and we can try to send directly
2289 		 * to the hardware.
2290 		 */
2291 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2292 	} else {
2293 		/* Default case. */
2294 		blk_mq_sched_insert_request(rq, false, true, true);
2295 	}
2296 
2297 	if (!hipri)
2298 		return BLK_QC_T_NONE;
2299 	return cookie;
2300 queue_exit:
2301 	blk_queue_exit(q);
2302 	return BLK_QC_T_NONE;
2303 }
2304 
2305 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2306 		     unsigned int hctx_idx)
2307 {
2308 	struct page *page;
2309 
2310 	if (tags->rqs && set->ops->exit_request) {
2311 		int i;
2312 
2313 		for (i = 0; i < tags->nr_tags; i++) {
2314 			struct request *rq = tags->static_rqs[i];
2315 
2316 			if (!rq)
2317 				continue;
2318 			set->ops->exit_request(set, rq, hctx_idx);
2319 			tags->static_rqs[i] = NULL;
2320 		}
2321 	}
2322 
2323 	while (!list_empty(&tags->page_list)) {
2324 		page = list_first_entry(&tags->page_list, struct page, lru);
2325 		list_del_init(&page->lru);
2326 		/*
2327 		 * Remove kmemleak object previously allocated in
2328 		 * blk_mq_alloc_rqs().
2329 		 */
2330 		kmemleak_free(page_address(page));
2331 		__free_pages(page, page->private);
2332 	}
2333 }
2334 
2335 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2336 {
2337 	kfree(tags->rqs);
2338 	tags->rqs = NULL;
2339 	kfree(tags->static_rqs);
2340 	tags->static_rqs = NULL;
2341 
2342 	blk_mq_free_tags(tags, flags);
2343 }
2344 
2345 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2346 					unsigned int hctx_idx,
2347 					unsigned int nr_tags,
2348 					unsigned int reserved_tags,
2349 					unsigned int flags)
2350 {
2351 	struct blk_mq_tags *tags;
2352 	int node;
2353 
2354 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2355 	if (node == NUMA_NO_NODE)
2356 		node = set->numa_node;
2357 
2358 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2359 	if (!tags)
2360 		return NULL;
2361 
2362 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2363 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2364 				 node);
2365 	if (!tags->rqs) {
2366 		blk_mq_free_tags(tags, flags);
2367 		return NULL;
2368 	}
2369 
2370 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2371 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2372 					node);
2373 	if (!tags->static_rqs) {
2374 		kfree(tags->rqs);
2375 		blk_mq_free_tags(tags, flags);
2376 		return NULL;
2377 	}
2378 
2379 	return tags;
2380 }
2381 
2382 static size_t order_to_size(unsigned int order)
2383 {
2384 	return (size_t)PAGE_SIZE << order;
2385 }
2386 
2387 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2388 			       unsigned int hctx_idx, int node)
2389 {
2390 	int ret;
2391 
2392 	if (set->ops->init_request) {
2393 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2394 		if (ret)
2395 			return ret;
2396 	}
2397 
2398 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2399 	return 0;
2400 }
2401 
2402 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2403 		     unsigned int hctx_idx, unsigned int depth)
2404 {
2405 	unsigned int i, j, entries_per_page, max_order = 4;
2406 	size_t rq_size, left;
2407 	int node;
2408 
2409 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2410 	if (node == NUMA_NO_NODE)
2411 		node = set->numa_node;
2412 
2413 	INIT_LIST_HEAD(&tags->page_list);
2414 
2415 	/*
2416 	 * rq_size is the size of the request plus driver payload, rounded
2417 	 * to the cacheline size
2418 	 */
2419 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2420 				cache_line_size());
2421 	left = rq_size * depth;
2422 
2423 	for (i = 0; i < depth; ) {
2424 		int this_order = max_order;
2425 		struct page *page;
2426 		int to_do;
2427 		void *p;
2428 
2429 		while (this_order && left < order_to_size(this_order - 1))
2430 			this_order--;
2431 
2432 		do {
2433 			page = alloc_pages_node(node,
2434 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2435 				this_order);
2436 			if (page)
2437 				break;
2438 			if (!this_order--)
2439 				break;
2440 			if (order_to_size(this_order) < rq_size)
2441 				break;
2442 		} while (1);
2443 
2444 		if (!page)
2445 			goto fail;
2446 
2447 		page->private = this_order;
2448 		list_add_tail(&page->lru, &tags->page_list);
2449 
2450 		p = page_address(page);
2451 		/*
2452 		 * Allow kmemleak to scan these pages as they contain pointers
2453 		 * to additional allocations like via ops->init_request().
2454 		 */
2455 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2456 		entries_per_page = order_to_size(this_order) / rq_size;
2457 		to_do = min(entries_per_page, depth - i);
2458 		left -= to_do * rq_size;
2459 		for (j = 0; j < to_do; j++) {
2460 			struct request *rq = p;
2461 
2462 			tags->static_rqs[i] = rq;
2463 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2464 				tags->static_rqs[i] = NULL;
2465 				goto fail;
2466 			}
2467 
2468 			p += rq_size;
2469 			i++;
2470 		}
2471 	}
2472 	return 0;
2473 
2474 fail:
2475 	blk_mq_free_rqs(set, tags, hctx_idx);
2476 	return -ENOMEM;
2477 }
2478 
2479 struct rq_iter_data {
2480 	struct blk_mq_hw_ctx *hctx;
2481 	bool has_rq;
2482 };
2483 
2484 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2485 {
2486 	struct rq_iter_data *iter_data = data;
2487 
2488 	if (rq->mq_hctx != iter_data->hctx)
2489 		return true;
2490 	iter_data->has_rq = true;
2491 	return false;
2492 }
2493 
2494 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2495 {
2496 	struct blk_mq_tags *tags = hctx->sched_tags ?
2497 			hctx->sched_tags : hctx->tags;
2498 	struct rq_iter_data data = {
2499 		.hctx	= hctx,
2500 	};
2501 
2502 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2503 	return data.has_rq;
2504 }
2505 
2506 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2507 		struct blk_mq_hw_ctx *hctx)
2508 {
2509 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2510 		return false;
2511 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2512 		return false;
2513 	return true;
2514 }
2515 
2516 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2517 {
2518 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2519 			struct blk_mq_hw_ctx, cpuhp_online);
2520 
2521 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2522 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2523 		return 0;
2524 
2525 	/*
2526 	 * Prevent new request from being allocated on the current hctx.
2527 	 *
2528 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2529 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2530 	 * seen once we return from the tag allocator.
2531 	 */
2532 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2533 	smp_mb__after_atomic();
2534 
2535 	/*
2536 	 * Try to grab a reference to the queue and wait for any outstanding
2537 	 * requests.  If we could not grab a reference the queue has been
2538 	 * frozen and there are no requests.
2539 	 */
2540 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2541 		while (blk_mq_hctx_has_requests(hctx))
2542 			msleep(5);
2543 		percpu_ref_put(&hctx->queue->q_usage_counter);
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2550 {
2551 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2552 			struct blk_mq_hw_ctx, cpuhp_online);
2553 
2554 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2555 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2556 	return 0;
2557 }
2558 
2559 /*
2560  * 'cpu' is going away. splice any existing rq_list entries from this
2561  * software queue to the hw queue dispatch list, and ensure that it
2562  * gets run.
2563  */
2564 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2565 {
2566 	struct blk_mq_hw_ctx *hctx;
2567 	struct blk_mq_ctx *ctx;
2568 	LIST_HEAD(tmp);
2569 	enum hctx_type type;
2570 
2571 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2572 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2573 		return 0;
2574 
2575 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2576 	type = hctx->type;
2577 
2578 	spin_lock(&ctx->lock);
2579 	if (!list_empty(&ctx->rq_lists[type])) {
2580 		list_splice_init(&ctx->rq_lists[type], &tmp);
2581 		blk_mq_hctx_clear_pending(hctx, ctx);
2582 	}
2583 	spin_unlock(&ctx->lock);
2584 
2585 	if (list_empty(&tmp))
2586 		return 0;
2587 
2588 	spin_lock(&hctx->lock);
2589 	list_splice_tail_init(&tmp, &hctx->dispatch);
2590 	spin_unlock(&hctx->lock);
2591 
2592 	blk_mq_run_hw_queue(hctx, true);
2593 	return 0;
2594 }
2595 
2596 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2597 {
2598 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2599 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2600 						    &hctx->cpuhp_online);
2601 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2602 					    &hctx->cpuhp_dead);
2603 }
2604 
2605 /* hctx->ctxs will be freed in queue's release handler */
2606 static void blk_mq_exit_hctx(struct request_queue *q,
2607 		struct blk_mq_tag_set *set,
2608 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2609 {
2610 	if (blk_mq_hw_queue_mapped(hctx))
2611 		blk_mq_tag_idle(hctx);
2612 
2613 	if (set->ops->exit_request)
2614 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2615 
2616 	if (set->ops->exit_hctx)
2617 		set->ops->exit_hctx(hctx, hctx_idx);
2618 
2619 	blk_mq_remove_cpuhp(hctx);
2620 
2621 	spin_lock(&q->unused_hctx_lock);
2622 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2623 	spin_unlock(&q->unused_hctx_lock);
2624 }
2625 
2626 static void blk_mq_exit_hw_queues(struct request_queue *q,
2627 		struct blk_mq_tag_set *set, int nr_queue)
2628 {
2629 	struct blk_mq_hw_ctx *hctx;
2630 	unsigned int i;
2631 
2632 	queue_for_each_hw_ctx(q, hctx, i) {
2633 		if (i == nr_queue)
2634 			break;
2635 		blk_mq_debugfs_unregister_hctx(hctx);
2636 		blk_mq_exit_hctx(q, set, hctx, i);
2637 	}
2638 }
2639 
2640 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2641 {
2642 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2643 
2644 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2645 			   __alignof__(struct blk_mq_hw_ctx)) !=
2646 		     sizeof(struct blk_mq_hw_ctx));
2647 
2648 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2649 		hw_ctx_size += sizeof(struct srcu_struct);
2650 
2651 	return hw_ctx_size;
2652 }
2653 
2654 static int blk_mq_init_hctx(struct request_queue *q,
2655 		struct blk_mq_tag_set *set,
2656 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2657 {
2658 	hctx->queue_num = hctx_idx;
2659 
2660 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2661 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2662 				&hctx->cpuhp_online);
2663 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2664 
2665 	hctx->tags = set->tags[hctx_idx];
2666 
2667 	if (set->ops->init_hctx &&
2668 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2669 		goto unregister_cpu_notifier;
2670 
2671 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2672 				hctx->numa_node))
2673 		goto exit_hctx;
2674 	return 0;
2675 
2676  exit_hctx:
2677 	if (set->ops->exit_hctx)
2678 		set->ops->exit_hctx(hctx, hctx_idx);
2679  unregister_cpu_notifier:
2680 	blk_mq_remove_cpuhp(hctx);
2681 	return -1;
2682 }
2683 
2684 static struct blk_mq_hw_ctx *
2685 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2686 		int node)
2687 {
2688 	struct blk_mq_hw_ctx *hctx;
2689 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2690 
2691 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2692 	if (!hctx)
2693 		goto fail_alloc_hctx;
2694 
2695 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2696 		goto free_hctx;
2697 
2698 	atomic_set(&hctx->nr_active, 0);
2699 	if (node == NUMA_NO_NODE)
2700 		node = set->numa_node;
2701 	hctx->numa_node = node;
2702 
2703 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2704 	spin_lock_init(&hctx->lock);
2705 	INIT_LIST_HEAD(&hctx->dispatch);
2706 	hctx->queue = q;
2707 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2708 
2709 	INIT_LIST_HEAD(&hctx->hctx_list);
2710 
2711 	/*
2712 	 * Allocate space for all possible cpus to avoid allocation at
2713 	 * runtime
2714 	 */
2715 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2716 			gfp, node);
2717 	if (!hctx->ctxs)
2718 		goto free_cpumask;
2719 
2720 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2721 				gfp, node, false, false))
2722 		goto free_ctxs;
2723 	hctx->nr_ctx = 0;
2724 
2725 	spin_lock_init(&hctx->dispatch_wait_lock);
2726 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2727 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2728 
2729 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2730 	if (!hctx->fq)
2731 		goto free_bitmap;
2732 
2733 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2734 		init_srcu_struct(hctx->srcu);
2735 	blk_mq_hctx_kobj_init(hctx);
2736 
2737 	return hctx;
2738 
2739  free_bitmap:
2740 	sbitmap_free(&hctx->ctx_map);
2741  free_ctxs:
2742 	kfree(hctx->ctxs);
2743  free_cpumask:
2744 	free_cpumask_var(hctx->cpumask);
2745  free_hctx:
2746 	kfree(hctx);
2747  fail_alloc_hctx:
2748 	return NULL;
2749 }
2750 
2751 static void blk_mq_init_cpu_queues(struct request_queue *q,
2752 				   unsigned int nr_hw_queues)
2753 {
2754 	struct blk_mq_tag_set *set = q->tag_set;
2755 	unsigned int i, j;
2756 
2757 	for_each_possible_cpu(i) {
2758 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2759 		struct blk_mq_hw_ctx *hctx;
2760 		int k;
2761 
2762 		__ctx->cpu = i;
2763 		spin_lock_init(&__ctx->lock);
2764 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2765 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2766 
2767 		__ctx->queue = q;
2768 
2769 		/*
2770 		 * Set local node, IFF we have more than one hw queue. If
2771 		 * not, we remain on the home node of the device
2772 		 */
2773 		for (j = 0; j < set->nr_maps; j++) {
2774 			hctx = blk_mq_map_queue_type(q, j, i);
2775 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2776 				hctx->numa_node = cpu_to_node(i);
2777 		}
2778 	}
2779 }
2780 
2781 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2782 					int hctx_idx)
2783 {
2784 	unsigned int flags = set->flags;
2785 	int ret = 0;
2786 
2787 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2788 					set->queue_depth, set->reserved_tags, flags);
2789 	if (!set->tags[hctx_idx])
2790 		return false;
2791 
2792 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2793 				set->queue_depth);
2794 	if (!ret)
2795 		return true;
2796 
2797 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2798 	set->tags[hctx_idx] = NULL;
2799 	return false;
2800 }
2801 
2802 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2803 					 unsigned int hctx_idx)
2804 {
2805 	unsigned int flags = set->flags;
2806 
2807 	if (set->tags && set->tags[hctx_idx]) {
2808 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2809 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2810 		set->tags[hctx_idx] = NULL;
2811 	}
2812 }
2813 
2814 static void blk_mq_map_swqueue(struct request_queue *q)
2815 {
2816 	unsigned int i, j, hctx_idx;
2817 	struct blk_mq_hw_ctx *hctx;
2818 	struct blk_mq_ctx *ctx;
2819 	struct blk_mq_tag_set *set = q->tag_set;
2820 
2821 	queue_for_each_hw_ctx(q, hctx, i) {
2822 		cpumask_clear(hctx->cpumask);
2823 		hctx->nr_ctx = 0;
2824 		hctx->dispatch_from = NULL;
2825 	}
2826 
2827 	/*
2828 	 * Map software to hardware queues.
2829 	 *
2830 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2831 	 */
2832 	for_each_possible_cpu(i) {
2833 
2834 		ctx = per_cpu_ptr(q->queue_ctx, i);
2835 		for (j = 0; j < set->nr_maps; j++) {
2836 			if (!set->map[j].nr_queues) {
2837 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2838 						HCTX_TYPE_DEFAULT, i);
2839 				continue;
2840 			}
2841 			hctx_idx = set->map[j].mq_map[i];
2842 			/* unmapped hw queue can be remapped after CPU topo changed */
2843 			if (!set->tags[hctx_idx] &&
2844 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2845 				/*
2846 				 * If tags initialization fail for some hctx,
2847 				 * that hctx won't be brought online.  In this
2848 				 * case, remap the current ctx to hctx[0] which
2849 				 * is guaranteed to always have tags allocated
2850 				 */
2851 				set->map[j].mq_map[i] = 0;
2852 			}
2853 
2854 			hctx = blk_mq_map_queue_type(q, j, i);
2855 			ctx->hctxs[j] = hctx;
2856 			/*
2857 			 * If the CPU is already set in the mask, then we've
2858 			 * mapped this one already. This can happen if
2859 			 * devices share queues across queue maps.
2860 			 */
2861 			if (cpumask_test_cpu(i, hctx->cpumask))
2862 				continue;
2863 
2864 			cpumask_set_cpu(i, hctx->cpumask);
2865 			hctx->type = j;
2866 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2867 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2868 
2869 			/*
2870 			 * If the nr_ctx type overflows, we have exceeded the
2871 			 * amount of sw queues we can support.
2872 			 */
2873 			BUG_ON(!hctx->nr_ctx);
2874 		}
2875 
2876 		for (; j < HCTX_MAX_TYPES; j++)
2877 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2878 					HCTX_TYPE_DEFAULT, i);
2879 	}
2880 
2881 	queue_for_each_hw_ctx(q, hctx, i) {
2882 		/*
2883 		 * If no software queues are mapped to this hardware queue,
2884 		 * disable it and free the request entries.
2885 		 */
2886 		if (!hctx->nr_ctx) {
2887 			/* Never unmap queue 0.  We need it as a
2888 			 * fallback in case of a new remap fails
2889 			 * allocation
2890 			 */
2891 			if (i && set->tags[i])
2892 				blk_mq_free_map_and_requests(set, i);
2893 
2894 			hctx->tags = NULL;
2895 			continue;
2896 		}
2897 
2898 		hctx->tags = set->tags[i];
2899 		WARN_ON(!hctx->tags);
2900 
2901 		/*
2902 		 * Set the map size to the number of mapped software queues.
2903 		 * This is more accurate and more efficient than looping
2904 		 * over all possibly mapped software queues.
2905 		 */
2906 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2907 
2908 		/*
2909 		 * Initialize batch roundrobin counts
2910 		 */
2911 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2912 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2913 	}
2914 }
2915 
2916 /*
2917  * Caller needs to ensure that we're either frozen/quiesced, or that
2918  * the queue isn't live yet.
2919  */
2920 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2921 {
2922 	struct blk_mq_hw_ctx *hctx;
2923 	int i;
2924 
2925 	queue_for_each_hw_ctx(q, hctx, i) {
2926 		if (shared)
2927 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2928 		else
2929 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2930 	}
2931 }
2932 
2933 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2934 					 bool shared)
2935 {
2936 	struct request_queue *q;
2937 
2938 	lockdep_assert_held(&set->tag_list_lock);
2939 
2940 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2941 		blk_mq_freeze_queue(q);
2942 		queue_set_hctx_shared(q, shared);
2943 		blk_mq_unfreeze_queue(q);
2944 	}
2945 }
2946 
2947 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2948 {
2949 	struct blk_mq_tag_set *set = q->tag_set;
2950 
2951 	mutex_lock(&set->tag_list_lock);
2952 	list_del(&q->tag_set_list);
2953 	if (list_is_singular(&set->tag_list)) {
2954 		/* just transitioned to unshared */
2955 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2956 		/* update existing queue */
2957 		blk_mq_update_tag_set_shared(set, false);
2958 	}
2959 	mutex_unlock(&set->tag_list_lock);
2960 	INIT_LIST_HEAD(&q->tag_set_list);
2961 }
2962 
2963 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2964 				     struct request_queue *q)
2965 {
2966 	mutex_lock(&set->tag_list_lock);
2967 
2968 	/*
2969 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2970 	 */
2971 	if (!list_empty(&set->tag_list) &&
2972 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2973 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2974 		/* update existing queue */
2975 		blk_mq_update_tag_set_shared(set, true);
2976 	}
2977 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2978 		queue_set_hctx_shared(q, true);
2979 	list_add_tail(&q->tag_set_list, &set->tag_list);
2980 
2981 	mutex_unlock(&set->tag_list_lock);
2982 }
2983 
2984 /* All allocations will be freed in release handler of q->mq_kobj */
2985 static int blk_mq_alloc_ctxs(struct request_queue *q)
2986 {
2987 	struct blk_mq_ctxs *ctxs;
2988 	int cpu;
2989 
2990 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2991 	if (!ctxs)
2992 		return -ENOMEM;
2993 
2994 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2995 	if (!ctxs->queue_ctx)
2996 		goto fail;
2997 
2998 	for_each_possible_cpu(cpu) {
2999 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3000 		ctx->ctxs = ctxs;
3001 	}
3002 
3003 	q->mq_kobj = &ctxs->kobj;
3004 	q->queue_ctx = ctxs->queue_ctx;
3005 
3006 	return 0;
3007  fail:
3008 	kfree(ctxs);
3009 	return -ENOMEM;
3010 }
3011 
3012 /*
3013  * It is the actual release handler for mq, but we do it from
3014  * request queue's release handler for avoiding use-after-free
3015  * and headache because q->mq_kobj shouldn't have been introduced,
3016  * but we can't group ctx/kctx kobj without it.
3017  */
3018 void blk_mq_release(struct request_queue *q)
3019 {
3020 	struct blk_mq_hw_ctx *hctx, *next;
3021 	int i;
3022 
3023 	queue_for_each_hw_ctx(q, hctx, i)
3024 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3025 
3026 	/* all hctx are in .unused_hctx_list now */
3027 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3028 		list_del_init(&hctx->hctx_list);
3029 		kobject_put(&hctx->kobj);
3030 	}
3031 
3032 	kfree(q->queue_hw_ctx);
3033 
3034 	/*
3035 	 * release .mq_kobj and sw queue's kobject now because
3036 	 * both share lifetime with request queue.
3037 	 */
3038 	blk_mq_sysfs_deinit(q);
3039 }
3040 
3041 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3042 		void *queuedata)
3043 {
3044 	struct request_queue *uninit_q, *q;
3045 
3046 	uninit_q = blk_alloc_queue(set->numa_node);
3047 	if (!uninit_q)
3048 		return ERR_PTR(-ENOMEM);
3049 	uninit_q->queuedata = queuedata;
3050 
3051 	/*
3052 	 * Initialize the queue without an elevator. device_add_disk() will do
3053 	 * the initialization.
3054 	 */
3055 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3056 	if (IS_ERR(q))
3057 		blk_cleanup_queue(uninit_q);
3058 
3059 	return q;
3060 }
3061 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3062 
3063 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3064 {
3065 	return blk_mq_init_queue_data(set, NULL);
3066 }
3067 EXPORT_SYMBOL(blk_mq_init_queue);
3068 
3069 /*
3070  * Helper for setting up a queue with mq ops, given queue depth, and
3071  * the passed in mq ops flags.
3072  */
3073 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3074 					   const struct blk_mq_ops *ops,
3075 					   unsigned int queue_depth,
3076 					   unsigned int set_flags)
3077 {
3078 	struct request_queue *q;
3079 	int ret;
3080 
3081 	memset(set, 0, sizeof(*set));
3082 	set->ops = ops;
3083 	set->nr_hw_queues = 1;
3084 	set->nr_maps = 1;
3085 	set->queue_depth = queue_depth;
3086 	set->numa_node = NUMA_NO_NODE;
3087 	set->flags = set_flags;
3088 
3089 	ret = blk_mq_alloc_tag_set(set);
3090 	if (ret)
3091 		return ERR_PTR(ret);
3092 
3093 	q = blk_mq_init_queue(set);
3094 	if (IS_ERR(q)) {
3095 		blk_mq_free_tag_set(set);
3096 		return q;
3097 	}
3098 
3099 	return q;
3100 }
3101 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3102 
3103 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3104 		struct blk_mq_tag_set *set, struct request_queue *q,
3105 		int hctx_idx, int node)
3106 {
3107 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3108 
3109 	/* reuse dead hctx first */
3110 	spin_lock(&q->unused_hctx_lock);
3111 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3112 		if (tmp->numa_node == node) {
3113 			hctx = tmp;
3114 			break;
3115 		}
3116 	}
3117 	if (hctx)
3118 		list_del_init(&hctx->hctx_list);
3119 	spin_unlock(&q->unused_hctx_lock);
3120 
3121 	if (!hctx)
3122 		hctx = blk_mq_alloc_hctx(q, set, node);
3123 	if (!hctx)
3124 		goto fail;
3125 
3126 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3127 		goto free_hctx;
3128 
3129 	return hctx;
3130 
3131  free_hctx:
3132 	kobject_put(&hctx->kobj);
3133  fail:
3134 	return NULL;
3135 }
3136 
3137 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3138 						struct request_queue *q)
3139 {
3140 	int i, j, end;
3141 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3142 
3143 	if (q->nr_hw_queues < set->nr_hw_queues) {
3144 		struct blk_mq_hw_ctx **new_hctxs;
3145 
3146 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3147 				       sizeof(*new_hctxs), GFP_KERNEL,
3148 				       set->numa_node);
3149 		if (!new_hctxs)
3150 			return;
3151 		if (hctxs)
3152 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3153 			       sizeof(*hctxs));
3154 		q->queue_hw_ctx = new_hctxs;
3155 		kfree(hctxs);
3156 		hctxs = new_hctxs;
3157 	}
3158 
3159 	/* protect against switching io scheduler  */
3160 	mutex_lock(&q->sysfs_lock);
3161 	for (i = 0; i < set->nr_hw_queues; i++) {
3162 		int node;
3163 		struct blk_mq_hw_ctx *hctx;
3164 
3165 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3166 		/*
3167 		 * If the hw queue has been mapped to another numa node,
3168 		 * we need to realloc the hctx. If allocation fails, fallback
3169 		 * to use the previous one.
3170 		 */
3171 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3172 			continue;
3173 
3174 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3175 		if (hctx) {
3176 			if (hctxs[i])
3177 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3178 			hctxs[i] = hctx;
3179 		} else {
3180 			if (hctxs[i])
3181 				pr_warn("Allocate new hctx on node %d fails,\
3182 						fallback to previous one on node %d\n",
3183 						node, hctxs[i]->numa_node);
3184 			else
3185 				break;
3186 		}
3187 	}
3188 	/*
3189 	 * Increasing nr_hw_queues fails. Free the newly allocated
3190 	 * hctxs and keep the previous q->nr_hw_queues.
3191 	 */
3192 	if (i != set->nr_hw_queues) {
3193 		j = q->nr_hw_queues;
3194 		end = i;
3195 	} else {
3196 		j = i;
3197 		end = q->nr_hw_queues;
3198 		q->nr_hw_queues = set->nr_hw_queues;
3199 	}
3200 
3201 	for (; j < end; j++) {
3202 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3203 
3204 		if (hctx) {
3205 			if (hctx->tags)
3206 				blk_mq_free_map_and_requests(set, j);
3207 			blk_mq_exit_hctx(q, set, hctx, j);
3208 			hctxs[j] = NULL;
3209 		}
3210 	}
3211 	mutex_unlock(&q->sysfs_lock);
3212 }
3213 
3214 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3215 						  struct request_queue *q,
3216 						  bool elevator_init)
3217 {
3218 	/* mark the queue as mq asap */
3219 	q->mq_ops = set->ops;
3220 
3221 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3222 					     blk_mq_poll_stats_bkt,
3223 					     BLK_MQ_POLL_STATS_BKTS, q);
3224 	if (!q->poll_cb)
3225 		goto err_exit;
3226 
3227 	if (blk_mq_alloc_ctxs(q))
3228 		goto err_poll;
3229 
3230 	/* init q->mq_kobj and sw queues' kobjects */
3231 	blk_mq_sysfs_init(q);
3232 
3233 	INIT_LIST_HEAD(&q->unused_hctx_list);
3234 	spin_lock_init(&q->unused_hctx_lock);
3235 
3236 	blk_mq_realloc_hw_ctxs(set, q);
3237 	if (!q->nr_hw_queues)
3238 		goto err_hctxs;
3239 
3240 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3241 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3242 
3243 	q->tag_set = set;
3244 
3245 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3246 	if (set->nr_maps > HCTX_TYPE_POLL &&
3247 	    set->map[HCTX_TYPE_POLL].nr_queues)
3248 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3249 
3250 	q->sg_reserved_size = INT_MAX;
3251 
3252 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3253 	INIT_LIST_HEAD(&q->requeue_list);
3254 	spin_lock_init(&q->requeue_lock);
3255 
3256 	q->nr_requests = set->queue_depth;
3257 
3258 	/*
3259 	 * Default to classic polling
3260 	 */
3261 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3262 
3263 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3264 	blk_mq_add_queue_tag_set(set, q);
3265 	blk_mq_map_swqueue(q);
3266 
3267 	if (elevator_init)
3268 		elevator_init_mq(q);
3269 
3270 	return q;
3271 
3272 err_hctxs:
3273 	kfree(q->queue_hw_ctx);
3274 	q->nr_hw_queues = 0;
3275 	blk_mq_sysfs_deinit(q);
3276 err_poll:
3277 	blk_stat_free_callback(q->poll_cb);
3278 	q->poll_cb = NULL;
3279 err_exit:
3280 	q->mq_ops = NULL;
3281 	return ERR_PTR(-ENOMEM);
3282 }
3283 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3284 
3285 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3286 void blk_mq_exit_queue(struct request_queue *q)
3287 {
3288 	struct blk_mq_tag_set	*set = q->tag_set;
3289 
3290 	blk_mq_del_queue_tag_set(q);
3291 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3292 }
3293 
3294 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3295 {
3296 	int i;
3297 
3298 	for (i = 0; i < set->nr_hw_queues; i++) {
3299 		if (!__blk_mq_alloc_map_and_request(set, i))
3300 			goto out_unwind;
3301 		cond_resched();
3302 	}
3303 
3304 	return 0;
3305 
3306 out_unwind:
3307 	while (--i >= 0)
3308 		blk_mq_free_map_and_requests(set, i);
3309 
3310 	return -ENOMEM;
3311 }
3312 
3313 /*
3314  * Allocate the request maps associated with this tag_set. Note that this
3315  * may reduce the depth asked for, if memory is tight. set->queue_depth
3316  * will be updated to reflect the allocated depth.
3317  */
3318 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3319 {
3320 	unsigned int depth;
3321 	int err;
3322 
3323 	depth = set->queue_depth;
3324 	do {
3325 		err = __blk_mq_alloc_rq_maps(set);
3326 		if (!err)
3327 			break;
3328 
3329 		set->queue_depth >>= 1;
3330 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3331 			err = -ENOMEM;
3332 			break;
3333 		}
3334 	} while (set->queue_depth);
3335 
3336 	if (!set->queue_depth || err) {
3337 		pr_err("blk-mq: failed to allocate request map\n");
3338 		return -ENOMEM;
3339 	}
3340 
3341 	if (depth != set->queue_depth)
3342 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3343 						depth, set->queue_depth);
3344 
3345 	return 0;
3346 }
3347 
3348 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3349 {
3350 	/*
3351 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3352 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3353 	 * number of hardware queues.
3354 	 */
3355 	if (set->nr_maps == 1)
3356 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3357 
3358 	if (set->ops->map_queues && !is_kdump_kernel()) {
3359 		int i;
3360 
3361 		/*
3362 		 * transport .map_queues is usually done in the following
3363 		 * way:
3364 		 *
3365 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3366 		 * 	mask = get_cpu_mask(queue)
3367 		 * 	for_each_cpu(cpu, mask)
3368 		 * 		set->map[x].mq_map[cpu] = queue;
3369 		 * }
3370 		 *
3371 		 * When we need to remap, the table has to be cleared for
3372 		 * killing stale mapping since one CPU may not be mapped
3373 		 * to any hw queue.
3374 		 */
3375 		for (i = 0; i < set->nr_maps; i++)
3376 			blk_mq_clear_mq_map(&set->map[i]);
3377 
3378 		return set->ops->map_queues(set);
3379 	} else {
3380 		BUG_ON(set->nr_maps > 1);
3381 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3382 	}
3383 }
3384 
3385 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3386 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3387 {
3388 	struct blk_mq_tags **new_tags;
3389 
3390 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3391 		return 0;
3392 
3393 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3394 				GFP_KERNEL, set->numa_node);
3395 	if (!new_tags)
3396 		return -ENOMEM;
3397 
3398 	if (set->tags)
3399 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3400 		       sizeof(*set->tags));
3401 	kfree(set->tags);
3402 	set->tags = new_tags;
3403 	set->nr_hw_queues = new_nr_hw_queues;
3404 
3405 	return 0;
3406 }
3407 
3408 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3409 				int new_nr_hw_queues)
3410 {
3411 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3412 }
3413 
3414 /*
3415  * Alloc a tag set to be associated with one or more request queues.
3416  * May fail with EINVAL for various error conditions. May adjust the
3417  * requested depth down, if it's too large. In that case, the set
3418  * value will be stored in set->queue_depth.
3419  */
3420 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3421 {
3422 	int i, ret;
3423 
3424 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3425 
3426 	if (!set->nr_hw_queues)
3427 		return -EINVAL;
3428 	if (!set->queue_depth)
3429 		return -EINVAL;
3430 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3431 		return -EINVAL;
3432 
3433 	if (!set->ops->queue_rq)
3434 		return -EINVAL;
3435 
3436 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3437 		return -EINVAL;
3438 
3439 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3440 		pr_info("blk-mq: reduced tag depth to %u\n",
3441 			BLK_MQ_MAX_DEPTH);
3442 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3443 	}
3444 
3445 	if (!set->nr_maps)
3446 		set->nr_maps = 1;
3447 	else if (set->nr_maps > HCTX_MAX_TYPES)
3448 		return -EINVAL;
3449 
3450 	/*
3451 	 * If a crashdump is active, then we are potentially in a very
3452 	 * memory constrained environment. Limit us to 1 queue and
3453 	 * 64 tags to prevent using too much memory.
3454 	 */
3455 	if (is_kdump_kernel()) {
3456 		set->nr_hw_queues = 1;
3457 		set->nr_maps = 1;
3458 		set->queue_depth = min(64U, set->queue_depth);
3459 	}
3460 	/*
3461 	 * There is no use for more h/w queues than cpus if we just have
3462 	 * a single map
3463 	 */
3464 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3465 		set->nr_hw_queues = nr_cpu_ids;
3466 
3467 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3468 		return -ENOMEM;
3469 
3470 	ret = -ENOMEM;
3471 	for (i = 0; i < set->nr_maps; i++) {
3472 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3473 						  sizeof(set->map[i].mq_map[0]),
3474 						  GFP_KERNEL, set->numa_node);
3475 		if (!set->map[i].mq_map)
3476 			goto out_free_mq_map;
3477 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3478 	}
3479 
3480 	ret = blk_mq_update_queue_map(set);
3481 	if (ret)
3482 		goto out_free_mq_map;
3483 
3484 	ret = blk_mq_alloc_map_and_requests(set);
3485 	if (ret)
3486 		goto out_free_mq_map;
3487 
3488 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3489 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3490 
3491 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3492 			ret = -ENOMEM;
3493 			goto out_free_mq_rq_maps;
3494 		}
3495 	}
3496 
3497 	mutex_init(&set->tag_list_lock);
3498 	INIT_LIST_HEAD(&set->tag_list);
3499 
3500 	return 0;
3501 
3502 out_free_mq_rq_maps:
3503 	for (i = 0; i < set->nr_hw_queues; i++)
3504 		blk_mq_free_map_and_requests(set, i);
3505 out_free_mq_map:
3506 	for (i = 0; i < set->nr_maps; i++) {
3507 		kfree(set->map[i].mq_map);
3508 		set->map[i].mq_map = NULL;
3509 	}
3510 	kfree(set->tags);
3511 	set->tags = NULL;
3512 	return ret;
3513 }
3514 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3515 
3516 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3517 {
3518 	int i, j;
3519 
3520 	for (i = 0; i < set->nr_hw_queues; i++)
3521 		blk_mq_free_map_and_requests(set, i);
3522 
3523 	if (blk_mq_is_sbitmap_shared(set->flags))
3524 		blk_mq_exit_shared_sbitmap(set);
3525 
3526 	for (j = 0; j < set->nr_maps; j++) {
3527 		kfree(set->map[j].mq_map);
3528 		set->map[j].mq_map = NULL;
3529 	}
3530 
3531 	kfree(set->tags);
3532 	set->tags = NULL;
3533 }
3534 EXPORT_SYMBOL(blk_mq_free_tag_set);
3535 
3536 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3537 {
3538 	struct blk_mq_tag_set *set = q->tag_set;
3539 	struct blk_mq_hw_ctx *hctx;
3540 	int i, ret;
3541 
3542 	if (!set)
3543 		return -EINVAL;
3544 
3545 	if (q->nr_requests == nr)
3546 		return 0;
3547 
3548 	blk_mq_freeze_queue(q);
3549 	blk_mq_quiesce_queue(q);
3550 
3551 	ret = 0;
3552 	queue_for_each_hw_ctx(q, hctx, i) {
3553 		if (!hctx->tags)
3554 			continue;
3555 		/*
3556 		 * If we're using an MQ scheduler, just update the scheduler
3557 		 * queue depth. This is similar to what the old code would do.
3558 		 */
3559 		if (!hctx->sched_tags) {
3560 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3561 							false);
3562 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3563 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3564 		} else {
3565 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3566 							nr, true);
3567 		}
3568 		if (ret)
3569 			break;
3570 		if (q->elevator && q->elevator->type->ops.depth_updated)
3571 			q->elevator->type->ops.depth_updated(hctx);
3572 	}
3573 
3574 	if (!ret)
3575 		q->nr_requests = nr;
3576 
3577 	blk_mq_unquiesce_queue(q);
3578 	blk_mq_unfreeze_queue(q);
3579 
3580 	return ret;
3581 }
3582 
3583 /*
3584  * request_queue and elevator_type pair.
3585  * It is just used by __blk_mq_update_nr_hw_queues to cache
3586  * the elevator_type associated with a request_queue.
3587  */
3588 struct blk_mq_qe_pair {
3589 	struct list_head node;
3590 	struct request_queue *q;
3591 	struct elevator_type *type;
3592 };
3593 
3594 /*
3595  * Cache the elevator_type in qe pair list and switch the
3596  * io scheduler to 'none'
3597  */
3598 static bool blk_mq_elv_switch_none(struct list_head *head,
3599 		struct request_queue *q)
3600 {
3601 	struct blk_mq_qe_pair *qe;
3602 
3603 	if (!q->elevator)
3604 		return true;
3605 
3606 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3607 	if (!qe)
3608 		return false;
3609 
3610 	INIT_LIST_HEAD(&qe->node);
3611 	qe->q = q;
3612 	qe->type = q->elevator->type;
3613 	list_add(&qe->node, head);
3614 
3615 	mutex_lock(&q->sysfs_lock);
3616 	/*
3617 	 * After elevator_switch_mq, the previous elevator_queue will be
3618 	 * released by elevator_release. The reference of the io scheduler
3619 	 * module get by elevator_get will also be put. So we need to get
3620 	 * a reference of the io scheduler module here to prevent it to be
3621 	 * removed.
3622 	 */
3623 	__module_get(qe->type->elevator_owner);
3624 	elevator_switch_mq(q, NULL);
3625 	mutex_unlock(&q->sysfs_lock);
3626 
3627 	return true;
3628 }
3629 
3630 static void blk_mq_elv_switch_back(struct list_head *head,
3631 		struct request_queue *q)
3632 {
3633 	struct blk_mq_qe_pair *qe;
3634 	struct elevator_type *t = NULL;
3635 
3636 	list_for_each_entry(qe, head, node)
3637 		if (qe->q == q) {
3638 			t = qe->type;
3639 			break;
3640 		}
3641 
3642 	if (!t)
3643 		return;
3644 
3645 	list_del(&qe->node);
3646 	kfree(qe);
3647 
3648 	mutex_lock(&q->sysfs_lock);
3649 	elevator_switch_mq(q, t);
3650 	mutex_unlock(&q->sysfs_lock);
3651 }
3652 
3653 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3654 							int nr_hw_queues)
3655 {
3656 	struct request_queue *q;
3657 	LIST_HEAD(head);
3658 	int prev_nr_hw_queues;
3659 
3660 	lockdep_assert_held(&set->tag_list_lock);
3661 
3662 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3663 		nr_hw_queues = nr_cpu_ids;
3664 	if (nr_hw_queues < 1)
3665 		return;
3666 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3667 		return;
3668 
3669 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3670 		blk_mq_freeze_queue(q);
3671 	/*
3672 	 * Switch IO scheduler to 'none', cleaning up the data associated
3673 	 * with the previous scheduler. We will switch back once we are done
3674 	 * updating the new sw to hw queue mappings.
3675 	 */
3676 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3677 		if (!blk_mq_elv_switch_none(&head, q))
3678 			goto switch_back;
3679 
3680 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3681 		blk_mq_debugfs_unregister_hctxs(q);
3682 		blk_mq_sysfs_unregister(q);
3683 	}
3684 
3685 	prev_nr_hw_queues = set->nr_hw_queues;
3686 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3687 	    0)
3688 		goto reregister;
3689 
3690 	set->nr_hw_queues = nr_hw_queues;
3691 fallback:
3692 	blk_mq_update_queue_map(set);
3693 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3694 		blk_mq_realloc_hw_ctxs(set, q);
3695 		if (q->nr_hw_queues != set->nr_hw_queues) {
3696 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3697 					nr_hw_queues, prev_nr_hw_queues);
3698 			set->nr_hw_queues = prev_nr_hw_queues;
3699 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3700 			goto fallback;
3701 		}
3702 		blk_mq_map_swqueue(q);
3703 	}
3704 
3705 reregister:
3706 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3707 		blk_mq_sysfs_register(q);
3708 		blk_mq_debugfs_register_hctxs(q);
3709 	}
3710 
3711 switch_back:
3712 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3713 		blk_mq_elv_switch_back(&head, q);
3714 
3715 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3716 		blk_mq_unfreeze_queue(q);
3717 }
3718 
3719 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3720 {
3721 	mutex_lock(&set->tag_list_lock);
3722 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3723 	mutex_unlock(&set->tag_list_lock);
3724 }
3725 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3726 
3727 /* Enable polling stats and return whether they were already enabled. */
3728 static bool blk_poll_stats_enable(struct request_queue *q)
3729 {
3730 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3731 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3732 		return true;
3733 	blk_stat_add_callback(q, q->poll_cb);
3734 	return false;
3735 }
3736 
3737 static void blk_mq_poll_stats_start(struct request_queue *q)
3738 {
3739 	/*
3740 	 * We don't arm the callback if polling stats are not enabled or the
3741 	 * callback is already active.
3742 	 */
3743 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3744 	    blk_stat_is_active(q->poll_cb))
3745 		return;
3746 
3747 	blk_stat_activate_msecs(q->poll_cb, 100);
3748 }
3749 
3750 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3751 {
3752 	struct request_queue *q = cb->data;
3753 	int bucket;
3754 
3755 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3756 		if (cb->stat[bucket].nr_samples)
3757 			q->poll_stat[bucket] = cb->stat[bucket];
3758 	}
3759 }
3760 
3761 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3762 				       struct request *rq)
3763 {
3764 	unsigned long ret = 0;
3765 	int bucket;
3766 
3767 	/*
3768 	 * If stats collection isn't on, don't sleep but turn it on for
3769 	 * future users
3770 	 */
3771 	if (!blk_poll_stats_enable(q))
3772 		return 0;
3773 
3774 	/*
3775 	 * As an optimistic guess, use half of the mean service time
3776 	 * for this type of request. We can (and should) make this smarter.
3777 	 * For instance, if the completion latencies are tight, we can
3778 	 * get closer than just half the mean. This is especially
3779 	 * important on devices where the completion latencies are longer
3780 	 * than ~10 usec. We do use the stats for the relevant IO size
3781 	 * if available which does lead to better estimates.
3782 	 */
3783 	bucket = blk_mq_poll_stats_bkt(rq);
3784 	if (bucket < 0)
3785 		return ret;
3786 
3787 	if (q->poll_stat[bucket].nr_samples)
3788 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3789 
3790 	return ret;
3791 }
3792 
3793 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3794 				     struct request *rq)
3795 {
3796 	struct hrtimer_sleeper hs;
3797 	enum hrtimer_mode mode;
3798 	unsigned int nsecs;
3799 	ktime_t kt;
3800 
3801 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3802 		return false;
3803 
3804 	/*
3805 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3806 	 *
3807 	 *  0:	use half of prev avg
3808 	 * >0:	use this specific value
3809 	 */
3810 	if (q->poll_nsec > 0)
3811 		nsecs = q->poll_nsec;
3812 	else
3813 		nsecs = blk_mq_poll_nsecs(q, rq);
3814 
3815 	if (!nsecs)
3816 		return false;
3817 
3818 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3819 
3820 	/*
3821 	 * This will be replaced with the stats tracking code, using
3822 	 * 'avg_completion_time / 2' as the pre-sleep target.
3823 	 */
3824 	kt = nsecs;
3825 
3826 	mode = HRTIMER_MODE_REL;
3827 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3828 	hrtimer_set_expires(&hs.timer, kt);
3829 
3830 	do {
3831 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3832 			break;
3833 		set_current_state(TASK_UNINTERRUPTIBLE);
3834 		hrtimer_sleeper_start_expires(&hs, mode);
3835 		if (hs.task)
3836 			io_schedule();
3837 		hrtimer_cancel(&hs.timer);
3838 		mode = HRTIMER_MODE_ABS;
3839 	} while (hs.task && !signal_pending(current));
3840 
3841 	__set_current_state(TASK_RUNNING);
3842 	destroy_hrtimer_on_stack(&hs.timer);
3843 	return true;
3844 }
3845 
3846 static bool blk_mq_poll_hybrid(struct request_queue *q,
3847 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3848 {
3849 	struct request *rq;
3850 
3851 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3852 		return false;
3853 
3854 	if (!blk_qc_t_is_internal(cookie))
3855 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3856 	else {
3857 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3858 		/*
3859 		 * With scheduling, if the request has completed, we'll
3860 		 * get a NULL return here, as we clear the sched tag when
3861 		 * that happens. The request still remains valid, like always,
3862 		 * so we should be safe with just the NULL check.
3863 		 */
3864 		if (!rq)
3865 			return false;
3866 	}
3867 
3868 	return blk_mq_poll_hybrid_sleep(q, rq);
3869 }
3870 
3871 /**
3872  * blk_poll - poll for IO completions
3873  * @q:  the queue
3874  * @cookie: cookie passed back at IO submission time
3875  * @spin: whether to spin for completions
3876  *
3877  * Description:
3878  *    Poll for completions on the passed in queue. Returns number of
3879  *    completed entries found. If @spin is true, then blk_poll will continue
3880  *    looping until at least one completion is found, unless the task is
3881  *    otherwise marked running (or we need to reschedule).
3882  */
3883 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3884 {
3885 	struct blk_mq_hw_ctx *hctx;
3886 	long state;
3887 
3888 	if (!blk_qc_t_valid(cookie) ||
3889 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3890 		return 0;
3891 
3892 	if (current->plug)
3893 		blk_flush_plug_list(current->plug, false);
3894 
3895 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3896 
3897 	/*
3898 	 * If we sleep, have the caller restart the poll loop to reset
3899 	 * the state. Like for the other success return cases, the
3900 	 * caller is responsible for checking if the IO completed. If
3901 	 * the IO isn't complete, we'll get called again and will go
3902 	 * straight to the busy poll loop. If specified not to spin,
3903 	 * we also should not sleep.
3904 	 */
3905 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3906 		return 1;
3907 
3908 	hctx->poll_considered++;
3909 
3910 	state = current->state;
3911 	do {
3912 		int ret;
3913 
3914 		hctx->poll_invoked++;
3915 
3916 		ret = q->mq_ops->poll(hctx);
3917 		if (ret > 0) {
3918 			hctx->poll_success++;
3919 			__set_current_state(TASK_RUNNING);
3920 			return ret;
3921 		}
3922 
3923 		if (signal_pending_state(state, current))
3924 			__set_current_state(TASK_RUNNING);
3925 
3926 		if (current->state == TASK_RUNNING)
3927 			return 1;
3928 		if (ret < 0 || !spin)
3929 			break;
3930 		cpu_relax();
3931 	} while (!need_resched());
3932 
3933 	__set_current_state(TASK_RUNNING);
3934 	return 0;
3935 }
3936 EXPORT_SYMBOL_GPL(blk_poll);
3937 
3938 unsigned int blk_mq_rq_cpu(struct request *rq)
3939 {
3940 	return rq->mq_ctx->cpu;
3941 }
3942 EXPORT_SYMBOL(blk_mq_rq_cpu);
3943 
3944 static int __init blk_mq_init(void)
3945 {
3946 	int i;
3947 
3948 	for_each_possible_cpu(i)
3949 		init_llist_head(&per_cpu(blk_cpu_done, i));
3950 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3951 
3952 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3953 				  "block/softirq:dead", NULL,
3954 				  blk_softirq_cpu_dead);
3955 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3956 				blk_mq_hctx_notify_dead);
3957 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3958 				blk_mq_hctx_notify_online,
3959 				blk_mq_hctx_notify_offline);
3960 	return 0;
3961 }
3962 subsys_initcall(blk_mq_init);
3963