xref: /openbmc/linux/block/blk-mq.c (revision 9f69e8a7)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	unsigned int i;
43 
44 	for (i = 0; i < hctx->ctx_map.size; i++)
45 		if (hctx->ctx_map.map[i].word)
46 			return true;
47 
48 	return false;
49 }
50 
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 					      struct blk_mq_ctx *ctx)
53 {
54 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56 
57 #define CTX_TO_BIT(hctx, ctx)	\
58 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59 
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 				     struct blk_mq_ctx *ctx)
65 {
66 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67 
68 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71 
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 				      struct blk_mq_ctx *ctx)
74 {
75 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76 
77 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79 
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82 	while (true) {
83 		int ret;
84 
85 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 			return 0;
87 
88 		if (!(gfp & __GFP_WAIT))
89 			return -EBUSY;
90 
91 		ret = wait_event_interruptible(q->mq_freeze_wq,
92 				!q->mq_freeze_depth || blk_queue_dying(q));
93 		if (blk_queue_dying(q))
94 			return -ENODEV;
95 		if (ret)
96 			return ret;
97 	}
98 }
99 
100 static void blk_mq_queue_exit(struct request_queue *q)
101 {
102 	percpu_ref_put(&q->mq_usage_counter);
103 }
104 
105 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
106 {
107 	struct request_queue *q =
108 		container_of(ref, struct request_queue, mq_usage_counter);
109 
110 	wake_up_all(&q->mq_freeze_wq);
111 }
112 
113 void blk_mq_freeze_queue_start(struct request_queue *q)
114 {
115 	bool freeze;
116 
117 	spin_lock_irq(q->queue_lock);
118 	freeze = !q->mq_freeze_depth++;
119 	spin_unlock_irq(q->queue_lock);
120 
121 	if (freeze) {
122 		percpu_ref_kill(&q->mq_usage_counter);
123 		blk_mq_run_hw_queues(q, false);
124 	}
125 }
126 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
127 
128 static void blk_mq_freeze_queue_wait(struct request_queue *q)
129 {
130 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
131 }
132 
133 /*
134  * Guarantee no request is in use, so we can change any data structure of
135  * the queue afterward.
136  */
137 void blk_mq_freeze_queue(struct request_queue *q)
138 {
139 	blk_mq_freeze_queue_start(q);
140 	blk_mq_freeze_queue_wait(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143 
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 	bool wake;
147 
148 	spin_lock_irq(q->queue_lock);
149 	wake = !--q->mq_freeze_depth;
150 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
151 	spin_unlock_irq(q->queue_lock);
152 	if (wake) {
153 		percpu_ref_reinit(&q->mq_usage_counter);
154 		wake_up_all(&q->mq_freeze_wq);
155 	}
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
158 
159 void blk_mq_wake_waiters(struct request_queue *q)
160 {
161 	struct blk_mq_hw_ctx *hctx;
162 	unsigned int i;
163 
164 	queue_for_each_hw_ctx(q, hctx, i)
165 		if (blk_mq_hw_queue_mapped(hctx))
166 			blk_mq_tag_wakeup_all(hctx->tags, true);
167 
168 	/*
169 	 * If we are called because the queue has now been marked as
170 	 * dying, we need to ensure that processes currently waiting on
171 	 * the queue are notified as well.
172 	 */
173 	wake_up_all(&q->mq_freeze_wq);
174 }
175 
176 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
177 {
178 	return blk_mq_has_free_tags(hctx->tags);
179 }
180 EXPORT_SYMBOL(blk_mq_can_queue);
181 
182 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
183 			       struct request *rq, unsigned int rw_flags)
184 {
185 	if (blk_queue_io_stat(q))
186 		rw_flags |= REQ_IO_STAT;
187 
188 	INIT_LIST_HEAD(&rq->queuelist);
189 	/* csd/requeue_work/fifo_time is initialized before use */
190 	rq->q = q;
191 	rq->mq_ctx = ctx;
192 	rq->cmd_flags |= rw_flags;
193 	/* do not touch atomic flags, it needs atomic ops against the timer */
194 	rq->cpu = -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->rq_disk = NULL;
198 	rq->part = NULL;
199 	rq->start_time = jiffies;
200 #ifdef CONFIG_BLK_CGROUP
201 	rq->rl = NULL;
202 	set_start_time_ns(rq);
203 	rq->io_start_time_ns = 0;
204 #endif
205 	rq->nr_phys_segments = 0;
206 #if defined(CONFIG_BLK_DEV_INTEGRITY)
207 	rq->nr_integrity_segments = 0;
208 #endif
209 	rq->special = NULL;
210 	/* tag was already set */
211 	rq->errors = 0;
212 
213 	rq->cmd = rq->__cmd;
214 
215 	rq->extra_len = 0;
216 	rq->sense_len = 0;
217 	rq->resid_len = 0;
218 	rq->sense = NULL;
219 
220 	INIT_LIST_HEAD(&rq->timeout_list);
221 	rq->timeout = 0;
222 
223 	rq->end_io = NULL;
224 	rq->end_io_data = NULL;
225 	rq->next_rq = NULL;
226 
227 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
228 }
229 
230 static struct request *
231 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
232 {
233 	struct request *rq;
234 	unsigned int tag;
235 
236 	tag = blk_mq_get_tag(data);
237 	if (tag != BLK_MQ_TAG_FAIL) {
238 		rq = data->hctx->tags->rqs[tag];
239 
240 		if (blk_mq_tag_busy(data->hctx)) {
241 			rq->cmd_flags = REQ_MQ_INFLIGHT;
242 			atomic_inc(&data->hctx->nr_active);
243 		}
244 
245 		rq->tag = tag;
246 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
247 		return rq;
248 	}
249 
250 	return NULL;
251 }
252 
253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
254 		bool reserved)
255 {
256 	struct blk_mq_ctx *ctx;
257 	struct blk_mq_hw_ctx *hctx;
258 	struct request *rq;
259 	struct blk_mq_alloc_data alloc_data;
260 	int ret;
261 
262 	ret = blk_mq_queue_enter(q, gfp);
263 	if (ret)
264 		return ERR_PTR(ret);
265 
266 	ctx = blk_mq_get_ctx(q);
267 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
268 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
269 			reserved, ctx, hctx);
270 
271 	rq = __blk_mq_alloc_request(&alloc_data, rw);
272 	if (!rq && (gfp & __GFP_WAIT)) {
273 		__blk_mq_run_hw_queue(hctx);
274 		blk_mq_put_ctx(ctx);
275 
276 		ctx = blk_mq_get_ctx(q);
277 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
278 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
279 				hctx);
280 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
281 		ctx = alloc_data.ctx;
282 	}
283 	blk_mq_put_ctx(ctx);
284 	if (!rq) {
285 		blk_mq_queue_exit(q);
286 		return ERR_PTR(-EWOULDBLOCK);
287 	}
288 	return rq;
289 }
290 EXPORT_SYMBOL(blk_mq_alloc_request);
291 
292 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
293 				  struct blk_mq_ctx *ctx, struct request *rq)
294 {
295 	const int tag = rq->tag;
296 	struct request_queue *q = rq->q;
297 
298 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
299 		atomic_dec(&hctx->nr_active);
300 	rq->cmd_flags = 0;
301 
302 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
303 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
304 	blk_mq_queue_exit(q);
305 }
306 
307 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
308 {
309 	struct blk_mq_ctx *ctx = rq->mq_ctx;
310 
311 	ctx->rq_completed[rq_is_sync(rq)]++;
312 	__blk_mq_free_request(hctx, ctx, rq);
313 
314 }
315 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
316 
317 void blk_mq_free_request(struct request *rq)
318 {
319 	struct blk_mq_hw_ctx *hctx;
320 	struct request_queue *q = rq->q;
321 
322 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
323 	blk_mq_free_hctx_request(hctx, rq);
324 }
325 EXPORT_SYMBOL_GPL(blk_mq_free_request);
326 
327 inline void __blk_mq_end_request(struct request *rq, int error)
328 {
329 	blk_account_io_done(rq);
330 
331 	if (rq->end_io) {
332 		rq->end_io(rq, error);
333 	} else {
334 		if (unlikely(blk_bidi_rq(rq)))
335 			blk_mq_free_request(rq->next_rq);
336 		blk_mq_free_request(rq);
337 	}
338 }
339 EXPORT_SYMBOL(__blk_mq_end_request);
340 
341 void blk_mq_end_request(struct request *rq, int error)
342 {
343 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
344 		BUG();
345 	__blk_mq_end_request(rq, error);
346 }
347 EXPORT_SYMBOL(blk_mq_end_request);
348 
349 static void __blk_mq_complete_request_remote(void *data)
350 {
351 	struct request *rq = data;
352 
353 	rq->q->softirq_done_fn(rq);
354 }
355 
356 static void blk_mq_ipi_complete_request(struct request *rq)
357 {
358 	struct blk_mq_ctx *ctx = rq->mq_ctx;
359 	bool shared = false;
360 	int cpu;
361 
362 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
363 		rq->q->softirq_done_fn(rq);
364 		return;
365 	}
366 
367 	cpu = get_cpu();
368 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
369 		shared = cpus_share_cache(cpu, ctx->cpu);
370 
371 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
372 		rq->csd.func = __blk_mq_complete_request_remote;
373 		rq->csd.info = rq;
374 		rq->csd.flags = 0;
375 		smp_call_function_single_async(ctx->cpu, &rq->csd);
376 	} else {
377 		rq->q->softirq_done_fn(rq);
378 	}
379 	put_cpu();
380 }
381 
382 void __blk_mq_complete_request(struct request *rq)
383 {
384 	struct request_queue *q = rq->q;
385 
386 	if (!q->softirq_done_fn)
387 		blk_mq_end_request(rq, rq->errors);
388 	else
389 		blk_mq_ipi_complete_request(rq);
390 }
391 
392 /**
393  * blk_mq_complete_request - end I/O on a request
394  * @rq:		the request being processed
395  *
396  * Description:
397  *	Ends all I/O on a request. It does not handle partial completions.
398  *	The actual completion happens out-of-order, through a IPI handler.
399  **/
400 void blk_mq_complete_request(struct request *rq)
401 {
402 	struct request_queue *q = rq->q;
403 
404 	if (unlikely(blk_should_fake_timeout(q)))
405 		return;
406 	if (!blk_mark_rq_complete(rq))
407 		__blk_mq_complete_request(rq);
408 }
409 EXPORT_SYMBOL(blk_mq_complete_request);
410 
411 int blk_mq_request_started(struct request *rq)
412 {
413 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414 }
415 EXPORT_SYMBOL_GPL(blk_mq_request_started);
416 
417 void blk_mq_start_request(struct request *rq)
418 {
419 	struct request_queue *q = rq->q;
420 
421 	trace_block_rq_issue(q, rq);
422 
423 	rq->resid_len = blk_rq_bytes(rq);
424 	if (unlikely(blk_bidi_rq(rq)))
425 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
426 
427 	blk_add_timer(rq);
428 
429 	/*
430 	 * Ensure that ->deadline is visible before set the started
431 	 * flag and clear the completed flag.
432 	 */
433 	smp_mb__before_atomic();
434 
435 	/*
436 	 * Mark us as started and clear complete. Complete might have been
437 	 * set if requeue raced with timeout, which then marked it as
438 	 * complete. So be sure to clear complete again when we start
439 	 * the request, otherwise we'll ignore the completion event.
440 	 */
441 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
442 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
444 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
445 
446 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
447 		/*
448 		 * Make sure space for the drain appears.  We know we can do
449 		 * this because max_hw_segments has been adjusted to be one
450 		 * fewer than the device can handle.
451 		 */
452 		rq->nr_phys_segments++;
453 	}
454 }
455 EXPORT_SYMBOL(blk_mq_start_request);
456 
457 static void __blk_mq_requeue_request(struct request *rq)
458 {
459 	struct request_queue *q = rq->q;
460 
461 	trace_block_rq_requeue(q, rq);
462 
463 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
464 		if (q->dma_drain_size && blk_rq_bytes(rq))
465 			rq->nr_phys_segments--;
466 	}
467 }
468 
469 void blk_mq_requeue_request(struct request *rq)
470 {
471 	__blk_mq_requeue_request(rq);
472 
473 	BUG_ON(blk_queued_rq(rq));
474 	blk_mq_add_to_requeue_list(rq, true);
475 }
476 EXPORT_SYMBOL(blk_mq_requeue_request);
477 
478 static void blk_mq_requeue_work(struct work_struct *work)
479 {
480 	struct request_queue *q =
481 		container_of(work, struct request_queue, requeue_work);
482 	LIST_HEAD(rq_list);
483 	struct request *rq, *next;
484 	unsigned long flags;
485 
486 	spin_lock_irqsave(&q->requeue_lock, flags);
487 	list_splice_init(&q->requeue_list, &rq_list);
488 	spin_unlock_irqrestore(&q->requeue_lock, flags);
489 
490 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
492 			continue;
493 
494 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
495 		list_del_init(&rq->queuelist);
496 		blk_mq_insert_request(rq, true, false, false);
497 	}
498 
499 	while (!list_empty(&rq_list)) {
500 		rq = list_entry(rq_list.next, struct request, queuelist);
501 		list_del_init(&rq->queuelist);
502 		blk_mq_insert_request(rq, false, false, false);
503 	}
504 
505 	/*
506 	 * Use the start variant of queue running here, so that running
507 	 * the requeue work will kick stopped queues.
508 	 */
509 	blk_mq_start_hw_queues(q);
510 }
511 
512 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
513 {
514 	struct request_queue *q = rq->q;
515 	unsigned long flags;
516 
517 	/*
518 	 * We abuse this flag that is otherwise used by the I/O scheduler to
519 	 * request head insertation from the workqueue.
520 	 */
521 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
522 
523 	spin_lock_irqsave(&q->requeue_lock, flags);
524 	if (at_head) {
525 		rq->cmd_flags |= REQ_SOFTBARRIER;
526 		list_add(&rq->queuelist, &q->requeue_list);
527 	} else {
528 		list_add_tail(&rq->queuelist, &q->requeue_list);
529 	}
530 	spin_unlock_irqrestore(&q->requeue_lock, flags);
531 }
532 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
533 
534 void blk_mq_cancel_requeue_work(struct request_queue *q)
535 {
536 	cancel_work_sync(&q->requeue_work);
537 }
538 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
539 
540 void blk_mq_kick_requeue_list(struct request_queue *q)
541 {
542 	kblockd_schedule_work(&q->requeue_work);
543 }
544 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
545 
546 void blk_mq_abort_requeue_list(struct request_queue *q)
547 {
548 	unsigned long flags;
549 	LIST_HEAD(rq_list);
550 
551 	spin_lock_irqsave(&q->requeue_lock, flags);
552 	list_splice_init(&q->requeue_list, &rq_list);
553 	spin_unlock_irqrestore(&q->requeue_lock, flags);
554 
555 	while (!list_empty(&rq_list)) {
556 		struct request *rq;
557 
558 		rq = list_first_entry(&rq_list, struct request, queuelist);
559 		list_del_init(&rq->queuelist);
560 		rq->errors = -EIO;
561 		blk_mq_end_request(rq, rq->errors);
562 	}
563 }
564 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
565 
566 static inline bool is_flush_request(struct request *rq,
567 		struct blk_flush_queue *fq, unsigned int tag)
568 {
569 	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
570 			fq->flush_rq->tag == tag);
571 }
572 
573 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
574 {
575 	struct request *rq = tags->rqs[tag];
576 	/* mq_ctx of flush rq is always cloned from the corresponding req */
577 	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
578 
579 	if (!is_flush_request(rq, fq, tag))
580 		return rq;
581 
582 	return fq->flush_rq;
583 }
584 EXPORT_SYMBOL(blk_mq_tag_to_rq);
585 
586 struct blk_mq_timeout_data {
587 	unsigned long next;
588 	unsigned int next_set;
589 };
590 
591 void blk_mq_rq_timed_out(struct request *req, bool reserved)
592 {
593 	struct blk_mq_ops *ops = req->q->mq_ops;
594 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
595 
596 	/*
597 	 * We know that complete is set at this point. If STARTED isn't set
598 	 * anymore, then the request isn't active and the "timeout" should
599 	 * just be ignored. This can happen due to the bitflag ordering.
600 	 * Timeout first checks if STARTED is set, and if it is, assumes
601 	 * the request is active. But if we race with completion, then
602 	 * we both flags will get cleared. So check here again, and ignore
603 	 * a timeout event with a request that isn't active.
604 	 */
605 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606 		return;
607 
608 	if (ops->timeout)
609 		ret = ops->timeout(req, reserved);
610 
611 	switch (ret) {
612 	case BLK_EH_HANDLED:
613 		__blk_mq_complete_request(req);
614 		break;
615 	case BLK_EH_RESET_TIMER:
616 		blk_add_timer(req);
617 		blk_clear_rq_complete(req);
618 		break;
619 	case BLK_EH_NOT_HANDLED:
620 		break;
621 	default:
622 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
623 		break;
624 	}
625 }
626 
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628 		struct request *rq, void *priv, bool reserved)
629 {
630 	struct blk_mq_timeout_data *data = priv;
631 
632 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
633 		/*
634 		 * If a request wasn't started before the queue was
635 		 * marked dying, kill it here or it'll go unnoticed.
636 		 */
637 		if (unlikely(blk_queue_dying(rq->q))) {
638 			rq->errors = -EIO;
639 			blk_mq_complete_request(rq);
640 		}
641 		return;
642 	}
643 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
644 		return;
645 
646 	if (time_after_eq(jiffies, rq->deadline)) {
647 		if (!blk_mark_rq_complete(rq))
648 			blk_mq_rq_timed_out(rq, reserved);
649 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
650 		data->next = rq->deadline;
651 		data->next_set = 1;
652 	}
653 }
654 
655 static void blk_mq_rq_timer(unsigned long priv)
656 {
657 	struct request_queue *q = (struct request_queue *)priv;
658 	struct blk_mq_timeout_data data = {
659 		.next		= 0,
660 		.next_set	= 0,
661 	};
662 	struct blk_mq_hw_ctx *hctx;
663 	int i;
664 
665 	queue_for_each_hw_ctx(q, hctx, i) {
666 		/*
667 		 * If not software queues are currently mapped to this
668 		 * hardware queue, there's nothing to check
669 		 */
670 		if (!blk_mq_hw_queue_mapped(hctx))
671 			continue;
672 
673 		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
674 	}
675 
676 	if (data.next_set) {
677 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
678 		mod_timer(&q->timeout, data.next);
679 	} else {
680 		queue_for_each_hw_ctx(q, hctx, i) {
681 			/* the hctx may be unmapped, so check it here */
682 			if (blk_mq_hw_queue_mapped(hctx))
683 				blk_mq_tag_idle(hctx);
684 		}
685 	}
686 }
687 
688 /*
689  * Reverse check our software queue for entries that we could potentially
690  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
691  * too much time checking for merges.
692  */
693 static bool blk_mq_attempt_merge(struct request_queue *q,
694 				 struct blk_mq_ctx *ctx, struct bio *bio)
695 {
696 	struct request *rq;
697 	int checked = 8;
698 
699 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
700 		int el_ret;
701 
702 		if (!checked--)
703 			break;
704 
705 		if (!blk_rq_merge_ok(rq, bio))
706 			continue;
707 
708 		el_ret = blk_try_merge(rq, bio);
709 		if (el_ret == ELEVATOR_BACK_MERGE) {
710 			if (bio_attempt_back_merge(q, rq, bio)) {
711 				ctx->rq_merged++;
712 				return true;
713 			}
714 			break;
715 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
716 			if (bio_attempt_front_merge(q, rq, bio)) {
717 				ctx->rq_merged++;
718 				return true;
719 			}
720 			break;
721 		}
722 	}
723 
724 	return false;
725 }
726 
727 /*
728  * Process software queues that have been marked busy, splicing them
729  * to the for-dispatch
730  */
731 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
732 {
733 	struct blk_mq_ctx *ctx;
734 	int i;
735 
736 	for (i = 0; i < hctx->ctx_map.size; i++) {
737 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
738 		unsigned int off, bit;
739 
740 		if (!bm->word)
741 			continue;
742 
743 		bit = 0;
744 		off = i * hctx->ctx_map.bits_per_word;
745 		do {
746 			bit = find_next_bit(&bm->word, bm->depth, bit);
747 			if (bit >= bm->depth)
748 				break;
749 
750 			ctx = hctx->ctxs[bit + off];
751 			clear_bit(bit, &bm->word);
752 			spin_lock(&ctx->lock);
753 			list_splice_tail_init(&ctx->rq_list, list);
754 			spin_unlock(&ctx->lock);
755 
756 			bit++;
757 		} while (1);
758 	}
759 }
760 
761 /*
762  * Run this hardware queue, pulling any software queues mapped to it in.
763  * Note that this function currently has various problems around ordering
764  * of IO. In particular, we'd like FIFO behaviour on handling existing
765  * items on the hctx->dispatch list. Ignore that for now.
766  */
767 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
768 {
769 	struct request_queue *q = hctx->queue;
770 	struct request *rq;
771 	LIST_HEAD(rq_list);
772 	LIST_HEAD(driver_list);
773 	struct list_head *dptr;
774 	int queued;
775 
776 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
777 
778 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
779 		return;
780 
781 	hctx->run++;
782 
783 	/*
784 	 * Touch any software queue that has pending entries.
785 	 */
786 	flush_busy_ctxs(hctx, &rq_list);
787 
788 	/*
789 	 * If we have previous entries on our dispatch list, grab them
790 	 * and stuff them at the front for more fair dispatch.
791 	 */
792 	if (!list_empty_careful(&hctx->dispatch)) {
793 		spin_lock(&hctx->lock);
794 		if (!list_empty(&hctx->dispatch))
795 			list_splice_init(&hctx->dispatch, &rq_list);
796 		spin_unlock(&hctx->lock);
797 	}
798 
799 	/*
800 	 * Start off with dptr being NULL, so we start the first request
801 	 * immediately, even if we have more pending.
802 	 */
803 	dptr = NULL;
804 
805 	/*
806 	 * Now process all the entries, sending them to the driver.
807 	 */
808 	queued = 0;
809 	while (!list_empty(&rq_list)) {
810 		struct blk_mq_queue_data bd;
811 		int ret;
812 
813 		rq = list_first_entry(&rq_list, struct request, queuelist);
814 		list_del_init(&rq->queuelist);
815 
816 		bd.rq = rq;
817 		bd.list = dptr;
818 		bd.last = list_empty(&rq_list);
819 
820 		ret = q->mq_ops->queue_rq(hctx, &bd);
821 		switch (ret) {
822 		case BLK_MQ_RQ_QUEUE_OK:
823 			queued++;
824 			continue;
825 		case BLK_MQ_RQ_QUEUE_BUSY:
826 			list_add(&rq->queuelist, &rq_list);
827 			__blk_mq_requeue_request(rq);
828 			break;
829 		default:
830 			pr_err("blk-mq: bad return on queue: %d\n", ret);
831 		case BLK_MQ_RQ_QUEUE_ERROR:
832 			rq->errors = -EIO;
833 			blk_mq_end_request(rq, rq->errors);
834 			break;
835 		}
836 
837 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
838 			break;
839 
840 		/*
841 		 * We've done the first request. If we have more than 1
842 		 * left in the list, set dptr to defer issue.
843 		 */
844 		if (!dptr && rq_list.next != rq_list.prev)
845 			dptr = &driver_list;
846 	}
847 
848 	if (!queued)
849 		hctx->dispatched[0]++;
850 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
851 		hctx->dispatched[ilog2(queued) + 1]++;
852 
853 	/*
854 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
855 	 * that is where we will continue on next queue run.
856 	 */
857 	if (!list_empty(&rq_list)) {
858 		spin_lock(&hctx->lock);
859 		list_splice(&rq_list, &hctx->dispatch);
860 		spin_unlock(&hctx->lock);
861 		/*
862 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
863 		 * it's possible the queue is stopped and restarted again
864 		 * before this. Queue restart will dispatch requests. And since
865 		 * requests in rq_list aren't added into hctx->dispatch yet,
866 		 * the requests in rq_list might get lost.
867 		 *
868 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
869 		 **/
870 		blk_mq_run_hw_queue(hctx, true);
871 	}
872 }
873 
874 /*
875  * It'd be great if the workqueue API had a way to pass
876  * in a mask and had some smarts for more clever placement.
877  * For now we just round-robin here, switching for every
878  * BLK_MQ_CPU_WORK_BATCH queued items.
879  */
880 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
881 {
882 	if (hctx->queue->nr_hw_queues == 1)
883 		return WORK_CPU_UNBOUND;
884 
885 	if (--hctx->next_cpu_batch <= 0) {
886 		int cpu = hctx->next_cpu, next_cpu;
887 
888 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
889 		if (next_cpu >= nr_cpu_ids)
890 			next_cpu = cpumask_first(hctx->cpumask);
891 
892 		hctx->next_cpu = next_cpu;
893 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
894 
895 		return cpu;
896 	}
897 
898 	return hctx->next_cpu;
899 }
900 
901 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
902 {
903 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
904 	    !blk_mq_hw_queue_mapped(hctx)))
905 		return;
906 
907 	if (!async) {
908 		int cpu = get_cpu();
909 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
910 			__blk_mq_run_hw_queue(hctx);
911 			put_cpu();
912 			return;
913 		}
914 
915 		put_cpu();
916 	}
917 
918 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
919 			&hctx->run_work, 0);
920 }
921 
922 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
923 {
924 	struct blk_mq_hw_ctx *hctx;
925 	int i;
926 
927 	queue_for_each_hw_ctx(q, hctx, i) {
928 		if ((!blk_mq_hctx_has_pending(hctx) &&
929 		    list_empty_careful(&hctx->dispatch)) ||
930 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
931 			continue;
932 
933 		blk_mq_run_hw_queue(hctx, async);
934 	}
935 }
936 EXPORT_SYMBOL(blk_mq_run_hw_queues);
937 
938 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
939 {
940 	cancel_delayed_work(&hctx->run_work);
941 	cancel_delayed_work(&hctx->delay_work);
942 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
943 }
944 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
945 
946 void blk_mq_stop_hw_queues(struct request_queue *q)
947 {
948 	struct blk_mq_hw_ctx *hctx;
949 	int i;
950 
951 	queue_for_each_hw_ctx(q, hctx, i)
952 		blk_mq_stop_hw_queue(hctx);
953 }
954 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
955 
956 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
957 {
958 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
959 
960 	blk_mq_run_hw_queue(hctx, false);
961 }
962 EXPORT_SYMBOL(blk_mq_start_hw_queue);
963 
964 void blk_mq_start_hw_queues(struct request_queue *q)
965 {
966 	struct blk_mq_hw_ctx *hctx;
967 	int i;
968 
969 	queue_for_each_hw_ctx(q, hctx, i)
970 		blk_mq_start_hw_queue(hctx);
971 }
972 EXPORT_SYMBOL(blk_mq_start_hw_queues);
973 
974 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
975 {
976 	struct blk_mq_hw_ctx *hctx;
977 	int i;
978 
979 	queue_for_each_hw_ctx(q, hctx, i) {
980 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
981 			continue;
982 
983 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
984 		blk_mq_run_hw_queue(hctx, async);
985 	}
986 }
987 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
988 
989 static void blk_mq_run_work_fn(struct work_struct *work)
990 {
991 	struct blk_mq_hw_ctx *hctx;
992 
993 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
994 
995 	__blk_mq_run_hw_queue(hctx);
996 }
997 
998 static void blk_mq_delay_work_fn(struct work_struct *work)
999 {
1000 	struct blk_mq_hw_ctx *hctx;
1001 
1002 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1003 
1004 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1005 		__blk_mq_run_hw_queue(hctx);
1006 }
1007 
1008 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1009 {
1010 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1011 		return;
1012 
1013 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1014 			&hctx->delay_work, msecs_to_jiffies(msecs));
1015 }
1016 EXPORT_SYMBOL(blk_mq_delay_queue);
1017 
1018 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1019 				    struct request *rq, bool at_head)
1020 {
1021 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1022 
1023 	trace_block_rq_insert(hctx->queue, rq);
1024 
1025 	if (at_head)
1026 		list_add(&rq->queuelist, &ctx->rq_list);
1027 	else
1028 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1029 
1030 	blk_mq_hctx_mark_pending(hctx, ctx);
1031 }
1032 
1033 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1034 		bool async)
1035 {
1036 	struct request_queue *q = rq->q;
1037 	struct blk_mq_hw_ctx *hctx;
1038 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1039 
1040 	current_ctx = blk_mq_get_ctx(q);
1041 	if (!cpu_online(ctx->cpu))
1042 		rq->mq_ctx = ctx = current_ctx;
1043 
1044 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1045 
1046 	spin_lock(&ctx->lock);
1047 	__blk_mq_insert_request(hctx, rq, at_head);
1048 	spin_unlock(&ctx->lock);
1049 
1050 	if (run_queue)
1051 		blk_mq_run_hw_queue(hctx, async);
1052 
1053 	blk_mq_put_ctx(current_ctx);
1054 }
1055 
1056 static void blk_mq_insert_requests(struct request_queue *q,
1057 				     struct blk_mq_ctx *ctx,
1058 				     struct list_head *list,
1059 				     int depth,
1060 				     bool from_schedule)
1061 
1062 {
1063 	struct blk_mq_hw_ctx *hctx;
1064 	struct blk_mq_ctx *current_ctx;
1065 
1066 	trace_block_unplug(q, depth, !from_schedule);
1067 
1068 	current_ctx = blk_mq_get_ctx(q);
1069 
1070 	if (!cpu_online(ctx->cpu))
1071 		ctx = current_ctx;
1072 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1073 
1074 	/*
1075 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1076 	 * offline now
1077 	 */
1078 	spin_lock(&ctx->lock);
1079 	while (!list_empty(list)) {
1080 		struct request *rq;
1081 
1082 		rq = list_first_entry(list, struct request, queuelist);
1083 		list_del_init(&rq->queuelist);
1084 		rq->mq_ctx = ctx;
1085 		__blk_mq_insert_request(hctx, rq, false);
1086 	}
1087 	spin_unlock(&ctx->lock);
1088 
1089 	blk_mq_run_hw_queue(hctx, from_schedule);
1090 	blk_mq_put_ctx(current_ctx);
1091 }
1092 
1093 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1094 {
1095 	struct request *rqa = container_of(a, struct request, queuelist);
1096 	struct request *rqb = container_of(b, struct request, queuelist);
1097 
1098 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1099 		 (rqa->mq_ctx == rqb->mq_ctx &&
1100 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1101 }
1102 
1103 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1104 {
1105 	struct blk_mq_ctx *this_ctx;
1106 	struct request_queue *this_q;
1107 	struct request *rq;
1108 	LIST_HEAD(list);
1109 	LIST_HEAD(ctx_list);
1110 	unsigned int depth;
1111 
1112 	list_splice_init(&plug->mq_list, &list);
1113 
1114 	list_sort(NULL, &list, plug_ctx_cmp);
1115 
1116 	this_q = NULL;
1117 	this_ctx = NULL;
1118 	depth = 0;
1119 
1120 	while (!list_empty(&list)) {
1121 		rq = list_entry_rq(list.next);
1122 		list_del_init(&rq->queuelist);
1123 		BUG_ON(!rq->q);
1124 		if (rq->mq_ctx != this_ctx) {
1125 			if (this_ctx) {
1126 				blk_mq_insert_requests(this_q, this_ctx,
1127 							&ctx_list, depth,
1128 							from_schedule);
1129 			}
1130 
1131 			this_ctx = rq->mq_ctx;
1132 			this_q = rq->q;
1133 			depth = 0;
1134 		}
1135 
1136 		depth++;
1137 		list_add_tail(&rq->queuelist, &ctx_list);
1138 	}
1139 
1140 	/*
1141 	 * If 'this_ctx' is set, we know we have entries to complete
1142 	 * on 'ctx_list'. Do those.
1143 	 */
1144 	if (this_ctx) {
1145 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1146 				       from_schedule);
1147 	}
1148 }
1149 
1150 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1151 {
1152 	init_request_from_bio(rq, bio);
1153 
1154 	if (blk_do_io_stat(rq))
1155 		blk_account_io_start(rq, 1);
1156 }
1157 
1158 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1159 {
1160 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1161 		!blk_queue_nomerges(hctx->queue);
1162 }
1163 
1164 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1165 					 struct blk_mq_ctx *ctx,
1166 					 struct request *rq, struct bio *bio)
1167 {
1168 	if (!hctx_allow_merges(hctx)) {
1169 		blk_mq_bio_to_request(rq, bio);
1170 		spin_lock(&ctx->lock);
1171 insert_rq:
1172 		__blk_mq_insert_request(hctx, rq, false);
1173 		spin_unlock(&ctx->lock);
1174 		return false;
1175 	} else {
1176 		struct request_queue *q = hctx->queue;
1177 
1178 		spin_lock(&ctx->lock);
1179 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1180 			blk_mq_bio_to_request(rq, bio);
1181 			goto insert_rq;
1182 		}
1183 
1184 		spin_unlock(&ctx->lock);
1185 		__blk_mq_free_request(hctx, ctx, rq);
1186 		return true;
1187 	}
1188 }
1189 
1190 struct blk_map_ctx {
1191 	struct blk_mq_hw_ctx *hctx;
1192 	struct blk_mq_ctx *ctx;
1193 };
1194 
1195 static struct request *blk_mq_map_request(struct request_queue *q,
1196 					  struct bio *bio,
1197 					  struct blk_map_ctx *data)
1198 {
1199 	struct blk_mq_hw_ctx *hctx;
1200 	struct blk_mq_ctx *ctx;
1201 	struct request *rq;
1202 	int rw = bio_data_dir(bio);
1203 	struct blk_mq_alloc_data alloc_data;
1204 
1205 	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1206 		bio_endio(bio, -EIO);
1207 		return NULL;
1208 	}
1209 
1210 	ctx = blk_mq_get_ctx(q);
1211 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1212 
1213 	if (rw_is_sync(bio->bi_rw))
1214 		rw |= REQ_SYNC;
1215 
1216 	trace_block_getrq(q, bio, rw);
1217 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1218 			hctx);
1219 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1220 	if (unlikely(!rq)) {
1221 		__blk_mq_run_hw_queue(hctx);
1222 		blk_mq_put_ctx(ctx);
1223 		trace_block_sleeprq(q, bio, rw);
1224 
1225 		ctx = blk_mq_get_ctx(q);
1226 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1227 		blk_mq_set_alloc_data(&alloc_data, q,
1228 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1229 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1230 		ctx = alloc_data.ctx;
1231 		hctx = alloc_data.hctx;
1232 	}
1233 
1234 	hctx->queued++;
1235 	data->hctx = hctx;
1236 	data->ctx = ctx;
1237 	return rq;
1238 }
1239 
1240 /*
1241  * Multiple hardware queue variant. This will not use per-process plugs,
1242  * but will attempt to bypass the hctx queueing if we can go straight to
1243  * hardware for SYNC IO.
1244  */
1245 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1246 {
1247 	const int is_sync = rw_is_sync(bio->bi_rw);
1248 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1249 	struct blk_map_ctx data;
1250 	struct request *rq;
1251 
1252 	blk_queue_bounce(q, &bio);
1253 
1254 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1255 		bio_endio(bio, -EIO);
1256 		return;
1257 	}
1258 
1259 	rq = blk_mq_map_request(q, bio, &data);
1260 	if (unlikely(!rq))
1261 		return;
1262 
1263 	if (unlikely(is_flush_fua)) {
1264 		blk_mq_bio_to_request(rq, bio);
1265 		blk_insert_flush(rq);
1266 		goto run_queue;
1267 	}
1268 
1269 	/*
1270 	 * If the driver supports defer issued based on 'last', then
1271 	 * queue it up like normal since we can potentially save some
1272 	 * CPU this way.
1273 	 */
1274 	if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1275 		struct blk_mq_queue_data bd = {
1276 			.rq = rq,
1277 			.list = NULL,
1278 			.last = 1
1279 		};
1280 		int ret;
1281 
1282 		blk_mq_bio_to_request(rq, bio);
1283 
1284 		/*
1285 		 * For OK queue, we are done. For error, kill it. Any other
1286 		 * error (busy), just add it to our list as we previously
1287 		 * would have done
1288 		 */
1289 		ret = q->mq_ops->queue_rq(data.hctx, &bd);
1290 		if (ret == BLK_MQ_RQ_QUEUE_OK)
1291 			goto done;
1292 		else {
1293 			__blk_mq_requeue_request(rq);
1294 
1295 			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1296 				rq->errors = -EIO;
1297 				blk_mq_end_request(rq, rq->errors);
1298 				goto done;
1299 			}
1300 		}
1301 	}
1302 
1303 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1304 		/*
1305 		 * For a SYNC request, send it to the hardware immediately. For
1306 		 * an ASYNC request, just ensure that we run it later on. The
1307 		 * latter allows for merging opportunities and more efficient
1308 		 * dispatching.
1309 		 */
1310 run_queue:
1311 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1312 	}
1313 done:
1314 	blk_mq_put_ctx(data.ctx);
1315 }
1316 
1317 /*
1318  * Single hardware queue variant. This will attempt to use any per-process
1319  * plug for merging and IO deferral.
1320  */
1321 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1322 {
1323 	const int is_sync = rw_is_sync(bio->bi_rw);
1324 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1325 	unsigned int use_plug, request_count = 0;
1326 	struct blk_map_ctx data;
1327 	struct request *rq;
1328 
1329 	/*
1330 	 * If we have multiple hardware queues, just go directly to
1331 	 * one of those for sync IO.
1332 	 */
1333 	use_plug = !is_flush_fua && !is_sync;
1334 
1335 	blk_queue_bounce(q, &bio);
1336 
1337 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1338 		bio_endio(bio, -EIO);
1339 		return;
1340 	}
1341 
1342 	if (use_plug && !blk_queue_nomerges(q) &&
1343 	    blk_attempt_plug_merge(q, bio, &request_count))
1344 		return;
1345 
1346 	rq = blk_mq_map_request(q, bio, &data);
1347 	if (unlikely(!rq))
1348 		return;
1349 
1350 	if (unlikely(is_flush_fua)) {
1351 		blk_mq_bio_to_request(rq, bio);
1352 		blk_insert_flush(rq);
1353 		goto run_queue;
1354 	}
1355 
1356 	/*
1357 	 * A task plug currently exists. Since this is completely lockless,
1358 	 * utilize that to temporarily store requests until the task is
1359 	 * either done or scheduled away.
1360 	 */
1361 	if (use_plug) {
1362 		struct blk_plug *plug = current->plug;
1363 
1364 		if (plug) {
1365 			blk_mq_bio_to_request(rq, bio);
1366 			if (list_empty(&plug->mq_list))
1367 				trace_block_plug(q);
1368 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1369 				blk_flush_plug_list(plug, false);
1370 				trace_block_plug(q);
1371 			}
1372 			list_add_tail(&rq->queuelist, &plug->mq_list);
1373 			blk_mq_put_ctx(data.ctx);
1374 			return;
1375 		}
1376 	}
1377 
1378 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1379 		/*
1380 		 * For a SYNC request, send it to the hardware immediately. For
1381 		 * an ASYNC request, just ensure that we run it later on. The
1382 		 * latter allows for merging opportunities and more efficient
1383 		 * dispatching.
1384 		 */
1385 run_queue:
1386 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1387 	}
1388 
1389 	blk_mq_put_ctx(data.ctx);
1390 }
1391 
1392 /*
1393  * Default mapping to a software queue, since we use one per CPU.
1394  */
1395 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1396 {
1397 	return q->queue_hw_ctx[q->mq_map[cpu]];
1398 }
1399 EXPORT_SYMBOL(blk_mq_map_queue);
1400 
1401 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1402 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1403 {
1404 	struct page *page;
1405 
1406 	if (tags->rqs && set->ops->exit_request) {
1407 		int i;
1408 
1409 		for (i = 0; i < tags->nr_tags; i++) {
1410 			if (!tags->rqs[i])
1411 				continue;
1412 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1413 						hctx_idx, i);
1414 			tags->rqs[i] = NULL;
1415 		}
1416 	}
1417 
1418 	while (!list_empty(&tags->page_list)) {
1419 		page = list_first_entry(&tags->page_list, struct page, lru);
1420 		list_del_init(&page->lru);
1421 		__free_pages(page, page->private);
1422 	}
1423 
1424 	kfree(tags->rqs);
1425 
1426 	blk_mq_free_tags(tags);
1427 }
1428 
1429 static size_t order_to_size(unsigned int order)
1430 {
1431 	return (size_t)PAGE_SIZE << order;
1432 }
1433 
1434 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1435 		unsigned int hctx_idx)
1436 {
1437 	struct blk_mq_tags *tags;
1438 	unsigned int i, j, entries_per_page, max_order = 4;
1439 	size_t rq_size, left;
1440 
1441 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1442 				set->numa_node,
1443 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1444 	if (!tags)
1445 		return NULL;
1446 
1447 	INIT_LIST_HEAD(&tags->page_list);
1448 
1449 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1450 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1451 				 set->numa_node);
1452 	if (!tags->rqs) {
1453 		blk_mq_free_tags(tags);
1454 		return NULL;
1455 	}
1456 
1457 	/*
1458 	 * rq_size is the size of the request plus driver payload, rounded
1459 	 * to the cacheline size
1460 	 */
1461 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1462 				cache_line_size());
1463 	left = rq_size * set->queue_depth;
1464 
1465 	for (i = 0; i < set->queue_depth; ) {
1466 		int this_order = max_order;
1467 		struct page *page;
1468 		int to_do;
1469 		void *p;
1470 
1471 		while (left < order_to_size(this_order - 1) && this_order)
1472 			this_order--;
1473 
1474 		do {
1475 			page = alloc_pages_node(set->numa_node,
1476 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1477 				this_order);
1478 			if (page)
1479 				break;
1480 			if (!this_order--)
1481 				break;
1482 			if (order_to_size(this_order) < rq_size)
1483 				break;
1484 		} while (1);
1485 
1486 		if (!page)
1487 			goto fail;
1488 
1489 		page->private = this_order;
1490 		list_add_tail(&page->lru, &tags->page_list);
1491 
1492 		p = page_address(page);
1493 		entries_per_page = order_to_size(this_order) / rq_size;
1494 		to_do = min(entries_per_page, set->queue_depth - i);
1495 		left -= to_do * rq_size;
1496 		for (j = 0; j < to_do; j++) {
1497 			tags->rqs[i] = p;
1498 			if (set->ops->init_request) {
1499 				if (set->ops->init_request(set->driver_data,
1500 						tags->rqs[i], hctx_idx, i,
1501 						set->numa_node)) {
1502 					tags->rqs[i] = NULL;
1503 					goto fail;
1504 				}
1505 			}
1506 
1507 			p += rq_size;
1508 			i++;
1509 		}
1510 	}
1511 
1512 	return tags;
1513 
1514 fail:
1515 	blk_mq_free_rq_map(set, tags, hctx_idx);
1516 	return NULL;
1517 }
1518 
1519 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1520 {
1521 	kfree(bitmap->map);
1522 }
1523 
1524 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1525 {
1526 	unsigned int bpw = 8, total, num_maps, i;
1527 
1528 	bitmap->bits_per_word = bpw;
1529 
1530 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1531 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1532 					GFP_KERNEL, node);
1533 	if (!bitmap->map)
1534 		return -ENOMEM;
1535 
1536 	total = nr_cpu_ids;
1537 	for (i = 0; i < num_maps; i++) {
1538 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1539 		total -= bitmap->map[i].depth;
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1546 {
1547 	struct request_queue *q = hctx->queue;
1548 	struct blk_mq_ctx *ctx;
1549 	LIST_HEAD(tmp);
1550 
1551 	/*
1552 	 * Move ctx entries to new CPU, if this one is going away.
1553 	 */
1554 	ctx = __blk_mq_get_ctx(q, cpu);
1555 
1556 	spin_lock(&ctx->lock);
1557 	if (!list_empty(&ctx->rq_list)) {
1558 		list_splice_init(&ctx->rq_list, &tmp);
1559 		blk_mq_hctx_clear_pending(hctx, ctx);
1560 	}
1561 	spin_unlock(&ctx->lock);
1562 
1563 	if (list_empty(&tmp))
1564 		return NOTIFY_OK;
1565 
1566 	ctx = blk_mq_get_ctx(q);
1567 	spin_lock(&ctx->lock);
1568 
1569 	while (!list_empty(&tmp)) {
1570 		struct request *rq;
1571 
1572 		rq = list_first_entry(&tmp, struct request, queuelist);
1573 		rq->mq_ctx = ctx;
1574 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1575 	}
1576 
1577 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1578 	blk_mq_hctx_mark_pending(hctx, ctx);
1579 
1580 	spin_unlock(&ctx->lock);
1581 
1582 	blk_mq_run_hw_queue(hctx, true);
1583 	blk_mq_put_ctx(ctx);
1584 	return NOTIFY_OK;
1585 }
1586 
1587 static int blk_mq_hctx_notify(void *data, unsigned long action,
1588 			      unsigned int cpu)
1589 {
1590 	struct blk_mq_hw_ctx *hctx = data;
1591 
1592 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1593 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1594 
1595 	/*
1596 	 * In case of CPU online, tags may be reallocated
1597 	 * in blk_mq_map_swqueue() after mapping is updated.
1598 	 */
1599 
1600 	return NOTIFY_OK;
1601 }
1602 
1603 static void blk_mq_exit_hctx(struct request_queue *q,
1604 		struct blk_mq_tag_set *set,
1605 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1606 {
1607 	unsigned flush_start_tag = set->queue_depth;
1608 
1609 	blk_mq_tag_idle(hctx);
1610 
1611 	if (set->ops->exit_request)
1612 		set->ops->exit_request(set->driver_data,
1613 				       hctx->fq->flush_rq, hctx_idx,
1614 				       flush_start_tag + hctx_idx);
1615 
1616 	if (set->ops->exit_hctx)
1617 		set->ops->exit_hctx(hctx, hctx_idx);
1618 
1619 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1620 	blk_free_flush_queue(hctx->fq);
1621 	kfree(hctx->ctxs);
1622 	blk_mq_free_bitmap(&hctx->ctx_map);
1623 }
1624 
1625 static void blk_mq_exit_hw_queues(struct request_queue *q,
1626 		struct blk_mq_tag_set *set, int nr_queue)
1627 {
1628 	struct blk_mq_hw_ctx *hctx;
1629 	unsigned int i;
1630 
1631 	queue_for_each_hw_ctx(q, hctx, i) {
1632 		if (i == nr_queue)
1633 			break;
1634 		blk_mq_exit_hctx(q, set, hctx, i);
1635 	}
1636 }
1637 
1638 static void blk_mq_free_hw_queues(struct request_queue *q,
1639 		struct blk_mq_tag_set *set)
1640 {
1641 	struct blk_mq_hw_ctx *hctx;
1642 	unsigned int i;
1643 
1644 	queue_for_each_hw_ctx(q, hctx, i)
1645 		free_cpumask_var(hctx->cpumask);
1646 }
1647 
1648 static int blk_mq_init_hctx(struct request_queue *q,
1649 		struct blk_mq_tag_set *set,
1650 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1651 {
1652 	int node;
1653 	unsigned flush_start_tag = set->queue_depth;
1654 
1655 	node = hctx->numa_node;
1656 	if (node == NUMA_NO_NODE)
1657 		node = hctx->numa_node = set->numa_node;
1658 
1659 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1660 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1661 	spin_lock_init(&hctx->lock);
1662 	INIT_LIST_HEAD(&hctx->dispatch);
1663 	hctx->queue = q;
1664 	hctx->queue_num = hctx_idx;
1665 	hctx->flags = set->flags;
1666 
1667 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1668 					blk_mq_hctx_notify, hctx);
1669 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1670 
1671 	hctx->tags = set->tags[hctx_idx];
1672 
1673 	/*
1674 	 * Allocate space for all possible cpus to avoid allocation at
1675 	 * runtime
1676 	 */
1677 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1678 					GFP_KERNEL, node);
1679 	if (!hctx->ctxs)
1680 		goto unregister_cpu_notifier;
1681 
1682 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1683 		goto free_ctxs;
1684 
1685 	hctx->nr_ctx = 0;
1686 
1687 	if (set->ops->init_hctx &&
1688 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1689 		goto free_bitmap;
1690 
1691 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1692 	if (!hctx->fq)
1693 		goto exit_hctx;
1694 
1695 	if (set->ops->init_request &&
1696 	    set->ops->init_request(set->driver_data,
1697 				   hctx->fq->flush_rq, hctx_idx,
1698 				   flush_start_tag + hctx_idx, node))
1699 		goto free_fq;
1700 
1701 	return 0;
1702 
1703  free_fq:
1704 	kfree(hctx->fq);
1705  exit_hctx:
1706 	if (set->ops->exit_hctx)
1707 		set->ops->exit_hctx(hctx, hctx_idx);
1708  free_bitmap:
1709 	blk_mq_free_bitmap(&hctx->ctx_map);
1710  free_ctxs:
1711 	kfree(hctx->ctxs);
1712  unregister_cpu_notifier:
1713 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1714 
1715 	return -1;
1716 }
1717 
1718 static int blk_mq_init_hw_queues(struct request_queue *q,
1719 		struct blk_mq_tag_set *set)
1720 {
1721 	struct blk_mq_hw_ctx *hctx;
1722 	unsigned int i;
1723 
1724 	/*
1725 	 * Initialize hardware queues
1726 	 */
1727 	queue_for_each_hw_ctx(q, hctx, i) {
1728 		if (blk_mq_init_hctx(q, set, hctx, i))
1729 			break;
1730 	}
1731 
1732 	if (i == q->nr_hw_queues)
1733 		return 0;
1734 
1735 	/*
1736 	 * Init failed
1737 	 */
1738 	blk_mq_exit_hw_queues(q, set, i);
1739 
1740 	return 1;
1741 }
1742 
1743 static void blk_mq_init_cpu_queues(struct request_queue *q,
1744 				   unsigned int nr_hw_queues)
1745 {
1746 	unsigned int i;
1747 
1748 	for_each_possible_cpu(i) {
1749 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1750 		struct blk_mq_hw_ctx *hctx;
1751 
1752 		memset(__ctx, 0, sizeof(*__ctx));
1753 		__ctx->cpu = i;
1754 		spin_lock_init(&__ctx->lock);
1755 		INIT_LIST_HEAD(&__ctx->rq_list);
1756 		__ctx->queue = q;
1757 
1758 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1759 		if (!cpu_online(i))
1760 			continue;
1761 
1762 		hctx = q->mq_ops->map_queue(q, i);
1763 
1764 		/*
1765 		 * Set local node, IFF we have more than one hw queue. If
1766 		 * not, we remain on the home node of the device
1767 		 */
1768 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1769 			hctx->numa_node = cpu_to_node(i);
1770 	}
1771 }
1772 
1773 static void blk_mq_map_swqueue(struct request_queue *q)
1774 {
1775 	unsigned int i;
1776 	struct blk_mq_hw_ctx *hctx;
1777 	struct blk_mq_ctx *ctx;
1778 	struct blk_mq_tag_set *set = q->tag_set;
1779 
1780 	queue_for_each_hw_ctx(q, hctx, i) {
1781 		cpumask_clear(hctx->cpumask);
1782 		hctx->nr_ctx = 0;
1783 	}
1784 
1785 	/*
1786 	 * Map software to hardware queues
1787 	 */
1788 	queue_for_each_ctx(q, ctx, i) {
1789 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1790 		if (!cpu_online(i))
1791 			continue;
1792 
1793 		hctx = q->mq_ops->map_queue(q, i);
1794 		cpumask_set_cpu(i, hctx->cpumask);
1795 		ctx->index_hw = hctx->nr_ctx;
1796 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1797 	}
1798 
1799 	queue_for_each_hw_ctx(q, hctx, i) {
1800 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1801 
1802 		/*
1803 		 * If no software queues are mapped to this hardware queue,
1804 		 * disable it and free the request entries.
1805 		 */
1806 		if (!hctx->nr_ctx) {
1807 			if (set->tags[i]) {
1808 				blk_mq_free_rq_map(set, set->tags[i], i);
1809 				set->tags[i] = NULL;
1810 			}
1811 			hctx->tags = NULL;
1812 			continue;
1813 		}
1814 
1815 		/* unmapped hw queue can be remapped after CPU topo changed */
1816 		if (!set->tags[i])
1817 			set->tags[i] = blk_mq_init_rq_map(set, i);
1818 		hctx->tags = set->tags[i];
1819 		WARN_ON(!hctx->tags);
1820 
1821 		/*
1822 		 * Set the map size to the number of mapped software queues.
1823 		 * This is more accurate and more efficient than looping
1824 		 * over all possibly mapped software queues.
1825 		 */
1826 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1827 
1828 		/*
1829 		 * Initialize batch roundrobin counts
1830 		 */
1831 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1832 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1833 	}
1834 }
1835 
1836 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1837 {
1838 	struct blk_mq_hw_ctx *hctx;
1839 	struct request_queue *q;
1840 	bool shared;
1841 	int i;
1842 
1843 	if (set->tag_list.next == set->tag_list.prev)
1844 		shared = false;
1845 	else
1846 		shared = true;
1847 
1848 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1849 		blk_mq_freeze_queue(q);
1850 
1851 		queue_for_each_hw_ctx(q, hctx, i) {
1852 			if (shared)
1853 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1854 			else
1855 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1856 		}
1857 		blk_mq_unfreeze_queue(q);
1858 	}
1859 }
1860 
1861 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1862 {
1863 	struct blk_mq_tag_set *set = q->tag_set;
1864 
1865 	mutex_lock(&set->tag_list_lock);
1866 	list_del_init(&q->tag_set_list);
1867 	blk_mq_update_tag_set_depth(set);
1868 	mutex_unlock(&set->tag_list_lock);
1869 }
1870 
1871 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1872 				     struct request_queue *q)
1873 {
1874 	q->tag_set = set;
1875 
1876 	mutex_lock(&set->tag_list_lock);
1877 	list_add_tail(&q->tag_set_list, &set->tag_list);
1878 	blk_mq_update_tag_set_depth(set);
1879 	mutex_unlock(&set->tag_list_lock);
1880 }
1881 
1882 /*
1883  * It is the actual release handler for mq, but we do it from
1884  * request queue's release handler for avoiding use-after-free
1885  * and headache because q->mq_kobj shouldn't have been introduced,
1886  * but we can't group ctx/kctx kobj without it.
1887  */
1888 void blk_mq_release(struct request_queue *q)
1889 {
1890 	struct blk_mq_hw_ctx *hctx;
1891 	unsigned int i;
1892 
1893 	/* hctx kobj stays in hctx */
1894 	queue_for_each_hw_ctx(q, hctx, i)
1895 		kfree(hctx);
1896 
1897 	kfree(q->queue_hw_ctx);
1898 
1899 	/* ctx kobj stays in queue_ctx */
1900 	free_percpu(q->queue_ctx);
1901 }
1902 
1903 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1904 {
1905 	struct request_queue *uninit_q, *q;
1906 
1907 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1908 	if (!uninit_q)
1909 		return ERR_PTR(-ENOMEM);
1910 
1911 	q = blk_mq_init_allocated_queue(set, uninit_q);
1912 	if (IS_ERR(q))
1913 		blk_cleanup_queue(uninit_q);
1914 
1915 	return q;
1916 }
1917 EXPORT_SYMBOL(blk_mq_init_queue);
1918 
1919 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1920 						  struct request_queue *q)
1921 {
1922 	struct blk_mq_hw_ctx **hctxs;
1923 	struct blk_mq_ctx __percpu *ctx;
1924 	unsigned int *map;
1925 	int i;
1926 
1927 	ctx = alloc_percpu(struct blk_mq_ctx);
1928 	if (!ctx)
1929 		return ERR_PTR(-ENOMEM);
1930 
1931 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1932 			set->numa_node);
1933 
1934 	if (!hctxs)
1935 		goto err_percpu;
1936 
1937 	map = blk_mq_make_queue_map(set);
1938 	if (!map)
1939 		goto err_map;
1940 
1941 	for (i = 0; i < set->nr_hw_queues; i++) {
1942 		int node = blk_mq_hw_queue_to_node(map, i);
1943 
1944 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1945 					GFP_KERNEL, node);
1946 		if (!hctxs[i])
1947 			goto err_hctxs;
1948 
1949 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1950 						node))
1951 			goto err_hctxs;
1952 
1953 		atomic_set(&hctxs[i]->nr_active, 0);
1954 		hctxs[i]->numa_node = node;
1955 		hctxs[i]->queue_num = i;
1956 	}
1957 
1958 	/*
1959 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1960 	 * See blk_register_queue() for details.
1961 	 */
1962 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1963 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1964 		goto err_hctxs;
1965 
1966 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1967 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000);
1968 
1969 	q->nr_queues = nr_cpu_ids;
1970 	q->nr_hw_queues = set->nr_hw_queues;
1971 	q->mq_map = map;
1972 
1973 	q->queue_ctx = ctx;
1974 	q->queue_hw_ctx = hctxs;
1975 
1976 	q->mq_ops = set->ops;
1977 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1978 
1979 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1980 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1981 
1982 	q->sg_reserved_size = INT_MAX;
1983 
1984 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1985 	INIT_LIST_HEAD(&q->requeue_list);
1986 	spin_lock_init(&q->requeue_lock);
1987 
1988 	if (q->nr_hw_queues > 1)
1989 		blk_queue_make_request(q, blk_mq_make_request);
1990 	else
1991 		blk_queue_make_request(q, blk_sq_make_request);
1992 
1993 	/*
1994 	 * Do this after blk_queue_make_request() overrides it...
1995 	 */
1996 	q->nr_requests = set->queue_depth;
1997 
1998 	if (set->ops->complete)
1999 		blk_queue_softirq_done(q, set->ops->complete);
2000 
2001 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2002 
2003 	if (blk_mq_init_hw_queues(q, set))
2004 		goto err_hctxs;
2005 
2006 	mutex_lock(&all_q_mutex);
2007 	list_add_tail(&q->all_q_node, &all_q_list);
2008 	mutex_unlock(&all_q_mutex);
2009 
2010 	blk_mq_add_queue_tag_set(set, q);
2011 
2012 	blk_mq_map_swqueue(q);
2013 
2014 	return q;
2015 
2016 err_hctxs:
2017 	kfree(map);
2018 	for (i = 0; i < set->nr_hw_queues; i++) {
2019 		if (!hctxs[i])
2020 			break;
2021 		free_cpumask_var(hctxs[i]->cpumask);
2022 		kfree(hctxs[i]);
2023 	}
2024 err_map:
2025 	kfree(hctxs);
2026 err_percpu:
2027 	free_percpu(ctx);
2028 	return ERR_PTR(-ENOMEM);
2029 }
2030 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2031 
2032 void blk_mq_free_queue(struct request_queue *q)
2033 {
2034 	struct blk_mq_tag_set	*set = q->tag_set;
2035 
2036 	blk_mq_del_queue_tag_set(q);
2037 
2038 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2039 	blk_mq_free_hw_queues(q, set);
2040 
2041 	percpu_ref_exit(&q->mq_usage_counter);
2042 
2043 	kfree(q->mq_map);
2044 
2045 	q->mq_map = NULL;
2046 
2047 	mutex_lock(&all_q_mutex);
2048 	list_del_init(&q->all_q_node);
2049 	mutex_unlock(&all_q_mutex);
2050 }
2051 
2052 /* Basically redo blk_mq_init_queue with queue frozen */
2053 static void blk_mq_queue_reinit(struct request_queue *q)
2054 {
2055 	WARN_ON_ONCE(!q->mq_freeze_depth);
2056 
2057 	blk_mq_sysfs_unregister(q);
2058 
2059 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2060 
2061 	/*
2062 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2063 	 * we should change hctx numa_node according to new topology (this
2064 	 * involves free and re-allocate memory, worthy doing?)
2065 	 */
2066 
2067 	blk_mq_map_swqueue(q);
2068 
2069 	blk_mq_sysfs_register(q);
2070 }
2071 
2072 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2073 				      unsigned long action, void *hcpu)
2074 {
2075 	struct request_queue *q;
2076 
2077 	/*
2078 	 * Before new mappings are established, hotadded cpu might already
2079 	 * start handling requests. This doesn't break anything as we map
2080 	 * offline CPUs to first hardware queue. We will re-init the queue
2081 	 * below to get optimal settings.
2082 	 */
2083 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2084 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2085 		return NOTIFY_OK;
2086 
2087 	mutex_lock(&all_q_mutex);
2088 
2089 	/*
2090 	 * We need to freeze and reinit all existing queues.  Freezing
2091 	 * involves synchronous wait for an RCU grace period and doing it
2092 	 * one by one may take a long time.  Start freezing all queues in
2093 	 * one swoop and then wait for the completions so that freezing can
2094 	 * take place in parallel.
2095 	 */
2096 	list_for_each_entry(q, &all_q_list, all_q_node)
2097 		blk_mq_freeze_queue_start(q);
2098 	list_for_each_entry(q, &all_q_list, all_q_node) {
2099 		blk_mq_freeze_queue_wait(q);
2100 
2101 		/*
2102 		 * timeout handler can't touch hw queue during the
2103 		 * reinitialization
2104 		 */
2105 		del_timer_sync(&q->timeout);
2106 	}
2107 
2108 	list_for_each_entry(q, &all_q_list, all_q_node)
2109 		blk_mq_queue_reinit(q);
2110 
2111 	list_for_each_entry(q, &all_q_list, all_q_node)
2112 		blk_mq_unfreeze_queue(q);
2113 
2114 	mutex_unlock(&all_q_mutex);
2115 	return NOTIFY_OK;
2116 }
2117 
2118 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2119 {
2120 	int i;
2121 
2122 	for (i = 0; i < set->nr_hw_queues; i++) {
2123 		set->tags[i] = blk_mq_init_rq_map(set, i);
2124 		if (!set->tags[i])
2125 			goto out_unwind;
2126 	}
2127 
2128 	return 0;
2129 
2130 out_unwind:
2131 	while (--i >= 0)
2132 		blk_mq_free_rq_map(set, set->tags[i], i);
2133 
2134 	return -ENOMEM;
2135 }
2136 
2137 /*
2138  * Allocate the request maps associated with this tag_set. Note that this
2139  * may reduce the depth asked for, if memory is tight. set->queue_depth
2140  * will be updated to reflect the allocated depth.
2141  */
2142 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2143 {
2144 	unsigned int depth;
2145 	int err;
2146 
2147 	depth = set->queue_depth;
2148 	do {
2149 		err = __blk_mq_alloc_rq_maps(set);
2150 		if (!err)
2151 			break;
2152 
2153 		set->queue_depth >>= 1;
2154 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2155 			err = -ENOMEM;
2156 			break;
2157 		}
2158 	} while (set->queue_depth);
2159 
2160 	if (!set->queue_depth || err) {
2161 		pr_err("blk-mq: failed to allocate request map\n");
2162 		return -ENOMEM;
2163 	}
2164 
2165 	if (depth != set->queue_depth)
2166 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2167 						depth, set->queue_depth);
2168 
2169 	return 0;
2170 }
2171 
2172 /*
2173  * Alloc a tag set to be associated with one or more request queues.
2174  * May fail with EINVAL for various error conditions. May adjust the
2175  * requested depth down, if if it too large. In that case, the set
2176  * value will be stored in set->queue_depth.
2177  */
2178 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2179 {
2180 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2181 
2182 	if (!set->nr_hw_queues)
2183 		return -EINVAL;
2184 	if (!set->queue_depth)
2185 		return -EINVAL;
2186 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2187 		return -EINVAL;
2188 
2189 	if (!set->ops->queue_rq || !set->ops->map_queue)
2190 		return -EINVAL;
2191 
2192 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2193 		pr_info("blk-mq: reduced tag depth to %u\n",
2194 			BLK_MQ_MAX_DEPTH);
2195 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2196 	}
2197 
2198 	/*
2199 	 * If a crashdump is active, then we are potentially in a very
2200 	 * memory constrained environment. Limit us to 1 queue and
2201 	 * 64 tags to prevent using too much memory.
2202 	 */
2203 	if (is_kdump_kernel()) {
2204 		set->nr_hw_queues = 1;
2205 		set->queue_depth = min(64U, set->queue_depth);
2206 	}
2207 
2208 	set->tags = kmalloc_node(set->nr_hw_queues *
2209 				 sizeof(struct blk_mq_tags *),
2210 				 GFP_KERNEL, set->numa_node);
2211 	if (!set->tags)
2212 		return -ENOMEM;
2213 
2214 	if (blk_mq_alloc_rq_maps(set))
2215 		goto enomem;
2216 
2217 	mutex_init(&set->tag_list_lock);
2218 	INIT_LIST_HEAD(&set->tag_list);
2219 
2220 	return 0;
2221 enomem:
2222 	kfree(set->tags);
2223 	set->tags = NULL;
2224 	return -ENOMEM;
2225 }
2226 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2227 
2228 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2229 {
2230 	int i;
2231 
2232 	for (i = 0; i < set->nr_hw_queues; i++) {
2233 		if (set->tags[i])
2234 			blk_mq_free_rq_map(set, set->tags[i], i);
2235 	}
2236 
2237 	kfree(set->tags);
2238 	set->tags = NULL;
2239 }
2240 EXPORT_SYMBOL(blk_mq_free_tag_set);
2241 
2242 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2243 {
2244 	struct blk_mq_tag_set *set = q->tag_set;
2245 	struct blk_mq_hw_ctx *hctx;
2246 	int i, ret;
2247 
2248 	if (!set || nr > set->queue_depth)
2249 		return -EINVAL;
2250 
2251 	ret = 0;
2252 	queue_for_each_hw_ctx(q, hctx, i) {
2253 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2254 		if (ret)
2255 			break;
2256 	}
2257 
2258 	if (!ret)
2259 		q->nr_requests = nr;
2260 
2261 	return ret;
2262 }
2263 
2264 void blk_mq_disable_hotplug(void)
2265 {
2266 	mutex_lock(&all_q_mutex);
2267 }
2268 
2269 void blk_mq_enable_hotplug(void)
2270 {
2271 	mutex_unlock(&all_q_mutex);
2272 }
2273 
2274 static int __init blk_mq_init(void)
2275 {
2276 	blk_mq_cpu_init();
2277 
2278 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2279 
2280 	return 0;
2281 }
2282 subsys_initcall(blk_mq_init);
2283