1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 32 #include <trace/events/block.h> 33 34 #include <linux/blk-mq.h> 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-mq-tag.h" 40 #include "blk-pm.h" 41 #include "blk-stat.h" 42 #include "blk-mq-sched.h" 43 #include "blk-rq-qos.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 47 static void blk_mq_poll_stats_start(struct request_queue *q); 48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 49 50 static int blk_mq_poll_stats_bkt(const struct request *rq) 51 { 52 int ddir, sectors, bucket; 53 54 ddir = rq_data_dir(rq); 55 sectors = blk_rq_stats_sectors(rq); 56 57 bucket = ddir + 2 * ilog2(sectors); 58 59 if (bucket < 0) 60 return -1; 61 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 62 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 63 64 return bucket; 65 } 66 67 #define BLK_QC_T_SHIFT 16 68 #define BLK_QC_T_INTERNAL (1U << 31) 69 70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 71 blk_qc_t qc) 72 { 73 return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT]; 74 } 75 76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 77 blk_qc_t qc) 78 { 79 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 80 81 if (qc & BLK_QC_T_INTERNAL) 82 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 83 return blk_mq_tag_to_rq(hctx->tags, tag); 84 } 85 86 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 87 { 88 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 89 (rq->tag != -1 ? 90 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 91 } 92 93 /* 94 * Check if any of the ctx, dispatch list or elevator 95 * have pending work in this hardware queue. 96 */ 97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 98 { 99 return !list_empty_careful(&hctx->dispatch) || 100 sbitmap_any_bit_set(&hctx->ctx_map) || 101 blk_mq_sched_has_work(hctx); 102 } 103 104 /* 105 * Mark this ctx as having pending work in this hardware queue 106 */ 107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 108 struct blk_mq_ctx *ctx) 109 { 110 const int bit = ctx->index_hw[hctx->type]; 111 112 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 113 sbitmap_set_bit(&hctx->ctx_map, bit); 114 } 115 116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 117 struct blk_mq_ctx *ctx) 118 { 119 const int bit = ctx->index_hw[hctx->type]; 120 121 sbitmap_clear_bit(&hctx->ctx_map, bit); 122 } 123 124 struct mq_inflight { 125 struct block_device *part; 126 unsigned int inflight[2]; 127 }; 128 129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 130 struct request *rq, void *priv, 131 bool reserved) 132 { 133 struct mq_inflight *mi = priv; 134 135 if ((!mi->part->bd_partno || rq->part == mi->part) && 136 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 137 mi->inflight[rq_data_dir(rq)]++; 138 139 return true; 140 } 141 142 unsigned int blk_mq_in_flight(struct request_queue *q, 143 struct block_device *part) 144 { 145 struct mq_inflight mi = { .part = part }; 146 147 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 148 149 return mi.inflight[0] + mi.inflight[1]; 150 } 151 152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 153 unsigned int inflight[2]) 154 { 155 struct mq_inflight mi = { .part = part }; 156 157 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 158 inflight[0] = mi.inflight[0]; 159 inflight[1] = mi.inflight[1]; 160 } 161 162 void blk_freeze_queue_start(struct request_queue *q) 163 { 164 mutex_lock(&q->mq_freeze_lock); 165 if (++q->mq_freeze_depth == 1) { 166 percpu_ref_kill(&q->q_usage_counter); 167 mutex_unlock(&q->mq_freeze_lock); 168 if (queue_is_mq(q)) 169 blk_mq_run_hw_queues(q, false); 170 } else { 171 mutex_unlock(&q->mq_freeze_lock); 172 } 173 } 174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 175 176 void blk_mq_freeze_queue_wait(struct request_queue *q) 177 { 178 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 179 } 180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 181 182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 183 unsigned long timeout) 184 { 185 return wait_event_timeout(q->mq_freeze_wq, 186 percpu_ref_is_zero(&q->q_usage_counter), 187 timeout); 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 190 191 /* 192 * Guarantee no request is in use, so we can change any data structure of 193 * the queue afterward. 194 */ 195 void blk_freeze_queue(struct request_queue *q) 196 { 197 /* 198 * In the !blk_mq case we are only calling this to kill the 199 * q_usage_counter, otherwise this increases the freeze depth 200 * and waits for it to return to zero. For this reason there is 201 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 202 * exported to drivers as the only user for unfreeze is blk_mq. 203 */ 204 blk_freeze_queue_start(q); 205 blk_mq_freeze_queue_wait(q); 206 } 207 208 void blk_mq_freeze_queue(struct request_queue *q) 209 { 210 /* 211 * ...just an alias to keep freeze and unfreeze actions balanced 212 * in the blk_mq_* namespace 213 */ 214 blk_freeze_queue(q); 215 } 216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 217 218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 219 { 220 mutex_lock(&q->mq_freeze_lock); 221 if (force_atomic) 222 q->q_usage_counter.data->force_atomic = true; 223 q->mq_freeze_depth--; 224 WARN_ON_ONCE(q->mq_freeze_depth < 0); 225 if (!q->mq_freeze_depth) { 226 percpu_ref_resurrect(&q->q_usage_counter); 227 wake_up_all(&q->mq_freeze_wq); 228 } 229 mutex_unlock(&q->mq_freeze_lock); 230 } 231 232 void blk_mq_unfreeze_queue(struct request_queue *q) 233 { 234 __blk_mq_unfreeze_queue(q, false); 235 } 236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 237 238 /* 239 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 240 * mpt3sas driver such that this function can be removed. 241 */ 242 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 243 { 244 unsigned long flags; 245 246 spin_lock_irqsave(&q->queue_lock, flags); 247 if (!q->quiesce_depth++) 248 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 249 spin_unlock_irqrestore(&q->queue_lock, flags); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 252 253 /** 254 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 255 * @q: request queue. 256 * 257 * Note: it is driver's responsibility for making sure that quiesce has 258 * been started. 259 */ 260 void blk_mq_wait_quiesce_done(struct request_queue *q) 261 { 262 struct blk_mq_hw_ctx *hctx; 263 unsigned int i; 264 bool rcu = false; 265 266 queue_for_each_hw_ctx(q, hctx, i) { 267 if (hctx->flags & BLK_MQ_F_BLOCKING) 268 synchronize_srcu(hctx->srcu); 269 else 270 rcu = true; 271 } 272 if (rcu) 273 synchronize_rcu(); 274 } 275 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 276 277 /** 278 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 279 * @q: request queue. 280 * 281 * Note: this function does not prevent that the struct request end_io() 282 * callback function is invoked. Once this function is returned, we make 283 * sure no dispatch can happen until the queue is unquiesced via 284 * blk_mq_unquiesce_queue(). 285 */ 286 void blk_mq_quiesce_queue(struct request_queue *q) 287 { 288 blk_mq_quiesce_queue_nowait(q); 289 blk_mq_wait_quiesce_done(q); 290 } 291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 292 293 /* 294 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 295 * @q: request queue. 296 * 297 * This function recovers queue into the state before quiescing 298 * which is done by blk_mq_quiesce_queue. 299 */ 300 void blk_mq_unquiesce_queue(struct request_queue *q) 301 { 302 unsigned long flags; 303 bool run_queue = false; 304 305 spin_lock_irqsave(&q->queue_lock, flags); 306 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 307 ; 308 } else if (!--q->quiesce_depth) { 309 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 310 run_queue = true; 311 } 312 spin_unlock_irqrestore(&q->queue_lock, flags); 313 314 /* dispatch requests which are inserted during quiescing */ 315 if (run_queue) 316 blk_mq_run_hw_queues(q, true); 317 } 318 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 319 320 void blk_mq_wake_waiters(struct request_queue *q) 321 { 322 struct blk_mq_hw_ctx *hctx; 323 unsigned int i; 324 325 queue_for_each_hw_ctx(q, hctx, i) 326 if (blk_mq_hw_queue_mapped(hctx)) 327 blk_mq_tag_wakeup_all(hctx->tags, true); 328 } 329 330 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 331 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 332 { 333 struct blk_mq_ctx *ctx = data->ctx; 334 struct blk_mq_hw_ctx *hctx = data->hctx; 335 struct request_queue *q = data->q; 336 struct request *rq = tags->static_rqs[tag]; 337 338 rq->q = q; 339 rq->mq_ctx = ctx; 340 rq->mq_hctx = hctx; 341 rq->cmd_flags = data->cmd_flags; 342 343 if (data->flags & BLK_MQ_REQ_PM) 344 data->rq_flags |= RQF_PM; 345 if (blk_queue_io_stat(q)) 346 data->rq_flags |= RQF_IO_STAT; 347 rq->rq_flags = data->rq_flags; 348 349 if (!(data->rq_flags & RQF_ELV)) { 350 rq->tag = tag; 351 rq->internal_tag = BLK_MQ_NO_TAG; 352 } else { 353 rq->tag = BLK_MQ_NO_TAG; 354 rq->internal_tag = tag; 355 } 356 rq->timeout = 0; 357 358 if (blk_mq_need_time_stamp(rq)) 359 rq->start_time_ns = ktime_get_ns(); 360 else 361 rq->start_time_ns = 0; 362 rq->rq_disk = NULL; 363 rq->part = NULL; 364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 365 rq->alloc_time_ns = alloc_time_ns; 366 #endif 367 rq->io_start_time_ns = 0; 368 rq->stats_sectors = 0; 369 rq->nr_phys_segments = 0; 370 #if defined(CONFIG_BLK_DEV_INTEGRITY) 371 rq->nr_integrity_segments = 0; 372 #endif 373 rq->end_io = NULL; 374 rq->end_io_data = NULL; 375 376 blk_crypto_rq_set_defaults(rq); 377 INIT_LIST_HEAD(&rq->queuelist); 378 /* tag was already set */ 379 WRITE_ONCE(rq->deadline, 0); 380 refcount_set(&rq->ref, 1); 381 382 if (rq->rq_flags & RQF_ELV) { 383 struct elevator_queue *e = data->q->elevator; 384 385 rq->elv.icq = NULL; 386 INIT_HLIST_NODE(&rq->hash); 387 RB_CLEAR_NODE(&rq->rb_node); 388 389 if (!op_is_flush(data->cmd_flags) && 390 e->type->ops.prepare_request) { 391 if (e->type->icq_cache) 392 blk_mq_sched_assign_ioc(rq); 393 394 e->type->ops.prepare_request(rq); 395 rq->rq_flags |= RQF_ELVPRIV; 396 } 397 } 398 399 return rq; 400 } 401 402 static inline struct request * 403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 404 u64 alloc_time_ns) 405 { 406 unsigned int tag, tag_offset; 407 struct blk_mq_tags *tags; 408 struct request *rq; 409 unsigned long tag_mask; 410 int i, nr = 0; 411 412 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 413 if (unlikely(!tag_mask)) 414 return NULL; 415 416 tags = blk_mq_tags_from_data(data); 417 for (i = 0; tag_mask; i++) { 418 if (!(tag_mask & (1UL << i))) 419 continue; 420 tag = tag_offset + i; 421 prefetch(tags->static_rqs[tag]); 422 tag_mask &= ~(1UL << i); 423 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 424 rq_list_add(data->cached_rq, rq); 425 nr++; 426 } 427 /* caller already holds a reference, add for remainder */ 428 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 429 data->nr_tags -= nr; 430 431 return rq_list_pop(data->cached_rq); 432 } 433 434 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 435 { 436 struct request_queue *q = data->q; 437 u64 alloc_time_ns = 0; 438 struct request *rq; 439 unsigned int tag; 440 441 /* alloc_time includes depth and tag waits */ 442 if (blk_queue_rq_alloc_time(q)) 443 alloc_time_ns = ktime_get_ns(); 444 445 if (data->cmd_flags & REQ_NOWAIT) 446 data->flags |= BLK_MQ_REQ_NOWAIT; 447 448 if (q->elevator) { 449 struct elevator_queue *e = q->elevator; 450 451 data->rq_flags |= RQF_ELV; 452 453 /* 454 * Flush/passthrough requests are special and go directly to the 455 * dispatch list. Don't include reserved tags in the 456 * limiting, as it isn't useful. 457 */ 458 if (!op_is_flush(data->cmd_flags) && 459 !blk_op_is_passthrough(data->cmd_flags) && 460 e->type->ops.limit_depth && 461 !(data->flags & BLK_MQ_REQ_RESERVED)) 462 e->type->ops.limit_depth(data->cmd_flags, data); 463 } 464 465 retry: 466 data->ctx = blk_mq_get_ctx(q); 467 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 468 if (!(data->rq_flags & RQF_ELV)) 469 blk_mq_tag_busy(data->hctx); 470 471 /* 472 * Try batched alloc if we want more than 1 tag. 473 */ 474 if (data->nr_tags > 1) { 475 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 476 if (rq) 477 return rq; 478 data->nr_tags = 1; 479 } 480 481 /* 482 * Waiting allocations only fail because of an inactive hctx. In that 483 * case just retry the hctx assignment and tag allocation as CPU hotplug 484 * should have migrated us to an online CPU by now. 485 */ 486 tag = blk_mq_get_tag(data); 487 if (tag == BLK_MQ_NO_TAG) { 488 if (data->flags & BLK_MQ_REQ_NOWAIT) 489 return NULL; 490 /* 491 * Give up the CPU and sleep for a random short time to 492 * ensure that thread using a realtime scheduling class 493 * are migrated off the CPU, and thus off the hctx that 494 * is going away. 495 */ 496 msleep(3); 497 goto retry; 498 } 499 500 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 501 alloc_time_ns); 502 } 503 504 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 505 blk_mq_req_flags_t flags) 506 { 507 struct blk_mq_alloc_data data = { 508 .q = q, 509 .flags = flags, 510 .cmd_flags = op, 511 .nr_tags = 1, 512 }; 513 struct request *rq; 514 int ret; 515 516 ret = blk_queue_enter(q, flags); 517 if (ret) 518 return ERR_PTR(ret); 519 520 rq = __blk_mq_alloc_requests(&data); 521 if (!rq) 522 goto out_queue_exit; 523 rq->__data_len = 0; 524 rq->__sector = (sector_t) -1; 525 rq->bio = rq->biotail = NULL; 526 return rq; 527 out_queue_exit: 528 blk_queue_exit(q); 529 return ERR_PTR(-EWOULDBLOCK); 530 } 531 EXPORT_SYMBOL(blk_mq_alloc_request); 532 533 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 534 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 535 { 536 struct blk_mq_alloc_data data = { 537 .q = q, 538 .flags = flags, 539 .cmd_flags = op, 540 .nr_tags = 1, 541 }; 542 u64 alloc_time_ns = 0; 543 unsigned int cpu; 544 unsigned int tag; 545 int ret; 546 547 /* alloc_time includes depth and tag waits */ 548 if (blk_queue_rq_alloc_time(q)) 549 alloc_time_ns = ktime_get_ns(); 550 551 /* 552 * If the tag allocator sleeps we could get an allocation for a 553 * different hardware context. No need to complicate the low level 554 * allocator for this for the rare use case of a command tied to 555 * a specific queue. 556 */ 557 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 558 return ERR_PTR(-EINVAL); 559 560 if (hctx_idx >= q->nr_hw_queues) 561 return ERR_PTR(-EIO); 562 563 ret = blk_queue_enter(q, flags); 564 if (ret) 565 return ERR_PTR(ret); 566 567 /* 568 * Check if the hardware context is actually mapped to anything. 569 * If not tell the caller that it should skip this queue. 570 */ 571 ret = -EXDEV; 572 data.hctx = q->queue_hw_ctx[hctx_idx]; 573 if (!blk_mq_hw_queue_mapped(data.hctx)) 574 goto out_queue_exit; 575 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 576 data.ctx = __blk_mq_get_ctx(q, cpu); 577 578 if (!q->elevator) 579 blk_mq_tag_busy(data.hctx); 580 else 581 data.rq_flags |= RQF_ELV; 582 583 ret = -EWOULDBLOCK; 584 tag = blk_mq_get_tag(&data); 585 if (tag == BLK_MQ_NO_TAG) 586 goto out_queue_exit; 587 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 588 alloc_time_ns); 589 590 out_queue_exit: 591 blk_queue_exit(q); 592 return ERR_PTR(ret); 593 } 594 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 595 596 static void __blk_mq_free_request(struct request *rq) 597 { 598 struct request_queue *q = rq->q; 599 struct blk_mq_ctx *ctx = rq->mq_ctx; 600 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 601 const int sched_tag = rq->internal_tag; 602 603 blk_crypto_free_request(rq); 604 blk_pm_mark_last_busy(rq); 605 rq->mq_hctx = NULL; 606 if (rq->tag != BLK_MQ_NO_TAG) 607 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 608 if (sched_tag != BLK_MQ_NO_TAG) 609 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 610 blk_mq_sched_restart(hctx); 611 blk_queue_exit(q); 612 } 613 614 void blk_mq_free_request(struct request *rq) 615 { 616 struct request_queue *q = rq->q; 617 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 618 619 if (rq->rq_flags & RQF_ELVPRIV) { 620 struct elevator_queue *e = q->elevator; 621 622 if (e->type->ops.finish_request) 623 e->type->ops.finish_request(rq); 624 if (rq->elv.icq) { 625 put_io_context(rq->elv.icq->ioc); 626 rq->elv.icq = NULL; 627 } 628 } 629 630 if (rq->rq_flags & RQF_MQ_INFLIGHT) 631 __blk_mq_dec_active_requests(hctx); 632 633 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 634 laptop_io_completion(q->disk->bdi); 635 636 rq_qos_done(q, rq); 637 638 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 639 if (refcount_dec_and_test(&rq->ref)) 640 __blk_mq_free_request(rq); 641 } 642 EXPORT_SYMBOL_GPL(blk_mq_free_request); 643 644 void blk_mq_free_plug_rqs(struct blk_plug *plug) 645 { 646 struct request *rq; 647 648 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 649 blk_mq_free_request(rq); 650 } 651 652 static void req_bio_endio(struct request *rq, struct bio *bio, 653 unsigned int nbytes, blk_status_t error) 654 { 655 if (unlikely(error)) { 656 bio->bi_status = error; 657 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 658 /* 659 * Partial zone append completions cannot be supported as the 660 * BIO fragments may end up not being written sequentially. 661 */ 662 if (bio->bi_iter.bi_size != nbytes) 663 bio->bi_status = BLK_STS_IOERR; 664 else 665 bio->bi_iter.bi_sector = rq->__sector; 666 } 667 668 bio_advance(bio, nbytes); 669 670 if (unlikely(rq->rq_flags & RQF_QUIET)) 671 bio_set_flag(bio, BIO_QUIET); 672 /* don't actually finish bio if it's part of flush sequence */ 673 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 674 bio_endio(bio); 675 } 676 677 static void blk_account_io_completion(struct request *req, unsigned int bytes) 678 { 679 if (req->part && blk_do_io_stat(req)) { 680 const int sgrp = op_stat_group(req_op(req)); 681 682 part_stat_lock(); 683 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 684 part_stat_unlock(); 685 } 686 } 687 688 /** 689 * blk_update_request - Complete multiple bytes without completing the request 690 * @req: the request being processed 691 * @error: block status code 692 * @nr_bytes: number of bytes to complete for @req 693 * 694 * Description: 695 * Ends I/O on a number of bytes attached to @req, but doesn't complete 696 * the request structure even if @req doesn't have leftover. 697 * If @req has leftover, sets it up for the next range of segments. 698 * 699 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 700 * %false return from this function. 701 * 702 * Note: 703 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 704 * except in the consistency check at the end of this function. 705 * 706 * Return: 707 * %false - this request doesn't have any more data 708 * %true - this request has more data 709 **/ 710 bool blk_update_request(struct request *req, blk_status_t error, 711 unsigned int nr_bytes) 712 { 713 int total_bytes; 714 715 trace_block_rq_complete(req, error, nr_bytes); 716 717 if (!req->bio) 718 return false; 719 720 #ifdef CONFIG_BLK_DEV_INTEGRITY 721 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 722 error == BLK_STS_OK) 723 req->q->integrity.profile->complete_fn(req, nr_bytes); 724 #endif 725 726 if (unlikely(error && !blk_rq_is_passthrough(req) && 727 !(req->rq_flags & RQF_QUIET))) 728 blk_print_req_error(req, error); 729 730 blk_account_io_completion(req, nr_bytes); 731 732 total_bytes = 0; 733 while (req->bio) { 734 struct bio *bio = req->bio; 735 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 736 737 if (bio_bytes == bio->bi_iter.bi_size) 738 req->bio = bio->bi_next; 739 740 /* Completion has already been traced */ 741 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 742 req_bio_endio(req, bio, bio_bytes, error); 743 744 total_bytes += bio_bytes; 745 nr_bytes -= bio_bytes; 746 747 if (!nr_bytes) 748 break; 749 } 750 751 /* 752 * completely done 753 */ 754 if (!req->bio) { 755 /* 756 * Reset counters so that the request stacking driver 757 * can find how many bytes remain in the request 758 * later. 759 */ 760 req->__data_len = 0; 761 return false; 762 } 763 764 req->__data_len -= total_bytes; 765 766 /* update sector only for requests with clear definition of sector */ 767 if (!blk_rq_is_passthrough(req)) 768 req->__sector += total_bytes >> 9; 769 770 /* mixed attributes always follow the first bio */ 771 if (req->rq_flags & RQF_MIXED_MERGE) { 772 req->cmd_flags &= ~REQ_FAILFAST_MASK; 773 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 774 } 775 776 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 777 /* 778 * If total number of sectors is less than the first segment 779 * size, something has gone terribly wrong. 780 */ 781 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 782 blk_dump_rq_flags(req, "request botched"); 783 req->__data_len = blk_rq_cur_bytes(req); 784 } 785 786 /* recalculate the number of segments */ 787 req->nr_phys_segments = blk_recalc_rq_segments(req); 788 } 789 790 return true; 791 } 792 EXPORT_SYMBOL_GPL(blk_update_request); 793 794 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 795 { 796 if (rq->rq_flags & RQF_STATS) { 797 blk_mq_poll_stats_start(rq->q); 798 blk_stat_add(rq, now); 799 } 800 801 blk_mq_sched_completed_request(rq, now); 802 blk_account_io_done(rq, now); 803 } 804 805 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 806 { 807 if (blk_mq_need_time_stamp(rq)) 808 __blk_mq_end_request_acct(rq, ktime_get_ns()); 809 810 if (rq->end_io) { 811 rq_qos_done(rq->q, rq); 812 rq->end_io(rq, error); 813 } else { 814 blk_mq_free_request(rq); 815 } 816 } 817 EXPORT_SYMBOL(__blk_mq_end_request); 818 819 void blk_mq_end_request(struct request *rq, blk_status_t error) 820 { 821 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 822 BUG(); 823 __blk_mq_end_request(rq, error); 824 } 825 EXPORT_SYMBOL(blk_mq_end_request); 826 827 #define TAG_COMP_BATCH 32 828 829 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 830 int *tag_array, int nr_tags) 831 { 832 struct request_queue *q = hctx->queue; 833 834 /* 835 * All requests should have been marked as RQF_MQ_INFLIGHT, so 836 * update hctx->nr_active in batch 837 */ 838 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 839 __blk_mq_sub_active_requests(hctx, nr_tags); 840 841 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 842 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 843 } 844 845 void blk_mq_end_request_batch(struct io_comp_batch *iob) 846 { 847 int tags[TAG_COMP_BATCH], nr_tags = 0; 848 struct blk_mq_hw_ctx *cur_hctx = NULL; 849 struct request *rq; 850 u64 now = 0; 851 852 if (iob->need_ts) 853 now = ktime_get_ns(); 854 855 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 856 prefetch(rq->bio); 857 prefetch(rq->rq_next); 858 859 blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq)); 860 if (iob->need_ts) 861 __blk_mq_end_request_acct(rq, now); 862 863 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 864 if (!refcount_dec_and_test(&rq->ref)) 865 continue; 866 867 blk_crypto_free_request(rq); 868 blk_pm_mark_last_busy(rq); 869 rq_qos_done(rq->q, rq); 870 871 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 872 if (cur_hctx) 873 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 874 nr_tags = 0; 875 cur_hctx = rq->mq_hctx; 876 } 877 tags[nr_tags++] = rq->tag; 878 } 879 880 if (nr_tags) 881 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 882 } 883 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 884 885 static void blk_complete_reqs(struct llist_head *list) 886 { 887 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 888 struct request *rq, *next; 889 890 llist_for_each_entry_safe(rq, next, entry, ipi_list) 891 rq->q->mq_ops->complete(rq); 892 } 893 894 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 895 { 896 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 897 } 898 899 static int blk_softirq_cpu_dead(unsigned int cpu) 900 { 901 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 902 return 0; 903 } 904 905 static void __blk_mq_complete_request_remote(void *data) 906 { 907 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 908 } 909 910 static inline bool blk_mq_complete_need_ipi(struct request *rq) 911 { 912 int cpu = raw_smp_processor_id(); 913 914 if (!IS_ENABLED(CONFIG_SMP) || 915 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 916 return false; 917 /* 918 * With force threaded interrupts enabled, raising softirq from an SMP 919 * function call will always result in waking the ksoftirqd thread. 920 * This is probably worse than completing the request on a different 921 * cache domain. 922 */ 923 if (force_irqthreads()) 924 return false; 925 926 /* same CPU or cache domain? Complete locally */ 927 if (cpu == rq->mq_ctx->cpu || 928 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 929 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 930 return false; 931 932 /* don't try to IPI to an offline CPU */ 933 return cpu_online(rq->mq_ctx->cpu); 934 } 935 936 static void blk_mq_complete_send_ipi(struct request *rq) 937 { 938 struct llist_head *list; 939 unsigned int cpu; 940 941 cpu = rq->mq_ctx->cpu; 942 list = &per_cpu(blk_cpu_done, cpu); 943 if (llist_add(&rq->ipi_list, list)) { 944 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 945 smp_call_function_single_async(cpu, &rq->csd); 946 } 947 } 948 949 static void blk_mq_raise_softirq(struct request *rq) 950 { 951 struct llist_head *list; 952 953 preempt_disable(); 954 list = this_cpu_ptr(&blk_cpu_done); 955 if (llist_add(&rq->ipi_list, list)) 956 raise_softirq(BLOCK_SOFTIRQ); 957 preempt_enable(); 958 } 959 960 bool blk_mq_complete_request_remote(struct request *rq) 961 { 962 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 963 964 /* 965 * For a polled request, always complete locallly, it's pointless 966 * to redirect the completion. 967 */ 968 if (rq->cmd_flags & REQ_POLLED) 969 return false; 970 971 if (blk_mq_complete_need_ipi(rq)) { 972 blk_mq_complete_send_ipi(rq); 973 return true; 974 } 975 976 if (rq->q->nr_hw_queues == 1) { 977 blk_mq_raise_softirq(rq); 978 return true; 979 } 980 return false; 981 } 982 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 983 984 /** 985 * blk_mq_complete_request - end I/O on a request 986 * @rq: the request being processed 987 * 988 * Description: 989 * Complete a request by scheduling the ->complete_rq operation. 990 **/ 991 void blk_mq_complete_request(struct request *rq) 992 { 993 if (!blk_mq_complete_request_remote(rq)) 994 rq->q->mq_ops->complete(rq); 995 } 996 EXPORT_SYMBOL(blk_mq_complete_request); 997 998 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 999 __releases(hctx->srcu) 1000 { 1001 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 1002 rcu_read_unlock(); 1003 else 1004 srcu_read_unlock(hctx->srcu, srcu_idx); 1005 } 1006 1007 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 1008 __acquires(hctx->srcu) 1009 { 1010 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1011 /* shut up gcc false positive */ 1012 *srcu_idx = 0; 1013 rcu_read_lock(); 1014 } else 1015 *srcu_idx = srcu_read_lock(hctx->srcu); 1016 } 1017 1018 /** 1019 * blk_mq_start_request - Start processing a request 1020 * @rq: Pointer to request to be started 1021 * 1022 * Function used by device drivers to notify the block layer that a request 1023 * is going to be processed now, so blk layer can do proper initializations 1024 * such as starting the timeout timer. 1025 */ 1026 void blk_mq_start_request(struct request *rq) 1027 { 1028 struct request_queue *q = rq->q; 1029 1030 trace_block_rq_issue(rq); 1031 1032 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1033 u64 start_time; 1034 #ifdef CONFIG_BLK_CGROUP 1035 if (rq->bio) 1036 start_time = bio_issue_time(&rq->bio->bi_issue); 1037 else 1038 #endif 1039 start_time = ktime_get_ns(); 1040 rq->io_start_time_ns = start_time; 1041 rq->stats_sectors = blk_rq_sectors(rq); 1042 rq->rq_flags |= RQF_STATS; 1043 rq_qos_issue(q, rq); 1044 } 1045 1046 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1047 1048 blk_add_timer(rq); 1049 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1050 1051 #ifdef CONFIG_BLK_DEV_INTEGRITY 1052 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1053 q->integrity.profile->prepare_fn(rq); 1054 #endif 1055 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1056 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1057 } 1058 EXPORT_SYMBOL(blk_mq_start_request); 1059 1060 static void __blk_mq_requeue_request(struct request *rq) 1061 { 1062 struct request_queue *q = rq->q; 1063 1064 blk_mq_put_driver_tag(rq); 1065 1066 trace_block_rq_requeue(rq); 1067 rq_qos_requeue(q, rq); 1068 1069 if (blk_mq_request_started(rq)) { 1070 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1071 rq->rq_flags &= ~RQF_TIMED_OUT; 1072 } 1073 } 1074 1075 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1076 { 1077 __blk_mq_requeue_request(rq); 1078 1079 /* this request will be re-inserted to io scheduler queue */ 1080 blk_mq_sched_requeue_request(rq); 1081 1082 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1083 } 1084 EXPORT_SYMBOL(blk_mq_requeue_request); 1085 1086 static void blk_mq_requeue_work(struct work_struct *work) 1087 { 1088 struct request_queue *q = 1089 container_of(work, struct request_queue, requeue_work.work); 1090 LIST_HEAD(rq_list); 1091 struct request *rq, *next; 1092 1093 spin_lock_irq(&q->requeue_lock); 1094 list_splice_init(&q->requeue_list, &rq_list); 1095 spin_unlock_irq(&q->requeue_lock); 1096 1097 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1098 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1099 continue; 1100 1101 rq->rq_flags &= ~RQF_SOFTBARRIER; 1102 list_del_init(&rq->queuelist); 1103 /* 1104 * If RQF_DONTPREP, rq has contained some driver specific 1105 * data, so insert it to hctx dispatch list to avoid any 1106 * merge. 1107 */ 1108 if (rq->rq_flags & RQF_DONTPREP) 1109 blk_mq_request_bypass_insert(rq, false, false); 1110 else 1111 blk_mq_sched_insert_request(rq, true, false, false); 1112 } 1113 1114 while (!list_empty(&rq_list)) { 1115 rq = list_entry(rq_list.next, struct request, queuelist); 1116 list_del_init(&rq->queuelist); 1117 blk_mq_sched_insert_request(rq, false, false, false); 1118 } 1119 1120 blk_mq_run_hw_queues(q, false); 1121 } 1122 1123 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1124 bool kick_requeue_list) 1125 { 1126 struct request_queue *q = rq->q; 1127 unsigned long flags; 1128 1129 /* 1130 * We abuse this flag that is otherwise used by the I/O scheduler to 1131 * request head insertion from the workqueue. 1132 */ 1133 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1134 1135 spin_lock_irqsave(&q->requeue_lock, flags); 1136 if (at_head) { 1137 rq->rq_flags |= RQF_SOFTBARRIER; 1138 list_add(&rq->queuelist, &q->requeue_list); 1139 } else { 1140 list_add_tail(&rq->queuelist, &q->requeue_list); 1141 } 1142 spin_unlock_irqrestore(&q->requeue_lock, flags); 1143 1144 if (kick_requeue_list) 1145 blk_mq_kick_requeue_list(q); 1146 } 1147 1148 void blk_mq_kick_requeue_list(struct request_queue *q) 1149 { 1150 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1151 } 1152 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1153 1154 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1155 unsigned long msecs) 1156 { 1157 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1158 msecs_to_jiffies(msecs)); 1159 } 1160 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1161 1162 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 1163 void *priv, bool reserved) 1164 { 1165 /* 1166 * If we find a request that isn't idle and the queue matches, 1167 * we know the queue is busy. Return false to stop the iteration. 1168 */ 1169 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 1170 bool *busy = priv; 1171 1172 *busy = true; 1173 return false; 1174 } 1175 1176 return true; 1177 } 1178 1179 bool blk_mq_queue_inflight(struct request_queue *q) 1180 { 1181 bool busy = false; 1182 1183 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1184 return busy; 1185 } 1186 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1187 1188 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 1189 { 1190 req->rq_flags |= RQF_TIMED_OUT; 1191 if (req->q->mq_ops->timeout) { 1192 enum blk_eh_timer_return ret; 1193 1194 ret = req->q->mq_ops->timeout(req, reserved); 1195 if (ret == BLK_EH_DONE) 1196 return; 1197 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1198 } 1199 1200 blk_add_timer(req); 1201 } 1202 1203 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1204 { 1205 unsigned long deadline; 1206 1207 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1208 return false; 1209 if (rq->rq_flags & RQF_TIMED_OUT) 1210 return false; 1211 1212 deadline = READ_ONCE(rq->deadline); 1213 if (time_after_eq(jiffies, deadline)) 1214 return true; 1215 1216 if (*next == 0) 1217 *next = deadline; 1218 else if (time_after(*next, deadline)) 1219 *next = deadline; 1220 return false; 1221 } 1222 1223 void blk_mq_put_rq_ref(struct request *rq) 1224 { 1225 if (is_flush_rq(rq)) 1226 rq->end_io(rq, 0); 1227 else if (refcount_dec_and_test(&rq->ref)) 1228 __blk_mq_free_request(rq); 1229 } 1230 1231 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 1232 struct request *rq, void *priv, bool reserved) 1233 { 1234 unsigned long *next = priv; 1235 1236 /* 1237 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1238 * be reallocated underneath the timeout handler's processing, then 1239 * the expire check is reliable. If the request is not expired, then 1240 * it was completed and reallocated as a new request after returning 1241 * from blk_mq_check_expired(). 1242 */ 1243 if (blk_mq_req_expired(rq, next)) 1244 blk_mq_rq_timed_out(rq, reserved); 1245 return true; 1246 } 1247 1248 static void blk_mq_timeout_work(struct work_struct *work) 1249 { 1250 struct request_queue *q = 1251 container_of(work, struct request_queue, timeout_work); 1252 unsigned long next = 0; 1253 struct blk_mq_hw_ctx *hctx; 1254 int i; 1255 1256 /* A deadlock might occur if a request is stuck requiring a 1257 * timeout at the same time a queue freeze is waiting 1258 * completion, since the timeout code would not be able to 1259 * acquire the queue reference here. 1260 * 1261 * That's why we don't use blk_queue_enter here; instead, we use 1262 * percpu_ref_tryget directly, because we need to be able to 1263 * obtain a reference even in the short window between the queue 1264 * starting to freeze, by dropping the first reference in 1265 * blk_freeze_queue_start, and the moment the last request is 1266 * consumed, marked by the instant q_usage_counter reaches 1267 * zero. 1268 */ 1269 if (!percpu_ref_tryget(&q->q_usage_counter)) 1270 return; 1271 1272 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1273 1274 if (next != 0) { 1275 mod_timer(&q->timeout, next); 1276 } else { 1277 /* 1278 * Request timeouts are handled as a forward rolling timer. If 1279 * we end up here it means that no requests are pending and 1280 * also that no request has been pending for a while. Mark 1281 * each hctx as idle. 1282 */ 1283 queue_for_each_hw_ctx(q, hctx, i) { 1284 /* the hctx may be unmapped, so check it here */ 1285 if (blk_mq_hw_queue_mapped(hctx)) 1286 blk_mq_tag_idle(hctx); 1287 } 1288 } 1289 blk_queue_exit(q); 1290 } 1291 1292 struct flush_busy_ctx_data { 1293 struct blk_mq_hw_ctx *hctx; 1294 struct list_head *list; 1295 }; 1296 1297 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1298 { 1299 struct flush_busy_ctx_data *flush_data = data; 1300 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1301 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1302 enum hctx_type type = hctx->type; 1303 1304 spin_lock(&ctx->lock); 1305 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1306 sbitmap_clear_bit(sb, bitnr); 1307 spin_unlock(&ctx->lock); 1308 return true; 1309 } 1310 1311 /* 1312 * Process software queues that have been marked busy, splicing them 1313 * to the for-dispatch 1314 */ 1315 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1316 { 1317 struct flush_busy_ctx_data data = { 1318 .hctx = hctx, 1319 .list = list, 1320 }; 1321 1322 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1323 } 1324 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1325 1326 struct dispatch_rq_data { 1327 struct blk_mq_hw_ctx *hctx; 1328 struct request *rq; 1329 }; 1330 1331 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1332 void *data) 1333 { 1334 struct dispatch_rq_data *dispatch_data = data; 1335 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1336 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1337 enum hctx_type type = hctx->type; 1338 1339 spin_lock(&ctx->lock); 1340 if (!list_empty(&ctx->rq_lists[type])) { 1341 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1342 list_del_init(&dispatch_data->rq->queuelist); 1343 if (list_empty(&ctx->rq_lists[type])) 1344 sbitmap_clear_bit(sb, bitnr); 1345 } 1346 spin_unlock(&ctx->lock); 1347 1348 return !dispatch_data->rq; 1349 } 1350 1351 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1352 struct blk_mq_ctx *start) 1353 { 1354 unsigned off = start ? start->index_hw[hctx->type] : 0; 1355 struct dispatch_rq_data data = { 1356 .hctx = hctx, 1357 .rq = NULL, 1358 }; 1359 1360 __sbitmap_for_each_set(&hctx->ctx_map, off, 1361 dispatch_rq_from_ctx, &data); 1362 1363 return data.rq; 1364 } 1365 1366 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1367 { 1368 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1369 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1370 int tag; 1371 1372 blk_mq_tag_busy(rq->mq_hctx); 1373 1374 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1375 bt = &rq->mq_hctx->tags->breserved_tags; 1376 tag_offset = 0; 1377 } else { 1378 if (!hctx_may_queue(rq->mq_hctx, bt)) 1379 return false; 1380 } 1381 1382 tag = __sbitmap_queue_get(bt); 1383 if (tag == BLK_MQ_NO_TAG) 1384 return false; 1385 1386 rq->tag = tag + tag_offset; 1387 return true; 1388 } 1389 1390 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1391 { 1392 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1393 return false; 1394 1395 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1396 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1397 rq->rq_flags |= RQF_MQ_INFLIGHT; 1398 __blk_mq_inc_active_requests(hctx); 1399 } 1400 hctx->tags->rqs[rq->tag] = rq; 1401 return true; 1402 } 1403 1404 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1405 int flags, void *key) 1406 { 1407 struct blk_mq_hw_ctx *hctx; 1408 1409 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1410 1411 spin_lock(&hctx->dispatch_wait_lock); 1412 if (!list_empty(&wait->entry)) { 1413 struct sbitmap_queue *sbq; 1414 1415 list_del_init(&wait->entry); 1416 sbq = &hctx->tags->bitmap_tags; 1417 atomic_dec(&sbq->ws_active); 1418 } 1419 spin_unlock(&hctx->dispatch_wait_lock); 1420 1421 blk_mq_run_hw_queue(hctx, true); 1422 return 1; 1423 } 1424 1425 /* 1426 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1427 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1428 * restart. For both cases, take care to check the condition again after 1429 * marking us as waiting. 1430 */ 1431 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1432 struct request *rq) 1433 { 1434 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1435 struct wait_queue_head *wq; 1436 wait_queue_entry_t *wait; 1437 bool ret; 1438 1439 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1440 blk_mq_sched_mark_restart_hctx(hctx); 1441 1442 /* 1443 * It's possible that a tag was freed in the window between the 1444 * allocation failure and adding the hardware queue to the wait 1445 * queue. 1446 * 1447 * Don't clear RESTART here, someone else could have set it. 1448 * At most this will cost an extra queue run. 1449 */ 1450 return blk_mq_get_driver_tag(rq); 1451 } 1452 1453 wait = &hctx->dispatch_wait; 1454 if (!list_empty_careful(&wait->entry)) 1455 return false; 1456 1457 wq = &bt_wait_ptr(sbq, hctx)->wait; 1458 1459 spin_lock_irq(&wq->lock); 1460 spin_lock(&hctx->dispatch_wait_lock); 1461 if (!list_empty(&wait->entry)) { 1462 spin_unlock(&hctx->dispatch_wait_lock); 1463 spin_unlock_irq(&wq->lock); 1464 return false; 1465 } 1466 1467 atomic_inc(&sbq->ws_active); 1468 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1469 __add_wait_queue(wq, wait); 1470 1471 /* 1472 * It's possible that a tag was freed in the window between the 1473 * allocation failure and adding the hardware queue to the wait 1474 * queue. 1475 */ 1476 ret = blk_mq_get_driver_tag(rq); 1477 if (!ret) { 1478 spin_unlock(&hctx->dispatch_wait_lock); 1479 spin_unlock_irq(&wq->lock); 1480 return false; 1481 } 1482 1483 /* 1484 * We got a tag, remove ourselves from the wait queue to ensure 1485 * someone else gets the wakeup. 1486 */ 1487 list_del_init(&wait->entry); 1488 atomic_dec(&sbq->ws_active); 1489 spin_unlock(&hctx->dispatch_wait_lock); 1490 spin_unlock_irq(&wq->lock); 1491 1492 return true; 1493 } 1494 1495 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1496 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1497 /* 1498 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1499 * - EWMA is one simple way to compute running average value 1500 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1501 * - take 4 as factor for avoiding to get too small(0) result, and this 1502 * factor doesn't matter because EWMA decreases exponentially 1503 */ 1504 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1505 { 1506 unsigned int ewma; 1507 1508 ewma = hctx->dispatch_busy; 1509 1510 if (!ewma && !busy) 1511 return; 1512 1513 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1514 if (busy) 1515 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1516 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1517 1518 hctx->dispatch_busy = ewma; 1519 } 1520 1521 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1522 1523 static void blk_mq_handle_dev_resource(struct request *rq, 1524 struct list_head *list) 1525 { 1526 struct request *next = 1527 list_first_entry_or_null(list, struct request, queuelist); 1528 1529 /* 1530 * If an I/O scheduler has been configured and we got a driver tag for 1531 * the next request already, free it. 1532 */ 1533 if (next) 1534 blk_mq_put_driver_tag(next); 1535 1536 list_add(&rq->queuelist, list); 1537 __blk_mq_requeue_request(rq); 1538 } 1539 1540 static void blk_mq_handle_zone_resource(struct request *rq, 1541 struct list_head *zone_list) 1542 { 1543 /* 1544 * If we end up here it is because we cannot dispatch a request to a 1545 * specific zone due to LLD level zone-write locking or other zone 1546 * related resource not being available. In this case, set the request 1547 * aside in zone_list for retrying it later. 1548 */ 1549 list_add(&rq->queuelist, zone_list); 1550 __blk_mq_requeue_request(rq); 1551 } 1552 1553 enum prep_dispatch { 1554 PREP_DISPATCH_OK, 1555 PREP_DISPATCH_NO_TAG, 1556 PREP_DISPATCH_NO_BUDGET, 1557 }; 1558 1559 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1560 bool need_budget) 1561 { 1562 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1563 int budget_token = -1; 1564 1565 if (need_budget) { 1566 budget_token = blk_mq_get_dispatch_budget(rq->q); 1567 if (budget_token < 0) { 1568 blk_mq_put_driver_tag(rq); 1569 return PREP_DISPATCH_NO_BUDGET; 1570 } 1571 blk_mq_set_rq_budget_token(rq, budget_token); 1572 } 1573 1574 if (!blk_mq_get_driver_tag(rq)) { 1575 /* 1576 * The initial allocation attempt failed, so we need to 1577 * rerun the hardware queue when a tag is freed. The 1578 * waitqueue takes care of that. If the queue is run 1579 * before we add this entry back on the dispatch list, 1580 * we'll re-run it below. 1581 */ 1582 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1583 /* 1584 * All budgets not got from this function will be put 1585 * together during handling partial dispatch 1586 */ 1587 if (need_budget) 1588 blk_mq_put_dispatch_budget(rq->q, budget_token); 1589 return PREP_DISPATCH_NO_TAG; 1590 } 1591 } 1592 1593 return PREP_DISPATCH_OK; 1594 } 1595 1596 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1597 static void blk_mq_release_budgets(struct request_queue *q, 1598 struct list_head *list) 1599 { 1600 struct request *rq; 1601 1602 list_for_each_entry(rq, list, queuelist) { 1603 int budget_token = blk_mq_get_rq_budget_token(rq); 1604 1605 if (budget_token >= 0) 1606 blk_mq_put_dispatch_budget(q, budget_token); 1607 } 1608 } 1609 1610 /* 1611 * Returns true if we did some work AND can potentially do more. 1612 */ 1613 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1614 unsigned int nr_budgets) 1615 { 1616 enum prep_dispatch prep; 1617 struct request_queue *q = hctx->queue; 1618 struct request *rq, *nxt; 1619 int errors, queued; 1620 blk_status_t ret = BLK_STS_OK; 1621 LIST_HEAD(zone_list); 1622 bool needs_resource = false; 1623 1624 if (list_empty(list)) 1625 return false; 1626 1627 /* 1628 * Now process all the entries, sending them to the driver. 1629 */ 1630 errors = queued = 0; 1631 do { 1632 struct blk_mq_queue_data bd; 1633 1634 rq = list_first_entry(list, struct request, queuelist); 1635 1636 WARN_ON_ONCE(hctx != rq->mq_hctx); 1637 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1638 if (prep != PREP_DISPATCH_OK) 1639 break; 1640 1641 list_del_init(&rq->queuelist); 1642 1643 bd.rq = rq; 1644 1645 /* 1646 * Flag last if we have no more requests, or if we have more 1647 * but can't assign a driver tag to it. 1648 */ 1649 if (list_empty(list)) 1650 bd.last = true; 1651 else { 1652 nxt = list_first_entry(list, struct request, queuelist); 1653 bd.last = !blk_mq_get_driver_tag(nxt); 1654 } 1655 1656 /* 1657 * once the request is queued to lld, no need to cover the 1658 * budget any more 1659 */ 1660 if (nr_budgets) 1661 nr_budgets--; 1662 ret = q->mq_ops->queue_rq(hctx, &bd); 1663 switch (ret) { 1664 case BLK_STS_OK: 1665 queued++; 1666 break; 1667 case BLK_STS_RESOURCE: 1668 needs_resource = true; 1669 fallthrough; 1670 case BLK_STS_DEV_RESOURCE: 1671 blk_mq_handle_dev_resource(rq, list); 1672 goto out; 1673 case BLK_STS_ZONE_RESOURCE: 1674 /* 1675 * Move the request to zone_list and keep going through 1676 * the dispatch list to find more requests the drive can 1677 * accept. 1678 */ 1679 blk_mq_handle_zone_resource(rq, &zone_list); 1680 needs_resource = true; 1681 break; 1682 default: 1683 errors++; 1684 blk_mq_end_request(rq, ret); 1685 } 1686 } while (!list_empty(list)); 1687 out: 1688 if (!list_empty(&zone_list)) 1689 list_splice_tail_init(&zone_list, list); 1690 1691 /* If we didn't flush the entire list, we could have told the driver 1692 * there was more coming, but that turned out to be a lie. 1693 */ 1694 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1695 q->mq_ops->commit_rqs(hctx); 1696 /* 1697 * Any items that need requeuing? Stuff them into hctx->dispatch, 1698 * that is where we will continue on next queue run. 1699 */ 1700 if (!list_empty(list)) { 1701 bool needs_restart; 1702 /* For non-shared tags, the RESTART check will suffice */ 1703 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1704 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1705 1706 if (nr_budgets) 1707 blk_mq_release_budgets(q, list); 1708 1709 spin_lock(&hctx->lock); 1710 list_splice_tail_init(list, &hctx->dispatch); 1711 spin_unlock(&hctx->lock); 1712 1713 /* 1714 * Order adding requests to hctx->dispatch and checking 1715 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1716 * in blk_mq_sched_restart(). Avoid restart code path to 1717 * miss the new added requests to hctx->dispatch, meantime 1718 * SCHED_RESTART is observed here. 1719 */ 1720 smp_mb(); 1721 1722 /* 1723 * If SCHED_RESTART was set by the caller of this function and 1724 * it is no longer set that means that it was cleared by another 1725 * thread and hence that a queue rerun is needed. 1726 * 1727 * If 'no_tag' is set, that means that we failed getting 1728 * a driver tag with an I/O scheduler attached. If our dispatch 1729 * waitqueue is no longer active, ensure that we run the queue 1730 * AFTER adding our entries back to the list. 1731 * 1732 * If no I/O scheduler has been configured it is possible that 1733 * the hardware queue got stopped and restarted before requests 1734 * were pushed back onto the dispatch list. Rerun the queue to 1735 * avoid starvation. Notes: 1736 * - blk_mq_run_hw_queue() checks whether or not a queue has 1737 * been stopped before rerunning a queue. 1738 * - Some but not all block drivers stop a queue before 1739 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1740 * and dm-rq. 1741 * 1742 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1743 * bit is set, run queue after a delay to avoid IO stalls 1744 * that could otherwise occur if the queue is idle. We'll do 1745 * similar if we couldn't get budget or couldn't lock a zone 1746 * and SCHED_RESTART is set. 1747 */ 1748 needs_restart = blk_mq_sched_needs_restart(hctx); 1749 if (prep == PREP_DISPATCH_NO_BUDGET) 1750 needs_resource = true; 1751 if (!needs_restart || 1752 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1753 blk_mq_run_hw_queue(hctx, true); 1754 else if (needs_restart && needs_resource) 1755 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1756 1757 blk_mq_update_dispatch_busy(hctx, true); 1758 return false; 1759 } else 1760 blk_mq_update_dispatch_busy(hctx, false); 1761 1762 return (queued + errors) != 0; 1763 } 1764 1765 /** 1766 * __blk_mq_run_hw_queue - Run a hardware queue. 1767 * @hctx: Pointer to the hardware queue to run. 1768 * 1769 * Send pending requests to the hardware. 1770 */ 1771 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1772 { 1773 int srcu_idx; 1774 1775 /* 1776 * We can't run the queue inline with ints disabled. Ensure that 1777 * we catch bad users of this early. 1778 */ 1779 WARN_ON_ONCE(in_interrupt()); 1780 1781 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1782 1783 hctx_lock(hctx, &srcu_idx); 1784 blk_mq_sched_dispatch_requests(hctx); 1785 hctx_unlock(hctx, srcu_idx); 1786 } 1787 1788 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1789 { 1790 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1791 1792 if (cpu >= nr_cpu_ids) 1793 cpu = cpumask_first(hctx->cpumask); 1794 return cpu; 1795 } 1796 1797 /* 1798 * It'd be great if the workqueue API had a way to pass 1799 * in a mask and had some smarts for more clever placement. 1800 * For now we just round-robin here, switching for every 1801 * BLK_MQ_CPU_WORK_BATCH queued items. 1802 */ 1803 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1804 { 1805 bool tried = false; 1806 int next_cpu = hctx->next_cpu; 1807 1808 if (hctx->queue->nr_hw_queues == 1) 1809 return WORK_CPU_UNBOUND; 1810 1811 if (--hctx->next_cpu_batch <= 0) { 1812 select_cpu: 1813 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1814 cpu_online_mask); 1815 if (next_cpu >= nr_cpu_ids) 1816 next_cpu = blk_mq_first_mapped_cpu(hctx); 1817 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1818 } 1819 1820 /* 1821 * Do unbound schedule if we can't find a online CPU for this hctx, 1822 * and it should only happen in the path of handling CPU DEAD. 1823 */ 1824 if (!cpu_online(next_cpu)) { 1825 if (!tried) { 1826 tried = true; 1827 goto select_cpu; 1828 } 1829 1830 /* 1831 * Make sure to re-select CPU next time once after CPUs 1832 * in hctx->cpumask become online again. 1833 */ 1834 hctx->next_cpu = next_cpu; 1835 hctx->next_cpu_batch = 1; 1836 return WORK_CPU_UNBOUND; 1837 } 1838 1839 hctx->next_cpu = next_cpu; 1840 return next_cpu; 1841 } 1842 1843 /** 1844 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1845 * @hctx: Pointer to the hardware queue to run. 1846 * @async: If we want to run the queue asynchronously. 1847 * @msecs: Milliseconds of delay to wait before running the queue. 1848 * 1849 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1850 * with a delay of @msecs. 1851 */ 1852 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1853 unsigned long msecs) 1854 { 1855 if (unlikely(blk_mq_hctx_stopped(hctx))) 1856 return; 1857 1858 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1859 int cpu = get_cpu(); 1860 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1861 __blk_mq_run_hw_queue(hctx); 1862 put_cpu(); 1863 return; 1864 } 1865 1866 put_cpu(); 1867 } 1868 1869 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1870 msecs_to_jiffies(msecs)); 1871 } 1872 1873 /** 1874 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1875 * @hctx: Pointer to the hardware queue to run. 1876 * @msecs: Milliseconds of delay to wait before running the queue. 1877 * 1878 * Run a hardware queue asynchronously with a delay of @msecs. 1879 */ 1880 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1881 { 1882 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1883 } 1884 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1885 1886 /** 1887 * blk_mq_run_hw_queue - Start to run a hardware queue. 1888 * @hctx: Pointer to the hardware queue to run. 1889 * @async: If we want to run the queue asynchronously. 1890 * 1891 * Check if the request queue is not in a quiesced state and if there are 1892 * pending requests to be sent. If this is true, run the queue to send requests 1893 * to hardware. 1894 */ 1895 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1896 { 1897 int srcu_idx; 1898 bool need_run; 1899 1900 /* 1901 * When queue is quiesced, we may be switching io scheduler, or 1902 * updating nr_hw_queues, or other things, and we can't run queue 1903 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1904 * 1905 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1906 * quiesced. 1907 */ 1908 hctx_lock(hctx, &srcu_idx); 1909 need_run = !blk_queue_quiesced(hctx->queue) && 1910 blk_mq_hctx_has_pending(hctx); 1911 hctx_unlock(hctx, srcu_idx); 1912 1913 if (need_run) 1914 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1915 } 1916 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1917 1918 /* 1919 * Is the request queue handled by an IO scheduler that does not respect 1920 * hardware queues when dispatching? 1921 */ 1922 static bool blk_mq_has_sqsched(struct request_queue *q) 1923 { 1924 struct elevator_queue *e = q->elevator; 1925 1926 if (e && e->type->ops.dispatch_request && 1927 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 1928 return true; 1929 return false; 1930 } 1931 1932 /* 1933 * Return prefered queue to dispatch from (if any) for non-mq aware IO 1934 * scheduler. 1935 */ 1936 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 1937 { 1938 struct blk_mq_hw_ctx *hctx; 1939 1940 /* 1941 * If the IO scheduler does not respect hardware queues when 1942 * dispatching, we just don't bother with multiple HW queues and 1943 * dispatch from hctx for the current CPU since running multiple queues 1944 * just causes lock contention inside the scheduler and pointless cache 1945 * bouncing. 1946 */ 1947 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 1948 raw_smp_processor_id()); 1949 if (!blk_mq_hctx_stopped(hctx)) 1950 return hctx; 1951 return NULL; 1952 } 1953 1954 /** 1955 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1956 * @q: Pointer to the request queue to run. 1957 * @async: If we want to run the queue asynchronously. 1958 */ 1959 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1960 { 1961 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1962 int i; 1963 1964 sq_hctx = NULL; 1965 if (blk_mq_has_sqsched(q)) 1966 sq_hctx = blk_mq_get_sq_hctx(q); 1967 queue_for_each_hw_ctx(q, hctx, i) { 1968 if (blk_mq_hctx_stopped(hctx)) 1969 continue; 1970 /* 1971 * Dispatch from this hctx either if there's no hctx preferred 1972 * by IO scheduler or if it has requests that bypass the 1973 * scheduler. 1974 */ 1975 if (!sq_hctx || sq_hctx == hctx || 1976 !list_empty_careful(&hctx->dispatch)) 1977 blk_mq_run_hw_queue(hctx, async); 1978 } 1979 } 1980 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1981 1982 /** 1983 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1984 * @q: Pointer to the request queue to run. 1985 * @msecs: Milliseconds of delay to wait before running the queues. 1986 */ 1987 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1988 { 1989 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1990 int i; 1991 1992 sq_hctx = NULL; 1993 if (blk_mq_has_sqsched(q)) 1994 sq_hctx = blk_mq_get_sq_hctx(q); 1995 queue_for_each_hw_ctx(q, hctx, i) { 1996 if (blk_mq_hctx_stopped(hctx)) 1997 continue; 1998 /* 1999 * Dispatch from this hctx either if there's no hctx preferred 2000 * by IO scheduler or if it has requests that bypass the 2001 * scheduler. 2002 */ 2003 if (!sq_hctx || sq_hctx == hctx || 2004 !list_empty_careful(&hctx->dispatch)) 2005 blk_mq_delay_run_hw_queue(hctx, msecs); 2006 } 2007 } 2008 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2009 2010 /** 2011 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 2012 * @q: request queue. 2013 * 2014 * The caller is responsible for serializing this function against 2015 * blk_mq_{start,stop}_hw_queue(). 2016 */ 2017 bool blk_mq_queue_stopped(struct request_queue *q) 2018 { 2019 struct blk_mq_hw_ctx *hctx; 2020 int i; 2021 2022 queue_for_each_hw_ctx(q, hctx, i) 2023 if (blk_mq_hctx_stopped(hctx)) 2024 return true; 2025 2026 return false; 2027 } 2028 EXPORT_SYMBOL(blk_mq_queue_stopped); 2029 2030 /* 2031 * This function is often used for pausing .queue_rq() by driver when 2032 * there isn't enough resource or some conditions aren't satisfied, and 2033 * BLK_STS_RESOURCE is usually returned. 2034 * 2035 * We do not guarantee that dispatch can be drained or blocked 2036 * after blk_mq_stop_hw_queue() returns. Please use 2037 * blk_mq_quiesce_queue() for that requirement. 2038 */ 2039 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2040 { 2041 cancel_delayed_work(&hctx->run_work); 2042 2043 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2044 } 2045 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2046 2047 /* 2048 * This function is often used for pausing .queue_rq() by driver when 2049 * there isn't enough resource or some conditions aren't satisfied, and 2050 * BLK_STS_RESOURCE is usually returned. 2051 * 2052 * We do not guarantee that dispatch can be drained or blocked 2053 * after blk_mq_stop_hw_queues() returns. Please use 2054 * blk_mq_quiesce_queue() for that requirement. 2055 */ 2056 void blk_mq_stop_hw_queues(struct request_queue *q) 2057 { 2058 struct blk_mq_hw_ctx *hctx; 2059 int i; 2060 2061 queue_for_each_hw_ctx(q, hctx, i) 2062 blk_mq_stop_hw_queue(hctx); 2063 } 2064 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2065 2066 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2067 { 2068 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2069 2070 blk_mq_run_hw_queue(hctx, false); 2071 } 2072 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2073 2074 void blk_mq_start_hw_queues(struct request_queue *q) 2075 { 2076 struct blk_mq_hw_ctx *hctx; 2077 int i; 2078 2079 queue_for_each_hw_ctx(q, hctx, i) 2080 blk_mq_start_hw_queue(hctx); 2081 } 2082 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2083 2084 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2085 { 2086 if (!blk_mq_hctx_stopped(hctx)) 2087 return; 2088 2089 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2090 blk_mq_run_hw_queue(hctx, async); 2091 } 2092 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2093 2094 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2095 { 2096 struct blk_mq_hw_ctx *hctx; 2097 int i; 2098 2099 queue_for_each_hw_ctx(q, hctx, i) 2100 blk_mq_start_stopped_hw_queue(hctx, async); 2101 } 2102 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2103 2104 static void blk_mq_run_work_fn(struct work_struct *work) 2105 { 2106 struct blk_mq_hw_ctx *hctx; 2107 2108 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2109 2110 /* 2111 * If we are stopped, don't run the queue. 2112 */ 2113 if (blk_mq_hctx_stopped(hctx)) 2114 return; 2115 2116 __blk_mq_run_hw_queue(hctx); 2117 } 2118 2119 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2120 struct request *rq, 2121 bool at_head) 2122 { 2123 struct blk_mq_ctx *ctx = rq->mq_ctx; 2124 enum hctx_type type = hctx->type; 2125 2126 lockdep_assert_held(&ctx->lock); 2127 2128 trace_block_rq_insert(rq); 2129 2130 if (at_head) 2131 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2132 else 2133 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2134 } 2135 2136 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2137 bool at_head) 2138 { 2139 struct blk_mq_ctx *ctx = rq->mq_ctx; 2140 2141 lockdep_assert_held(&ctx->lock); 2142 2143 __blk_mq_insert_req_list(hctx, rq, at_head); 2144 blk_mq_hctx_mark_pending(hctx, ctx); 2145 } 2146 2147 /** 2148 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2149 * @rq: Pointer to request to be inserted. 2150 * @at_head: true if the request should be inserted at the head of the list. 2151 * @run_queue: If we should run the hardware queue after inserting the request. 2152 * 2153 * Should only be used carefully, when the caller knows we want to 2154 * bypass a potential IO scheduler on the target device. 2155 */ 2156 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2157 bool run_queue) 2158 { 2159 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2160 2161 spin_lock(&hctx->lock); 2162 if (at_head) 2163 list_add(&rq->queuelist, &hctx->dispatch); 2164 else 2165 list_add_tail(&rq->queuelist, &hctx->dispatch); 2166 spin_unlock(&hctx->lock); 2167 2168 if (run_queue) 2169 blk_mq_run_hw_queue(hctx, false); 2170 } 2171 2172 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2173 struct list_head *list) 2174 2175 { 2176 struct request *rq; 2177 enum hctx_type type = hctx->type; 2178 2179 /* 2180 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2181 * offline now 2182 */ 2183 list_for_each_entry(rq, list, queuelist) { 2184 BUG_ON(rq->mq_ctx != ctx); 2185 trace_block_rq_insert(rq); 2186 } 2187 2188 spin_lock(&ctx->lock); 2189 list_splice_tail_init(list, &ctx->rq_lists[type]); 2190 blk_mq_hctx_mark_pending(hctx, ctx); 2191 spin_unlock(&ctx->lock); 2192 } 2193 2194 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2195 bool from_schedule) 2196 { 2197 if (hctx->queue->mq_ops->commit_rqs) { 2198 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2199 hctx->queue->mq_ops->commit_rqs(hctx); 2200 } 2201 *queued = 0; 2202 } 2203 2204 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2205 { 2206 struct blk_mq_hw_ctx *hctx = NULL; 2207 struct request *rq; 2208 int queued = 0; 2209 int errors = 0; 2210 2211 while ((rq = rq_list_pop(&plug->mq_list))) { 2212 bool last = rq_list_empty(plug->mq_list); 2213 blk_status_t ret; 2214 2215 if (hctx != rq->mq_hctx) { 2216 if (hctx) 2217 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2218 hctx = rq->mq_hctx; 2219 } 2220 2221 ret = blk_mq_request_issue_directly(rq, last); 2222 switch (ret) { 2223 case BLK_STS_OK: 2224 queued++; 2225 break; 2226 case BLK_STS_RESOURCE: 2227 case BLK_STS_DEV_RESOURCE: 2228 blk_mq_request_bypass_insert(rq, false, last); 2229 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2230 return; 2231 default: 2232 blk_mq_end_request(rq, ret); 2233 errors++; 2234 break; 2235 } 2236 } 2237 2238 /* 2239 * If we didn't flush the entire list, we could have told the driver 2240 * there was more coming, but that turned out to be a lie. 2241 */ 2242 if (errors) 2243 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2244 } 2245 2246 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2247 { 2248 struct blk_mq_hw_ctx *this_hctx; 2249 struct blk_mq_ctx *this_ctx; 2250 unsigned int depth; 2251 LIST_HEAD(list); 2252 2253 if (rq_list_empty(plug->mq_list)) 2254 return; 2255 plug->rq_count = 0; 2256 2257 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2258 blk_mq_plug_issue_direct(plug, false); 2259 if (rq_list_empty(plug->mq_list)) 2260 return; 2261 } 2262 2263 this_hctx = NULL; 2264 this_ctx = NULL; 2265 depth = 0; 2266 do { 2267 struct request *rq; 2268 2269 rq = rq_list_pop(&plug->mq_list); 2270 2271 if (!this_hctx) { 2272 this_hctx = rq->mq_hctx; 2273 this_ctx = rq->mq_ctx; 2274 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2275 trace_block_unplug(this_hctx->queue, depth, 2276 !from_schedule); 2277 blk_mq_sched_insert_requests(this_hctx, this_ctx, 2278 &list, from_schedule); 2279 depth = 0; 2280 this_hctx = rq->mq_hctx; 2281 this_ctx = rq->mq_ctx; 2282 2283 } 2284 2285 list_add(&rq->queuelist, &list); 2286 depth++; 2287 } while (!rq_list_empty(plug->mq_list)); 2288 2289 if (!list_empty(&list)) { 2290 trace_block_unplug(this_hctx->queue, depth, !from_schedule); 2291 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, 2292 from_schedule); 2293 } 2294 } 2295 2296 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2297 unsigned int nr_segs) 2298 { 2299 int err; 2300 2301 if (bio->bi_opf & REQ_RAHEAD) 2302 rq->cmd_flags |= REQ_FAILFAST_MASK; 2303 2304 rq->__sector = bio->bi_iter.bi_sector; 2305 rq->write_hint = bio->bi_write_hint; 2306 blk_rq_bio_prep(rq, bio, nr_segs); 2307 2308 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2309 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2310 WARN_ON_ONCE(err); 2311 2312 blk_account_io_start(rq); 2313 } 2314 2315 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2316 struct request *rq, bool last) 2317 { 2318 struct request_queue *q = rq->q; 2319 struct blk_mq_queue_data bd = { 2320 .rq = rq, 2321 .last = last, 2322 }; 2323 blk_status_t ret; 2324 2325 /* 2326 * For OK queue, we are done. For error, caller may kill it. 2327 * Any other error (busy), just add it to our list as we 2328 * previously would have done. 2329 */ 2330 ret = q->mq_ops->queue_rq(hctx, &bd); 2331 switch (ret) { 2332 case BLK_STS_OK: 2333 blk_mq_update_dispatch_busy(hctx, false); 2334 break; 2335 case BLK_STS_RESOURCE: 2336 case BLK_STS_DEV_RESOURCE: 2337 blk_mq_update_dispatch_busy(hctx, true); 2338 __blk_mq_requeue_request(rq); 2339 break; 2340 default: 2341 blk_mq_update_dispatch_busy(hctx, false); 2342 break; 2343 } 2344 2345 return ret; 2346 } 2347 2348 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2349 struct request *rq, 2350 bool bypass_insert, bool last) 2351 { 2352 struct request_queue *q = rq->q; 2353 bool run_queue = true; 2354 int budget_token; 2355 2356 /* 2357 * RCU or SRCU read lock is needed before checking quiesced flag. 2358 * 2359 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2360 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2361 * and avoid driver to try to dispatch again. 2362 */ 2363 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2364 run_queue = false; 2365 bypass_insert = false; 2366 goto insert; 2367 } 2368 2369 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2370 goto insert; 2371 2372 budget_token = blk_mq_get_dispatch_budget(q); 2373 if (budget_token < 0) 2374 goto insert; 2375 2376 blk_mq_set_rq_budget_token(rq, budget_token); 2377 2378 if (!blk_mq_get_driver_tag(rq)) { 2379 blk_mq_put_dispatch_budget(q, budget_token); 2380 goto insert; 2381 } 2382 2383 return __blk_mq_issue_directly(hctx, rq, last); 2384 insert: 2385 if (bypass_insert) 2386 return BLK_STS_RESOURCE; 2387 2388 blk_mq_sched_insert_request(rq, false, run_queue, false); 2389 2390 return BLK_STS_OK; 2391 } 2392 2393 /** 2394 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2395 * @hctx: Pointer of the associated hardware queue. 2396 * @rq: Pointer to request to be sent. 2397 * 2398 * If the device has enough resources to accept a new request now, send the 2399 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2400 * we can try send it another time in the future. Requests inserted at this 2401 * queue have higher priority. 2402 */ 2403 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2404 struct request *rq) 2405 { 2406 blk_status_t ret; 2407 int srcu_idx; 2408 2409 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2410 2411 hctx_lock(hctx, &srcu_idx); 2412 2413 ret = __blk_mq_try_issue_directly(hctx, rq, false, true); 2414 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2415 blk_mq_request_bypass_insert(rq, false, true); 2416 else if (ret != BLK_STS_OK) 2417 blk_mq_end_request(rq, ret); 2418 2419 hctx_unlock(hctx, srcu_idx); 2420 } 2421 2422 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2423 { 2424 blk_status_t ret; 2425 int srcu_idx; 2426 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2427 2428 hctx_lock(hctx, &srcu_idx); 2429 ret = __blk_mq_try_issue_directly(hctx, rq, true, last); 2430 hctx_unlock(hctx, srcu_idx); 2431 2432 return ret; 2433 } 2434 2435 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2436 struct list_head *list) 2437 { 2438 int queued = 0; 2439 int errors = 0; 2440 2441 while (!list_empty(list)) { 2442 blk_status_t ret; 2443 struct request *rq = list_first_entry(list, struct request, 2444 queuelist); 2445 2446 list_del_init(&rq->queuelist); 2447 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2448 if (ret != BLK_STS_OK) { 2449 if (ret == BLK_STS_RESOURCE || 2450 ret == BLK_STS_DEV_RESOURCE) { 2451 blk_mq_request_bypass_insert(rq, false, 2452 list_empty(list)); 2453 break; 2454 } 2455 blk_mq_end_request(rq, ret); 2456 errors++; 2457 } else 2458 queued++; 2459 } 2460 2461 /* 2462 * If we didn't flush the entire list, we could have told 2463 * the driver there was more coming, but that turned out to 2464 * be a lie. 2465 */ 2466 if ((!list_empty(list) || errors) && 2467 hctx->queue->mq_ops->commit_rqs && queued) 2468 hctx->queue->mq_ops->commit_rqs(hctx); 2469 } 2470 2471 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2472 { 2473 if (!plug->multiple_queues) { 2474 struct request *nxt = rq_list_peek(&plug->mq_list); 2475 2476 if (nxt && nxt->q != rq->q) 2477 plug->multiple_queues = true; 2478 } 2479 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 2480 plug->has_elevator = true; 2481 rq->rq_next = NULL; 2482 rq_list_add(&plug->mq_list, rq); 2483 plug->rq_count++; 2484 } 2485 2486 /* 2487 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 2488 * queues. This is important for md arrays to benefit from merging 2489 * requests. 2490 */ 2491 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 2492 { 2493 if (plug->multiple_queues) 2494 return BLK_MAX_REQUEST_COUNT * 2; 2495 return BLK_MAX_REQUEST_COUNT; 2496 } 2497 2498 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2499 struct bio *bio, unsigned int nr_segs, 2500 bool *same_queue_rq) 2501 { 2502 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2503 if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq)) 2504 return true; 2505 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2506 return true; 2507 } 2508 return false; 2509 } 2510 2511 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2512 struct blk_plug *plug, 2513 struct bio *bio, 2514 unsigned int nsegs, 2515 bool *same_queue_rq) 2516 { 2517 struct blk_mq_alloc_data data = { 2518 .q = q, 2519 .nr_tags = 1, 2520 .cmd_flags = bio->bi_opf, 2521 }; 2522 struct request *rq; 2523 2524 if (blk_mq_attempt_bio_merge(q, bio, nsegs, same_queue_rq)) 2525 return NULL; 2526 2527 rq_qos_throttle(q, bio); 2528 2529 if (plug) { 2530 data.nr_tags = plug->nr_ios; 2531 plug->nr_ios = 1; 2532 data.cached_rq = &plug->cached_rq; 2533 } 2534 2535 rq = __blk_mq_alloc_requests(&data); 2536 if (rq) 2537 return rq; 2538 2539 rq_qos_cleanup(q, bio); 2540 if (bio->bi_opf & REQ_NOWAIT) 2541 bio_wouldblock_error(bio); 2542 2543 return NULL; 2544 } 2545 2546 static inline bool blk_mq_can_use_cached_rq(struct request *rq, 2547 struct bio *bio) 2548 { 2549 if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type) 2550 return false; 2551 2552 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2553 return false; 2554 2555 return true; 2556 } 2557 2558 static inline struct request *blk_mq_get_request(struct request_queue *q, 2559 struct blk_plug *plug, 2560 struct bio *bio, 2561 unsigned int nsegs, 2562 bool *same_queue_rq) 2563 { 2564 struct request *rq; 2565 bool checked = false; 2566 2567 if (plug) { 2568 2569 rq = rq_list_peek(&plug->cached_rq); 2570 if (rq && rq->q == q) { 2571 if (unlikely(!submit_bio_checks(bio))) 2572 return NULL; 2573 if (blk_mq_attempt_bio_merge(q, bio, nsegs, 2574 same_queue_rq)) 2575 return NULL; 2576 checked = true; 2577 if (!blk_mq_can_use_cached_rq(rq, bio)) 2578 goto fallback; 2579 rq->cmd_flags = bio->bi_opf; 2580 plug->cached_rq = rq_list_next(rq); 2581 INIT_LIST_HEAD(&rq->queuelist); 2582 rq_qos_throttle(q, bio); 2583 return rq; 2584 } 2585 } 2586 2587 fallback: 2588 if (unlikely(bio_queue_enter(bio))) 2589 return NULL; 2590 if (!checked && !submit_bio_checks(bio)) 2591 return NULL; 2592 rq = blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq); 2593 if (!rq) 2594 blk_queue_exit(q); 2595 return rq; 2596 } 2597 2598 /** 2599 * blk_mq_submit_bio - Create and send a request to block device. 2600 * @bio: Bio pointer. 2601 * 2602 * Builds up a request structure from @q and @bio and send to the device. The 2603 * request may not be queued directly to hardware if: 2604 * * This request can be merged with another one 2605 * * We want to place request at plug queue for possible future merging 2606 * * There is an IO scheduler active at this queue 2607 * 2608 * It will not queue the request if there is an error with the bio, or at the 2609 * request creation. 2610 */ 2611 void blk_mq_submit_bio(struct bio *bio) 2612 { 2613 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2614 const int is_sync = op_is_sync(bio->bi_opf); 2615 struct request *rq; 2616 struct blk_plug *plug; 2617 bool same_queue_rq = false; 2618 unsigned int nr_segs = 1; 2619 blk_status_t ret; 2620 2621 if (unlikely(!blk_crypto_bio_prep(&bio))) 2622 return; 2623 2624 blk_queue_bounce(q, &bio); 2625 if (blk_may_split(q, bio)) 2626 __blk_queue_split(q, &bio, &nr_segs); 2627 2628 if (!bio_integrity_prep(bio)) 2629 return; 2630 2631 plug = blk_mq_plug(q, bio); 2632 rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq); 2633 if (unlikely(!rq)) 2634 return; 2635 2636 trace_block_getrq(bio); 2637 2638 rq_qos_track(q, rq, bio); 2639 2640 blk_mq_bio_to_request(rq, bio, nr_segs); 2641 2642 ret = blk_crypto_init_request(rq); 2643 if (ret != BLK_STS_OK) { 2644 bio->bi_status = ret; 2645 bio_endio(bio); 2646 blk_mq_free_request(rq); 2647 return; 2648 } 2649 2650 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 2651 return; 2652 2653 if (plug && (q->nr_hw_queues == 1 || 2654 blk_mq_is_shared_tags(rq->mq_hctx->flags) || 2655 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) { 2656 /* 2657 * Use plugging if we have a ->commit_rqs() hook as well, as 2658 * we know the driver uses bd->last in a smart fashion. 2659 * 2660 * Use normal plugging if this disk is slow HDD, as sequential 2661 * IO may benefit a lot from plug merging. 2662 */ 2663 unsigned int request_count = plug->rq_count; 2664 struct request *last = NULL; 2665 2666 if (!request_count) { 2667 trace_block_plug(q); 2668 } else if (!blk_queue_nomerges(q)) { 2669 last = rq_list_peek(&plug->mq_list); 2670 if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE) 2671 last = NULL; 2672 } 2673 2674 if (request_count >= blk_plug_max_rq_count(plug) || last) { 2675 blk_mq_flush_plug_list(plug, false); 2676 trace_block_plug(q); 2677 } 2678 2679 blk_add_rq_to_plug(plug, rq); 2680 } else if (rq->rq_flags & RQF_ELV) { 2681 /* Insert the request at the IO scheduler queue */ 2682 blk_mq_sched_insert_request(rq, false, true, true); 2683 } else if (plug && !blk_queue_nomerges(q)) { 2684 struct request *next_rq = NULL; 2685 2686 /* 2687 * We do limited plugging. If the bio can be merged, do that. 2688 * Otherwise the existing request in the plug list will be 2689 * issued. So the plug list will have one request at most 2690 * The plug list might get flushed before this. If that happens, 2691 * the plug list is empty, and same_queue_rq is invalid. 2692 */ 2693 if (same_queue_rq) { 2694 next_rq = rq_list_pop(&plug->mq_list); 2695 plug->rq_count--; 2696 } 2697 blk_add_rq_to_plug(plug, rq); 2698 trace_block_plug(q); 2699 2700 if (next_rq) { 2701 trace_block_unplug(q, 1, true); 2702 blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq); 2703 } 2704 } else if ((q->nr_hw_queues > 1 && is_sync) || 2705 !rq->mq_hctx->dispatch_busy) { 2706 /* 2707 * There is no scheduler and we can try to send directly 2708 * to the hardware. 2709 */ 2710 blk_mq_try_issue_directly(rq->mq_hctx, rq); 2711 } else { 2712 /* Default case. */ 2713 blk_mq_sched_insert_request(rq, false, true, true); 2714 } 2715 } 2716 2717 static size_t order_to_size(unsigned int order) 2718 { 2719 return (size_t)PAGE_SIZE << order; 2720 } 2721 2722 /* called before freeing request pool in @tags */ 2723 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 2724 struct blk_mq_tags *tags) 2725 { 2726 struct page *page; 2727 unsigned long flags; 2728 2729 /* There is no need to clear a driver tags own mapping */ 2730 if (drv_tags == tags) 2731 return; 2732 2733 list_for_each_entry(page, &tags->page_list, lru) { 2734 unsigned long start = (unsigned long)page_address(page); 2735 unsigned long end = start + order_to_size(page->private); 2736 int i; 2737 2738 for (i = 0; i < drv_tags->nr_tags; i++) { 2739 struct request *rq = drv_tags->rqs[i]; 2740 unsigned long rq_addr = (unsigned long)rq; 2741 2742 if (rq_addr >= start && rq_addr < end) { 2743 WARN_ON_ONCE(refcount_read(&rq->ref) != 0); 2744 cmpxchg(&drv_tags->rqs[i], rq, NULL); 2745 } 2746 } 2747 } 2748 2749 /* 2750 * Wait until all pending iteration is done. 2751 * 2752 * Request reference is cleared and it is guaranteed to be observed 2753 * after the ->lock is released. 2754 */ 2755 spin_lock_irqsave(&drv_tags->lock, flags); 2756 spin_unlock_irqrestore(&drv_tags->lock, flags); 2757 } 2758 2759 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2760 unsigned int hctx_idx) 2761 { 2762 struct blk_mq_tags *drv_tags; 2763 struct page *page; 2764 2765 if (blk_mq_is_shared_tags(set->flags)) 2766 drv_tags = set->shared_tags; 2767 else 2768 drv_tags = set->tags[hctx_idx]; 2769 2770 if (tags->static_rqs && set->ops->exit_request) { 2771 int i; 2772 2773 for (i = 0; i < tags->nr_tags; i++) { 2774 struct request *rq = tags->static_rqs[i]; 2775 2776 if (!rq) 2777 continue; 2778 set->ops->exit_request(set, rq, hctx_idx); 2779 tags->static_rqs[i] = NULL; 2780 } 2781 } 2782 2783 blk_mq_clear_rq_mapping(drv_tags, tags); 2784 2785 while (!list_empty(&tags->page_list)) { 2786 page = list_first_entry(&tags->page_list, struct page, lru); 2787 list_del_init(&page->lru); 2788 /* 2789 * Remove kmemleak object previously allocated in 2790 * blk_mq_alloc_rqs(). 2791 */ 2792 kmemleak_free(page_address(page)); 2793 __free_pages(page, page->private); 2794 } 2795 } 2796 2797 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2798 { 2799 kfree(tags->rqs); 2800 tags->rqs = NULL; 2801 kfree(tags->static_rqs); 2802 tags->static_rqs = NULL; 2803 2804 blk_mq_free_tags(tags); 2805 } 2806 2807 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2808 unsigned int hctx_idx, 2809 unsigned int nr_tags, 2810 unsigned int reserved_tags) 2811 { 2812 struct blk_mq_tags *tags; 2813 int node; 2814 2815 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2816 if (node == NUMA_NO_NODE) 2817 node = set->numa_node; 2818 2819 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2820 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2821 if (!tags) 2822 return NULL; 2823 2824 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2825 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2826 node); 2827 if (!tags->rqs) { 2828 blk_mq_free_tags(tags); 2829 return NULL; 2830 } 2831 2832 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2833 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2834 node); 2835 if (!tags->static_rqs) { 2836 kfree(tags->rqs); 2837 blk_mq_free_tags(tags); 2838 return NULL; 2839 } 2840 2841 return tags; 2842 } 2843 2844 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2845 unsigned int hctx_idx, int node) 2846 { 2847 int ret; 2848 2849 if (set->ops->init_request) { 2850 ret = set->ops->init_request(set, rq, hctx_idx, node); 2851 if (ret) 2852 return ret; 2853 } 2854 2855 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2856 return 0; 2857 } 2858 2859 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 2860 struct blk_mq_tags *tags, 2861 unsigned int hctx_idx, unsigned int depth) 2862 { 2863 unsigned int i, j, entries_per_page, max_order = 4; 2864 size_t rq_size, left; 2865 int node; 2866 2867 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2868 if (node == NUMA_NO_NODE) 2869 node = set->numa_node; 2870 2871 INIT_LIST_HEAD(&tags->page_list); 2872 2873 /* 2874 * rq_size is the size of the request plus driver payload, rounded 2875 * to the cacheline size 2876 */ 2877 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2878 cache_line_size()); 2879 left = rq_size * depth; 2880 2881 for (i = 0; i < depth; ) { 2882 int this_order = max_order; 2883 struct page *page; 2884 int to_do; 2885 void *p; 2886 2887 while (this_order && left < order_to_size(this_order - 1)) 2888 this_order--; 2889 2890 do { 2891 page = alloc_pages_node(node, 2892 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2893 this_order); 2894 if (page) 2895 break; 2896 if (!this_order--) 2897 break; 2898 if (order_to_size(this_order) < rq_size) 2899 break; 2900 } while (1); 2901 2902 if (!page) 2903 goto fail; 2904 2905 page->private = this_order; 2906 list_add_tail(&page->lru, &tags->page_list); 2907 2908 p = page_address(page); 2909 /* 2910 * Allow kmemleak to scan these pages as they contain pointers 2911 * to additional allocations like via ops->init_request(). 2912 */ 2913 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2914 entries_per_page = order_to_size(this_order) / rq_size; 2915 to_do = min(entries_per_page, depth - i); 2916 left -= to_do * rq_size; 2917 for (j = 0; j < to_do; j++) { 2918 struct request *rq = p; 2919 2920 tags->static_rqs[i] = rq; 2921 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2922 tags->static_rqs[i] = NULL; 2923 goto fail; 2924 } 2925 2926 p += rq_size; 2927 i++; 2928 } 2929 } 2930 return 0; 2931 2932 fail: 2933 blk_mq_free_rqs(set, tags, hctx_idx); 2934 return -ENOMEM; 2935 } 2936 2937 struct rq_iter_data { 2938 struct blk_mq_hw_ctx *hctx; 2939 bool has_rq; 2940 }; 2941 2942 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2943 { 2944 struct rq_iter_data *iter_data = data; 2945 2946 if (rq->mq_hctx != iter_data->hctx) 2947 return true; 2948 iter_data->has_rq = true; 2949 return false; 2950 } 2951 2952 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2953 { 2954 struct blk_mq_tags *tags = hctx->sched_tags ? 2955 hctx->sched_tags : hctx->tags; 2956 struct rq_iter_data data = { 2957 .hctx = hctx, 2958 }; 2959 2960 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2961 return data.has_rq; 2962 } 2963 2964 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2965 struct blk_mq_hw_ctx *hctx) 2966 { 2967 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2968 return false; 2969 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2970 return false; 2971 return true; 2972 } 2973 2974 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2975 { 2976 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2977 struct blk_mq_hw_ctx, cpuhp_online); 2978 2979 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2980 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2981 return 0; 2982 2983 /* 2984 * Prevent new request from being allocated on the current hctx. 2985 * 2986 * The smp_mb__after_atomic() Pairs with the implied barrier in 2987 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2988 * seen once we return from the tag allocator. 2989 */ 2990 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2991 smp_mb__after_atomic(); 2992 2993 /* 2994 * Try to grab a reference to the queue and wait for any outstanding 2995 * requests. If we could not grab a reference the queue has been 2996 * frozen and there are no requests. 2997 */ 2998 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2999 while (blk_mq_hctx_has_requests(hctx)) 3000 msleep(5); 3001 percpu_ref_put(&hctx->queue->q_usage_counter); 3002 } 3003 3004 return 0; 3005 } 3006 3007 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3008 { 3009 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3010 struct blk_mq_hw_ctx, cpuhp_online); 3011 3012 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3013 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3014 return 0; 3015 } 3016 3017 /* 3018 * 'cpu' is going away. splice any existing rq_list entries from this 3019 * software queue to the hw queue dispatch list, and ensure that it 3020 * gets run. 3021 */ 3022 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3023 { 3024 struct blk_mq_hw_ctx *hctx; 3025 struct blk_mq_ctx *ctx; 3026 LIST_HEAD(tmp); 3027 enum hctx_type type; 3028 3029 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3030 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3031 return 0; 3032 3033 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3034 type = hctx->type; 3035 3036 spin_lock(&ctx->lock); 3037 if (!list_empty(&ctx->rq_lists[type])) { 3038 list_splice_init(&ctx->rq_lists[type], &tmp); 3039 blk_mq_hctx_clear_pending(hctx, ctx); 3040 } 3041 spin_unlock(&ctx->lock); 3042 3043 if (list_empty(&tmp)) 3044 return 0; 3045 3046 spin_lock(&hctx->lock); 3047 list_splice_tail_init(&tmp, &hctx->dispatch); 3048 spin_unlock(&hctx->lock); 3049 3050 blk_mq_run_hw_queue(hctx, true); 3051 return 0; 3052 } 3053 3054 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3055 { 3056 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3057 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3058 &hctx->cpuhp_online); 3059 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3060 &hctx->cpuhp_dead); 3061 } 3062 3063 /* 3064 * Before freeing hw queue, clearing the flush request reference in 3065 * tags->rqs[] for avoiding potential UAF. 3066 */ 3067 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3068 unsigned int queue_depth, struct request *flush_rq) 3069 { 3070 int i; 3071 unsigned long flags; 3072 3073 /* The hw queue may not be mapped yet */ 3074 if (!tags) 3075 return; 3076 3077 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0); 3078 3079 for (i = 0; i < queue_depth; i++) 3080 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3081 3082 /* 3083 * Wait until all pending iteration is done. 3084 * 3085 * Request reference is cleared and it is guaranteed to be observed 3086 * after the ->lock is released. 3087 */ 3088 spin_lock_irqsave(&tags->lock, flags); 3089 spin_unlock_irqrestore(&tags->lock, flags); 3090 } 3091 3092 /* hctx->ctxs will be freed in queue's release handler */ 3093 static void blk_mq_exit_hctx(struct request_queue *q, 3094 struct blk_mq_tag_set *set, 3095 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3096 { 3097 struct request *flush_rq = hctx->fq->flush_rq; 3098 3099 if (blk_mq_hw_queue_mapped(hctx)) 3100 blk_mq_tag_idle(hctx); 3101 3102 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3103 set->queue_depth, flush_rq); 3104 if (set->ops->exit_request) 3105 set->ops->exit_request(set, flush_rq, hctx_idx); 3106 3107 if (set->ops->exit_hctx) 3108 set->ops->exit_hctx(hctx, hctx_idx); 3109 3110 blk_mq_remove_cpuhp(hctx); 3111 3112 spin_lock(&q->unused_hctx_lock); 3113 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3114 spin_unlock(&q->unused_hctx_lock); 3115 } 3116 3117 static void blk_mq_exit_hw_queues(struct request_queue *q, 3118 struct blk_mq_tag_set *set, int nr_queue) 3119 { 3120 struct blk_mq_hw_ctx *hctx; 3121 unsigned int i; 3122 3123 queue_for_each_hw_ctx(q, hctx, i) { 3124 if (i == nr_queue) 3125 break; 3126 blk_mq_debugfs_unregister_hctx(hctx); 3127 blk_mq_exit_hctx(q, set, hctx, i); 3128 } 3129 } 3130 3131 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 3132 { 3133 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 3134 3135 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 3136 __alignof__(struct blk_mq_hw_ctx)) != 3137 sizeof(struct blk_mq_hw_ctx)); 3138 3139 if (tag_set->flags & BLK_MQ_F_BLOCKING) 3140 hw_ctx_size += sizeof(struct srcu_struct); 3141 3142 return hw_ctx_size; 3143 } 3144 3145 static int blk_mq_init_hctx(struct request_queue *q, 3146 struct blk_mq_tag_set *set, 3147 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3148 { 3149 hctx->queue_num = hctx_idx; 3150 3151 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3152 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3153 &hctx->cpuhp_online); 3154 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3155 3156 hctx->tags = set->tags[hctx_idx]; 3157 3158 if (set->ops->init_hctx && 3159 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3160 goto unregister_cpu_notifier; 3161 3162 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3163 hctx->numa_node)) 3164 goto exit_hctx; 3165 return 0; 3166 3167 exit_hctx: 3168 if (set->ops->exit_hctx) 3169 set->ops->exit_hctx(hctx, hctx_idx); 3170 unregister_cpu_notifier: 3171 blk_mq_remove_cpuhp(hctx); 3172 return -1; 3173 } 3174 3175 static struct blk_mq_hw_ctx * 3176 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3177 int node) 3178 { 3179 struct blk_mq_hw_ctx *hctx; 3180 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3181 3182 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 3183 if (!hctx) 3184 goto fail_alloc_hctx; 3185 3186 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3187 goto free_hctx; 3188 3189 atomic_set(&hctx->nr_active, 0); 3190 if (node == NUMA_NO_NODE) 3191 node = set->numa_node; 3192 hctx->numa_node = node; 3193 3194 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3195 spin_lock_init(&hctx->lock); 3196 INIT_LIST_HEAD(&hctx->dispatch); 3197 hctx->queue = q; 3198 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3199 3200 INIT_LIST_HEAD(&hctx->hctx_list); 3201 3202 /* 3203 * Allocate space for all possible cpus to avoid allocation at 3204 * runtime 3205 */ 3206 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3207 gfp, node); 3208 if (!hctx->ctxs) 3209 goto free_cpumask; 3210 3211 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3212 gfp, node, false, false)) 3213 goto free_ctxs; 3214 hctx->nr_ctx = 0; 3215 3216 spin_lock_init(&hctx->dispatch_wait_lock); 3217 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3218 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3219 3220 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3221 if (!hctx->fq) 3222 goto free_bitmap; 3223 3224 if (hctx->flags & BLK_MQ_F_BLOCKING) 3225 init_srcu_struct(hctx->srcu); 3226 blk_mq_hctx_kobj_init(hctx); 3227 3228 return hctx; 3229 3230 free_bitmap: 3231 sbitmap_free(&hctx->ctx_map); 3232 free_ctxs: 3233 kfree(hctx->ctxs); 3234 free_cpumask: 3235 free_cpumask_var(hctx->cpumask); 3236 free_hctx: 3237 kfree(hctx); 3238 fail_alloc_hctx: 3239 return NULL; 3240 } 3241 3242 static void blk_mq_init_cpu_queues(struct request_queue *q, 3243 unsigned int nr_hw_queues) 3244 { 3245 struct blk_mq_tag_set *set = q->tag_set; 3246 unsigned int i, j; 3247 3248 for_each_possible_cpu(i) { 3249 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3250 struct blk_mq_hw_ctx *hctx; 3251 int k; 3252 3253 __ctx->cpu = i; 3254 spin_lock_init(&__ctx->lock); 3255 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3256 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3257 3258 __ctx->queue = q; 3259 3260 /* 3261 * Set local node, IFF we have more than one hw queue. If 3262 * not, we remain on the home node of the device 3263 */ 3264 for (j = 0; j < set->nr_maps; j++) { 3265 hctx = blk_mq_map_queue_type(q, j, i); 3266 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3267 hctx->numa_node = cpu_to_node(i); 3268 } 3269 } 3270 } 3271 3272 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3273 unsigned int hctx_idx, 3274 unsigned int depth) 3275 { 3276 struct blk_mq_tags *tags; 3277 int ret; 3278 3279 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3280 if (!tags) 3281 return NULL; 3282 3283 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3284 if (ret) { 3285 blk_mq_free_rq_map(tags); 3286 return NULL; 3287 } 3288 3289 return tags; 3290 } 3291 3292 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3293 int hctx_idx) 3294 { 3295 if (blk_mq_is_shared_tags(set->flags)) { 3296 set->tags[hctx_idx] = set->shared_tags; 3297 3298 return true; 3299 } 3300 3301 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3302 set->queue_depth); 3303 3304 return set->tags[hctx_idx]; 3305 } 3306 3307 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3308 struct blk_mq_tags *tags, 3309 unsigned int hctx_idx) 3310 { 3311 if (tags) { 3312 blk_mq_free_rqs(set, tags, hctx_idx); 3313 blk_mq_free_rq_map(tags); 3314 } 3315 } 3316 3317 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3318 unsigned int hctx_idx) 3319 { 3320 if (!blk_mq_is_shared_tags(set->flags)) 3321 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3322 3323 set->tags[hctx_idx] = NULL; 3324 } 3325 3326 static void blk_mq_map_swqueue(struct request_queue *q) 3327 { 3328 unsigned int i, j, hctx_idx; 3329 struct blk_mq_hw_ctx *hctx; 3330 struct blk_mq_ctx *ctx; 3331 struct blk_mq_tag_set *set = q->tag_set; 3332 3333 queue_for_each_hw_ctx(q, hctx, i) { 3334 cpumask_clear(hctx->cpumask); 3335 hctx->nr_ctx = 0; 3336 hctx->dispatch_from = NULL; 3337 } 3338 3339 /* 3340 * Map software to hardware queues. 3341 * 3342 * If the cpu isn't present, the cpu is mapped to first hctx. 3343 */ 3344 for_each_possible_cpu(i) { 3345 3346 ctx = per_cpu_ptr(q->queue_ctx, i); 3347 for (j = 0; j < set->nr_maps; j++) { 3348 if (!set->map[j].nr_queues) { 3349 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3350 HCTX_TYPE_DEFAULT, i); 3351 continue; 3352 } 3353 hctx_idx = set->map[j].mq_map[i]; 3354 /* unmapped hw queue can be remapped after CPU topo changed */ 3355 if (!set->tags[hctx_idx] && 3356 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3357 /* 3358 * If tags initialization fail for some hctx, 3359 * that hctx won't be brought online. In this 3360 * case, remap the current ctx to hctx[0] which 3361 * is guaranteed to always have tags allocated 3362 */ 3363 set->map[j].mq_map[i] = 0; 3364 } 3365 3366 hctx = blk_mq_map_queue_type(q, j, i); 3367 ctx->hctxs[j] = hctx; 3368 /* 3369 * If the CPU is already set in the mask, then we've 3370 * mapped this one already. This can happen if 3371 * devices share queues across queue maps. 3372 */ 3373 if (cpumask_test_cpu(i, hctx->cpumask)) 3374 continue; 3375 3376 cpumask_set_cpu(i, hctx->cpumask); 3377 hctx->type = j; 3378 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3379 hctx->ctxs[hctx->nr_ctx++] = ctx; 3380 3381 /* 3382 * If the nr_ctx type overflows, we have exceeded the 3383 * amount of sw queues we can support. 3384 */ 3385 BUG_ON(!hctx->nr_ctx); 3386 } 3387 3388 for (; j < HCTX_MAX_TYPES; j++) 3389 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3390 HCTX_TYPE_DEFAULT, i); 3391 } 3392 3393 queue_for_each_hw_ctx(q, hctx, i) { 3394 /* 3395 * If no software queues are mapped to this hardware queue, 3396 * disable it and free the request entries. 3397 */ 3398 if (!hctx->nr_ctx) { 3399 /* Never unmap queue 0. We need it as a 3400 * fallback in case of a new remap fails 3401 * allocation 3402 */ 3403 if (i) 3404 __blk_mq_free_map_and_rqs(set, i); 3405 3406 hctx->tags = NULL; 3407 continue; 3408 } 3409 3410 hctx->tags = set->tags[i]; 3411 WARN_ON(!hctx->tags); 3412 3413 /* 3414 * Set the map size to the number of mapped software queues. 3415 * This is more accurate and more efficient than looping 3416 * over all possibly mapped software queues. 3417 */ 3418 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3419 3420 /* 3421 * Initialize batch roundrobin counts 3422 */ 3423 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3424 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3425 } 3426 } 3427 3428 /* 3429 * Caller needs to ensure that we're either frozen/quiesced, or that 3430 * the queue isn't live yet. 3431 */ 3432 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3433 { 3434 struct blk_mq_hw_ctx *hctx; 3435 int i; 3436 3437 queue_for_each_hw_ctx(q, hctx, i) { 3438 if (shared) { 3439 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3440 } else { 3441 blk_mq_tag_idle(hctx); 3442 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3443 } 3444 } 3445 } 3446 3447 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3448 bool shared) 3449 { 3450 struct request_queue *q; 3451 3452 lockdep_assert_held(&set->tag_list_lock); 3453 3454 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3455 blk_mq_freeze_queue(q); 3456 queue_set_hctx_shared(q, shared); 3457 blk_mq_unfreeze_queue(q); 3458 } 3459 } 3460 3461 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3462 { 3463 struct blk_mq_tag_set *set = q->tag_set; 3464 3465 mutex_lock(&set->tag_list_lock); 3466 list_del(&q->tag_set_list); 3467 if (list_is_singular(&set->tag_list)) { 3468 /* just transitioned to unshared */ 3469 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3470 /* update existing queue */ 3471 blk_mq_update_tag_set_shared(set, false); 3472 } 3473 mutex_unlock(&set->tag_list_lock); 3474 INIT_LIST_HEAD(&q->tag_set_list); 3475 } 3476 3477 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3478 struct request_queue *q) 3479 { 3480 mutex_lock(&set->tag_list_lock); 3481 3482 /* 3483 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3484 */ 3485 if (!list_empty(&set->tag_list) && 3486 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3487 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3488 /* update existing queue */ 3489 blk_mq_update_tag_set_shared(set, true); 3490 } 3491 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3492 queue_set_hctx_shared(q, true); 3493 list_add_tail(&q->tag_set_list, &set->tag_list); 3494 3495 mutex_unlock(&set->tag_list_lock); 3496 } 3497 3498 /* All allocations will be freed in release handler of q->mq_kobj */ 3499 static int blk_mq_alloc_ctxs(struct request_queue *q) 3500 { 3501 struct blk_mq_ctxs *ctxs; 3502 int cpu; 3503 3504 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3505 if (!ctxs) 3506 return -ENOMEM; 3507 3508 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3509 if (!ctxs->queue_ctx) 3510 goto fail; 3511 3512 for_each_possible_cpu(cpu) { 3513 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3514 ctx->ctxs = ctxs; 3515 } 3516 3517 q->mq_kobj = &ctxs->kobj; 3518 q->queue_ctx = ctxs->queue_ctx; 3519 3520 return 0; 3521 fail: 3522 kfree(ctxs); 3523 return -ENOMEM; 3524 } 3525 3526 /* 3527 * It is the actual release handler for mq, but we do it from 3528 * request queue's release handler for avoiding use-after-free 3529 * and headache because q->mq_kobj shouldn't have been introduced, 3530 * but we can't group ctx/kctx kobj without it. 3531 */ 3532 void blk_mq_release(struct request_queue *q) 3533 { 3534 struct blk_mq_hw_ctx *hctx, *next; 3535 int i; 3536 3537 queue_for_each_hw_ctx(q, hctx, i) 3538 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3539 3540 /* all hctx are in .unused_hctx_list now */ 3541 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3542 list_del_init(&hctx->hctx_list); 3543 kobject_put(&hctx->kobj); 3544 } 3545 3546 kfree(q->queue_hw_ctx); 3547 3548 /* 3549 * release .mq_kobj and sw queue's kobject now because 3550 * both share lifetime with request queue. 3551 */ 3552 blk_mq_sysfs_deinit(q); 3553 } 3554 3555 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3556 void *queuedata) 3557 { 3558 struct request_queue *q; 3559 int ret; 3560 3561 q = blk_alloc_queue(set->numa_node); 3562 if (!q) 3563 return ERR_PTR(-ENOMEM); 3564 q->queuedata = queuedata; 3565 ret = blk_mq_init_allocated_queue(set, q); 3566 if (ret) { 3567 blk_cleanup_queue(q); 3568 return ERR_PTR(ret); 3569 } 3570 return q; 3571 } 3572 3573 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3574 { 3575 return blk_mq_init_queue_data(set, NULL); 3576 } 3577 EXPORT_SYMBOL(blk_mq_init_queue); 3578 3579 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3580 struct lock_class_key *lkclass) 3581 { 3582 struct request_queue *q; 3583 struct gendisk *disk; 3584 3585 q = blk_mq_init_queue_data(set, queuedata); 3586 if (IS_ERR(q)) 3587 return ERR_CAST(q); 3588 3589 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3590 if (!disk) { 3591 blk_cleanup_queue(q); 3592 return ERR_PTR(-ENOMEM); 3593 } 3594 return disk; 3595 } 3596 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3597 3598 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3599 struct blk_mq_tag_set *set, struct request_queue *q, 3600 int hctx_idx, int node) 3601 { 3602 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3603 3604 /* reuse dead hctx first */ 3605 spin_lock(&q->unused_hctx_lock); 3606 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3607 if (tmp->numa_node == node) { 3608 hctx = tmp; 3609 break; 3610 } 3611 } 3612 if (hctx) 3613 list_del_init(&hctx->hctx_list); 3614 spin_unlock(&q->unused_hctx_lock); 3615 3616 if (!hctx) 3617 hctx = blk_mq_alloc_hctx(q, set, node); 3618 if (!hctx) 3619 goto fail; 3620 3621 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3622 goto free_hctx; 3623 3624 return hctx; 3625 3626 free_hctx: 3627 kobject_put(&hctx->kobj); 3628 fail: 3629 return NULL; 3630 } 3631 3632 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3633 struct request_queue *q) 3634 { 3635 int i, j, end; 3636 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3637 3638 if (q->nr_hw_queues < set->nr_hw_queues) { 3639 struct blk_mq_hw_ctx **new_hctxs; 3640 3641 new_hctxs = kcalloc_node(set->nr_hw_queues, 3642 sizeof(*new_hctxs), GFP_KERNEL, 3643 set->numa_node); 3644 if (!new_hctxs) 3645 return; 3646 if (hctxs) 3647 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3648 sizeof(*hctxs)); 3649 q->queue_hw_ctx = new_hctxs; 3650 kfree(hctxs); 3651 hctxs = new_hctxs; 3652 } 3653 3654 /* protect against switching io scheduler */ 3655 mutex_lock(&q->sysfs_lock); 3656 for (i = 0; i < set->nr_hw_queues; i++) { 3657 int node; 3658 struct blk_mq_hw_ctx *hctx; 3659 3660 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3661 /* 3662 * If the hw queue has been mapped to another numa node, 3663 * we need to realloc the hctx. If allocation fails, fallback 3664 * to use the previous one. 3665 */ 3666 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3667 continue; 3668 3669 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3670 if (hctx) { 3671 if (hctxs[i]) 3672 blk_mq_exit_hctx(q, set, hctxs[i], i); 3673 hctxs[i] = hctx; 3674 } else { 3675 if (hctxs[i]) 3676 pr_warn("Allocate new hctx on node %d fails,\ 3677 fallback to previous one on node %d\n", 3678 node, hctxs[i]->numa_node); 3679 else 3680 break; 3681 } 3682 } 3683 /* 3684 * Increasing nr_hw_queues fails. Free the newly allocated 3685 * hctxs and keep the previous q->nr_hw_queues. 3686 */ 3687 if (i != set->nr_hw_queues) { 3688 j = q->nr_hw_queues; 3689 end = i; 3690 } else { 3691 j = i; 3692 end = q->nr_hw_queues; 3693 q->nr_hw_queues = set->nr_hw_queues; 3694 } 3695 3696 for (; j < end; j++) { 3697 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3698 3699 if (hctx) { 3700 blk_mq_exit_hctx(q, set, hctx, j); 3701 hctxs[j] = NULL; 3702 } 3703 } 3704 mutex_unlock(&q->sysfs_lock); 3705 } 3706 3707 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3708 struct request_queue *q) 3709 { 3710 /* mark the queue as mq asap */ 3711 q->mq_ops = set->ops; 3712 3713 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3714 blk_mq_poll_stats_bkt, 3715 BLK_MQ_POLL_STATS_BKTS, q); 3716 if (!q->poll_cb) 3717 goto err_exit; 3718 3719 if (blk_mq_alloc_ctxs(q)) 3720 goto err_poll; 3721 3722 /* init q->mq_kobj and sw queues' kobjects */ 3723 blk_mq_sysfs_init(q); 3724 3725 INIT_LIST_HEAD(&q->unused_hctx_list); 3726 spin_lock_init(&q->unused_hctx_lock); 3727 3728 blk_mq_realloc_hw_ctxs(set, q); 3729 if (!q->nr_hw_queues) 3730 goto err_hctxs; 3731 3732 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3733 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3734 3735 q->tag_set = set; 3736 3737 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3738 if (set->nr_maps > HCTX_TYPE_POLL && 3739 set->map[HCTX_TYPE_POLL].nr_queues) 3740 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3741 3742 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3743 INIT_LIST_HEAD(&q->requeue_list); 3744 spin_lock_init(&q->requeue_lock); 3745 3746 q->nr_requests = set->queue_depth; 3747 3748 /* 3749 * Default to classic polling 3750 */ 3751 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3752 3753 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3754 blk_mq_add_queue_tag_set(set, q); 3755 blk_mq_map_swqueue(q); 3756 return 0; 3757 3758 err_hctxs: 3759 kfree(q->queue_hw_ctx); 3760 q->nr_hw_queues = 0; 3761 blk_mq_sysfs_deinit(q); 3762 err_poll: 3763 blk_stat_free_callback(q->poll_cb); 3764 q->poll_cb = NULL; 3765 err_exit: 3766 q->mq_ops = NULL; 3767 return -ENOMEM; 3768 } 3769 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3770 3771 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3772 void blk_mq_exit_queue(struct request_queue *q) 3773 { 3774 struct blk_mq_tag_set *set = q->tag_set; 3775 3776 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 3777 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3778 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 3779 blk_mq_del_queue_tag_set(q); 3780 } 3781 3782 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3783 { 3784 int i; 3785 3786 if (blk_mq_is_shared_tags(set->flags)) { 3787 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 3788 BLK_MQ_NO_HCTX_IDX, 3789 set->queue_depth); 3790 if (!set->shared_tags) 3791 return -ENOMEM; 3792 } 3793 3794 for (i = 0; i < set->nr_hw_queues; i++) { 3795 if (!__blk_mq_alloc_map_and_rqs(set, i)) 3796 goto out_unwind; 3797 cond_resched(); 3798 } 3799 3800 return 0; 3801 3802 out_unwind: 3803 while (--i >= 0) 3804 __blk_mq_free_map_and_rqs(set, i); 3805 3806 if (blk_mq_is_shared_tags(set->flags)) { 3807 blk_mq_free_map_and_rqs(set, set->shared_tags, 3808 BLK_MQ_NO_HCTX_IDX); 3809 } 3810 3811 return -ENOMEM; 3812 } 3813 3814 /* 3815 * Allocate the request maps associated with this tag_set. Note that this 3816 * may reduce the depth asked for, if memory is tight. set->queue_depth 3817 * will be updated to reflect the allocated depth. 3818 */ 3819 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 3820 { 3821 unsigned int depth; 3822 int err; 3823 3824 depth = set->queue_depth; 3825 do { 3826 err = __blk_mq_alloc_rq_maps(set); 3827 if (!err) 3828 break; 3829 3830 set->queue_depth >>= 1; 3831 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3832 err = -ENOMEM; 3833 break; 3834 } 3835 } while (set->queue_depth); 3836 3837 if (!set->queue_depth || err) { 3838 pr_err("blk-mq: failed to allocate request map\n"); 3839 return -ENOMEM; 3840 } 3841 3842 if (depth != set->queue_depth) 3843 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3844 depth, set->queue_depth); 3845 3846 return 0; 3847 } 3848 3849 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3850 { 3851 /* 3852 * blk_mq_map_queues() and multiple .map_queues() implementations 3853 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3854 * number of hardware queues. 3855 */ 3856 if (set->nr_maps == 1) 3857 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3858 3859 if (set->ops->map_queues && !is_kdump_kernel()) { 3860 int i; 3861 3862 /* 3863 * transport .map_queues is usually done in the following 3864 * way: 3865 * 3866 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3867 * mask = get_cpu_mask(queue) 3868 * for_each_cpu(cpu, mask) 3869 * set->map[x].mq_map[cpu] = queue; 3870 * } 3871 * 3872 * When we need to remap, the table has to be cleared for 3873 * killing stale mapping since one CPU may not be mapped 3874 * to any hw queue. 3875 */ 3876 for (i = 0; i < set->nr_maps; i++) 3877 blk_mq_clear_mq_map(&set->map[i]); 3878 3879 return set->ops->map_queues(set); 3880 } else { 3881 BUG_ON(set->nr_maps > 1); 3882 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3883 } 3884 } 3885 3886 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3887 int cur_nr_hw_queues, int new_nr_hw_queues) 3888 { 3889 struct blk_mq_tags **new_tags; 3890 3891 if (cur_nr_hw_queues >= new_nr_hw_queues) 3892 return 0; 3893 3894 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3895 GFP_KERNEL, set->numa_node); 3896 if (!new_tags) 3897 return -ENOMEM; 3898 3899 if (set->tags) 3900 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3901 sizeof(*set->tags)); 3902 kfree(set->tags); 3903 set->tags = new_tags; 3904 set->nr_hw_queues = new_nr_hw_queues; 3905 3906 return 0; 3907 } 3908 3909 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 3910 int new_nr_hw_queues) 3911 { 3912 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 3913 } 3914 3915 /* 3916 * Alloc a tag set to be associated with one or more request queues. 3917 * May fail with EINVAL for various error conditions. May adjust the 3918 * requested depth down, if it's too large. In that case, the set 3919 * value will be stored in set->queue_depth. 3920 */ 3921 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3922 { 3923 int i, ret; 3924 3925 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3926 3927 if (!set->nr_hw_queues) 3928 return -EINVAL; 3929 if (!set->queue_depth) 3930 return -EINVAL; 3931 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3932 return -EINVAL; 3933 3934 if (!set->ops->queue_rq) 3935 return -EINVAL; 3936 3937 if (!set->ops->get_budget ^ !set->ops->put_budget) 3938 return -EINVAL; 3939 3940 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3941 pr_info("blk-mq: reduced tag depth to %u\n", 3942 BLK_MQ_MAX_DEPTH); 3943 set->queue_depth = BLK_MQ_MAX_DEPTH; 3944 } 3945 3946 if (!set->nr_maps) 3947 set->nr_maps = 1; 3948 else if (set->nr_maps > HCTX_MAX_TYPES) 3949 return -EINVAL; 3950 3951 /* 3952 * If a crashdump is active, then we are potentially in a very 3953 * memory constrained environment. Limit us to 1 queue and 3954 * 64 tags to prevent using too much memory. 3955 */ 3956 if (is_kdump_kernel()) { 3957 set->nr_hw_queues = 1; 3958 set->nr_maps = 1; 3959 set->queue_depth = min(64U, set->queue_depth); 3960 } 3961 /* 3962 * There is no use for more h/w queues than cpus if we just have 3963 * a single map 3964 */ 3965 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3966 set->nr_hw_queues = nr_cpu_ids; 3967 3968 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 3969 return -ENOMEM; 3970 3971 ret = -ENOMEM; 3972 for (i = 0; i < set->nr_maps; i++) { 3973 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3974 sizeof(set->map[i].mq_map[0]), 3975 GFP_KERNEL, set->numa_node); 3976 if (!set->map[i].mq_map) 3977 goto out_free_mq_map; 3978 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3979 } 3980 3981 ret = blk_mq_update_queue_map(set); 3982 if (ret) 3983 goto out_free_mq_map; 3984 3985 ret = blk_mq_alloc_set_map_and_rqs(set); 3986 if (ret) 3987 goto out_free_mq_map; 3988 3989 mutex_init(&set->tag_list_lock); 3990 INIT_LIST_HEAD(&set->tag_list); 3991 3992 return 0; 3993 3994 out_free_mq_map: 3995 for (i = 0; i < set->nr_maps; i++) { 3996 kfree(set->map[i].mq_map); 3997 set->map[i].mq_map = NULL; 3998 } 3999 kfree(set->tags); 4000 set->tags = NULL; 4001 return ret; 4002 } 4003 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4004 4005 /* allocate and initialize a tagset for a simple single-queue device */ 4006 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4007 const struct blk_mq_ops *ops, unsigned int queue_depth, 4008 unsigned int set_flags) 4009 { 4010 memset(set, 0, sizeof(*set)); 4011 set->ops = ops; 4012 set->nr_hw_queues = 1; 4013 set->nr_maps = 1; 4014 set->queue_depth = queue_depth; 4015 set->numa_node = NUMA_NO_NODE; 4016 set->flags = set_flags; 4017 return blk_mq_alloc_tag_set(set); 4018 } 4019 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4020 4021 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4022 { 4023 int i, j; 4024 4025 for (i = 0; i < set->nr_hw_queues; i++) 4026 __blk_mq_free_map_and_rqs(set, i); 4027 4028 if (blk_mq_is_shared_tags(set->flags)) { 4029 blk_mq_free_map_and_rqs(set, set->shared_tags, 4030 BLK_MQ_NO_HCTX_IDX); 4031 } 4032 4033 for (j = 0; j < set->nr_maps; j++) { 4034 kfree(set->map[j].mq_map); 4035 set->map[j].mq_map = NULL; 4036 } 4037 4038 kfree(set->tags); 4039 set->tags = NULL; 4040 } 4041 EXPORT_SYMBOL(blk_mq_free_tag_set); 4042 4043 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4044 { 4045 struct blk_mq_tag_set *set = q->tag_set; 4046 struct blk_mq_hw_ctx *hctx; 4047 int i, ret; 4048 4049 if (!set) 4050 return -EINVAL; 4051 4052 if (q->nr_requests == nr) 4053 return 0; 4054 4055 blk_mq_freeze_queue(q); 4056 blk_mq_quiesce_queue(q); 4057 4058 ret = 0; 4059 queue_for_each_hw_ctx(q, hctx, i) { 4060 if (!hctx->tags) 4061 continue; 4062 /* 4063 * If we're using an MQ scheduler, just update the scheduler 4064 * queue depth. This is similar to what the old code would do. 4065 */ 4066 if (hctx->sched_tags) { 4067 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4068 nr, true); 4069 } else { 4070 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4071 false); 4072 } 4073 if (ret) 4074 break; 4075 if (q->elevator && q->elevator->type->ops.depth_updated) 4076 q->elevator->type->ops.depth_updated(hctx); 4077 } 4078 if (!ret) { 4079 q->nr_requests = nr; 4080 if (blk_mq_is_shared_tags(set->flags)) { 4081 if (q->elevator) 4082 blk_mq_tag_update_sched_shared_tags(q); 4083 else 4084 blk_mq_tag_resize_shared_tags(set, nr); 4085 } 4086 } 4087 4088 blk_mq_unquiesce_queue(q); 4089 blk_mq_unfreeze_queue(q); 4090 4091 return ret; 4092 } 4093 4094 /* 4095 * request_queue and elevator_type pair. 4096 * It is just used by __blk_mq_update_nr_hw_queues to cache 4097 * the elevator_type associated with a request_queue. 4098 */ 4099 struct blk_mq_qe_pair { 4100 struct list_head node; 4101 struct request_queue *q; 4102 struct elevator_type *type; 4103 }; 4104 4105 /* 4106 * Cache the elevator_type in qe pair list and switch the 4107 * io scheduler to 'none' 4108 */ 4109 static bool blk_mq_elv_switch_none(struct list_head *head, 4110 struct request_queue *q) 4111 { 4112 struct blk_mq_qe_pair *qe; 4113 4114 if (!q->elevator) 4115 return true; 4116 4117 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4118 if (!qe) 4119 return false; 4120 4121 INIT_LIST_HEAD(&qe->node); 4122 qe->q = q; 4123 qe->type = q->elevator->type; 4124 list_add(&qe->node, head); 4125 4126 mutex_lock(&q->sysfs_lock); 4127 /* 4128 * After elevator_switch_mq, the previous elevator_queue will be 4129 * released by elevator_release. The reference of the io scheduler 4130 * module get by elevator_get will also be put. So we need to get 4131 * a reference of the io scheduler module here to prevent it to be 4132 * removed. 4133 */ 4134 __module_get(qe->type->elevator_owner); 4135 elevator_switch_mq(q, NULL); 4136 mutex_unlock(&q->sysfs_lock); 4137 4138 return true; 4139 } 4140 4141 static void blk_mq_elv_switch_back(struct list_head *head, 4142 struct request_queue *q) 4143 { 4144 struct blk_mq_qe_pair *qe; 4145 struct elevator_type *t = NULL; 4146 4147 list_for_each_entry(qe, head, node) 4148 if (qe->q == q) { 4149 t = qe->type; 4150 break; 4151 } 4152 4153 if (!t) 4154 return; 4155 4156 list_del(&qe->node); 4157 kfree(qe); 4158 4159 mutex_lock(&q->sysfs_lock); 4160 elevator_switch_mq(q, t); 4161 mutex_unlock(&q->sysfs_lock); 4162 } 4163 4164 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4165 int nr_hw_queues) 4166 { 4167 struct request_queue *q; 4168 LIST_HEAD(head); 4169 int prev_nr_hw_queues; 4170 4171 lockdep_assert_held(&set->tag_list_lock); 4172 4173 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4174 nr_hw_queues = nr_cpu_ids; 4175 if (nr_hw_queues < 1) 4176 return; 4177 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4178 return; 4179 4180 list_for_each_entry(q, &set->tag_list, tag_set_list) 4181 blk_mq_freeze_queue(q); 4182 /* 4183 * Switch IO scheduler to 'none', cleaning up the data associated 4184 * with the previous scheduler. We will switch back once we are done 4185 * updating the new sw to hw queue mappings. 4186 */ 4187 list_for_each_entry(q, &set->tag_list, tag_set_list) 4188 if (!blk_mq_elv_switch_none(&head, q)) 4189 goto switch_back; 4190 4191 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4192 blk_mq_debugfs_unregister_hctxs(q); 4193 blk_mq_sysfs_unregister(q); 4194 } 4195 4196 prev_nr_hw_queues = set->nr_hw_queues; 4197 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4198 0) 4199 goto reregister; 4200 4201 set->nr_hw_queues = nr_hw_queues; 4202 fallback: 4203 blk_mq_update_queue_map(set); 4204 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4205 blk_mq_realloc_hw_ctxs(set, q); 4206 if (q->nr_hw_queues != set->nr_hw_queues) { 4207 int i = prev_nr_hw_queues; 4208 4209 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4210 nr_hw_queues, prev_nr_hw_queues); 4211 for (; i < set->nr_hw_queues; i++) 4212 __blk_mq_free_map_and_rqs(set, i); 4213 4214 set->nr_hw_queues = prev_nr_hw_queues; 4215 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4216 goto fallback; 4217 } 4218 blk_mq_map_swqueue(q); 4219 } 4220 4221 reregister: 4222 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4223 blk_mq_sysfs_register(q); 4224 blk_mq_debugfs_register_hctxs(q); 4225 } 4226 4227 switch_back: 4228 list_for_each_entry(q, &set->tag_list, tag_set_list) 4229 blk_mq_elv_switch_back(&head, q); 4230 4231 list_for_each_entry(q, &set->tag_list, tag_set_list) 4232 blk_mq_unfreeze_queue(q); 4233 } 4234 4235 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4236 { 4237 mutex_lock(&set->tag_list_lock); 4238 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4239 mutex_unlock(&set->tag_list_lock); 4240 } 4241 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4242 4243 /* Enable polling stats and return whether they were already enabled. */ 4244 static bool blk_poll_stats_enable(struct request_queue *q) 4245 { 4246 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 4247 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 4248 return true; 4249 blk_stat_add_callback(q, q->poll_cb); 4250 return false; 4251 } 4252 4253 static void blk_mq_poll_stats_start(struct request_queue *q) 4254 { 4255 /* 4256 * We don't arm the callback if polling stats are not enabled or the 4257 * callback is already active. 4258 */ 4259 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 4260 blk_stat_is_active(q->poll_cb)) 4261 return; 4262 4263 blk_stat_activate_msecs(q->poll_cb, 100); 4264 } 4265 4266 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4267 { 4268 struct request_queue *q = cb->data; 4269 int bucket; 4270 4271 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4272 if (cb->stat[bucket].nr_samples) 4273 q->poll_stat[bucket] = cb->stat[bucket]; 4274 } 4275 } 4276 4277 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4278 struct request *rq) 4279 { 4280 unsigned long ret = 0; 4281 int bucket; 4282 4283 /* 4284 * If stats collection isn't on, don't sleep but turn it on for 4285 * future users 4286 */ 4287 if (!blk_poll_stats_enable(q)) 4288 return 0; 4289 4290 /* 4291 * As an optimistic guess, use half of the mean service time 4292 * for this type of request. We can (and should) make this smarter. 4293 * For instance, if the completion latencies are tight, we can 4294 * get closer than just half the mean. This is especially 4295 * important on devices where the completion latencies are longer 4296 * than ~10 usec. We do use the stats for the relevant IO size 4297 * if available which does lead to better estimates. 4298 */ 4299 bucket = blk_mq_poll_stats_bkt(rq); 4300 if (bucket < 0) 4301 return ret; 4302 4303 if (q->poll_stat[bucket].nr_samples) 4304 ret = (q->poll_stat[bucket].mean + 1) / 2; 4305 4306 return ret; 4307 } 4308 4309 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4310 { 4311 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4312 struct request *rq = blk_qc_to_rq(hctx, qc); 4313 struct hrtimer_sleeper hs; 4314 enum hrtimer_mode mode; 4315 unsigned int nsecs; 4316 ktime_t kt; 4317 4318 /* 4319 * If a request has completed on queue that uses an I/O scheduler, we 4320 * won't get back a request from blk_qc_to_rq. 4321 */ 4322 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4323 return false; 4324 4325 /* 4326 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4327 * 4328 * 0: use half of prev avg 4329 * >0: use this specific value 4330 */ 4331 if (q->poll_nsec > 0) 4332 nsecs = q->poll_nsec; 4333 else 4334 nsecs = blk_mq_poll_nsecs(q, rq); 4335 4336 if (!nsecs) 4337 return false; 4338 4339 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4340 4341 /* 4342 * This will be replaced with the stats tracking code, using 4343 * 'avg_completion_time / 2' as the pre-sleep target. 4344 */ 4345 kt = nsecs; 4346 4347 mode = HRTIMER_MODE_REL; 4348 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4349 hrtimer_set_expires(&hs.timer, kt); 4350 4351 do { 4352 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4353 break; 4354 set_current_state(TASK_UNINTERRUPTIBLE); 4355 hrtimer_sleeper_start_expires(&hs, mode); 4356 if (hs.task) 4357 io_schedule(); 4358 hrtimer_cancel(&hs.timer); 4359 mode = HRTIMER_MODE_ABS; 4360 } while (hs.task && !signal_pending(current)); 4361 4362 __set_current_state(TASK_RUNNING); 4363 destroy_hrtimer_on_stack(&hs.timer); 4364 4365 /* 4366 * If we sleep, have the caller restart the poll loop to reset the 4367 * state. Like for the other success return cases, the caller is 4368 * responsible for checking if the IO completed. If the IO isn't 4369 * complete, we'll get called again and will go straight to the busy 4370 * poll loop. 4371 */ 4372 return true; 4373 } 4374 4375 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4376 struct io_comp_batch *iob, unsigned int flags) 4377 { 4378 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4379 long state = get_current_state(); 4380 int ret; 4381 4382 do { 4383 ret = q->mq_ops->poll(hctx, iob); 4384 if (ret > 0) { 4385 __set_current_state(TASK_RUNNING); 4386 return ret; 4387 } 4388 4389 if (signal_pending_state(state, current)) 4390 __set_current_state(TASK_RUNNING); 4391 if (task_is_running(current)) 4392 return 1; 4393 4394 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4395 break; 4396 cpu_relax(); 4397 } while (!need_resched()); 4398 4399 __set_current_state(TASK_RUNNING); 4400 return 0; 4401 } 4402 4403 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4404 unsigned int flags) 4405 { 4406 if (!(flags & BLK_POLL_NOSLEEP) && 4407 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4408 if (blk_mq_poll_hybrid(q, cookie)) 4409 return 1; 4410 } 4411 return blk_mq_poll_classic(q, cookie, iob, flags); 4412 } 4413 4414 unsigned int blk_mq_rq_cpu(struct request *rq) 4415 { 4416 return rq->mq_ctx->cpu; 4417 } 4418 EXPORT_SYMBOL(blk_mq_rq_cpu); 4419 4420 static int __init blk_mq_init(void) 4421 { 4422 int i; 4423 4424 for_each_possible_cpu(i) 4425 init_llist_head(&per_cpu(blk_cpu_done, i)); 4426 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4427 4428 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4429 "block/softirq:dead", NULL, 4430 blk_softirq_cpu_dead); 4431 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4432 blk_mq_hctx_notify_dead); 4433 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4434 blk_mq_hctx_notify_online, 4435 blk_mq_hctx_notify_offline); 4436 return 0; 4437 } 4438 subsys_initcall(blk_mq_init); 4439