xref: /openbmc/linux/block/blk-mq.c (revision 9b9c2cd4)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, unsigned int rw_flags)
163 {
164 	if (blk_queue_io_stat(q))
165 		rw_flags |= REQ_IO_STAT;
166 
167 	INIT_LIST_HEAD(&rq->queuelist);
168 	/* csd/requeue_work/fifo_time is initialized before use */
169 	rq->q = q;
170 	rq->mq_ctx = ctx;
171 	rq->cmd_flags |= rw_flags;
172 	/* do not touch atomic flags, it needs atomic ops against the timer */
173 	rq->cpu = -1;
174 	INIT_HLIST_NODE(&rq->hash);
175 	RB_CLEAR_NODE(&rq->rb_node);
176 	rq->rq_disk = NULL;
177 	rq->part = NULL;
178 	rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 	rq->rl = NULL;
181 	set_start_time_ns(rq);
182 	rq->io_start_time_ns = 0;
183 #endif
184 	rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 	rq->nr_integrity_segments = 0;
187 #endif
188 	rq->special = NULL;
189 	/* tag was already set */
190 	rq->errors = 0;
191 
192 	rq->cmd = rq->__cmd;
193 
194 	rq->extra_len = 0;
195 	rq->sense_len = 0;
196 	rq->resid_len = 0;
197 	rq->sense = NULL;
198 
199 	INIT_LIST_HEAD(&rq->timeout_list);
200 	rq->timeout = 0;
201 
202 	rq->end_io = NULL;
203 	rq->end_io_data = NULL;
204 	rq->next_rq = NULL;
205 
206 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208 
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 	struct request *rq;
213 	unsigned int tag;
214 
215 	tag = blk_mq_get_tag(data);
216 	if (tag != BLK_MQ_TAG_FAIL) {
217 		rq = data->hctx->tags->rqs[tag];
218 
219 		if (blk_mq_tag_busy(data->hctx)) {
220 			rq->cmd_flags = REQ_MQ_INFLIGHT;
221 			atomic_inc(&data->hctx->nr_active);
222 		}
223 
224 		rq->tag = tag;
225 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 		return rq;
227 	}
228 
229 	return NULL;
230 }
231 
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
233 		bool reserved)
234 {
235 	struct blk_mq_ctx *ctx;
236 	struct blk_mq_hw_ctx *hctx;
237 	struct request *rq;
238 	struct blk_mq_alloc_data alloc_data;
239 	int ret;
240 
241 	ret = blk_queue_enter(q, gfp);
242 	if (ret)
243 		return ERR_PTR(ret);
244 
245 	ctx = blk_mq_get_ctx(q);
246 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_DIRECT_RECLAIM,
248 			reserved, ctx, hctx);
249 
250 	rq = __blk_mq_alloc_request(&alloc_data, rw);
251 	if (!rq && (gfp & __GFP_DIRECT_RECLAIM)) {
252 		__blk_mq_run_hw_queue(hctx);
253 		blk_mq_put_ctx(ctx);
254 
255 		ctx = blk_mq_get_ctx(q);
256 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
258 				hctx);
259 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
260 		ctx = alloc_data.ctx;
261 	}
262 	blk_mq_put_ctx(ctx);
263 	if (!rq) {
264 		blk_queue_exit(q);
265 		return ERR_PTR(-EWOULDBLOCK);
266 	}
267 	return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270 
271 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
272 				  struct blk_mq_ctx *ctx, struct request *rq)
273 {
274 	const int tag = rq->tag;
275 	struct request_queue *q = rq->q;
276 
277 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
278 		atomic_dec(&hctx->nr_active);
279 	rq->cmd_flags = 0;
280 
281 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
282 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
283 	blk_queue_exit(q);
284 }
285 
286 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
287 {
288 	struct blk_mq_ctx *ctx = rq->mq_ctx;
289 
290 	ctx->rq_completed[rq_is_sync(rq)]++;
291 	__blk_mq_free_request(hctx, ctx, rq);
292 
293 }
294 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
295 
296 void blk_mq_free_request(struct request *rq)
297 {
298 	struct blk_mq_hw_ctx *hctx;
299 	struct request_queue *q = rq->q;
300 
301 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
302 	blk_mq_free_hctx_request(hctx, rq);
303 }
304 EXPORT_SYMBOL_GPL(blk_mq_free_request);
305 
306 inline void __blk_mq_end_request(struct request *rq, int error)
307 {
308 	blk_account_io_done(rq);
309 
310 	if (rq->end_io) {
311 		rq->end_io(rq, error);
312 	} else {
313 		if (unlikely(blk_bidi_rq(rq)))
314 			blk_mq_free_request(rq->next_rq);
315 		blk_mq_free_request(rq);
316 	}
317 }
318 EXPORT_SYMBOL(__blk_mq_end_request);
319 
320 void blk_mq_end_request(struct request *rq, int error)
321 {
322 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
323 		BUG();
324 	__blk_mq_end_request(rq, error);
325 }
326 EXPORT_SYMBOL(blk_mq_end_request);
327 
328 static void __blk_mq_complete_request_remote(void *data)
329 {
330 	struct request *rq = data;
331 
332 	rq->q->softirq_done_fn(rq);
333 }
334 
335 static void blk_mq_ipi_complete_request(struct request *rq)
336 {
337 	struct blk_mq_ctx *ctx = rq->mq_ctx;
338 	bool shared = false;
339 	int cpu;
340 
341 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
342 		rq->q->softirq_done_fn(rq);
343 		return;
344 	}
345 
346 	cpu = get_cpu();
347 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
348 		shared = cpus_share_cache(cpu, ctx->cpu);
349 
350 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
351 		rq->csd.func = __blk_mq_complete_request_remote;
352 		rq->csd.info = rq;
353 		rq->csd.flags = 0;
354 		smp_call_function_single_async(ctx->cpu, &rq->csd);
355 	} else {
356 		rq->q->softirq_done_fn(rq);
357 	}
358 	put_cpu();
359 }
360 
361 static void __blk_mq_complete_request(struct request *rq)
362 {
363 	struct request_queue *q = rq->q;
364 
365 	if (!q->softirq_done_fn)
366 		blk_mq_end_request(rq, rq->errors);
367 	else
368 		blk_mq_ipi_complete_request(rq);
369 }
370 
371 /**
372  * blk_mq_complete_request - end I/O on a request
373  * @rq:		the request being processed
374  *
375  * Description:
376  *	Ends all I/O on a request. It does not handle partial completions.
377  *	The actual completion happens out-of-order, through a IPI handler.
378  **/
379 void blk_mq_complete_request(struct request *rq, int error)
380 {
381 	struct request_queue *q = rq->q;
382 
383 	if (unlikely(blk_should_fake_timeout(q)))
384 		return;
385 	if (!blk_mark_rq_complete(rq)) {
386 		rq->errors = error;
387 		__blk_mq_complete_request(rq);
388 	}
389 }
390 EXPORT_SYMBOL(blk_mq_complete_request);
391 
392 int blk_mq_request_started(struct request *rq)
393 {
394 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
395 }
396 EXPORT_SYMBOL_GPL(blk_mq_request_started);
397 
398 void blk_mq_start_request(struct request *rq)
399 {
400 	struct request_queue *q = rq->q;
401 
402 	trace_block_rq_issue(q, rq);
403 
404 	rq->resid_len = blk_rq_bytes(rq);
405 	if (unlikely(blk_bidi_rq(rq)))
406 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
407 
408 	blk_add_timer(rq);
409 
410 	/*
411 	 * Ensure that ->deadline is visible before set the started
412 	 * flag and clear the completed flag.
413 	 */
414 	smp_mb__before_atomic();
415 
416 	/*
417 	 * Mark us as started and clear complete. Complete might have been
418 	 * set if requeue raced with timeout, which then marked it as
419 	 * complete. So be sure to clear complete again when we start
420 	 * the request, otherwise we'll ignore the completion event.
421 	 */
422 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
423 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
424 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
425 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
426 
427 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
428 		/*
429 		 * Make sure space for the drain appears.  We know we can do
430 		 * this because max_hw_segments has been adjusted to be one
431 		 * fewer than the device can handle.
432 		 */
433 		rq->nr_phys_segments++;
434 	}
435 }
436 EXPORT_SYMBOL(blk_mq_start_request);
437 
438 static void __blk_mq_requeue_request(struct request *rq)
439 {
440 	struct request_queue *q = rq->q;
441 
442 	trace_block_rq_requeue(q, rq);
443 
444 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
445 		if (q->dma_drain_size && blk_rq_bytes(rq))
446 			rq->nr_phys_segments--;
447 	}
448 }
449 
450 void blk_mq_requeue_request(struct request *rq)
451 {
452 	__blk_mq_requeue_request(rq);
453 
454 	BUG_ON(blk_queued_rq(rq));
455 	blk_mq_add_to_requeue_list(rq, true);
456 }
457 EXPORT_SYMBOL(blk_mq_requeue_request);
458 
459 static void blk_mq_requeue_work(struct work_struct *work)
460 {
461 	struct request_queue *q =
462 		container_of(work, struct request_queue, requeue_work);
463 	LIST_HEAD(rq_list);
464 	struct request *rq, *next;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&q->requeue_lock, flags);
468 	list_splice_init(&q->requeue_list, &rq_list);
469 	spin_unlock_irqrestore(&q->requeue_lock, flags);
470 
471 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
472 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 			continue;
474 
475 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
476 		list_del_init(&rq->queuelist);
477 		blk_mq_insert_request(rq, true, false, false);
478 	}
479 
480 	while (!list_empty(&rq_list)) {
481 		rq = list_entry(rq_list.next, struct request, queuelist);
482 		list_del_init(&rq->queuelist);
483 		blk_mq_insert_request(rq, false, false, false);
484 	}
485 
486 	/*
487 	 * Use the start variant of queue running here, so that running
488 	 * the requeue work will kick stopped queues.
489 	 */
490 	blk_mq_start_hw_queues(q);
491 }
492 
493 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
494 {
495 	struct request_queue *q = rq->q;
496 	unsigned long flags;
497 
498 	/*
499 	 * We abuse this flag that is otherwise used by the I/O scheduler to
500 	 * request head insertation from the workqueue.
501 	 */
502 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
503 
504 	spin_lock_irqsave(&q->requeue_lock, flags);
505 	if (at_head) {
506 		rq->cmd_flags |= REQ_SOFTBARRIER;
507 		list_add(&rq->queuelist, &q->requeue_list);
508 	} else {
509 		list_add_tail(&rq->queuelist, &q->requeue_list);
510 	}
511 	spin_unlock_irqrestore(&q->requeue_lock, flags);
512 }
513 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
514 
515 void blk_mq_cancel_requeue_work(struct request_queue *q)
516 {
517 	cancel_work_sync(&q->requeue_work);
518 }
519 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
520 
521 void blk_mq_kick_requeue_list(struct request_queue *q)
522 {
523 	kblockd_schedule_work(&q->requeue_work);
524 }
525 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
526 
527 void blk_mq_abort_requeue_list(struct request_queue *q)
528 {
529 	unsigned long flags;
530 	LIST_HEAD(rq_list);
531 
532 	spin_lock_irqsave(&q->requeue_lock, flags);
533 	list_splice_init(&q->requeue_list, &rq_list);
534 	spin_unlock_irqrestore(&q->requeue_lock, flags);
535 
536 	while (!list_empty(&rq_list)) {
537 		struct request *rq;
538 
539 		rq = list_first_entry(&rq_list, struct request, queuelist);
540 		list_del_init(&rq->queuelist);
541 		rq->errors = -EIO;
542 		blk_mq_end_request(rq, rq->errors);
543 	}
544 }
545 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
546 
547 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
548 {
549 	return tags->rqs[tag];
550 }
551 EXPORT_SYMBOL(blk_mq_tag_to_rq);
552 
553 struct blk_mq_timeout_data {
554 	unsigned long next;
555 	unsigned int next_set;
556 };
557 
558 void blk_mq_rq_timed_out(struct request *req, bool reserved)
559 {
560 	struct blk_mq_ops *ops = req->q->mq_ops;
561 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
562 
563 	/*
564 	 * We know that complete is set at this point. If STARTED isn't set
565 	 * anymore, then the request isn't active and the "timeout" should
566 	 * just be ignored. This can happen due to the bitflag ordering.
567 	 * Timeout first checks if STARTED is set, and if it is, assumes
568 	 * the request is active. But if we race with completion, then
569 	 * we both flags will get cleared. So check here again, and ignore
570 	 * a timeout event with a request that isn't active.
571 	 */
572 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
573 		return;
574 
575 	if (ops->timeout)
576 		ret = ops->timeout(req, reserved);
577 
578 	switch (ret) {
579 	case BLK_EH_HANDLED:
580 		__blk_mq_complete_request(req);
581 		break;
582 	case BLK_EH_RESET_TIMER:
583 		blk_add_timer(req);
584 		blk_clear_rq_complete(req);
585 		break;
586 	case BLK_EH_NOT_HANDLED:
587 		break;
588 	default:
589 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
590 		break;
591 	}
592 }
593 
594 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
595 		struct request *rq, void *priv, bool reserved)
596 {
597 	struct blk_mq_timeout_data *data = priv;
598 
599 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
600 		/*
601 		 * If a request wasn't started before the queue was
602 		 * marked dying, kill it here or it'll go unnoticed.
603 		 */
604 		if (unlikely(blk_queue_dying(rq->q)))
605 			blk_mq_complete_request(rq, -EIO);
606 		return;
607 	}
608 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
609 		return;
610 
611 	if (time_after_eq(jiffies, rq->deadline)) {
612 		if (!blk_mark_rq_complete(rq))
613 			blk_mq_rq_timed_out(rq, reserved);
614 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
615 		data->next = rq->deadline;
616 		data->next_set = 1;
617 	}
618 }
619 
620 static void blk_mq_rq_timer(unsigned long priv)
621 {
622 	struct request_queue *q = (struct request_queue *)priv;
623 	struct blk_mq_timeout_data data = {
624 		.next		= 0,
625 		.next_set	= 0,
626 	};
627 	int i;
628 
629 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
630 
631 	if (data.next_set) {
632 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
633 		mod_timer(&q->timeout, data.next);
634 	} else {
635 		struct blk_mq_hw_ctx *hctx;
636 
637 		queue_for_each_hw_ctx(q, hctx, i) {
638 			/* the hctx may be unmapped, so check it here */
639 			if (blk_mq_hw_queue_mapped(hctx))
640 				blk_mq_tag_idle(hctx);
641 		}
642 	}
643 }
644 
645 /*
646  * Reverse check our software queue for entries that we could potentially
647  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
648  * too much time checking for merges.
649  */
650 static bool blk_mq_attempt_merge(struct request_queue *q,
651 				 struct blk_mq_ctx *ctx, struct bio *bio)
652 {
653 	struct request *rq;
654 	int checked = 8;
655 
656 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
657 		int el_ret;
658 
659 		if (!checked--)
660 			break;
661 
662 		if (!blk_rq_merge_ok(rq, bio))
663 			continue;
664 
665 		el_ret = blk_try_merge(rq, bio);
666 		if (el_ret == ELEVATOR_BACK_MERGE) {
667 			if (bio_attempt_back_merge(q, rq, bio)) {
668 				ctx->rq_merged++;
669 				return true;
670 			}
671 			break;
672 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
673 			if (bio_attempt_front_merge(q, rq, bio)) {
674 				ctx->rq_merged++;
675 				return true;
676 			}
677 			break;
678 		}
679 	}
680 
681 	return false;
682 }
683 
684 /*
685  * Process software queues that have been marked busy, splicing them
686  * to the for-dispatch
687  */
688 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
689 {
690 	struct blk_mq_ctx *ctx;
691 	int i;
692 
693 	for (i = 0; i < hctx->ctx_map.size; i++) {
694 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
695 		unsigned int off, bit;
696 
697 		if (!bm->word)
698 			continue;
699 
700 		bit = 0;
701 		off = i * hctx->ctx_map.bits_per_word;
702 		do {
703 			bit = find_next_bit(&bm->word, bm->depth, bit);
704 			if (bit >= bm->depth)
705 				break;
706 
707 			ctx = hctx->ctxs[bit + off];
708 			clear_bit(bit, &bm->word);
709 			spin_lock(&ctx->lock);
710 			list_splice_tail_init(&ctx->rq_list, list);
711 			spin_unlock(&ctx->lock);
712 
713 			bit++;
714 		} while (1);
715 	}
716 }
717 
718 /*
719  * Run this hardware queue, pulling any software queues mapped to it in.
720  * Note that this function currently has various problems around ordering
721  * of IO. In particular, we'd like FIFO behaviour on handling existing
722  * items on the hctx->dispatch list. Ignore that for now.
723  */
724 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
725 {
726 	struct request_queue *q = hctx->queue;
727 	struct request *rq;
728 	LIST_HEAD(rq_list);
729 	LIST_HEAD(driver_list);
730 	struct list_head *dptr;
731 	int queued;
732 
733 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
734 
735 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
736 		return;
737 
738 	hctx->run++;
739 
740 	/*
741 	 * Touch any software queue that has pending entries.
742 	 */
743 	flush_busy_ctxs(hctx, &rq_list);
744 
745 	/*
746 	 * If we have previous entries on our dispatch list, grab them
747 	 * and stuff them at the front for more fair dispatch.
748 	 */
749 	if (!list_empty_careful(&hctx->dispatch)) {
750 		spin_lock(&hctx->lock);
751 		if (!list_empty(&hctx->dispatch))
752 			list_splice_init(&hctx->dispatch, &rq_list);
753 		spin_unlock(&hctx->lock);
754 	}
755 
756 	/*
757 	 * Start off with dptr being NULL, so we start the first request
758 	 * immediately, even if we have more pending.
759 	 */
760 	dptr = NULL;
761 
762 	/*
763 	 * Now process all the entries, sending them to the driver.
764 	 */
765 	queued = 0;
766 	while (!list_empty(&rq_list)) {
767 		struct blk_mq_queue_data bd;
768 		int ret;
769 
770 		rq = list_first_entry(&rq_list, struct request, queuelist);
771 		list_del_init(&rq->queuelist);
772 
773 		bd.rq = rq;
774 		bd.list = dptr;
775 		bd.last = list_empty(&rq_list);
776 
777 		ret = q->mq_ops->queue_rq(hctx, &bd);
778 		switch (ret) {
779 		case BLK_MQ_RQ_QUEUE_OK:
780 			queued++;
781 			continue;
782 		case BLK_MQ_RQ_QUEUE_BUSY:
783 			list_add(&rq->queuelist, &rq_list);
784 			__blk_mq_requeue_request(rq);
785 			break;
786 		default:
787 			pr_err("blk-mq: bad return on queue: %d\n", ret);
788 		case BLK_MQ_RQ_QUEUE_ERROR:
789 			rq->errors = -EIO;
790 			blk_mq_end_request(rq, rq->errors);
791 			break;
792 		}
793 
794 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
795 			break;
796 
797 		/*
798 		 * We've done the first request. If we have more than 1
799 		 * left in the list, set dptr to defer issue.
800 		 */
801 		if (!dptr && rq_list.next != rq_list.prev)
802 			dptr = &driver_list;
803 	}
804 
805 	if (!queued)
806 		hctx->dispatched[0]++;
807 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
808 		hctx->dispatched[ilog2(queued) + 1]++;
809 
810 	/*
811 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
812 	 * that is where we will continue on next queue run.
813 	 */
814 	if (!list_empty(&rq_list)) {
815 		spin_lock(&hctx->lock);
816 		list_splice(&rq_list, &hctx->dispatch);
817 		spin_unlock(&hctx->lock);
818 		/*
819 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
820 		 * it's possible the queue is stopped and restarted again
821 		 * before this. Queue restart will dispatch requests. And since
822 		 * requests in rq_list aren't added into hctx->dispatch yet,
823 		 * the requests in rq_list might get lost.
824 		 *
825 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
826 		 **/
827 		blk_mq_run_hw_queue(hctx, true);
828 	}
829 }
830 
831 /*
832  * It'd be great if the workqueue API had a way to pass
833  * in a mask and had some smarts for more clever placement.
834  * For now we just round-robin here, switching for every
835  * BLK_MQ_CPU_WORK_BATCH queued items.
836  */
837 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
838 {
839 	if (hctx->queue->nr_hw_queues == 1)
840 		return WORK_CPU_UNBOUND;
841 
842 	if (--hctx->next_cpu_batch <= 0) {
843 		int cpu = hctx->next_cpu, next_cpu;
844 
845 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
846 		if (next_cpu >= nr_cpu_ids)
847 			next_cpu = cpumask_first(hctx->cpumask);
848 
849 		hctx->next_cpu = next_cpu;
850 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
851 
852 		return cpu;
853 	}
854 
855 	return hctx->next_cpu;
856 }
857 
858 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
859 {
860 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
861 	    !blk_mq_hw_queue_mapped(hctx)))
862 		return;
863 
864 	if (!async) {
865 		int cpu = get_cpu();
866 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
867 			__blk_mq_run_hw_queue(hctx);
868 			put_cpu();
869 			return;
870 		}
871 
872 		put_cpu();
873 	}
874 
875 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
876 			&hctx->run_work, 0);
877 }
878 
879 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
880 {
881 	struct blk_mq_hw_ctx *hctx;
882 	int i;
883 
884 	queue_for_each_hw_ctx(q, hctx, i) {
885 		if ((!blk_mq_hctx_has_pending(hctx) &&
886 		    list_empty_careful(&hctx->dispatch)) ||
887 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
888 			continue;
889 
890 		blk_mq_run_hw_queue(hctx, async);
891 	}
892 }
893 EXPORT_SYMBOL(blk_mq_run_hw_queues);
894 
895 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
896 {
897 	cancel_delayed_work(&hctx->run_work);
898 	cancel_delayed_work(&hctx->delay_work);
899 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
900 }
901 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
902 
903 void blk_mq_stop_hw_queues(struct request_queue *q)
904 {
905 	struct blk_mq_hw_ctx *hctx;
906 	int i;
907 
908 	queue_for_each_hw_ctx(q, hctx, i)
909 		blk_mq_stop_hw_queue(hctx);
910 }
911 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
912 
913 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
914 {
915 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
916 
917 	blk_mq_run_hw_queue(hctx, false);
918 }
919 EXPORT_SYMBOL(blk_mq_start_hw_queue);
920 
921 void blk_mq_start_hw_queues(struct request_queue *q)
922 {
923 	struct blk_mq_hw_ctx *hctx;
924 	int i;
925 
926 	queue_for_each_hw_ctx(q, hctx, i)
927 		blk_mq_start_hw_queue(hctx);
928 }
929 EXPORT_SYMBOL(blk_mq_start_hw_queues);
930 
931 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
932 {
933 	struct blk_mq_hw_ctx *hctx;
934 	int i;
935 
936 	queue_for_each_hw_ctx(q, hctx, i) {
937 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
938 			continue;
939 
940 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
941 		blk_mq_run_hw_queue(hctx, async);
942 	}
943 }
944 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
945 
946 static void blk_mq_run_work_fn(struct work_struct *work)
947 {
948 	struct blk_mq_hw_ctx *hctx;
949 
950 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
951 
952 	__blk_mq_run_hw_queue(hctx);
953 }
954 
955 static void blk_mq_delay_work_fn(struct work_struct *work)
956 {
957 	struct blk_mq_hw_ctx *hctx;
958 
959 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
960 
961 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
962 		__blk_mq_run_hw_queue(hctx);
963 }
964 
965 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
966 {
967 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
968 		return;
969 
970 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
971 			&hctx->delay_work, msecs_to_jiffies(msecs));
972 }
973 EXPORT_SYMBOL(blk_mq_delay_queue);
974 
975 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
976 					    struct blk_mq_ctx *ctx,
977 					    struct request *rq,
978 					    bool at_head)
979 {
980 	trace_block_rq_insert(hctx->queue, rq);
981 
982 	if (at_head)
983 		list_add(&rq->queuelist, &ctx->rq_list);
984 	else
985 		list_add_tail(&rq->queuelist, &ctx->rq_list);
986 }
987 
988 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
989 				    struct request *rq, bool at_head)
990 {
991 	struct blk_mq_ctx *ctx = rq->mq_ctx;
992 
993 	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
994 	blk_mq_hctx_mark_pending(hctx, ctx);
995 }
996 
997 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
998 		bool async)
999 {
1000 	struct request_queue *q = rq->q;
1001 	struct blk_mq_hw_ctx *hctx;
1002 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1003 
1004 	current_ctx = blk_mq_get_ctx(q);
1005 	if (!cpu_online(ctx->cpu))
1006 		rq->mq_ctx = ctx = current_ctx;
1007 
1008 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1009 
1010 	spin_lock(&ctx->lock);
1011 	__blk_mq_insert_request(hctx, rq, at_head);
1012 	spin_unlock(&ctx->lock);
1013 
1014 	if (run_queue)
1015 		blk_mq_run_hw_queue(hctx, async);
1016 
1017 	blk_mq_put_ctx(current_ctx);
1018 }
1019 
1020 static void blk_mq_insert_requests(struct request_queue *q,
1021 				     struct blk_mq_ctx *ctx,
1022 				     struct list_head *list,
1023 				     int depth,
1024 				     bool from_schedule)
1025 
1026 {
1027 	struct blk_mq_hw_ctx *hctx;
1028 	struct blk_mq_ctx *current_ctx;
1029 
1030 	trace_block_unplug(q, depth, !from_schedule);
1031 
1032 	current_ctx = blk_mq_get_ctx(q);
1033 
1034 	if (!cpu_online(ctx->cpu))
1035 		ctx = current_ctx;
1036 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1037 
1038 	/*
1039 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1040 	 * offline now
1041 	 */
1042 	spin_lock(&ctx->lock);
1043 	while (!list_empty(list)) {
1044 		struct request *rq;
1045 
1046 		rq = list_first_entry(list, struct request, queuelist);
1047 		list_del_init(&rq->queuelist);
1048 		rq->mq_ctx = ctx;
1049 		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1050 	}
1051 	blk_mq_hctx_mark_pending(hctx, ctx);
1052 	spin_unlock(&ctx->lock);
1053 
1054 	blk_mq_run_hw_queue(hctx, from_schedule);
1055 	blk_mq_put_ctx(current_ctx);
1056 }
1057 
1058 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1059 {
1060 	struct request *rqa = container_of(a, struct request, queuelist);
1061 	struct request *rqb = container_of(b, struct request, queuelist);
1062 
1063 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1064 		 (rqa->mq_ctx == rqb->mq_ctx &&
1065 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1066 }
1067 
1068 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1069 {
1070 	struct blk_mq_ctx *this_ctx;
1071 	struct request_queue *this_q;
1072 	struct request *rq;
1073 	LIST_HEAD(list);
1074 	LIST_HEAD(ctx_list);
1075 	unsigned int depth;
1076 
1077 	list_splice_init(&plug->mq_list, &list);
1078 
1079 	list_sort(NULL, &list, plug_ctx_cmp);
1080 
1081 	this_q = NULL;
1082 	this_ctx = NULL;
1083 	depth = 0;
1084 
1085 	while (!list_empty(&list)) {
1086 		rq = list_entry_rq(list.next);
1087 		list_del_init(&rq->queuelist);
1088 		BUG_ON(!rq->q);
1089 		if (rq->mq_ctx != this_ctx) {
1090 			if (this_ctx) {
1091 				blk_mq_insert_requests(this_q, this_ctx,
1092 							&ctx_list, depth,
1093 							from_schedule);
1094 			}
1095 
1096 			this_ctx = rq->mq_ctx;
1097 			this_q = rq->q;
1098 			depth = 0;
1099 		}
1100 
1101 		depth++;
1102 		list_add_tail(&rq->queuelist, &ctx_list);
1103 	}
1104 
1105 	/*
1106 	 * If 'this_ctx' is set, we know we have entries to complete
1107 	 * on 'ctx_list'. Do those.
1108 	 */
1109 	if (this_ctx) {
1110 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1111 				       from_schedule);
1112 	}
1113 }
1114 
1115 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1116 {
1117 	init_request_from_bio(rq, bio);
1118 
1119 	if (blk_do_io_stat(rq))
1120 		blk_account_io_start(rq, 1);
1121 }
1122 
1123 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1124 {
1125 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1126 		!blk_queue_nomerges(hctx->queue);
1127 }
1128 
1129 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1130 					 struct blk_mq_ctx *ctx,
1131 					 struct request *rq, struct bio *bio)
1132 {
1133 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1134 		blk_mq_bio_to_request(rq, bio);
1135 		spin_lock(&ctx->lock);
1136 insert_rq:
1137 		__blk_mq_insert_request(hctx, rq, false);
1138 		spin_unlock(&ctx->lock);
1139 		return false;
1140 	} else {
1141 		struct request_queue *q = hctx->queue;
1142 
1143 		spin_lock(&ctx->lock);
1144 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1145 			blk_mq_bio_to_request(rq, bio);
1146 			goto insert_rq;
1147 		}
1148 
1149 		spin_unlock(&ctx->lock);
1150 		__blk_mq_free_request(hctx, ctx, rq);
1151 		return true;
1152 	}
1153 }
1154 
1155 struct blk_map_ctx {
1156 	struct blk_mq_hw_ctx *hctx;
1157 	struct blk_mq_ctx *ctx;
1158 };
1159 
1160 static struct request *blk_mq_map_request(struct request_queue *q,
1161 					  struct bio *bio,
1162 					  struct blk_map_ctx *data)
1163 {
1164 	struct blk_mq_hw_ctx *hctx;
1165 	struct blk_mq_ctx *ctx;
1166 	struct request *rq;
1167 	int rw = bio_data_dir(bio);
1168 	struct blk_mq_alloc_data alloc_data;
1169 
1170 	blk_queue_enter_live(q);
1171 	ctx = blk_mq_get_ctx(q);
1172 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1173 
1174 	if (rw_is_sync(bio->bi_rw))
1175 		rw |= REQ_SYNC;
1176 
1177 	trace_block_getrq(q, bio, rw);
1178 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1179 			hctx);
1180 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1181 	if (unlikely(!rq)) {
1182 		__blk_mq_run_hw_queue(hctx);
1183 		blk_mq_put_ctx(ctx);
1184 		trace_block_sleeprq(q, bio, rw);
1185 
1186 		ctx = blk_mq_get_ctx(q);
1187 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 		blk_mq_set_alloc_data(&alloc_data, q,
1189 				__GFP_RECLAIM|__GFP_HIGH, false, ctx, hctx);
1190 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1191 		ctx = alloc_data.ctx;
1192 		hctx = alloc_data.hctx;
1193 	}
1194 
1195 	hctx->queued++;
1196 	data->hctx = hctx;
1197 	data->ctx = ctx;
1198 	return rq;
1199 }
1200 
1201 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1202 {
1203 	int ret;
1204 	struct request_queue *q = rq->q;
1205 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1206 			rq->mq_ctx->cpu);
1207 	struct blk_mq_queue_data bd = {
1208 		.rq = rq,
1209 		.list = NULL,
1210 		.last = 1
1211 	};
1212 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1213 
1214 	/*
1215 	 * For OK queue, we are done. For error, kill it. Any other
1216 	 * error (busy), just add it to our list as we previously
1217 	 * would have done
1218 	 */
1219 	ret = q->mq_ops->queue_rq(hctx, &bd);
1220 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1221 		*cookie = new_cookie;
1222 		return 0;
1223 	}
1224 
1225 	__blk_mq_requeue_request(rq);
1226 
1227 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1228 		*cookie = BLK_QC_T_NONE;
1229 		rq->errors = -EIO;
1230 		blk_mq_end_request(rq, rq->errors);
1231 		return 0;
1232 	}
1233 
1234 	return -1;
1235 }
1236 
1237 /*
1238  * Multiple hardware queue variant. This will not use per-process plugs,
1239  * but will attempt to bypass the hctx queueing if we can go straight to
1240  * hardware for SYNC IO.
1241  */
1242 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1243 {
1244 	const int is_sync = rw_is_sync(bio->bi_rw);
1245 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1246 	struct blk_map_ctx data;
1247 	struct request *rq;
1248 	unsigned int request_count = 0;
1249 	struct blk_plug *plug;
1250 	struct request *same_queue_rq = NULL;
1251 	blk_qc_t cookie;
1252 
1253 	blk_queue_bounce(q, &bio);
1254 
1255 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1256 		bio_io_error(bio);
1257 		return BLK_QC_T_NONE;
1258 	}
1259 
1260 	blk_queue_split(q, &bio, q->bio_split);
1261 
1262 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1263 		if (blk_attempt_plug_merge(q, bio, &request_count,
1264 					   &same_queue_rq))
1265 			return BLK_QC_T_NONE;
1266 	} else
1267 		request_count = blk_plug_queued_count(q);
1268 
1269 	rq = blk_mq_map_request(q, bio, &data);
1270 	if (unlikely(!rq))
1271 		return BLK_QC_T_NONE;
1272 
1273 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1274 
1275 	if (unlikely(is_flush_fua)) {
1276 		blk_mq_bio_to_request(rq, bio);
1277 		blk_insert_flush(rq);
1278 		goto run_queue;
1279 	}
1280 
1281 	plug = current->plug;
1282 	/*
1283 	 * If the driver supports defer issued based on 'last', then
1284 	 * queue it up like normal since we can potentially save some
1285 	 * CPU this way.
1286 	 */
1287 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1288 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1289 		struct request *old_rq = NULL;
1290 
1291 		blk_mq_bio_to_request(rq, bio);
1292 
1293 		/*
1294 		 * We do limited pluging. If the bio can be merged, do that.
1295 		 * Otherwise the existing request in the plug list will be
1296 		 * issued. So the plug list will have one request at most
1297 		 */
1298 		if (plug) {
1299 			/*
1300 			 * The plug list might get flushed before this. If that
1301 			 * happens, same_queue_rq is invalid and plug list is
1302 			 * empty
1303 			 */
1304 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1305 				old_rq = same_queue_rq;
1306 				list_del_init(&old_rq->queuelist);
1307 			}
1308 			list_add_tail(&rq->queuelist, &plug->mq_list);
1309 		} else /* is_sync */
1310 			old_rq = rq;
1311 		blk_mq_put_ctx(data.ctx);
1312 		if (!old_rq)
1313 			goto done;
1314 		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1315 			goto done;
1316 		blk_mq_insert_request(old_rq, false, true, true);
1317 		goto done;
1318 	}
1319 
1320 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1321 		/*
1322 		 * For a SYNC request, send it to the hardware immediately. For
1323 		 * an ASYNC request, just ensure that we run it later on. The
1324 		 * latter allows for merging opportunities and more efficient
1325 		 * dispatching.
1326 		 */
1327 run_queue:
1328 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1329 	}
1330 	blk_mq_put_ctx(data.ctx);
1331 done:
1332 	return cookie;
1333 }
1334 
1335 /*
1336  * Single hardware queue variant. This will attempt to use any per-process
1337  * plug for merging and IO deferral.
1338  */
1339 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341 	const int is_sync = rw_is_sync(bio->bi_rw);
1342 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1343 	struct blk_plug *plug;
1344 	unsigned int request_count = 0;
1345 	struct blk_map_ctx data;
1346 	struct request *rq;
1347 	blk_qc_t cookie;
1348 
1349 	blk_queue_bounce(q, &bio);
1350 
1351 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1352 		bio_io_error(bio);
1353 		return BLK_QC_T_NONE;
1354 	}
1355 
1356 	blk_queue_split(q, &bio, q->bio_split);
1357 
1358 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1359 	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1360 		return BLK_QC_T_NONE;
1361 
1362 	rq = blk_mq_map_request(q, bio, &data);
1363 	if (unlikely(!rq))
1364 		return BLK_QC_T_NONE;
1365 
1366 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1367 
1368 	if (unlikely(is_flush_fua)) {
1369 		blk_mq_bio_to_request(rq, bio);
1370 		blk_insert_flush(rq);
1371 		goto run_queue;
1372 	}
1373 
1374 	/*
1375 	 * A task plug currently exists. Since this is completely lockless,
1376 	 * utilize that to temporarily store requests until the task is
1377 	 * either done or scheduled away.
1378 	 */
1379 	plug = current->plug;
1380 	if (plug) {
1381 		blk_mq_bio_to_request(rq, bio);
1382 		if (!request_count)
1383 			trace_block_plug(q);
1384 
1385 		blk_mq_put_ctx(data.ctx);
1386 
1387 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1388 			blk_flush_plug_list(plug, false);
1389 			trace_block_plug(q);
1390 		}
1391 
1392 		list_add_tail(&rq->queuelist, &plug->mq_list);
1393 		return cookie;
1394 	}
1395 
1396 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1397 		/*
1398 		 * For a SYNC request, send it to the hardware immediately. For
1399 		 * an ASYNC request, just ensure that we run it later on. The
1400 		 * latter allows for merging opportunities and more efficient
1401 		 * dispatching.
1402 		 */
1403 run_queue:
1404 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1405 	}
1406 
1407 	blk_mq_put_ctx(data.ctx);
1408 	return cookie;
1409 }
1410 
1411 /*
1412  * Default mapping to a software queue, since we use one per CPU.
1413  */
1414 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1415 {
1416 	return q->queue_hw_ctx[q->mq_map[cpu]];
1417 }
1418 EXPORT_SYMBOL(blk_mq_map_queue);
1419 
1420 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1421 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1422 {
1423 	struct page *page;
1424 
1425 	if (tags->rqs && set->ops->exit_request) {
1426 		int i;
1427 
1428 		for (i = 0; i < tags->nr_tags; i++) {
1429 			if (!tags->rqs[i])
1430 				continue;
1431 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1432 						hctx_idx, i);
1433 			tags->rqs[i] = NULL;
1434 		}
1435 	}
1436 
1437 	while (!list_empty(&tags->page_list)) {
1438 		page = list_first_entry(&tags->page_list, struct page, lru);
1439 		list_del_init(&page->lru);
1440 		/*
1441 		 * Remove kmemleak object previously allocated in
1442 		 * blk_mq_init_rq_map().
1443 		 */
1444 		kmemleak_free(page_address(page));
1445 		__free_pages(page, page->private);
1446 	}
1447 
1448 	kfree(tags->rqs);
1449 
1450 	blk_mq_free_tags(tags);
1451 }
1452 
1453 static size_t order_to_size(unsigned int order)
1454 {
1455 	return (size_t)PAGE_SIZE << order;
1456 }
1457 
1458 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1459 		unsigned int hctx_idx)
1460 {
1461 	struct blk_mq_tags *tags;
1462 	unsigned int i, j, entries_per_page, max_order = 4;
1463 	size_t rq_size, left;
1464 
1465 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1466 				set->numa_node,
1467 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1468 	if (!tags)
1469 		return NULL;
1470 
1471 	INIT_LIST_HEAD(&tags->page_list);
1472 
1473 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1474 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1475 				 set->numa_node);
1476 	if (!tags->rqs) {
1477 		blk_mq_free_tags(tags);
1478 		return NULL;
1479 	}
1480 
1481 	/*
1482 	 * rq_size is the size of the request plus driver payload, rounded
1483 	 * to the cacheline size
1484 	 */
1485 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1486 				cache_line_size());
1487 	left = rq_size * set->queue_depth;
1488 
1489 	for (i = 0; i < set->queue_depth; ) {
1490 		int this_order = max_order;
1491 		struct page *page;
1492 		int to_do;
1493 		void *p;
1494 
1495 		while (left < order_to_size(this_order - 1) && this_order)
1496 			this_order--;
1497 
1498 		do {
1499 			page = alloc_pages_node(set->numa_node,
1500 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1501 				this_order);
1502 			if (page)
1503 				break;
1504 			if (!this_order--)
1505 				break;
1506 			if (order_to_size(this_order) < rq_size)
1507 				break;
1508 		} while (1);
1509 
1510 		if (!page)
1511 			goto fail;
1512 
1513 		page->private = this_order;
1514 		list_add_tail(&page->lru, &tags->page_list);
1515 
1516 		p = page_address(page);
1517 		/*
1518 		 * Allow kmemleak to scan these pages as they contain pointers
1519 		 * to additional allocations like via ops->init_request().
1520 		 */
1521 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1522 		entries_per_page = order_to_size(this_order) / rq_size;
1523 		to_do = min(entries_per_page, set->queue_depth - i);
1524 		left -= to_do * rq_size;
1525 		for (j = 0; j < to_do; j++) {
1526 			tags->rqs[i] = p;
1527 			if (set->ops->init_request) {
1528 				if (set->ops->init_request(set->driver_data,
1529 						tags->rqs[i], hctx_idx, i,
1530 						set->numa_node)) {
1531 					tags->rqs[i] = NULL;
1532 					goto fail;
1533 				}
1534 			}
1535 
1536 			p += rq_size;
1537 			i++;
1538 		}
1539 	}
1540 	return tags;
1541 
1542 fail:
1543 	blk_mq_free_rq_map(set, tags, hctx_idx);
1544 	return NULL;
1545 }
1546 
1547 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1548 {
1549 	kfree(bitmap->map);
1550 }
1551 
1552 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1553 {
1554 	unsigned int bpw = 8, total, num_maps, i;
1555 
1556 	bitmap->bits_per_word = bpw;
1557 
1558 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1559 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1560 					GFP_KERNEL, node);
1561 	if (!bitmap->map)
1562 		return -ENOMEM;
1563 
1564 	total = nr_cpu_ids;
1565 	for (i = 0; i < num_maps; i++) {
1566 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1567 		total -= bitmap->map[i].depth;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1574 {
1575 	struct request_queue *q = hctx->queue;
1576 	struct blk_mq_ctx *ctx;
1577 	LIST_HEAD(tmp);
1578 
1579 	/*
1580 	 * Move ctx entries to new CPU, if this one is going away.
1581 	 */
1582 	ctx = __blk_mq_get_ctx(q, cpu);
1583 
1584 	spin_lock(&ctx->lock);
1585 	if (!list_empty(&ctx->rq_list)) {
1586 		list_splice_init(&ctx->rq_list, &tmp);
1587 		blk_mq_hctx_clear_pending(hctx, ctx);
1588 	}
1589 	spin_unlock(&ctx->lock);
1590 
1591 	if (list_empty(&tmp))
1592 		return NOTIFY_OK;
1593 
1594 	ctx = blk_mq_get_ctx(q);
1595 	spin_lock(&ctx->lock);
1596 
1597 	while (!list_empty(&tmp)) {
1598 		struct request *rq;
1599 
1600 		rq = list_first_entry(&tmp, struct request, queuelist);
1601 		rq->mq_ctx = ctx;
1602 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1603 	}
1604 
1605 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1606 	blk_mq_hctx_mark_pending(hctx, ctx);
1607 
1608 	spin_unlock(&ctx->lock);
1609 
1610 	blk_mq_run_hw_queue(hctx, true);
1611 	blk_mq_put_ctx(ctx);
1612 	return NOTIFY_OK;
1613 }
1614 
1615 static int blk_mq_hctx_notify(void *data, unsigned long action,
1616 			      unsigned int cpu)
1617 {
1618 	struct blk_mq_hw_ctx *hctx = data;
1619 
1620 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1621 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1622 
1623 	/*
1624 	 * In case of CPU online, tags may be reallocated
1625 	 * in blk_mq_map_swqueue() after mapping is updated.
1626 	 */
1627 
1628 	return NOTIFY_OK;
1629 }
1630 
1631 /* hctx->ctxs will be freed in queue's release handler */
1632 static void blk_mq_exit_hctx(struct request_queue *q,
1633 		struct blk_mq_tag_set *set,
1634 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1635 {
1636 	unsigned flush_start_tag = set->queue_depth;
1637 
1638 	blk_mq_tag_idle(hctx);
1639 
1640 	if (set->ops->exit_request)
1641 		set->ops->exit_request(set->driver_data,
1642 				       hctx->fq->flush_rq, hctx_idx,
1643 				       flush_start_tag + hctx_idx);
1644 
1645 	if (set->ops->exit_hctx)
1646 		set->ops->exit_hctx(hctx, hctx_idx);
1647 
1648 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1649 	blk_free_flush_queue(hctx->fq);
1650 	blk_mq_free_bitmap(&hctx->ctx_map);
1651 }
1652 
1653 static void blk_mq_exit_hw_queues(struct request_queue *q,
1654 		struct blk_mq_tag_set *set, int nr_queue)
1655 {
1656 	struct blk_mq_hw_ctx *hctx;
1657 	unsigned int i;
1658 
1659 	queue_for_each_hw_ctx(q, hctx, i) {
1660 		if (i == nr_queue)
1661 			break;
1662 		blk_mq_exit_hctx(q, set, hctx, i);
1663 	}
1664 }
1665 
1666 static void blk_mq_free_hw_queues(struct request_queue *q,
1667 		struct blk_mq_tag_set *set)
1668 {
1669 	struct blk_mq_hw_ctx *hctx;
1670 	unsigned int i;
1671 
1672 	queue_for_each_hw_ctx(q, hctx, i)
1673 		free_cpumask_var(hctx->cpumask);
1674 }
1675 
1676 static int blk_mq_init_hctx(struct request_queue *q,
1677 		struct blk_mq_tag_set *set,
1678 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1679 {
1680 	int node;
1681 	unsigned flush_start_tag = set->queue_depth;
1682 
1683 	node = hctx->numa_node;
1684 	if (node == NUMA_NO_NODE)
1685 		node = hctx->numa_node = set->numa_node;
1686 
1687 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1688 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1689 	spin_lock_init(&hctx->lock);
1690 	INIT_LIST_HEAD(&hctx->dispatch);
1691 	hctx->queue = q;
1692 	hctx->queue_num = hctx_idx;
1693 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1694 
1695 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1696 					blk_mq_hctx_notify, hctx);
1697 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1698 
1699 	hctx->tags = set->tags[hctx_idx];
1700 
1701 	/*
1702 	 * Allocate space for all possible cpus to avoid allocation at
1703 	 * runtime
1704 	 */
1705 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1706 					GFP_KERNEL, node);
1707 	if (!hctx->ctxs)
1708 		goto unregister_cpu_notifier;
1709 
1710 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1711 		goto free_ctxs;
1712 
1713 	hctx->nr_ctx = 0;
1714 
1715 	if (set->ops->init_hctx &&
1716 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1717 		goto free_bitmap;
1718 
1719 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1720 	if (!hctx->fq)
1721 		goto exit_hctx;
1722 
1723 	if (set->ops->init_request &&
1724 	    set->ops->init_request(set->driver_data,
1725 				   hctx->fq->flush_rq, hctx_idx,
1726 				   flush_start_tag + hctx_idx, node))
1727 		goto free_fq;
1728 
1729 	return 0;
1730 
1731  free_fq:
1732 	kfree(hctx->fq);
1733  exit_hctx:
1734 	if (set->ops->exit_hctx)
1735 		set->ops->exit_hctx(hctx, hctx_idx);
1736  free_bitmap:
1737 	blk_mq_free_bitmap(&hctx->ctx_map);
1738  free_ctxs:
1739 	kfree(hctx->ctxs);
1740  unregister_cpu_notifier:
1741 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1742 
1743 	return -1;
1744 }
1745 
1746 static int blk_mq_init_hw_queues(struct request_queue *q,
1747 		struct blk_mq_tag_set *set)
1748 {
1749 	struct blk_mq_hw_ctx *hctx;
1750 	unsigned int i;
1751 
1752 	/*
1753 	 * Initialize hardware queues
1754 	 */
1755 	queue_for_each_hw_ctx(q, hctx, i) {
1756 		if (blk_mq_init_hctx(q, set, hctx, i))
1757 			break;
1758 	}
1759 
1760 	if (i == q->nr_hw_queues)
1761 		return 0;
1762 
1763 	/*
1764 	 * Init failed
1765 	 */
1766 	blk_mq_exit_hw_queues(q, set, i);
1767 
1768 	return 1;
1769 }
1770 
1771 static void blk_mq_init_cpu_queues(struct request_queue *q,
1772 				   unsigned int nr_hw_queues)
1773 {
1774 	unsigned int i;
1775 
1776 	for_each_possible_cpu(i) {
1777 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1778 		struct blk_mq_hw_ctx *hctx;
1779 
1780 		memset(__ctx, 0, sizeof(*__ctx));
1781 		__ctx->cpu = i;
1782 		spin_lock_init(&__ctx->lock);
1783 		INIT_LIST_HEAD(&__ctx->rq_list);
1784 		__ctx->queue = q;
1785 
1786 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1787 		if (!cpu_online(i))
1788 			continue;
1789 
1790 		hctx = q->mq_ops->map_queue(q, i);
1791 
1792 		/*
1793 		 * Set local node, IFF we have more than one hw queue. If
1794 		 * not, we remain on the home node of the device
1795 		 */
1796 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1797 			hctx->numa_node = cpu_to_node(i);
1798 	}
1799 }
1800 
1801 static void blk_mq_map_swqueue(struct request_queue *q,
1802 			       const struct cpumask *online_mask)
1803 {
1804 	unsigned int i;
1805 	struct blk_mq_hw_ctx *hctx;
1806 	struct blk_mq_ctx *ctx;
1807 	struct blk_mq_tag_set *set = q->tag_set;
1808 
1809 	/*
1810 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1811 	 */
1812 	mutex_lock(&q->sysfs_lock);
1813 
1814 	queue_for_each_hw_ctx(q, hctx, i) {
1815 		cpumask_clear(hctx->cpumask);
1816 		hctx->nr_ctx = 0;
1817 	}
1818 
1819 	/*
1820 	 * Map software to hardware queues
1821 	 */
1822 	queue_for_each_ctx(q, ctx, i) {
1823 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1824 		if (!cpumask_test_cpu(i, online_mask))
1825 			continue;
1826 
1827 		hctx = q->mq_ops->map_queue(q, i);
1828 		cpumask_set_cpu(i, hctx->cpumask);
1829 		ctx->index_hw = hctx->nr_ctx;
1830 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1831 	}
1832 
1833 	mutex_unlock(&q->sysfs_lock);
1834 
1835 	queue_for_each_hw_ctx(q, hctx, i) {
1836 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1837 
1838 		/*
1839 		 * If no software queues are mapped to this hardware queue,
1840 		 * disable it and free the request entries.
1841 		 */
1842 		if (!hctx->nr_ctx) {
1843 			if (set->tags[i]) {
1844 				blk_mq_free_rq_map(set, set->tags[i], i);
1845 				set->tags[i] = NULL;
1846 			}
1847 			hctx->tags = NULL;
1848 			continue;
1849 		}
1850 
1851 		/* unmapped hw queue can be remapped after CPU topo changed */
1852 		if (!set->tags[i])
1853 			set->tags[i] = blk_mq_init_rq_map(set, i);
1854 		hctx->tags = set->tags[i];
1855 		WARN_ON(!hctx->tags);
1856 
1857 		/*
1858 		 * Set the map size to the number of mapped software queues.
1859 		 * This is more accurate and more efficient than looping
1860 		 * over all possibly mapped software queues.
1861 		 */
1862 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1863 
1864 		/*
1865 		 * Initialize batch roundrobin counts
1866 		 */
1867 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1868 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1869 	}
1870 
1871 	queue_for_each_ctx(q, ctx, i) {
1872 		if (!cpumask_test_cpu(i, online_mask))
1873 			continue;
1874 
1875 		hctx = q->mq_ops->map_queue(q, i);
1876 		cpumask_set_cpu(i, hctx->tags->cpumask);
1877 	}
1878 }
1879 
1880 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1881 {
1882 	struct blk_mq_hw_ctx *hctx;
1883 	int i;
1884 
1885 	queue_for_each_hw_ctx(q, hctx, i) {
1886 		if (shared)
1887 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1888 		else
1889 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1890 	}
1891 }
1892 
1893 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1894 {
1895 	struct request_queue *q;
1896 
1897 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1898 		blk_mq_freeze_queue(q);
1899 		queue_set_hctx_shared(q, shared);
1900 		blk_mq_unfreeze_queue(q);
1901 	}
1902 }
1903 
1904 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1905 {
1906 	struct blk_mq_tag_set *set = q->tag_set;
1907 
1908 	mutex_lock(&set->tag_list_lock);
1909 	list_del_init(&q->tag_set_list);
1910 	if (list_is_singular(&set->tag_list)) {
1911 		/* just transitioned to unshared */
1912 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1913 		/* update existing queue */
1914 		blk_mq_update_tag_set_depth(set, false);
1915 	}
1916 	mutex_unlock(&set->tag_list_lock);
1917 }
1918 
1919 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1920 				     struct request_queue *q)
1921 {
1922 	q->tag_set = set;
1923 
1924 	mutex_lock(&set->tag_list_lock);
1925 
1926 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1927 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1928 		set->flags |= BLK_MQ_F_TAG_SHARED;
1929 		/* update existing queue */
1930 		blk_mq_update_tag_set_depth(set, true);
1931 	}
1932 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1933 		queue_set_hctx_shared(q, true);
1934 	list_add_tail(&q->tag_set_list, &set->tag_list);
1935 
1936 	mutex_unlock(&set->tag_list_lock);
1937 }
1938 
1939 /*
1940  * It is the actual release handler for mq, but we do it from
1941  * request queue's release handler for avoiding use-after-free
1942  * and headache because q->mq_kobj shouldn't have been introduced,
1943  * but we can't group ctx/kctx kobj without it.
1944  */
1945 void blk_mq_release(struct request_queue *q)
1946 {
1947 	struct blk_mq_hw_ctx *hctx;
1948 	unsigned int i;
1949 
1950 	/* hctx kobj stays in hctx */
1951 	queue_for_each_hw_ctx(q, hctx, i) {
1952 		if (!hctx)
1953 			continue;
1954 		kfree(hctx->ctxs);
1955 		kfree(hctx);
1956 	}
1957 
1958 	kfree(q->mq_map);
1959 	q->mq_map = NULL;
1960 
1961 	kfree(q->queue_hw_ctx);
1962 
1963 	/* ctx kobj stays in queue_ctx */
1964 	free_percpu(q->queue_ctx);
1965 }
1966 
1967 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1968 {
1969 	struct request_queue *uninit_q, *q;
1970 
1971 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1972 	if (!uninit_q)
1973 		return ERR_PTR(-ENOMEM);
1974 
1975 	q = blk_mq_init_allocated_queue(set, uninit_q);
1976 	if (IS_ERR(q))
1977 		blk_cleanup_queue(uninit_q);
1978 
1979 	return q;
1980 }
1981 EXPORT_SYMBOL(blk_mq_init_queue);
1982 
1983 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1984 						  struct request_queue *q)
1985 {
1986 	struct blk_mq_hw_ctx **hctxs;
1987 	struct blk_mq_ctx __percpu *ctx;
1988 	unsigned int *map;
1989 	int i;
1990 
1991 	ctx = alloc_percpu(struct blk_mq_ctx);
1992 	if (!ctx)
1993 		return ERR_PTR(-ENOMEM);
1994 
1995 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1996 			set->numa_node);
1997 
1998 	if (!hctxs)
1999 		goto err_percpu;
2000 
2001 	map = blk_mq_make_queue_map(set);
2002 	if (!map)
2003 		goto err_map;
2004 
2005 	for (i = 0; i < set->nr_hw_queues; i++) {
2006 		int node = blk_mq_hw_queue_to_node(map, i);
2007 
2008 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2009 					GFP_KERNEL, node);
2010 		if (!hctxs[i])
2011 			goto err_hctxs;
2012 
2013 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2014 						node))
2015 			goto err_hctxs;
2016 
2017 		atomic_set(&hctxs[i]->nr_active, 0);
2018 		hctxs[i]->numa_node = node;
2019 		hctxs[i]->queue_num = i;
2020 	}
2021 
2022 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2023 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2024 
2025 	q->nr_queues = nr_cpu_ids;
2026 	q->nr_hw_queues = set->nr_hw_queues;
2027 	q->mq_map = map;
2028 
2029 	q->queue_ctx = ctx;
2030 	q->queue_hw_ctx = hctxs;
2031 
2032 	q->mq_ops = set->ops;
2033 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2034 
2035 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2036 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2037 
2038 	q->sg_reserved_size = INT_MAX;
2039 
2040 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2041 	INIT_LIST_HEAD(&q->requeue_list);
2042 	spin_lock_init(&q->requeue_lock);
2043 
2044 	if (q->nr_hw_queues > 1)
2045 		blk_queue_make_request(q, blk_mq_make_request);
2046 	else
2047 		blk_queue_make_request(q, blk_sq_make_request);
2048 
2049 	/*
2050 	 * Do this after blk_queue_make_request() overrides it...
2051 	 */
2052 	q->nr_requests = set->queue_depth;
2053 
2054 	if (set->ops->complete)
2055 		blk_queue_softirq_done(q, set->ops->complete);
2056 
2057 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2058 
2059 	if (blk_mq_init_hw_queues(q, set))
2060 		goto err_hctxs;
2061 
2062 	get_online_cpus();
2063 	mutex_lock(&all_q_mutex);
2064 
2065 	list_add_tail(&q->all_q_node, &all_q_list);
2066 	blk_mq_add_queue_tag_set(set, q);
2067 	blk_mq_map_swqueue(q, cpu_online_mask);
2068 
2069 	mutex_unlock(&all_q_mutex);
2070 	put_online_cpus();
2071 
2072 	return q;
2073 
2074 err_hctxs:
2075 	kfree(map);
2076 	for (i = 0; i < set->nr_hw_queues; i++) {
2077 		if (!hctxs[i])
2078 			break;
2079 		free_cpumask_var(hctxs[i]->cpumask);
2080 		kfree(hctxs[i]);
2081 	}
2082 err_map:
2083 	kfree(hctxs);
2084 err_percpu:
2085 	free_percpu(ctx);
2086 	return ERR_PTR(-ENOMEM);
2087 }
2088 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2089 
2090 void blk_mq_free_queue(struct request_queue *q)
2091 {
2092 	struct blk_mq_tag_set	*set = q->tag_set;
2093 
2094 	mutex_lock(&all_q_mutex);
2095 	list_del_init(&q->all_q_node);
2096 	mutex_unlock(&all_q_mutex);
2097 
2098 	blk_mq_del_queue_tag_set(q);
2099 
2100 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2101 	blk_mq_free_hw_queues(q, set);
2102 }
2103 
2104 /* Basically redo blk_mq_init_queue with queue frozen */
2105 static void blk_mq_queue_reinit(struct request_queue *q,
2106 				const struct cpumask *online_mask)
2107 {
2108 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2109 
2110 	blk_mq_sysfs_unregister(q);
2111 
2112 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2113 
2114 	/*
2115 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2116 	 * we should change hctx numa_node according to new topology (this
2117 	 * involves free and re-allocate memory, worthy doing?)
2118 	 */
2119 
2120 	blk_mq_map_swqueue(q, online_mask);
2121 
2122 	blk_mq_sysfs_register(q);
2123 }
2124 
2125 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2126 				      unsigned long action, void *hcpu)
2127 {
2128 	struct request_queue *q;
2129 	int cpu = (unsigned long)hcpu;
2130 	/*
2131 	 * New online cpumask which is going to be set in this hotplug event.
2132 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2133 	 * one-by-one and dynamically allocating this could result in a failure.
2134 	 */
2135 	static struct cpumask online_new;
2136 
2137 	/*
2138 	 * Before hotadded cpu starts handling requests, new mappings must
2139 	 * be established.  Otherwise, these requests in hw queue might
2140 	 * never be dispatched.
2141 	 *
2142 	 * For example, there is a single hw queue (hctx) and two CPU queues
2143 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2144 	 *
2145 	 * Now CPU1 is just onlined and a request is inserted into
2146 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2147 	 * still zero.
2148 	 *
2149 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2150 	 * set in pending bitmap and tries to retrieve requests in
2151 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2152 	 * so the request in ctx1->rq_list is ignored.
2153 	 */
2154 	switch (action & ~CPU_TASKS_FROZEN) {
2155 	case CPU_DEAD:
2156 	case CPU_UP_CANCELED:
2157 		cpumask_copy(&online_new, cpu_online_mask);
2158 		break;
2159 	case CPU_UP_PREPARE:
2160 		cpumask_copy(&online_new, cpu_online_mask);
2161 		cpumask_set_cpu(cpu, &online_new);
2162 		break;
2163 	default:
2164 		return NOTIFY_OK;
2165 	}
2166 
2167 	mutex_lock(&all_q_mutex);
2168 
2169 	/*
2170 	 * We need to freeze and reinit all existing queues.  Freezing
2171 	 * involves synchronous wait for an RCU grace period and doing it
2172 	 * one by one may take a long time.  Start freezing all queues in
2173 	 * one swoop and then wait for the completions so that freezing can
2174 	 * take place in parallel.
2175 	 */
2176 	list_for_each_entry(q, &all_q_list, all_q_node)
2177 		blk_mq_freeze_queue_start(q);
2178 	list_for_each_entry(q, &all_q_list, all_q_node) {
2179 		blk_mq_freeze_queue_wait(q);
2180 
2181 		/*
2182 		 * timeout handler can't touch hw queue during the
2183 		 * reinitialization
2184 		 */
2185 		del_timer_sync(&q->timeout);
2186 	}
2187 
2188 	list_for_each_entry(q, &all_q_list, all_q_node)
2189 		blk_mq_queue_reinit(q, &online_new);
2190 
2191 	list_for_each_entry(q, &all_q_list, all_q_node)
2192 		blk_mq_unfreeze_queue(q);
2193 
2194 	mutex_unlock(&all_q_mutex);
2195 	return NOTIFY_OK;
2196 }
2197 
2198 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2199 {
2200 	int i;
2201 
2202 	for (i = 0; i < set->nr_hw_queues; i++) {
2203 		set->tags[i] = blk_mq_init_rq_map(set, i);
2204 		if (!set->tags[i])
2205 			goto out_unwind;
2206 	}
2207 
2208 	return 0;
2209 
2210 out_unwind:
2211 	while (--i >= 0)
2212 		blk_mq_free_rq_map(set, set->tags[i], i);
2213 
2214 	return -ENOMEM;
2215 }
2216 
2217 /*
2218  * Allocate the request maps associated with this tag_set. Note that this
2219  * may reduce the depth asked for, if memory is tight. set->queue_depth
2220  * will be updated to reflect the allocated depth.
2221  */
2222 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2223 {
2224 	unsigned int depth;
2225 	int err;
2226 
2227 	depth = set->queue_depth;
2228 	do {
2229 		err = __blk_mq_alloc_rq_maps(set);
2230 		if (!err)
2231 			break;
2232 
2233 		set->queue_depth >>= 1;
2234 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2235 			err = -ENOMEM;
2236 			break;
2237 		}
2238 	} while (set->queue_depth);
2239 
2240 	if (!set->queue_depth || err) {
2241 		pr_err("blk-mq: failed to allocate request map\n");
2242 		return -ENOMEM;
2243 	}
2244 
2245 	if (depth != set->queue_depth)
2246 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2247 						depth, set->queue_depth);
2248 
2249 	return 0;
2250 }
2251 
2252 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2253 {
2254 	return tags->cpumask;
2255 }
2256 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2257 
2258 /*
2259  * Alloc a tag set to be associated with one or more request queues.
2260  * May fail with EINVAL for various error conditions. May adjust the
2261  * requested depth down, if if it too large. In that case, the set
2262  * value will be stored in set->queue_depth.
2263  */
2264 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2265 {
2266 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2267 
2268 	if (!set->nr_hw_queues)
2269 		return -EINVAL;
2270 	if (!set->queue_depth)
2271 		return -EINVAL;
2272 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2273 		return -EINVAL;
2274 
2275 	if (!set->ops->queue_rq || !set->ops->map_queue)
2276 		return -EINVAL;
2277 
2278 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2279 		pr_info("blk-mq: reduced tag depth to %u\n",
2280 			BLK_MQ_MAX_DEPTH);
2281 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2282 	}
2283 
2284 	/*
2285 	 * If a crashdump is active, then we are potentially in a very
2286 	 * memory constrained environment. Limit us to 1 queue and
2287 	 * 64 tags to prevent using too much memory.
2288 	 */
2289 	if (is_kdump_kernel()) {
2290 		set->nr_hw_queues = 1;
2291 		set->queue_depth = min(64U, set->queue_depth);
2292 	}
2293 
2294 	set->tags = kmalloc_node(set->nr_hw_queues *
2295 				 sizeof(struct blk_mq_tags *),
2296 				 GFP_KERNEL, set->numa_node);
2297 	if (!set->tags)
2298 		return -ENOMEM;
2299 
2300 	if (blk_mq_alloc_rq_maps(set))
2301 		goto enomem;
2302 
2303 	mutex_init(&set->tag_list_lock);
2304 	INIT_LIST_HEAD(&set->tag_list);
2305 
2306 	return 0;
2307 enomem:
2308 	kfree(set->tags);
2309 	set->tags = NULL;
2310 	return -ENOMEM;
2311 }
2312 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2313 
2314 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2315 {
2316 	int i;
2317 
2318 	for (i = 0; i < set->nr_hw_queues; i++) {
2319 		if (set->tags[i])
2320 			blk_mq_free_rq_map(set, set->tags[i], i);
2321 	}
2322 
2323 	kfree(set->tags);
2324 	set->tags = NULL;
2325 }
2326 EXPORT_SYMBOL(blk_mq_free_tag_set);
2327 
2328 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2329 {
2330 	struct blk_mq_tag_set *set = q->tag_set;
2331 	struct blk_mq_hw_ctx *hctx;
2332 	int i, ret;
2333 
2334 	if (!set || nr > set->queue_depth)
2335 		return -EINVAL;
2336 
2337 	ret = 0;
2338 	queue_for_each_hw_ctx(q, hctx, i) {
2339 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2340 		if (ret)
2341 			break;
2342 	}
2343 
2344 	if (!ret)
2345 		q->nr_requests = nr;
2346 
2347 	return ret;
2348 }
2349 
2350 void blk_mq_disable_hotplug(void)
2351 {
2352 	mutex_lock(&all_q_mutex);
2353 }
2354 
2355 void blk_mq_enable_hotplug(void)
2356 {
2357 	mutex_unlock(&all_q_mutex);
2358 }
2359 
2360 static int __init blk_mq_init(void)
2361 {
2362 	blk_mq_cpu_init();
2363 
2364 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2365 
2366 	return 0;
2367 }
2368 subsys_initcall(blk_mq_init);
2369