1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 26 #include <trace/events/block.h> 27 28 #include <linux/blk-mq.h> 29 #include "blk.h" 30 #include "blk-mq.h" 31 #include "blk-mq-tag.h" 32 33 static DEFINE_MUTEX(all_q_mutex); 34 static LIST_HEAD(all_q_list); 35 36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 37 38 /* 39 * Check if any of the ctx's have pending work in this hardware queue 40 */ 41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 42 { 43 unsigned int i; 44 45 for (i = 0; i < hctx->ctx_map.size; i++) 46 if (hctx->ctx_map.map[i].word) 47 return true; 48 49 return false; 50 } 51 52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 53 struct blk_mq_ctx *ctx) 54 { 55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 56 } 57 58 #define CTX_TO_BIT(hctx, ctx) \ 59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 60 61 /* 62 * Mark this ctx as having pending work in this hardware queue 63 */ 64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 65 struct blk_mq_ctx *ctx) 66 { 67 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 68 69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 71 } 72 73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 74 struct blk_mq_ctx *ctx) 75 { 76 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 77 78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 79 } 80 81 void blk_mq_freeze_queue_start(struct request_queue *q) 82 { 83 int freeze_depth; 84 85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 86 if (freeze_depth == 1) { 87 percpu_ref_kill(&q->q_usage_counter); 88 blk_mq_run_hw_queues(q, false); 89 } 90 } 91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 92 93 static void blk_mq_freeze_queue_wait(struct request_queue *q) 94 { 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 96 } 97 98 /* 99 * Guarantee no request is in use, so we can change any data structure of 100 * the queue afterward. 101 */ 102 void blk_freeze_queue(struct request_queue *q) 103 { 104 /* 105 * In the !blk_mq case we are only calling this to kill the 106 * q_usage_counter, otherwise this increases the freeze depth 107 * and waits for it to return to zero. For this reason there is 108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 109 * exported to drivers as the only user for unfreeze is blk_mq. 110 */ 111 blk_mq_freeze_queue_start(q); 112 blk_mq_freeze_queue_wait(q); 113 } 114 115 void blk_mq_freeze_queue(struct request_queue *q) 116 { 117 /* 118 * ...just an alias to keep freeze and unfreeze actions balanced 119 * in the blk_mq_* namespace 120 */ 121 blk_freeze_queue(q); 122 } 123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 124 125 void blk_mq_unfreeze_queue(struct request_queue *q) 126 { 127 int freeze_depth; 128 129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 130 WARN_ON_ONCE(freeze_depth < 0); 131 if (!freeze_depth) { 132 percpu_ref_reinit(&q->q_usage_counter); 133 wake_up_all(&q->mq_freeze_wq); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 137 138 void blk_mq_wake_waiters(struct request_queue *q) 139 { 140 struct blk_mq_hw_ctx *hctx; 141 unsigned int i; 142 143 queue_for_each_hw_ctx(q, hctx, i) 144 if (blk_mq_hw_queue_mapped(hctx)) 145 blk_mq_tag_wakeup_all(hctx->tags, true); 146 147 /* 148 * If we are called because the queue has now been marked as 149 * dying, we need to ensure that processes currently waiting on 150 * the queue are notified as well. 151 */ 152 wake_up_all(&q->mq_freeze_wq); 153 } 154 155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 156 { 157 return blk_mq_has_free_tags(hctx->tags); 158 } 159 EXPORT_SYMBOL(blk_mq_can_queue); 160 161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 162 struct request *rq, unsigned int rw_flags) 163 { 164 if (blk_queue_io_stat(q)) 165 rw_flags |= REQ_IO_STAT; 166 167 INIT_LIST_HEAD(&rq->queuelist); 168 /* csd/requeue_work/fifo_time is initialized before use */ 169 rq->q = q; 170 rq->mq_ctx = ctx; 171 rq->cmd_flags |= rw_flags; 172 /* do not touch atomic flags, it needs atomic ops against the timer */ 173 rq->cpu = -1; 174 INIT_HLIST_NODE(&rq->hash); 175 RB_CLEAR_NODE(&rq->rb_node); 176 rq->rq_disk = NULL; 177 rq->part = NULL; 178 rq->start_time = jiffies; 179 #ifdef CONFIG_BLK_CGROUP 180 rq->rl = NULL; 181 set_start_time_ns(rq); 182 rq->io_start_time_ns = 0; 183 #endif 184 rq->nr_phys_segments = 0; 185 #if defined(CONFIG_BLK_DEV_INTEGRITY) 186 rq->nr_integrity_segments = 0; 187 #endif 188 rq->special = NULL; 189 /* tag was already set */ 190 rq->errors = 0; 191 192 rq->cmd = rq->__cmd; 193 194 rq->extra_len = 0; 195 rq->sense_len = 0; 196 rq->resid_len = 0; 197 rq->sense = NULL; 198 199 INIT_LIST_HEAD(&rq->timeout_list); 200 rq->timeout = 0; 201 202 rq->end_io = NULL; 203 rq->end_io_data = NULL; 204 rq->next_rq = NULL; 205 206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 207 } 208 209 static struct request * 210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 211 { 212 struct request *rq; 213 unsigned int tag; 214 215 tag = blk_mq_get_tag(data); 216 if (tag != BLK_MQ_TAG_FAIL) { 217 rq = data->hctx->tags->rqs[tag]; 218 219 if (blk_mq_tag_busy(data->hctx)) { 220 rq->cmd_flags = REQ_MQ_INFLIGHT; 221 atomic_inc(&data->hctx->nr_active); 222 } 223 224 rq->tag = tag; 225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 226 return rq; 227 } 228 229 return NULL; 230 } 231 232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 233 bool reserved) 234 { 235 struct blk_mq_ctx *ctx; 236 struct blk_mq_hw_ctx *hctx; 237 struct request *rq; 238 struct blk_mq_alloc_data alloc_data; 239 int ret; 240 241 ret = blk_queue_enter(q, gfp); 242 if (ret) 243 return ERR_PTR(ret); 244 245 ctx = blk_mq_get_ctx(q); 246 hctx = q->mq_ops->map_queue(q, ctx->cpu); 247 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_DIRECT_RECLAIM, 248 reserved, ctx, hctx); 249 250 rq = __blk_mq_alloc_request(&alloc_data, rw); 251 if (!rq && (gfp & __GFP_DIRECT_RECLAIM)) { 252 __blk_mq_run_hw_queue(hctx); 253 blk_mq_put_ctx(ctx); 254 255 ctx = blk_mq_get_ctx(q); 256 hctx = q->mq_ops->map_queue(q, ctx->cpu); 257 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 258 hctx); 259 rq = __blk_mq_alloc_request(&alloc_data, rw); 260 ctx = alloc_data.ctx; 261 } 262 blk_mq_put_ctx(ctx); 263 if (!rq) { 264 blk_queue_exit(q); 265 return ERR_PTR(-EWOULDBLOCK); 266 } 267 return rq; 268 } 269 EXPORT_SYMBOL(blk_mq_alloc_request); 270 271 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 272 struct blk_mq_ctx *ctx, struct request *rq) 273 { 274 const int tag = rq->tag; 275 struct request_queue *q = rq->q; 276 277 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 278 atomic_dec(&hctx->nr_active); 279 rq->cmd_flags = 0; 280 281 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 282 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 283 blk_queue_exit(q); 284 } 285 286 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 287 { 288 struct blk_mq_ctx *ctx = rq->mq_ctx; 289 290 ctx->rq_completed[rq_is_sync(rq)]++; 291 __blk_mq_free_request(hctx, ctx, rq); 292 293 } 294 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 295 296 void blk_mq_free_request(struct request *rq) 297 { 298 struct blk_mq_hw_ctx *hctx; 299 struct request_queue *q = rq->q; 300 301 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 302 blk_mq_free_hctx_request(hctx, rq); 303 } 304 EXPORT_SYMBOL_GPL(blk_mq_free_request); 305 306 inline void __blk_mq_end_request(struct request *rq, int error) 307 { 308 blk_account_io_done(rq); 309 310 if (rq->end_io) { 311 rq->end_io(rq, error); 312 } else { 313 if (unlikely(blk_bidi_rq(rq))) 314 blk_mq_free_request(rq->next_rq); 315 blk_mq_free_request(rq); 316 } 317 } 318 EXPORT_SYMBOL(__blk_mq_end_request); 319 320 void blk_mq_end_request(struct request *rq, int error) 321 { 322 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 323 BUG(); 324 __blk_mq_end_request(rq, error); 325 } 326 EXPORT_SYMBOL(blk_mq_end_request); 327 328 static void __blk_mq_complete_request_remote(void *data) 329 { 330 struct request *rq = data; 331 332 rq->q->softirq_done_fn(rq); 333 } 334 335 static void blk_mq_ipi_complete_request(struct request *rq) 336 { 337 struct blk_mq_ctx *ctx = rq->mq_ctx; 338 bool shared = false; 339 int cpu; 340 341 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 342 rq->q->softirq_done_fn(rq); 343 return; 344 } 345 346 cpu = get_cpu(); 347 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 348 shared = cpus_share_cache(cpu, ctx->cpu); 349 350 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 351 rq->csd.func = __blk_mq_complete_request_remote; 352 rq->csd.info = rq; 353 rq->csd.flags = 0; 354 smp_call_function_single_async(ctx->cpu, &rq->csd); 355 } else { 356 rq->q->softirq_done_fn(rq); 357 } 358 put_cpu(); 359 } 360 361 static void __blk_mq_complete_request(struct request *rq) 362 { 363 struct request_queue *q = rq->q; 364 365 if (!q->softirq_done_fn) 366 blk_mq_end_request(rq, rq->errors); 367 else 368 blk_mq_ipi_complete_request(rq); 369 } 370 371 /** 372 * blk_mq_complete_request - end I/O on a request 373 * @rq: the request being processed 374 * 375 * Description: 376 * Ends all I/O on a request. It does not handle partial completions. 377 * The actual completion happens out-of-order, through a IPI handler. 378 **/ 379 void blk_mq_complete_request(struct request *rq, int error) 380 { 381 struct request_queue *q = rq->q; 382 383 if (unlikely(blk_should_fake_timeout(q))) 384 return; 385 if (!blk_mark_rq_complete(rq)) { 386 rq->errors = error; 387 __blk_mq_complete_request(rq); 388 } 389 } 390 EXPORT_SYMBOL(blk_mq_complete_request); 391 392 int blk_mq_request_started(struct request *rq) 393 { 394 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 395 } 396 EXPORT_SYMBOL_GPL(blk_mq_request_started); 397 398 void blk_mq_start_request(struct request *rq) 399 { 400 struct request_queue *q = rq->q; 401 402 trace_block_rq_issue(q, rq); 403 404 rq->resid_len = blk_rq_bytes(rq); 405 if (unlikely(blk_bidi_rq(rq))) 406 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 407 408 blk_add_timer(rq); 409 410 /* 411 * Ensure that ->deadline is visible before set the started 412 * flag and clear the completed flag. 413 */ 414 smp_mb__before_atomic(); 415 416 /* 417 * Mark us as started and clear complete. Complete might have been 418 * set if requeue raced with timeout, which then marked it as 419 * complete. So be sure to clear complete again when we start 420 * the request, otherwise we'll ignore the completion event. 421 */ 422 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 423 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 424 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 425 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 426 427 if (q->dma_drain_size && blk_rq_bytes(rq)) { 428 /* 429 * Make sure space for the drain appears. We know we can do 430 * this because max_hw_segments has been adjusted to be one 431 * fewer than the device can handle. 432 */ 433 rq->nr_phys_segments++; 434 } 435 } 436 EXPORT_SYMBOL(blk_mq_start_request); 437 438 static void __blk_mq_requeue_request(struct request *rq) 439 { 440 struct request_queue *q = rq->q; 441 442 trace_block_rq_requeue(q, rq); 443 444 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 445 if (q->dma_drain_size && blk_rq_bytes(rq)) 446 rq->nr_phys_segments--; 447 } 448 } 449 450 void blk_mq_requeue_request(struct request *rq) 451 { 452 __blk_mq_requeue_request(rq); 453 454 BUG_ON(blk_queued_rq(rq)); 455 blk_mq_add_to_requeue_list(rq, true); 456 } 457 EXPORT_SYMBOL(blk_mq_requeue_request); 458 459 static void blk_mq_requeue_work(struct work_struct *work) 460 { 461 struct request_queue *q = 462 container_of(work, struct request_queue, requeue_work); 463 LIST_HEAD(rq_list); 464 struct request *rq, *next; 465 unsigned long flags; 466 467 spin_lock_irqsave(&q->requeue_lock, flags); 468 list_splice_init(&q->requeue_list, &rq_list); 469 spin_unlock_irqrestore(&q->requeue_lock, flags); 470 471 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 472 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 473 continue; 474 475 rq->cmd_flags &= ~REQ_SOFTBARRIER; 476 list_del_init(&rq->queuelist); 477 blk_mq_insert_request(rq, true, false, false); 478 } 479 480 while (!list_empty(&rq_list)) { 481 rq = list_entry(rq_list.next, struct request, queuelist); 482 list_del_init(&rq->queuelist); 483 blk_mq_insert_request(rq, false, false, false); 484 } 485 486 /* 487 * Use the start variant of queue running here, so that running 488 * the requeue work will kick stopped queues. 489 */ 490 blk_mq_start_hw_queues(q); 491 } 492 493 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 494 { 495 struct request_queue *q = rq->q; 496 unsigned long flags; 497 498 /* 499 * We abuse this flag that is otherwise used by the I/O scheduler to 500 * request head insertation from the workqueue. 501 */ 502 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 503 504 spin_lock_irqsave(&q->requeue_lock, flags); 505 if (at_head) { 506 rq->cmd_flags |= REQ_SOFTBARRIER; 507 list_add(&rq->queuelist, &q->requeue_list); 508 } else { 509 list_add_tail(&rq->queuelist, &q->requeue_list); 510 } 511 spin_unlock_irqrestore(&q->requeue_lock, flags); 512 } 513 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 514 515 void blk_mq_cancel_requeue_work(struct request_queue *q) 516 { 517 cancel_work_sync(&q->requeue_work); 518 } 519 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 520 521 void blk_mq_kick_requeue_list(struct request_queue *q) 522 { 523 kblockd_schedule_work(&q->requeue_work); 524 } 525 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 526 527 void blk_mq_abort_requeue_list(struct request_queue *q) 528 { 529 unsigned long flags; 530 LIST_HEAD(rq_list); 531 532 spin_lock_irqsave(&q->requeue_lock, flags); 533 list_splice_init(&q->requeue_list, &rq_list); 534 spin_unlock_irqrestore(&q->requeue_lock, flags); 535 536 while (!list_empty(&rq_list)) { 537 struct request *rq; 538 539 rq = list_first_entry(&rq_list, struct request, queuelist); 540 list_del_init(&rq->queuelist); 541 rq->errors = -EIO; 542 blk_mq_end_request(rq, rq->errors); 543 } 544 } 545 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 546 547 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 548 { 549 return tags->rqs[tag]; 550 } 551 EXPORT_SYMBOL(blk_mq_tag_to_rq); 552 553 struct blk_mq_timeout_data { 554 unsigned long next; 555 unsigned int next_set; 556 }; 557 558 void blk_mq_rq_timed_out(struct request *req, bool reserved) 559 { 560 struct blk_mq_ops *ops = req->q->mq_ops; 561 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 562 563 /* 564 * We know that complete is set at this point. If STARTED isn't set 565 * anymore, then the request isn't active and the "timeout" should 566 * just be ignored. This can happen due to the bitflag ordering. 567 * Timeout first checks if STARTED is set, and if it is, assumes 568 * the request is active. But if we race with completion, then 569 * we both flags will get cleared. So check here again, and ignore 570 * a timeout event with a request that isn't active. 571 */ 572 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 573 return; 574 575 if (ops->timeout) 576 ret = ops->timeout(req, reserved); 577 578 switch (ret) { 579 case BLK_EH_HANDLED: 580 __blk_mq_complete_request(req); 581 break; 582 case BLK_EH_RESET_TIMER: 583 blk_add_timer(req); 584 blk_clear_rq_complete(req); 585 break; 586 case BLK_EH_NOT_HANDLED: 587 break; 588 default: 589 printk(KERN_ERR "block: bad eh return: %d\n", ret); 590 break; 591 } 592 } 593 594 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 595 struct request *rq, void *priv, bool reserved) 596 { 597 struct blk_mq_timeout_data *data = priv; 598 599 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 600 /* 601 * If a request wasn't started before the queue was 602 * marked dying, kill it here or it'll go unnoticed. 603 */ 604 if (unlikely(blk_queue_dying(rq->q))) 605 blk_mq_complete_request(rq, -EIO); 606 return; 607 } 608 if (rq->cmd_flags & REQ_NO_TIMEOUT) 609 return; 610 611 if (time_after_eq(jiffies, rq->deadline)) { 612 if (!blk_mark_rq_complete(rq)) 613 blk_mq_rq_timed_out(rq, reserved); 614 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 615 data->next = rq->deadline; 616 data->next_set = 1; 617 } 618 } 619 620 static void blk_mq_rq_timer(unsigned long priv) 621 { 622 struct request_queue *q = (struct request_queue *)priv; 623 struct blk_mq_timeout_data data = { 624 .next = 0, 625 .next_set = 0, 626 }; 627 int i; 628 629 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 630 631 if (data.next_set) { 632 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 633 mod_timer(&q->timeout, data.next); 634 } else { 635 struct blk_mq_hw_ctx *hctx; 636 637 queue_for_each_hw_ctx(q, hctx, i) { 638 /* the hctx may be unmapped, so check it here */ 639 if (blk_mq_hw_queue_mapped(hctx)) 640 blk_mq_tag_idle(hctx); 641 } 642 } 643 } 644 645 /* 646 * Reverse check our software queue for entries that we could potentially 647 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 648 * too much time checking for merges. 649 */ 650 static bool blk_mq_attempt_merge(struct request_queue *q, 651 struct blk_mq_ctx *ctx, struct bio *bio) 652 { 653 struct request *rq; 654 int checked = 8; 655 656 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 657 int el_ret; 658 659 if (!checked--) 660 break; 661 662 if (!blk_rq_merge_ok(rq, bio)) 663 continue; 664 665 el_ret = blk_try_merge(rq, bio); 666 if (el_ret == ELEVATOR_BACK_MERGE) { 667 if (bio_attempt_back_merge(q, rq, bio)) { 668 ctx->rq_merged++; 669 return true; 670 } 671 break; 672 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 673 if (bio_attempt_front_merge(q, rq, bio)) { 674 ctx->rq_merged++; 675 return true; 676 } 677 break; 678 } 679 } 680 681 return false; 682 } 683 684 /* 685 * Process software queues that have been marked busy, splicing them 686 * to the for-dispatch 687 */ 688 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 689 { 690 struct blk_mq_ctx *ctx; 691 int i; 692 693 for (i = 0; i < hctx->ctx_map.size; i++) { 694 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 695 unsigned int off, bit; 696 697 if (!bm->word) 698 continue; 699 700 bit = 0; 701 off = i * hctx->ctx_map.bits_per_word; 702 do { 703 bit = find_next_bit(&bm->word, bm->depth, bit); 704 if (bit >= bm->depth) 705 break; 706 707 ctx = hctx->ctxs[bit + off]; 708 clear_bit(bit, &bm->word); 709 spin_lock(&ctx->lock); 710 list_splice_tail_init(&ctx->rq_list, list); 711 spin_unlock(&ctx->lock); 712 713 bit++; 714 } while (1); 715 } 716 } 717 718 /* 719 * Run this hardware queue, pulling any software queues mapped to it in. 720 * Note that this function currently has various problems around ordering 721 * of IO. In particular, we'd like FIFO behaviour on handling existing 722 * items on the hctx->dispatch list. Ignore that for now. 723 */ 724 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 725 { 726 struct request_queue *q = hctx->queue; 727 struct request *rq; 728 LIST_HEAD(rq_list); 729 LIST_HEAD(driver_list); 730 struct list_head *dptr; 731 int queued; 732 733 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 734 735 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 736 return; 737 738 hctx->run++; 739 740 /* 741 * Touch any software queue that has pending entries. 742 */ 743 flush_busy_ctxs(hctx, &rq_list); 744 745 /* 746 * If we have previous entries on our dispatch list, grab them 747 * and stuff them at the front for more fair dispatch. 748 */ 749 if (!list_empty_careful(&hctx->dispatch)) { 750 spin_lock(&hctx->lock); 751 if (!list_empty(&hctx->dispatch)) 752 list_splice_init(&hctx->dispatch, &rq_list); 753 spin_unlock(&hctx->lock); 754 } 755 756 /* 757 * Start off with dptr being NULL, so we start the first request 758 * immediately, even if we have more pending. 759 */ 760 dptr = NULL; 761 762 /* 763 * Now process all the entries, sending them to the driver. 764 */ 765 queued = 0; 766 while (!list_empty(&rq_list)) { 767 struct blk_mq_queue_data bd; 768 int ret; 769 770 rq = list_first_entry(&rq_list, struct request, queuelist); 771 list_del_init(&rq->queuelist); 772 773 bd.rq = rq; 774 bd.list = dptr; 775 bd.last = list_empty(&rq_list); 776 777 ret = q->mq_ops->queue_rq(hctx, &bd); 778 switch (ret) { 779 case BLK_MQ_RQ_QUEUE_OK: 780 queued++; 781 continue; 782 case BLK_MQ_RQ_QUEUE_BUSY: 783 list_add(&rq->queuelist, &rq_list); 784 __blk_mq_requeue_request(rq); 785 break; 786 default: 787 pr_err("blk-mq: bad return on queue: %d\n", ret); 788 case BLK_MQ_RQ_QUEUE_ERROR: 789 rq->errors = -EIO; 790 blk_mq_end_request(rq, rq->errors); 791 break; 792 } 793 794 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 795 break; 796 797 /* 798 * We've done the first request. If we have more than 1 799 * left in the list, set dptr to defer issue. 800 */ 801 if (!dptr && rq_list.next != rq_list.prev) 802 dptr = &driver_list; 803 } 804 805 if (!queued) 806 hctx->dispatched[0]++; 807 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 808 hctx->dispatched[ilog2(queued) + 1]++; 809 810 /* 811 * Any items that need requeuing? Stuff them into hctx->dispatch, 812 * that is where we will continue on next queue run. 813 */ 814 if (!list_empty(&rq_list)) { 815 spin_lock(&hctx->lock); 816 list_splice(&rq_list, &hctx->dispatch); 817 spin_unlock(&hctx->lock); 818 /* 819 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 820 * it's possible the queue is stopped and restarted again 821 * before this. Queue restart will dispatch requests. And since 822 * requests in rq_list aren't added into hctx->dispatch yet, 823 * the requests in rq_list might get lost. 824 * 825 * blk_mq_run_hw_queue() already checks the STOPPED bit 826 **/ 827 blk_mq_run_hw_queue(hctx, true); 828 } 829 } 830 831 /* 832 * It'd be great if the workqueue API had a way to pass 833 * in a mask and had some smarts for more clever placement. 834 * For now we just round-robin here, switching for every 835 * BLK_MQ_CPU_WORK_BATCH queued items. 836 */ 837 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 838 { 839 if (hctx->queue->nr_hw_queues == 1) 840 return WORK_CPU_UNBOUND; 841 842 if (--hctx->next_cpu_batch <= 0) { 843 int cpu = hctx->next_cpu, next_cpu; 844 845 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 846 if (next_cpu >= nr_cpu_ids) 847 next_cpu = cpumask_first(hctx->cpumask); 848 849 hctx->next_cpu = next_cpu; 850 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 851 852 return cpu; 853 } 854 855 return hctx->next_cpu; 856 } 857 858 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 859 { 860 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 861 !blk_mq_hw_queue_mapped(hctx))) 862 return; 863 864 if (!async) { 865 int cpu = get_cpu(); 866 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 867 __blk_mq_run_hw_queue(hctx); 868 put_cpu(); 869 return; 870 } 871 872 put_cpu(); 873 } 874 875 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 876 &hctx->run_work, 0); 877 } 878 879 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 880 { 881 struct blk_mq_hw_ctx *hctx; 882 int i; 883 884 queue_for_each_hw_ctx(q, hctx, i) { 885 if ((!blk_mq_hctx_has_pending(hctx) && 886 list_empty_careful(&hctx->dispatch)) || 887 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 888 continue; 889 890 blk_mq_run_hw_queue(hctx, async); 891 } 892 } 893 EXPORT_SYMBOL(blk_mq_run_hw_queues); 894 895 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 896 { 897 cancel_delayed_work(&hctx->run_work); 898 cancel_delayed_work(&hctx->delay_work); 899 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 900 } 901 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 902 903 void blk_mq_stop_hw_queues(struct request_queue *q) 904 { 905 struct blk_mq_hw_ctx *hctx; 906 int i; 907 908 queue_for_each_hw_ctx(q, hctx, i) 909 blk_mq_stop_hw_queue(hctx); 910 } 911 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 912 913 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 914 { 915 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 916 917 blk_mq_run_hw_queue(hctx, false); 918 } 919 EXPORT_SYMBOL(blk_mq_start_hw_queue); 920 921 void blk_mq_start_hw_queues(struct request_queue *q) 922 { 923 struct blk_mq_hw_ctx *hctx; 924 int i; 925 926 queue_for_each_hw_ctx(q, hctx, i) 927 blk_mq_start_hw_queue(hctx); 928 } 929 EXPORT_SYMBOL(blk_mq_start_hw_queues); 930 931 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 932 { 933 struct blk_mq_hw_ctx *hctx; 934 int i; 935 936 queue_for_each_hw_ctx(q, hctx, i) { 937 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 938 continue; 939 940 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 941 blk_mq_run_hw_queue(hctx, async); 942 } 943 } 944 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 945 946 static void blk_mq_run_work_fn(struct work_struct *work) 947 { 948 struct blk_mq_hw_ctx *hctx; 949 950 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 951 952 __blk_mq_run_hw_queue(hctx); 953 } 954 955 static void blk_mq_delay_work_fn(struct work_struct *work) 956 { 957 struct blk_mq_hw_ctx *hctx; 958 959 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 960 961 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 962 __blk_mq_run_hw_queue(hctx); 963 } 964 965 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 966 { 967 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 968 return; 969 970 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 971 &hctx->delay_work, msecs_to_jiffies(msecs)); 972 } 973 EXPORT_SYMBOL(blk_mq_delay_queue); 974 975 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 976 struct blk_mq_ctx *ctx, 977 struct request *rq, 978 bool at_head) 979 { 980 trace_block_rq_insert(hctx->queue, rq); 981 982 if (at_head) 983 list_add(&rq->queuelist, &ctx->rq_list); 984 else 985 list_add_tail(&rq->queuelist, &ctx->rq_list); 986 } 987 988 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 989 struct request *rq, bool at_head) 990 { 991 struct blk_mq_ctx *ctx = rq->mq_ctx; 992 993 __blk_mq_insert_req_list(hctx, ctx, rq, at_head); 994 blk_mq_hctx_mark_pending(hctx, ctx); 995 } 996 997 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 998 bool async) 999 { 1000 struct request_queue *q = rq->q; 1001 struct blk_mq_hw_ctx *hctx; 1002 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1003 1004 current_ctx = blk_mq_get_ctx(q); 1005 if (!cpu_online(ctx->cpu)) 1006 rq->mq_ctx = ctx = current_ctx; 1007 1008 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1009 1010 spin_lock(&ctx->lock); 1011 __blk_mq_insert_request(hctx, rq, at_head); 1012 spin_unlock(&ctx->lock); 1013 1014 if (run_queue) 1015 blk_mq_run_hw_queue(hctx, async); 1016 1017 blk_mq_put_ctx(current_ctx); 1018 } 1019 1020 static void blk_mq_insert_requests(struct request_queue *q, 1021 struct blk_mq_ctx *ctx, 1022 struct list_head *list, 1023 int depth, 1024 bool from_schedule) 1025 1026 { 1027 struct blk_mq_hw_ctx *hctx; 1028 struct blk_mq_ctx *current_ctx; 1029 1030 trace_block_unplug(q, depth, !from_schedule); 1031 1032 current_ctx = blk_mq_get_ctx(q); 1033 1034 if (!cpu_online(ctx->cpu)) 1035 ctx = current_ctx; 1036 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1037 1038 /* 1039 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1040 * offline now 1041 */ 1042 spin_lock(&ctx->lock); 1043 while (!list_empty(list)) { 1044 struct request *rq; 1045 1046 rq = list_first_entry(list, struct request, queuelist); 1047 list_del_init(&rq->queuelist); 1048 rq->mq_ctx = ctx; 1049 __blk_mq_insert_req_list(hctx, ctx, rq, false); 1050 } 1051 blk_mq_hctx_mark_pending(hctx, ctx); 1052 spin_unlock(&ctx->lock); 1053 1054 blk_mq_run_hw_queue(hctx, from_schedule); 1055 blk_mq_put_ctx(current_ctx); 1056 } 1057 1058 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1059 { 1060 struct request *rqa = container_of(a, struct request, queuelist); 1061 struct request *rqb = container_of(b, struct request, queuelist); 1062 1063 return !(rqa->mq_ctx < rqb->mq_ctx || 1064 (rqa->mq_ctx == rqb->mq_ctx && 1065 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1066 } 1067 1068 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1069 { 1070 struct blk_mq_ctx *this_ctx; 1071 struct request_queue *this_q; 1072 struct request *rq; 1073 LIST_HEAD(list); 1074 LIST_HEAD(ctx_list); 1075 unsigned int depth; 1076 1077 list_splice_init(&plug->mq_list, &list); 1078 1079 list_sort(NULL, &list, plug_ctx_cmp); 1080 1081 this_q = NULL; 1082 this_ctx = NULL; 1083 depth = 0; 1084 1085 while (!list_empty(&list)) { 1086 rq = list_entry_rq(list.next); 1087 list_del_init(&rq->queuelist); 1088 BUG_ON(!rq->q); 1089 if (rq->mq_ctx != this_ctx) { 1090 if (this_ctx) { 1091 blk_mq_insert_requests(this_q, this_ctx, 1092 &ctx_list, depth, 1093 from_schedule); 1094 } 1095 1096 this_ctx = rq->mq_ctx; 1097 this_q = rq->q; 1098 depth = 0; 1099 } 1100 1101 depth++; 1102 list_add_tail(&rq->queuelist, &ctx_list); 1103 } 1104 1105 /* 1106 * If 'this_ctx' is set, we know we have entries to complete 1107 * on 'ctx_list'. Do those. 1108 */ 1109 if (this_ctx) { 1110 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1111 from_schedule); 1112 } 1113 } 1114 1115 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1116 { 1117 init_request_from_bio(rq, bio); 1118 1119 if (blk_do_io_stat(rq)) 1120 blk_account_io_start(rq, 1); 1121 } 1122 1123 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1124 { 1125 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1126 !blk_queue_nomerges(hctx->queue); 1127 } 1128 1129 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1130 struct blk_mq_ctx *ctx, 1131 struct request *rq, struct bio *bio) 1132 { 1133 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1134 blk_mq_bio_to_request(rq, bio); 1135 spin_lock(&ctx->lock); 1136 insert_rq: 1137 __blk_mq_insert_request(hctx, rq, false); 1138 spin_unlock(&ctx->lock); 1139 return false; 1140 } else { 1141 struct request_queue *q = hctx->queue; 1142 1143 spin_lock(&ctx->lock); 1144 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1145 blk_mq_bio_to_request(rq, bio); 1146 goto insert_rq; 1147 } 1148 1149 spin_unlock(&ctx->lock); 1150 __blk_mq_free_request(hctx, ctx, rq); 1151 return true; 1152 } 1153 } 1154 1155 struct blk_map_ctx { 1156 struct blk_mq_hw_ctx *hctx; 1157 struct blk_mq_ctx *ctx; 1158 }; 1159 1160 static struct request *blk_mq_map_request(struct request_queue *q, 1161 struct bio *bio, 1162 struct blk_map_ctx *data) 1163 { 1164 struct blk_mq_hw_ctx *hctx; 1165 struct blk_mq_ctx *ctx; 1166 struct request *rq; 1167 int rw = bio_data_dir(bio); 1168 struct blk_mq_alloc_data alloc_data; 1169 1170 blk_queue_enter_live(q); 1171 ctx = blk_mq_get_ctx(q); 1172 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1173 1174 if (rw_is_sync(bio->bi_rw)) 1175 rw |= REQ_SYNC; 1176 1177 trace_block_getrq(q, bio, rw); 1178 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1179 hctx); 1180 rq = __blk_mq_alloc_request(&alloc_data, rw); 1181 if (unlikely(!rq)) { 1182 __blk_mq_run_hw_queue(hctx); 1183 blk_mq_put_ctx(ctx); 1184 trace_block_sleeprq(q, bio, rw); 1185 1186 ctx = blk_mq_get_ctx(q); 1187 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1188 blk_mq_set_alloc_data(&alloc_data, q, 1189 __GFP_RECLAIM|__GFP_HIGH, false, ctx, hctx); 1190 rq = __blk_mq_alloc_request(&alloc_data, rw); 1191 ctx = alloc_data.ctx; 1192 hctx = alloc_data.hctx; 1193 } 1194 1195 hctx->queued++; 1196 data->hctx = hctx; 1197 data->ctx = ctx; 1198 return rq; 1199 } 1200 1201 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie) 1202 { 1203 int ret; 1204 struct request_queue *q = rq->q; 1205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1206 rq->mq_ctx->cpu); 1207 struct blk_mq_queue_data bd = { 1208 .rq = rq, 1209 .list = NULL, 1210 .last = 1 1211 }; 1212 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); 1213 1214 /* 1215 * For OK queue, we are done. For error, kill it. Any other 1216 * error (busy), just add it to our list as we previously 1217 * would have done 1218 */ 1219 ret = q->mq_ops->queue_rq(hctx, &bd); 1220 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1221 *cookie = new_cookie; 1222 return 0; 1223 } 1224 1225 __blk_mq_requeue_request(rq); 1226 1227 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1228 *cookie = BLK_QC_T_NONE; 1229 rq->errors = -EIO; 1230 blk_mq_end_request(rq, rq->errors); 1231 return 0; 1232 } 1233 1234 return -1; 1235 } 1236 1237 /* 1238 * Multiple hardware queue variant. This will not use per-process plugs, 1239 * but will attempt to bypass the hctx queueing if we can go straight to 1240 * hardware for SYNC IO. 1241 */ 1242 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1243 { 1244 const int is_sync = rw_is_sync(bio->bi_rw); 1245 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1246 struct blk_map_ctx data; 1247 struct request *rq; 1248 unsigned int request_count = 0; 1249 struct blk_plug *plug; 1250 struct request *same_queue_rq = NULL; 1251 blk_qc_t cookie; 1252 1253 blk_queue_bounce(q, &bio); 1254 1255 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1256 bio_io_error(bio); 1257 return BLK_QC_T_NONE; 1258 } 1259 1260 blk_queue_split(q, &bio, q->bio_split); 1261 1262 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1263 if (blk_attempt_plug_merge(q, bio, &request_count, 1264 &same_queue_rq)) 1265 return BLK_QC_T_NONE; 1266 } else 1267 request_count = blk_plug_queued_count(q); 1268 1269 rq = blk_mq_map_request(q, bio, &data); 1270 if (unlikely(!rq)) 1271 return BLK_QC_T_NONE; 1272 1273 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1274 1275 if (unlikely(is_flush_fua)) { 1276 blk_mq_bio_to_request(rq, bio); 1277 blk_insert_flush(rq); 1278 goto run_queue; 1279 } 1280 1281 plug = current->plug; 1282 /* 1283 * If the driver supports defer issued based on 'last', then 1284 * queue it up like normal since we can potentially save some 1285 * CPU this way. 1286 */ 1287 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1288 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1289 struct request *old_rq = NULL; 1290 1291 blk_mq_bio_to_request(rq, bio); 1292 1293 /* 1294 * We do limited pluging. If the bio can be merged, do that. 1295 * Otherwise the existing request in the plug list will be 1296 * issued. So the plug list will have one request at most 1297 */ 1298 if (plug) { 1299 /* 1300 * The plug list might get flushed before this. If that 1301 * happens, same_queue_rq is invalid and plug list is 1302 * empty 1303 */ 1304 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1305 old_rq = same_queue_rq; 1306 list_del_init(&old_rq->queuelist); 1307 } 1308 list_add_tail(&rq->queuelist, &plug->mq_list); 1309 } else /* is_sync */ 1310 old_rq = rq; 1311 blk_mq_put_ctx(data.ctx); 1312 if (!old_rq) 1313 goto done; 1314 if (!blk_mq_direct_issue_request(old_rq, &cookie)) 1315 goto done; 1316 blk_mq_insert_request(old_rq, false, true, true); 1317 goto done; 1318 } 1319 1320 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1321 /* 1322 * For a SYNC request, send it to the hardware immediately. For 1323 * an ASYNC request, just ensure that we run it later on. The 1324 * latter allows for merging opportunities and more efficient 1325 * dispatching. 1326 */ 1327 run_queue: 1328 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1329 } 1330 blk_mq_put_ctx(data.ctx); 1331 done: 1332 return cookie; 1333 } 1334 1335 /* 1336 * Single hardware queue variant. This will attempt to use any per-process 1337 * plug for merging and IO deferral. 1338 */ 1339 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1340 { 1341 const int is_sync = rw_is_sync(bio->bi_rw); 1342 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1343 struct blk_plug *plug; 1344 unsigned int request_count = 0; 1345 struct blk_map_ctx data; 1346 struct request *rq; 1347 blk_qc_t cookie; 1348 1349 blk_queue_bounce(q, &bio); 1350 1351 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1352 bio_io_error(bio); 1353 return BLK_QC_T_NONE; 1354 } 1355 1356 blk_queue_split(q, &bio, q->bio_split); 1357 1358 if (!is_flush_fua && !blk_queue_nomerges(q) && 1359 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1360 return BLK_QC_T_NONE; 1361 1362 rq = blk_mq_map_request(q, bio, &data); 1363 if (unlikely(!rq)) 1364 return BLK_QC_T_NONE; 1365 1366 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1367 1368 if (unlikely(is_flush_fua)) { 1369 blk_mq_bio_to_request(rq, bio); 1370 blk_insert_flush(rq); 1371 goto run_queue; 1372 } 1373 1374 /* 1375 * A task plug currently exists. Since this is completely lockless, 1376 * utilize that to temporarily store requests until the task is 1377 * either done or scheduled away. 1378 */ 1379 plug = current->plug; 1380 if (plug) { 1381 blk_mq_bio_to_request(rq, bio); 1382 if (!request_count) 1383 trace_block_plug(q); 1384 1385 blk_mq_put_ctx(data.ctx); 1386 1387 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1388 blk_flush_plug_list(plug, false); 1389 trace_block_plug(q); 1390 } 1391 1392 list_add_tail(&rq->queuelist, &plug->mq_list); 1393 return cookie; 1394 } 1395 1396 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1397 /* 1398 * For a SYNC request, send it to the hardware immediately. For 1399 * an ASYNC request, just ensure that we run it later on. The 1400 * latter allows for merging opportunities and more efficient 1401 * dispatching. 1402 */ 1403 run_queue: 1404 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1405 } 1406 1407 blk_mq_put_ctx(data.ctx); 1408 return cookie; 1409 } 1410 1411 /* 1412 * Default mapping to a software queue, since we use one per CPU. 1413 */ 1414 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1415 { 1416 return q->queue_hw_ctx[q->mq_map[cpu]]; 1417 } 1418 EXPORT_SYMBOL(blk_mq_map_queue); 1419 1420 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1421 struct blk_mq_tags *tags, unsigned int hctx_idx) 1422 { 1423 struct page *page; 1424 1425 if (tags->rqs && set->ops->exit_request) { 1426 int i; 1427 1428 for (i = 0; i < tags->nr_tags; i++) { 1429 if (!tags->rqs[i]) 1430 continue; 1431 set->ops->exit_request(set->driver_data, tags->rqs[i], 1432 hctx_idx, i); 1433 tags->rqs[i] = NULL; 1434 } 1435 } 1436 1437 while (!list_empty(&tags->page_list)) { 1438 page = list_first_entry(&tags->page_list, struct page, lru); 1439 list_del_init(&page->lru); 1440 /* 1441 * Remove kmemleak object previously allocated in 1442 * blk_mq_init_rq_map(). 1443 */ 1444 kmemleak_free(page_address(page)); 1445 __free_pages(page, page->private); 1446 } 1447 1448 kfree(tags->rqs); 1449 1450 blk_mq_free_tags(tags); 1451 } 1452 1453 static size_t order_to_size(unsigned int order) 1454 { 1455 return (size_t)PAGE_SIZE << order; 1456 } 1457 1458 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1459 unsigned int hctx_idx) 1460 { 1461 struct blk_mq_tags *tags; 1462 unsigned int i, j, entries_per_page, max_order = 4; 1463 size_t rq_size, left; 1464 1465 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1466 set->numa_node, 1467 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1468 if (!tags) 1469 return NULL; 1470 1471 INIT_LIST_HEAD(&tags->page_list); 1472 1473 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1474 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1475 set->numa_node); 1476 if (!tags->rqs) { 1477 blk_mq_free_tags(tags); 1478 return NULL; 1479 } 1480 1481 /* 1482 * rq_size is the size of the request plus driver payload, rounded 1483 * to the cacheline size 1484 */ 1485 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1486 cache_line_size()); 1487 left = rq_size * set->queue_depth; 1488 1489 for (i = 0; i < set->queue_depth; ) { 1490 int this_order = max_order; 1491 struct page *page; 1492 int to_do; 1493 void *p; 1494 1495 while (left < order_to_size(this_order - 1) && this_order) 1496 this_order--; 1497 1498 do { 1499 page = alloc_pages_node(set->numa_node, 1500 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1501 this_order); 1502 if (page) 1503 break; 1504 if (!this_order--) 1505 break; 1506 if (order_to_size(this_order) < rq_size) 1507 break; 1508 } while (1); 1509 1510 if (!page) 1511 goto fail; 1512 1513 page->private = this_order; 1514 list_add_tail(&page->lru, &tags->page_list); 1515 1516 p = page_address(page); 1517 /* 1518 * Allow kmemleak to scan these pages as they contain pointers 1519 * to additional allocations like via ops->init_request(). 1520 */ 1521 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL); 1522 entries_per_page = order_to_size(this_order) / rq_size; 1523 to_do = min(entries_per_page, set->queue_depth - i); 1524 left -= to_do * rq_size; 1525 for (j = 0; j < to_do; j++) { 1526 tags->rqs[i] = p; 1527 if (set->ops->init_request) { 1528 if (set->ops->init_request(set->driver_data, 1529 tags->rqs[i], hctx_idx, i, 1530 set->numa_node)) { 1531 tags->rqs[i] = NULL; 1532 goto fail; 1533 } 1534 } 1535 1536 p += rq_size; 1537 i++; 1538 } 1539 } 1540 return tags; 1541 1542 fail: 1543 blk_mq_free_rq_map(set, tags, hctx_idx); 1544 return NULL; 1545 } 1546 1547 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1548 { 1549 kfree(bitmap->map); 1550 } 1551 1552 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1553 { 1554 unsigned int bpw = 8, total, num_maps, i; 1555 1556 bitmap->bits_per_word = bpw; 1557 1558 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1559 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1560 GFP_KERNEL, node); 1561 if (!bitmap->map) 1562 return -ENOMEM; 1563 1564 total = nr_cpu_ids; 1565 for (i = 0; i < num_maps; i++) { 1566 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1567 total -= bitmap->map[i].depth; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1574 { 1575 struct request_queue *q = hctx->queue; 1576 struct blk_mq_ctx *ctx; 1577 LIST_HEAD(tmp); 1578 1579 /* 1580 * Move ctx entries to new CPU, if this one is going away. 1581 */ 1582 ctx = __blk_mq_get_ctx(q, cpu); 1583 1584 spin_lock(&ctx->lock); 1585 if (!list_empty(&ctx->rq_list)) { 1586 list_splice_init(&ctx->rq_list, &tmp); 1587 blk_mq_hctx_clear_pending(hctx, ctx); 1588 } 1589 spin_unlock(&ctx->lock); 1590 1591 if (list_empty(&tmp)) 1592 return NOTIFY_OK; 1593 1594 ctx = blk_mq_get_ctx(q); 1595 spin_lock(&ctx->lock); 1596 1597 while (!list_empty(&tmp)) { 1598 struct request *rq; 1599 1600 rq = list_first_entry(&tmp, struct request, queuelist); 1601 rq->mq_ctx = ctx; 1602 list_move_tail(&rq->queuelist, &ctx->rq_list); 1603 } 1604 1605 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1606 blk_mq_hctx_mark_pending(hctx, ctx); 1607 1608 spin_unlock(&ctx->lock); 1609 1610 blk_mq_run_hw_queue(hctx, true); 1611 blk_mq_put_ctx(ctx); 1612 return NOTIFY_OK; 1613 } 1614 1615 static int blk_mq_hctx_notify(void *data, unsigned long action, 1616 unsigned int cpu) 1617 { 1618 struct blk_mq_hw_ctx *hctx = data; 1619 1620 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1621 return blk_mq_hctx_cpu_offline(hctx, cpu); 1622 1623 /* 1624 * In case of CPU online, tags may be reallocated 1625 * in blk_mq_map_swqueue() after mapping is updated. 1626 */ 1627 1628 return NOTIFY_OK; 1629 } 1630 1631 /* hctx->ctxs will be freed in queue's release handler */ 1632 static void blk_mq_exit_hctx(struct request_queue *q, 1633 struct blk_mq_tag_set *set, 1634 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1635 { 1636 unsigned flush_start_tag = set->queue_depth; 1637 1638 blk_mq_tag_idle(hctx); 1639 1640 if (set->ops->exit_request) 1641 set->ops->exit_request(set->driver_data, 1642 hctx->fq->flush_rq, hctx_idx, 1643 flush_start_tag + hctx_idx); 1644 1645 if (set->ops->exit_hctx) 1646 set->ops->exit_hctx(hctx, hctx_idx); 1647 1648 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1649 blk_free_flush_queue(hctx->fq); 1650 blk_mq_free_bitmap(&hctx->ctx_map); 1651 } 1652 1653 static void blk_mq_exit_hw_queues(struct request_queue *q, 1654 struct blk_mq_tag_set *set, int nr_queue) 1655 { 1656 struct blk_mq_hw_ctx *hctx; 1657 unsigned int i; 1658 1659 queue_for_each_hw_ctx(q, hctx, i) { 1660 if (i == nr_queue) 1661 break; 1662 blk_mq_exit_hctx(q, set, hctx, i); 1663 } 1664 } 1665 1666 static void blk_mq_free_hw_queues(struct request_queue *q, 1667 struct blk_mq_tag_set *set) 1668 { 1669 struct blk_mq_hw_ctx *hctx; 1670 unsigned int i; 1671 1672 queue_for_each_hw_ctx(q, hctx, i) 1673 free_cpumask_var(hctx->cpumask); 1674 } 1675 1676 static int blk_mq_init_hctx(struct request_queue *q, 1677 struct blk_mq_tag_set *set, 1678 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1679 { 1680 int node; 1681 unsigned flush_start_tag = set->queue_depth; 1682 1683 node = hctx->numa_node; 1684 if (node == NUMA_NO_NODE) 1685 node = hctx->numa_node = set->numa_node; 1686 1687 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1688 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1689 spin_lock_init(&hctx->lock); 1690 INIT_LIST_HEAD(&hctx->dispatch); 1691 hctx->queue = q; 1692 hctx->queue_num = hctx_idx; 1693 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1694 1695 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1696 blk_mq_hctx_notify, hctx); 1697 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1698 1699 hctx->tags = set->tags[hctx_idx]; 1700 1701 /* 1702 * Allocate space for all possible cpus to avoid allocation at 1703 * runtime 1704 */ 1705 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1706 GFP_KERNEL, node); 1707 if (!hctx->ctxs) 1708 goto unregister_cpu_notifier; 1709 1710 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1711 goto free_ctxs; 1712 1713 hctx->nr_ctx = 0; 1714 1715 if (set->ops->init_hctx && 1716 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1717 goto free_bitmap; 1718 1719 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1720 if (!hctx->fq) 1721 goto exit_hctx; 1722 1723 if (set->ops->init_request && 1724 set->ops->init_request(set->driver_data, 1725 hctx->fq->flush_rq, hctx_idx, 1726 flush_start_tag + hctx_idx, node)) 1727 goto free_fq; 1728 1729 return 0; 1730 1731 free_fq: 1732 kfree(hctx->fq); 1733 exit_hctx: 1734 if (set->ops->exit_hctx) 1735 set->ops->exit_hctx(hctx, hctx_idx); 1736 free_bitmap: 1737 blk_mq_free_bitmap(&hctx->ctx_map); 1738 free_ctxs: 1739 kfree(hctx->ctxs); 1740 unregister_cpu_notifier: 1741 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1742 1743 return -1; 1744 } 1745 1746 static int blk_mq_init_hw_queues(struct request_queue *q, 1747 struct blk_mq_tag_set *set) 1748 { 1749 struct blk_mq_hw_ctx *hctx; 1750 unsigned int i; 1751 1752 /* 1753 * Initialize hardware queues 1754 */ 1755 queue_for_each_hw_ctx(q, hctx, i) { 1756 if (blk_mq_init_hctx(q, set, hctx, i)) 1757 break; 1758 } 1759 1760 if (i == q->nr_hw_queues) 1761 return 0; 1762 1763 /* 1764 * Init failed 1765 */ 1766 blk_mq_exit_hw_queues(q, set, i); 1767 1768 return 1; 1769 } 1770 1771 static void blk_mq_init_cpu_queues(struct request_queue *q, 1772 unsigned int nr_hw_queues) 1773 { 1774 unsigned int i; 1775 1776 for_each_possible_cpu(i) { 1777 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1778 struct blk_mq_hw_ctx *hctx; 1779 1780 memset(__ctx, 0, sizeof(*__ctx)); 1781 __ctx->cpu = i; 1782 spin_lock_init(&__ctx->lock); 1783 INIT_LIST_HEAD(&__ctx->rq_list); 1784 __ctx->queue = q; 1785 1786 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1787 if (!cpu_online(i)) 1788 continue; 1789 1790 hctx = q->mq_ops->map_queue(q, i); 1791 1792 /* 1793 * Set local node, IFF we have more than one hw queue. If 1794 * not, we remain on the home node of the device 1795 */ 1796 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1797 hctx->numa_node = cpu_to_node(i); 1798 } 1799 } 1800 1801 static void blk_mq_map_swqueue(struct request_queue *q, 1802 const struct cpumask *online_mask) 1803 { 1804 unsigned int i; 1805 struct blk_mq_hw_ctx *hctx; 1806 struct blk_mq_ctx *ctx; 1807 struct blk_mq_tag_set *set = q->tag_set; 1808 1809 /* 1810 * Avoid others reading imcomplete hctx->cpumask through sysfs 1811 */ 1812 mutex_lock(&q->sysfs_lock); 1813 1814 queue_for_each_hw_ctx(q, hctx, i) { 1815 cpumask_clear(hctx->cpumask); 1816 hctx->nr_ctx = 0; 1817 } 1818 1819 /* 1820 * Map software to hardware queues 1821 */ 1822 queue_for_each_ctx(q, ctx, i) { 1823 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1824 if (!cpumask_test_cpu(i, online_mask)) 1825 continue; 1826 1827 hctx = q->mq_ops->map_queue(q, i); 1828 cpumask_set_cpu(i, hctx->cpumask); 1829 ctx->index_hw = hctx->nr_ctx; 1830 hctx->ctxs[hctx->nr_ctx++] = ctx; 1831 } 1832 1833 mutex_unlock(&q->sysfs_lock); 1834 1835 queue_for_each_hw_ctx(q, hctx, i) { 1836 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1837 1838 /* 1839 * If no software queues are mapped to this hardware queue, 1840 * disable it and free the request entries. 1841 */ 1842 if (!hctx->nr_ctx) { 1843 if (set->tags[i]) { 1844 blk_mq_free_rq_map(set, set->tags[i], i); 1845 set->tags[i] = NULL; 1846 } 1847 hctx->tags = NULL; 1848 continue; 1849 } 1850 1851 /* unmapped hw queue can be remapped after CPU topo changed */ 1852 if (!set->tags[i]) 1853 set->tags[i] = blk_mq_init_rq_map(set, i); 1854 hctx->tags = set->tags[i]; 1855 WARN_ON(!hctx->tags); 1856 1857 /* 1858 * Set the map size to the number of mapped software queues. 1859 * This is more accurate and more efficient than looping 1860 * over all possibly mapped software queues. 1861 */ 1862 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1863 1864 /* 1865 * Initialize batch roundrobin counts 1866 */ 1867 hctx->next_cpu = cpumask_first(hctx->cpumask); 1868 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1869 } 1870 1871 queue_for_each_ctx(q, ctx, i) { 1872 if (!cpumask_test_cpu(i, online_mask)) 1873 continue; 1874 1875 hctx = q->mq_ops->map_queue(q, i); 1876 cpumask_set_cpu(i, hctx->tags->cpumask); 1877 } 1878 } 1879 1880 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 1881 { 1882 struct blk_mq_hw_ctx *hctx; 1883 int i; 1884 1885 queue_for_each_hw_ctx(q, hctx, i) { 1886 if (shared) 1887 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1888 else 1889 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1890 } 1891 } 1892 1893 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 1894 { 1895 struct request_queue *q; 1896 1897 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1898 blk_mq_freeze_queue(q); 1899 queue_set_hctx_shared(q, shared); 1900 blk_mq_unfreeze_queue(q); 1901 } 1902 } 1903 1904 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1905 { 1906 struct blk_mq_tag_set *set = q->tag_set; 1907 1908 mutex_lock(&set->tag_list_lock); 1909 list_del_init(&q->tag_set_list); 1910 if (list_is_singular(&set->tag_list)) { 1911 /* just transitioned to unshared */ 1912 set->flags &= ~BLK_MQ_F_TAG_SHARED; 1913 /* update existing queue */ 1914 blk_mq_update_tag_set_depth(set, false); 1915 } 1916 mutex_unlock(&set->tag_list_lock); 1917 } 1918 1919 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1920 struct request_queue *q) 1921 { 1922 q->tag_set = set; 1923 1924 mutex_lock(&set->tag_list_lock); 1925 1926 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 1927 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 1928 set->flags |= BLK_MQ_F_TAG_SHARED; 1929 /* update existing queue */ 1930 blk_mq_update_tag_set_depth(set, true); 1931 } 1932 if (set->flags & BLK_MQ_F_TAG_SHARED) 1933 queue_set_hctx_shared(q, true); 1934 list_add_tail(&q->tag_set_list, &set->tag_list); 1935 1936 mutex_unlock(&set->tag_list_lock); 1937 } 1938 1939 /* 1940 * It is the actual release handler for mq, but we do it from 1941 * request queue's release handler for avoiding use-after-free 1942 * and headache because q->mq_kobj shouldn't have been introduced, 1943 * but we can't group ctx/kctx kobj without it. 1944 */ 1945 void blk_mq_release(struct request_queue *q) 1946 { 1947 struct blk_mq_hw_ctx *hctx; 1948 unsigned int i; 1949 1950 /* hctx kobj stays in hctx */ 1951 queue_for_each_hw_ctx(q, hctx, i) { 1952 if (!hctx) 1953 continue; 1954 kfree(hctx->ctxs); 1955 kfree(hctx); 1956 } 1957 1958 kfree(q->mq_map); 1959 q->mq_map = NULL; 1960 1961 kfree(q->queue_hw_ctx); 1962 1963 /* ctx kobj stays in queue_ctx */ 1964 free_percpu(q->queue_ctx); 1965 } 1966 1967 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1968 { 1969 struct request_queue *uninit_q, *q; 1970 1971 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1972 if (!uninit_q) 1973 return ERR_PTR(-ENOMEM); 1974 1975 q = blk_mq_init_allocated_queue(set, uninit_q); 1976 if (IS_ERR(q)) 1977 blk_cleanup_queue(uninit_q); 1978 1979 return q; 1980 } 1981 EXPORT_SYMBOL(blk_mq_init_queue); 1982 1983 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 1984 struct request_queue *q) 1985 { 1986 struct blk_mq_hw_ctx **hctxs; 1987 struct blk_mq_ctx __percpu *ctx; 1988 unsigned int *map; 1989 int i; 1990 1991 ctx = alloc_percpu(struct blk_mq_ctx); 1992 if (!ctx) 1993 return ERR_PTR(-ENOMEM); 1994 1995 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1996 set->numa_node); 1997 1998 if (!hctxs) 1999 goto err_percpu; 2000 2001 map = blk_mq_make_queue_map(set); 2002 if (!map) 2003 goto err_map; 2004 2005 for (i = 0; i < set->nr_hw_queues; i++) { 2006 int node = blk_mq_hw_queue_to_node(map, i); 2007 2008 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2009 GFP_KERNEL, node); 2010 if (!hctxs[i]) 2011 goto err_hctxs; 2012 2013 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2014 node)) 2015 goto err_hctxs; 2016 2017 atomic_set(&hctxs[i]->nr_active, 0); 2018 hctxs[i]->numa_node = node; 2019 hctxs[i]->queue_num = i; 2020 } 2021 2022 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 2023 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2024 2025 q->nr_queues = nr_cpu_ids; 2026 q->nr_hw_queues = set->nr_hw_queues; 2027 q->mq_map = map; 2028 2029 q->queue_ctx = ctx; 2030 q->queue_hw_ctx = hctxs; 2031 2032 q->mq_ops = set->ops; 2033 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2034 2035 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2036 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2037 2038 q->sg_reserved_size = INT_MAX; 2039 2040 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2041 INIT_LIST_HEAD(&q->requeue_list); 2042 spin_lock_init(&q->requeue_lock); 2043 2044 if (q->nr_hw_queues > 1) 2045 blk_queue_make_request(q, blk_mq_make_request); 2046 else 2047 blk_queue_make_request(q, blk_sq_make_request); 2048 2049 /* 2050 * Do this after blk_queue_make_request() overrides it... 2051 */ 2052 q->nr_requests = set->queue_depth; 2053 2054 if (set->ops->complete) 2055 blk_queue_softirq_done(q, set->ops->complete); 2056 2057 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2058 2059 if (blk_mq_init_hw_queues(q, set)) 2060 goto err_hctxs; 2061 2062 get_online_cpus(); 2063 mutex_lock(&all_q_mutex); 2064 2065 list_add_tail(&q->all_q_node, &all_q_list); 2066 blk_mq_add_queue_tag_set(set, q); 2067 blk_mq_map_swqueue(q, cpu_online_mask); 2068 2069 mutex_unlock(&all_q_mutex); 2070 put_online_cpus(); 2071 2072 return q; 2073 2074 err_hctxs: 2075 kfree(map); 2076 for (i = 0; i < set->nr_hw_queues; i++) { 2077 if (!hctxs[i]) 2078 break; 2079 free_cpumask_var(hctxs[i]->cpumask); 2080 kfree(hctxs[i]); 2081 } 2082 err_map: 2083 kfree(hctxs); 2084 err_percpu: 2085 free_percpu(ctx); 2086 return ERR_PTR(-ENOMEM); 2087 } 2088 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2089 2090 void blk_mq_free_queue(struct request_queue *q) 2091 { 2092 struct blk_mq_tag_set *set = q->tag_set; 2093 2094 mutex_lock(&all_q_mutex); 2095 list_del_init(&q->all_q_node); 2096 mutex_unlock(&all_q_mutex); 2097 2098 blk_mq_del_queue_tag_set(q); 2099 2100 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2101 blk_mq_free_hw_queues(q, set); 2102 } 2103 2104 /* Basically redo blk_mq_init_queue with queue frozen */ 2105 static void blk_mq_queue_reinit(struct request_queue *q, 2106 const struct cpumask *online_mask) 2107 { 2108 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2109 2110 blk_mq_sysfs_unregister(q); 2111 2112 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask); 2113 2114 /* 2115 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2116 * we should change hctx numa_node according to new topology (this 2117 * involves free and re-allocate memory, worthy doing?) 2118 */ 2119 2120 blk_mq_map_swqueue(q, online_mask); 2121 2122 blk_mq_sysfs_register(q); 2123 } 2124 2125 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2126 unsigned long action, void *hcpu) 2127 { 2128 struct request_queue *q; 2129 int cpu = (unsigned long)hcpu; 2130 /* 2131 * New online cpumask which is going to be set in this hotplug event. 2132 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2133 * one-by-one and dynamically allocating this could result in a failure. 2134 */ 2135 static struct cpumask online_new; 2136 2137 /* 2138 * Before hotadded cpu starts handling requests, new mappings must 2139 * be established. Otherwise, these requests in hw queue might 2140 * never be dispatched. 2141 * 2142 * For example, there is a single hw queue (hctx) and two CPU queues 2143 * (ctx0 for CPU0, and ctx1 for CPU1). 2144 * 2145 * Now CPU1 is just onlined and a request is inserted into 2146 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is 2147 * still zero. 2148 * 2149 * And then while running hw queue, flush_busy_ctxs() finds bit0 is 2150 * set in pending bitmap and tries to retrieve requests in 2151 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0, 2152 * so the request in ctx1->rq_list is ignored. 2153 */ 2154 switch (action & ~CPU_TASKS_FROZEN) { 2155 case CPU_DEAD: 2156 case CPU_UP_CANCELED: 2157 cpumask_copy(&online_new, cpu_online_mask); 2158 break; 2159 case CPU_UP_PREPARE: 2160 cpumask_copy(&online_new, cpu_online_mask); 2161 cpumask_set_cpu(cpu, &online_new); 2162 break; 2163 default: 2164 return NOTIFY_OK; 2165 } 2166 2167 mutex_lock(&all_q_mutex); 2168 2169 /* 2170 * We need to freeze and reinit all existing queues. Freezing 2171 * involves synchronous wait for an RCU grace period and doing it 2172 * one by one may take a long time. Start freezing all queues in 2173 * one swoop and then wait for the completions so that freezing can 2174 * take place in parallel. 2175 */ 2176 list_for_each_entry(q, &all_q_list, all_q_node) 2177 blk_mq_freeze_queue_start(q); 2178 list_for_each_entry(q, &all_q_list, all_q_node) { 2179 blk_mq_freeze_queue_wait(q); 2180 2181 /* 2182 * timeout handler can't touch hw queue during the 2183 * reinitialization 2184 */ 2185 del_timer_sync(&q->timeout); 2186 } 2187 2188 list_for_each_entry(q, &all_q_list, all_q_node) 2189 blk_mq_queue_reinit(q, &online_new); 2190 2191 list_for_each_entry(q, &all_q_list, all_q_node) 2192 blk_mq_unfreeze_queue(q); 2193 2194 mutex_unlock(&all_q_mutex); 2195 return NOTIFY_OK; 2196 } 2197 2198 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2199 { 2200 int i; 2201 2202 for (i = 0; i < set->nr_hw_queues; i++) { 2203 set->tags[i] = blk_mq_init_rq_map(set, i); 2204 if (!set->tags[i]) 2205 goto out_unwind; 2206 } 2207 2208 return 0; 2209 2210 out_unwind: 2211 while (--i >= 0) 2212 blk_mq_free_rq_map(set, set->tags[i], i); 2213 2214 return -ENOMEM; 2215 } 2216 2217 /* 2218 * Allocate the request maps associated with this tag_set. Note that this 2219 * may reduce the depth asked for, if memory is tight. set->queue_depth 2220 * will be updated to reflect the allocated depth. 2221 */ 2222 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2223 { 2224 unsigned int depth; 2225 int err; 2226 2227 depth = set->queue_depth; 2228 do { 2229 err = __blk_mq_alloc_rq_maps(set); 2230 if (!err) 2231 break; 2232 2233 set->queue_depth >>= 1; 2234 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2235 err = -ENOMEM; 2236 break; 2237 } 2238 } while (set->queue_depth); 2239 2240 if (!set->queue_depth || err) { 2241 pr_err("blk-mq: failed to allocate request map\n"); 2242 return -ENOMEM; 2243 } 2244 2245 if (depth != set->queue_depth) 2246 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2247 depth, set->queue_depth); 2248 2249 return 0; 2250 } 2251 2252 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2253 { 2254 return tags->cpumask; 2255 } 2256 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2257 2258 /* 2259 * Alloc a tag set to be associated with one or more request queues. 2260 * May fail with EINVAL for various error conditions. May adjust the 2261 * requested depth down, if if it too large. In that case, the set 2262 * value will be stored in set->queue_depth. 2263 */ 2264 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2265 { 2266 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2267 2268 if (!set->nr_hw_queues) 2269 return -EINVAL; 2270 if (!set->queue_depth) 2271 return -EINVAL; 2272 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2273 return -EINVAL; 2274 2275 if (!set->ops->queue_rq || !set->ops->map_queue) 2276 return -EINVAL; 2277 2278 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2279 pr_info("blk-mq: reduced tag depth to %u\n", 2280 BLK_MQ_MAX_DEPTH); 2281 set->queue_depth = BLK_MQ_MAX_DEPTH; 2282 } 2283 2284 /* 2285 * If a crashdump is active, then we are potentially in a very 2286 * memory constrained environment. Limit us to 1 queue and 2287 * 64 tags to prevent using too much memory. 2288 */ 2289 if (is_kdump_kernel()) { 2290 set->nr_hw_queues = 1; 2291 set->queue_depth = min(64U, set->queue_depth); 2292 } 2293 2294 set->tags = kmalloc_node(set->nr_hw_queues * 2295 sizeof(struct blk_mq_tags *), 2296 GFP_KERNEL, set->numa_node); 2297 if (!set->tags) 2298 return -ENOMEM; 2299 2300 if (blk_mq_alloc_rq_maps(set)) 2301 goto enomem; 2302 2303 mutex_init(&set->tag_list_lock); 2304 INIT_LIST_HEAD(&set->tag_list); 2305 2306 return 0; 2307 enomem: 2308 kfree(set->tags); 2309 set->tags = NULL; 2310 return -ENOMEM; 2311 } 2312 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2313 2314 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2315 { 2316 int i; 2317 2318 for (i = 0; i < set->nr_hw_queues; i++) { 2319 if (set->tags[i]) 2320 blk_mq_free_rq_map(set, set->tags[i], i); 2321 } 2322 2323 kfree(set->tags); 2324 set->tags = NULL; 2325 } 2326 EXPORT_SYMBOL(blk_mq_free_tag_set); 2327 2328 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2329 { 2330 struct blk_mq_tag_set *set = q->tag_set; 2331 struct blk_mq_hw_ctx *hctx; 2332 int i, ret; 2333 2334 if (!set || nr > set->queue_depth) 2335 return -EINVAL; 2336 2337 ret = 0; 2338 queue_for_each_hw_ctx(q, hctx, i) { 2339 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2340 if (ret) 2341 break; 2342 } 2343 2344 if (!ret) 2345 q->nr_requests = nr; 2346 2347 return ret; 2348 } 2349 2350 void blk_mq_disable_hotplug(void) 2351 { 2352 mutex_lock(&all_q_mutex); 2353 } 2354 2355 void blk_mq_enable_hotplug(void) 2356 { 2357 mutex_unlock(&all_q_mutex); 2358 } 2359 2360 static int __init blk_mq_init(void) 2361 { 2362 blk_mq_cpu_init(); 2363 2364 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2365 2366 return 0; 2367 } 2368 subsys_initcall(blk_mq_init); 2369