xref: /openbmc/linux/block/blk-mq.c (revision 9a29ad52)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	/*
99 	 * index[0] counts the specific partition that was asked for. index[1]
100 	 * counts the ones that are active on the whole device, so increment
101 	 * that if mi->part is indeed a partition, and not a whole device.
102 	 */
103 	if (rq->part == mi->part)
104 		mi->inflight[0]++;
105 	if (mi->part->partno)
106 		mi->inflight[1]++;
107 }
108 
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 		      unsigned int inflight[2])
111 {
112 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
113 
114 	inflight[0] = inflight[1] = 0;
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117 
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 				     struct request *rq, void *priv,
120 				     bool reserved)
121 {
122 	struct mq_inflight *mi = priv;
123 
124 	if (rq->part == mi->part)
125 		mi->inflight[rq_data_dir(rq)]++;
126 }
127 
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 			 unsigned int inflight[2])
130 {
131 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
132 
133 	inflight[0] = inflight[1] = 0;
134 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136 
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 	int freeze_depth;
140 
141 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 	if (freeze_depth == 1) {
143 		percpu_ref_kill(&q->q_usage_counter);
144 		if (q->mq_ops)
145 			blk_mq_run_hw_queues(q, false);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	if (!q->mq_ops)
180 		blk_drain_queue(q);
181 	blk_mq_freeze_queue_wait(q);
182 }
183 
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 	/*
187 	 * ...just an alias to keep freeze and unfreeze actions balanced
188 	 * in the blk_mq_* namespace
189 	 */
190 	blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	int freeze_depth;
197 
198 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 	WARN_ON_ONCE(freeze_depth < 0);
200 	if (!freeze_depth) {
201 		percpu_ref_reinit(&q->q_usage_counter);
202 		wake_up_all(&q->mq_freeze_wq);
203 	}
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206 
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216 
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 	struct blk_mq_hw_ctx *hctx;
229 	unsigned int i;
230 	bool rcu = false;
231 
232 	blk_mq_quiesce_queue_nowait(q);
233 
234 	queue_for_each_hw_ctx(q, hctx, i) {
235 		if (hctx->flags & BLK_MQ_F_BLOCKING)
236 			synchronize_srcu(hctx->srcu);
237 		else
238 			rcu = true;
239 	}
240 	if (rcu)
241 		synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244 
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255 
256 	/* dispatch requests which are inserted during quiescing */
257 	blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260 
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 	struct blk_mq_hw_ctx *hctx;
264 	unsigned int i;
265 
266 	queue_for_each_hw_ctx(q, hctx, i)
267 		if (blk_mq_hw_queue_mapped(hctx))
268 			blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270 
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 	return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, unsigned int op)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 	req_flags_t rq_flags = 0;
283 
284 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 		rq->tag = -1;
286 		rq->internal_tag = tag;
287 	} else {
288 		if (blk_mq_tag_busy(data->hctx)) {
289 			rq_flags = RQF_MQ_INFLIGHT;
290 			atomic_inc(&data->hctx->nr_active);
291 		}
292 		rq->tag = tag;
293 		rq->internal_tag = -1;
294 		data->hctx->tags->rqs[rq->tag] = rq;
295 	}
296 
297 	/* csd/requeue_work/fifo_time is initialized before use */
298 	rq->q = data->q;
299 	rq->mq_ctx = data->ctx;
300 	rq->rq_flags = rq_flags;
301 	rq->cpu = -1;
302 	rq->cmd_flags = op;
303 	if (data->flags & BLK_MQ_REQ_PREEMPT)
304 		rq->rq_flags |= RQF_PREEMPT;
305 	if (blk_queue_io_stat(data->q))
306 		rq->rq_flags |= RQF_IO_STAT;
307 	INIT_LIST_HEAD(&rq->queuelist);
308 	INIT_HLIST_NODE(&rq->hash);
309 	RB_CLEAR_NODE(&rq->rb_node);
310 	rq->rq_disk = NULL;
311 	rq->part = NULL;
312 	rq->start_time_ns = ktime_get_ns();
313 	rq->io_start_time_ns = 0;
314 	rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 	rq->nr_integrity_segments = 0;
317 #endif
318 	rq->special = NULL;
319 	/* tag was already set */
320 	rq->extra_len = 0;
321 	rq->__deadline = 0;
322 
323 	INIT_LIST_HEAD(&rq->timeout_list);
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 	rq->next_rq = NULL;
329 
330 #ifdef CONFIG_BLK_CGROUP
331 	rq->rl = NULL;
332 #endif
333 
334 	data->ctx->rq_dispatched[op_is_sync(op)]++;
335 	refcount_set(&rq->ref, 1);
336 	return rq;
337 }
338 
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 		struct bio *bio, unsigned int op,
341 		struct blk_mq_alloc_data *data)
342 {
343 	struct elevator_queue *e = q->elevator;
344 	struct request *rq;
345 	unsigned int tag;
346 	bool put_ctx_on_error = false;
347 
348 	blk_queue_enter_live(q);
349 	data->q = q;
350 	if (likely(!data->ctx)) {
351 		data->ctx = blk_mq_get_ctx(q);
352 		put_ctx_on_error = true;
353 	}
354 	if (likely(!data->hctx))
355 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 	if (op & REQ_NOWAIT)
357 		data->flags |= BLK_MQ_REQ_NOWAIT;
358 
359 	if (e) {
360 		data->flags |= BLK_MQ_REQ_INTERNAL;
361 
362 		/*
363 		 * Flush requests are special and go directly to the
364 		 * dispatch list. Don't include reserved tags in the
365 		 * limiting, as it isn't useful.
366 		 */
367 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.mq.limit_depth(op, data);
370 	}
371 
372 	tag = blk_mq_get_tag(data);
373 	if (tag == BLK_MQ_TAG_FAIL) {
374 		if (put_ctx_on_error) {
375 			blk_mq_put_ctx(data->ctx);
376 			data->ctx = NULL;
377 		}
378 		blk_queue_exit(q);
379 		return NULL;
380 	}
381 
382 	rq = blk_mq_rq_ctx_init(data, tag, op);
383 	if (!op_is_flush(op)) {
384 		rq->elv.icq = NULL;
385 		if (e && e->type->ops.mq.prepare_request) {
386 			if (e->type->icq_cache && rq_ioc(bio))
387 				blk_mq_sched_assign_ioc(rq, bio);
388 
389 			e->type->ops.mq.prepare_request(rq, bio);
390 			rq->rq_flags |= RQF_ELVPRIV;
391 		}
392 	}
393 	data->hctx->queued++;
394 	return rq;
395 }
396 
397 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398 		blk_mq_req_flags_t flags)
399 {
400 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
401 	struct request *rq;
402 	int ret;
403 
404 	ret = blk_queue_enter(q, flags);
405 	if (ret)
406 		return ERR_PTR(ret);
407 
408 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409 	blk_queue_exit(q);
410 
411 	if (!rq)
412 		return ERR_PTR(-EWOULDBLOCK);
413 
414 	blk_mq_put_ctx(alloc_data.ctx);
415 
416 	rq->__data_len = 0;
417 	rq->__sector = (sector_t) -1;
418 	rq->bio = rq->biotail = NULL;
419 	return rq;
420 }
421 EXPORT_SYMBOL(blk_mq_alloc_request);
422 
423 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
425 {
426 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
427 	struct request *rq;
428 	unsigned int cpu;
429 	int ret;
430 
431 	/*
432 	 * If the tag allocator sleeps we could get an allocation for a
433 	 * different hardware context.  No need to complicate the low level
434 	 * allocator for this for the rare use case of a command tied to
435 	 * a specific queue.
436 	 */
437 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
438 		return ERR_PTR(-EINVAL);
439 
440 	if (hctx_idx >= q->nr_hw_queues)
441 		return ERR_PTR(-EIO);
442 
443 	ret = blk_queue_enter(q, flags);
444 	if (ret)
445 		return ERR_PTR(ret);
446 
447 	/*
448 	 * Check if the hardware context is actually mapped to anything.
449 	 * If not tell the caller that it should skip this queue.
450 	 */
451 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
452 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
453 		blk_queue_exit(q);
454 		return ERR_PTR(-EXDEV);
455 	}
456 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
458 
459 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460 	blk_queue_exit(q);
461 
462 	if (!rq)
463 		return ERR_PTR(-EWOULDBLOCK);
464 
465 	return rq;
466 }
467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
468 
469 static void __blk_mq_free_request(struct request *rq)
470 {
471 	struct request_queue *q = rq->q;
472 	struct blk_mq_ctx *ctx = rq->mq_ctx;
473 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474 	const int sched_tag = rq->internal_tag;
475 
476 	if (rq->tag != -1)
477 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
478 	if (sched_tag != -1)
479 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
480 	blk_mq_sched_restart(hctx);
481 	blk_queue_exit(q);
482 }
483 
484 void blk_mq_free_request(struct request *rq)
485 {
486 	struct request_queue *q = rq->q;
487 	struct elevator_queue *e = q->elevator;
488 	struct blk_mq_ctx *ctx = rq->mq_ctx;
489 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
490 
491 	if (rq->rq_flags & RQF_ELVPRIV) {
492 		if (e && e->type->ops.mq.finish_request)
493 			e->type->ops.mq.finish_request(rq);
494 		if (rq->elv.icq) {
495 			put_io_context(rq->elv.icq->ioc);
496 			rq->elv.icq = NULL;
497 		}
498 	}
499 
500 	ctx->rq_completed[rq_is_sync(rq)]++;
501 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
502 		atomic_dec(&hctx->nr_active);
503 
504 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
505 		laptop_io_completion(q->backing_dev_info);
506 
507 	wbt_done(q->rq_wb, rq);
508 
509 	if (blk_rq_rl(rq))
510 		blk_put_rl(blk_rq_rl(rq));
511 
512 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 	if (refcount_dec_and_test(&rq->ref))
514 		__blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517 
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 	u64 now = ktime_get_ns();
521 
522 	if (rq->rq_flags & RQF_STATS) {
523 		blk_mq_poll_stats_start(rq->q);
524 		blk_stat_add(rq, now);
525 	}
526 
527 	blk_account_io_done(rq, now);
528 
529 	if (rq->end_io) {
530 		wbt_done(rq->q->rq_wb, rq);
531 		rq->end_io(rq, error);
532 	} else {
533 		if (unlikely(blk_bidi_rq(rq)))
534 			blk_mq_free_request(rq->next_rq);
535 		blk_mq_free_request(rq);
536 	}
537 }
538 EXPORT_SYMBOL(__blk_mq_end_request);
539 
540 void blk_mq_end_request(struct request *rq, blk_status_t error)
541 {
542 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
543 		BUG();
544 	__blk_mq_end_request(rq, error);
545 }
546 EXPORT_SYMBOL(blk_mq_end_request);
547 
548 static void __blk_mq_complete_request_remote(void *data)
549 {
550 	struct request *rq = data;
551 
552 	rq->q->softirq_done_fn(rq);
553 }
554 
555 static void __blk_mq_complete_request(struct request *rq)
556 {
557 	struct blk_mq_ctx *ctx = rq->mq_ctx;
558 	bool shared = false;
559 	int cpu;
560 
561 	if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
562 			MQ_RQ_IN_FLIGHT)
563 		return;
564 
565 	if (rq->internal_tag != -1)
566 		blk_mq_sched_completed_request(rq);
567 
568 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 		rq->q->softirq_done_fn(rq);
570 		return;
571 	}
572 
573 	cpu = get_cpu();
574 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 		shared = cpus_share_cache(cpu, ctx->cpu);
576 
577 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 		rq->csd.func = __blk_mq_complete_request_remote;
579 		rq->csd.info = rq;
580 		rq->csd.flags = 0;
581 		smp_call_function_single_async(ctx->cpu, &rq->csd);
582 	} else {
583 		rq->q->softirq_done_fn(rq);
584 	}
585 	put_cpu();
586 }
587 
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 	__releases(hctx->srcu)
590 {
591 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 		rcu_read_unlock();
593 	else
594 		srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596 
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 	__acquires(hctx->srcu)
599 {
600 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 		/* shut up gcc false positive */
602 		*srcu_idx = 0;
603 		rcu_read_lock();
604 	} else
605 		*srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607 
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:		the request being processed
611  *
612  * Description:
613  *	Ends all I/O on a request. It does not handle partial completions.
614  *	The actual completion happens out-of-order, through a IPI handler.
615  **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618 	if (unlikely(blk_should_fake_timeout(rq->q)))
619 		return;
620 	__blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623 
624 int blk_mq_request_started(struct request *rq)
625 {
626 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629 
630 void blk_mq_start_request(struct request *rq)
631 {
632 	struct request_queue *q = rq->q;
633 
634 	blk_mq_sched_started_request(rq);
635 
636 	trace_block_rq_issue(q, rq);
637 
638 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 		rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 		rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 		rq->rq_flags |= RQF_STATS;
644 		wbt_issue(q->rq_wb, rq);
645 	}
646 
647 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648 
649 	blk_add_timer(rq);
650 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 
652 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
653 		/*
654 		 * Make sure space for the drain appears.  We know we can do
655 		 * this because max_hw_segments has been adjusted to be one
656 		 * fewer than the device can handle.
657 		 */
658 		rq->nr_phys_segments++;
659 	}
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662 
663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665 	struct request_queue *q = rq->q;
666 
667 	blk_mq_put_driver_tag(rq);
668 
669 	trace_block_rq_requeue(q, rq);
670 	wbt_requeue(q->rq_wb, rq);
671 
672 	if (blk_mq_request_started(rq)) {
673 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 		rq->rq_flags &= ~RQF_TIMED_OUT;
675 		if (q->dma_drain_size && blk_rq_bytes(rq))
676 			rq->nr_phys_segments--;
677 	}
678 }
679 
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682 	__blk_mq_requeue_request(rq);
683 
684 	/* this request will be re-inserted to io scheduler queue */
685 	blk_mq_sched_requeue_request(rq);
686 
687 	BUG_ON(blk_queued_rq(rq));
688 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691 
692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694 	struct request_queue *q =
695 		container_of(work, struct request_queue, requeue_work.work);
696 	LIST_HEAD(rq_list);
697 	struct request *rq, *next;
698 
699 	spin_lock_irq(&q->requeue_lock);
700 	list_splice_init(&q->requeue_list, &rq_list);
701 	spin_unlock_irq(&q->requeue_lock);
702 
703 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 			continue;
706 
707 		rq->rq_flags &= ~RQF_SOFTBARRIER;
708 		list_del_init(&rq->queuelist);
709 		blk_mq_sched_insert_request(rq, true, false, false);
710 	}
711 
712 	while (!list_empty(&rq_list)) {
713 		rq = list_entry(rq_list.next, struct request, queuelist);
714 		list_del_init(&rq->queuelist);
715 		blk_mq_sched_insert_request(rq, false, false, false);
716 	}
717 
718 	blk_mq_run_hw_queues(q, false);
719 }
720 
721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
722 				bool kick_requeue_list)
723 {
724 	struct request_queue *q = rq->q;
725 	unsigned long flags;
726 
727 	/*
728 	 * We abuse this flag that is otherwise used by the I/O scheduler to
729 	 * request head insertion from the workqueue.
730 	 */
731 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732 
733 	spin_lock_irqsave(&q->requeue_lock, flags);
734 	if (at_head) {
735 		rq->rq_flags |= RQF_SOFTBARRIER;
736 		list_add(&rq->queuelist, &q->requeue_list);
737 	} else {
738 		list_add_tail(&rq->queuelist, &q->requeue_list);
739 	}
740 	spin_unlock_irqrestore(&q->requeue_lock, flags);
741 
742 	if (kick_requeue_list)
743 		blk_mq_kick_requeue_list(q);
744 }
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
746 
747 void blk_mq_kick_requeue_list(struct request_queue *q)
748 {
749 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 }
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
752 
753 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
754 				    unsigned long msecs)
755 {
756 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
757 				    msecs_to_jiffies(msecs));
758 }
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
760 
761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
762 {
763 	if (tag < tags->nr_tags) {
764 		prefetch(tags->rqs[tag]);
765 		return tags->rqs[tag];
766 	}
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(blk_mq_tag_to_rq);
771 
772 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773 {
774 	req->rq_flags |= RQF_TIMED_OUT;
775 	if (req->q->mq_ops->timeout) {
776 		enum blk_eh_timer_return ret;
777 
778 		ret = req->q->mq_ops->timeout(req, reserved);
779 		if (ret == BLK_EH_DONE)
780 			return;
781 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782 	}
783 
784 	blk_add_timer(req);
785 }
786 
787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
788 {
789 	unsigned long deadline;
790 
791 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
792 		return false;
793 	if (rq->rq_flags & RQF_TIMED_OUT)
794 		return false;
795 
796 	deadline = blk_rq_deadline(rq);
797 	if (time_after_eq(jiffies, deadline))
798 		return true;
799 
800 	if (*next == 0)
801 		*next = deadline;
802 	else if (time_after(*next, deadline))
803 		*next = deadline;
804 	return false;
805 }
806 
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 		struct request *rq, void *priv, bool reserved)
809 {
810 	unsigned long *next = priv;
811 
812 	/*
813 	 * Just do a quick check if it is expired before locking the request in
814 	 * so we're not unnecessarilly synchronizing across CPUs.
815 	 */
816 	if (!blk_mq_req_expired(rq, next))
817 		return;
818 
819 	/*
820 	 * We have reason to believe the request may be expired. Take a
821 	 * reference on the request to lock this request lifetime into its
822 	 * currently allocated context to prevent it from being reallocated in
823 	 * the event the completion by-passes this timeout handler.
824 	 *
825 	 * If the reference was already released, then the driver beat the
826 	 * timeout handler to posting a natural completion.
827 	 */
828 	if (!refcount_inc_not_zero(&rq->ref))
829 		return;
830 
831 	/*
832 	 * The request is now locked and cannot be reallocated underneath the
833 	 * timeout handler's processing. Re-verify this exact request is truly
834 	 * expired; if it is not expired, then the request was completed and
835 	 * reallocated as a new request.
836 	 */
837 	if (blk_mq_req_expired(rq, next))
838 		blk_mq_rq_timed_out(rq, reserved);
839 	if (refcount_dec_and_test(&rq->ref))
840 		__blk_mq_free_request(rq);
841 }
842 
843 static void blk_mq_timeout_work(struct work_struct *work)
844 {
845 	struct request_queue *q =
846 		container_of(work, struct request_queue, timeout_work);
847 	unsigned long next = 0;
848 	struct blk_mq_hw_ctx *hctx;
849 	int i;
850 
851 	/* A deadlock might occur if a request is stuck requiring a
852 	 * timeout at the same time a queue freeze is waiting
853 	 * completion, since the timeout code would not be able to
854 	 * acquire the queue reference here.
855 	 *
856 	 * That's why we don't use blk_queue_enter here; instead, we use
857 	 * percpu_ref_tryget directly, because we need to be able to
858 	 * obtain a reference even in the short window between the queue
859 	 * starting to freeze, by dropping the first reference in
860 	 * blk_freeze_queue_start, and the moment the last request is
861 	 * consumed, marked by the instant q_usage_counter reaches
862 	 * zero.
863 	 */
864 	if (!percpu_ref_tryget(&q->q_usage_counter))
865 		return;
866 
867 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
868 
869 	if (next != 0) {
870 		mod_timer(&q->timeout, next);
871 	} else {
872 		/*
873 		 * Request timeouts are handled as a forward rolling timer. If
874 		 * we end up here it means that no requests are pending and
875 		 * also that no request has been pending for a while. Mark
876 		 * each hctx as idle.
877 		 */
878 		queue_for_each_hw_ctx(q, hctx, i) {
879 			/* the hctx may be unmapped, so check it here */
880 			if (blk_mq_hw_queue_mapped(hctx))
881 				blk_mq_tag_idle(hctx);
882 		}
883 	}
884 	blk_queue_exit(q);
885 }
886 
887 struct flush_busy_ctx_data {
888 	struct blk_mq_hw_ctx *hctx;
889 	struct list_head *list;
890 };
891 
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893 {
894 	struct flush_busy_ctx_data *flush_data = data;
895 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897 
898 	spin_lock(&ctx->lock);
899 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
900 	sbitmap_clear_bit(sb, bitnr);
901 	spin_unlock(&ctx->lock);
902 	return true;
903 }
904 
905 /*
906  * Process software queues that have been marked busy, splicing them
907  * to the for-dispatch
908  */
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910 {
911 	struct flush_busy_ctx_data data = {
912 		.hctx = hctx,
913 		.list = list,
914 	};
915 
916 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917 }
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919 
920 struct dispatch_rq_data {
921 	struct blk_mq_hw_ctx *hctx;
922 	struct request *rq;
923 };
924 
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926 		void *data)
927 {
928 	struct dispatch_rq_data *dispatch_data = data;
929 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931 
932 	spin_lock(&ctx->lock);
933 	if (!list_empty(&ctx->rq_list)) {
934 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 		list_del_init(&dispatch_data->rq->queuelist);
936 		if (list_empty(&ctx->rq_list))
937 			sbitmap_clear_bit(sb, bitnr);
938 	}
939 	spin_unlock(&ctx->lock);
940 
941 	return !dispatch_data->rq;
942 }
943 
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 					struct blk_mq_ctx *start)
946 {
947 	unsigned off = start ? start->index_hw : 0;
948 	struct dispatch_rq_data data = {
949 		.hctx = hctx,
950 		.rq   = NULL,
951 	};
952 
953 	__sbitmap_for_each_set(&hctx->ctx_map, off,
954 			       dispatch_rq_from_ctx, &data);
955 
956 	return data.rq;
957 }
958 
959 static inline unsigned int queued_to_index(unsigned int queued)
960 {
961 	if (!queued)
962 		return 0;
963 
964 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 }
966 
967 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
968 			   bool wait)
969 {
970 	struct blk_mq_alloc_data data = {
971 		.q = rq->q,
972 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
973 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
974 	};
975 
976 	might_sleep_if(wait);
977 
978 	if (rq->tag != -1)
979 		goto done;
980 
981 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
982 		data.flags |= BLK_MQ_REQ_RESERVED;
983 
984 	rq->tag = blk_mq_get_tag(&data);
985 	if (rq->tag >= 0) {
986 		if (blk_mq_tag_busy(data.hctx)) {
987 			rq->rq_flags |= RQF_MQ_INFLIGHT;
988 			atomic_inc(&data.hctx->nr_active);
989 		}
990 		data.hctx->tags->rqs[rq->tag] = rq;
991 	}
992 
993 done:
994 	if (hctx)
995 		*hctx = data.hctx;
996 	return rq->tag != -1;
997 }
998 
999 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1000 				int flags, void *key)
1001 {
1002 	struct blk_mq_hw_ctx *hctx;
1003 
1004 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1005 
1006 	list_del_init(&wait->entry);
1007 	blk_mq_run_hw_queue(hctx, true);
1008 	return 1;
1009 }
1010 
1011 /*
1012  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1014  * restart. For both cases, take care to check the condition again after
1015  * marking us as waiting.
1016  */
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1018 				 struct request *rq)
1019 {
1020 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1021 	struct sbq_wait_state *ws;
1022 	wait_queue_entry_t *wait;
1023 	bool ret;
1024 
1025 	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1026 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1027 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1028 
1029 		/*
1030 		 * It's possible that a tag was freed in the window between the
1031 		 * allocation failure and adding the hardware queue to the wait
1032 		 * queue.
1033 		 *
1034 		 * Don't clear RESTART here, someone else could have set it.
1035 		 * At most this will cost an extra queue run.
1036 		 */
1037 		return blk_mq_get_driver_tag(rq, hctx, false);
1038 	}
1039 
1040 	wait = &this_hctx->dispatch_wait;
1041 	if (!list_empty_careful(&wait->entry))
1042 		return false;
1043 
1044 	spin_lock(&this_hctx->lock);
1045 	if (!list_empty(&wait->entry)) {
1046 		spin_unlock(&this_hctx->lock);
1047 		return false;
1048 	}
1049 
1050 	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1051 	add_wait_queue(&ws->wait, wait);
1052 
1053 	/*
1054 	 * It's possible that a tag was freed in the window between the
1055 	 * allocation failure and adding the hardware queue to the wait
1056 	 * queue.
1057 	 */
1058 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1059 	if (!ret) {
1060 		spin_unlock(&this_hctx->lock);
1061 		return false;
1062 	}
1063 
1064 	/*
1065 	 * We got a tag, remove ourselves from the wait queue to ensure
1066 	 * someone else gets the wakeup.
1067 	 */
1068 	spin_lock_irq(&ws->wait.lock);
1069 	list_del_init(&wait->entry);
1070 	spin_unlock_irq(&ws->wait.lock);
1071 	spin_unlock(&this_hctx->lock);
1072 
1073 	return true;
1074 }
1075 
1076 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1077 
1078 /*
1079  * Returns true if we did some work AND can potentially do more.
1080  */
1081 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1082 			     bool got_budget)
1083 {
1084 	struct blk_mq_hw_ctx *hctx;
1085 	struct request *rq, *nxt;
1086 	bool no_tag = false;
1087 	int errors, queued;
1088 	blk_status_t ret = BLK_STS_OK;
1089 
1090 	if (list_empty(list))
1091 		return false;
1092 
1093 	WARN_ON(!list_is_singular(list) && got_budget);
1094 
1095 	/*
1096 	 * Now process all the entries, sending them to the driver.
1097 	 */
1098 	errors = queued = 0;
1099 	do {
1100 		struct blk_mq_queue_data bd;
1101 
1102 		rq = list_first_entry(list, struct request, queuelist);
1103 
1104 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1105 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1106 			break;
1107 
1108 		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1109 			/*
1110 			 * The initial allocation attempt failed, so we need to
1111 			 * rerun the hardware queue when a tag is freed. The
1112 			 * waitqueue takes care of that. If the queue is run
1113 			 * before we add this entry back on the dispatch list,
1114 			 * we'll re-run it below.
1115 			 */
1116 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1117 				blk_mq_put_dispatch_budget(hctx);
1118 				/*
1119 				 * For non-shared tags, the RESTART check
1120 				 * will suffice.
1121 				 */
1122 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1123 					no_tag = true;
1124 				break;
1125 			}
1126 		}
1127 
1128 		list_del_init(&rq->queuelist);
1129 
1130 		bd.rq = rq;
1131 
1132 		/*
1133 		 * Flag last if we have no more requests, or if we have more
1134 		 * but can't assign a driver tag to it.
1135 		 */
1136 		if (list_empty(list))
1137 			bd.last = true;
1138 		else {
1139 			nxt = list_first_entry(list, struct request, queuelist);
1140 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1141 		}
1142 
1143 		ret = q->mq_ops->queue_rq(hctx, &bd);
1144 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1145 			/*
1146 			 * If an I/O scheduler has been configured and we got a
1147 			 * driver tag for the next request already, free it
1148 			 * again.
1149 			 */
1150 			if (!list_empty(list)) {
1151 				nxt = list_first_entry(list, struct request, queuelist);
1152 				blk_mq_put_driver_tag(nxt);
1153 			}
1154 			list_add(&rq->queuelist, list);
1155 			__blk_mq_requeue_request(rq);
1156 			break;
1157 		}
1158 
1159 		if (unlikely(ret != BLK_STS_OK)) {
1160 			errors++;
1161 			blk_mq_end_request(rq, BLK_STS_IOERR);
1162 			continue;
1163 		}
1164 
1165 		queued++;
1166 	} while (!list_empty(list));
1167 
1168 	hctx->dispatched[queued_to_index(queued)]++;
1169 
1170 	/*
1171 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1172 	 * that is where we will continue on next queue run.
1173 	 */
1174 	if (!list_empty(list)) {
1175 		bool needs_restart;
1176 
1177 		spin_lock(&hctx->lock);
1178 		list_splice_init(list, &hctx->dispatch);
1179 		spin_unlock(&hctx->lock);
1180 
1181 		/*
1182 		 * If SCHED_RESTART was set by the caller of this function and
1183 		 * it is no longer set that means that it was cleared by another
1184 		 * thread and hence that a queue rerun is needed.
1185 		 *
1186 		 * If 'no_tag' is set, that means that we failed getting
1187 		 * a driver tag with an I/O scheduler attached. If our dispatch
1188 		 * waitqueue is no longer active, ensure that we run the queue
1189 		 * AFTER adding our entries back to the list.
1190 		 *
1191 		 * If no I/O scheduler has been configured it is possible that
1192 		 * the hardware queue got stopped and restarted before requests
1193 		 * were pushed back onto the dispatch list. Rerun the queue to
1194 		 * avoid starvation. Notes:
1195 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1196 		 *   been stopped before rerunning a queue.
1197 		 * - Some but not all block drivers stop a queue before
1198 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1199 		 *   and dm-rq.
1200 		 *
1201 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1202 		 * bit is set, run queue after a delay to avoid IO stalls
1203 		 * that could otherwise occur if the queue is idle.
1204 		 */
1205 		needs_restart = blk_mq_sched_needs_restart(hctx);
1206 		if (!needs_restart ||
1207 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1208 			blk_mq_run_hw_queue(hctx, true);
1209 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1210 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1211 
1212 		return false;
1213 	}
1214 
1215 	/*
1216 	 * If the host/device is unable to accept more work, inform the
1217 	 * caller of that.
1218 	 */
1219 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1220 		return false;
1221 
1222 	return (queued + errors) != 0;
1223 }
1224 
1225 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1226 {
1227 	int srcu_idx;
1228 
1229 	/*
1230 	 * We should be running this queue from one of the CPUs that
1231 	 * are mapped to it.
1232 	 *
1233 	 * There are at least two related races now between setting
1234 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1235 	 * __blk_mq_run_hw_queue():
1236 	 *
1237 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1238 	 *   but later it becomes online, then this warning is harmless
1239 	 *   at all
1240 	 *
1241 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1242 	 *   but later it becomes offline, then the warning can't be
1243 	 *   triggered, and we depend on blk-mq timeout handler to
1244 	 *   handle dispatched requests to this hctx
1245 	 */
1246 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1247 		cpu_online(hctx->next_cpu)) {
1248 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1249 			raw_smp_processor_id(),
1250 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1251 		dump_stack();
1252 	}
1253 
1254 	/*
1255 	 * We can't run the queue inline with ints disabled. Ensure that
1256 	 * we catch bad users of this early.
1257 	 */
1258 	WARN_ON_ONCE(in_interrupt());
1259 
1260 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1261 
1262 	hctx_lock(hctx, &srcu_idx);
1263 	blk_mq_sched_dispatch_requests(hctx);
1264 	hctx_unlock(hctx, srcu_idx);
1265 }
1266 
1267 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1268 {
1269 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1270 
1271 	if (cpu >= nr_cpu_ids)
1272 		cpu = cpumask_first(hctx->cpumask);
1273 	return cpu;
1274 }
1275 
1276 /*
1277  * It'd be great if the workqueue API had a way to pass
1278  * in a mask and had some smarts for more clever placement.
1279  * For now we just round-robin here, switching for every
1280  * BLK_MQ_CPU_WORK_BATCH queued items.
1281  */
1282 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1283 {
1284 	bool tried = false;
1285 	int next_cpu = hctx->next_cpu;
1286 
1287 	if (hctx->queue->nr_hw_queues == 1)
1288 		return WORK_CPU_UNBOUND;
1289 
1290 	if (--hctx->next_cpu_batch <= 0) {
1291 select_cpu:
1292 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1293 				cpu_online_mask);
1294 		if (next_cpu >= nr_cpu_ids)
1295 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1296 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1297 	}
1298 
1299 	/*
1300 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1301 	 * and it should only happen in the path of handling CPU DEAD.
1302 	 */
1303 	if (!cpu_online(next_cpu)) {
1304 		if (!tried) {
1305 			tried = true;
1306 			goto select_cpu;
1307 		}
1308 
1309 		/*
1310 		 * Make sure to re-select CPU next time once after CPUs
1311 		 * in hctx->cpumask become online again.
1312 		 */
1313 		hctx->next_cpu = next_cpu;
1314 		hctx->next_cpu_batch = 1;
1315 		return WORK_CPU_UNBOUND;
1316 	}
1317 
1318 	hctx->next_cpu = next_cpu;
1319 	return next_cpu;
1320 }
1321 
1322 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1323 					unsigned long msecs)
1324 {
1325 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1326 		return;
1327 
1328 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1329 		int cpu = get_cpu();
1330 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1331 			__blk_mq_run_hw_queue(hctx);
1332 			put_cpu();
1333 			return;
1334 		}
1335 
1336 		put_cpu();
1337 	}
1338 
1339 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1340 				    msecs_to_jiffies(msecs));
1341 }
1342 
1343 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1344 {
1345 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1346 }
1347 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1348 
1349 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1350 {
1351 	int srcu_idx;
1352 	bool need_run;
1353 
1354 	/*
1355 	 * When queue is quiesced, we may be switching io scheduler, or
1356 	 * updating nr_hw_queues, or other things, and we can't run queue
1357 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1358 	 *
1359 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1360 	 * quiesced.
1361 	 */
1362 	hctx_lock(hctx, &srcu_idx);
1363 	need_run = !blk_queue_quiesced(hctx->queue) &&
1364 		blk_mq_hctx_has_pending(hctx);
1365 	hctx_unlock(hctx, srcu_idx);
1366 
1367 	if (need_run) {
1368 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1369 		return true;
1370 	}
1371 
1372 	return false;
1373 }
1374 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1375 
1376 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1377 {
1378 	struct blk_mq_hw_ctx *hctx;
1379 	int i;
1380 
1381 	queue_for_each_hw_ctx(q, hctx, i) {
1382 		if (blk_mq_hctx_stopped(hctx))
1383 			continue;
1384 
1385 		blk_mq_run_hw_queue(hctx, async);
1386 	}
1387 }
1388 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1389 
1390 /**
1391  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1392  * @q: request queue.
1393  *
1394  * The caller is responsible for serializing this function against
1395  * blk_mq_{start,stop}_hw_queue().
1396  */
1397 bool blk_mq_queue_stopped(struct request_queue *q)
1398 {
1399 	struct blk_mq_hw_ctx *hctx;
1400 	int i;
1401 
1402 	queue_for_each_hw_ctx(q, hctx, i)
1403 		if (blk_mq_hctx_stopped(hctx))
1404 			return true;
1405 
1406 	return false;
1407 }
1408 EXPORT_SYMBOL(blk_mq_queue_stopped);
1409 
1410 /*
1411  * This function is often used for pausing .queue_rq() by driver when
1412  * there isn't enough resource or some conditions aren't satisfied, and
1413  * BLK_STS_RESOURCE is usually returned.
1414  *
1415  * We do not guarantee that dispatch can be drained or blocked
1416  * after blk_mq_stop_hw_queue() returns. Please use
1417  * blk_mq_quiesce_queue() for that requirement.
1418  */
1419 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1420 {
1421 	cancel_delayed_work(&hctx->run_work);
1422 
1423 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1424 }
1425 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1426 
1427 /*
1428  * This function is often used for pausing .queue_rq() by driver when
1429  * there isn't enough resource or some conditions aren't satisfied, and
1430  * BLK_STS_RESOURCE is usually returned.
1431  *
1432  * We do not guarantee that dispatch can be drained or blocked
1433  * after blk_mq_stop_hw_queues() returns. Please use
1434  * blk_mq_quiesce_queue() for that requirement.
1435  */
1436 void blk_mq_stop_hw_queues(struct request_queue *q)
1437 {
1438 	struct blk_mq_hw_ctx *hctx;
1439 	int i;
1440 
1441 	queue_for_each_hw_ctx(q, hctx, i)
1442 		blk_mq_stop_hw_queue(hctx);
1443 }
1444 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1445 
1446 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1447 {
1448 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1449 
1450 	blk_mq_run_hw_queue(hctx, false);
1451 }
1452 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1453 
1454 void blk_mq_start_hw_queues(struct request_queue *q)
1455 {
1456 	struct blk_mq_hw_ctx *hctx;
1457 	int i;
1458 
1459 	queue_for_each_hw_ctx(q, hctx, i)
1460 		blk_mq_start_hw_queue(hctx);
1461 }
1462 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1463 
1464 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1465 {
1466 	if (!blk_mq_hctx_stopped(hctx))
1467 		return;
1468 
1469 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1470 	blk_mq_run_hw_queue(hctx, async);
1471 }
1472 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1473 
1474 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1475 {
1476 	struct blk_mq_hw_ctx *hctx;
1477 	int i;
1478 
1479 	queue_for_each_hw_ctx(q, hctx, i)
1480 		blk_mq_start_stopped_hw_queue(hctx, async);
1481 }
1482 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1483 
1484 static void blk_mq_run_work_fn(struct work_struct *work)
1485 {
1486 	struct blk_mq_hw_ctx *hctx;
1487 
1488 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1489 
1490 	/*
1491 	 * If we are stopped, don't run the queue.
1492 	 */
1493 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1494 		return;
1495 
1496 	__blk_mq_run_hw_queue(hctx);
1497 }
1498 
1499 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1500 					    struct request *rq,
1501 					    bool at_head)
1502 {
1503 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1504 
1505 	lockdep_assert_held(&ctx->lock);
1506 
1507 	trace_block_rq_insert(hctx->queue, rq);
1508 
1509 	if (at_head)
1510 		list_add(&rq->queuelist, &ctx->rq_list);
1511 	else
1512 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1513 }
1514 
1515 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1516 			     bool at_head)
1517 {
1518 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1519 
1520 	lockdep_assert_held(&ctx->lock);
1521 
1522 	__blk_mq_insert_req_list(hctx, rq, at_head);
1523 	blk_mq_hctx_mark_pending(hctx, ctx);
1524 }
1525 
1526 /*
1527  * Should only be used carefully, when the caller knows we want to
1528  * bypass a potential IO scheduler on the target device.
1529  */
1530 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1531 {
1532 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1533 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1534 
1535 	spin_lock(&hctx->lock);
1536 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1537 	spin_unlock(&hctx->lock);
1538 
1539 	if (run_queue)
1540 		blk_mq_run_hw_queue(hctx, false);
1541 }
1542 
1543 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1544 			    struct list_head *list)
1545 
1546 {
1547 	/*
1548 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1549 	 * offline now
1550 	 */
1551 	spin_lock(&ctx->lock);
1552 	while (!list_empty(list)) {
1553 		struct request *rq;
1554 
1555 		rq = list_first_entry(list, struct request, queuelist);
1556 		BUG_ON(rq->mq_ctx != ctx);
1557 		list_del_init(&rq->queuelist);
1558 		__blk_mq_insert_req_list(hctx, rq, false);
1559 	}
1560 	blk_mq_hctx_mark_pending(hctx, ctx);
1561 	spin_unlock(&ctx->lock);
1562 }
1563 
1564 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1565 {
1566 	struct request *rqa = container_of(a, struct request, queuelist);
1567 	struct request *rqb = container_of(b, struct request, queuelist);
1568 
1569 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1570 		 (rqa->mq_ctx == rqb->mq_ctx &&
1571 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1572 }
1573 
1574 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1575 {
1576 	struct blk_mq_ctx *this_ctx;
1577 	struct request_queue *this_q;
1578 	struct request *rq;
1579 	LIST_HEAD(list);
1580 	LIST_HEAD(ctx_list);
1581 	unsigned int depth;
1582 
1583 	list_splice_init(&plug->mq_list, &list);
1584 
1585 	list_sort(NULL, &list, plug_ctx_cmp);
1586 
1587 	this_q = NULL;
1588 	this_ctx = NULL;
1589 	depth = 0;
1590 
1591 	while (!list_empty(&list)) {
1592 		rq = list_entry_rq(list.next);
1593 		list_del_init(&rq->queuelist);
1594 		BUG_ON(!rq->q);
1595 		if (rq->mq_ctx != this_ctx) {
1596 			if (this_ctx) {
1597 				trace_block_unplug(this_q, depth, from_schedule);
1598 				blk_mq_sched_insert_requests(this_q, this_ctx,
1599 								&ctx_list,
1600 								from_schedule);
1601 			}
1602 
1603 			this_ctx = rq->mq_ctx;
1604 			this_q = rq->q;
1605 			depth = 0;
1606 		}
1607 
1608 		depth++;
1609 		list_add_tail(&rq->queuelist, &ctx_list);
1610 	}
1611 
1612 	/*
1613 	 * If 'this_ctx' is set, we know we have entries to complete
1614 	 * on 'ctx_list'. Do those.
1615 	 */
1616 	if (this_ctx) {
1617 		trace_block_unplug(this_q, depth, from_schedule);
1618 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1619 						from_schedule);
1620 	}
1621 }
1622 
1623 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1624 {
1625 	blk_init_request_from_bio(rq, bio);
1626 
1627 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1628 
1629 	blk_account_io_start(rq, true);
1630 }
1631 
1632 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1633 {
1634 	if (rq->tag != -1)
1635 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1636 
1637 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1638 }
1639 
1640 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1641 					    struct request *rq,
1642 					    blk_qc_t *cookie)
1643 {
1644 	struct request_queue *q = rq->q;
1645 	struct blk_mq_queue_data bd = {
1646 		.rq = rq,
1647 		.last = true,
1648 	};
1649 	blk_qc_t new_cookie;
1650 	blk_status_t ret;
1651 
1652 	new_cookie = request_to_qc_t(hctx, rq);
1653 
1654 	/*
1655 	 * For OK queue, we are done. For error, caller may kill it.
1656 	 * Any other error (busy), just add it to our list as we
1657 	 * previously would have done.
1658 	 */
1659 	ret = q->mq_ops->queue_rq(hctx, &bd);
1660 	switch (ret) {
1661 	case BLK_STS_OK:
1662 		*cookie = new_cookie;
1663 		break;
1664 	case BLK_STS_RESOURCE:
1665 	case BLK_STS_DEV_RESOURCE:
1666 		__blk_mq_requeue_request(rq);
1667 		break;
1668 	default:
1669 		*cookie = BLK_QC_T_NONE;
1670 		break;
1671 	}
1672 
1673 	return ret;
1674 }
1675 
1676 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1677 						struct request *rq,
1678 						blk_qc_t *cookie,
1679 						bool bypass_insert)
1680 {
1681 	struct request_queue *q = rq->q;
1682 	bool run_queue = true;
1683 
1684 	/*
1685 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1686 	 *
1687 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1688 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1689 	 * and avoid driver to try to dispatch again.
1690 	 */
1691 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1692 		run_queue = false;
1693 		bypass_insert = false;
1694 		goto insert;
1695 	}
1696 
1697 	if (q->elevator && !bypass_insert)
1698 		goto insert;
1699 
1700 	if (!blk_mq_get_dispatch_budget(hctx))
1701 		goto insert;
1702 
1703 	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1704 		blk_mq_put_dispatch_budget(hctx);
1705 		goto insert;
1706 	}
1707 
1708 	return __blk_mq_issue_directly(hctx, rq, cookie);
1709 insert:
1710 	if (bypass_insert)
1711 		return BLK_STS_RESOURCE;
1712 
1713 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1714 	return BLK_STS_OK;
1715 }
1716 
1717 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1718 		struct request *rq, blk_qc_t *cookie)
1719 {
1720 	blk_status_t ret;
1721 	int srcu_idx;
1722 
1723 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1724 
1725 	hctx_lock(hctx, &srcu_idx);
1726 
1727 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1728 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1729 		blk_mq_sched_insert_request(rq, false, true, false);
1730 	else if (ret != BLK_STS_OK)
1731 		blk_mq_end_request(rq, ret);
1732 
1733 	hctx_unlock(hctx, srcu_idx);
1734 }
1735 
1736 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1737 {
1738 	blk_status_t ret;
1739 	int srcu_idx;
1740 	blk_qc_t unused_cookie;
1741 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1742 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1743 
1744 	hctx_lock(hctx, &srcu_idx);
1745 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1746 	hctx_unlock(hctx, srcu_idx);
1747 
1748 	return ret;
1749 }
1750 
1751 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1752 {
1753 	const int is_sync = op_is_sync(bio->bi_opf);
1754 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1755 	struct blk_mq_alloc_data data = { .flags = 0 };
1756 	struct request *rq;
1757 	unsigned int request_count = 0;
1758 	struct blk_plug *plug;
1759 	struct request *same_queue_rq = NULL;
1760 	blk_qc_t cookie;
1761 	unsigned int wb_acct;
1762 
1763 	blk_queue_bounce(q, &bio);
1764 
1765 	blk_queue_split(q, &bio);
1766 
1767 	if (!bio_integrity_prep(bio))
1768 		return BLK_QC_T_NONE;
1769 
1770 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1771 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1772 		return BLK_QC_T_NONE;
1773 
1774 	if (blk_mq_sched_bio_merge(q, bio))
1775 		return BLK_QC_T_NONE;
1776 
1777 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1778 
1779 	trace_block_getrq(q, bio, bio->bi_opf);
1780 
1781 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1782 	if (unlikely(!rq)) {
1783 		__wbt_done(q->rq_wb, wb_acct);
1784 		if (bio->bi_opf & REQ_NOWAIT)
1785 			bio_wouldblock_error(bio);
1786 		return BLK_QC_T_NONE;
1787 	}
1788 
1789 	wbt_track(rq, wb_acct);
1790 
1791 	cookie = request_to_qc_t(data.hctx, rq);
1792 
1793 	plug = current->plug;
1794 	if (unlikely(is_flush_fua)) {
1795 		blk_mq_put_ctx(data.ctx);
1796 		blk_mq_bio_to_request(rq, bio);
1797 
1798 		/* bypass scheduler for flush rq */
1799 		blk_insert_flush(rq);
1800 		blk_mq_run_hw_queue(data.hctx, true);
1801 	} else if (plug && q->nr_hw_queues == 1) {
1802 		struct request *last = NULL;
1803 
1804 		blk_mq_put_ctx(data.ctx);
1805 		blk_mq_bio_to_request(rq, bio);
1806 
1807 		/*
1808 		 * @request_count may become stale because of schedule
1809 		 * out, so check the list again.
1810 		 */
1811 		if (list_empty(&plug->mq_list))
1812 			request_count = 0;
1813 		else if (blk_queue_nomerges(q))
1814 			request_count = blk_plug_queued_count(q);
1815 
1816 		if (!request_count)
1817 			trace_block_plug(q);
1818 		else
1819 			last = list_entry_rq(plug->mq_list.prev);
1820 
1821 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1822 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1823 			blk_flush_plug_list(plug, false);
1824 			trace_block_plug(q);
1825 		}
1826 
1827 		list_add_tail(&rq->queuelist, &plug->mq_list);
1828 	} else if (plug && !blk_queue_nomerges(q)) {
1829 		blk_mq_bio_to_request(rq, bio);
1830 
1831 		/*
1832 		 * We do limited plugging. If the bio can be merged, do that.
1833 		 * Otherwise the existing request in the plug list will be
1834 		 * issued. So the plug list will have one request at most
1835 		 * The plug list might get flushed before this. If that happens,
1836 		 * the plug list is empty, and same_queue_rq is invalid.
1837 		 */
1838 		if (list_empty(&plug->mq_list))
1839 			same_queue_rq = NULL;
1840 		if (same_queue_rq)
1841 			list_del_init(&same_queue_rq->queuelist);
1842 		list_add_tail(&rq->queuelist, &plug->mq_list);
1843 
1844 		blk_mq_put_ctx(data.ctx);
1845 
1846 		if (same_queue_rq) {
1847 			data.hctx = blk_mq_map_queue(q,
1848 					same_queue_rq->mq_ctx->cpu);
1849 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1850 					&cookie);
1851 		}
1852 	} else if (q->nr_hw_queues > 1 && is_sync) {
1853 		blk_mq_put_ctx(data.ctx);
1854 		blk_mq_bio_to_request(rq, bio);
1855 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1856 	} else {
1857 		blk_mq_put_ctx(data.ctx);
1858 		blk_mq_bio_to_request(rq, bio);
1859 		blk_mq_sched_insert_request(rq, false, true, true);
1860 	}
1861 
1862 	return cookie;
1863 }
1864 
1865 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1866 		     unsigned int hctx_idx)
1867 {
1868 	struct page *page;
1869 
1870 	if (tags->rqs && set->ops->exit_request) {
1871 		int i;
1872 
1873 		for (i = 0; i < tags->nr_tags; i++) {
1874 			struct request *rq = tags->static_rqs[i];
1875 
1876 			if (!rq)
1877 				continue;
1878 			set->ops->exit_request(set, rq, hctx_idx);
1879 			tags->static_rqs[i] = NULL;
1880 		}
1881 	}
1882 
1883 	while (!list_empty(&tags->page_list)) {
1884 		page = list_first_entry(&tags->page_list, struct page, lru);
1885 		list_del_init(&page->lru);
1886 		/*
1887 		 * Remove kmemleak object previously allocated in
1888 		 * blk_mq_init_rq_map().
1889 		 */
1890 		kmemleak_free(page_address(page));
1891 		__free_pages(page, page->private);
1892 	}
1893 }
1894 
1895 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1896 {
1897 	kfree(tags->rqs);
1898 	tags->rqs = NULL;
1899 	kfree(tags->static_rqs);
1900 	tags->static_rqs = NULL;
1901 
1902 	blk_mq_free_tags(tags);
1903 }
1904 
1905 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1906 					unsigned int hctx_idx,
1907 					unsigned int nr_tags,
1908 					unsigned int reserved_tags)
1909 {
1910 	struct blk_mq_tags *tags;
1911 	int node;
1912 
1913 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1914 	if (node == NUMA_NO_NODE)
1915 		node = set->numa_node;
1916 
1917 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1918 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1919 	if (!tags)
1920 		return NULL;
1921 
1922 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1923 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1924 				 node);
1925 	if (!tags->rqs) {
1926 		blk_mq_free_tags(tags);
1927 		return NULL;
1928 	}
1929 
1930 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1931 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1932 					node);
1933 	if (!tags->static_rqs) {
1934 		kfree(tags->rqs);
1935 		blk_mq_free_tags(tags);
1936 		return NULL;
1937 	}
1938 
1939 	return tags;
1940 }
1941 
1942 static size_t order_to_size(unsigned int order)
1943 {
1944 	return (size_t)PAGE_SIZE << order;
1945 }
1946 
1947 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1948 			       unsigned int hctx_idx, int node)
1949 {
1950 	int ret;
1951 
1952 	if (set->ops->init_request) {
1953 		ret = set->ops->init_request(set, rq, hctx_idx, node);
1954 		if (ret)
1955 			return ret;
1956 	}
1957 
1958 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1959 	return 0;
1960 }
1961 
1962 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1963 		     unsigned int hctx_idx, unsigned int depth)
1964 {
1965 	unsigned int i, j, entries_per_page, max_order = 4;
1966 	size_t rq_size, left;
1967 	int node;
1968 
1969 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1970 	if (node == NUMA_NO_NODE)
1971 		node = set->numa_node;
1972 
1973 	INIT_LIST_HEAD(&tags->page_list);
1974 
1975 	/*
1976 	 * rq_size is the size of the request plus driver payload, rounded
1977 	 * to the cacheline size
1978 	 */
1979 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1980 				cache_line_size());
1981 	left = rq_size * depth;
1982 
1983 	for (i = 0; i < depth; ) {
1984 		int this_order = max_order;
1985 		struct page *page;
1986 		int to_do;
1987 		void *p;
1988 
1989 		while (this_order && left < order_to_size(this_order - 1))
1990 			this_order--;
1991 
1992 		do {
1993 			page = alloc_pages_node(node,
1994 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1995 				this_order);
1996 			if (page)
1997 				break;
1998 			if (!this_order--)
1999 				break;
2000 			if (order_to_size(this_order) < rq_size)
2001 				break;
2002 		} while (1);
2003 
2004 		if (!page)
2005 			goto fail;
2006 
2007 		page->private = this_order;
2008 		list_add_tail(&page->lru, &tags->page_list);
2009 
2010 		p = page_address(page);
2011 		/*
2012 		 * Allow kmemleak to scan these pages as they contain pointers
2013 		 * to additional allocations like via ops->init_request().
2014 		 */
2015 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2016 		entries_per_page = order_to_size(this_order) / rq_size;
2017 		to_do = min(entries_per_page, depth - i);
2018 		left -= to_do * rq_size;
2019 		for (j = 0; j < to_do; j++) {
2020 			struct request *rq = p;
2021 
2022 			tags->static_rqs[i] = rq;
2023 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2024 				tags->static_rqs[i] = NULL;
2025 				goto fail;
2026 			}
2027 
2028 			p += rq_size;
2029 			i++;
2030 		}
2031 	}
2032 	return 0;
2033 
2034 fail:
2035 	blk_mq_free_rqs(set, tags, hctx_idx);
2036 	return -ENOMEM;
2037 }
2038 
2039 /*
2040  * 'cpu' is going away. splice any existing rq_list entries from this
2041  * software queue to the hw queue dispatch list, and ensure that it
2042  * gets run.
2043  */
2044 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2045 {
2046 	struct blk_mq_hw_ctx *hctx;
2047 	struct blk_mq_ctx *ctx;
2048 	LIST_HEAD(tmp);
2049 
2050 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2051 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2052 
2053 	spin_lock(&ctx->lock);
2054 	if (!list_empty(&ctx->rq_list)) {
2055 		list_splice_init(&ctx->rq_list, &tmp);
2056 		blk_mq_hctx_clear_pending(hctx, ctx);
2057 	}
2058 	spin_unlock(&ctx->lock);
2059 
2060 	if (list_empty(&tmp))
2061 		return 0;
2062 
2063 	spin_lock(&hctx->lock);
2064 	list_splice_tail_init(&tmp, &hctx->dispatch);
2065 	spin_unlock(&hctx->lock);
2066 
2067 	blk_mq_run_hw_queue(hctx, true);
2068 	return 0;
2069 }
2070 
2071 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2072 {
2073 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2074 					    &hctx->cpuhp_dead);
2075 }
2076 
2077 /* hctx->ctxs will be freed in queue's release handler */
2078 static void blk_mq_exit_hctx(struct request_queue *q,
2079 		struct blk_mq_tag_set *set,
2080 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2081 {
2082 	blk_mq_debugfs_unregister_hctx(hctx);
2083 
2084 	if (blk_mq_hw_queue_mapped(hctx))
2085 		blk_mq_tag_idle(hctx);
2086 
2087 	if (set->ops->exit_request)
2088 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2089 
2090 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2091 
2092 	if (set->ops->exit_hctx)
2093 		set->ops->exit_hctx(hctx, hctx_idx);
2094 
2095 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2096 		cleanup_srcu_struct(hctx->srcu);
2097 
2098 	blk_mq_remove_cpuhp(hctx);
2099 	blk_free_flush_queue(hctx->fq);
2100 	sbitmap_free(&hctx->ctx_map);
2101 }
2102 
2103 static void blk_mq_exit_hw_queues(struct request_queue *q,
2104 		struct blk_mq_tag_set *set, int nr_queue)
2105 {
2106 	struct blk_mq_hw_ctx *hctx;
2107 	unsigned int i;
2108 
2109 	queue_for_each_hw_ctx(q, hctx, i) {
2110 		if (i == nr_queue)
2111 			break;
2112 		blk_mq_exit_hctx(q, set, hctx, i);
2113 	}
2114 }
2115 
2116 static int blk_mq_init_hctx(struct request_queue *q,
2117 		struct blk_mq_tag_set *set,
2118 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2119 {
2120 	int node;
2121 
2122 	node = hctx->numa_node;
2123 	if (node == NUMA_NO_NODE)
2124 		node = hctx->numa_node = set->numa_node;
2125 
2126 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2127 	spin_lock_init(&hctx->lock);
2128 	INIT_LIST_HEAD(&hctx->dispatch);
2129 	hctx->queue = q;
2130 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2131 
2132 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2133 
2134 	hctx->tags = set->tags[hctx_idx];
2135 
2136 	/*
2137 	 * Allocate space for all possible cpus to avoid allocation at
2138 	 * runtime
2139 	 */
2140 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2141 					GFP_KERNEL, node);
2142 	if (!hctx->ctxs)
2143 		goto unregister_cpu_notifier;
2144 
2145 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2146 			      node))
2147 		goto free_ctxs;
2148 
2149 	hctx->nr_ctx = 0;
2150 
2151 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2152 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2153 
2154 	if (set->ops->init_hctx &&
2155 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2156 		goto free_bitmap;
2157 
2158 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2159 		goto exit_hctx;
2160 
2161 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2162 	if (!hctx->fq)
2163 		goto sched_exit_hctx;
2164 
2165 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2166 		goto free_fq;
2167 
2168 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2169 		init_srcu_struct(hctx->srcu);
2170 
2171 	blk_mq_debugfs_register_hctx(q, hctx);
2172 
2173 	return 0;
2174 
2175  free_fq:
2176 	kfree(hctx->fq);
2177  sched_exit_hctx:
2178 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2179  exit_hctx:
2180 	if (set->ops->exit_hctx)
2181 		set->ops->exit_hctx(hctx, hctx_idx);
2182  free_bitmap:
2183 	sbitmap_free(&hctx->ctx_map);
2184  free_ctxs:
2185 	kfree(hctx->ctxs);
2186  unregister_cpu_notifier:
2187 	blk_mq_remove_cpuhp(hctx);
2188 	return -1;
2189 }
2190 
2191 static void blk_mq_init_cpu_queues(struct request_queue *q,
2192 				   unsigned int nr_hw_queues)
2193 {
2194 	unsigned int i;
2195 
2196 	for_each_possible_cpu(i) {
2197 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2198 		struct blk_mq_hw_ctx *hctx;
2199 
2200 		__ctx->cpu = i;
2201 		spin_lock_init(&__ctx->lock);
2202 		INIT_LIST_HEAD(&__ctx->rq_list);
2203 		__ctx->queue = q;
2204 
2205 		/*
2206 		 * Set local node, IFF we have more than one hw queue. If
2207 		 * not, we remain on the home node of the device
2208 		 */
2209 		hctx = blk_mq_map_queue(q, i);
2210 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2211 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2212 	}
2213 }
2214 
2215 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2216 {
2217 	int ret = 0;
2218 
2219 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2220 					set->queue_depth, set->reserved_tags);
2221 	if (!set->tags[hctx_idx])
2222 		return false;
2223 
2224 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2225 				set->queue_depth);
2226 	if (!ret)
2227 		return true;
2228 
2229 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2230 	set->tags[hctx_idx] = NULL;
2231 	return false;
2232 }
2233 
2234 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2235 					 unsigned int hctx_idx)
2236 {
2237 	if (set->tags[hctx_idx]) {
2238 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2239 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2240 		set->tags[hctx_idx] = NULL;
2241 	}
2242 }
2243 
2244 static void blk_mq_map_swqueue(struct request_queue *q)
2245 {
2246 	unsigned int i, hctx_idx;
2247 	struct blk_mq_hw_ctx *hctx;
2248 	struct blk_mq_ctx *ctx;
2249 	struct blk_mq_tag_set *set = q->tag_set;
2250 
2251 	/*
2252 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2253 	 */
2254 	mutex_lock(&q->sysfs_lock);
2255 
2256 	queue_for_each_hw_ctx(q, hctx, i) {
2257 		cpumask_clear(hctx->cpumask);
2258 		hctx->nr_ctx = 0;
2259 		hctx->dispatch_from = NULL;
2260 	}
2261 
2262 	/*
2263 	 * Map software to hardware queues.
2264 	 *
2265 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2266 	 */
2267 	for_each_possible_cpu(i) {
2268 		hctx_idx = q->mq_map[i];
2269 		/* unmapped hw queue can be remapped after CPU topo changed */
2270 		if (!set->tags[hctx_idx] &&
2271 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2272 			/*
2273 			 * If tags initialization fail for some hctx,
2274 			 * that hctx won't be brought online.  In this
2275 			 * case, remap the current ctx to hctx[0] which
2276 			 * is guaranteed to always have tags allocated
2277 			 */
2278 			q->mq_map[i] = 0;
2279 		}
2280 
2281 		ctx = per_cpu_ptr(q->queue_ctx, i);
2282 		hctx = blk_mq_map_queue(q, i);
2283 
2284 		cpumask_set_cpu(i, hctx->cpumask);
2285 		ctx->index_hw = hctx->nr_ctx;
2286 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2287 	}
2288 
2289 	mutex_unlock(&q->sysfs_lock);
2290 
2291 	queue_for_each_hw_ctx(q, hctx, i) {
2292 		/*
2293 		 * If no software queues are mapped to this hardware queue,
2294 		 * disable it and free the request entries.
2295 		 */
2296 		if (!hctx->nr_ctx) {
2297 			/* Never unmap queue 0.  We need it as a
2298 			 * fallback in case of a new remap fails
2299 			 * allocation
2300 			 */
2301 			if (i && set->tags[i])
2302 				blk_mq_free_map_and_requests(set, i);
2303 
2304 			hctx->tags = NULL;
2305 			continue;
2306 		}
2307 
2308 		hctx->tags = set->tags[i];
2309 		WARN_ON(!hctx->tags);
2310 
2311 		/*
2312 		 * Set the map size to the number of mapped software queues.
2313 		 * This is more accurate and more efficient than looping
2314 		 * over all possibly mapped software queues.
2315 		 */
2316 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2317 
2318 		/*
2319 		 * Initialize batch roundrobin counts
2320 		 */
2321 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2322 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2323 	}
2324 }
2325 
2326 /*
2327  * Caller needs to ensure that we're either frozen/quiesced, or that
2328  * the queue isn't live yet.
2329  */
2330 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2331 {
2332 	struct blk_mq_hw_ctx *hctx;
2333 	int i;
2334 
2335 	queue_for_each_hw_ctx(q, hctx, i) {
2336 		if (shared) {
2337 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2338 				atomic_inc(&q->shared_hctx_restart);
2339 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2340 		} else {
2341 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2342 				atomic_dec(&q->shared_hctx_restart);
2343 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2344 		}
2345 	}
2346 }
2347 
2348 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2349 					bool shared)
2350 {
2351 	struct request_queue *q;
2352 
2353 	lockdep_assert_held(&set->tag_list_lock);
2354 
2355 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2356 		blk_mq_freeze_queue(q);
2357 		queue_set_hctx_shared(q, shared);
2358 		blk_mq_unfreeze_queue(q);
2359 	}
2360 }
2361 
2362 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2363 {
2364 	struct blk_mq_tag_set *set = q->tag_set;
2365 
2366 	mutex_lock(&set->tag_list_lock);
2367 	list_del_rcu(&q->tag_set_list);
2368 	if (list_is_singular(&set->tag_list)) {
2369 		/* just transitioned to unshared */
2370 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2371 		/* update existing queue */
2372 		blk_mq_update_tag_set_depth(set, false);
2373 	}
2374 	mutex_unlock(&set->tag_list_lock);
2375 	synchronize_rcu();
2376 	INIT_LIST_HEAD(&q->tag_set_list);
2377 }
2378 
2379 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2380 				     struct request_queue *q)
2381 {
2382 	q->tag_set = set;
2383 
2384 	mutex_lock(&set->tag_list_lock);
2385 
2386 	/*
2387 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2388 	 */
2389 	if (!list_empty(&set->tag_list) &&
2390 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2391 		set->flags |= BLK_MQ_F_TAG_SHARED;
2392 		/* update existing queue */
2393 		blk_mq_update_tag_set_depth(set, true);
2394 	}
2395 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2396 		queue_set_hctx_shared(q, true);
2397 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2398 
2399 	mutex_unlock(&set->tag_list_lock);
2400 }
2401 
2402 /*
2403  * It is the actual release handler for mq, but we do it from
2404  * request queue's release handler for avoiding use-after-free
2405  * and headache because q->mq_kobj shouldn't have been introduced,
2406  * but we can't group ctx/kctx kobj without it.
2407  */
2408 void blk_mq_release(struct request_queue *q)
2409 {
2410 	struct blk_mq_hw_ctx *hctx;
2411 	unsigned int i;
2412 
2413 	/* hctx kobj stays in hctx */
2414 	queue_for_each_hw_ctx(q, hctx, i) {
2415 		if (!hctx)
2416 			continue;
2417 		kobject_put(&hctx->kobj);
2418 	}
2419 
2420 	q->mq_map = NULL;
2421 
2422 	kfree(q->queue_hw_ctx);
2423 
2424 	/*
2425 	 * release .mq_kobj and sw queue's kobject now because
2426 	 * both share lifetime with request queue.
2427 	 */
2428 	blk_mq_sysfs_deinit(q);
2429 
2430 	free_percpu(q->queue_ctx);
2431 }
2432 
2433 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2434 {
2435 	struct request_queue *uninit_q, *q;
2436 
2437 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2438 	if (!uninit_q)
2439 		return ERR_PTR(-ENOMEM);
2440 
2441 	q = blk_mq_init_allocated_queue(set, uninit_q);
2442 	if (IS_ERR(q))
2443 		blk_cleanup_queue(uninit_q);
2444 
2445 	return q;
2446 }
2447 EXPORT_SYMBOL(blk_mq_init_queue);
2448 
2449 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2450 {
2451 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2452 
2453 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2454 			   __alignof__(struct blk_mq_hw_ctx)) !=
2455 		     sizeof(struct blk_mq_hw_ctx));
2456 
2457 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2458 		hw_ctx_size += sizeof(struct srcu_struct);
2459 
2460 	return hw_ctx_size;
2461 }
2462 
2463 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2464 						struct request_queue *q)
2465 {
2466 	int i, j;
2467 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2468 
2469 	blk_mq_sysfs_unregister(q);
2470 
2471 	/* protect against switching io scheduler  */
2472 	mutex_lock(&q->sysfs_lock);
2473 	for (i = 0; i < set->nr_hw_queues; i++) {
2474 		int node;
2475 
2476 		if (hctxs[i])
2477 			continue;
2478 
2479 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2480 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2481 					GFP_KERNEL, node);
2482 		if (!hctxs[i])
2483 			break;
2484 
2485 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2486 						node)) {
2487 			kfree(hctxs[i]);
2488 			hctxs[i] = NULL;
2489 			break;
2490 		}
2491 
2492 		atomic_set(&hctxs[i]->nr_active, 0);
2493 		hctxs[i]->numa_node = node;
2494 		hctxs[i]->queue_num = i;
2495 
2496 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2497 			free_cpumask_var(hctxs[i]->cpumask);
2498 			kfree(hctxs[i]);
2499 			hctxs[i] = NULL;
2500 			break;
2501 		}
2502 		blk_mq_hctx_kobj_init(hctxs[i]);
2503 	}
2504 	for (j = i; j < q->nr_hw_queues; j++) {
2505 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2506 
2507 		if (hctx) {
2508 			if (hctx->tags)
2509 				blk_mq_free_map_and_requests(set, j);
2510 			blk_mq_exit_hctx(q, set, hctx, j);
2511 			kobject_put(&hctx->kobj);
2512 			hctxs[j] = NULL;
2513 
2514 		}
2515 	}
2516 	q->nr_hw_queues = i;
2517 	mutex_unlock(&q->sysfs_lock);
2518 	blk_mq_sysfs_register(q);
2519 }
2520 
2521 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2522 						  struct request_queue *q)
2523 {
2524 	/* mark the queue as mq asap */
2525 	q->mq_ops = set->ops;
2526 
2527 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2528 					     blk_mq_poll_stats_bkt,
2529 					     BLK_MQ_POLL_STATS_BKTS, q);
2530 	if (!q->poll_cb)
2531 		goto err_exit;
2532 
2533 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2534 	if (!q->queue_ctx)
2535 		goto err_exit;
2536 
2537 	/* init q->mq_kobj and sw queues' kobjects */
2538 	blk_mq_sysfs_init(q);
2539 
2540 	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2541 						GFP_KERNEL, set->numa_node);
2542 	if (!q->queue_hw_ctx)
2543 		goto err_percpu;
2544 
2545 	q->mq_map = set->mq_map;
2546 
2547 	blk_mq_realloc_hw_ctxs(set, q);
2548 	if (!q->nr_hw_queues)
2549 		goto err_hctxs;
2550 
2551 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2552 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2553 
2554 	q->nr_queues = nr_cpu_ids;
2555 
2556 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2557 
2558 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2559 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2560 
2561 	q->sg_reserved_size = INT_MAX;
2562 
2563 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2564 	INIT_LIST_HEAD(&q->requeue_list);
2565 	spin_lock_init(&q->requeue_lock);
2566 
2567 	blk_queue_make_request(q, blk_mq_make_request);
2568 	if (q->mq_ops->poll)
2569 		q->poll_fn = blk_mq_poll;
2570 
2571 	/*
2572 	 * Do this after blk_queue_make_request() overrides it...
2573 	 */
2574 	q->nr_requests = set->queue_depth;
2575 
2576 	/*
2577 	 * Default to classic polling
2578 	 */
2579 	q->poll_nsec = -1;
2580 
2581 	if (set->ops->complete)
2582 		blk_queue_softirq_done(q, set->ops->complete);
2583 
2584 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2585 	blk_mq_add_queue_tag_set(set, q);
2586 	blk_mq_map_swqueue(q);
2587 
2588 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2589 		int ret;
2590 
2591 		ret = elevator_init_mq(q);
2592 		if (ret)
2593 			return ERR_PTR(ret);
2594 	}
2595 
2596 	return q;
2597 
2598 err_hctxs:
2599 	kfree(q->queue_hw_ctx);
2600 err_percpu:
2601 	free_percpu(q->queue_ctx);
2602 err_exit:
2603 	q->mq_ops = NULL;
2604 	return ERR_PTR(-ENOMEM);
2605 }
2606 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2607 
2608 void blk_mq_free_queue(struct request_queue *q)
2609 {
2610 	struct blk_mq_tag_set	*set = q->tag_set;
2611 
2612 	blk_mq_del_queue_tag_set(q);
2613 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2614 }
2615 
2616 /* Basically redo blk_mq_init_queue with queue frozen */
2617 static void blk_mq_queue_reinit(struct request_queue *q)
2618 {
2619 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2620 
2621 	blk_mq_debugfs_unregister_hctxs(q);
2622 	blk_mq_sysfs_unregister(q);
2623 
2624 	/*
2625 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2626 	 * we should change hctx numa_node according to the new topology (this
2627 	 * involves freeing and re-allocating memory, worth doing?)
2628 	 */
2629 	blk_mq_map_swqueue(q);
2630 
2631 	blk_mq_sysfs_register(q);
2632 	blk_mq_debugfs_register_hctxs(q);
2633 }
2634 
2635 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2636 {
2637 	int i;
2638 
2639 	for (i = 0; i < set->nr_hw_queues; i++)
2640 		if (!__blk_mq_alloc_rq_map(set, i))
2641 			goto out_unwind;
2642 
2643 	return 0;
2644 
2645 out_unwind:
2646 	while (--i >= 0)
2647 		blk_mq_free_rq_map(set->tags[i]);
2648 
2649 	return -ENOMEM;
2650 }
2651 
2652 /*
2653  * Allocate the request maps associated with this tag_set. Note that this
2654  * may reduce the depth asked for, if memory is tight. set->queue_depth
2655  * will be updated to reflect the allocated depth.
2656  */
2657 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2658 {
2659 	unsigned int depth;
2660 	int err;
2661 
2662 	depth = set->queue_depth;
2663 	do {
2664 		err = __blk_mq_alloc_rq_maps(set);
2665 		if (!err)
2666 			break;
2667 
2668 		set->queue_depth >>= 1;
2669 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2670 			err = -ENOMEM;
2671 			break;
2672 		}
2673 	} while (set->queue_depth);
2674 
2675 	if (!set->queue_depth || err) {
2676 		pr_err("blk-mq: failed to allocate request map\n");
2677 		return -ENOMEM;
2678 	}
2679 
2680 	if (depth != set->queue_depth)
2681 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2682 						depth, set->queue_depth);
2683 
2684 	return 0;
2685 }
2686 
2687 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2688 {
2689 	if (set->ops->map_queues) {
2690 		int cpu;
2691 		/*
2692 		 * transport .map_queues is usually done in the following
2693 		 * way:
2694 		 *
2695 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2696 		 * 	mask = get_cpu_mask(queue)
2697 		 * 	for_each_cpu(cpu, mask)
2698 		 * 		set->mq_map[cpu] = queue;
2699 		 * }
2700 		 *
2701 		 * When we need to remap, the table has to be cleared for
2702 		 * killing stale mapping since one CPU may not be mapped
2703 		 * to any hw queue.
2704 		 */
2705 		for_each_possible_cpu(cpu)
2706 			set->mq_map[cpu] = 0;
2707 
2708 		return set->ops->map_queues(set);
2709 	} else
2710 		return blk_mq_map_queues(set);
2711 }
2712 
2713 /*
2714  * Alloc a tag set to be associated with one or more request queues.
2715  * May fail with EINVAL for various error conditions. May adjust the
2716  * requested depth down, if if it too large. In that case, the set
2717  * value will be stored in set->queue_depth.
2718  */
2719 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2720 {
2721 	int ret;
2722 
2723 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2724 
2725 	if (!set->nr_hw_queues)
2726 		return -EINVAL;
2727 	if (!set->queue_depth)
2728 		return -EINVAL;
2729 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2730 		return -EINVAL;
2731 
2732 	if (!set->ops->queue_rq)
2733 		return -EINVAL;
2734 
2735 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2736 		return -EINVAL;
2737 
2738 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2739 		pr_info("blk-mq: reduced tag depth to %u\n",
2740 			BLK_MQ_MAX_DEPTH);
2741 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2742 	}
2743 
2744 	/*
2745 	 * If a crashdump is active, then we are potentially in a very
2746 	 * memory constrained environment. Limit us to 1 queue and
2747 	 * 64 tags to prevent using too much memory.
2748 	 */
2749 	if (is_kdump_kernel()) {
2750 		set->nr_hw_queues = 1;
2751 		set->queue_depth = min(64U, set->queue_depth);
2752 	}
2753 	/*
2754 	 * There is no use for more h/w queues than cpus.
2755 	 */
2756 	if (set->nr_hw_queues > nr_cpu_ids)
2757 		set->nr_hw_queues = nr_cpu_ids;
2758 
2759 	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2760 				 GFP_KERNEL, set->numa_node);
2761 	if (!set->tags)
2762 		return -ENOMEM;
2763 
2764 	ret = -ENOMEM;
2765 	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2766 				   GFP_KERNEL, set->numa_node);
2767 	if (!set->mq_map)
2768 		goto out_free_tags;
2769 
2770 	ret = blk_mq_update_queue_map(set);
2771 	if (ret)
2772 		goto out_free_mq_map;
2773 
2774 	ret = blk_mq_alloc_rq_maps(set);
2775 	if (ret)
2776 		goto out_free_mq_map;
2777 
2778 	mutex_init(&set->tag_list_lock);
2779 	INIT_LIST_HEAD(&set->tag_list);
2780 
2781 	return 0;
2782 
2783 out_free_mq_map:
2784 	kfree(set->mq_map);
2785 	set->mq_map = NULL;
2786 out_free_tags:
2787 	kfree(set->tags);
2788 	set->tags = NULL;
2789 	return ret;
2790 }
2791 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2792 
2793 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2794 {
2795 	int i;
2796 
2797 	for (i = 0; i < nr_cpu_ids; i++)
2798 		blk_mq_free_map_and_requests(set, i);
2799 
2800 	kfree(set->mq_map);
2801 	set->mq_map = NULL;
2802 
2803 	kfree(set->tags);
2804 	set->tags = NULL;
2805 }
2806 EXPORT_SYMBOL(blk_mq_free_tag_set);
2807 
2808 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2809 {
2810 	struct blk_mq_tag_set *set = q->tag_set;
2811 	struct blk_mq_hw_ctx *hctx;
2812 	int i, ret;
2813 
2814 	if (!set)
2815 		return -EINVAL;
2816 
2817 	blk_mq_freeze_queue(q);
2818 	blk_mq_quiesce_queue(q);
2819 
2820 	ret = 0;
2821 	queue_for_each_hw_ctx(q, hctx, i) {
2822 		if (!hctx->tags)
2823 			continue;
2824 		/*
2825 		 * If we're using an MQ scheduler, just update the scheduler
2826 		 * queue depth. This is similar to what the old code would do.
2827 		 */
2828 		if (!hctx->sched_tags) {
2829 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2830 							false);
2831 		} else {
2832 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2833 							nr, true);
2834 		}
2835 		if (ret)
2836 			break;
2837 	}
2838 
2839 	if (!ret)
2840 		q->nr_requests = nr;
2841 
2842 	blk_mq_unquiesce_queue(q);
2843 	blk_mq_unfreeze_queue(q);
2844 
2845 	return ret;
2846 }
2847 
2848 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2849 							int nr_hw_queues)
2850 {
2851 	struct request_queue *q;
2852 
2853 	lockdep_assert_held(&set->tag_list_lock);
2854 
2855 	if (nr_hw_queues > nr_cpu_ids)
2856 		nr_hw_queues = nr_cpu_ids;
2857 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2858 		return;
2859 
2860 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2861 		blk_mq_freeze_queue(q);
2862 
2863 	set->nr_hw_queues = nr_hw_queues;
2864 	blk_mq_update_queue_map(set);
2865 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2866 		blk_mq_realloc_hw_ctxs(set, q);
2867 		blk_mq_queue_reinit(q);
2868 	}
2869 
2870 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2871 		blk_mq_unfreeze_queue(q);
2872 }
2873 
2874 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2875 {
2876 	mutex_lock(&set->tag_list_lock);
2877 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2878 	mutex_unlock(&set->tag_list_lock);
2879 }
2880 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2881 
2882 /* Enable polling stats and return whether they were already enabled. */
2883 static bool blk_poll_stats_enable(struct request_queue *q)
2884 {
2885 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2886 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2887 		return true;
2888 	blk_stat_add_callback(q, q->poll_cb);
2889 	return false;
2890 }
2891 
2892 static void blk_mq_poll_stats_start(struct request_queue *q)
2893 {
2894 	/*
2895 	 * We don't arm the callback if polling stats are not enabled or the
2896 	 * callback is already active.
2897 	 */
2898 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2899 	    blk_stat_is_active(q->poll_cb))
2900 		return;
2901 
2902 	blk_stat_activate_msecs(q->poll_cb, 100);
2903 }
2904 
2905 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2906 {
2907 	struct request_queue *q = cb->data;
2908 	int bucket;
2909 
2910 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2911 		if (cb->stat[bucket].nr_samples)
2912 			q->poll_stat[bucket] = cb->stat[bucket];
2913 	}
2914 }
2915 
2916 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2917 				       struct blk_mq_hw_ctx *hctx,
2918 				       struct request *rq)
2919 {
2920 	unsigned long ret = 0;
2921 	int bucket;
2922 
2923 	/*
2924 	 * If stats collection isn't on, don't sleep but turn it on for
2925 	 * future users
2926 	 */
2927 	if (!blk_poll_stats_enable(q))
2928 		return 0;
2929 
2930 	/*
2931 	 * As an optimistic guess, use half of the mean service time
2932 	 * for this type of request. We can (and should) make this smarter.
2933 	 * For instance, if the completion latencies are tight, we can
2934 	 * get closer than just half the mean. This is especially
2935 	 * important on devices where the completion latencies are longer
2936 	 * than ~10 usec. We do use the stats for the relevant IO size
2937 	 * if available which does lead to better estimates.
2938 	 */
2939 	bucket = blk_mq_poll_stats_bkt(rq);
2940 	if (bucket < 0)
2941 		return ret;
2942 
2943 	if (q->poll_stat[bucket].nr_samples)
2944 		ret = (q->poll_stat[bucket].mean + 1) / 2;
2945 
2946 	return ret;
2947 }
2948 
2949 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2950 				     struct blk_mq_hw_ctx *hctx,
2951 				     struct request *rq)
2952 {
2953 	struct hrtimer_sleeper hs;
2954 	enum hrtimer_mode mode;
2955 	unsigned int nsecs;
2956 	ktime_t kt;
2957 
2958 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2959 		return false;
2960 
2961 	/*
2962 	 * poll_nsec can be:
2963 	 *
2964 	 * -1:	don't ever hybrid sleep
2965 	 *  0:	use half of prev avg
2966 	 * >0:	use this specific value
2967 	 */
2968 	if (q->poll_nsec == -1)
2969 		return false;
2970 	else if (q->poll_nsec > 0)
2971 		nsecs = q->poll_nsec;
2972 	else
2973 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2974 
2975 	if (!nsecs)
2976 		return false;
2977 
2978 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2979 
2980 	/*
2981 	 * This will be replaced with the stats tracking code, using
2982 	 * 'avg_completion_time / 2' as the pre-sleep target.
2983 	 */
2984 	kt = nsecs;
2985 
2986 	mode = HRTIMER_MODE_REL;
2987 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2988 	hrtimer_set_expires(&hs.timer, kt);
2989 
2990 	hrtimer_init_sleeper(&hs, current);
2991 	do {
2992 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2993 			break;
2994 		set_current_state(TASK_UNINTERRUPTIBLE);
2995 		hrtimer_start_expires(&hs.timer, mode);
2996 		if (hs.task)
2997 			io_schedule();
2998 		hrtimer_cancel(&hs.timer);
2999 		mode = HRTIMER_MODE_ABS;
3000 	} while (hs.task && !signal_pending(current));
3001 
3002 	__set_current_state(TASK_RUNNING);
3003 	destroy_hrtimer_on_stack(&hs.timer);
3004 	return true;
3005 }
3006 
3007 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3008 {
3009 	struct request_queue *q = hctx->queue;
3010 	long state;
3011 
3012 	/*
3013 	 * If we sleep, have the caller restart the poll loop to reset
3014 	 * the state. Like for the other success return cases, the
3015 	 * caller is responsible for checking if the IO completed. If
3016 	 * the IO isn't complete, we'll get called again and will go
3017 	 * straight to the busy poll loop.
3018 	 */
3019 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3020 		return true;
3021 
3022 	hctx->poll_considered++;
3023 
3024 	state = current->state;
3025 	while (!need_resched()) {
3026 		int ret;
3027 
3028 		hctx->poll_invoked++;
3029 
3030 		ret = q->mq_ops->poll(hctx, rq->tag);
3031 		if (ret > 0) {
3032 			hctx->poll_success++;
3033 			set_current_state(TASK_RUNNING);
3034 			return true;
3035 		}
3036 
3037 		if (signal_pending_state(state, current))
3038 			set_current_state(TASK_RUNNING);
3039 
3040 		if (current->state == TASK_RUNNING)
3041 			return true;
3042 		if (ret < 0)
3043 			break;
3044 		cpu_relax();
3045 	}
3046 
3047 	__set_current_state(TASK_RUNNING);
3048 	return false;
3049 }
3050 
3051 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3052 {
3053 	struct blk_mq_hw_ctx *hctx;
3054 	struct request *rq;
3055 
3056 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3057 		return false;
3058 
3059 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3060 	if (!blk_qc_t_is_internal(cookie))
3061 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3062 	else {
3063 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3064 		/*
3065 		 * With scheduling, if the request has completed, we'll
3066 		 * get a NULL return here, as we clear the sched tag when
3067 		 * that happens. The request still remains valid, like always,
3068 		 * so we should be safe with just the NULL check.
3069 		 */
3070 		if (!rq)
3071 			return false;
3072 	}
3073 
3074 	return __blk_mq_poll(hctx, rq);
3075 }
3076 
3077 static int __init blk_mq_init(void)
3078 {
3079 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3080 				blk_mq_hctx_notify_dead);
3081 	return 0;
3082 }
3083 subsys_initcall(blk_mq_init);
3084