xref: /openbmc/linux/block/blk-mq.c (revision 95777591)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40 
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	const int bit = ctx->index_hw[hctx->type];
78 
79 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 		sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82 
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 				      struct blk_mq_ctx *ctx)
85 {
86 	const int bit = ctx->index_hw[hctx->type];
87 
88 	sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90 
91 struct mq_inflight {
92 	struct hd_struct *part;
93 	unsigned int *inflight;
94 };
95 
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 				  struct request *rq, void *priv,
98 				  bool reserved)
99 {
100 	struct mq_inflight *mi = priv;
101 
102 	/*
103 	 * index[0] counts the specific partition that was asked for.
104 	 */
105 	if (rq->part == mi->part)
106 		mi->inflight[0]++;
107 
108 	return true;
109 }
110 
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 	unsigned inflight[2];
114 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
115 
116 	inflight[0] = inflight[1] = 0;
117 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 
119 	return inflight[0];
120 }
121 
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 				     struct request *rq, void *priv,
124 				     bool reserved)
125 {
126 	struct mq_inflight *mi = priv;
127 
128 	if (rq->part == mi->part)
129 		mi->inflight[rq_data_dir(rq)]++;
130 
131 	return true;
132 }
133 
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 			 unsigned int inflight[2])
136 {
137 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
138 
139 	inflight[0] = inflight[1] = 0;
140 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142 
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145 	int freeze_depth;
146 
147 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 	if (freeze_depth == 1) {
149 		percpu_ref_kill(&q->q_usage_counter);
150 		if (queue_is_mq(q))
151 			blk_mq_run_hw_queues(q, false);
152 	}
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155 
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161 
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 				     unsigned long timeout)
164 {
165 	return wait_event_timeout(q->mq_freeze_wq,
166 					percpu_ref_is_zero(&q->q_usage_counter),
167 					timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170 
171 /*
172  * Guarantee no request is in use, so we can change any data structure of
173  * the queue afterward.
174  */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177 	/*
178 	 * In the !blk_mq case we are only calling this to kill the
179 	 * q_usage_counter, otherwise this increases the freeze depth
180 	 * and waits for it to return to zero.  For this reason there is
181 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 	 * exported to drivers as the only user for unfreeze is blk_mq.
183 	 */
184 	blk_freeze_queue_start(q);
185 	blk_mq_freeze_queue_wait(q);
186 }
187 
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 	/*
191 	 * ...just an alias to keep freeze and unfreeze actions balanced
192 	 * in the blk_mq_* namespace
193 	 */
194 	blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197 
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 	int freeze_depth;
201 
202 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 	WARN_ON_ONCE(freeze_depth < 0);
204 	if (!freeze_depth) {
205 		percpu_ref_resurrect(&q->q_usage_counter);
206 		wake_up_all(&q->mq_freeze_wq);
207 	}
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210 
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220 
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 	struct blk_mq_hw_ctx *hctx;
233 	unsigned int i;
234 	bool rcu = false;
235 
236 	blk_mq_quiesce_queue_nowait(q);
237 
238 	queue_for_each_hw_ctx(q, hctx, i) {
239 		if (hctx->flags & BLK_MQ_F_BLOCKING)
240 			synchronize_srcu(hctx->srcu);
241 		else
242 			rcu = true;
243 	}
244 	if (rcu)
245 		synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248 
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259 
260 	/* dispatch requests which are inserted during quiescing */
261 	blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264 
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 	struct blk_mq_hw_ctx *hctx;
268 	unsigned int i;
269 
270 	queue_for_each_hw_ctx(q, hctx, i)
271 		if (blk_mq_hw_queue_mapped(hctx))
272 			blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274 
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277 	return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280 
281 /*
282  * Only need start/end time stamping if we have stats enabled, or using
283  * an IO scheduler.
284  */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289 
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 		unsigned int tag, unsigned int op)
292 {
293 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 	struct request *rq = tags->static_rqs[tag];
295 	req_flags_t rq_flags = 0;
296 
297 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 		rq->tag = -1;
299 		rq->internal_tag = tag;
300 	} else {
301 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 			rq_flags = RQF_MQ_INFLIGHT;
303 			atomic_inc(&data->hctx->nr_active);
304 		}
305 		rq->tag = tag;
306 		rq->internal_tag = -1;
307 		data->hctx->tags->rqs[rq->tag] = rq;
308 	}
309 
310 	/* csd/requeue_work/fifo_time is initialized before use */
311 	rq->q = data->q;
312 	rq->mq_ctx = data->ctx;
313 	rq->mq_hctx = data->hctx;
314 	rq->rq_flags = rq_flags;
315 	rq->cmd_flags = op;
316 	if (data->flags & BLK_MQ_REQ_PREEMPT)
317 		rq->rq_flags |= RQF_PREEMPT;
318 	if (blk_queue_io_stat(data->q))
319 		rq->rq_flags |= RQF_IO_STAT;
320 	INIT_LIST_HEAD(&rq->queuelist);
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->rq_disk = NULL;
324 	rq->part = NULL;
325 	if (blk_mq_need_time_stamp(rq))
326 		rq->start_time_ns = ktime_get_ns();
327 	else
328 		rq->start_time_ns = 0;
329 	rq->io_start_time_ns = 0;
330 	rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 	rq->nr_integrity_segments = 0;
333 #endif
334 	rq->special = NULL;
335 	/* tag was already set */
336 	rq->extra_len = 0;
337 	WRITE_ONCE(rq->deadline, 0);
338 
339 	rq->timeout = 0;
340 
341 	rq->end_io = NULL;
342 	rq->end_io_data = NULL;
343 	rq->next_rq = NULL;
344 
345 	data->ctx->rq_dispatched[op_is_sync(op)]++;
346 	refcount_set(&rq->ref, 1);
347 	return rq;
348 }
349 
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 					  struct bio *bio,
352 					  struct blk_mq_alloc_data *data)
353 {
354 	struct elevator_queue *e = q->elevator;
355 	struct request *rq;
356 	unsigned int tag;
357 	bool put_ctx_on_error = false;
358 
359 	blk_queue_enter_live(q);
360 	data->q = q;
361 	if (likely(!data->ctx)) {
362 		data->ctx = blk_mq_get_ctx(q);
363 		put_ctx_on_error = true;
364 	}
365 	if (likely(!data->hctx))
366 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 						data->ctx->cpu);
368 	if (data->cmd_flags & REQ_NOWAIT)
369 		data->flags |= BLK_MQ_REQ_NOWAIT;
370 
371 	if (e) {
372 		data->flags |= BLK_MQ_REQ_INTERNAL;
373 
374 		/*
375 		 * Flush requests are special and go directly to the
376 		 * dispatch list. Don't include reserved tags in the
377 		 * limiting, as it isn't useful.
378 		 */
379 		if (!op_is_flush(data->cmd_flags) &&
380 		    e->type->ops.limit_depth &&
381 		    !(data->flags & BLK_MQ_REQ_RESERVED))
382 			e->type->ops.limit_depth(data->cmd_flags, data);
383 	} else {
384 		blk_mq_tag_busy(data->hctx);
385 	}
386 
387 	tag = blk_mq_get_tag(data);
388 	if (tag == BLK_MQ_TAG_FAIL) {
389 		if (put_ctx_on_error) {
390 			blk_mq_put_ctx(data->ctx);
391 			data->ctx = NULL;
392 		}
393 		blk_queue_exit(q);
394 		return NULL;
395 	}
396 
397 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 	if (!op_is_flush(data->cmd_flags)) {
399 		rq->elv.icq = NULL;
400 		if (e && e->type->ops.prepare_request) {
401 			if (e->type->icq_cache)
402 				blk_mq_sched_assign_ioc(rq);
403 
404 			e->type->ops.prepare_request(rq, bio);
405 			rq->rq_flags |= RQF_ELVPRIV;
406 		}
407 	}
408 	data->hctx->queued++;
409 	return rq;
410 }
411 
412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
413 		blk_mq_req_flags_t flags)
414 {
415 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
416 	struct request *rq;
417 	int ret;
418 
419 	ret = blk_queue_enter(q, flags);
420 	if (ret)
421 		return ERR_PTR(ret);
422 
423 	rq = blk_mq_get_request(q, NULL, &alloc_data);
424 	blk_queue_exit(q);
425 
426 	if (!rq)
427 		return ERR_PTR(-EWOULDBLOCK);
428 
429 	blk_mq_put_ctx(alloc_data.ctx);
430 
431 	rq->__data_len = 0;
432 	rq->__sector = (sector_t) -1;
433 	rq->bio = rq->biotail = NULL;
434 	return rq;
435 }
436 EXPORT_SYMBOL(blk_mq_alloc_request);
437 
438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 {
441 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
442 	struct request *rq;
443 	unsigned int cpu;
444 	int ret;
445 
446 	/*
447 	 * If the tag allocator sleeps we could get an allocation for a
448 	 * different hardware context.  No need to complicate the low level
449 	 * allocator for this for the rare use case of a command tied to
450 	 * a specific queue.
451 	 */
452 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 		return ERR_PTR(-EINVAL);
454 
455 	if (hctx_idx >= q->nr_hw_queues)
456 		return ERR_PTR(-EIO);
457 
458 	ret = blk_queue_enter(q, flags);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 	/*
463 	 * Check if the hardware context is actually mapped to anything.
464 	 * If not tell the caller that it should skip this queue.
465 	 */
466 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 		blk_queue_exit(q);
469 		return ERR_PTR(-EXDEV);
470 	}
471 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
472 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
473 
474 	rq = blk_mq_get_request(q, NULL, &alloc_data);
475 	blk_queue_exit(q);
476 
477 	if (!rq)
478 		return ERR_PTR(-EWOULDBLOCK);
479 
480 	return rq;
481 }
482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483 
484 static void __blk_mq_free_request(struct request *rq)
485 {
486 	struct request_queue *q = rq->q;
487 	struct blk_mq_ctx *ctx = rq->mq_ctx;
488 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
489 	const int sched_tag = rq->internal_tag;
490 
491 	blk_pm_mark_last_busy(rq);
492 	rq->mq_hctx = NULL;
493 	if (rq->tag != -1)
494 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 	if (sched_tag != -1)
496 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 	blk_mq_sched_restart(hctx);
498 	blk_queue_exit(q);
499 }
500 
501 void blk_mq_free_request(struct request *rq)
502 {
503 	struct request_queue *q = rq->q;
504 	struct elevator_queue *e = q->elevator;
505 	struct blk_mq_ctx *ctx = rq->mq_ctx;
506 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
507 
508 	if (rq->rq_flags & RQF_ELVPRIV) {
509 		if (e && e->type->ops.finish_request)
510 			e->type->ops.finish_request(rq);
511 		if (rq->elv.icq) {
512 			put_io_context(rq->elv.icq->ioc);
513 			rq->elv.icq = NULL;
514 		}
515 	}
516 
517 	ctx->rq_completed[rq_is_sync(rq)]++;
518 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
519 		atomic_dec(&hctx->nr_active);
520 
521 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 		laptop_io_completion(q->backing_dev_info);
523 
524 	rq_qos_done(q, rq);
525 
526 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 	if (refcount_dec_and_test(&rq->ref))
528 		__blk_mq_free_request(rq);
529 }
530 EXPORT_SYMBOL_GPL(blk_mq_free_request);
531 
532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 {
534 	u64 now = 0;
535 
536 	if (blk_mq_need_time_stamp(rq))
537 		now = ktime_get_ns();
538 
539 	if (rq->rq_flags & RQF_STATS) {
540 		blk_mq_poll_stats_start(rq->q);
541 		blk_stat_add(rq, now);
542 	}
543 
544 	if (rq->internal_tag != -1)
545 		blk_mq_sched_completed_request(rq, now);
546 
547 	blk_account_io_done(rq, now);
548 
549 	if (rq->end_io) {
550 		rq_qos_done(rq->q, rq);
551 		rq->end_io(rq, error);
552 	} else {
553 		if (unlikely(blk_bidi_rq(rq)))
554 			blk_mq_free_request(rq->next_rq);
555 		blk_mq_free_request(rq);
556 	}
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559 
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 		BUG();
564 	__blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567 
568 static void __blk_mq_complete_request_remote(void *data)
569 {
570 	struct request *rq = data;
571 	struct request_queue *q = rq->q;
572 
573 	q->mq_ops->complete(rq);
574 }
575 
576 static void __blk_mq_complete_request(struct request *rq)
577 {
578 	struct blk_mq_ctx *ctx = rq->mq_ctx;
579 	struct request_queue *q = rq->q;
580 	bool shared = false;
581 	int cpu;
582 
583 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
584 	/*
585 	 * Most of single queue controllers, there is only one irq vector
586 	 * for handling IO completion, and the only irq's affinity is set
587 	 * as all possible CPUs. On most of ARCHs, this affinity means the
588 	 * irq is handled on one specific CPU.
589 	 *
590 	 * So complete IO reqeust in softirq context in case of single queue
591 	 * for not degrading IO performance by irqsoff latency.
592 	 */
593 	if (q->nr_hw_queues == 1) {
594 		__blk_complete_request(rq);
595 		return;
596 	}
597 
598 	/*
599 	 * For a polled request, always complete locallly, it's pointless
600 	 * to redirect the completion.
601 	 */
602 	if ((rq->cmd_flags & REQ_HIPRI) ||
603 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
604 		q->mq_ops->complete(rq);
605 		return;
606 	}
607 
608 	cpu = get_cpu();
609 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
610 		shared = cpus_share_cache(cpu, ctx->cpu);
611 
612 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
613 		rq->csd.func = __blk_mq_complete_request_remote;
614 		rq->csd.info = rq;
615 		rq->csd.flags = 0;
616 		smp_call_function_single_async(ctx->cpu, &rq->csd);
617 	} else {
618 		q->mq_ops->complete(rq);
619 	}
620 	put_cpu();
621 }
622 
623 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
624 	__releases(hctx->srcu)
625 {
626 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
627 		rcu_read_unlock();
628 	else
629 		srcu_read_unlock(hctx->srcu, srcu_idx);
630 }
631 
632 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
633 	__acquires(hctx->srcu)
634 {
635 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
636 		/* shut up gcc false positive */
637 		*srcu_idx = 0;
638 		rcu_read_lock();
639 	} else
640 		*srcu_idx = srcu_read_lock(hctx->srcu);
641 }
642 
643 /**
644  * blk_mq_complete_request - end I/O on a request
645  * @rq:		the request being processed
646  *
647  * Description:
648  *	Ends all I/O on a request. It does not handle partial completions.
649  *	The actual completion happens out-of-order, through a IPI handler.
650  **/
651 bool blk_mq_complete_request(struct request *rq)
652 {
653 	if (unlikely(blk_should_fake_timeout(rq->q)))
654 		return false;
655 	__blk_mq_complete_request(rq);
656 	return true;
657 }
658 EXPORT_SYMBOL(blk_mq_complete_request);
659 
660 int blk_mq_request_started(struct request *rq)
661 {
662 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
663 }
664 EXPORT_SYMBOL_GPL(blk_mq_request_started);
665 
666 void blk_mq_start_request(struct request *rq)
667 {
668 	struct request_queue *q = rq->q;
669 
670 	blk_mq_sched_started_request(rq);
671 
672 	trace_block_rq_issue(q, rq);
673 
674 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 		rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 		rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 		rq->rq_flags |= RQF_STATS;
680 		rq_qos_issue(q, rq);
681 	}
682 
683 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684 
685 	blk_add_timer(rq);
686 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687 
688 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 		/*
690 		 * Make sure space for the drain appears.  We know we can do
691 		 * this because max_hw_segments has been adjusted to be one
692 		 * fewer than the device can handle.
693 		 */
694 		rq->nr_phys_segments++;
695 	}
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698 
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 	struct request_queue *q = rq->q;
702 
703 	blk_mq_put_driver_tag(rq);
704 
705 	trace_block_rq_requeue(q, rq);
706 	rq_qos_requeue(q, rq);
707 
708 	if (blk_mq_request_started(rq)) {
709 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 		rq->rq_flags &= ~RQF_TIMED_OUT;
711 		if (q->dma_drain_size && blk_rq_bytes(rq))
712 			rq->nr_phys_segments--;
713 	}
714 }
715 
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718 	__blk_mq_requeue_request(rq);
719 
720 	/* this request will be re-inserted to io scheduler queue */
721 	blk_mq_sched_requeue_request(rq);
722 
723 	BUG_ON(!list_empty(&rq->queuelist));
724 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727 
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730 	struct request_queue *q =
731 		container_of(work, struct request_queue, requeue_work.work);
732 	LIST_HEAD(rq_list);
733 	struct request *rq, *next;
734 
735 	spin_lock_irq(&q->requeue_lock);
736 	list_splice_init(&q->requeue_list, &rq_list);
737 	spin_unlock_irq(&q->requeue_lock);
738 
739 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
741 			continue;
742 
743 		rq->rq_flags &= ~RQF_SOFTBARRIER;
744 		list_del_init(&rq->queuelist);
745 		/*
746 		 * If RQF_DONTPREP, rq has contained some driver specific
747 		 * data, so insert it to hctx dispatch list to avoid any
748 		 * merge.
749 		 */
750 		if (rq->rq_flags & RQF_DONTPREP)
751 			blk_mq_request_bypass_insert(rq, false);
752 		else
753 			blk_mq_sched_insert_request(rq, true, false, false);
754 	}
755 
756 	while (!list_empty(&rq_list)) {
757 		rq = list_entry(rq_list.next, struct request, queuelist);
758 		list_del_init(&rq->queuelist);
759 		blk_mq_sched_insert_request(rq, false, false, false);
760 	}
761 
762 	blk_mq_run_hw_queues(q, false);
763 }
764 
765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
766 				bool kick_requeue_list)
767 {
768 	struct request_queue *q = rq->q;
769 	unsigned long flags;
770 
771 	/*
772 	 * We abuse this flag that is otherwise used by the I/O scheduler to
773 	 * request head insertion from the workqueue.
774 	 */
775 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
776 
777 	spin_lock_irqsave(&q->requeue_lock, flags);
778 	if (at_head) {
779 		rq->rq_flags |= RQF_SOFTBARRIER;
780 		list_add(&rq->queuelist, &q->requeue_list);
781 	} else {
782 		list_add_tail(&rq->queuelist, &q->requeue_list);
783 	}
784 	spin_unlock_irqrestore(&q->requeue_lock, flags);
785 
786 	if (kick_requeue_list)
787 		blk_mq_kick_requeue_list(q);
788 }
789 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
790 
791 void blk_mq_kick_requeue_list(struct request_queue *q)
792 {
793 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
794 }
795 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
796 
797 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
798 				    unsigned long msecs)
799 {
800 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
801 				    msecs_to_jiffies(msecs));
802 }
803 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
804 
805 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
806 {
807 	if (tag < tags->nr_tags) {
808 		prefetch(tags->rqs[tag]);
809 		return tags->rqs[tag];
810 	}
811 
812 	return NULL;
813 }
814 EXPORT_SYMBOL(blk_mq_tag_to_rq);
815 
816 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
817 			       void *priv, bool reserved)
818 {
819 	/*
820 	 * If we find a request that is inflight and the queue matches,
821 	 * we know the queue is busy. Return false to stop the iteration.
822 	 */
823 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
824 		bool *busy = priv;
825 
826 		*busy = true;
827 		return false;
828 	}
829 
830 	return true;
831 }
832 
833 bool blk_mq_queue_inflight(struct request_queue *q)
834 {
835 	bool busy = false;
836 
837 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
838 	return busy;
839 }
840 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
841 
842 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
843 {
844 	req->rq_flags |= RQF_TIMED_OUT;
845 	if (req->q->mq_ops->timeout) {
846 		enum blk_eh_timer_return ret;
847 
848 		ret = req->q->mq_ops->timeout(req, reserved);
849 		if (ret == BLK_EH_DONE)
850 			return;
851 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
852 	}
853 
854 	blk_add_timer(req);
855 }
856 
857 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
858 {
859 	unsigned long deadline;
860 
861 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
862 		return false;
863 	if (rq->rq_flags & RQF_TIMED_OUT)
864 		return false;
865 
866 	deadline = READ_ONCE(rq->deadline);
867 	if (time_after_eq(jiffies, deadline))
868 		return true;
869 
870 	if (*next == 0)
871 		*next = deadline;
872 	else if (time_after(*next, deadline))
873 		*next = deadline;
874 	return false;
875 }
876 
877 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
878 		struct request *rq, void *priv, bool reserved)
879 {
880 	unsigned long *next = priv;
881 
882 	/*
883 	 * Just do a quick check if it is expired before locking the request in
884 	 * so we're not unnecessarilly synchronizing across CPUs.
885 	 */
886 	if (!blk_mq_req_expired(rq, next))
887 		return true;
888 
889 	/*
890 	 * We have reason to believe the request may be expired. Take a
891 	 * reference on the request to lock this request lifetime into its
892 	 * currently allocated context to prevent it from being reallocated in
893 	 * the event the completion by-passes this timeout handler.
894 	 *
895 	 * If the reference was already released, then the driver beat the
896 	 * timeout handler to posting a natural completion.
897 	 */
898 	if (!refcount_inc_not_zero(&rq->ref))
899 		return true;
900 
901 	/*
902 	 * The request is now locked and cannot be reallocated underneath the
903 	 * timeout handler's processing. Re-verify this exact request is truly
904 	 * expired; if it is not expired, then the request was completed and
905 	 * reallocated as a new request.
906 	 */
907 	if (blk_mq_req_expired(rq, next))
908 		blk_mq_rq_timed_out(rq, reserved);
909 	if (refcount_dec_and_test(&rq->ref))
910 		__blk_mq_free_request(rq);
911 
912 	return true;
913 }
914 
915 static void blk_mq_timeout_work(struct work_struct *work)
916 {
917 	struct request_queue *q =
918 		container_of(work, struct request_queue, timeout_work);
919 	unsigned long next = 0;
920 	struct blk_mq_hw_ctx *hctx;
921 	int i;
922 
923 	/* A deadlock might occur if a request is stuck requiring a
924 	 * timeout at the same time a queue freeze is waiting
925 	 * completion, since the timeout code would not be able to
926 	 * acquire the queue reference here.
927 	 *
928 	 * That's why we don't use blk_queue_enter here; instead, we use
929 	 * percpu_ref_tryget directly, because we need to be able to
930 	 * obtain a reference even in the short window between the queue
931 	 * starting to freeze, by dropping the first reference in
932 	 * blk_freeze_queue_start, and the moment the last request is
933 	 * consumed, marked by the instant q_usage_counter reaches
934 	 * zero.
935 	 */
936 	if (!percpu_ref_tryget(&q->q_usage_counter))
937 		return;
938 
939 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
940 
941 	if (next != 0) {
942 		mod_timer(&q->timeout, next);
943 	} else {
944 		/*
945 		 * Request timeouts are handled as a forward rolling timer. If
946 		 * we end up here it means that no requests are pending and
947 		 * also that no request has been pending for a while. Mark
948 		 * each hctx as idle.
949 		 */
950 		queue_for_each_hw_ctx(q, hctx, i) {
951 			/* the hctx may be unmapped, so check it here */
952 			if (blk_mq_hw_queue_mapped(hctx))
953 				blk_mq_tag_idle(hctx);
954 		}
955 	}
956 	blk_queue_exit(q);
957 }
958 
959 struct flush_busy_ctx_data {
960 	struct blk_mq_hw_ctx *hctx;
961 	struct list_head *list;
962 };
963 
964 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
965 {
966 	struct flush_busy_ctx_data *flush_data = data;
967 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
968 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
969 	enum hctx_type type = hctx->type;
970 
971 	spin_lock(&ctx->lock);
972 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
973 	sbitmap_clear_bit(sb, bitnr);
974 	spin_unlock(&ctx->lock);
975 	return true;
976 }
977 
978 /*
979  * Process software queues that have been marked busy, splicing them
980  * to the for-dispatch
981  */
982 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
983 {
984 	struct flush_busy_ctx_data data = {
985 		.hctx = hctx,
986 		.list = list,
987 	};
988 
989 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
990 }
991 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
992 
993 struct dispatch_rq_data {
994 	struct blk_mq_hw_ctx *hctx;
995 	struct request *rq;
996 };
997 
998 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
999 		void *data)
1000 {
1001 	struct dispatch_rq_data *dispatch_data = data;
1002 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1003 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1004 	enum hctx_type type = hctx->type;
1005 
1006 	spin_lock(&ctx->lock);
1007 	if (!list_empty(&ctx->rq_lists[type])) {
1008 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1009 		list_del_init(&dispatch_data->rq->queuelist);
1010 		if (list_empty(&ctx->rq_lists[type]))
1011 			sbitmap_clear_bit(sb, bitnr);
1012 	}
1013 	spin_unlock(&ctx->lock);
1014 
1015 	return !dispatch_data->rq;
1016 }
1017 
1018 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1019 					struct blk_mq_ctx *start)
1020 {
1021 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1022 	struct dispatch_rq_data data = {
1023 		.hctx = hctx,
1024 		.rq   = NULL,
1025 	};
1026 
1027 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1028 			       dispatch_rq_from_ctx, &data);
1029 
1030 	return data.rq;
1031 }
1032 
1033 static inline unsigned int queued_to_index(unsigned int queued)
1034 {
1035 	if (!queued)
1036 		return 0;
1037 
1038 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1039 }
1040 
1041 bool blk_mq_get_driver_tag(struct request *rq)
1042 {
1043 	struct blk_mq_alloc_data data = {
1044 		.q = rq->q,
1045 		.hctx = rq->mq_hctx,
1046 		.flags = BLK_MQ_REQ_NOWAIT,
1047 		.cmd_flags = rq->cmd_flags,
1048 	};
1049 	bool shared;
1050 
1051 	if (rq->tag != -1)
1052 		goto done;
1053 
1054 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1055 		data.flags |= BLK_MQ_REQ_RESERVED;
1056 
1057 	shared = blk_mq_tag_busy(data.hctx);
1058 	rq->tag = blk_mq_get_tag(&data);
1059 	if (rq->tag >= 0) {
1060 		if (shared) {
1061 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1062 			atomic_inc(&data.hctx->nr_active);
1063 		}
1064 		data.hctx->tags->rqs[rq->tag] = rq;
1065 	}
1066 
1067 done:
1068 	return rq->tag != -1;
1069 }
1070 
1071 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1072 				int flags, void *key)
1073 {
1074 	struct blk_mq_hw_ctx *hctx;
1075 
1076 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1077 
1078 	spin_lock(&hctx->dispatch_wait_lock);
1079 	list_del_init(&wait->entry);
1080 	spin_unlock(&hctx->dispatch_wait_lock);
1081 
1082 	blk_mq_run_hw_queue(hctx, true);
1083 	return 1;
1084 }
1085 
1086 /*
1087  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1088  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1089  * restart. For both cases, take care to check the condition again after
1090  * marking us as waiting.
1091  */
1092 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1093 				 struct request *rq)
1094 {
1095 	struct wait_queue_head *wq;
1096 	wait_queue_entry_t *wait;
1097 	bool ret;
1098 
1099 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1100 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1101 			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1102 
1103 		/*
1104 		 * It's possible that a tag was freed in the window between the
1105 		 * allocation failure and adding the hardware queue to the wait
1106 		 * queue.
1107 		 *
1108 		 * Don't clear RESTART here, someone else could have set it.
1109 		 * At most this will cost an extra queue run.
1110 		 */
1111 		return blk_mq_get_driver_tag(rq);
1112 	}
1113 
1114 	wait = &hctx->dispatch_wait;
1115 	if (!list_empty_careful(&wait->entry))
1116 		return false;
1117 
1118 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1119 
1120 	spin_lock_irq(&wq->lock);
1121 	spin_lock(&hctx->dispatch_wait_lock);
1122 	if (!list_empty(&wait->entry)) {
1123 		spin_unlock(&hctx->dispatch_wait_lock);
1124 		spin_unlock_irq(&wq->lock);
1125 		return false;
1126 	}
1127 
1128 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1129 	__add_wait_queue(wq, wait);
1130 
1131 	/*
1132 	 * It's possible that a tag was freed in the window between the
1133 	 * allocation failure and adding the hardware queue to the wait
1134 	 * queue.
1135 	 */
1136 	ret = blk_mq_get_driver_tag(rq);
1137 	if (!ret) {
1138 		spin_unlock(&hctx->dispatch_wait_lock);
1139 		spin_unlock_irq(&wq->lock);
1140 		return false;
1141 	}
1142 
1143 	/*
1144 	 * We got a tag, remove ourselves from the wait queue to ensure
1145 	 * someone else gets the wakeup.
1146 	 */
1147 	list_del_init(&wait->entry);
1148 	spin_unlock(&hctx->dispatch_wait_lock);
1149 	spin_unlock_irq(&wq->lock);
1150 
1151 	return true;
1152 }
1153 
1154 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1155 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1156 /*
1157  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1158  * - EWMA is one simple way to compute running average value
1159  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1160  * - take 4 as factor for avoiding to get too small(0) result, and this
1161  *   factor doesn't matter because EWMA decreases exponentially
1162  */
1163 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1164 {
1165 	unsigned int ewma;
1166 
1167 	if (hctx->queue->elevator)
1168 		return;
1169 
1170 	ewma = hctx->dispatch_busy;
1171 
1172 	if (!ewma && !busy)
1173 		return;
1174 
1175 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1176 	if (busy)
1177 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1178 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1179 
1180 	hctx->dispatch_busy = ewma;
1181 }
1182 
1183 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1184 
1185 /*
1186  * Returns true if we did some work AND can potentially do more.
1187  */
1188 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1189 			     bool got_budget)
1190 {
1191 	struct blk_mq_hw_ctx *hctx;
1192 	struct request *rq, *nxt;
1193 	bool no_tag = false;
1194 	int errors, queued;
1195 	blk_status_t ret = BLK_STS_OK;
1196 
1197 	if (list_empty(list))
1198 		return false;
1199 
1200 	WARN_ON(!list_is_singular(list) && got_budget);
1201 
1202 	/*
1203 	 * Now process all the entries, sending them to the driver.
1204 	 */
1205 	errors = queued = 0;
1206 	do {
1207 		struct blk_mq_queue_data bd;
1208 
1209 		rq = list_first_entry(list, struct request, queuelist);
1210 
1211 		hctx = rq->mq_hctx;
1212 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1213 			break;
1214 
1215 		if (!blk_mq_get_driver_tag(rq)) {
1216 			/*
1217 			 * The initial allocation attempt failed, so we need to
1218 			 * rerun the hardware queue when a tag is freed. The
1219 			 * waitqueue takes care of that. If the queue is run
1220 			 * before we add this entry back on the dispatch list,
1221 			 * we'll re-run it below.
1222 			 */
1223 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1224 				blk_mq_put_dispatch_budget(hctx);
1225 				/*
1226 				 * For non-shared tags, the RESTART check
1227 				 * will suffice.
1228 				 */
1229 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1230 					no_tag = true;
1231 				break;
1232 			}
1233 		}
1234 
1235 		list_del_init(&rq->queuelist);
1236 
1237 		bd.rq = rq;
1238 
1239 		/*
1240 		 * Flag last if we have no more requests, or if we have more
1241 		 * but can't assign a driver tag to it.
1242 		 */
1243 		if (list_empty(list))
1244 			bd.last = true;
1245 		else {
1246 			nxt = list_first_entry(list, struct request, queuelist);
1247 			bd.last = !blk_mq_get_driver_tag(nxt);
1248 		}
1249 
1250 		ret = q->mq_ops->queue_rq(hctx, &bd);
1251 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1252 			/*
1253 			 * If an I/O scheduler has been configured and we got a
1254 			 * driver tag for the next request already, free it
1255 			 * again.
1256 			 */
1257 			if (!list_empty(list)) {
1258 				nxt = list_first_entry(list, struct request, queuelist);
1259 				blk_mq_put_driver_tag(nxt);
1260 			}
1261 			list_add(&rq->queuelist, list);
1262 			__blk_mq_requeue_request(rq);
1263 			break;
1264 		}
1265 
1266 		if (unlikely(ret != BLK_STS_OK)) {
1267 			errors++;
1268 			blk_mq_end_request(rq, BLK_STS_IOERR);
1269 			continue;
1270 		}
1271 
1272 		queued++;
1273 	} while (!list_empty(list));
1274 
1275 	hctx->dispatched[queued_to_index(queued)]++;
1276 
1277 	/*
1278 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1279 	 * that is where we will continue on next queue run.
1280 	 */
1281 	if (!list_empty(list)) {
1282 		bool needs_restart;
1283 
1284 		/*
1285 		 * If we didn't flush the entire list, we could have told
1286 		 * the driver there was more coming, but that turned out to
1287 		 * be a lie.
1288 		 */
1289 		if (q->mq_ops->commit_rqs)
1290 			q->mq_ops->commit_rqs(hctx);
1291 
1292 		spin_lock(&hctx->lock);
1293 		list_splice_init(list, &hctx->dispatch);
1294 		spin_unlock(&hctx->lock);
1295 
1296 		/*
1297 		 * If SCHED_RESTART was set by the caller of this function and
1298 		 * it is no longer set that means that it was cleared by another
1299 		 * thread and hence that a queue rerun is needed.
1300 		 *
1301 		 * If 'no_tag' is set, that means that we failed getting
1302 		 * a driver tag with an I/O scheduler attached. If our dispatch
1303 		 * waitqueue is no longer active, ensure that we run the queue
1304 		 * AFTER adding our entries back to the list.
1305 		 *
1306 		 * If no I/O scheduler has been configured it is possible that
1307 		 * the hardware queue got stopped and restarted before requests
1308 		 * were pushed back onto the dispatch list. Rerun the queue to
1309 		 * avoid starvation. Notes:
1310 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1311 		 *   been stopped before rerunning a queue.
1312 		 * - Some but not all block drivers stop a queue before
1313 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1314 		 *   and dm-rq.
1315 		 *
1316 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1317 		 * bit is set, run queue after a delay to avoid IO stalls
1318 		 * that could otherwise occur if the queue is idle.
1319 		 */
1320 		needs_restart = blk_mq_sched_needs_restart(hctx);
1321 		if (!needs_restart ||
1322 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1323 			blk_mq_run_hw_queue(hctx, true);
1324 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1325 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1326 
1327 		blk_mq_update_dispatch_busy(hctx, true);
1328 		return false;
1329 	} else
1330 		blk_mq_update_dispatch_busy(hctx, false);
1331 
1332 	/*
1333 	 * If the host/device is unable to accept more work, inform the
1334 	 * caller of that.
1335 	 */
1336 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1337 		return false;
1338 
1339 	return (queued + errors) != 0;
1340 }
1341 
1342 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1343 {
1344 	int srcu_idx;
1345 
1346 	/*
1347 	 * We should be running this queue from one of the CPUs that
1348 	 * are mapped to it.
1349 	 *
1350 	 * There are at least two related races now between setting
1351 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1352 	 * __blk_mq_run_hw_queue():
1353 	 *
1354 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1355 	 *   but later it becomes online, then this warning is harmless
1356 	 *   at all
1357 	 *
1358 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1359 	 *   but later it becomes offline, then the warning can't be
1360 	 *   triggered, and we depend on blk-mq timeout handler to
1361 	 *   handle dispatched requests to this hctx
1362 	 */
1363 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1364 		cpu_online(hctx->next_cpu)) {
1365 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1366 			raw_smp_processor_id(),
1367 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1368 		dump_stack();
1369 	}
1370 
1371 	/*
1372 	 * We can't run the queue inline with ints disabled. Ensure that
1373 	 * we catch bad users of this early.
1374 	 */
1375 	WARN_ON_ONCE(in_interrupt());
1376 
1377 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1378 
1379 	hctx_lock(hctx, &srcu_idx);
1380 	blk_mq_sched_dispatch_requests(hctx);
1381 	hctx_unlock(hctx, srcu_idx);
1382 }
1383 
1384 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1385 {
1386 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1387 
1388 	if (cpu >= nr_cpu_ids)
1389 		cpu = cpumask_first(hctx->cpumask);
1390 	return cpu;
1391 }
1392 
1393 /*
1394  * It'd be great if the workqueue API had a way to pass
1395  * in a mask and had some smarts for more clever placement.
1396  * For now we just round-robin here, switching for every
1397  * BLK_MQ_CPU_WORK_BATCH queued items.
1398  */
1399 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1400 {
1401 	bool tried = false;
1402 	int next_cpu = hctx->next_cpu;
1403 
1404 	if (hctx->queue->nr_hw_queues == 1)
1405 		return WORK_CPU_UNBOUND;
1406 
1407 	if (--hctx->next_cpu_batch <= 0) {
1408 select_cpu:
1409 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1410 				cpu_online_mask);
1411 		if (next_cpu >= nr_cpu_ids)
1412 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1413 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1414 	}
1415 
1416 	/*
1417 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1418 	 * and it should only happen in the path of handling CPU DEAD.
1419 	 */
1420 	if (!cpu_online(next_cpu)) {
1421 		if (!tried) {
1422 			tried = true;
1423 			goto select_cpu;
1424 		}
1425 
1426 		/*
1427 		 * Make sure to re-select CPU next time once after CPUs
1428 		 * in hctx->cpumask become online again.
1429 		 */
1430 		hctx->next_cpu = next_cpu;
1431 		hctx->next_cpu_batch = 1;
1432 		return WORK_CPU_UNBOUND;
1433 	}
1434 
1435 	hctx->next_cpu = next_cpu;
1436 	return next_cpu;
1437 }
1438 
1439 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1440 					unsigned long msecs)
1441 {
1442 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1443 		return;
1444 
1445 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1446 		int cpu = get_cpu();
1447 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1448 			__blk_mq_run_hw_queue(hctx);
1449 			put_cpu();
1450 			return;
1451 		}
1452 
1453 		put_cpu();
1454 	}
1455 
1456 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1457 				    msecs_to_jiffies(msecs));
1458 }
1459 
1460 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1461 {
1462 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1463 }
1464 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1465 
1466 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1467 {
1468 	int srcu_idx;
1469 	bool need_run;
1470 
1471 	/*
1472 	 * When queue is quiesced, we may be switching io scheduler, or
1473 	 * updating nr_hw_queues, or other things, and we can't run queue
1474 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1475 	 *
1476 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1477 	 * quiesced.
1478 	 */
1479 	hctx_lock(hctx, &srcu_idx);
1480 	need_run = !blk_queue_quiesced(hctx->queue) &&
1481 		blk_mq_hctx_has_pending(hctx);
1482 	hctx_unlock(hctx, srcu_idx);
1483 
1484 	if (need_run) {
1485 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1486 		return true;
1487 	}
1488 
1489 	return false;
1490 }
1491 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1492 
1493 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1494 {
1495 	struct blk_mq_hw_ctx *hctx;
1496 	int i;
1497 
1498 	queue_for_each_hw_ctx(q, hctx, i) {
1499 		if (blk_mq_hctx_stopped(hctx))
1500 			continue;
1501 
1502 		blk_mq_run_hw_queue(hctx, async);
1503 	}
1504 }
1505 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1506 
1507 /**
1508  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1509  * @q: request queue.
1510  *
1511  * The caller is responsible for serializing this function against
1512  * blk_mq_{start,stop}_hw_queue().
1513  */
1514 bool blk_mq_queue_stopped(struct request_queue *q)
1515 {
1516 	struct blk_mq_hw_ctx *hctx;
1517 	int i;
1518 
1519 	queue_for_each_hw_ctx(q, hctx, i)
1520 		if (blk_mq_hctx_stopped(hctx))
1521 			return true;
1522 
1523 	return false;
1524 }
1525 EXPORT_SYMBOL(blk_mq_queue_stopped);
1526 
1527 /*
1528  * This function is often used for pausing .queue_rq() by driver when
1529  * there isn't enough resource or some conditions aren't satisfied, and
1530  * BLK_STS_RESOURCE is usually returned.
1531  *
1532  * We do not guarantee that dispatch can be drained or blocked
1533  * after blk_mq_stop_hw_queue() returns. Please use
1534  * blk_mq_quiesce_queue() for that requirement.
1535  */
1536 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1537 {
1538 	cancel_delayed_work(&hctx->run_work);
1539 
1540 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1541 }
1542 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1543 
1544 /*
1545  * This function is often used for pausing .queue_rq() by driver when
1546  * there isn't enough resource or some conditions aren't satisfied, and
1547  * BLK_STS_RESOURCE is usually returned.
1548  *
1549  * We do not guarantee that dispatch can be drained or blocked
1550  * after blk_mq_stop_hw_queues() returns. Please use
1551  * blk_mq_quiesce_queue() for that requirement.
1552  */
1553 void blk_mq_stop_hw_queues(struct request_queue *q)
1554 {
1555 	struct blk_mq_hw_ctx *hctx;
1556 	int i;
1557 
1558 	queue_for_each_hw_ctx(q, hctx, i)
1559 		blk_mq_stop_hw_queue(hctx);
1560 }
1561 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1562 
1563 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1564 {
1565 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1566 
1567 	blk_mq_run_hw_queue(hctx, false);
1568 }
1569 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1570 
1571 void blk_mq_start_hw_queues(struct request_queue *q)
1572 {
1573 	struct blk_mq_hw_ctx *hctx;
1574 	int i;
1575 
1576 	queue_for_each_hw_ctx(q, hctx, i)
1577 		blk_mq_start_hw_queue(hctx);
1578 }
1579 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1580 
1581 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1582 {
1583 	if (!blk_mq_hctx_stopped(hctx))
1584 		return;
1585 
1586 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1587 	blk_mq_run_hw_queue(hctx, async);
1588 }
1589 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1590 
1591 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1592 {
1593 	struct blk_mq_hw_ctx *hctx;
1594 	int i;
1595 
1596 	queue_for_each_hw_ctx(q, hctx, i)
1597 		blk_mq_start_stopped_hw_queue(hctx, async);
1598 }
1599 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1600 
1601 static void blk_mq_run_work_fn(struct work_struct *work)
1602 {
1603 	struct blk_mq_hw_ctx *hctx;
1604 
1605 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1606 
1607 	/*
1608 	 * If we are stopped, don't run the queue.
1609 	 */
1610 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1611 		return;
1612 
1613 	__blk_mq_run_hw_queue(hctx);
1614 }
1615 
1616 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1617 					    struct request *rq,
1618 					    bool at_head)
1619 {
1620 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1621 	enum hctx_type type = hctx->type;
1622 
1623 	lockdep_assert_held(&ctx->lock);
1624 
1625 	trace_block_rq_insert(hctx->queue, rq);
1626 
1627 	if (at_head)
1628 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1629 	else
1630 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1631 }
1632 
1633 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1634 			     bool at_head)
1635 {
1636 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1637 
1638 	lockdep_assert_held(&ctx->lock);
1639 
1640 	__blk_mq_insert_req_list(hctx, rq, at_head);
1641 	blk_mq_hctx_mark_pending(hctx, ctx);
1642 }
1643 
1644 /*
1645  * Should only be used carefully, when the caller knows we want to
1646  * bypass a potential IO scheduler on the target device.
1647  */
1648 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1649 {
1650 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1651 
1652 	spin_lock(&hctx->lock);
1653 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1654 	spin_unlock(&hctx->lock);
1655 
1656 	if (run_queue)
1657 		blk_mq_run_hw_queue(hctx, false);
1658 }
1659 
1660 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1661 			    struct list_head *list)
1662 
1663 {
1664 	struct request *rq;
1665 	enum hctx_type type = hctx->type;
1666 
1667 	/*
1668 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1669 	 * offline now
1670 	 */
1671 	list_for_each_entry(rq, list, queuelist) {
1672 		BUG_ON(rq->mq_ctx != ctx);
1673 		trace_block_rq_insert(hctx->queue, rq);
1674 	}
1675 
1676 	spin_lock(&ctx->lock);
1677 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1678 	blk_mq_hctx_mark_pending(hctx, ctx);
1679 	spin_unlock(&ctx->lock);
1680 }
1681 
1682 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1683 {
1684 	struct request *rqa = container_of(a, struct request, queuelist);
1685 	struct request *rqb = container_of(b, struct request, queuelist);
1686 
1687 	if (rqa->mq_ctx < rqb->mq_ctx)
1688 		return -1;
1689 	else if (rqa->mq_ctx > rqb->mq_ctx)
1690 		return 1;
1691 	else if (rqa->mq_hctx < rqb->mq_hctx)
1692 		return -1;
1693 	else if (rqa->mq_hctx > rqb->mq_hctx)
1694 		return 1;
1695 
1696 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1697 }
1698 
1699 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1700 {
1701 	struct blk_mq_hw_ctx *this_hctx;
1702 	struct blk_mq_ctx *this_ctx;
1703 	struct request_queue *this_q;
1704 	struct request *rq;
1705 	LIST_HEAD(list);
1706 	LIST_HEAD(rq_list);
1707 	unsigned int depth;
1708 
1709 	list_splice_init(&plug->mq_list, &list);
1710 	plug->rq_count = 0;
1711 
1712 	if (plug->rq_count > 2 && plug->multiple_queues)
1713 		list_sort(NULL, &list, plug_rq_cmp);
1714 
1715 	this_q = NULL;
1716 	this_hctx = NULL;
1717 	this_ctx = NULL;
1718 	depth = 0;
1719 
1720 	while (!list_empty(&list)) {
1721 		rq = list_entry_rq(list.next);
1722 		list_del_init(&rq->queuelist);
1723 		BUG_ON(!rq->q);
1724 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1725 			if (this_hctx) {
1726 				trace_block_unplug(this_q, depth, !from_schedule);
1727 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1728 								&rq_list,
1729 								from_schedule);
1730 			}
1731 
1732 			this_q = rq->q;
1733 			this_ctx = rq->mq_ctx;
1734 			this_hctx = rq->mq_hctx;
1735 			depth = 0;
1736 		}
1737 
1738 		depth++;
1739 		list_add_tail(&rq->queuelist, &rq_list);
1740 	}
1741 
1742 	/*
1743 	 * If 'this_hctx' is set, we know we have entries to complete
1744 	 * on 'rq_list'. Do those.
1745 	 */
1746 	if (this_hctx) {
1747 		trace_block_unplug(this_q, depth, !from_schedule);
1748 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1749 						from_schedule);
1750 	}
1751 }
1752 
1753 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1754 {
1755 	blk_init_request_from_bio(rq, bio);
1756 
1757 	blk_account_io_start(rq, true);
1758 }
1759 
1760 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1761 					    struct request *rq,
1762 					    blk_qc_t *cookie, bool last)
1763 {
1764 	struct request_queue *q = rq->q;
1765 	struct blk_mq_queue_data bd = {
1766 		.rq = rq,
1767 		.last = last,
1768 	};
1769 	blk_qc_t new_cookie;
1770 	blk_status_t ret;
1771 
1772 	new_cookie = request_to_qc_t(hctx, rq);
1773 
1774 	/*
1775 	 * For OK queue, we are done. For error, caller may kill it.
1776 	 * Any other error (busy), just add it to our list as we
1777 	 * previously would have done.
1778 	 */
1779 	ret = q->mq_ops->queue_rq(hctx, &bd);
1780 	switch (ret) {
1781 	case BLK_STS_OK:
1782 		blk_mq_update_dispatch_busy(hctx, false);
1783 		*cookie = new_cookie;
1784 		break;
1785 	case BLK_STS_RESOURCE:
1786 	case BLK_STS_DEV_RESOURCE:
1787 		blk_mq_update_dispatch_busy(hctx, true);
1788 		__blk_mq_requeue_request(rq);
1789 		break;
1790 	default:
1791 		blk_mq_update_dispatch_busy(hctx, false);
1792 		*cookie = BLK_QC_T_NONE;
1793 		break;
1794 	}
1795 
1796 	return ret;
1797 }
1798 
1799 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1800 						struct request *rq,
1801 						blk_qc_t *cookie,
1802 						bool bypass, bool last)
1803 {
1804 	struct request_queue *q = rq->q;
1805 	bool run_queue = true;
1806 	blk_status_t ret = BLK_STS_RESOURCE;
1807 	int srcu_idx;
1808 	bool force = false;
1809 
1810 	hctx_lock(hctx, &srcu_idx);
1811 	/*
1812 	 * hctx_lock is needed before checking quiesced flag.
1813 	 *
1814 	 * When queue is stopped or quiesced, ignore 'bypass', insert
1815 	 * and return BLK_STS_OK to caller, and avoid driver to try to
1816 	 * dispatch again.
1817 	 */
1818 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1819 		run_queue = false;
1820 		bypass = false;
1821 		goto out_unlock;
1822 	}
1823 
1824 	if (unlikely(q->elevator && !bypass))
1825 		goto out_unlock;
1826 
1827 	if (!blk_mq_get_dispatch_budget(hctx))
1828 		goto out_unlock;
1829 
1830 	if (!blk_mq_get_driver_tag(rq)) {
1831 		blk_mq_put_dispatch_budget(hctx);
1832 		goto out_unlock;
1833 	}
1834 
1835 	/*
1836 	 * Always add a request that has been through
1837 	 *.queue_rq() to the hardware dispatch list.
1838 	 */
1839 	force = true;
1840 	ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1841 out_unlock:
1842 	hctx_unlock(hctx, srcu_idx);
1843 	switch (ret) {
1844 	case BLK_STS_OK:
1845 		break;
1846 	case BLK_STS_DEV_RESOURCE:
1847 	case BLK_STS_RESOURCE:
1848 		if (force) {
1849 			blk_mq_request_bypass_insert(rq, run_queue);
1850 			/*
1851 			 * We have to return BLK_STS_OK for the DM
1852 			 * to avoid livelock. Otherwise, we return
1853 			 * the real result to indicate whether the
1854 			 * request is direct-issued successfully.
1855 			 */
1856 			ret = bypass ? BLK_STS_OK : ret;
1857 		} else if (!bypass) {
1858 			blk_mq_sched_insert_request(rq, false,
1859 						    run_queue, false);
1860 		}
1861 		break;
1862 	default:
1863 		if (!bypass)
1864 			blk_mq_end_request(rq, ret);
1865 		break;
1866 	}
1867 
1868 	return ret;
1869 }
1870 
1871 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1872 		struct list_head *list)
1873 {
1874 	blk_qc_t unused;
1875 	blk_status_t ret = BLK_STS_OK;
1876 
1877 	while (!list_empty(list)) {
1878 		struct request *rq = list_first_entry(list, struct request,
1879 				queuelist);
1880 
1881 		list_del_init(&rq->queuelist);
1882 		if (ret == BLK_STS_OK)
1883 			ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1884 							false,
1885 							list_empty(list));
1886 		else
1887 			blk_mq_sched_insert_request(rq, false, true, false);
1888 	}
1889 
1890 	/*
1891 	 * If we didn't flush the entire list, we could have told
1892 	 * the driver there was more coming, but that turned out to
1893 	 * be a lie.
1894 	 */
1895 	if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1896 		hctx->queue->mq_ops->commit_rqs(hctx);
1897 }
1898 
1899 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1900 {
1901 	list_add_tail(&rq->queuelist, &plug->mq_list);
1902 	plug->rq_count++;
1903 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1904 		struct request *tmp;
1905 
1906 		tmp = list_first_entry(&plug->mq_list, struct request,
1907 						queuelist);
1908 		if (tmp->q != rq->q)
1909 			plug->multiple_queues = true;
1910 	}
1911 }
1912 
1913 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1914 {
1915 	const int is_sync = op_is_sync(bio->bi_opf);
1916 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1917 	struct blk_mq_alloc_data data = { .flags = 0};
1918 	struct request *rq;
1919 	struct blk_plug *plug;
1920 	struct request *same_queue_rq = NULL;
1921 	blk_qc_t cookie;
1922 
1923 	blk_queue_bounce(q, &bio);
1924 
1925 	blk_queue_split(q, &bio);
1926 
1927 	if (!bio_integrity_prep(bio))
1928 		return BLK_QC_T_NONE;
1929 
1930 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1931 	    blk_attempt_plug_merge(q, bio, &same_queue_rq))
1932 		return BLK_QC_T_NONE;
1933 
1934 	if (blk_mq_sched_bio_merge(q, bio))
1935 		return BLK_QC_T_NONE;
1936 
1937 	rq_qos_throttle(q, bio);
1938 
1939 	data.cmd_flags = bio->bi_opf;
1940 	rq = blk_mq_get_request(q, bio, &data);
1941 	if (unlikely(!rq)) {
1942 		rq_qos_cleanup(q, bio);
1943 		if (bio->bi_opf & REQ_NOWAIT)
1944 			bio_wouldblock_error(bio);
1945 		return BLK_QC_T_NONE;
1946 	}
1947 
1948 	trace_block_getrq(q, bio, bio->bi_opf);
1949 
1950 	rq_qos_track(q, rq, bio);
1951 
1952 	cookie = request_to_qc_t(data.hctx, rq);
1953 
1954 	plug = current->plug;
1955 	if (unlikely(is_flush_fua)) {
1956 		blk_mq_put_ctx(data.ctx);
1957 		blk_mq_bio_to_request(rq, bio);
1958 
1959 		/* bypass scheduler for flush rq */
1960 		blk_insert_flush(rq);
1961 		blk_mq_run_hw_queue(data.hctx, true);
1962 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1963 		/*
1964 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1965 		 * we know the driver uses bd->last in a smart fashion.
1966 		 */
1967 		unsigned int request_count = plug->rq_count;
1968 		struct request *last = NULL;
1969 
1970 		blk_mq_put_ctx(data.ctx);
1971 		blk_mq_bio_to_request(rq, bio);
1972 
1973 		if (!request_count)
1974 			trace_block_plug(q);
1975 		else
1976 			last = list_entry_rq(plug->mq_list.prev);
1977 
1978 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1979 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1980 			blk_flush_plug_list(plug, false);
1981 			trace_block_plug(q);
1982 		}
1983 
1984 		blk_add_rq_to_plug(plug, rq);
1985 	} else if (plug && !blk_queue_nomerges(q)) {
1986 		blk_mq_bio_to_request(rq, bio);
1987 
1988 		/*
1989 		 * We do limited plugging. If the bio can be merged, do that.
1990 		 * Otherwise the existing request in the plug list will be
1991 		 * issued. So the plug list will have one request at most
1992 		 * The plug list might get flushed before this. If that happens,
1993 		 * the plug list is empty, and same_queue_rq is invalid.
1994 		 */
1995 		if (list_empty(&plug->mq_list))
1996 			same_queue_rq = NULL;
1997 		if (same_queue_rq) {
1998 			list_del_init(&same_queue_rq->queuelist);
1999 			plug->rq_count--;
2000 		}
2001 		blk_add_rq_to_plug(plug, rq);
2002 
2003 		blk_mq_put_ctx(data.ctx);
2004 
2005 		if (same_queue_rq) {
2006 			data.hctx = same_queue_rq->mq_hctx;
2007 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2008 					&cookie, false, true);
2009 		}
2010 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2011 			!data.hctx->dispatch_busy)) {
2012 		blk_mq_put_ctx(data.ctx);
2013 		blk_mq_bio_to_request(rq, bio);
2014 		blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2015 	} else {
2016 		blk_mq_put_ctx(data.ctx);
2017 		blk_mq_bio_to_request(rq, bio);
2018 		blk_mq_sched_insert_request(rq, false, true, true);
2019 	}
2020 
2021 	return cookie;
2022 }
2023 
2024 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2025 		     unsigned int hctx_idx)
2026 {
2027 	struct page *page;
2028 
2029 	if (tags->rqs && set->ops->exit_request) {
2030 		int i;
2031 
2032 		for (i = 0; i < tags->nr_tags; i++) {
2033 			struct request *rq = tags->static_rqs[i];
2034 
2035 			if (!rq)
2036 				continue;
2037 			set->ops->exit_request(set, rq, hctx_idx);
2038 			tags->static_rqs[i] = NULL;
2039 		}
2040 	}
2041 
2042 	while (!list_empty(&tags->page_list)) {
2043 		page = list_first_entry(&tags->page_list, struct page, lru);
2044 		list_del_init(&page->lru);
2045 		/*
2046 		 * Remove kmemleak object previously allocated in
2047 		 * blk_mq_init_rq_map().
2048 		 */
2049 		kmemleak_free(page_address(page));
2050 		__free_pages(page, page->private);
2051 	}
2052 }
2053 
2054 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2055 {
2056 	kfree(tags->rqs);
2057 	tags->rqs = NULL;
2058 	kfree(tags->static_rqs);
2059 	tags->static_rqs = NULL;
2060 
2061 	blk_mq_free_tags(tags);
2062 }
2063 
2064 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2065 					unsigned int hctx_idx,
2066 					unsigned int nr_tags,
2067 					unsigned int reserved_tags)
2068 {
2069 	struct blk_mq_tags *tags;
2070 	int node;
2071 
2072 	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2073 	if (node == NUMA_NO_NODE)
2074 		node = set->numa_node;
2075 
2076 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2077 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2078 	if (!tags)
2079 		return NULL;
2080 
2081 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2082 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2083 				 node);
2084 	if (!tags->rqs) {
2085 		blk_mq_free_tags(tags);
2086 		return NULL;
2087 	}
2088 
2089 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2090 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2091 					node);
2092 	if (!tags->static_rqs) {
2093 		kfree(tags->rqs);
2094 		blk_mq_free_tags(tags);
2095 		return NULL;
2096 	}
2097 
2098 	return tags;
2099 }
2100 
2101 static size_t order_to_size(unsigned int order)
2102 {
2103 	return (size_t)PAGE_SIZE << order;
2104 }
2105 
2106 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2107 			       unsigned int hctx_idx, int node)
2108 {
2109 	int ret;
2110 
2111 	if (set->ops->init_request) {
2112 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2113 		if (ret)
2114 			return ret;
2115 	}
2116 
2117 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2118 	return 0;
2119 }
2120 
2121 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2122 		     unsigned int hctx_idx, unsigned int depth)
2123 {
2124 	unsigned int i, j, entries_per_page, max_order = 4;
2125 	size_t rq_size, left;
2126 	int node;
2127 
2128 	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2129 	if (node == NUMA_NO_NODE)
2130 		node = set->numa_node;
2131 
2132 	INIT_LIST_HEAD(&tags->page_list);
2133 
2134 	/*
2135 	 * rq_size is the size of the request plus driver payload, rounded
2136 	 * to the cacheline size
2137 	 */
2138 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2139 				cache_line_size());
2140 	left = rq_size * depth;
2141 
2142 	for (i = 0; i < depth; ) {
2143 		int this_order = max_order;
2144 		struct page *page;
2145 		int to_do;
2146 		void *p;
2147 
2148 		while (this_order && left < order_to_size(this_order - 1))
2149 			this_order--;
2150 
2151 		do {
2152 			page = alloc_pages_node(node,
2153 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2154 				this_order);
2155 			if (page)
2156 				break;
2157 			if (!this_order--)
2158 				break;
2159 			if (order_to_size(this_order) < rq_size)
2160 				break;
2161 		} while (1);
2162 
2163 		if (!page)
2164 			goto fail;
2165 
2166 		page->private = this_order;
2167 		list_add_tail(&page->lru, &tags->page_list);
2168 
2169 		p = page_address(page);
2170 		/*
2171 		 * Allow kmemleak to scan these pages as they contain pointers
2172 		 * to additional allocations like via ops->init_request().
2173 		 */
2174 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2175 		entries_per_page = order_to_size(this_order) / rq_size;
2176 		to_do = min(entries_per_page, depth - i);
2177 		left -= to_do * rq_size;
2178 		for (j = 0; j < to_do; j++) {
2179 			struct request *rq = p;
2180 
2181 			tags->static_rqs[i] = rq;
2182 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2183 				tags->static_rqs[i] = NULL;
2184 				goto fail;
2185 			}
2186 
2187 			p += rq_size;
2188 			i++;
2189 		}
2190 	}
2191 	return 0;
2192 
2193 fail:
2194 	blk_mq_free_rqs(set, tags, hctx_idx);
2195 	return -ENOMEM;
2196 }
2197 
2198 /*
2199  * 'cpu' is going away. splice any existing rq_list entries from this
2200  * software queue to the hw queue dispatch list, and ensure that it
2201  * gets run.
2202  */
2203 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2204 {
2205 	struct blk_mq_hw_ctx *hctx;
2206 	struct blk_mq_ctx *ctx;
2207 	LIST_HEAD(tmp);
2208 	enum hctx_type type;
2209 
2210 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2211 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2212 	type = hctx->type;
2213 
2214 	spin_lock(&ctx->lock);
2215 	if (!list_empty(&ctx->rq_lists[type])) {
2216 		list_splice_init(&ctx->rq_lists[type], &tmp);
2217 		blk_mq_hctx_clear_pending(hctx, ctx);
2218 	}
2219 	spin_unlock(&ctx->lock);
2220 
2221 	if (list_empty(&tmp))
2222 		return 0;
2223 
2224 	spin_lock(&hctx->lock);
2225 	list_splice_tail_init(&tmp, &hctx->dispatch);
2226 	spin_unlock(&hctx->lock);
2227 
2228 	blk_mq_run_hw_queue(hctx, true);
2229 	return 0;
2230 }
2231 
2232 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2233 {
2234 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2235 					    &hctx->cpuhp_dead);
2236 }
2237 
2238 /* hctx->ctxs will be freed in queue's release handler */
2239 static void blk_mq_exit_hctx(struct request_queue *q,
2240 		struct blk_mq_tag_set *set,
2241 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2242 {
2243 	if (blk_mq_hw_queue_mapped(hctx))
2244 		blk_mq_tag_idle(hctx);
2245 
2246 	if (set->ops->exit_request)
2247 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2248 
2249 	if (set->ops->exit_hctx)
2250 		set->ops->exit_hctx(hctx, hctx_idx);
2251 
2252 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2253 		cleanup_srcu_struct(hctx->srcu);
2254 
2255 	blk_mq_remove_cpuhp(hctx);
2256 	blk_free_flush_queue(hctx->fq);
2257 	sbitmap_free(&hctx->ctx_map);
2258 }
2259 
2260 static void blk_mq_exit_hw_queues(struct request_queue *q,
2261 		struct blk_mq_tag_set *set, int nr_queue)
2262 {
2263 	struct blk_mq_hw_ctx *hctx;
2264 	unsigned int i;
2265 
2266 	queue_for_each_hw_ctx(q, hctx, i) {
2267 		if (i == nr_queue)
2268 			break;
2269 		blk_mq_debugfs_unregister_hctx(hctx);
2270 		blk_mq_exit_hctx(q, set, hctx, i);
2271 	}
2272 }
2273 
2274 static int blk_mq_init_hctx(struct request_queue *q,
2275 		struct blk_mq_tag_set *set,
2276 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2277 {
2278 	int node;
2279 
2280 	node = hctx->numa_node;
2281 	if (node == NUMA_NO_NODE)
2282 		node = hctx->numa_node = set->numa_node;
2283 
2284 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2285 	spin_lock_init(&hctx->lock);
2286 	INIT_LIST_HEAD(&hctx->dispatch);
2287 	hctx->queue = q;
2288 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2289 
2290 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2291 
2292 	hctx->tags = set->tags[hctx_idx];
2293 
2294 	/*
2295 	 * Allocate space for all possible cpus to avoid allocation at
2296 	 * runtime
2297 	 */
2298 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2299 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2300 	if (!hctx->ctxs)
2301 		goto unregister_cpu_notifier;
2302 
2303 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2304 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2305 		goto free_ctxs;
2306 
2307 	hctx->nr_ctx = 0;
2308 
2309 	spin_lock_init(&hctx->dispatch_wait_lock);
2310 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2311 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2312 
2313 	if (set->ops->init_hctx &&
2314 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2315 		goto free_bitmap;
2316 
2317 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2318 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2319 	if (!hctx->fq)
2320 		goto exit_hctx;
2321 
2322 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2323 		goto free_fq;
2324 
2325 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2326 		init_srcu_struct(hctx->srcu);
2327 
2328 	return 0;
2329 
2330  free_fq:
2331 	kfree(hctx->fq);
2332  exit_hctx:
2333 	if (set->ops->exit_hctx)
2334 		set->ops->exit_hctx(hctx, hctx_idx);
2335  free_bitmap:
2336 	sbitmap_free(&hctx->ctx_map);
2337  free_ctxs:
2338 	kfree(hctx->ctxs);
2339  unregister_cpu_notifier:
2340 	blk_mq_remove_cpuhp(hctx);
2341 	return -1;
2342 }
2343 
2344 static void blk_mq_init_cpu_queues(struct request_queue *q,
2345 				   unsigned int nr_hw_queues)
2346 {
2347 	struct blk_mq_tag_set *set = q->tag_set;
2348 	unsigned int i, j;
2349 
2350 	for_each_possible_cpu(i) {
2351 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2352 		struct blk_mq_hw_ctx *hctx;
2353 		int k;
2354 
2355 		__ctx->cpu = i;
2356 		spin_lock_init(&__ctx->lock);
2357 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2358 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2359 
2360 		__ctx->queue = q;
2361 
2362 		/*
2363 		 * Set local node, IFF we have more than one hw queue. If
2364 		 * not, we remain on the home node of the device
2365 		 */
2366 		for (j = 0; j < set->nr_maps; j++) {
2367 			hctx = blk_mq_map_queue_type(q, j, i);
2368 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2369 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2370 		}
2371 	}
2372 }
2373 
2374 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2375 {
2376 	int ret = 0;
2377 
2378 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2379 					set->queue_depth, set->reserved_tags);
2380 	if (!set->tags[hctx_idx])
2381 		return false;
2382 
2383 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2384 				set->queue_depth);
2385 	if (!ret)
2386 		return true;
2387 
2388 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2389 	set->tags[hctx_idx] = NULL;
2390 	return false;
2391 }
2392 
2393 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2394 					 unsigned int hctx_idx)
2395 {
2396 	if (set->tags && set->tags[hctx_idx]) {
2397 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2398 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2399 		set->tags[hctx_idx] = NULL;
2400 	}
2401 }
2402 
2403 static void blk_mq_map_swqueue(struct request_queue *q)
2404 {
2405 	unsigned int i, j, hctx_idx;
2406 	struct blk_mq_hw_ctx *hctx;
2407 	struct blk_mq_ctx *ctx;
2408 	struct blk_mq_tag_set *set = q->tag_set;
2409 
2410 	/*
2411 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2412 	 */
2413 	mutex_lock(&q->sysfs_lock);
2414 
2415 	queue_for_each_hw_ctx(q, hctx, i) {
2416 		cpumask_clear(hctx->cpumask);
2417 		hctx->nr_ctx = 0;
2418 		hctx->dispatch_from = NULL;
2419 	}
2420 
2421 	/*
2422 	 * Map software to hardware queues.
2423 	 *
2424 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2425 	 */
2426 	for_each_possible_cpu(i) {
2427 		hctx_idx = set->map[0].mq_map[i];
2428 		/* unmapped hw queue can be remapped after CPU topo changed */
2429 		if (!set->tags[hctx_idx] &&
2430 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2431 			/*
2432 			 * If tags initialization fail for some hctx,
2433 			 * that hctx won't be brought online.  In this
2434 			 * case, remap the current ctx to hctx[0] which
2435 			 * is guaranteed to always have tags allocated
2436 			 */
2437 			set->map[0].mq_map[i] = 0;
2438 		}
2439 
2440 		ctx = per_cpu_ptr(q->queue_ctx, i);
2441 		for (j = 0; j < set->nr_maps; j++) {
2442 			if (!set->map[j].nr_queues)
2443 				continue;
2444 
2445 			hctx = blk_mq_map_queue_type(q, j, i);
2446 
2447 			/*
2448 			 * If the CPU is already set in the mask, then we've
2449 			 * mapped this one already. This can happen if
2450 			 * devices share queues across queue maps.
2451 			 */
2452 			if (cpumask_test_cpu(i, hctx->cpumask))
2453 				continue;
2454 
2455 			cpumask_set_cpu(i, hctx->cpumask);
2456 			hctx->type = j;
2457 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2458 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2459 
2460 			/*
2461 			 * If the nr_ctx type overflows, we have exceeded the
2462 			 * amount of sw queues we can support.
2463 			 */
2464 			BUG_ON(!hctx->nr_ctx);
2465 		}
2466 	}
2467 
2468 	mutex_unlock(&q->sysfs_lock);
2469 
2470 	queue_for_each_hw_ctx(q, hctx, i) {
2471 		/*
2472 		 * If no software queues are mapped to this hardware queue,
2473 		 * disable it and free the request entries.
2474 		 */
2475 		if (!hctx->nr_ctx) {
2476 			/* Never unmap queue 0.  We need it as a
2477 			 * fallback in case of a new remap fails
2478 			 * allocation
2479 			 */
2480 			if (i && set->tags[i])
2481 				blk_mq_free_map_and_requests(set, i);
2482 
2483 			hctx->tags = NULL;
2484 			continue;
2485 		}
2486 
2487 		hctx->tags = set->tags[i];
2488 		WARN_ON(!hctx->tags);
2489 
2490 		/*
2491 		 * Set the map size to the number of mapped software queues.
2492 		 * This is more accurate and more efficient than looping
2493 		 * over all possibly mapped software queues.
2494 		 */
2495 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2496 
2497 		/*
2498 		 * Initialize batch roundrobin counts
2499 		 */
2500 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2501 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2502 	}
2503 }
2504 
2505 /*
2506  * Caller needs to ensure that we're either frozen/quiesced, or that
2507  * the queue isn't live yet.
2508  */
2509 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2510 {
2511 	struct blk_mq_hw_ctx *hctx;
2512 	int i;
2513 
2514 	queue_for_each_hw_ctx(q, hctx, i) {
2515 		if (shared)
2516 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2517 		else
2518 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2519 	}
2520 }
2521 
2522 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2523 					bool shared)
2524 {
2525 	struct request_queue *q;
2526 
2527 	lockdep_assert_held(&set->tag_list_lock);
2528 
2529 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2530 		blk_mq_freeze_queue(q);
2531 		queue_set_hctx_shared(q, shared);
2532 		blk_mq_unfreeze_queue(q);
2533 	}
2534 }
2535 
2536 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2537 {
2538 	struct blk_mq_tag_set *set = q->tag_set;
2539 
2540 	mutex_lock(&set->tag_list_lock);
2541 	list_del_rcu(&q->tag_set_list);
2542 	if (list_is_singular(&set->tag_list)) {
2543 		/* just transitioned to unshared */
2544 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2545 		/* update existing queue */
2546 		blk_mq_update_tag_set_depth(set, false);
2547 	}
2548 	mutex_unlock(&set->tag_list_lock);
2549 	INIT_LIST_HEAD(&q->tag_set_list);
2550 }
2551 
2552 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2553 				     struct request_queue *q)
2554 {
2555 	mutex_lock(&set->tag_list_lock);
2556 
2557 	/*
2558 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2559 	 */
2560 	if (!list_empty(&set->tag_list) &&
2561 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2562 		set->flags |= BLK_MQ_F_TAG_SHARED;
2563 		/* update existing queue */
2564 		blk_mq_update_tag_set_depth(set, true);
2565 	}
2566 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2567 		queue_set_hctx_shared(q, true);
2568 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2569 
2570 	mutex_unlock(&set->tag_list_lock);
2571 }
2572 
2573 /* All allocations will be freed in release handler of q->mq_kobj */
2574 static int blk_mq_alloc_ctxs(struct request_queue *q)
2575 {
2576 	struct blk_mq_ctxs *ctxs;
2577 	int cpu;
2578 
2579 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2580 	if (!ctxs)
2581 		return -ENOMEM;
2582 
2583 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2584 	if (!ctxs->queue_ctx)
2585 		goto fail;
2586 
2587 	for_each_possible_cpu(cpu) {
2588 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2589 		ctx->ctxs = ctxs;
2590 	}
2591 
2592 	q->mq_kobj = &ctxs->kobj;
2593 	q->queue_ctx = ctxs->queue_ctx;
2594 
2595 	return 0;
2596  fail:
2597 	kfree(ctxs);
2598 	return -ENOMEM;
2599 }
2600 
2601 /*
2602  * It is the actual release handler for mq, but we do it from
2603  * request queue's release handler for avoiding use-after-free
2604  * and headache because q->mq_kobj shouldn't have been introduced,
2605  * but we can't group ctx/kctx kobj without it.
2606  */
2607 void blk_mq_release(struct request_queue *q)
2608 {
2609 	struct blk_mq_hw_ctx *hctx;
2610 	unsigned int i;
2611 
2612 	/* hctx kobj stays in hctx */
2613 	queue_for_each_hw_ctx(q, hctx, i) {
2614 		if (!hctx)
2615 			continue;
2616 		kobject_put(&hctx->kobj);
2617 	}
2618 
2619 	kfree(q->queue_hw_ctx);
2620 
2621 	/*
2622 	 * release .mq_kobj and sw queue's kobject now because
2623 	 * both share lifetime with request queue.
2624 	 */
2625 	blk_mq_sysfs_deinit(q);
2626 }
2627 
2628 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2629 {
2630 	struct request_queue *uninit_q, *q;
2631 
2632 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2633 	if (!uninit_q)
2634 		return ERR_PTR(-ENOMEM);
2635 
2636 	q = blk_mq_init_allocated_queue(set, uninit_q);
2637 	if (IS_ERR(q))
2638 		blk_cleanup_queue(uninit_q);
2639 
2640 	return q;
2641 }
2642 EXPORT_SYMBOL(blk_mq_init_queue);
2643 
2644 /*
2645  * Helper for setting up a queue with mq ops, given queue depth, and
2646  * the passed in mq ops flags.
2647  */
2648 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2649 					   const struct blk_mq_ops *ops,
2650 					   unsigned int queue_depth,
2651 					   unsigned int set_flags)
2652 {
2653 	struct request_queue *q;
2654 	int ret;
2655 
2656 	memset(set, 0, sizeof(*set));
2657 	set->ops = ops;
2658 	set->nr_hw_queues = 1;
2659 	set->nr_maps = 1;
2660 	set->queue_depth = queue_depth;
2661 	set->numa_node = NUMA_NO_NODE;
2662 	set->flags = set_flags;
2663 
2664 	ret = blk_mq_alloc_tag_set(set);
2665 	if (ret)
2666 		return ERR_PTR(ret);
2667 
2668 	q = blk_mq_init_queue(set);
2669 	if (IS_ERR(q)) {
2670 		blk_mq_free_tag_set(set);
2671 		return q;
2672 	}
2673 
2674 	return q;
2675 }
2676 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2677 
2678 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2679 {
2680 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2681 
2682 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2683 			   __alignof__(struct blk_mq_hw_ctx)) !=
2684 		     sizeof(struct blk_mq_hw_ctx));
2685 
2686 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2687 		hw_ctx_size += sizeof(struct srcu_struct);
2688 
2689 	return hw_ctx_size;
2690 }
2691 
2692 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2693 		struct blk_mq_tag_set *set, struct request_queue *q,
2694 		int hctx_idx, int node)
2695 {
2696 	struct blk_mq_hw_ctx *hctx;
2697 
2698 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2699 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2700 			node);
2701 	if (!hctx)
2702 		return NULL;
2703 
2704 	if (!zalloc_cpumask_var_node(&hctx->cpumask,
2705 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2706 				node)) {
2707 		kfree(hctx);
2708 		return NULL;
2709 	}
2710 
2711 	atomic_set(&hctx->nr_active, 0);
2712 	hctx->numa_node = node;
2713 	hctx->queue_num = hctx_idx;
2714 
2715 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2716 		free_cpumask_var(hctx->cpumask);
2717 		kfree(hctx);
2718 		return NULL;
2719 	}
2720 	blk_mq_hctx_kobj_init(hctx);
2721 
2722 	return hctx;
2723 }
2724 
2725 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2726 						struct request_queue *q)
2727 {
2728 	int i, j, end;
2729 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2730 
2731 	/* protect against switching io scheduler  */
2732 	mutex_lock(&q->sysfs_lock);
2733 	for (i = 0; i < set->nr_hw_queues; i++) {
2734 		int node;
2735 		struct blk_mq_hw_ctx *hctx;
2736 
2737 		node = blk_mq_hw_queue_to_node(&set->map[0], i);
2738 		/*
2739 		 * If the hw queue has been mapped to another numa node,
2740 		 * we need to realloc the hctx. If allocation fails, fallback
2741 		 * to use the previous one.
2742 		 */
2743 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2744 			continue;
2745 
2746 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2747 		if (hctx) {
2748 			if (hctxs[i]) {
2749 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2750 				kobject_put(&hctxs[i]->kobj);
2751 			}
2752 			hctxs[i] = hctx;
2753 		} else {
2754 			if (hctxs[i])
2755 				pr_warn("Allocate new hctx on node %d fails,\
2756 						fallback to previous one on node %d\n",
2757 						node, hctxs[i]->numa_node);
2758 			else
2759 				break;
2760 		}
2761 	}
2762 	/*
2763 	 * Increasing nr_hw_queues fails. Free the newly allocated
2764 	 * hctxs and keep the previous q->nr_hw_queues.
2765 	 */
2766 	if (i != set->nr_hw_queues) {
2767 		j = q->nr_hw_queues;
2768 		end = i;
2769 	} else {
2770 		j = i;
2771 		end = q->nr_hw_queues;
2772 		q->nr_hw_queues = set->nr_hw_queues;
2773 	}
2774 
2775 	for (; j < end; j++) {
2776 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2777 
2778 		if (hctx) {
2779 			if (hctx->tags)
2780 				blk_mq_free_map_and_requests(set, j);
2781 			blk_mq_exit_hctx(q, set, hctx, j);
2782 			kobject_put(&hctx->kobj);
2783 			hctxs[j] = NULL;
2784 
2785 		}
2786 	}
2787 	mutex_unlock(&q->sysfs_lock);
2788 }
2789 
2790 /*
2791  * Maximum number of hardware queues we support. For single sets, we'll never
2792  * have more than the CPUs (software queues). For multiple sets, the tag_set
2793  * user may have set ->nr_hw_queues larger.
2794  */
2795 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2796 {
2797 	if (set->nr_maps == 1)
2798 		return nr_cpu_ids;
2799 
2800 	return max(set->nr_hw_queues, nr_cpu_ids);
2801 }
2802 
2803 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2804 						  struct request_queue *q)
2805 {
2806 	/* mark the queue as mq asap */
2807 	q->mq_ops = set->ops;
2808 
2809 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2810 					     blk_mq_poll_stats_bkt,
2811 					     BLK_MQ_POLL_STATS_BKTS, q);
2812 	if (!q->poll_cb)
2813 		goto err_exit;
2814 
2815 	if (blk_mq_alloc_ctxs(q))
2816 		goto err_exit;
2817 
2818 	/* init q->mq_kobj and sw queues' kobjects */
2819 	blk_mq_sysfs_init(q);
2820 
2821 	q->nr_queues = nr_hw_queues(set);
2822 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2823 						GFP_KERNEL, set->numa_node);
2824 	if (!q->queue_hw_ctx)
2825 		goto err_sys_init;
2826 
2827 	blk_mq_realloc_hw_ctxs(set, q);
2828 	if (!q->nr_hw_queues)
2829 		goto err_hctxs;
2830 
2831 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2832 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2833 
2834 	q->tag_set = set;
2835 
2836 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2837 	if (set->nr_maps > HCTX_TYPE_POLL &&
2838 	    set->map[HCTX_TYPE_POLL].nr_queues)
2839 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2840 
2841 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2842 		blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2843 
2844 	q->sg_reserved_size = INT_MAX;
2845 
2846 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2847 	INIT_LIST_HEAD(&q->requeue_list);
2848 	spin_lock_init(&q->requeue_lock);
2849 
2850 	blk_queue_make_request(q, blk_mq_make_request);
2851 
2852 	/*
2853 	 * Do this after blk_queue_make_request() overrides it...
2854 	 */
2855 	q->nr_requests = set->queue_depth;
2856 
2857 	/*
2858 	 * Default to classic polling
2859 	 */
2860 	q->poll_nsec = -1;
2861 
2862 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2863 	blk_mq_add_queue_tag_set(set, q);
2864 	blk_mq_map_swqueue(q);
2865 
2866 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2867 		int ret;
2868 
2869 		ret = elevator_init_mq(q);
2870 		if (ret)
2871 			return ERR_PTR(ret);
2872 	}
2873 
2874 	return q;
2875 
2876 err_hctxs:
2877 	kfree(q->queue_hw_ctx);
2878 err_sys_init:
2879 	blk_mq_sysfs_deinit(q);
2880 err_exit:
2881 	q->mq_ops = NULL;
2882 	return ERR_PTR(-ENOMEM);
2883 }
2884 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2885 
2886 void blk_mq_free_queue(struct request_queue *q)
2887 {
2888 	struct blk_mq_tag_set	*set = q->tag_set;
2889 
2890 	blk_mq_del_queue_tag_set(q);
2891 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2892 }
2893 
2894 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2895 {
2896 	int i;
2897 
2898 	for (i = 0; i < set->nr_hw_queues; i++)
2899 		if (!__blk_mq_alloc_rq_map(set, i))
2900 			goto out_unwind;
2901 
2902 	return 0;
2903 
2904 out_unwind:
2905 	while (--i >= 0)
2906 		blk_mq_free_rq_map(set->tags[i]);
2907 
2908 	return -ENOMEM;
2909 }
2910 
2911 /*
2912  * Allocate the request maps associated with this tag_set. Note that this
2913  * may reduce the depth asked for, if memory is tight. set->queue_depth
2914  * will be updated to reflect the allocated depth.
2915  */
2916 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2917 {
2918 	unsigned int depth;
2919 	int err;
2920 
2921 	depth = set->queue_depth;
2922 	do {
2923 		err = __blk_mq_alloc_rq_maps(set);
2924 		if (!err)
2925 			break;
2926 
2927 		set->queue_depth >>= 1;
2928 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2929 			err = -ENOMEM;
2930 			break;
2931 		}
2932 	} while (set->queue_depth);
2933 
2934 	if (!set->queue_depth || err) {
2935 		pr_err("blk-mq: failed to allocate request map\n");
2936 		return -ENOMEM;
2937 	}
2938 
2939 	if (depth != set->queue_depth)
2940 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2941 						depth, set->queue_depth);
2942 
2943 	return 0;
2944 }
2945 
2946 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2947 {
2948 	if (set->ops->map_queues && !is_kdump_kernel()) {
2949 		int i;
2950 
2951 		/*
2952 		 * transport .map_queues is usually done in the following
2953 		 * way:
2954 		 *
2955 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2956 		 * 	mask = get_cpu_mask(queue)
2957 		 * 	for_each_cpu(cpu, mask)
2958 		 * 		set->map[x].mq_map[cpu] = queue;
2959 		 * }
2960 		 *
2961 		 * When we need to remap, the table has to be cleared for
2962 		 * killing stale mapping since one CPU may not be mapped
2963 		 * to any hw queue.
2964 		 */
2965 		for (i = 0; i < set->nr_maps; i++)
2966 			blk_mq_clear_mq_map(&set->map[i]);
2967 
2968 		return set->ops->map_queues(set);
2969 	} else {
2970 		BUG_ON(set->nr_maps > 1);
2971 		return blk_mq_map_queues(&set->map[0]);
2972 	}
2973 }
2974 
2975 /*
2976  * Alloc a tag set to be associated with one or more request queues.
2977  * May fail with EINVAL for various error conditions. May adjust the
2978  * requested depth down, if it's too large. In that case, the set
2979  * value will be stored in set->queue_depth.
2980  */
2981 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2982 {
2983 	int i, ret;
2984 
2985 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2986 
2987 	if (!set->nr_hw_queues)
2988 		return -EINVAL;
2989 	if (!set->queue_depth)
2990 		return -EINVAL;
2991 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2992 		return -EINVAL;
2993 
2994 	if (!set->ops->queue_rq)
2995 		return -EINVAL;
2996 
2997 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2998 		return -EINVAL;
2999 
3000 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3001 		pr_info("blk-mq: reduced tag depth to %u\n",
3002 			BLK_MQ_MAX_DEPTH);
3003 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3004 	}
3005 
3006 	if (!set->nr_maps)
3007 		set->nr_maps = 1;
3008 	else if (set->nr_maps > HCTX_MAX_TYPES)
3009 		return -EINVAL;
3010 
3011 	/*
3012 	 * If a crashdump is active, then we are potentially in a very
3013 	 * memory constrained environment. Limit us to 1 queue and
3014 	 * 64 tags to prevent using too much memory.
3015 	 */
3016 	if (is_kdump_kernel()) {
3017 		set->nr_hw_queues = 1;
3018 		set->nr_maps = 1;
3019 		set->queue_depth = min(64U, set->queue_depth);
3020 	}
3021 	/*
3022 	 * There is no use for more h/w queues than cpus if we just have
3023 	 * a single map
3024 	 */
3025 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3026 		set->nr_hw_queues = nr_cpu_ids;
3027 
3028 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3029 				 GFP_KERNEL, set->numa_node);
3030 	if (!set->tags)
3031 		return -ENOMEM;
3032 
3033 	ret = -ENOMEM;
3034 	for (i = 0; i < set->nr_maps; i++) {
3035 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3036 						  sizeof(set->map[i].mq_map[0]),
3037 						  GFP_KERNEL, set->numa_node);
3038 		if (!set->map[i].mq_map)
3039 			goto out_free_mq_map;
3040 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3041 	}
3042 
3043 	ret = blk_mq_update_queue_map(set);
3044 	if (ret)
3045 		goto out_free_mq_map;
3046 
3047 	ret = blk_mq_alloc_rq_maps(set);
3048 	if (ret)
3049 		goto out_free_mq_map;
3050 
3051 	mutex_init(&set->tag_list_lock);
3052 	INIT_LIST_HEAD(&set->tag_list);
3053 
3054 	return 0;
3055 
3056 out_free_mq_map:
3057 	for (i = 0; i < set->nr_maps; i++) {
3058 		kfree(set->map[i].mq_map);
3059 		set->map[i].mq_map = NULL;
3060 	}
3061 	kfree(set->tags);
3062 	set->tags = NULL;
3063 	return ret;
3064 }
3065 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3066 
3067 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3068 {
3069 	int i, j;
3070 
3071 	for (i = 0; i < nr_hw_queues(set); i++)
3072 		blk_mq_free_map_and_requests(set, i);
3073 
3074 	for (j = 0; j < set->nr_maps; j++) {
3075 		kfree(set->map[j].mq_map);
3076 		set->map[j].mq_map = NULL;
3077 	}
3078 
3079 	kfree(set->tags);
3080 	set->tags = NULL;
3081 }
3082 EXPORT_SYMBOL(blk_mq_free_tag_set);
3083 
3084 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3085 {
3086 	struct blk_mq_tag_set *set = q->tag_set;
3087 	struct blk_mq_hw_ctx *hctx;
3088 	int i, ret;
3089 
3090 	if (!set)
3091 		return -EINVAL;
3092 
3093 	blk_mq_freeze_queue(q);
3094 	blk_mq_quiesce_queue(q);
3095 
3096 	ret = 0;
3097 	queue_for_each_hw_ctx(q, hctx, i) {
3098 		if (!hctx->tags)
3099 			continue;
3100 		/*
3101 		 * If we're using an MQ scheduler, just update the scheduler
3102 		 * queue depth. This is similar to what the old code would do.
3103 		 */
3104 		if (!hctx->sched_tags) {
3105 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3106 							false);
3107 		} else {
3108 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3109 							nr, true);
3110 		}
3111 		if (ret)
3112 			break;
3113 	}
3114 
3115 	if (!ret)
3116 		q->nr_requests = nr;
3117 
3118 	blk_mq_unquiesce_queue(q);
3119 	blk_mq_unfreeze_queue(q);
3120 
3121 	return ret;
3122 }
3123 
3124 /*
3125  * request_queue and elevator_type pair.
3126  * It is just used by __blk_mq_update_nr_hw_queues to cache
3127  * the elevator_type associated with a request_queue.
3128  */
3129 struct blk_mq_qe_pair {
3130 	struct list_head node;
3131 	struct request_queue *q;
3132 	struct elevator_type *type;
3133 };
3134 
3135 /*
3136  * Cache the elevator_type in qe pair list and switch the
3137  * io scheduler to 'none'
3138  */
3139 static bool blk_mq_elv_switch_none(struct list_head *head,
3140 		struct request_queue *q)
3141 {
3142 	struct blk_mq_qe_pair *qe;
3143 
3144 	if (!q->elevator)
3145 		return true;
3146 
3147 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3148 	if (!qe)
3149 		return false;
3150 
3151 	INIT_LIST_HEAD(&qe->node);
3152 	qe->q = q;
3153 	qe->type = q->elevator->type;
3154 	list_add(&qe->node, head);
3155 
3156 	mutex_lock(&q->sysfs_lock);
3157 	/*
3158 	 * After elevator_switch_mq, the previous elevator_queue will be
3159 	 * released by elevator_release. The reference of the io scheduler
3160 	 * module get by elevator_get will also be put. So we need to get
3161 	 * a reference of the io scheduler module here to prevent it to be
3162 	 * removed.
3163 	 */
3164 	__module_get(qe->type->elevator_owner);
3165 	elevator_switch_mq(q, NULL);
3166 	mutex_unlock(&q->sysfs_lock);
3167 
3168 	return true;
3169 }
3170 
3171 static void blk_mq_elv_switch_back(struct list_head *head,
3172 		struct request_queue *q)
3173 {
3174 	struct blk_mq_qe_pair *qe;
3175 	struct elevator_type *t = NULL;
3176 
3177 	list_for_each_entry(qe, head, node)
3178 		if (qe->q == q) {
3179 			t = qe->type;
3180 			break;
3181 		}
3182 
3183 	if (!t)
3184 		return;
3185 
3186 	list_del(&qe->node);
3187 	kfree(qe);
3188 
3189 	mutex_lock(&q->sysfs_lock);
3190 	elevator_switch_mq(q, t);
3191 	mutex_unlock(&q->sysfs_lock);
3192 }
3193 
3194 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3195 							int nr_hw_queues)
3196 {
3197 	struct request_queue *q;
3198 	LIST_HEAD(head);
3199 	int prev_nr_hw_queues;
3200 
3201 	lockdep_assert_held(&set->tag_list_lock);
3202 
3203 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3204 		nr_hw_queues = nr_cpu_ids;
3205 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3206 		return;
3207 
3208 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3209 		blk_mq_freeze_queue(q);
3210 	/*
3211 	 * Sync with blk_mq_queue_tag_busy_iter.
3212 	 */
3213 	synchronize_rcu();
3214 	/*
3215 	 * Switch IO scheduler to 'none', cleaning up the data associated
3216 	 * with the previous scheduler. We will switch back once we are done
3217 	 * updating the new sw to hw queue mappings.
3218 	 */
3219 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3220 		if (!blk_mq_elv_switch_none(&head, q))
3221 			goto switch_back;
3222 
3223 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3224 		blk_mq_debugfs_unregister_hctxs(q);
3225 		blk_mq_sysfs_unregister(q);
3226 	}
3227 
3228 	prev_nr_hw_queues = set->nr_hw_queues;
3229 	set->nr_hw_queues = nr_hw_queues;
3230 	blk_mq_update_queue_map(set);
3231 fallback:
3232 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3233 		blk_mq_realloc_hw_ctxs(set, q);
3234 		if (q->nr_hw_queues != set->nr_hw_queues) {
3235 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3236 					nr_hw_queues, prev_nr_hw_queues);
3237 			set->nr_hw_queues = prev_nr_hw_queues;
3238 			blk_mq_map_queues(&set->map[0]);
3239 			goto fallback;
3240 		}
3241 		blk_mq_map_swqueue(q);
3242 	}
3243 
3244 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3245 		blk_mq_sysfs_register(q);
3246 		blk_mq_debugfs_register_hctxs(q);
3247 	}
3248 
3249 switch_back:
3250 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3251 		blk_mq_elv_switch_back(&head, q);
3252 
3253 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3254 		blk_mq_unfreeze_queue(q);
3255 }
3256 
3257 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3258 {
3259 	mutex_lock(&set->tag_list_lock);
3260 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3261 	mutex_unlock(&set->tag_list_lock);
3262 }
3263 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3264 
3265 /* Enable polling stats and return whether they were already enabled. */
3266 static bool blk_poll_stats_enable(struct request_queue *q)
3267 {
3268 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3269 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3270 		return true;
3271 	blk_stat_add_callback(q, q->poll_cb);
3272 	return false;
3273 }
3274 
3275 static void blk_mq_poll_stats_start(struct request_queue *q)
3276 {
3277 	/*
3278 	 * We don't arm the callback if polling stats are not enabled or the
3279 	 * callback is already active.
3280 	 */
3281 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3282 	    blk_stat_is_active(q->poll_cb))
3283 		return;
3284 
3285 	blk_stat_activate_msecs(q->poll_cb, 100);
3286 }
3287 
3288 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3289 {
3290 	struct request_queue *q = cb->data;
3291 	int bucket;
3292 
3293 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3294 		if (cb->stat[bucket].nr_samples)
3295 			q->poll_stat[bucket] = cb->stat[bucket];
3296 	}
3297 }
3298 
3299 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3300 				       struct blk_mq_hw_ctx *hctx,
3301 				       struct request *rq)
3302 {
3303 	unsigned long ret = 0;
3304 	int bucket;
3305 
3306 	/*
3307 	 * If stats collection isn't on, don't sleep but turn it on for
3308 	 * future users
3309 	 */
3310 	if (!blk_poll_stats_enable(q))
3311 		return 0;
3312 
3313 	/*
3314 	 * As an optimistic guess, use half of the mean service time
3315 	 * for this type of request. We can (and should) make this smarter.
3316 	 * For instance, if the completion latencies are tight, we can
3317 	 * get closer than just half the mean. This is especially
3318 	 * important on devices where the completion latencies are longer
3319 	 * than ~10 usec. We do use the stats for the relevant IO size
3320 	 * if available which does lead to better estimates.
3321 	 */
3322 	bucket = blk_mq_poll_stats_bkt(rq);
3323 	if (bucket < 0)
3324 		return ret;
3325 
3326 	if (q->poll_stat[bucket].nr_samples)
3327 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3328 
3329 	return ret;
3330 }
3331 
3332 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3333 				     struct blk_mq_hw_ctx *hctx,
3334 				     struct request *rq)
3335 {
3336 	struct hrtimer_sleeper hs;
3337 	enum hrtimer_mode mode;
3338 	unsigned int nsecs;
3339 	ktime_t kt;
3340 
3341 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3342 		return false;
3343 
3344 	/*
3345 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3346 	 *
3347 	 *  0:	use half of prev avg
3348 	 * >0:	use this specific value
3349 	 */
3350 	if (q->poll_nsec > 0)
3351 		nsecs = q->poll_nsec;
3352 	else
3353 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3354 
3355 	if (!nsecs)
3356 		return false;
3357 
3358 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3359 
3360 	/*
3361 	 * This will be replaced with the stats tracking code, using
3362 	 * 'avg_completion_time / 2' as the pre-sleep target.
3363 	 */
3364 	kt = nsecs;
3365 
3366 	mode = HRTIMER_MODE_REL;
3367 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3368 	hrtimer_set_expires(&hs.timer, kt);
3369 
3370 	hrtimer_init_sleeper(&hs, current);
3371 	do {
3372 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3373 			break;
3374 		set_current_state(TASK_UNINTERRUPTIBLE);
3375 		hrtimer_start_expires(&hs.timer, mode);
3376 		if (hs.task)
3377 			io_schedule();
3378 		hrtimer_cancel(&hs.timer);
3379 		mode = HRTIMER_MODE_ABS;
3380 	} while (hs.task && !signal_pending(current));
3381 
3382 	__set_current_state(TASK_RUNNING);
3383 	destroy_hrtimer_on_stack(&hs.timer);
3384 	return true;
3385 }
3386 
3387 static bool blk_mq_poll_hybrid(struct request_queue *q,
3388 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3389 {
3390 	struct request *rq;
3391 
3392 	if (q->poll_nsec == -1)
3393 		return false;
3394 
3395 	if (!blk_qc_t_is_internal(cookie))
3396 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3397 	else {
3398 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3399 		/*
3400 		 * With scheduling, if the request has completed, we'll
3401 		 * get a NULL return here, as we clear the sched tag when
3402 		 * that happens. The request still remains valid, like always,
3403 		 * so we should be safe with just the NULL check.
3404 		 */
3405 		if (!rq)
3406 			return false;
3407 	}
3408 
3409 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3410 }
3411 
3412 /**
3413  * blk_poll - poll for IO completions
3414  * @q:  the queue
3415  * @cookie: cookie passed back at IO submission time
3416  * @spin: whether to spin for completions
3417  *
3418  * Description:
3419  *    Poll for completions on the passed in queue. Returns number of
3420  *    completed entries found. If @spin is true, then blk_poll will continue
3421  *    looping until at least one completion is found, unless the task is
3422  *    otherwise marked running (or we need to reschedule).
3423  */
3424 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3425 {
3426 	struct blk_mq_hw_ctx *hctx;
3427 	long state;
3428 
3429 	if (!blk_qc_t_valid(cookie) ||
3430 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3431 		return 0;
3432 
3433 	if (current->plug)
3434 		blk_flush_plug_list(current->plug, false);
3435 
3436 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3437 
3438 	/*
3439 	 * If we sleep, have the caller restart the poll loop to reset
3440 	 * the state. Like for the other success return cases, the
3441 	 * caller is responsible for checking if the IO completed. If
3442 	 * the IO isn't complete, we'll get called again and will go
3443 	 * straight to the busy poll loop.
3444 	 */
3445 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3446 		return 1;
3447 
3448 	hctx->poll_considered++;
3449 
3450 	state = current->state;
3451 	do {
3452 		int ret;
3453 
3454 		hctx->poll_invoked++;
3455 
3456 		ret = q->mq_ops->poll(hctx);
3457 		if (ret > 0) {
3458 			hctx->poll_success++;
3459 			__set_current_state(TASK_RUNNING);
3460 			return ret;
3461 		}
3462 
3463 		if (signal_pending_state(state, current))
3464 			__set_current_state(TASK_RUNNING);
3465 
3466 		if (current->state == TASK_RUNNING)
3467 			return 1;
3468 		if (ret < 0 || !spin)
3469 			break;
3470 		cpu_relax();
3471 	} while (!need_resched());
3472 
3473 	__set_current_state(TASK_RUNNING);
3474 	return 0;
3475 }
3476 EXPORT_SYMBOL_GPL(blk_poll);
3477 
3478 unsigned int blk_mq_rq_cpu(struct request *rq)
3479 {
3480 	return rq->mq_ctx->cpu;
3481 }
3482 EXPORT_SYMBOL(blk_mq_rq_cpu);
3483 
3484 static int __init blk_mq_init(void)
3485 {
3486 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3487 				blk_mq_hctx_notify_dead);
3488 	return 0;
3489 }
3490 subsys_initcall(blk_mq_init);
3491