1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-pm.h" 37 #include "blk-stat.h" 38 #include "blk-mq-sched.h" 39 #include "blk-rq-qos.h" 40 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 const int bit = ctx->index_hw[hctx->type]; 78 79 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 80 sbitmap_set_bit(&hctx->ctx_map, bit); 81 } 82 83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 84 struct blk_mq_ctx *ctx) 85 { 86 const int bit = ctx->index_hw[hctx->type]; 87 88 sbitmap_clear_bit(&hctx->ctx_map, bit); 89 } 90 91 struct mq_inflight { 92 struct hd_struct *part; 93 unsigned int *inflight; 94 }; 95 96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 97 struct request *rq, void *priv, 98 bool reserved) 99 { 100 struct mq_inflight *mi = priv; 101 102 /* 103 * index[0] counts the specific partition that was asked for. 104 */ 105 if (rq->part == mi->part) 106 mi->inflight[0]++; 107 108 return true; 109 } 110 111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 112 { 113 unsigned inflight[2]; 114 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 115 116 inflight[0] = inflight[1] = 0; 117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 118 119 return inflight[0]; 120 } 121 122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 123 struct request *rq, void *priv, 124 bool reserved) 125 { 126 struct mq_inflight *mi = priv; 127 128 if (rq->part == mi->part) 129 mi->inflight[rq_data_dir(rq)]++; 130 131 return true; 132 } 133 134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 135 unsigned int inflight[2]) 136 { 137 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 138 139 inflight[0] = inflight[1] = 0; 140 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 141 } 142 143 void blk_freeze_queue_start(struct request_queue *q) 144 { 145 int freeze_depth; 146 147 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 148 if (freeze_depth == 1) { 149 percpu_ref_kill(&q->q_usage_counter); 150 if (queue_is_mq(q)) 151 blk_mq_run_hw_queues(q, false); 152 } 153 } 154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 155 156 void blk_mq_freeze_queue_wait(struct request_queue *q) 157 { 158 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 159 } 160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 161 162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 163 unsigned long timeout) 164 { 165 return wait_event_timeout(q->mq_freeze_wq, 166 percpu_ref_is_zero(&q->q_usage_counter), 167 timeout); 168 } 169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 170 171 /* 172 * Guarantee no request is in use, so we can change any data structure of 173 * the queue afterward. 174 */ 175 void blk_freeze_queue(struct request_queue *q) 176 { 177 /* 178 * In the !blk_mq case we are only calling this to kill the 179 * q_usage_counter, otherwise this increases the freeze depth 180 * and waits for it to return to zero. For this reason there is 181 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 182 * exported to drivers as the only user for unfreeze is blk_mq. 183 */ 184 blk_freeze_queue_start(q); 185 blk_mq_freeze_queue_wait(q); 186 } 187 188 void blk_mq_freeze_queue(struct request_queue *q) 189 { 190 /* 191 * ...just an alias to keep freeze and unfreeze actions balanced 192 * in the blk_mq_* namespace 193 */ 194 blk_freeze_queue(q); 195 } 196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 197 198 void blk_mq_unfreeze_queue(struct request_queue *q) 199 { 200 int freeze_depth; 201 202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 203 WARN_ON_ONCE(freeze_depth < 0); 204 if (!freeze_depth) { 205 percpu_ref_resurrect(&q->q_usage_counter); 206 wake_up_all(&q->mq_freeze_wq); 207 } 208 } 209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 210 211 /* 212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 213 * mpt3sas driver such that this function can be removed. 214 */ 215 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 216 { 217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 218 } 219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 220 221 /** 222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 223 * @q: request queue. 224 * 225 * Note: this function does not prevent that the struct request end_io() 226 * callback function is invoked. Once this function is returned, we make 227 * sure no dispatch can happen until the queue is unquiesced via 228 * blk_mq_unquiesce_queue(). 229 */ 230 void blk_mq_quiesce_queue(struct request_queue *q) 231 { 232 struct blk_mq_hw_ctx *hctx; 233 unsigned int i; 234 bool rcu = false; 235 236 blk_mq_quiesce_queue_nowait(q); 237 238 queue_for_each_hw_ctx(q, hctx, i) { 239 if (hctx->flags & BLK_MQ_F_BLOCKING) 240 synchronize_srcu(hctx->srcu); 241 else 242 rcu = true; 243 } 244 if (rcu) 245 synchronize_rcu(); 246 } 247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 248 249 /* 250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 251 * @q: request queue. 252 * 253 * This function recovers queue into the state before quiescing 254 * which is done by blk_mq_quiesce_queue. 255 */ 256 void blk_mq_unquiesce_queue(struct request_queue *q) 257 { 258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 259 260 /* dispatch requests which are inserted during quiescing */ 261 blk_mq_run_hw_queues(q, true); 262 } 263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 264 265 void blk_mq_wake_waiters(struct request_queue *q) 266 { 267 struct blk_mq_hw_ctx *hctx; 268 unsigned int i; 269 270 queue_for_each_hw_ctx(q, hctx, i) 271 if (blk_mq_hw_queue_mapped(hctx)) 272 blk_mq_tag_wakeup_all(hctx->tags, true); 273 } 274 275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 276 { 277 return blk_mq_has_free_tags(hctx->tags); 278 } 279 EXPORT_SYMBOL(blk_mq_can_queue); 280 281 /* 282 * Only need start/end time stamping if we have stats enabled, or using 283 * an IO scheduler. 284 */ 285 static inline bool blk_mq_need_time_stamp(struct request *rq) 286 { 287 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator; 288 } 289 290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 291 unsigned int tag, unsigned int op) 292 { 293 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 294 struct request *rq = tags->static_rqs[tag]; 295 req_flags_t rq_flags = 0; 296 297 if (data->flags & BLK_MQ_REQ_INTERNAL) { 298 rq->tag = -1; 299 rq->internal_tag = tag; 300 } else { 301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 302 rq_flags = RQF_MQ_INFLIGHT; 303 atomic_inc(&data->hctx->nr_active); 304 } 305 rq->tag = tag; 306 rq->internal_tag = -1; 307 data->hctx->tags->rqs[rq->tag] = rq; 308 } 309 310 /* csd/requeue_work/fifo_time is initialized before use */ 311 rq->q = data->q; 312 rq->mq_ctx = data->ctx; 313 rq->mq_hctx = data->hctx; 314 rq->rq_flags = rq_flags; 315 rq->cmd_flags = op; 316 if (data->flags & BLK_MQ_REQ_PREEMPT) 317 rq->rq_flags |= RQF_PREEMPT; 318 if (blk_queue_io_stat(data->q)) 319 rq->rq_flags |= RQF_IO_STAT; 320 INIT_LIST_HEAD(&rq->queuelist); 321 INIT_HLIST_NODE(&rq->hash); 322 RB_CLEAR_NODE(&rq->rb_node); 323 rq->rq_disk = NULL; 324 rq->part = NULL; 325 if (blk_mq_need_time_stamp(rq)) 326 rq->start_time_ns = ktime_get_ns(); 327 else 328 rq->start_time_ns = 0; 329 rq->io_start_time_ns = 0; 330 rq->nr_phys_segments = 0; 331 #if defined(CONFIG_BLK_DEV_INTEGRITY) 332 rq->nr_integrity_segments = 0; 333 #endif 334 rq->special = NULL; 335 /* tag was already set */ 336 rq->extra_len = 0; 337 WRITE_ONCE(rq->deadline, 0); 338 339 rq->timeout = 0; 340 341 rq->end_io = NULL; 342 rq->end_io_data = NULL; 343 rq->next_rq = NULL; 344 345 data->ctx->rq_dispatched[op_is_sync(op)]++; 346 refcount_set(&rq->ref, 1); 347 return rq; 348 } 349 350 static struct request *blk_mq_get_request(struct request_queue *q, 351 struct bio *bio, 352 struct blk_mq_alloc_data *data) 353 { 354 struct elevator_queue *e = q->elevator; 355 struct request *rq; 356 unsigned int tag; 357 bool put_ctx_on_error = false; 358 359 blk_queue_enter_live(q); 360 data->q = q; 361 if (likely(!data->ctx)) { 362 data->ctx = blk_mq_get_ctx(q); 363 put_ctx_on_error = true; 364 } 365 if (likely(!data->hctx)) 366 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 367 data->ctx->cpu); 368 if (data->cmd_flags & REQ_NOWAIT) 369 data->flags |= BLK_MQ_REQ_NOWAIT; 370 371 if (e) { 372 data->flags |= BLK_MQ_REQ_INTERNAL; 373 374 /* 375 * Flush requests are special and go directly to the 376 * dispatch list. Don't include reserved tags in the 377 * limiting, as it isn't useful. 378 */ 379 if (!op_is_flush(data->cmd_flags) && 380 e->type->ops.limit_depth && 381 !(data->flags & BLK_MQ_REQ_RESERVED)) 382 e->type->ops.limit_depth(data->cmd_flags, data); 383 } else { 384 blk_mq_tag_busy(data->hctx); 385 } 386 387 tag = blk_mq_get_tag(data); 388 if (tag == BLK_MQ_TAG_FAIL) { 389 if (put_ctx_on_error) { 390 blk_mq_put_ctx(data->ctx); 391 data->ctx = NULL; 392 } 393 blk_queue_exit(q); 394 return NULL; 395 } 396 397 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags); 398 if (!op_is_flush(data->cmd_flags)) { 399 rq->elv.icq = NULL; 400 if (e && e->type->ops.prepare_request) { 401 if (e->type->icq_cache) 402 blk_mq_sched_assign_ioc(rq); 403 404 e->type->ops.prepare_request(rq, bio); 405 rq->rq_flags |= RQF_ELVPRIV; 406 } 407 } 408 data->hctx->queued++; 409 return rq; 410 } 411 412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 413 blk_mq_req_flags_t flags) 414 { 415 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 416 struct request *rq; 417 int ret; 418 419 ret = blk_queue_enter(q, flags); 420 if (ret) 421 return ERR_PTR(ret); 422 423 rq = blk_mq_get_request(q, NULL, &alloc_data); 424 blk_queue_exit(q); 425 426 if (!rq) 427 return ERR_PTR(-EWOULDBLOCK); 428 429 blk_mq_put_ctx(alloc_data.ctx); 430 431 rq->__data_len = 0; 432 rq->__sector = (sector_t) -1; 433 rq->bio = rq->biotail = NULL; 434 return rq; 435 } 436 EXPORT_SYMBOL(blk_mq_alloc_request); 437 438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 439 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 440 { 441 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 442 struct request *rq; 443 unsigned int cpu; 444 int ret; 445 446 /* 447 * If the tag allocator sleeps we could get an allocation for a 448 * different hardware context. No need to complicate the low level 449 * allocator for this for the rare use case of a command tied to 450 * a specific queue. 451 */ 452 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 453 return ERR_PTR(-EINVAL); 454 455 if (hctx_idx >= q->nr_hw_queues) 456 return ERR_PTR(-EIO); 457 458 ret = blk_queue_enter(q, flags); 459 if (ret) 460 return ERR_PTR(ret); 461 462 /* 463 * Check if the hardware context is actually mapped to anything. 464 * If not tell the caller that it should skip this queue. 465 */ 466 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 467 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 468 blk_queue_exit(q); 469 return ERR_PTR(-EXDEV); 470 } 471 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 472 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 473 474 rq = blk_mq_get_request(q, NULL, &alloc_data); 475 blk_queue_exit(q); 476 477 if (!rq) 478 return ERR_PTR(-EWOULDBLOCK); 479 480 return rq; 481 } 482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 483 484 static void __blk_mq_free_request(struct request *rq) 485 { 486 struct request_queue *q = rq->q; 487 struct blk_mq_ctx *ctx = rq->mq_ctx; 488 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 489 const int sched_tag = rq->internal_tag; 490 491 blk_pm_mark_last_busy(rq); 492 rq->mq_hctx = NULL; 493 if (rq->tag != -1) 494 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 495 if (sched_tag != -1) 496 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 497 blk_mq_sched_restart(hctx); 498 blk_queue_exit(q); 499 } 500 501 void blk_mq_free_request(struct request *rq) 502 { 503 struct request_queue *q = rq->q; 504 struct elevator_queue *e = q->elevator; 505 struct blk_mq_ctx *ctx = rq->mq_ctx; 506 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 507 508 if (rq->rq_flags & RQF_ELVPRIV) { 509 if (e && e->type->ops.finish_request) 510 e->type->ops.finish_request(rq); 511 if (rq->elv.icq) { 512 put_io_context(rq->elv.icq->ioc); 513 rq->elv.icq = NULL; 514 } 515 } 516 517 ctx->rq_completed[rq_is_sync(rq)]++; 518 if (rq->rq_flags & RQF_MQ_INFLIGHT) 519 atomic_dec(&hctx->nr_active); 520 521 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 522 laptop_io_completion(q->backing_dev_info); 523 524 rq_qos_done(q, rq); 525 526 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 527 if (refcount_dec_and_test(&rq->ref)) 528 __blk_mq_free_request(rq); 529 } 530 EXPORT_SYMBOL_GPL(blk_mq_free_request); 531 532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 533 { 534 u64 now = 0; 535 536 if (blk_mq_need_time_stamp(rq)) 537 now = ktime_get_ns(); 538 539 if (rq->rq_flags & RQF_STATS) { 540 blk_mq_poll_stats_start(rq->q); 541 blk_stat_add(rq, now); 542 } 543 544 if (rq->internal_tag != -1) 545 blk_mq_sched_completed_request(rq, now); 546 547 blk_account_io_done(rq, now); 548 549 if (rq->end_io) { 550 rq_qos_done(rq->q, rq); 551 rq->end_io(rq, error); 552 } else { 553 if (unlikely(blk_bidi_rq(rq))) 554 blk_mq_free_request(rq->next_rq); 555 blk_mq_free_request(rq); 556 } 557 } 558 EXPORT_SYMBOL(__blk_mq_end_request); 559 560 void blk_mq_end_request(struct request *rq, blk_status_t error) 561 { 562 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 563 BUG(); 564 __blk_mq_end_request(rq, error); 565 } 566 EXPORT_SYMBOL(blk_mq_end_request); 567 568 static void __blk_mq_complete_request_remote(void *data) 569 { 570 struct request *rq = data; 571 struct request_queue *q = rq->q; 572 573 q->mq_ops->complete(rq); 574 } 575 576 static void __blk_mq_complete_request(struct request *rq) 577 { 578 struct blk_mq_ctx *ctx = rq->mq_ctx; 579 struct request_queue *q = rq->q; 580 bool shared = false; 581 int cpu; 582 583 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 584 /* 585 * Most of single queue controllers, there is only one irq vector 586 * for handling IO completion, and the only irq's affinity is set 587 * as all possible CPUs. On most of ARCHs, this affinity means the 588 * irq is handled on one specific CPU. 589 * 590 * So complete IO reqeust in softirq context in case of single queue 591 * for not degrading IO performance by irqsoff latency. 592 */ 593 if (q->nr_hw_queues == 1) { 594 __blk_complete_request(rq); 595 return; 596 } 597 598 /* 599 * For a polled request, always complete locallly, it's pointless 600 * to redirect the completion. 601 */ 602 if ((rq->cmd_flags & REQ_HIPRI) || 603 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 604 q->mq_ops->complete(rq); 605 return; 606 } 607 608 cpu = get_cpu(); 609 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 610 shared = cpus_share_cache(cpu, ctx->cpu); 611 612 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 613 rq->csd.func = __blk_mq_complete_request_remote; 614 rq->csd.info = rq; 615 rq->csd.flags = 0; 616 smp_call_function_single_async(ctx->cpu, &rq->csd); 617 } else { 618 q->mq_ops->complete(rq); 619 } 620 put_cpu(); 621 } 622 623 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 624 __releases(hctx->srcu) 625 { 626 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 627 rcu_read_unlock(); 628 else 629 srcu_read_unlock(hctx->srcu, srcu_idx); 630 } 631 632 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 633 __acquires(hctx->srcu) 634 { 635 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 636 /* shut up gcc false positive */ 637 *srcu_idx = 0; 638 rcu_read_lock(); 639 } else 640 *srcu_idx = srcu_read_lock(hctx->srcu); 641 } 642 643 /** 644 * blk_mq_complete_request - end I/O on a request 645 * @rq: the request being processed 646 * 647 * Description: 648 * Ends all I/O on a request. It does not handle partial completions. 649 * The actual completion happens out-of-order, through a IPI handler. 650 **/ 651 bool blk_mq_complete_request(struct request *rq) 652 { 653 if (unlikely(blk_should_fake_timeout(rq->q))) 654 return false; 655 __blk_mq_complete_request(rq); 656 return true; 657 } 658 EXPORT_SYMBOL(blk_mq_complete_request); 659 660 int blk_mq_request_started(struct request *rq) 661 { 662 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 663 } 664 EXPORT_SYMBOL_GPL(blk_mq_request_started); 665 666 void blk_mq_start_request(struct request *rq) 667 { 668 struct request_queue *q = rq->q; 669 670 blk_mq_sched_started_request(rq); 671 672 trace_block_rq_issue(q, rq); 673 674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 675 rq->io_start_time_ns = ktime_get_ns(); 676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 677 rq->throtl_size = blk_rq_sectors(rq); 678 #endif 679 rq->rq_flags |= RQF_STATS; 680 rq_qos_issue(q, rq); 681 } 682 683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 684 685 blk_add_timer(rq); 686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 687 688 if (q->dma_drain_size && blk_rq_bytes(rq)) { 689 /* 690 * Make sure space for the drain appears. We know we can do 691 * this because max_hw_segments has been adjusted to be one 692 * fewer than the device can handle. 693 */ 694 rq->nr_phys_segments++; 695 } 696 } 697 EXPORT_SYMBOL(blk_mq_start_request); 698 699 static void __blk_mq_requeue_request(struct request *rq) 700 { 701 struct request_queue *q = rq->q; 702 703 blk_mq_put_driver_tag(rq); 704 705 trace_block_rq_requeue(q, rq); 706 rq_qos_requeue(q, rq); 707 708 if (blk_mq_request_started(rq)) { 709 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 710 rq->rq_flags &= ~RQF_TIMED_OUT; 711 if (q->dma_drain_size && blk_rq_bytes(rq)) 712 rq->nr_phys_segments--; 713 } 714 } 715 716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 717 { 718 __blk_mq_requeue_request(rq); 719 720 /* this request will be re-inserted to io scheduler queue */ 721 blk_mq_sched_requeue_request(rq); 722 723 BUG_ON(!list_empty(&rq->queuelist)); 724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 725 } 726 EXPORT_SYMBOL(blk_mq_requeue_request); 727 728 static void blk_mq_requeue_work(struct work_struct *work) 729 { 730 struct request_queue *q = 731 container_of(work, struct request_queue, requeue_work.work); 732 LIST_HEAD(rq_list); 733 struct request *rq, *next; 734 735 spin_lock_irq(&q->requeue_lock); 736 list_splice_init(&q->requeue_list, &rq_list); 737 spin_unlock_irq(&q->requeue_lock); 738 739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 740 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 741 continue; 742 743 rq->rq_flags &= ~RQF_SOFTBARRIER; 744 list_del_init(&rq->queuelist); 745 /* 746 * If RQF_DONTPREP, rq has contained some driver specific 747 * data, so insert it to hctx dispatch list to avoid any 748 * merge. 749 */ 750 if (rq->rq_flags & RQF_DONTPREP) 751 blk_mq_request_bypass_insert(rq, false); 752 else 753 blk_mq_sched_insert_request(rq, true, false, false); 754 } 755 756 while (!list_empty(&rq_list)) { 757 rq = list_entry(rq_list.next, struct request, queuelist); 758 list_del_init(&rq->queuelist); 759 blk_mq_sched_insert_request(rq, false, false, false); 760 } 761 762 blk_mq_run_hw_queues(q, false); 763 } 764 765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 766 bool kick_requeue_list) 767 { 768 struct request_queue *q = rq->q; 769 unsigned long flags; 770 771 /* 772 * We abuse this flag that is otherwise used by the I/O scheduler to 773 * request head insertion from the workqueue. 774 */ 775 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 776 777 spin_lock_irqsave(&q->requeue_lock, flags); 778 if (at_head) { 779 rq->rq_flags |= RQF_SOFTBARRIER; 780 list_add(&rq->queuelist, &q->requeue_list); 781 } else { 782 list_add_tail(&rq->queuelist, &q->requeue_list); 783 } 784 spin_unlock_irqrestore(&q->requeue_lock, flags); 785 786 if (kick_requeue_list) 787 blk_mq_kick_requeue_list(q); 788 } 789 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 790 791 void blk_mq_kick_requeue_list(struct request_queue *q) 792 { 793 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 794 } 795 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 796 797 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 798 unsigned long msecs) 799 { 800 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 801 msecs_to_jiffies(msecs)); 802 } 803 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 804 805 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 806 { 807 if (tag < tags->nr_tags) { 808 prefetch(tags->rqs[tag]); 809 return tags->rqs[tag]; 810 } 811 812 return NULL; 813 } 814 EXPORT_SYMBOL(blk_mq_tag_to_rq); 815 816 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 817 void *priv, bool reserved) 818 { 819 /* 820 * If we find a request that is inflight and the queue matches, 821 * we know the queue is busy. Return false to stop the iteration. 822 */ 823 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 824 bool *busy = priv; 825 826 *busy = true; 827 return false; 828 } 829 830 return true; 831 } 832 833 bool blk_mq_queue_inflight(struct request_queue *q) 834 { 835 bool busy = false; 836 837 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 838 return busy; 839 } 840 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 841 842 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 843 { 844 req->rq_flags |= RQF_TIMED_OUT; 845 if (req->q->mq_ops->timeout) { 846 enum blk_eh_timer_return ret; 847 848 ret = req->q->mq_ops->timeout(req, reserved); 849 if (ret == BLK_EH_DONE) 850 return; 851 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 852 } 853 854 blk_add_timer(req); 855 } 856 857 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 858 { 859 unsigned long deadline; 860 861 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 862 return false; 863 if (rq->rq_flags & RQF_TIMED_OUT) 864 return false; 865 866 deadline = READ_ONCE(rq->deadline); 867 if (time_after_eq(jiffies, deadline)) 868 return true; 869 870 if (*next == 0) 871 *next = deadline; 872 else if (time_after(*next, deadline)) 873 *next = deadline; 874 return false; 875 } 876 877 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 878 struct request *rq, void *priv, bool reserved) 879 { 880 unsigned long *next = priv; 881 882 /* 883 * Just do a quick check if it is expired before locking the request in 884 * so we're not unnecessarilly synchronizing across CPUs. 885 */ 886 if (!blk_mq_req_expired(rq, next)) 887 return true; 888 889 /* 890 * We have reason to believe the request may be expired. Take a 891 * reference on the request to lock this request lifetime into its 892 * currently allocated context to prevent it from being reallocated in 893 * the event the completion by-passes this timeout handler. 894 * 895 * If the reference was already released, then the driver beat the 896 * timeout handler to posting a natural completion. 897 */ 898 if (!refcount_inc_not_zero(&rq->ref)) 899 return true; 900 901 /* 902 * The request is now locked and cannot be reallocated underneath the 903 * timeout handler's processing. Re-verify this exact request is truly 904 * expired; if it is not expired, then the request was completed and 905 * reallocated as a new request. 906 */ 907 if (blk_mq_req_expired(rq, next)) 908 blk_mq_rq_timed_out(rq, reserved); 909 if (refcount_dec_and_test(&rq->ref)) 910 __blk_mq_free_request(rq); 911 912 return true; 913 } 914 915 static void blk_mq_timeout_work(struct work_struct *work) 916 { 917 struct request_queue *q = 918 container_of(work, struct request_queue, timeout_work); 919 unsigned long next = 0; 920 struct blk_mq_hw_ctx *hctx; 921 int i; 922 923 /* A deadlock might occur if a request is stuck requiring a 924 * timeout at the same time a queue freeze is waiting 925 * completion, since the timeout code would not be able to 926 * acquire the queue reference here. 927 * 928 * That's why we don't use blk_queue_enter here; instead, we use 929 * percpu_ref_tryget directly, because we need to be able to 930 * obtain a reference even in the short window between the queue 931 * starting to freeze, by dropping the first reference in 932 * blk_freeze_queue_start, and the moment the last request is 933 * consumed, marked by the instant q_usage_counter reaches 934 * zero. 935 */ 936 if (!percpu_ref_tryget(&q->q_usage_counter)) 937 return; 938 939 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 940 941 if (next != 0) { 942 mod_timer(&q->timeout, next); 943 } else { 944 /* 945 * Request timeouts are handled as a forward rolling timer. If 946 * we end up here it means that no requests are pending and 947 * also that no request has been pending for a while. Mark 948 * each hctx as idle. 949 */ 950 queue_for_each_hw_ctx(q, hctx, i) { 951 /* the hctx may be unmapped, so check it here */ 952 if (blk_mq_hw_queue_mapped(hctx)) 953 blk_mq_tag_idle(hctx); 954 } 955 } 956 blk_queue_exit(q); 957 } 958 959 struct flush_busy_ctx_data { 960 struct blk_mq_hw_ctx *hctx; 961 struct list_head *list; 962 }; 963 964 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 965 { 966 struct flush_busy_ctx_data *flush_data = data; 967 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 968 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 969 enum hctx_type type = hctx->type; 970 971 spin_lock(&ctx->lock); 972 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 973 sbitmap_clear_bit(sb, bitnr); 974 spin_unlock(&ctx->lock); 975 return true; 976 } 977 978 /* 979 * Process software queues that have been marked busy, splicing them 980 * to the for-dispatch 981 */ 982 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 983 { 984 struct flush_busy_ctx_data data = { 985 .hctx = hctx, 986 .list = list, 987 }; 988 989 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 990 } 991 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 992 993 struct dispatch_rq_data { 994 struct blk_mq_hw_ctx *hctx; 995 struct request *rq; 996 }; 997 998 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 999 void *data) 1000 { 1001 struct dispatch_rq_data *dispatch_data = data; 1002 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1003 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1004 enum hctx_type type = hctx->type; 1005 1006 spin_lock(&ctx->lock); 1007 if (!list_empty(&ctx->rq_lists[type])) { 1008 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1009 list_del_init(&dispatch_data->rq->queuelist); 1010 if (list_empty(&ctx->rq_lists[type])) 1011 sbitmap_clear_bit(sb, bitnr); 1012 } 1013 spin_unlock(&ctx->lock); 1014 1015 return !dispatch_data->rq; 1016 } 1017 1018 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1019 struct blk_mq_ctx *start) 1020 { 1021 unsigned off = start ? start->index_hw[hctx->type] : 0; 1022 struct dispatch_rq_data data = { 1023 .hctx = hctx, 1024 .rq = NULL, 1025 }; 1026 1027 __sbitmap_for_each_set(&hctx->ctx_map, off, 1028 dispatch_rq_from_ctx, &data); 1029 1030 return data.rq; 1031 } 1032 1033 static inline unsigned int queued_to_index(unsigned int queued) 1034 { 1035 if (!queued) 1036 return 0; 1037 1038 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1039 } 1040 1041 bool blk_mq_get_driver_tag(struct request *rq) 1042 { 1043 struct blk_mq_alloc_data data = { 1044 .q = rq->q, 1045 .hctx = rq->mq_hctx, 1046 .flags = BLK_MQ_REQ_NOWAIT, 1047 .cmd_flags = rq->cmd_flags, 1048 }; 1049 bool shared; 1050 1051 if (rq->tag != -1) 1052 goto done; 1053 1054 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1055 data.flags |= BLK_MQ_REQ_RESERVED; 1056 1057 shared = blk_mq_tag_busy(data.hctx); 1058 rq->tag = blk_mq_get_tag(&data); 1059 if (rq->tag >= 0) { 1060 if (shared) { 1061 rq->rq_flags |= RQF_MQ_INFLIGHT; 1062 atomic_inc(&data.hctx->nr_active); 1063 } 1064 data.hctx->tags->rqs[rq->tag] = rq; 1065 } 1066 1067 done: 1068 return rq->tag != -1; 1069 } 1070 1071 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1072 int flags, void *key) 1073 { 1074 struct blk_mq_hw_ctx *hctx; 1075 1076 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1077 1078 spin_lock(&hctx->dispatch_wait_lock); 1079 list_del_init(&wait->entry); 1080 spin_unlock(&hctx->dispatch_wait_lock); 1081 1082 blk_mq_run_hw_queue(hctx, true); 1083 return 1; 1084 } 1085 1086 /* 1087 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1088 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1089 * restart. For both cases, take care to check the condition again after 1090 * marking us as waiting. 1091 */ 1092 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1093 struct request *rq) 1094 { 1095 struct wait_queue_head *wq; 1096 wait_queue_entry_t *wait; 1097 bool ret; 1098 1099 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1100 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 1101 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 1102 1103 /* 1104 * It's possible that a tag was freed in the window between the 1105 * allocation failure and adding the hardware queue to the wait 1106 * queue. 1107 * 1108 * Don't clear RESTART here, someone else could have set it. 1109 * At most this will cost an extra queue run. 1110 */ 1111 return blk_mq_get_driver_tag(rq); 1112 } 1113 1114 wait = &hctx->dispatch_wait; 1115 if (!list_empty_careful(&wait->entry)) 1116 return false; 1117 1118 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait; 1119 1120 spin_lock_irq(&wq->lock); 1121 spin_lock(&hctx->dispatch_wait_lock); 1122 if (!list_empty(&wait->entry)) { 1123 spin_unlock(&hctx->dispatch_wait_lock); 1124 spin_unlock_irq(&wq->lock); 1125 return false; 1126 } 1127 1128 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1129 __add_wait_queue(wq, wait); 1130 1131 /* 1132 * It's possible that a tag was freed in the window between the 1133 * allocation failure and adding the hardware queue to the wait 1134 * queue. 1135 */ 1136 ret = blk_mq_get_driver_tag(rq); 1137 if (!ret) { 1138 spin_unlock(&hctx->dispatch_wait_lock); 1139 spin_unlock_irq(&wq->lock); 1140 return false; 1141 } 1142 1143 /* 1144 * We got a tag, remove ourselves from the wait queue to ensure 1145 * someone else gets the wakeup. 1146 */ 1147 list_del_init(&wait->entry); 1148 spin_unlock(&hctx->dispatch_wait_lock); 1149 spin_unlock_irq(&wq->lock); 1150 1151 return true; 1152 } 1153 1154 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1155 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1156 /* 1157 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1158 * - EWMA is one simple way to compute running average value 1159 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1160 * - take 4 as factor for avoiding to get too small(0) result, and this 1161 * factor doesn't matter because EWMA decreases exponentially 1162 */ 1163 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1164 { 1165 unsigned int ewma; 1166 1167 if (hctx->queue->elevator) 1168 return; 1169 1170 ewma = hctx->dispatch_busy; 1171 1172 if (!ewma && !busy) 1173 return; 1174 1175 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1176 if (busy) 1177 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1178 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1179 1180 hctx->dispatch_busy = ewma; 1181 } 1182 1183 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1184 1185 /* 1186 * Returns true if we did some work AND can potentially do more. 1187 */ 1188 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1189 bool got_budget) 1190 { 1191 struct blk_mq_hw_ctx *hctx; 1192 struct request *rq, *nxt; 1193 bool no_tag = false; 1194 int errors, queued; 1195 blk_status_t ret = BLK_STS_OK; 1196 1197 if (list_empty(list)) 1198 return false; 1199 1200 WARN_ON(!list_is_singular(list) && got_budget); 1201 1202 /* 1203 * Now process all the entries, sending them to the driver. 1204 */ 1205 errors = queued = 0; 1206 do { 1207 struct blk_mq_queue_data bd; 1208 1209 rq = list_first_entry(list, struct request, queuelist); 1210 1211 hctx = rq->mq_hctx; 1212 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1213 break; 1214 1215 if (!blk_mq_get_driver_tag(rq)) { 1216 /* 1217 * The initial allocation attempt failed, so we need to 1218 * rerun the hardware queue when a tag is freed. The 1219 * waitqueue takes care of that. If the queue is run 1220 * before we add this entry back on the dispatch list, 1221 * we'll re-run it below. 1222 */ 1223 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1224 blk_mq_put_dispatch_budget(hctx); 1225 /* 1226 * For non-shared tags, the RESTART check 1227 * will suffice. 1228 */ 1229 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1230 no_tag = true; 1231 break; 1232 } 1233 } 1234 1235 list_del_init(&rq->queuelist); 1236 1237 bd.rq = rq; 1238 1239 /* 1240 * Flag last if we have no more requests, or if we have more 1241 * but can't assign a driver tag to it. 1242 */ 1243 if (list_empty(list)) 1244 bd.last = true; 1245 else { 1246 nxt = list_first_entry(list, struct request, queuelist); 1247 bd.last = !blk_mq_get_driver_tag(nxt); 1248 } 1249 1250 ret = q->mq_ops->queue_rq(hctx, &bd); 1251 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1252 /* 1253 * If an I/O scheduler has been configured and we got a 1254 * driver tag for the next request already, free it 1255 * again. 1256 */ 1257 if (!list_empty(list)) { 1258 nxt = list_first_entry(list, struct request, queuelist); 1259 blk_mq_put_driver_tag(nxt); 1260 } 1261 list_add(&rq->queuelist, list); 1262 __blk_mq_requeue_request(rq); 1263 break; 1264 } 1265 1266 if (unlikely(ret != BLK_STS_OK)) { 1267 errors++; 1268 blk_mq_end_request(rq, BLK_STS_IOERR); 1269 continue; 1270 } 1271 1272 queued++; 1273 } while (!list_empty(list)); 1274 1275 hctx->dispatched[queued_to_index(queued)]++; 1276 1277 /* 1278 * Any items that need requeuing? Stuff them into hctx->dispatch, 1279 * that is where we will continue on next queue run. 1280 */ 1281 if (!list_empty(list)) { 1282 bool needs_restart; 1283 1284 /* 1285 * If we didn't flush the entire list, we could have told 1286 * the driver there was more coming, but that turned out to 1287 * be a lie. 1288 */ 1289 if (q->mq_ops->commit_rqs) 1290 q->mq_ops->commit_rqs(hctx); 1291 1292 spin_lock(&hctx->lock); 1293 list_splice_init(list, &hctx->dispatch); 1294 spin_unlock(&hctx->lock); 1295 1296 /* 1297 * If SCHED_RESTART was set by the caller of this function and 1298 * it is no longer set that means that it was cleared by another 1299 * thread and hence that a queue rerun is needed. 1300 * 1301 * If 'no_tag' is set, that means that we failed getting 1302 * a driver tag with an I/O scheduler attached. If our dispatch 1303 * waitqueue is no longer active, ensure that we run the queue 1304 * AFTER adding our entries back to the list. 1305 * 1306 * If no I/O scheduler has been configured it is possible that 1307 * the hardware queue got stopped and restarted before requests 1308 * were pushed back onto the dispatch list. Rerun the queue to 1309 * avoid starvation. Notes: 1310 * - blk_mq_run_hw_queue() checks whether or not a queue has 1311 * been stopped before rerunning a queue. 1312 * - Some but not all block drivers stop a queue before 1313 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1314 * and dm-rq. 1315 * 1316 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1317 * bit is set, run queue after a delay to avoid IO stalls 1318 * that could otherwise occur if the queue is idle. 1319 */ 1320 needs_restart = blk_mq_sched_needs_restart(hctx); 1321 if (!needs_restart || 1322 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1323 blk_mq_run_hw_queue(hctx, true); 1324 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1325 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1326 1327 blk_mq_update_dispatch_busy(hctx, true); 1328 return false; 1329 } else 1330 blk_mq_update_dispatch_busy(hctx, false); 1331 1332 /* 1333 * If the host/device is unable to accept more work, inform the 1334 * caller of that. 1335 */ 1336 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1337 return false; 1338 1339 return (queued + errors) != 0; 1340 } 1341 1342 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1343 { 1344 int srcu_idx; 1345 1346 /* 1347 * We should be running this queue from one of the CPUs that 1348 * are mapped to it. 1349 * 1350 * There are at least two related races now between setting 1351 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1352 * __blk_mq_run_hw_queue(): 1353 * 1354 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1355 * but later it becomes online, then this warning is harmless 1356 * at all 1357 * 1358 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1359 * but later it becomes offline, then the warning can't be 1360 * triggered, and we depend on blk-mq timeout handler to 1361 * handle dispatched requests to this hctx 1362 */ 1363 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1364 cpu_online(hctx->next_cpu)) { 1365 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1366 raw_smp_processor_id(), 1367 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1368 dump_stack(); 1369 } 1370 1371 /* 1372 * We can't run the queue inline with ints disabled. Ensure that 1373 * we catch bad users of this early. 1374 */ 1375 WARN_ON_ONCE(in_interrupt()); 1376 1377 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1378 1379 hctx_lock(hctx, &srcu_idx); 1380 blk_mq_sched_dispatch_requests(hctx); 1381 hctx_unlock(hctx, srcu_idx); 1382 } 1383 1384 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1385 { 1386 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1387 1388 if (cpu >= nr_cpu_ids) 1389 cpu = cpumask_first(hctx->cpumask); 1390 return cpu; 1391 } 1392 1393 /* 1394 * It'd be great if the workqueue API had a way to pass 1395 * in a mask and had some smarts for more clever placement. 1396 * For now we just round-robin here, switching for every 1397 * BLK_MQ_CPU_WORK_BATCH queued items. 1398 */ 1399 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1400 { 1401 bool tried = false; 1402 int next_cpu = hctx->next_cpu; 1403 1404 if (hctx->queue->nr_hw_queues == 1) 1405 return WORK_CPU_UNBOUND; 1406 1407 if (--hctx->next_cpu_batch <= 0) { 1408 select_cpu: 1409 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1410 cpu_online_mask); 1411 if (next_cpu >= nr_cpu_ids) 1412 next_cpu = blk_mq_first_mapped_cpu(hctx); 1413 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1414 } 1415 1416 /* 1417 * Do unbound schedule if we can't find a online CPU for this hctx, 1418 * and it should only happen in the path of handling CPU DEAD. 1419 */ 1420 if (!cpu_online(next_cpu)) { 1421 if (!tried) { 1422 tried = true; 1423 goto select_cpu; 1424 } 1425 1426 /* 1427 * Make sure to re-select CPU next time once after CPUs 1428 * in hctx->cpumask become online again. 1429 */ 1430 hctx->next_cpu = next_cpu; 1431 hctx->next_cpu_batch = 1; 1432 return WORK_CPU_UNBOUND; 1433 } 1434 1435 hctx->next_cpu = next_cpu; 1436 return next_cpu; 1437 } 1438 1439 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1440 unsigned long msecs) 1441 { 1442 if (unlikely(blk_mq_hctx_stopped(hctx))) 1443 return; 1444 1445 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1446 int cpu = get_cpu(); 1447 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1448 __blk_mq_run_hw_queue(hctx); 1449 put_cpu(); 1450 return; 1451 } 1452 1453 put_cpu(); 1454 } 1455 1456 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1457 msecs_to_jiffies(msecs)); 1458 } 1459 1460 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1461 { 1462 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1463 } 1464 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1465 1466 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1467 { 1468 int srcu_idx; 1469 bool need_run; 1470 1471 /* 1472 * When queue is quiesced, we may be switching io scheduler, or 1473 * updating nr_hw_queues, or other things, and we can't run queue 1474 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1475 * 1476 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1477 * quiesced. 1478 */ 1479 hctx_lock(hctx, &srcu_idx); 1480 need_run = !blk_queue_quiesced(hctx->queue) && 1481 blk_mq_hctx_has_pending(hctx); 1482 hctx_unlock(hctx, srcu_idx); 1483 1484 if (need_run) { 1485 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1486 return true; 1487 } 1488 1489 return false; 1490 } 1491 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1492 1493 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1494 { 1495 struct blk_mq_hw_ctx *hctx; 1496 int i; 1497 1498 queue_for_each_hw_ctx(q, hctx, i) { 1499 if (blk_mq_hctx_stopped(hctx)) 1500 continue; 1501 1502 blk_mq_run_hw_queue(hctx, async); 1503 } 1504 } 1505 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1506 1507 /** 1508 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1509 * @q: request queue. 1510 * 1511 * The caller is responsible for serializing this function against 1512 * blk_mq_{start,stop}_hw_queue(). 1513 */ 1514 bool blk_mq_queue_stopped(struct request_queue *q) 1515 { 1516 struct blk_mq_hw_ctx *hctx; 1517 int i; 1518 1519 queue_for_each_hw_ctx(q, hctx, i) 1520 if (blk_mq_hctx_stopped(hctx)) 1521 return true; 1522 1523 return false; 1524 } 1525 EXPORT_SYMBOL(blk_mq_queue_stopped); 1526 1527 /* 1528 * This function is often used for pausing .queue_rq() by driver when 1529 * there isn't enough resource or some conditions aren't satisfied, and 1530 * BLK_STS_RESOURCE is usually returned. 1531 * 1532 * We do not guarantee that dispatch can be drained or blocked 1533 * after blk_mq_stop_hw_queue() returns. Please use 1534 * blk_mq_quiesce_queue() for that requirement. 1535 */ 1536 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1537 { 1538 cancel_delayed_work(&hctx->run_work); 1539 1540 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1541 } 1542 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1543 1544 /* 1545 * This function is often used for pausing .queue_rq() by driver when 1546 * there isn't enough resource or some conditions aren't satisfied, and 1547 * BLK_STS_RESOURCE is usually returned. 1548 * 1549 * We do not guarantee that dispatch can be drained or blocked 1550 * after blk_mq_stop_hw_queues() returns. Please use 1551 * blk_mq_quiesce_queue() for that requirement. 1552 */ 1553 void blk_mq_stop_hw_queues(struct request_queue *q) 1554 { 1555 struct blk_mq_hw_ctx *hctx; 1556 int i; 1557 1558 queue_for_each_hw_ctx(q, hctx, i) 1559 blk_mq_stop_hw_queue(hctx); 1560 } 1561 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1562 1563 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1564 { 1565 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1566 1567 blk_mq_run_hw_queue(hctx, false); 1568 } 1569 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1570 1571 void blk_mq_start_hw_queues(struct request_queue *q) 1572 { 1573 struct blk_mq_hw_ctx *hctx; 1574 int i; 1575 1576 queue_for_each_hw_ctx(q, hctx, i) 1577 blk_mq_start_hw_queue(hctx); 1578 } 1579 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1580 1581 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1582 { 1583 if (!blk_mq_hctx_stopped(hctx)) 1584 return; 1585 1586 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1587 blk_mq_run_hw_queue(hctx, async); 1588 } 1589 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1590 1591 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1592 { 1593 struct blk_mq_hw_ctx *hctx; 1594 int i; 1595 1596 queue_for_each_hw_ctx(q, hctx, i) 1597 blk_mq_start_stopped_hw_queue(hctx, async); 1598 } 1599 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1600 1601 static void blk_mq_run_work_fn(struct work_struct *work) 1602 { 1603 struct blk_mq_hw_ctx *hctx; 1604 1605 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1606 1607 /* 1608 * If we are stopped, don't run the queue. 1609 */ 1610 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1611 return; 1612 1613 __blk_mq_run_hw_queue(hctx); 1614 } 1615 1616 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1617 struct request *rq, 1618 bool at_head) 1619 { 1620 struct blk_mq_ctx *ctx = rq->mq_ctx; 1621 enum hctx_type type = hctx->type; 1622 1623 lockdep_assert_held(&ctx->lock); 1624 1625 trace_block_rq_insert(hctx->queue, rq); 1626 1627 if (at_head) 1628 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1629 else 1630 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1631 } 1632 1633 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1634 bool at_head) 1635 { 1636 struct blk_mq_ctx *ctx = rq->mq_ctx; 1637 1638 lockdep_assert_held(&ctx->lock); 1639 1640 __blk_mq_insert_req_list(hctx, rq, at_head); 1641 blk_mq_hctx_mark_pending(hctx, ctx); 1642 } 1643 1644 /* 1645 * Should only be used carefully, when the caller knows we want to 1646 * bypass a potential IO scheduler on the target device. 1647 */ 1648 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1649 { 1650 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1651 1652 spin_lock(&hctx->lock); 1653 list_add_tail(&rq->queuelist, &hctx->dispatch); 1654 spin_unlock(&hctx->lock); 1655 1656 if (run_queue) 1657 blk_mq_run_hw_queue(hctx, false); 1658 } 1659 1660 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1661 struct list_head *list) 1662 1663 { 1664 struct request *rq; 1665 enum hctx_type type = hctx->type; 1666 1667 /* 1668 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1669 * offline now 1670 */ 1671 list_for_each_entry(rq, list, queuelist) { 1672 BUG_ON(rq->mq_ctx != ctx); 1673 trace_block_rq_insert(hctx->queue, rq); 1674 } 1675 1676 spin_lock(&ctx->lock); 1677 list_splice_tail_init(list, &ctx->rq_lists[type]); 1678 blk_mq_hctx_mark_pending(hctx, ctx); 1679 spin_unlock(&ctx->lock); 1680 } 1681 1682 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1683 { 1684 struct request *rqa = container_of(a, struct request, queuelist); 1685 struct request *rqb = container_of(b, struct request, queuelist); 1686 1687 if (rqa->mq_ctx < rqb->mq_ctx) 1688 return -1; 1689 else if (rqa->mq_ctx > rqb->mq_ctx) 1690 return 1; 1691 else if (rqa->mq_hctx < rqb->mq_hctx) 1692 return -1; 1693 else if (rqa->mq_hctx > rqb->mq_hctx) 1694 return 1; 1695 1696 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1697 } 1698 1699 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1700 { 1701 struct blk_mq_hw_ctx *this_hctx; 1702 struct blk_mq_ctx *this_ctx; 1703 struct request_queue *this_q; 1704 struct request *rq; 1705 LIST_HEAD(list); 1706 LIST_HEAD(rq_list); 1707 unsigned int depth; 1708 1709 list_splice_init(&plug->mq_list, &list); 1710 plug->rq_count = 0; 1711 1712 if (plug->rq_count > 2 && plug->multiple_queues) 1713 list_sort(NULL, &list, plug_rq_cmp); 1714 1715 this_q = NULL; 1716 this_hctx = NULL; 1717 this_ctx = NULL; 1718 depth = 0; 1719 1720 while (!list_empty(&list)) { 1721 rq = list_entry_rq(list.next); 1722 list_del_init(&rq->queuelist); 1723 BUG_ON(!rq->q); 1724 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1725 if (this_hctx) { 1726 trace_block_unplug(this_q, depth, !from_schedule); 1727 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1728 &rq_list, 1729 from_schedule); 1730 } 1731 1732 this_q = rq->q; 1733 this_ctx = rq->mq_ctx; 1734 this_hctx = rq->mq_hctx; 1735 depth = 0; 1736 } 1737 1738 depth++; 1739 list_add_tail(&rq->queuelist, &rq_list); 1740 } 1741 1742 /* 1743 * If 'this_hctx' is set, we know we have entries to complete 1744 * on 'rq_list'. Do those. 1745 */ 1746 if (this_hctx) { 1747 trace_block_unplug(this_q, depth, !from_schedule); 1748 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1749 from_schedule); 1750 } 1751 } 1752 1753 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1754 { 1755 blk_init_request_from_bio(rq, bio); 1756 1757 blk_account_io_start(rq, true); 1758 } 1759 1760 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1761 struct request *rq, 1762 blk_qc_t *cookie, bool last) 1763 { 1764 struct request_queue *q = rq->q; 1765 struct blk_mq_queue_data bd = { 1766 .rq = rq, 1767 .last = last, 1768 }; 1769 blk_qc_t new_cookie; 1770 blk_status_t ret; 1771 1772 new_cookie = request_to_qc_t(hctx, rq); 1773 1774 /* 1775 * For OK queue, we are done. For error, caller may kill it. 1776 * Any other error (busy), just add it to our list as we 1777 * previously would have done. 1778 */ 1779 ret = q->mq_ops->queue_rq(hctx, &bd); 1780 switch (ret) { 1781 case BLK_STS_OK: 1782 blk_mq_update_dispatch_busy(hctx, false); 1783 *cookie = new_cookie; 1784 break; 1785 case BLK_STS_RESOURCE: 1786 case BLK_STS_DEV_RESOURCE: 1787 blk_mq_update_dispatch_busy(hctx, true); 1788 __blk_mq_requeue_request(rq); 1789 break; 1790 default: 1791 blk_mq_update_dispatch_busy(hctx, false); 1792 *cookie = BLK_QC_T_NONE; 1793 break; 1794 } 1795 1796 return ret; 1797 } 1798 1799 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1800 struct request *rq, 1801 blk_qc_t *cookie, 1802 bool bypass, bool last) 1803 { 1804 struct request_queue *q = rq->q; 1805 bool run_queue = true; 1806 blk_status_t ret = BLK_STS_RESOURCE; 1807 int srcu_idx; 1808 bool force = false; 1809 1810 hctx_lock(hctx, &srcu_idx); 1811 /* 1812 * hctx_lock is needed before checking quiesced flag. 1813 * 1814 * When queue is stopped or quiesced, ignore 'bypass', insert 1815 * and return BLK_STS_OK to caller, and avoid driver to try to 1816 * dispatch again. 1817 */ 1818 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) { 1819 run_queue = false; 1820 bypass = false; 1821 goto out_unlock; 1822 } 1823 1824 if (unlikely(q->elevator && !bypass)) 1825 goto out_unlock; 1826 1827 if (!blk_mq_get_dispatch_budget(hctx)) 1828 goto out_unlock; 1829 1830 if (!blk_mq_get_driver_tag(rq)) { 1831 blk_mq_put_dispatch_budget(hctx); 1832 goto out_unlock; 1833 } 1834 1835 /* 1836 * Always add a request that has been through 1837 *.queue_rq() to the hardware dispatch list. 1838 */ 1839 force = true; 1840 ret = __blk_mq_issue_directly(hctx, rq, cookie, last); 1841 out_unlock: 1842 hctx_unlock(hctx, srcu_idx); 1843 switch (ret) { 1844 case BLK_STS_OK: 1845 break; 1846 case BLK_STS_DEV_RESOURCE: 1847 case BLK_STS_RESOURCE: 1848 if (force) { 1849 blk_mq_request_bypass_insert(rq, run_queue); 1850 /* 1851 * We have to return BLK_STS_OK for the DM 1852 * to avoid livelock. Otherwise, we return 1853 * the real result to indicate whether the 1854 * request is direct-issued successfully. 1855 */ 1856 ret = bypass ? BLK_STS_OK : ret; 1857 } else if (!bypass) { 1858 blk_mq_sched_insert_request(rq, false, 1859 run_queue, false); 1860 } 1861 break; 1862 default: 1863 if (!bypass) 1864 blk_mq_end_request(rq, ret); 1865 break; 1866 } 1867 1868 return ret; 1869 } 1870 1871 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1872 struct list_head *list) 1873 { 1874 blk_qc_t unused; 1875 blk_status_t ret = BLK_STS_OK; 1876 1877 while (!list_empty(list)) { 1878 struct request *rq = list_first_entry(list, struct request, 1879 queuelist); 1880 1881 list_del_init(&rq->queuelist); 1882 if (ret == BLK_STS_OK) 1883 ret = blk_mq_try_issue_directly(hctx, rq, &unused, 1884 false, 1885 list_empty(list)); 1886 else 1887 blk_mq_sched_insert_request(rq, false, true, false); 1888 } 1889 1890 /* 1891 * If we didn't flush the entire list, we could have told 1892 * the driver there was more coming, but that turned out to 1893 * be a lie. 1894 */ 1895 if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs) 1896 hctx->queue->mq_ops->commit_rqs(hctx); 1897 } 1898 1899 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1900 { 1901 list_add_tail(&rq->queuelist, &plug->mq_list); 1902 plug->rq_count++; 1903 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1904 struct request *tmp; 1905 1906 tmp = list_first_entry(&plug->mq_list, struct request, 1907 queuelist); 1908 if (tmp->q != rq->q) 1909 plug->multiple_queues = true; 1910 } 1911 } 1912 1913 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1914 { 1915 const int is_sync = op_is_sync(bio->bi_opf); 1916 const int is_flush_fua = op_is_flush(bio->bi_opf); 1917 struct blk_mq_alloc_data data = { .flags = 0}; 1918 struct request *rq; 1919 struct blk_plug *plug; 1920 struct request *same_queue_rq = NULL; 1921 blk_qc_t cookie; 1922 1923 blk_queue_bounce(q, &bio); 1924 1925 blk_queue_split(q, &bio); 1926 1927 if (!bio_integrity_prep(bio)) 1928 return BLK_QC_T_NONE; 1929 1930 if (!is_flush_fua && !blk_queue_nomerges(q) && 1931 blk_attempt_plug_merge(q, bio, &same_queue_rq)) 1932 return BLK_QC_T_NONE; 1933 1934 if (blk_mq_sched_bio_merge(q, bio)) 1935 return BLK_QC_T_NONE; 1936 1937 rq_qos_throttle(q, bio); 1938 1939 data.cmd_flags = bio->bi_opf; 1940 rq = blk_mq_get_request(q, bio, &data); 1941 if (unlikely(!rq)) { 1942 rq_qos_cleanup(q, bio); 1943 if (bio->bi_opf & REQ_NOWAIT) 1944 bio_wouldblock_error(bio); 1945 return BLK_QC_T_NONE; 1946 } 1947 1948 trace_block_getrq(q, bio, bio->bi_opf); 1949 1950 rq_qos_track(q, rq, bio); 1951 1952 cookie = request_to_qc_t(data.hctx, rq); 1953 1954 plug = current->plug; 1955 if (unlikely(is_flush_fua)) { 1956 blk_mq_put_ctx(data.ctx); 1957 blk_mq_bio_to_request(rq, bio); 1958 1959 /* bypass scheduler for flush rq */ 1960 blk_insert_flush(rq); 1961 blk_mq_run_hw_queue(data.hctx, true); 1962 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1963 /* 1964 * Use plugging if we have a ->commit_rqs() hook as well, as 1965 * we know the driver uses bd->last in a smart fashion. 1966 */ 1967 unsigned int request_count = plug->rq_count; 1968 struct request *last = NULL; 1969 1970 blk_mq_put_ctx(data.ctx); 1971 blk_mq_bio_to_request(rq, bio); 1972 1973 if (!request_count) 1974 trace_block_plug(q); 1975 else 1976 last = list_entry_rq(plug->mq_list.prev); 1977 1978 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1979 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1980 blk_flush_plug_list(plug, false); 1981 trace_block_plug(q); 1982 } 1983 1984 blk_add_rq_to_plug(plug, rq); 1985 } else if (plug && !blk_queue_nomerges(q)) { 1986 blk_mq_bio_to_request(rq, bio); 1987 1988 /* 1989 * We do limited plugging. If the bio can be merged, do that. 1990 * Otherwise the existing request in the plug list will be 1991 * issued. So the plug list will have one request at most 1992 * The plug list might get flushed before this. If that happens, 1993 * the plug list is empty, and same_queue_rq is invalid. 1994 */ 1995 if (list_empty(&plug->mq_list)) 1996 same_queue_rq = NULL; 1997 if (same_queue_rq) { 1998 list_del_init(&same_queue_rq->queuelist); 1999 plug->rq_count--; 2000 } 2001 blk_add_rq_to_plug(plug, rq); 2002 2003 blk_mq_put_ctx(data.ctx); 2004 2005 if (same_queue_rq) { 2006 data.hctx = same_queue_rq->mq_hctx; 2007 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2008 &cookie, false, true); 2009 } 2010 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2011 !data.hctx->dispatch_busy)) { 2012 blk_mq_put_ctx(data.ctx); 2013 blk_mq_bio_to_request(rq, bio); 2014 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true); 2015 } else { 2016 blk_mq_put_ctx(data.ctx); 2017 blk_mq_bio_to_request(rq, bio); 2018 blk_mq_sched_insert_request(rq, false, true, true); 2019 } 2020 2021 return cookie; 2022 } 2023 2024 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2025 unsigned int hctx_idx) 2026 { 2027 struct page *page; 2028 2029 if (tags->rqs && set->ops->exit_request) { 2030 int i; 2031 2032 for (i = 0; i < tags->nr_tags; i++) { 2033 struct request *rq = tags->static_rqs[i]; 2034 2035 if (!rq) 2036 continue; 2037 set->ops->exit_request(set, rq, hctx_idx); 2038 tags->static_rqs[i] = NULL; 2039 } 2040 } 2041 2042 while (!list_empty(&tags->page_list)) { 2043 page = list_first_entry(&tags->page_list, struct page, lru); 2044 list_del_init(&page->lru); 2045 /* 2046 * Remove kmemleak object previously allocated in 2047 * blk_mq_init_rq_map(). 2048 */ 2049 kmemleak_free(page_address(page)); 2050 __free_pages(page, page->private); 2051 } 2052 } 2053 2054 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2055 { 2056 kfree(tags->rqs); 2057 tags->rqs = NULL; 2058 kfree(tags->static_rqs); 2059 tags->static_rqs = NULL; 2060 2061 blk_mq_free_tags(tags); 2062 } 2063 2064 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2065 unsigned int hctx_idx, 2066 unsigned int nr_tags, 2067 unsigned int reserved_tags) 2068 { 2069 struct blk_mq_tags *tags; 2070 int node; 2071 2072 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx); 2073 if (node == NUMA_NO_NODE) 2074 node = set->numa_node; 2075 2076 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2077 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2078 if (!tags) 2079 return NULL; 2080 2081 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2082 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2083 node); 2084 if (!tags->rqs) { 2085 blk_mq_free_tags(tags); 2086 return NULL; 2087 } 2088 2089 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2090 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2091 node); 2092 if (!tags->static_rqs) { 2093 kfree(tags->rqs); 2094 blk_mq_free_tags(tags); 2095 return NULL; 2096 } 2097 2098 return tags; 2099 } 2100 2101 static size_t order_to_size(unsigned int order) 2102 { 2103 return (size_t)PAGE_SIZE << order; 2104 } 2105 2106 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2107 unsigned int hctx_idx, int node) 2108 { 2109 int ret; 2110 2111 if (set->ops->init_request) { 2112 ret = set->ops->init_request(set, rq, hctx_idx, node); 2113 if (ret) 2114 return ret; 2115 } 2116 2117 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2118 return 0; 2119 } 2120 2121 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2122 unsigned int hctx_idx, unsigned int depth) 2123 { 2124 unsigned int i, j, entries_per_page, max_order = 4; 2125 size_t rq_size, left; 2126 int node; 2127 2128 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx); 2129 if (node == NUMA_NO_NODE) 2130 node = set->numa_node; 2131 2132 INIT_LIST_HEAD(&tags->page_list); 2133 2134 /* 2135 * rq_size is the size of the request plus driver payload, rounded 2136 * to the cacheline size 2137 */ 2138 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2139 cache_line_size()); 2140 left = rq_size * depth; 2141 2142 for (i = 0; i < depth; ) { 2143 int this_order = max_order; 2144 struct page *page; 2145 int to_do; 2146 void *p; 2147 2148 while (this_order && left < order_to_size(this_order - 1)) 2149 this_order--; 2150 2151 do { 2152 page = alloc_pages_node(node, 2153 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2154 this_order); 2155 if (page) 2156 break; 2157 if (!this_order--) 2158 break; 2159 if (order_to_size(this_order) < rq_size) 2160 break; 2161 } while (1); 2162 2163 if (!page) 2164 goto fail; 2165 2166 page->private = this_order; 2167 list_add_tail(&page->lru, &tags->page_list); 2168 2169 p = page_address(page); 2170 /* 2171 * Allow kmemleak to scan these pages as they contain pointers 2172 * to additional allocations like via ops->init_request(). 2173 */ 2174 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2175 entries_per_page = order_to_size(this_order) / rq_size; 2176 to_do = min(entries_per_page, depth - i); 2177 left -= to_do * rq_size; 2178 for (j = 0; j < to_do; j++) { 2179 struct request *rq = p; 2180 2181 tags->static_rqs[i] = rq; 2182 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2183 tags->static_rqs[i] = NULL; 2184 goto fail; 2185 } 2186 2187 p += rq_size; 2188 i++; 2189 } 2190 } 2191 return 0; 2192 2193 fail: 2194 blk_mq_free_rqs(set, tags, hctx_idx); 2195 return -ENOMEM; 2196 } 2197 2198 /* 2199 * 'cpu' is going away. splice any existing rq_list entries from this 2200 * software queue to the hw queue dispatch list, and ensure that it 2201 * gets run. 2202 */ 2203 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2204 { 2205 struct blk_mq_hw_ctx *hctx; 2206 struct blk_mq_ctx *ctx; 2207 LIST_HEAD(tmp); 2208 enum hctx_type type; 2209 2210 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2211 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2212 type = hctx->type; 2213 2214 spin_lock(&ctx->lock); 2215 if (!list_empty(&ctx->rq_lists[type])) { 2216 list_splice_init(&ctx->rq_lists[type], &tmp); 2217 blk_mq_hctx_clear_pending(hctx, ctx); 2218 } 2219 spin_unlock(&ctx->lock); 2220 2221 if (list_empty(&tmp)) 2222 return 0; 2223 2224 spin_lock(&hctx->lock); 2225 list_splice_tail_init(&tmp, &hctx->dispatch); 2226 spin_unlock(&hctx->lock); 2227 2228 blk_mq_run_hw_queue(hctx, true); 2229 return 0; 2230 } 2231 2232 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2233 { 2234 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2235 &hctx->cpuhp_dead); 2236 } 2237 2238 /* hctx->ctxs will be freed in queue's release handler */ 2239 static void blk_mq_exit_hctx(struct request_queue *q, 2240 struct blk_mq_tag_set *set, 2241 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2242 { 2243 if (blk_mq_hw_queue_mapped(hctx)) 2244 blk_mq_tag_idle(hctx); 2245 2246 if (set->ops->exit_request) 2247 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2248 2249 if (set->ops->exit_hctx) 2250 set->ops->exit_hctx(hctx, hctx_idx); 2251 2252 if (hctx->flags & BLK_MQ_F_BLOCKING) 2253 cleanup_srcu_struct(hctx->srcu); 2254 2255 blk_mq_remove_cpuhp(hctx); 2256 blk_free_flush_queue(hctx->fq); 2257 sbitmap_free(&hctx->ctx_map); 2258 } 2259 2260 static void blk_mq_exit_hw_queues(struct request_queue *q, 2261 struct blk_mq_tag_set *set, int nr_queue) 2262 { 2263 struct blk_mq_hw_ctx *hctx; 2264 unsigned int i; 2265 2266 queue_for_each_hw_ctx(q, hctx, i) { 2267 if (i == nr_queue) 2268 break; 2269 blk_mq_debugfs_unregister_hctx(hctx); 2270 blk_mq_exit_hctx(q, set, hctx, i); 2271 } 2272 } 2273 2274 static int blk_mq_init_hctx(struct request_queue *q, 2275 struct blk_mq_tag_set *set, 2276 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2277 { 2278 int node; 2279 2280 node = hctx->numa_node; 2281 if (node == NUMA_NO_NODE) 2282 node = hctx->numa_node = set->numa_node; 2283 2284 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2285 spin_lock_init(&hctx->lock); 2286 INIT_LIST_HEAD(&hctx->dispatch); 2287 hctx->queue = q; 2288 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2289 2290 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2291 2292 hctx->tags = set->tags[hctx_idx]; 2293 2294 /* 2295 * Allocate space for all possible cpus to avoid allocation at 2296 * runtime 2297 */ 2298 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2299 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node); 2300 if (!hctx->ctxs) 2301 goto unregister_cpu_notifier; 2302 2303 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2304 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node)) 2305 goto free_ctxs; 2306 2307 hctx->nr_ctx = 0; 2308 2309 spin_lock_init(&hctx->dispatch_wait_lock); 2310 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2311 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2312 2313 if (set->ops->init_hctx && 2314 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2315 goto free_bitmap; 2316 2317 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2318 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 2319 if (!hctx->fq) 2320 goto exit_hctx; 2321 2322 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2323 goto free_fq; 2324 2325 if (hctx->flags & BLK_MQ_F_BLOCKING) 2326 init_srcu_struct(hctx->srcu); 2327 2328 return 0; 2329 2330 free_fq: 2331 kfree(hctx->fq); 2332 exit_hctx: 2333 if (set->ops->exit_hctx) 2334 set->ops->exit_hctx(hctx, hctx_idx); 2335 free_bitmap: 2336 sbitmap_free(&hctx->ctx_map); 2337 free_ctxs: 2338 kfree(hctx->ctxs); 2339 unregister_cpu_notifier: 2340 blk_mq_remove_cpuhp(hctx); 2341 return -1; 2342 } 2343 2344 static void blk_mq_init_cpu_queues(struct request_queue *q, 2345 unsigned int nr_hw_queues) 2346 { 2347 struct blk_mq_tag_set *set = q->tag_set; 2348 unsigned int i, j; 2349 2350 for_each_possible_cpu(i) { 2351 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2352 struct blk_mq_hw_ctx *hctx; 2353 int k; 2354 2355 __ctx->cpu = i; 2356 spin_lock_init(&__ctx->lock); 2357 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2358 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2359 2360 __ctx->queue = q; 2361 2362 /* 2363 * Set local node, IFF we have more than one hw queue. If 2364 * not, we remain on the home node of the device 2365 */ 2366 for (j = 0; j < set->nr_maps; j++) { 2367 hctx = blk_mq_map_queue_type(q, j, i); 2368 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2369 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2370 } 2371 } 2372 } 2373 2374 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2375 { 2376 int ret = 0; 2377 2378 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2379 set->queue_depth, set->reserved_tags); 2380 if (!set->tags[hctx_idx]) 2381 return false; 2382 2383 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2384 set->queue_depth); 2385 if (!ret) 2386 return true; 2387 2388 blk_mq_free_rq_map(set->tags[hctx_idx]); 2389 set->tags[hctx_idx] = NULL; 2390 return false; 2391 } 2392 2393 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2394 unsigned int hctx_idx) 2395 { 2396 if (set->tags && set->tags[hctx_idx]) { 2397 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2398 blk_mq_free_rq_map(set->tags[hctx_idx]); 2399 set->tags[hctx_idx] = NULL; 2400 } 2401 } 2402 2403 static void blk_mq_map_swqueue(struct request_queue *q) 2404 { 2405 unsigned int i, j, hctx_idx; 2406 struct blk_mq_hw_ctx *hctx; 2407 struct blk_mq_ctx *ctx; 2408 struct blk_mq_tag_set *set = q->tag_set; 2409 2410 /* 2411 * Avoid others reading imcomplete hctx->cpumask through sysfs 2412 */ 2413 mutex_lock(&q->sysfs_lock); 2414 2415 queue_for_each_hw_ctx(q, hctx, i) { 2416 cpumask_clear(hctx->cpumask); 2417 hctx->nr_ctx = 0; 2418 hctx->dispatch_from = NULL; 2419 } 2420 2421 /* 2422 * Map software to hardware queues. 2423 * 2424 * If the cpu isn't present, the cpu is mapped to first hctx. 2425 */ 2426 for_each_possible_cpu(i) { 2427 hctx_idx = set->map[0].mq_map[i]; 2428 /* unmapped hw queue can be remapped after CPU topo changed */ 2429 if (!set->tags[hctx_idx] && 2430 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2431 /* 2432 * If tags initialization fail for some hctx, 2433 * that hctx won't be brought online. In this 2434 * case, remap the current ctx to hctx[0] which 2435 * is guaranteed to always have tags allocated 2436 */ 2437 set->map[0].mq_map[i] = 0; 2438 } 2439 2440 ctx = per_cpu_ptr(q->queue_ctx, i); 2441 for (j = 0; j < set->nr_maps; j++) { 2442 if (!set->map[j].nr_queues) 2443 continue; 2444 2445 hctx = blk_mq_map_queue_type(q, j, i); 2446 2447 /* 2448 * If the CPU is already set in the mask, then we've 2449 * mapped this one already. This can happen if 2450 * devices share queues across queue maps. 2451 */ 2452 if (cpumask_test_cpu(i, hctx->cpumask)) 2453 continue; 2454 2455 cpumask_set_cpu(i, hctx->cpumask); 2456 hctx->type = j; 2457 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2458 hctx->ctxs[hctx->nr_ctx++] = ctx; 2459 2460 /* 2461 * If the nr_ctx type overflows, we have exceeded the 2462 * amount of sw queues we can support. 2463 */ 2464 BUG_ON(!hctx->nr_ctx); 2465 } 2466 } 2467 2468 mutex_unlock(&q->sysfs_lock); 2469 2470 queue_for_each_hw_ctx(q, hctx, i) { 2471 /* 2472 * If no software queues are mapped to this hardware queue, 2473 * disable it and free the request entries. 2474 */ 2475 if (!hctx->nr_ctx) { 2476 /* Never unmap queue 0. We need it as a 2477 * fallback in case of a new remap fails 2478 * allocation 2479 */ 2480 if (i && set->tags[i]) 2481 blk_mq_free_map_and_requests(set, i); 2482 2483 hctx->tags = NULL; 2484 continue; 2485 } 2486 2487 hctx->tags = set->tags[i]; 2488 WARN_ON(!hctx->tags); 2489 2490 /* 2491 * Set the map size to the number of mapped software queues. 2492 * This is more accurate and more efficient than looping 2493 * over all possibly mapped software queues. 2494 */ 2495 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2496 2497 /* 2498 * Initialize batch roundrobin counts 2499 */ 2500 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2501 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2502 } 2503 } 2504 2505 /* 2506 * Caller needs to ensure that we're either frozen/quiesced, or that 2507 * the queue isn't live yet. 2508 */ 2509 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2510 { 2511 struct blk_mq_hw_ctx *hctx; 2512 int i; 2513 2514 queue_for_each_hw_ctx(q, hctx, i) { 2515 if (shared) 2516 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2517 else 2518 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2519 } 2520 } 2521 2522 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2523 bool shared) 2524 { 2525 struct request_queue *q; 2526 2527 lockdep_assert_held(&set->tag_list_lock); 2528 2529 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2530 blk_mq_freeze_queue(q); 2531 queue_set_hctx_shared(q, shared); 2532 blk_mq_unfreeze_queue(q); 2533 } 2534 } 2535 2536 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2537 { 2538 struct blk_mq_tag_set *set = q->tag_set; 2539 2540 mutex_lock(&set->tag_list_lock); 2541 list_del_rcu(&q->tag_set_list); 2542 if (list_is_singular(&set->tag_list)) { 2543 /* just transitioned to unshared */ 2544 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2545 /* update existing queue */ 2546 blk_mq_update_tag_set_depth(set, false); 2547 } 2548 mutex_unlock(&set->tag_list_lock); 2549 INIT_LIST_HEAD(&q->tag_set_list); 2550 } 2551 2552 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2553 struct request_queue *q) 2554 { 2555 mutex_lock(&set->tag_list_lock); 2556 2557 /* 2558 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2559 */ 2560 if (!list_empty(&set->tag_list) && 2561 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2562 set->flags |= BLK_MQ_F_TAG_SHARED; 2563 /* update existing queue */ 2564 blk_mq_update_tag_set_depth(set, true); 2565 } 2566 if (set->flags & BLK_MQ_F_TAG_SHARED) 2567 queue_set_hctx_shared(q, true); 2568 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2569 2570 mutex_unlock(&set->tag_list_lock); 2571 } 2572 2573 /* All allocations will be freed in release handler of q->mq_kobj */ 2574 static int blk_mq_alloc_ctxs(struct request_queue *q) 2575 { 2576 struct blk_mq_ctxs *ctxs; 2577 int cpu; 2578 2579 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2580 if (!ctxs) 2581 return -ENOMEM; 2582 2583 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2584 if (!ctxs->queue_ctx) 2585 goto fail; 2586 2587 for_each_possible_cpu(cpu) { 2588 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2589 ctx->ctxs = ctxs; 2590 } 2591 2592 q->mq_kobj = &ctxs->kobj; 2593 q->queue_ctx = ctxs->queue_ctx; 2594 2595 return 0; 2596 fail: 2597 kfree(ctxs); 2598 return -ENOMEM; 2599 } 2600 2601 /* 2602 * It is the actual release handler for mq, but we do it from 2603 * request queue's release handler for avoiding use-after-free 2604 * and headache because q->mq_kobj shouldn't have been introduced, 2605 * but we can't group ctx/kctx kobj without it. 2606 */ 2607 void blk_mq_release(struct request_queue *q) 2608 { 2609 struct blk_mq_hw_ctx *hctx; 2610 unsigned int i; 2611 2612 /* hctx kobj stays in hctx */ 2613 queue_for_each_hw_ctx(q, hctx, i) { 2614 if (!hctx) 2615 continue; 2616 kobject_put(&hctx->kobj); 2617 } 2618 2619 kfree(q->queue_hw_ctx); 2620 2621 /* 2622 * release .mq_kobj and sw queue's kobject now because 2623 * both share lifetime with request queue. 2624 */ 2625 blk_mq_sysfs_deinit(q); 2626 } 2627 2628 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2629 { 2630 struct request_queue *uninit_q, *q; 2631 2632 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2633 if (!uninit_q) 2634 return ERR_PTR(-ENOMEM); 2635 2636 q = blk_mq_init_allocated_queue(set, uninit_q); 2637 if (IS_ERR(q)) 2638 blk_cleanup_queue(uninit_q); 2639 2640 return q; 2641 } 2642 EXPORT_SYMBOL(blk_mq_init_queue); 2643 2644 /* 2645 * Helper for setting up a queue with mq ops, given queue depth, and 2646 * the passed in mq ops flags. 2647 */ 2648 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2649 const struct blk_mq_ops *ops, 2650 unsigned int queue_depth, 2651 unsigned int set_flags) 2652 { 2653 struct request_queue *q; 2654 int ret; 2655 2656 memset(set, 0, sizeof(*set)); 2657 set->ops = ops; 2658 set->nr_hw_queues = 1; 2659 set->nr_maps = 1; 2660 set->queue_depth = queue_depth; 2661 set->numa_node = NUMA_NO_NODE; 2662 set->flags = set_flags; 2663 2664 ret = blk_mq_alloc_tag_set(set); 2665 if (ret) 2666 return ERR_PTR(ret); 2667 2668 q = blk_mq_init_queue(set); 2669 if (IS_ERR(q)) { 2670 blk_mq_free_tag_set(set); 2671 return q; 2672 } 2673 2674 return q; 2675 } 2676 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2677 2678 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2679 { 2680 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2681 2682 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2683 __alignof__(struct blk_mq_hw_ctx)) != 2684 sizeof(struct blk_mq_hw_ctx)); 2685 2686 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2687 hw_ctx_size += sizeof(struct srcu_struct); 2688 2689 return hw_ctx_size; 2690 } 2691 2692 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2693 struct blk_mq_tag_set *set, struct request_queue *q, 2694 int hctx_idx, int node) 2695 { 2696 struct blk_mq_hw_ctx *hctx; 2697 2698 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), 2699 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2700 node); 2701 if (!hctx) 2702 return NULL; 2703 2704 if (!zalloc_cpumask_var_node(&hctx->cpumask, 2705 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2706 node)) { 2707 kfree(hctx); 2708 return NULL; 2709 } 2710 2711 atomic_set(&hctx->nr_active, 0); 2712 hctx->numa_node = node; 2713 hctx->queue_num = hctx_idx; 2714 2715 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) { 2716 free_cpumask_var(hctx->cpumask); 2717 kfree(hctx); 2718 return NULL; 2719 } 2720 blk_mq_hctx_kobj_init(hctx); 2721 2722 return hctx; 2723 } 2724 2725 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2726 struct request_queue *q) 2727 { 2728 int i, j, end; 2729 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2730 2731 /* protect against switching io scheduler */ 2732 mutex_lock(&q->sysfs_lock); 2733 for (i = 0; i < set->nr_hw_queues; i++) { 2734 int node; 2735 struct blk_mq_hw_ctx *hctx; 2736 2737 node = blk_mq_hw_queue_to_node(&set->map[0], i); 2738 /* 2739 * If the hw queue has been mapped to another numa node, 2740 * we need to realloc the hctx. If allocation fails, fallback 2741 * to use the previous one. 2742 */ 2743 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2744 continue; 2745 2746 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2747 if (hctx) { 2748 if (hctxs[i]) { 2749 blk_mq_exit_hctx(q, set, hctxs[i], i); 2750 kobject_put(&hctxs[i]->kobj); 2751 } 2752 hctxs[i] = hctx; 2753 } else { 2754 if (hctxs[i]) 2755 pr_warn("Allocate new hctx on node %d fails,\ 2756 fallback to previous one on node %d\n", 2757 node, hctxs[i]->numa_node); 2758 else 2759 break; 2760 } 2761 } 2762 /* 2763 * Increasing nr_hw_queues fails. Free the newly allocated 2764 * hctxs and keep the previous q->nr_hw_queues. 2765 */ 2766 if (i != set->nr_hw_queues) { 2767 j = q->nr_hw_queues; 2768 end = i; 2769 } else { 2770 j = i; 2771 end = q->nr_hw_queues; 2772 q->nr_hw_queues = set->nr_hw_queues; 2773 } 2774 2775 for (; j < end; j++) { 2776 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2777 2778 if (hctx) { 2779 if (hctx->tags) 2780 blk_mq_free_map_and_requests(set, j); 2781 blk_mq_exit_hctx(q, set, hctx, j); 2782 kobject_put(&hctx->kobj); 2783 hctxs[j] = NULL; 2784 2785 } 2786 } 2787 mutex_unlock(&q->sysfs_lock); 2788 } 2789 2790 /* 2791 * Maximum number of hardware queues we support. For single sets, we'll never 2792 * have more than the CPUs (software queues). For multiple sets, the tag_set 2793 * user may have set ->nr_hw_queues larger. 2794 */ 2795 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2796 { 2797 if (set->nr_maps == 1) 2798 return nr_cpu_ids; 2799 2800 return max(set->nr_hw_queues, nr_cpu_ids); 2801 } 2802 2803 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2804 struct request_queue *q) 2805 { 2806 /* mark the queue as mq asap */ 2807 q->mq_ops = set->ops; 2808 2809 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2810 blk_mq_poll_stats_bkt, 2811 BLK_MQ_POLL_STATS_BKTS, q); 2812 if (!q->poll_cb) 2813 goto err_exit; 2814 2815 if (blk_mq_alloc_ctxs(q)) 2816 goto err_exit; 2817 2818 /* init q->mq_kobj and sw queues' kobjects */ 2819 blk_mq_sysfs_init(q); 2820 2821 q->nr_queues = nr_hw_queues(set); 2822 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2823 GFP_KERNEL, set->numa_node); 2824 if (!q->queue_hw_ctx) 2825 goto err_sys_init; 2826 2827 blk_mq_realloc_hw_ctxs(set, q); 2828 if (!q->nr_hw_queues) 2829 goto err_hctxs; 2830 2831 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2832 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2833 2834 q->tag_set = set; 2835 2836 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2837 if (set->nr_maps > HCTX_TYPE_POLL && 2838 set->map[HCTX_TYPE_POLL].nr_queues) 2839 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2840 2841 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2842 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q); 2843 2844 q->sg_reserved_size = INT_MAX; 2845 2846 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2847 INIT_LIST_HEAD(&q->requeue_list); 2848 spin_lock_init(&q->requeue_lock); 2849 2850 blk_queue_make_request(q, blk_mq_make_request); 2851 2852 /* 2853 * Do this after blk_queue_make_request() overrides it... 2854 */ 2855 q->nr_requests = set->queue_depth; 2856 2857 /* 2858 * Default to classic polling 2859 */ 2860 q->poll_nsec = -1; 2861 2862 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2863 blk_mq_add_queue_tag_set(set, q); 2864 blk_mq_map_swqueue(q); 2865 2866 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2867 int ret; 2868 2869 ret = elevator_init_mq(q); 2870 if (ret) 2871 return ERR_PTR(ret); 2872 } 2873 2874 return q; 2875 2876 err_hctxs: 2877 kfree(q->queue_hw_ctx); 2878 err_sys_init: 2879 blk_mq_sysfs_deinit(q); 2880 err_exit: 2881 q->mq_ops = NULL; 2882 return ERR_PTR(-ENOMEM); 2883 } 2884 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2885 2886 void blk_mq_free_queue(struct request_queue *q) 2887 { 2888 struct blk_mq_tag_set *set = q->tag_set; 2889 2890 blk_mq_del_queue_tag_set(q); 2891 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2892 } 2893 2894 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2895 { 2896 int i; 2897 2898 for (i = 0; i < set->nr_hw_queues; i++) 2899 if (!__blk_mq_alloc_rq_map(set, i)) 2900 goto out_unwind; 2901 2902 return 0; 2903 2904 out_unwind: 2905 while (--i >= 0) 2906 blk_mq_free_rq_map(set->tags[i]); 2907 2908 return -ENOMEM; 2909 } 2910 2911 /* 2912 * Allocate the request maps associated with this tag_set. Note that this 2913 * may reduce the depth asked for, if memory is tight. set->queue_depth 2914 * will be updated to reflect the allocated depth. 2915 */ 2916 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2917 { 2918 unsigned int depth; 2919 int err; 2920 2921 depth = set->queue_depth; 2922 do { 2923 err = __blk_mq_alloc_rq_maps(set); 2924 if (!err) 2925 break; 2926 2927 set->queue_depth >>= 1; 2928 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2929 err = -ENOMEM; 2930 break; 2931 } 2932 } while (set->queue_depth); 2933 2934 if (!set->queue_depth || err) { 2935 pr_err("blk-mq: failed to allocate request map\n"); 2936 return -ENOMEM; 2937 } 2938 2939 if (depth != set->queue_depth) 2940 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2941 depth, set->queue_depth); 2942 2943 return 0; 2944 } 2945 2946 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2947 { 2948 if (set->ops->map_queues && !is_kdump_kernel()) { 2949 int i; 2950 2951 /* 2952 * transport .map_queues is usually done in the following 2953 * way: 2954 * 2955 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2956 * mask = get_cpu_mask(queue) 2957 * for_each_cpu(cpu, mask) 2958 * set->map[x].mq_map[cpu] = queue; 2959 * } 2960 * 2961 * When we need to remap, the table has to be cleared for 2962 * killing stale mapping since one CPU may not be mapped 2963 * to any hw queue. 2964 */ 2965 for (i = 0; i < set->nr_maps; i++) 2966 blk_mq_clear_mq_map(&set->map[i]); 2967 2968 return set->ops->map_queues(set); 2969 } else { 2970 BUG_ON(set->nr_maps > 1); 2971 return blk_mq_map_queues(&set->map[0]); 2972 } 2973 } 2974 2975 /* 2976 * Alloc a tag set to be associated with one or more request queues. 2977 * May fail with EINVAL for various error conditions. May adjust the 2978 * requested depth down, if it's too large. In that case, the set 2979 * value will be stored in set->queue_depth. 2980 */ 2981 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2982 { 2983 int i, ret; 2984 2985 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2986 2987 if (!set->nr_hw_queues) 2988 return -EINVAL; 2989 if (!set->queue_depth) 2990 return -EINVAL; 2991 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2992 return -EINVAL; 2993 2994 if (!set->ops->queue_rq) 2995 return -EINVAL; 2996 2997 if (!set->ops->get_budget ^ !set->ops->put_budget) 2998 return -EINVAL; 2999 3000 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3001 pr_info("blk-mq: reduced tag depth to %u\n", 3002 BLK_MQ_MAX_DEPTH); 3003 set->queue_depth = BLK_MQ_MAX_DEPTH; 3004 } 3005 3006 if (!set->nr_maps) 3007 set->nr_maps = 1; 3008 else if (set->nr_maps > HCTX_MAX_TYPES) 3009 return -EINVAL; 3010 3011 /* 3012 * If a crashdump is active, then we are potentially in a very 3013 * memory constrained environment. Limit us to 1 queue and 3014 * 64 tags to prevent using too much memory. 3015 */ 3016 if (is_kdump_kernel()) { 3017 set->nr_hw_queues = 1; 3018 set->nr_maps = 1; 3019 set->queue_depth = min(64U, set->queue_depth); 3020 } 3021 /* 3022 * There is no use for more h/w queues than cpus if we just have 3023 * a single map 3024 */ 3025 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3026 set->nr_hw_queues = nr_cpu_ids; 3027 3028 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3029 GFP_KERNEL, set->numa_node); 3030 if (!set->tags) 3031 return -ENOMEM; 3032 3033 ret = -ENOMEM; 3034 for (i = 0; i < set->nr_maps; i++) { 3035 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3036 sizeof(set->map[i].mq_map[0]), 3037 GFP_KERNEL, set->numa_node); 3038 if (!set->map[i].mq_map) 3039 goto out_free_mq_map; 3040 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3041 } 3042 3043 ret = blk_mq_update_queue_map(set); 3044 if (ret) 3045 goto out_free_mq_map; 3046 3047 ret = blk_mq_alloc_rq_maps(set); 3048 if (ret) 3049 goto out_free_mq_map; 3050 3051 mutex_init(&set->tag_list_lock); 3052 INIT_LIST_HEAD(&set->tag_list); 3053 3054 return 0; 3055 3056 out_free_mq_map: 3057 for (i = 0; i < set->nr_maps; i++) { 3058 kfree(set->map[i].mq_map); 3059 set->map[i].mq_map = NULL; 3060 } 3061 kfree(set->tags); 3062 set->tags = NULL; 3063 return ret; 3064 } 3065 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3066 3067 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3068 { 3069 int i, j; 3070 3071 for (i = 0; i < nr_hw_queues(set); i++) 3072 blk_mq_free_map_and_requests(set, i); 3073 3074 for (j = 0; j < set->nr_maps; j++) { 3075 kfree(set->map[j].mq_map); 3076 set->map[j].mq_map = NULL; 3077 } 3078 3079 kfree(set->tags); 3080 set->tags = NULL; 3081 } 3082 EXPORT_SYMBOL(blk_mq_free_tag_set); 3083 3084 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3085 { 3086 struct blk_mq_tag_set *set = q->tag_set; 3087 struct blk_mq_hw_ctx *hctx; 3088 int i, ret; 3089 3090 if (!set) 3091 return -EINVAL; 3092 3093 blk_mq_freeze_queue(q); 3094 blk_mq_quiesce_queue(q); 3095 3096 ret = 0; 3097 queue_for_each_hw_ctx(q, hctx, i) { 3098 if (!hctx->tags) 3099 continue; 3100 /* 3101 * If we're using an MQ scheduler, just update the scheduler 3102 * queue depth. This is similar to what the old code would do. 3103 */ 3104 if (!hctx->sched_tags) { 3105 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3106 false); 3107 } else { 3108 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3109 nr, true); 3110 } 3111 if (ret) 3112 break; 3113 } 3114 3115 if (!ret) 3116 q->nr_requests = nr; 3117 3118 blk_mq_unquiesce_queue(q); 3119 blk_mq_unfreeze_queue(q); 3120 3121 return ret; 3122 } 3123 3124 /* 3125 * request_queue and elevator_type pair. 3126 * It is just used by __blk_mq_update_nr_hw_queues to cache 3127 * the elevator_type associated with a request_queue. 3128 */ 3129 struct blk_mq_qe_pair { 3130 struct list_head node; 3131 struct request_queue *q; 3132 struct elevator_type *type; 3133 }; 3134 3135 /* 3136 * Cache the elevator_type in qe pair list and switch the 3137 * io scheduler to 'none' 3138 */ 3139 static bool blk_mq_elv_switch_none(struct list_head *head, 3140 struct request_queue *q) 3141 { 3142 struct blk_mq_qe_pair *qe; 3143 3144 if (!q->elevator) 3145 return true; 3146 3147 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3148 if (!qe) 3149 return false; 3150 3151 INIT_LIST_HEAD(&qe->node); 3152 qe->q = q; 3153 qe->type = q->elevator->type; 3154 list_add(&qe->node, head); 3155 3156 mutex_lock(&q->sysfs_lock); 3157 /* 3158 * After elevator_switch_mq, the previous elevator_queue will be 3159 * released by elevator_release. The reference of the io scheduler 3160 * module get by elevator_get will also be put. So we need to get 3161 * a reference of the io scheduler module here to prevent it to be 3162 * removed. 3163 */ 3164 __module_get(qe->type->elevator_owner); 3165 elevator_switch_mq(q, NULL); 3166 mutex_unlock(&q->sysfs_lock); 3167 3168 return true; 3169 } 3170 3171 static void blk_mq_elv_switch_back(struct list_head *head, 3172 struct request_queue *q) 3173 { 3174 struct blk_mq_qe_pair *qe; 3175 struct elevator_type *t = NULL; 3176 3177 list_for_each_entry(qe, head, node) 3178 if (qe->q == q) { 3179 t = qe->type; 3180 break; 3181 } 3182 3183 if (!t) 3184 return; 3185 3186 list_del(&qe->node); 3187 kfree(qe); 3188 3189 mutex_lock(&q->sysfs_lock); 3190 elevator_switch_mq(q, t); 3191 mutex_unlock(&q->sysfs_lock); 3192 } 3193 3194 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3195 int nr_hw_queues) 3196 { 3197 struct request_queue *q; 3198 LIST_HEAD(head); 3199 int prev_nr_hw_queues; 3200 3201 lockdep_assert_held(&set->tag_list_lock); 3202 3203 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3204 nr_hw_queues = nr_cpu_ids; 3205 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3206 return; 3207 3208 list_for_each_entry(q, &set->tag_list, tag_set_list) 3209 blk_mq_freeze_queue(q); 3210 /* 3211 * Sync with blk_mq_queue_tag_busy_iter. 3212 */ 3213 synchronize_rcu(); 3214 /* 3215 * Switch IO scheduler to 'none', cleaning up the data associated 3216 * with the previous scheduler. We will switch back once we are done 3217 * updating the new sw to hw queue mappings. 3218 */ 3219 list_for_each_entry(q, &set->tag_list, tag_set_list) 3220 if (!blk_mq_elv_switch_none(&head, q)) 3221 goto switch_back; 3222 3223 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3224 blk_mq_debugfs_unregister_hctxs(q); 3225 blk_mq_sysfs_unregister(q); 3226 } 3227 3228 prev_nr_hw_queues = set->nr_hw_queues; 3229 set->nr_hw_queues = nr_hw_queues; 3230 blk_mq_update_queue_map(set); 3231 fallback: 3232 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3233 blk_mq_realloc_hw_ctxs(set, q); 3234 if (q->nr_hw_queues != set->nr_hw_queues) { 3235 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3236 nr_hw_queues, prev_nr_hw_queues); 3237 set->nr_hw_queues = prev_nr_hw_queues; 3238 blk_mq_map_queues(&set->map[0]); 3239 goto fallback; 3240 } 3241 blk_mq_map_swqueue(q); 3242 } 3243 3244 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3245 blk_mq_sysfs_register(q); 3246 blk_mq_debugfs_register_hctxs(q); 3247 } 3248 3249 switch_back: 3250 list_for_each_entry(q, &set->tag_list, tag_set_list) 3251 blk_mq_elv_switch_back(&head, q); 3252 3253 list_for_each_entry(q, &set->tag_list, tag_set_list) 3254 blk_mq_unfreeze_queue(q); 3255 } 3256 3257 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3258 { 3259 mutex_lock(&set->tag_list_lock); 3260 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3261 mutex_unlock(&set->tag_list_lock); 3262 } 3263 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3264 3265 /* Enable polling stats and return whether they were already enabled. */ 3266 static bool blk_poll_stats_enable(struct request_queue *q) 3267 { 3268 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3269 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3270 return true; 3271 blk_stat_add_callback(q, q->poll_cb); 3272 return false; 3273 } 3274 3275 static void blk_mq_poll_stats_start(struct request_queue *q) 3276 { 3277 /* 3278 * We don't arm the callback if polling stats are not enabled or the 3279 * callback is already active. 3280 */ 3281 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3282 blk_stat_is_active(q->poll_cb)) 3283 return; 3284 3285 blk_stat_activate_msecs(q->poll_cb, 100); 3286 } 3287 3288 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3289 { 3290 struct request_queue *q = cb->data; 3291 int bucket; 3292 3293 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3294 if (cb->stat[bucket].nr_samples) 3295 q->poll_stat[bucket] = cb->stat[bucket]; 3296 } 3297 } 3298 3299 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3300 struct blk_mq_hw_ctx *hctx, 3301 struct request *rq) 3302 { 3303 unsigned long ret = 0; 3304 int bucket; 3305 3306 /* 3307 * If stats collection isn't on, don't sleep but turn it on for 3308 * future users 3309 */ 3310 if (!blk_poll_stats_enable(q)) 3311 return 0; 3312 3313 /* 3314 * As an optimistic guess, use half of the mean service time 3315 * for this type of request. We can (and should) make this smarter. 3316 * For instance, if the completion latencies are tight, we can 3317 * get closer than just half the mean. This is especially 3318 * important on devices where the completion latencies are longer 3319 * than ~10 usec. We do use the stats for the relevant IO size 3320 * if available which does lead to better estimates. 3321 */ 3322 bucket = blk_mq_poll_stats_bkt(rq); 3323 if (bucket < 0) 3324 return ret; 3325 3326 if (q->poll_stat[bucket].nr_samples) 3327 ret = (q->poll_stat[bucket].mean + 1) / 2; 3328 3329 return ret; 3330 } 3331 3332 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3333 struct blk_mq_hw_ctx *hctx, 3334 struct request *rq) 3335 { 3336 struct hrtimer_sleeper hs; 3337 enum hrtimer_mode mode; 3338 unsigned int nsecs; 3339 ktime_t kt; 3340 3341 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3342 return false; 3343 3344 /* 3345 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3346 * 3347 * 0: use half of prev avg 3348 * >0: use this specific value 3349 */ 3350 if (q->poll_nsec > 0) 3351 nsecs = q->poll_nsec; 3352 else 3353 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3354 3355 if (!nsecs) 3356 return false; 3357 3358 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3359 3360 /* 3361 * This will be replaced with the stats tracking code, using 3362 * 'avg_completion_time / 2' as the pre-sleep target. 3363 */ 3364 kt = nsecs; 3365 3366 mode = HRTIMER_MODE_REL; 3367 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3368 hrtimer_set_expires(&hs.timer, kt); 3369 3370 hrtimer_init_sleeper(&hs, current); 3371 do { 3372 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3373 break; 3374 set_current_state(TASK_UNINTERRUPTIBLE); 3375 hrtimer_start_expires(&hs.timer, mode); 3376 if (hs.task) 3377 io_schedule(); 3378 hrtimer_cancel(&hs.timer); 3379 mode = HRTIMER_MODE_ABS; 3380 } while (hs.task && !signal_pending(current)); 3381 3382 __set_current_state(TASK_RUNNING); 3383 destroy_hrtimer_on_stack(&hs.timer); 3384 return true; 3385 } 3386 3387 static bool blk_mq_poll_hybrid(struct request_queue *q, 3388 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3389 { 3390 struct request *rq; 3391 3392 if (q->poll_nsec == -1) 3393 return false; 3394 3395 if (!blk_qc_t_is_internal(cookie)) 3396 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3397 else { 3398 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3399 /* 3400 * With scheduling, if the request has completed, we'll 3401 * get a NULL return here, as we clear the sched tag when 3402 * that happens. The request still remains valid, like always, 3403 * so we should be safe with just the NULL check. 3404 */ 3405 if (!rq) 3406 return false; 3407 } 3408 3409 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3410 } 3411 3412 /** 3413 * blk_poll - poll for IO completions 3414 * @q: the queue 3415 * @cookie: cookie passed back at IO submission time 3416 * @spin: whether to spin for completions 3417 * 3418 * Description: 3419 * Poll for completions on the passed in queue. Returns number of 3420 * completed entries found. If @spin is true, then blk_poll will continue 3421 * looping until at least one completion is found, unless the task is 3422 * otherwise marked running (or we need to reschedule). 3423 */ 3424 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3425 { 3426 struct blk_mq_hw_ctx *hctx; 3427 long state; 3428 3429 if (!blk_qc_t_valid(cookie) || 3430 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3431 return 0; 3432 3433 if (current->plug) 3434 blk_flush_plug_list(current->plug, false); 3435 3436 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3437 3438 /* 3439 * If we sleep, have the caller restart the poll loop to reset 3440 * the state. Like for the other success return cases, the 3441 * caller is responsible for checking if the IO completed. If 3442 * the IO isn't complete, we'll get called again and will go 3443 * straight to the busy poll loop. 3444 */ 3445 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3446 return 1; 3447 3448 hctx->poll_considered++; 3449 3450 state = current->state; 3451 do { 3452 int ret; 3453 3454 hctx->poll_invoked++; 3455 3456 ret = q->mq_ops->poll(hctx); 3457 if (ret > 0) { 3458 hctx->poll_success++; 3459 __set_current_state(TASK_RUNNING); 3460 return ret; 3461 } 3462 3463 if (signal_pending_state(state, current)) 3464 __set_current_state(TASK_RUNNING); 3465 3466 if (current->state == TASK_RUNNING) 3467 return 1; 3468 if (ret < 0 || !spin) 3469 break; 3470 cpu_relax(); 3471 } while (!need_resched()); 3472 3473 __set_current_state(TASK_RUNNING); 3474 return 0; 3475 } 3476 EXPORT_SYMBOL_GPL(blk_poll); 3477 3478 unsigned int blk_mq_rq_cpu(struct request *rq) 3479 { 3480 return rq->mq_ctx->cpu; 3481 } 3482 EXPORT_SYMBOL(blk_mq_rq_cpu); 3483 3484 static int __init blk_mq_init(void) 3485 { 3486 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3487 blk_mq_hctx_notify_dead); 3488 return 0; 3489 } 3490 subsys_initcall(blk_mq_init); 3491