xref: /openbmc/linux/block/blk-mq.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40 
41 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 	int ddir, bytes, bucket;
48 
49 	ddir = rq_data_dir(rq);
50 	bytes = blk_rq_bytes(rq);
51 
52 	bucket = ddir + 2*(ilog2(bytes) - 9);
53 
54 	if (bucket < 0)
55 		return -1;
56 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 
59 	return bucket;
60 }
61 
62 /*
63  * Check if any of the ctx's have pending work in this hardware queue
64  */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 	return !list_empty_careful(&hctx->dispatch) ||
68 		sbitmap_any_bit_set(&hctx->ctx_map) ||
69 			blk_mq_sched_has_work(hctx);
70 }
71 
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 				     struct blk_mq_ctx *ctx)
77 {
78 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81 
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83 				      struct blk_mq_ctx *ctx)
84 {
85 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87 
88 struct mq_inflight {
89 	struct hd_struct *part;
90 	unsigned int *inflight;
91 };
92 
93 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
94 				  struct request *rq, void *priv,
95 				  bool reserved)
96 {
97 	struct mq_inflight *mi = priv;
98 
99 	/*
100 	 * index[0] counts the specific partition that was asked for. index[1]
101 	 * counts the ones that are active on the whole device, so increment
102 	 * that if mi->part is indeed a partition, and not a whole device.
103 	 */
104 	if (rq->part == mi->part)
105 		mi->inflight[0]++;
106 	if (mi->part->partno)
107 		mi->inflight[1]++;
108 }
109 
110 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
111 		      unsigned int inflight[2])
112 {
113 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
114 
115 	inflight[0] = inflight[1] = 0;
116 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 }
118 
119 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
120 				     struct request *rq, void *priv,
121 				     bool reserved)
122 {
123 	struct mq_inflight *mi = priv;
124 
125 	if (rq->part == mi->part)
126 		mi->inflight[rq_data_dir(rq)]++;
127 }
128 
129 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
130 			 unsigned int inflight[2])
131 {
132 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
133 
134 	inflight[0] = inflight[1] = 0;
135 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
136 }
137 
138 void blk_freeze_queue_start(struct request_queue *q)
139 {
140 	int freeze_depth;
141 
142 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
143 	if (freeze_depth == 1) {
144 		percpu_ref_kill(&q->q_usage_counter);
145 		if (q->mq_ops)
146 			blk_mq_run_hw_queues(q, false);
147 	}
148 }
149 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150 
151 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 {
153 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156 
157 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
158 				     unsigned long timeout)
159 {
160 	return wait_event_timeout(q->mq_freeze_wq,
161 					percpu_ref_is_zero(&q->q_usage_counter),
162 					timeout);
163 }
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
165 
166 /*
167  * Guarantee no request is in use, so we can change any data structure of
168  * the queue afterward.
169  */
170 void blk_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * In the !blk_mq case we are only calling this to kill the
174 	 * q_usage_counter, otherwise this increases the freeze depth
175 	 * and waits for it to return to zero.  For this reason there is
176 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
177 	 * exported to drivers as the only user for unfreeze is blk_mq.
178 	 */
179 	blk_freeze_queue_start(q);
180 	if (!q->mq_ops)
181 		blk_drain_queue(q);
182 	blk_mq_freeze_queue_wait(q);
183 }
184 
185 void blk_mq_freeze_queue(struct request_queue *q)
186 {
187 	/*
188 	 * ...just an alias to keep freeze and unfreeze actions balanced
189 	 * in the blk_mq_* namespace
190 	 */
191 	blk_freeze_queue(q);
192 }
193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194 
195 void blk_mq_unfreeze_queue(struct request_queue *q)
196 {
197 	int freeze_depth;
198 
199 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
200 	WARN_ON_ONCE(freeze_depth < 0);
201 	if (!freeze_depth) {
202 		percpu_ref_resurrect(&q->q_usage_counter);
203 		wake_up_all(&q->mq_freeze_wq);
204 	}
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207 
208 /*
209  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210  * mpt3sas driver such that this function can be removed.
211  */
212 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 {
214 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217 
218 /**
219  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220  * @q: request queue.
221  *
222  * Note: this function does not prevent that the struct request end_io()
223  * callback function is invoked. Once this function is returned, we make
224  * sure no dispatch can happen until the queue is unquiesced via
225  * blk_mq_unquiesce_queue().
226  */
227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 	struct blk_mq_hw_ctx *hctx;
230 	unsigned int i;
231 	bool rcu = false;
232 
233 	blk_mq_quiesce_queue_nowait(q);
234 
235 	queue_for_each_hw_ctx(q, hctx, i) {
236 		if (hctx->flags & BLK_MQ_F_BLOCKING)
237 			synchronize_srcu(hctx->srcu);
238 		else
239 			rcu = true;
240 	}
241 	if (rcu)
242 		synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245 
246 /*
247  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248  * @q: request queue.
249  *
250  * This function recovers queue into the state before quiescing
251  * which is done by blk_mq_quiesce_queue.
252  */
253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256 
257 	/* dispatch requests which are inserted during quiescing */
258 	blk_mq_run_hw_queues(q, true);
259 }
260 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261 
262 void blk_mq_wake_waiters(struct request_queue *q)
263 {
264 	struct blk_mq_hw_ctx *hctx;
265 	unsigned int i;
266 
267 	queue_for_each_hw_ctx(q, hctx, i)
268 		if (blk_mq_hw_queue_mapped(hctx))
269 			blk_mq_tag_wakeup_all(hctx->tags, true);
270 }
271 
272 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 {
274 	return blk_mq_has_free_tags(hctx->tags);
275 }
276 EXPORT_SYMBOL(blk_mq_can_queue);
277 
278 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
279 		unsigned int tag, unsigned int op)
280 {
281 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
282 	struct request *rq = tags->static_rqs[tag];
283 	req_flags_t rq_flags = 0;
284 
285 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
286 		rq->tag = -1;
287 		rq->internal_tag = tag;
288 	} else {
289 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
290 			rq_flags = RQF_MQ_INFLIGHT;
291 			atomic_inc(&data->hctx->nr_active);
292 		}
293 		rq->tag = tag;
294 		rq->internal_tag = -1;
295 		data->hctx->tags->rqs[rq->tag] = rq;
296 	}
297 
298 	/* csd/requeue_work/fifo_time is initialized before use */
299 	rq->q = data->q;
300 	rq->mq_ctx = data->ctx;
301 	rq->rq_flags = rq_flags;
302 	rq->cpu = -1;
303 	rq->cmd_flags = op;
304 	if (data->flags & BLK_MQ_REQ_PREEMPT)
305 		rq->rq_flags |= RQF_PREEMPT;
306 	if (blk_queue_io_stat(data->q))
307 		rq->rq_flags |= RQF_IO_STAT;
308 	INIT_LIST_HEAD(&rq->queuelist);
309 	INIT_HLIST_NODE(&rq->hash);
310 	RB_CLEAR_NODE(&rq->rb_node);
311 	rq->rq_disk = NULL;
312 	rq->part = NULL;
313 	rq->start_time_ns = ktime_get_ns();
314 	rq->io_start_time_ns = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	rq->special = NULL;
320 	/* tag was already set */
321 	rq->extra_len = 0;
322 	rq->__deadline = 0;
323 
324 	INIT_LIST_HEAD(&rq->timeout_list);
325 	rq->timeout = 0;
326 
327 	rq->end_io = NULL;
328 	rq->end_io_data = NULL;
329 	rq->next_rq = NULL;
330 
331 #ifdef CONFIG_BLK_CGROUP
332 	rq->rl = NULL;
333 #endif
334 
335 	data->ctx->rq_dispatched[op_is_sync(op)]++;
336 	refcount_set(&rq->ref, 1);
337 	return rq;
338 }
339 
340 static struct request *blk_mq_get_request(struct request_queue *q,
341 		struct bio *bio, unsigned int op,
342 		struct blk_mq_alloc_data *data)
343 {
344 	struct elevator_queue *e = q->elevator;
345 	struct request *rq;
346 	unsigned int tag;
347 	bool put_ctx_on_error = false;
348 
349 	blk_queue_enter_live(q);
350 	data->q = q;
351 	if (likely(!data->ctx)) {
352 		data->ctx = blk_mq_get_ctx(q);
353 		put_ctx_on_error = true;
354 	}
355 	if (likely(!data->hctx))
356 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357 	if (op & REQ_NOWAIT)
358 		data->flags |= BLK_MQ_REQ_NOWAIT;
359 
360 	if (e) {
361 		data->flags |= BLK_MQ_REQ_INTERNAL;
362 
363 		/*
364 		 * Flush requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
369 		    !(data->flags & BLK_MQ_REQ_RESERVED))
370 			e->type->ops.mq.limit_depth(op, data);
371 	} else {
372 		blk_mq_tag_busy(data->hctx);
373 	}
374 
375 	tag = blk_mq_get_tag(data);
376 	if (tag == BLK_MQ_TAG_FAIL) {
377 		if (put_ctx_on_error) {
378 			blk_mq_put_ctx(data->ctx);
379 			data->ctx = NULL;
380 		}
381 		blk_queue_exit(q);
382 		return NULL;
383 	}
384 
385 	rq = blk_mq_rq_ctx_init(data, tag, op);
386 	if (!op_is_flush(op)) {
387 		rq->elv.icq = NULL;
388 		if (e && e->type->ops.mq.prepare_request) {
389 			if (e->type->icq_cache && rq_ioc(bio))
390 				blk_mq_sched_assign_ioc(rq, bio);
391 
392 			e->type->ops.mq.prepare_request(rq, bio);
393 			rq->rq_flags |= RQF_ELVPRIV;
394 		}
395 	}
396 	data->hctx->queued++;
397 	return rq;
398 }
399 
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 		blk_mq_req_flags_t flags)
402 {
403 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
404 	struct request *rq;
405 	int ret;
406 
407 	ret = blk_queue_enter(q, flags);
408 	if (ret)
409 		return ERR_PTR(ret);
410 
411 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
412 	blk_queue_exit(q);
413 
414 	if (!rq)
415 		return ERR_PTR(-EWOULDBLOCK);
416 
417 	blk_mq_put_ctx(alloc_data.ctx);
418 
419 	rq->__data_len = 0;
420 	rq->__sector = (sector_t) -1;
421 	rq->bio = rq->biotail = NULL;
422 	return rq;
423 }
424 EXPORT_SYMBOL(blk_mq_alloc_request);
425 
426 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
427 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
428 {
429 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
430 	struct request *rq;
431 	unsigned int cpu;
432 	int ret;
433 
434 	/*
435 	 * If the tag allocator sleeps we could get an allocation for a
436 	 * different hardware context.  No need to complicate the low level
437 	 * allocator for this for the rare use case of a command tied to
438 	 * a specific queue.
439 	 */
440 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
441 		return ERR_PTR(-EINVAL);
442 
443 	if (hctx_idx >= q->nr_hw_queues)
444 		return ERR_PTR(-EIO);
445 
446 	ret = blk_queue_enter(q, flags);
447 	if (ret)
448 		return ERR_PTR(ret);
449 
450 	/*
451 	 * Check if the hardware context is actually mapped to anything.
452 	 * If not tell the caller that it should skip this queue.
453 	 */
454 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
455 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
456 		blk_queue_exit(q);
457 		return ERR_PTR(-EXDEV);
458 	}
459 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
460 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
461 
462 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
463 	blk_queue_exit(q);
464 
465 	if (!rq)
466 		return ERR_PTR(-EWOULDBLOCK);
467 
468 	return rq;
469 }
470 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471 
472 static void __blk_mq_free_request(struct request *rq)
473 {
474 	struct request_queue *q = rq->q;
475 	struct blk_mq_ctx *ctx = rq->mq_ctx;
476 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
477 	const int sched_tag = rq->internal_tag;
478 
479 	blk_pm_mark_last_busy(rq);
480 	if (rq->tag != -1)
481 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
482 	if (sched_tag != -1)
483 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
484 	blk_mq_sched_restart(hctx);
485 	blk_queue_exit(q);
486 }
487 
488 void blk_mq_free_request(struct request *rq)
489 {
490 	struct request_queue *q = rq->q;
491 	struct elevator_queue *e = q->elevator;
492 	struct blk_mq_ctx *ctx = rq->mq_ctx;
493 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
494 
495 	if (rq->rq_flags & RQF_ELVPRIV) {
496 		if (e && e->type->ops.mq.finish_request)
497 			e->type->ops.mq.finish_request(rq);
498 		if (rq->elv.icq) {
499 			put_io_context(rq->elv.icq->ioc);
500 			rq->elv.icq = NULL;
501 		}
502 	}
503 
504 	ctx->rq_completed[rq_is_sync(rq)]++;
505 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
506 		atomic_dec(&hctx->nr_active);
507 
508 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
509 		laptop_io_completion(q->backing_dev_info);
510 
511 	rq_qos_done(q, rq);
512 
513 	if (blk_rq_rl(rq))
514 		blk_put_rl(blk_rq_rl(rq));
515 
516 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
517 	if (refcount_dec_and_test(&rq->ref))
518 		__blk_mq_free_request(rq);
519 }
520 EXPORT_SYMBOL_GPL(blk_mq_free_request);
521 
522 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
523 {
524 	u64 now = ktime_get_ns();
525 
526 	if (rq->rq_flags & RQF_STATS) {
527 		blk_mq_poll_stats_start(rq->q);
528 		blk_stat_add(rq, now);
529 	}
530 
531 	if (rq->internal_tag != -1)
532 		blk_mq_sched_completed_request(rq, now);
533 
534 	blk_account_io_done(rq, now);
535 
536 	if (rq->end_io) {
537 		rq_qos_done(rq->q, rq);
538 		rq->end_io(rq, error);
539 	} else {
540 		if (unlikely(blk_bidi_rq(rq)))
541 			blk_mq_free_request(rq->next_rq);
542 		blk_mq_free_request(rq);
543 	}
544 }
545 EXPORT_SYMBOL(__blk_mq_end_request);
546 
547 void blk_mq_end_request(struct request *rq, blk_status_t error)
548 {
549 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
550 		BUG();
551 	__blk_mq_end_request(rq, error);
552 }
553 EXPORT_SYMBOL(blk_mq_end_request);
554 
555 static void __blk_mq_complete_request_remote(void *data)
556 {
557 	struct request *rq = data;
558 
559 	rq->q->softirq_done_fn(rq);
560 }
561 
562 static void __blk_mq_complete_request(struct request *rq)
563 {
564 	struct blk_mq_ctx *ctx = rq->mq_ctx;
565 	bool shared = false;
566 	int cpu;
567 
568 	if (!blk_mq_mark_complete(rq))
569 		return;
570 
571 	/*
572 	 * Most of single queue controllers, there is only one irq vector
573 	 * for handling IO completion, and the only irq's affinity is set
574 	 * as all possible CPUs. On most of ARCHs, this affinity means the
575 	 * irq is handled on one specific CPU.
576 	 *
577 	 * So complete IO reqeust in softirq context in case of single queue
578 	 * for not degrading IO performance by irqsoff latency.
579 	 */
580 	if (rq->q->nr_hw_queues == 1) {
581 		__blk_complete_request(rq);
582 		return;
583 	}
584 
585 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
586 		rq->q->softirq_done_fn(rq);
587 		return;
588 	}
589 
590 	cpu = get_cpu();
591 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
592 		shared = cpus_share_cache(cpu, ctx->cpu);
593 
594 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
595 		rq->csd.func = __blk_mq_complete_request_remote;
596 		rq->csd.info = rq;
597 		rq->csd.flags = 0;
598 		smp_call_function_single_async(ctx->cpu, &rq->csd);
599 	} else {
600 		rq->q->softirq_done_fn(rq);
601 	}
602 	put_cpu();
603 }
604 
605 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
606 	__releases(hctx->srcu)
607 {
608 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
609 		rcu_read_unlock();
610 	else
611 		srcu_read_unlock(hctx->srcu, srcu_idx);
612 }
613 
614 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
615 	__acquires(hctx->srcu)
616 {
617 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
618 		/* shut up gcc false positive */
619 		*srcu_idx = 0;
620 		rcu_read_lock();
621 	} else
622 		*srcu_idx = srcu_read_lock(hctx->srcu);
623 }
624 
625 /**
626  * blk_mq_complete_request - end I/O on a request
627  * @rq:		the request being processed
628  *
629  * Description:
630  *	Ends all I/O on a request. It does not handle partial completions.
631  *	The actual completion happens out-of-order, through a IPI handler.
632  **/
633 void blk_mq_complete_request(struct request *rq)
634 {
635 	if (unlikely(blk_should_fake_timeout(rq->q)))
636 		return;
637 	__blk_mq_complete_request(rq);
638 }
639 EXPORT_SYMBOL(blk_mq_complete_request);
640 
641 int blk_mq_request_started(struct request *rq)
642 {
643 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 }
645 EXPORT_SYMBOL_GPL(blk_mq_request_started);
646 
647 void blk_mq_start_request(struct request *rq)
648 {
649 	struct request_queue *q = rq->q;
650 
651 	blk_mq_sched_started_request(rq);
652 
653 	trace_block_rq_issue(q, rq);
654 
655 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656 		rq->io_start_time_ns = ktime_get_ns();
657 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
658 		rq->throtl_size = blk_rq_sectors(rq);
659 #endif
660 		rq->rq_flags |= RQF_STATS;
661 		rq_qos_issue(q, rq);
662 	}
663 
664 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
665 
666 	blk_add_timer(rq);
667 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
668 
669 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
670 		/*
671 		 * Make sure space for the drain appears.  We know we can do
672 		 * this because max_hw_segments has been adjusted to be one
673 		 * fewer than the device can handle.
674 		 */
675 		rq->nr_phys_segments++;
676 	}
677 }
678 EXPORT_SYMBOL(blk_mq_start_request);
679 
680 static void __blk_mq_requeue_request(struct request *rq)
681 {
682 	struct request_queue *q = rq->q;
683 
684 	blk_mq_put_driver_tag(rq);
685 
686 	trace_block_rq_requeue(q, rq);
687 	rq_qos_requeue(q, rq);
688 
689 	if (blk_mq_request_started(rq)) {
690 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
691 		rq->rq_flags &= ~RQF_TIMED_OUT;
692 		if (q->dma_drain_size && blk_rq_bytes(rq))
693 			rq->nr_phys_segments--;
694 	}
695 }
696 
697 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
698 {
699 	__blk_mq_requeue_request(rq);
700 
701 	/* this request will be re-inserted to io scheduler queue */
702 	blk_mq_sched_requeue_request(rq);
703 
704 	BUG_ON(blk_queued_rq(rq));
705 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
706 }
707 EXPORT_SYMBOL(blk_mq_requeue_request);
708 
709 static void blk_mq_requeue_work(struct work_struct *work)
710 {
711 	struct request_queue *q =
712 		container_of(work, struct request_queue, requeue_work.work);
713 	LIST_HEAD(rq_list);
714 	struct request *rq, *next;
715 
716 	spin_lock_irq(&q->requeue_lock);
717 	list_splice_init(&q->requeue_list, &rq_list);
718 	spin_unlock_irq(&q->requeue_lock);
719 
720 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
721 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
722 			continue;
723 
724 		rq->rq_flags &= ~RQF_SOFTBARRIER;
725 		list_del_init(&rq->queuelist);
726 		blk_mq_sched_insert_request(rq, true, false, false);
727 	}
728 
729 	while (!list_empty(&rq_list)) {
730 		rq = list_entry(rq_list.next, struct request, queuelist);
731 		list_del_init(&rq->queuelist);
732 		blk_mq_sched_insert_request(rq, false, false, false);
733 	}
734 
735 	blk_mq_run_hw_queues(q, false);
736 }
737 
738 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
739 				bool kick_requeue_list)
740 {
741 	struct request_queue *q = rq->q;
742 	unsigned long flags;
743 
744 	/*
745 	 * We abuse this flag that is otherwise used by the I/O scheduler to
746 	 * request head insertion from the workqueue.
747 	 */
748 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
749 
750 	spin_lock_irqsave(&q->requeue_lock, flags);
751 	if (at_head) {
752 		rq->rq_flags |= RQF_SOFTBARRIER;
753 		list_add(&rq->queuelist, &q->requeue_list);
754 	} else {
755 		list_add_tail(&rq->queuelist, &q->requeue_list);
756 	}
757 	spin_unlock_irqrestore(&q->requeue_lock, flags);
758 
759 	if (kick_requeue_list)
760 		blk_mq_kick_requeue_list(q);
761 }
762 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
763 
764 void blk_mq_kick_requeue_list(struct request_queue *q)
765 {
766 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
767 }
768 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
769 
770 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
771 				    unsigned long msecs)
772 {
773 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
774 				    msecs_to_jiffies(msecs));
775 }
776 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
777 
778 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
779 {
780 	if (tag < tags->nr_tags) {
781 		prefetch(tags->rqs[tag]);
782 		return tags->rqs[tag];
783 	}
784 
785 	return NULL;
786 }
787 EXPORT_SYMBOL(blk_mq_tag_to_rq);
788 
789 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
790 {
791 	req->rq_flags |= RQF_TIMED_OUT;
792 	if (req->q->mq_ops->timeout) {
793 		enum blk_eh_timer_return ret;
794 
795 		ret = req->q->mq_ops->timeout(req, reserved);
796 		if (ret == BLK_EH_DONE)
797 			return;
798 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
799 	}
800 
801 	blk_add_timer(req);
802 }
803 
804 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
805 {
806 	unsigned long deadline;
807 
808 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
809 		return false;
810 	if (rq->rq_flags & RQF_TIMED_OUT)
811 		return false;
812 
813 	deadline = blk_rq_deadline(rq);
814 	if (time_after_eq(jiffies, deadline))
815 		return true;
816 
817 	if (*next == 0)
818 		*next = deadline;
819 	else if (time_after(*next, deadline))
820 		*next = deadline;
821 	return false;
822 }
823 
824 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
825 		struct request *rq, void *priv, bool reserved)
826 {
827 	unsigned long *next = priv;
828 
829 	/*
830 	 * Just do a quick check if it is expired before locking the request in
831 	 * so we're not unnecessarilly synchronizing across CPUs.
832 	 */
833 	if (!blk_mq_req_expired(rq, next))
834 		return;
835 
836 	/*
837 	 * We have reason to believe the request may be expired. Take a
838 	 * reference on the request to lock this request lifetime into its
839 	 * currently allocated context to prevent it from being reallocated in
840 	 * the event the completion by-passes this timeout handler.
841 	 *
842 	 * If the reference was already released, then the driver beat the
843 	 * timeout handler to posting a natural completion.
844 	 */
845 	if (!refcount_inc_not_zero(&rq->ref))
846 		return;
847 
848 	/*
849 	 * The request is now locked and cannot be reallocated underneath the
850 	 * timeout handler's processing. Re-verify this exact request is truly
851 	 * expired; if it is not expired, then the request was completed and
852 	 * reallocated as a new request.
853 	 */
854 	if (blk_mq_req_expired(rq, next))
855 		blk_mq_rq_timed_out(rq, reserved);
856 	if (refcount_dec_and_test(&rq->ref))
857 		__blk_mq_free_request(rq);
858 }
859 
860 static void blk_mq_timeout_work(struct work_struct *work)
861 {
862 	struct request_queue *q =
863 		container_of(work, struct request_queue, timeout_work);
864 	unsigned long next = 0;
865 	struct blk_mq_hw_ctx *hctx;
866 	int i;
867 
868 	/* A deadlock might occur if a request is stuck requiring a
869 	 * timeout at the same time a queue freeze is waiting
870 	 * completion, since the timeout code would not be able to
871 	 * acquire the queue reference here.
872 	 *
873 	 * That's why we don't use blk_queue_enter here; instead, we use
874 	 * percpu_ref_tryget directly, because we need to be able to
875 	 * obtain a reference even in the short window between the queue
876 	 * starting to freeze, by dropping the first reference in
877 	 * blk_freeze_queue_start, and the moment the last request is
878 	 * consumed, marked by the instant q_usage_counter reaches
879 	 * zero.
880 	 */
881 	if (!percpu_ref_tryget(&q->q_usage_counter))
882 		return;
883 
884 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
885 
886 	if (next != 0) {
887 		mod_timer(&q->timeout, next);
888 	} else {
889 		/*
890 		 * Request timeouts are handled as a forward rolling timer. If
891 		 * we end up here it means that no requests are pending and
892 		 * also that no request has been pending for a while. Mark
893 		 * each hctx as idle.
894 		 */
895 		queue_for_each_hw_ctx(q, hctx, i) {
896 			/* the hctx may be unmapped, so check it here */
897 			if (blk_mq_hw_queue_mapped(hctx))
898 				blk_mq_tag_idle(hctx);
899 		}
900 	}
901 	blk_queue_exit(q);
902 }
903 
904 struct flush_busy_ctx_data {
905 	struct blk_mq_hw_ctx *hctx;
906 	struct list_head *list;
907 };
908 
909 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
910 {
911 	struct flush_busy_ctx_data *flush_data = data;
912 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
913 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
914 
915 	spin_lock(&ctx->lock);
916 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
917 	sbitmap_clear_bit(sb, bitnr);
918 	spin_unlock(&ctx->lock);
919 	return true;
920 }
921 
922 /*
923  * Process software queues that have been marked busy, splicing them
924  * to the for-dispatch
925  */
926 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
927 {
928 	struct flush_busy_ctx_data data = {
929 		.hctx = hctx,
930 		.list = list,
931 	};
932 
933 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
934 }
935 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
936 
937 struct dispatch_rq_data {
938 	struct blk_mq_hw_ctx *hctx;
939 	struct request *rq;
940 };
941 
942 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
943 		void *data)
944 {
945 	struct dispatch_rq_data *dispatch_data = data;
946 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
947 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
948 
949 	spin_lock(&ctx->lock);
950 	if (!list_empty(&ctx->rq_list)) {
951 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
952 		list_del_init(&dispatch_data->rq->queuelist);
953 		if (list_empty(&ctx->rq_list))
954 			sbitmap_clear_bit(sb, bitnr);
955 	}
956 	spin_unlock(&ctx->lock);
957 
958 	return !dispatch_data->rq;
959 }
960 
961 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
962 					struct blk_mq_ctx *start)
963 {
964 	unsigned off = start ? start->index_hw : 0;
965 	struct dispatch_rq_data data = {
966 		.hctx = hctx,
967 		.rq   = NULL,
968 	};
969 
970 	__sbitmap_for_each_set(&hctx->ctx_map, off,
971 			       dispatch_rq_from_ctx, &data);
972 
973 	return data.rq;
974 }
975 
976 static inline unsigned int queued_to_index(unsigned int queued)
977 {
978 	if (!queued)
979 		return 0;
980 
981 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
982 }
983 
984 bool blk_mq_get_driver_tag(struct request *rq)
985 {
986 	struct blk_mq_alloc_data data = {
987 		.q = rq->q,
988 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
989 		.flags = BLK_MQ_REQ_NOWAIT,
990 	};
991 	bool shared;
992 
993 	if (rq->tag != -1)
994 		goto done;
995 
996 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
997 		data.flags |= BLK_MQ_REQ_RESERVED;
998 
999 	shared = blk_mq_tag_busy(data.hctx);
1000 	rq->tag = blk_mq_get_tag(&data);
1001 	if (rq->tag >= 0) {
1002 		if (shared) {
1003 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1004 			atomic_inc(&data.hctx->nr_active);
1005 		}
1006 		data.hctx->tags->rqs[rq->tag] = rq;
1007 	}
1008 
1009 done:
1010 	return rq->tag != -1;
1011 }
1012 
1013 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1014 				int flags, void *key)
1015 {
1016 	struct blk_mq_hw_ctx *hctx;
1017 
1018 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1019 
1020 	spin_lock(&hctx->dispatch_wait_lock);
1021 	list_del_init(&wait->entry);
1022 	spin_unlock(&hctx->dispatch_wait_lock);
1023 
1024 	blk_mq_run_hw_queue(hctx, true);
1025 	return 1;
1026 }
1027 
1028 /*
1029  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1030  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1031  * restart. For both cases, take care to check the condition again after
1032  * marking us as waiting.
1033  */
1034 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1035 				 struct request *rq)
1036 {
1037 	struct wait_queue_head *wq;
1038 	wait_queue_entry_t *wait;
1039 	bool ret;
1040 
1041 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1042 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1043 			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1044 
1045 		/*
1046 		 * It's possible that a tag was freed in the window between the
1047 		 * allocation failure and adding the hardware queue to the wait
1048 		 * queue.
1049 		 *
1050 		 * Don't clear RESTART here, someone else could have set it.
1051 		 * At most this will cost an extra queue run.
1052 		 */
1053 		return blk_mq_get_driver_tag(rq);
1054 	}
1055 
1056 	wait = &hctx->dispatch_wait;
1057 	if (!list_empty_careful(&wait->entry))
1058 		return false;
1059 
1060 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1061 
1062 	spin_lock_irq(&wq->lock);
1063 	spin_lock(&hctx->dispatch_wait_lock);
1064 	if (!list_empty(&wait->entry)) {
1065 		spin_unlock(&hctx->dispatch_wait_lock);
1066 		spin_unlock_irq(&wq->lock);
1067 		return false;
1068 	}
1069 
1070 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1071 	__add_wait_queue(wq, wait);
1072 
1073 	/*
1074 	 * It's possible that a tag was freed in the window between the
1075 	 * allocation failure and adding the hardware queue to the wait
1076 	 * queue.
1077 	 */
1078 	ret = blk_mq_get_driver_tag(rq);
1079 	if (!ret) {
1080 		spin_unlock(&hctx->dispatch_wait_lock);
1081 		spin_unlock_irq(&wq->lock);
1082 		return false;
1083 	}
1084 
1085 	/*
1086 	 * We got a tag, remove ourselves from the wait queue to ensure
1087 	 * someone else gets the wakeup.
1088 	 */
1089 	list_del_init(&wait->entry);
1090 	spin_unlock(&hctx->dispatch_wait_lock);
1091 	spin_unlock_irq(&wq->lock);
1092 
1093 	return true;
1094 }
1095 
1096 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1097 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1098 /*
1099  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1100  * - EWMA is one simple way to compute running average value
1101  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1102  * - take 4 as factor for avoiding to get too small(0) result, and this
1103  *   factor doesn't matter because EWMA decreases exponentially
1104  */
1105 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1106 {
1107 	unsigned int ewma;
1108 
1109 	if (hctx->queue->elevator)
1110 		return;
1111 
1112 	ewma = hctx->dispatch_busy;
1113 
1114 	if (!ewma && !busy)
1115 		return;
1116 
1117 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1118 	if (busy)
1119 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1120 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1121 
1122 	hctx->dispatch_busy = ewma;
1123 }
1124 
1125 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1126 
1127 /*
1128  * Returns true if we did some work AND can potentially do more.
1129  */
1130 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1131 			     bool got_budget)
1132 {
1133 	struct blk_mq_hw_ctx *hctx;
1134 	struct request *rq, *nxt;
1135 	bool no_tag = false;
1136 	int errors, queued;
1137 	blk_status_t ret = BLK_STS_OK;
1138 
1139 	if (list_empty(list))
1140 		return false;
1141 
1142 	WARN_ON(!list_is_singular(list) && got_budget);
1143 
1144 	/*
1145 	 * Now process all the entries, sending them to the driver.
1146 	 */
1147 	errors = queued = 0;
1148 	do {
1149 		struct blk_mq_queue_data bd;
1150 
1151 		rq = list_first_entry(list, struct request, queuelist);
1152 
1153 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1154 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1155 			break;
1156 
1157 		if (!blk_mq_get_driver_tag(rq)) {
1158 			/*
1159 			 * The initial allocation attempt failed, so we need to
1160 			 * rerun the hardware queue when a tag is freed. The
1161 			 * waitqueue takes care of that. If the queue is run
1162 			 * before we add this entry back on the dispatch list,
1163 			 * we'll re-run it below.
1164 			 */
1165 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1166 				blk_mq_put_dispatch_budget(hctx);
1167 				/*
1168 				 * For non-shared tags, the RESTART check
1169 				 * will suffice.
1170 				 */
1171 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1172 					no_tag = true;
1173 				break;
1174 			}
1175 		}
1176 
1177 		list_del_init(&rq->queuelist);
1178 
1179 		bd.rq = rq;
1180 
1181 		/*
1182 		 * Flag last if we have no more requests, or if we have more
1183 		 * but can't assign a driver tag to it.
1184 		 */
1185 		if (list_empty(list))
1186 			bd.last = true;
1187 		else {
1188 			nxt = list_first_entry(list, struct request, queuelist);
1189 			bd.last = !blk_mq_get_driver_tag(nxt);
1190 		}
1191 
1192 		ret = q->mq_ops->queue_rq(hctx, &bd);
1193 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1194 			/*
1195 			 * If an I/O scheduler has been configured and we got a
1196 			 * driver tag for the next request already, free it
1197 			 * again.
1198 			 */
1199 			if (!list_empty(list)) {
1200 				nxt = list_first_entry(list, struct request, queuelist);
1201 				blk_mq_put_driver_tag(nxt);
1202 			}
1203 			list_add(&rq->queuelist, list);
1204 			__blk_mq_requeue_request(rq);
1205 			break;
1206 		}
1207 
1208 		if (unlikely(ret != BLK_STS_OK)) {
1209 			errors++;
1210 			blk_mq_end_request(rq, BLK_STS_IOERR);
1211 			continue;
1212 		}
1213 
1214 		queued++;
1215 	} while (!list_empty(list));
1216 
1217 	hctx->dispatched[queued_to_index(queued)]++;
1218 
1219 	/*
1220 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1221 	 * that is where we will continue on next queue run.
1222 	 */
1223 	if (!list_empty(list)) {
1224 		bool needs_restart;
1225 
1226 		spin_lock(&hctx->lock);
1227 		list_splice_init(list, &hctx->dispatch);
1228 		spin_unlock(&hctx->lock);
1229 
1230 		/*
1231 		 * If SCHED_RESTART was set by the caller of this function and
1232 		 * it is no longer set that means that it was cleared by another
1233 		 * thread and hence that a queue rerun is needed.
1234 		 *
1235 		 * If 'no_tag' is set, that means that we failed getting
1236 		 * a driver tag with an I/O scheduler attached. If our dispatch
1237 		 * waitqueue is no longer active, ensure that we run the queue
1238 		 * AFTER adding our entries back to the list.
1239 		 *
1240 		 * If no I/O scheduler has been configured it is possible that
1241 		 * the hardware queue got stopped and restarted before requests
1242 		 * were pushed back onto the dispatch list. Rerun the queue to
1243 		 * avoid starvation. Notes:
1244 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1245 		 *   been stopped before rerunning a queue.
1246 		 * - Some but not all block drivers stop a queue before
1247 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1248 		 *   and dm-rq.
1249 		 *
1250 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1251 		 * bit is set, run queue after a delay to avoid IO stalls
1252 		 * that could otherwise occur if the queue is idle.
1253 		 */
1254 		needs_restart = blk_mq_sched_needs_restart(hctx);
1255 		if (!needs_restart ||
1256 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1257 			blk_mq_run_hw_queue(hctx, true);
1258 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1259 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1260 
1261 		blk_mq_update_dispatch_busy(hctx, true);
1262 		return false;
1263 	} else
1264 		blk_mq_update_dispatch_busy(hctx, false);
1265 
1266 	/*
1267 	 * If the host/device is unable to accept more work, inform the
1268 	 * caller of that.
1269 	 */
1270 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1271 		return false;
1272 
1273 	return (queued + errors) != 0;
1274 }
1275 
1276 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1277 {
1278 	int srcu_idx;
1279 
1280 	/*
1281 	 * We should be running this queue from one of the CPUs that
1282 	 * are mapped to it.
1283 	 *
1284 	 * There are at least two related races now between setting
1285 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1286 	 * __blk_mq_run_hw_queue():
1287 	 *
1288 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1289 	 *   but later it becomes online, then this warning is harmless
1290 	 *   at all
1291 	 *
1292 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1293 	 *   but later it becomes offline, then the warning can't be
1294 	 *   triggered, and we depend on blk-mq timeout handler to
1295 	 *   handle dispatched requests to this hctx
1296 	 */
1297 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1298 		cpu_online(hctx->next_cpu)) {
1299 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1300 			raw_smp_processor_id(),
1301 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1302 		dump_stack();
1303 	}
1304 
1305 	/*
1306 	 * We can't run the queue inline with ints disabled. Ensure that
1307 	 * we catch bad users of this early.
1308 	 */
1309 	WARN_ON_ONCE(in_interrupt());
1310 
1311 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1312 
1313 	hctx_lock(hctx, &srcu_idx);
1314 	blk_mq_sched_dispatch_requests(hctx);
1315 	hctx_unlock(hctx, srcu_idx);
1316 }
1317 
1318 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1319 {
1320 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1321 
1322 	if (cpu >= nr_cpu_ids)
1323 		cpu = cpumask_first(hctx->cpumask);
1324 	return cpu;
1325 }
1326 
1327 /*
1328  * It'd be great if the workqueue API had a way to pass
1329  * in a mask and had some smarts for more clever placement.
1330  * For now we just round-robin here, switching for every
1331  * BLK_MQ_CPU_WORK_BATCH queued items.
1332  */
1333 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1334 {
1335 	bool tried = false;
1336 	int next_cpu = hctx->next_cpu;
1337 
1338 	if (hctx->queue->nr_hw_queues == 1)
1339 		return WORK_CPU_UNBOUND;
1340 
1341 	if (--hctx->next_cpu_batch <= 0) {
1342 select_cpu:
1343 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1344 				cpu_online_mask);
1345 		if (next_cpu >= nr_cpu_ids)
1346 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1347 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1348 	}
1349 
1350 	/*
1351 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1352 	 * and it should only happen in the path of handling CPU DEAD.
1353 	 */
1354 	if (!cpu_online(next_cpu)) {
1355 		if (!tried) {
1356 			tried = true;
1357 			goto select_cpu;
1358 		}
1359 
1360 		/*
1361 		 * Make sure to re-select CPU next time once after CPUs
1362 		 * in hctx->cpumask become online again.
1363 		 */
1364 		hctx->next_cpu = next_cpu;
1365 		hctx->next_cpu_batch = 1;
1366 		return WORK_CPU_UNBOUND;
1367 	}
1368 
1369 	hctx->next_cpu = next_cpu;
1370 	return next_cpu;
1371 }
1372 
1373 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1374 					unsigned long msecs)
1375 {
1376 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1377 		return;
1378 
1379 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1380 		int cpu = get_cpu();
1381 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1382 			__blk_mq_run_hw_queue(hctx);
1383 			put_cpu();
1384 			return;
1385 		}
1386 
1387 		put_cpu();
1388 	}
1389 
1390 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1391 				    msecs_to_jiffies(msecs));
1392 }
1393 
1394 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1395 {
1396 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1397 }
1398 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1399 
1400 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1401 {
1402 	int srcu_idx;
1403 	bool need_run;
1404 
1405 	/*
1406 	 * When queue is quiesced, we may be switching io scheduler, or
1407 	 * updating nr_hw_queues, or other things, and we can't run queue
1408 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1409 	 *
1410 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1411 	 * quiesced.
1412 	 */
1413 	hctx_lock(hctx, &srcu_idx);
1414 	need_run = !blk_queue_quiesced(hctx->queue) &&
1415 		blk_mq_hctx_has_pending(hctx);
1416 	hctx_unlock(hctx, srcu_idx);
1417 
1418 	if (need_run) {
1419 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1420 		return true;
1421 	}
1422 
1423 	return false;
1424 }
1425 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1426 
1427 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1428 {
1429 	struct blk_mq_hw_ctx *hctx;
1430 	int i;
1431 
1432 	queue_for_each_hw_ctx(q, hctx, i) {
1433 		if (blk_mq_hctx_stopped(hctx))
1434 			continue;
1435 
1436 		blk_mq_run_hw_queue(hctx, async);
1437 	}
1438 }
1439 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1440 
1441 /**
1442  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1443  * @q: request queue.
1444  *
1445  * The caller is responsible for serializing this function against
1446  * blk_mq_{start,stop}_hw_queue().
1447  */
1448 bool blk_mq_queue_stopped(struct request_queue *q)
1449 {
1450 	struct blk_mq_hw_ctx *hctx;
1451 	int i;
1452 
1453 	queue_for_each_hw_ctx(q, hctx, i)
1454 		if (blk_mq_hctx_stopped(hctx))
1455 			return true;
1456 
1457 	return false;
1458 }
1459 EXPORT_SYMBOL(blk_mq_queue_stopped);
1460 
1461 /*
1462  * This function is often used for pausing .queue_rq() by driver when
1463  * there isn't enough resource or some conditions aren't satisfied, and
1464  * BLK_STS_RESOURCE is usually returned.
1465  *
1466  * We do not guarantee that dispatch can be drained or blocked
1467  * after blk_mq_stop_hw_queue() returns. Please use
1468  * blk_mq_quiesce_queue() for that requirement.
1469  */
1470 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1471 {
1472 	cancel_delayed_work(&hctx->run_work);
1473 
1474 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1475 }
1476 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1477 
1478 /*
1479  * This function is often used for pausing .queue_rq() by driver when
1480  * there isn't enough resource or some conditions aren't satisfied, and
1481  * BLK_STS_RESOURCE is usually returned.
1482  *
1483  * We do not guarantee that dispatch can be drained or blocked
1484  * after blk_mq_stop_hw_queues() returns. Please use
1485  * blk_mq_quiesce_queue() for that requirement.
1486  */
1487 void blk_mq_stop_hw_queues(struct request_queue *q)
1488 {
1489 	struct blk_mq_hw_ctx *hctx;
1490 	int i;
1491 
1492 	queue_for_each_hw_ctx(q, hctx, i)
1493 		blk_mq_stop_hw_queue(hctx);
1494 }
1495 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1496 
1497 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1498 {
1499 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1500 
1501 	blk_mq_run_hw_queue(hctx, false);
1502 }
1503 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1504 
1505 void blk_mq_start_hw_queues(struct request_queue *q)
1506 {
1507 	struct blk_mq_hw_ctx *hctx;
1508 	int i;
1509 
1510 	queue_for_each_hw_ctx(q, hctx, i)
1511 		blk_mq_start_hw_queue(hctx);
1512 }
1513 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1514 
1515 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1516 {
1517 	if (!blk_mq_hctx_stopped(hctx))
1518 		return;
1519 
1520 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1521 	blk_mq_run_hw_queue(hctx, async);
1522 }
1523 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1524 
1525 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1526 {
1527 	struct blk_mq_hw_ctx *hctx;
1528 	int i;
1529 
1530 	queue_for_each_hw_ctx(q, hctx, i)
1531 		blk_mq_start_stopped_hw_queue(hctx, async);
1532 }
1533 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1534 
1535 static void blk_mq_run_work_fn(struct work_struct *work)
1536 {
1537 	struct blk_mq_hw_ctx *hctx;
1538 
1539 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1540 
1541 	/*
1542 	 * If we are stopped, don't run the queue.
1543 	 */
1544 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1545 		return;
1546 
1547 	__blk_mq_run_hw_queue(hctx);
1548 }
1549 
1550 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1551 					    struct request *rq,
1552 					    bool at_head)
1553 {
1554 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1555 
1556 	lockdep_assert_held(&ctx->lock);
1557 
1558 	trace_block_rq_insert(hctx->queue, rq);
1559 
1560 	if (at_head)
1561 		list_add(&rq->queuelist, &ctx->rq_list);
1562 	else
1563 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1564 }
1565 
1566 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1567 			     bool at_head)
1568 {
1569 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1570 
1571 	lockdep_assert_held(&ctx->lock);
1572 
1573 	__blk_mq_insert_req_list(hctx, rq, at_head);
1574 	blk_mq_hctx_mark_pending(hctx, ctx);
1575 }
1576 
1577 /*
1578  * Should only be used carefully, when the caller knows we want to
1579  * bypass a potential IO scheduler on the target device.
1580  */
1581 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1582 {
1583 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1584 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1585 
1586 	spin_lock(&hctx->lock);
1587 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1588 	spin_unlock(&hctx->lock);
1589 
1590 	if (run_queue)
1591 		blk_mq_run_hw_queue(hctx, false);
1592 }
1593 
1594 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1595 			    struct list_head *list)
1596 
1597 {
1598 	struct request *rq;
1599 
1600 	/*
1601 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1602 	 * offline now
1603 	 */
1604 	list_for_each_entry(rq, list, queuelist) {
1605 		BUG_ON(rq->mq_ctx != ctx);
1606 		trace_block_rq_insert(hctx->queue, rq);
1607 	}
1608 
1609 	spin_lock(&ctx->lock);
1610 	list_splice_tail_init(list, &ctx->rq_list);
1611 	blk_mq_hctx_mark_pending(hctx, ctx);
1612 	spin_unlock(&ctx->lock);
1613 }
1614 
1615 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1616 {
1617 	struct request *rqa = container_of(a, struct request, queuelist);
1618 	struct request *rqb = container_of(b, struct request, queuelist);
1619 
1620 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1621 		 (rqa->mq_ctx == rqb->mq_ctx &&
1622 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1623 }
1624 
1625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1626 {
1627 	struct blk_mq_ctx *this_ctx;
1628 	struct request_queue *this_q;
1629 	struct request *rq;
1630 	LIST_HEAD(list);
1631 	LIST_HEAD(ctx_list);
1632 	unsigned int depth;
1633 
1634 	list_splice_init(&plug->mq_list, &list);
1635 
1636 	list_sort(NULL, &list, plug_ctx_cmp);
1637 
1638 	this_q = NULL;
1639 	this_ctx = NULL;
1640 	depth = 0;
1641 
1642 	while (!list_empty(&list)) {
1643 		rq = list_entry_rq(list.next);
1644 		list_del_init(&rq->queuelist);
1645 		BUG_ON(!rq->q);
1646 		if (rq->mq_ctx != this_ctx) {
1647 			if (this_ctx) {
1648 				trace_block_unplug(this_q, depth, !from_schedule);
1649 				blk_mq_sched_insert_requests(this_q, this_ctx,
1650 								&ctx_list,
1651 								from_schedule);
1652 			}
1653 
1654 			this_ctx = rq->mq_ctx;
1655 			this_q = rq->q;
1656 			depth = 0;
1657 		}
1658 
1659 		depth++;
1660 		list_add_tail(&rq->queuelist, &ctx_list);
1661 	}
1662 
1663 	/*
1664 	 * If 'this_ctx' is set, we know we have entries to complete
1665 	 * on 'ctx_list'. Do those.
1666 	 */
1667 	if (this_ctx) {
1668 		trace_block_unplug(this_q, depth, !from_schedule);
1669 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1670 						from_schedule);
1671 	}
1672 }
1673 
1674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1675 {
1676 	blk_init_request_from_bio(rq, bio);
1677 
1678 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1679 
1680 	blk_account_io_start(rq, true);
1681 }
1682 
1683 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1684 {
1685 	if (rq->tag != -1)
1686 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1687 
1688 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1689 }
1690 
1691 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1692 					    struct request *rq,
1693 					    blk_qc_t *cookie)
1694 {
1695 	struct request_queue *q = rq->q;
1696 	struct blk_mq_queue_data bd = {
1697 		.rq = rq,
1698 		.last = true,
1699 	};
1700 	blk_qc_t new_cookie;
1701 	blk_status_t ret;
1702 
1703 	new_cookie = request_to_qc_t(hctx, rq);
1704 
1705 	/*
1706 	 * For OK queue, we are done. For error, caller may kill it.
1707 	 * Any other error (busy), just add it to our list as we
1708 	 * previously would have done.
1709 	 */
1710 	ret = q->mq_ops->queue_rq(hctx, &bd);
1711 	switch (ret) {
1712 	case BLK_STS_OK:
1713 		blk_mq_update_dispatch_busy(hctx, false);
1714 		*cookie = new_cookie;
1715 		break;
1716 	case BLK_STS_RESOURCE:
1717 	case BLK_STS_DEV_RESOURCE:
1718 		blk_mq_update_dispatch_busy(hctx, true);
1719 		__blk_mq_requeue_request(rq);
1720 		break;
1721 	default:
1722 		blk_mq_update_dispatch_busy(hctx, false);
1723 		*cookie = BLK_QC_T_NONE;
1724 		break;
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1731 						struct request *rq,
1732 						blk_qc_t *cookie,
1733 						bool bypass_insert)
1734 {
1735 	struct request_queue *q = rq->q;
1736 	bool run_queue = true;
1737 
1738 	/*
1739 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1740 	 *
1741 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1742 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1743 	 * and avoid driver to try to dispatch again.
1744 	 */
1745 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1746 		run_queue = false;
1747 		bypass_insert = false;
1748 		goto insert;
1749 	}
1750 
1751 	if (q->elevator && !bypass_insert)
1752 		goto insert;
1753 
1754 	if (!blk_mq_get_dispatch_budget(hctx))
1755 		goto insert;
1756 
1757 	if (!blk_mq_get_driver_tag(rq)) {
1758 		blk_mq_put_dispatch_budget(hctx);
1759 		goto insert;
1760 	}
1761 
1762 	return __blk_mq_issue_directly(hctx, rq, cookie);
1763 insert:
1764 	if (bypass_insert)
1765 		return BLK_STS_RESOURCE;
1766 
1767 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1768 	return BLK_STS_OK;
1769 }
1770 
1771 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1772 		struct request *rq, blk_qc_t *cookie)
1773 {
1774 	blk_status_t ret;
1775 	int srcu_idx;
1776 
1777 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1778 
1779 	hctx_lock(hctx, &srcu_idx);
1780 
1781 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1782 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1783 		blk_mq_sched_insert_request(rq, false, true, false);
1784 	else if (ret != BLK_STS_OK)
1785 		blk_mq_end_request(rq, ret);
1786 
1787 	hctx_unlock(hctx, srcu_idx);
1788 }
1789 
1790 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1791 {
1792 	blk_status_t ret;
1793 	int srcu_idx;
1794 	blk_qc_t unused_cookie;
1795 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1796 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1797 
1798 	hctx_lock(hctx, &srcu_idx);
1799 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1800 	hctx_unlock(hctx, srcu_idx);
1801 
1802 	return ret;
1803 }
1804 
1805 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1806 		struct list_head *list)
1807 {
1808 	while (!list_empty(list)) {
1809 		blk_status_t ret;
1810 		struct request *rq = list_first_entry(list, struct request,
1811 				queuelist);
1812 
1813 		list_del_init(&rq->queuelist);
1814 		ret = blk_mq_request_issue_directly(rq);
1815 		if (ret != BLK_STS_OK) {
1816 			if (ret == BLK_STS_RESOURCE ||
1817 					ret == BLK_STS_DEV_RESOURCE) {
1818 				list_add(&rq->queuelist, list);
1819 				break;
1820 			}
1821 			blk_mq_end_request(rq, ret);
1822 		}
1823 	}
1824 }
1825 
1826 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1827 {
1828 	const int is_sync = op_is_sync(bio->bi_opf);
1829 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1830 	struct blk_mq_alloc_data data = { .flags = 0 };
1831 	struct request *rq;
1832 	unsigned int request_count = 0;
1833 	struct blk_plug *plug;
1834 	struct request *same_queue_rq = NULL;
1835 	blk_qc_t cookie;
1836 
1837 	blk_queue_bounce(q, &bio);
1838 
1839 	blk_queue_split(q, &bio);
1840 
1841 	if (!bio_integrity_prep(bio))
1842 		return BLK_QC_T_NONE;
1843 
1844 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1845 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1846 		return BLK_QC_T_NONE;
1847 
1848 	if (blk_mq_sched_bio_merge(q, bio))
1849 		return BLK_QC_T_NONE;
1850 
1851 	rq_qos_throttle(q, bio, NULL);
1852 
1853 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1854 	if (unlikely(!rq)) {
1855 		rq_qos_cleanup(q, bio);
1856 		if (bio->bi_opf & REQ_NOWAIT)
1857 			bio_wouldblock_error(bio);
1858 		return BLK_QC_T_NONE;
1859 	}
1860 
1861 	trace_block_getrq(q, bio, bio->bi_opf);
1862 
1863 	rq_qos_track(q, rq, bio);
1864 
1865 	cookie = request_to_qc_t(data.hctx, rq);
1866 
1867 	plug = current->plug;
1868 	if (unlikely(is_flush_fua)) {
1869 		blk_mq_put_ctx(data.ctx);
1870 		blk_mq_bio_to_request(rq, bio);
1871 
1872 		/* bypass scheduler for flush rq */
1873 		blk_insert_flush(rq);
1874 		blk_mq_run_hw_queue(data.hctx, true);
1875 	} else if (plug && q->nr_hw_queues == 1) {
1876 		struct request *last = NULL;
1877 
1878 		blk_mq_put_ctx(data.ctx);
1879 		blk_mq_bio_to_request(rq, bio);
1880 
1881 		/*
1882 		 * @request_count may become stale because of schedule
1883 		 * out, so check the list again.
1884 		 */
1885 		if (list_empty(&plug->mq_list))
1886 			request_count = 0;
1887 		else if (blk_queue_nomerges(q))
1888 			request_count = blk_plug_queued_count(q);
1889 
1890 		if (!request_count)
1891 			trace_block_plug(q);
1892 		else
1893 			last = list_entry_rq(plug->mq_list.prev);
1894 
1895 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1896 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1897 			blk_flush_plug_list(plug, false);
1898 			trace_block_plug(q);
1899 		}
1900 
1901 		list_add_tail(&rq->queuelist, &plug->mq_list);
1902 	} else if (plug && !blk_queue_nomerges(q)) {
1903 		blk_mq_bio_to_request(rq, bio);
1904 
1905 		/*
1906 		 * We do limited plugging. If the bio can be merged, do that.
1907 		 * Otherwise the existing request in the plug list will be
1908 		 * issued. So the plug list will have one request at most
1909 		 * The plug list might get flushed before this. If that happens,
1910 		 * the plug list is empty, and same_queue_rq is invalid.
1911 		 */
1912 		if (list_empty(&plug->mq_list))
1913 			same_queue_rq = NULL;
1914 		if (same_queue_rq)
1915 			list_del_init(&same_queue_rq->queuelist);
1916 		list_add_tail(&rq->queuelist, &plug->mq_list);
1917 
1918 		blk_mq_put_ctx(data.ctx);
1919 
1920 		if (same_queue_rq) {
1921 			data.hctx = blk_mq_map_queue(q,
1922 					same_queue_rq->mq_ctx->cpu);
1923 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1924 					&cookie);
1925 		}
1926 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1927 			!data.hctx->dispatch_busy)) {
1928 		blk_mq_put_ctx(data.ctx);
1929 		blk_mq_bio_to_request(rq, bio);
1930 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1931 	} else {
1932 		blk_mq_put_ctx(data.ctx);
1933 		blk_mq_bio_to_request(rq, bio);
1934 		blk_mq_sched_insert_request(rq, false, true, true);
1935 	}
1936 
1937 	return cookie;
1938 }
1939 
1940 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1941 		     unsigned int hctx_idx)
1942 {
1943 	struct page *page;
1944 
1945 	if (tags->rqs && set->ops->exit_request) {
1946 		int i;
1947 
1948 		for (i = 0; i < tags->nr_tags; i++) {
1949 			struct request *rq = tags->static_rqs[i];
1950 
1951 			if (!rq)
1952 				continue;
1953 			set->ops->exit_request(set, rq, hctx_idx);
1954 			tags->static_rqs[i] = NULL;
1955 		}
1956 	}
1957 
1958 	while (!list_empty(&tags->page_list)) {
1959 		page = list_first_entry(&tags->page_list, struct page, lru);
1960 		list_del_init(&page->lru);
1961 		/*
1962 		 * Remove kmemleak object previously allocated in
1963 		 * blk_mq_init_rq_map().
1964 		 */
1965 		kmemleak_free(page_address(page));
1966 		__free_pages(page, page->private);
1967 	}
1968 }
1969 
1970 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1971 {
1972 	kfree(tags->rqs);
1973 	tags->rqs = NULL;
1974 	kfree(tags->static_rqs);
1975 	tags->static_rqs = NULL;
1976 
1977 	blk_mq_free_tags(tags);
1978 }
1979 
1980 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1981 					unsigned int hctx_idx,
1982 					unsigned int nr_tags,
1983 					unsigned int reserved_tags)
1984 {
1985 	struct blk_mq_tags *tags;
1986 	int node;
1987 
1988 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1989 	if (node == NUMA_NO_NODE)
1990 		node = set->numa_node;
1991 
1992 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1993 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1994 	if (!tags)
1995 		return NULL;
1996 
1997 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1998 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1999 				 node);
2000 	if (!tags->rqs) {
2001 		blk_mq_free_tags(tags);
2002 		return NULL;
2003 	}
2004 
2005 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2006 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2007 					node);
2008 	if (!tags->static_rqs) {
2009 		kfree(tags->rqs);
2010 		blk_mq_free_tags(tags);
2011 		return NULL;
2012 	}
2013 
2014 	return tags;
2015 }
2016 
2017 static size_t order_to_size(unsigned int order)
2018 {
2019 	return (size_t)PAGE_SIZE << order;
2020 }
2021 
2022 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2023 			       unsigned int hctx_idx, int node)
2024 {
2025 	int ret;
2026 
2027 	if (set->ops->init_request) {
2028 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2029 		if (ret)
2030 			return ret;
2031 	}
2032 
2033 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2034 	return 0;
2035 }
2036 
2037 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2038 		     unsigned int hctx_idx, unsigned int depth)
2039 {
2040 	unsigned int i, j, entries_per_page, max_order = 4;
2041 	size_t rq_size, left;
2042 	int node;
2043 
2044 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2045 	if (node == NUMA_NO_NODE)
2046 		node = set->numa_node;
2047 
2048 	INIT_LIST_HEAD(&tags->page_list);
2049 
2050 	/*
2051 	 * rq_size is the size of the request plus driver payload, rounded
2052 	 * to the cacheline size
2053 	 */
2054 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2055 				cache_line_size());
2056 	left = rq_size * depth;
2057 
2058 	for (i = 0; i < depth; ) {
2059 		int this_order = max_order;
2060 		struct page *page;
2061 		int to_do;
2062 		void *p;
2063 
2064 		while (this_order && left < order_to_size(this_order - 1))
2065 			this_order--;
2066 
2067 		do {
2068 			page = alloc_pages_node(node,
2069 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2070 				this_order);
2071 			if (page)
2072 				break;
2073 			if (!this_order--)
2074 				break;
2075 			if (order_to_size(this_order) < rq_size)
2076 				break;
2077 		} while (1);
2078 
2079 		if (!page)
2080 			goto fail;
2081 
2082 		page->private = this_order;
2083 		list_add_tail(&page->lru, &tags->page_list);
2084 
2085 		p = page_address(page);
2086 		/*
2087 		 * Allow kmemleak to scan these pages as they contain pointers
2088 		 * to additional allocations like via ops->init_request().
2089 		 */
2090 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2091 		entries_per_page = order_to_size(this_order) / rq_size;
2092 		to_do = min(entries_per_page, depth - i);
2093 		left -= to_do * rq_size;
2094 		for (j = 0; j < to_do; j++) {
2095 			struct request *rq = p;
2096 
2097 			tags->static_rqs[i] = rq;
2098 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2099 				tags->static_rqs[i] = NULL;
2100 				goto fail;
2101 			}
2102 
2103 			p += rq_size;
2104 			i++;
2105 		}
2106 	}
2107 	return 0;
2108 
2109 fail:
2110 	blk_mq_free_rqs(set, tags, hctx_idx);
2111 	return -ENOMEM;
2112 }
2113 
2114 /*
2115  * 'cpu' is going away. splice any existing rq_list entries from this
2116  * software queue to the hw queue dispatch list, and ensure that it
2117  * gets run.
2118  */
2119 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2120 {
2121 	struct blk_mq_hw_ctx *hctx;
2122 	struct blk_mq_ctx *ctx;
2123 	LIST_HEAD(tmp);
2124 
2125 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2126 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2127 
2128 	spin_lock(&ctx->lock);
2129 	if (!list_empty(&ctx->rq_list)) {
2130 		list_splice_init(&ctx->rq_list, &tmp);
2131 		blk_mq_hctx_clear_pending(hctx, ctx);
2132 	}
2133 	spin_unlock(&ctx->lock);
2134 
2135 	if (list_empty(&tmp))
2136 		return 0;
2137 
2138 	spin_lock(&hctx->lock);
2139 	list_splice_tail_init(&tmp, &hctx->dispatch);
2140 	spin_unlock(&hctx->lock);
2141 
2142 	blk_mq_run_hw_queue(hctx, true);
2143 	return 0;
2144 }
2145 
2146 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2147 {
2148 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2149 					    &hctx->cpuhp_dead);
2150 }
2151 
2152 /* hctx->ctxs will be freed in queue's release handler */
2153 static void blk_mq_exit_hctx(struct request_queue *q,
2154 		struct blk_mq_tag_set *set,
2155 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2156 {
2157 	if (blk_mq_hw_queue_mapped(hctx))
2158 		blk_mq_tag_idle(hctx);
2159 
2160 	if (set->ops->exit_request)
2161 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2162 
2163 	if (set->ops->exit_hctx)
2164 		set->ops->exit_hctx(hctx, hctx_idx);
2165 
2166 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2167 		cleanup_srcu_struct(hctx->srcu);
2168 
2169 	blk_mq_remove_cpuhp(hctx);
2170 	blk_free_flush_queue(hctx->fq);
2171 	sbitmap_free(&hctx->ctx_map);
2172 }
2173 
2174 static void blk_mq_exit_hw_queues(struct request_queue *q,
2175 		struct blk_mq_tag_set *set, int nr_queue)
2176 {
2177 	struct blk_mq_hw_ctx *hctx;
2178 	unsigned int i;
2179 
2180 	queue_for_each_hw_ctx(q, hctx, i) {
2181 		if (i == nr_queue)
2182 			break;
2183 		blk_mq_debugfs_unregister_hctx(hctx);
2184 		blk_mq_exit_hctx(q, set, hctx, i);
2185 	}
2186 }
2187 
2188 static int blk_mq_init_hctx(struct request_queue *q,
2189 		struct blk_mq_tag_set *set,
2190 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2191 {
2192 	int node;
2193 
2194 	node = hctx->numa_node;
2195 	if (node == NUMA_NO_NODE)
2196 		node = hctx->numa_node = set->numa_node;
2197 
2198 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2199 	spin_lock_init(&hctx->lock);
2200 	INIT_LIST_HEAD(&hctx->dispatch);
2201 	hctx->queue = q;
2202 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2203 
2204 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2205 
2206 	hctx->tags = set->tags[hctx_idx];
2207 
2208 	/*
2209 	 * Allocate space for all possible cpus to avoid allocation at
2210 	 * runtime
2211 	 */
2212 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2213 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2214 	if (!hctx->ctxs)
2215 		goto unregister_cpu_notifier;
2216 
2217 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2218 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2219 		goto free_ctxs;
2220 
2221 	hctx->nr_ctx = 0;
2222 
2223 	spin_lock_init(&hctx->dispatch_wait_lock);
2224 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2225 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2226 
2227 	if (set->ops->init_hctx &&
2228 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2229 		goto free_bitmap;
2230 
2231 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2232 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2233 	if (!hctx->fq)
2234 		goto exit_hctx;
2235 
2236 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2237 		goto free_fq;
2238 
2239 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2240 		init_srcu_struct(hctx->srcu);
2241 
2242 	return 0;
2243 
2244  free_fq:
2245 	kfree(hctx->fq);
2246  exit_hctx:
2247 	if (set->ops->exit_hctx)
2248 		set->ops->exit_hctx(hctx, hctx_idx);
2249  free_bitmap:
2250 	sbitmap_free(&hctx->ctx_map);
2251  free_ctxs:
2252 	kfree(hctx->ctxs);
2253  unregister_cpu_notifier:
2254 	blk_mq_remove_cpuhp(hctx);
2255 	return -1;
2256 }
2257 
2258 static void blk_mq_init_cpu_queues(struct request_queue *q,
2259 				   unsigned int nr_hw_queues)
2260 {
2261 	unsigned int i;
2262 
2263 	for_each_possible_cpu(i) {
2264 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2265 		struct blk_mq_hw_ctx *hctx;
2266 
2267 		__ctx->cpu = i;
2268 		spin_lock_init(&__ctx->lock);
2269 		INIT_LIST_HEAD(&__ctx->rq_list);
2270 		__ctx->queue = q;
2271 
2272 		/*
2273 		 * Set local node, IFF we have more than one hw queue. If
2274 		 * not, we remain on the home node of the device
2275 		 */
2276 		hctx = blk_mq_map_queue(q, i);
2277 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2278 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2279 	}
2280 }
2281 
2282 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2283 {
2284 	int ret = 0;
2285 
2286 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2287 					set->queue_depth, set->reserved_tags);
2288 	if (!set->tags[hctx_idx])
2289 		return false;
2290 
2291 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2292 				set->queue_depth);
2293 	if (!ret)
2294 		return true;
2295 
2296 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2297 	set->tags[hctx_idx] = NULL;
2298 	return false;
2299 }
2300 
2301 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2302 					 unsigned int hctx_idx)
2303 {
2304 	if (set->tags[hctx_idx]) {
2305 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2306 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2307 		set->tags[hctx_idx] = NULL;
2308 	}
2309 }
2310 
2311 static void blk_mq_map_swqueue(struct request_queue *q)
2312 {
2313 	unsigned int i, hctx_idx;
2314 	struct blk_mq_hw_ctx *hctx;
2315 	struct blk_mq_ctx *ctx;
2316 	struct blk_mq_tag_set *set = q->tag_set;
2317 
2318 	/*
2319 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2320 	 */
2321 	mutex_lock(&q->sysfs_lock);
2322 
2323 	queue_for_each_hw_ctx(q, hctx, i) {
2324 		cpumask_clear(hctx->cpumask);
2325 		hctx->nr_ctx = 0;
2326 		hctx->dispatch_from = NULL;
2327 	}
2328 
2329 	/*
2330 	 * Map software to hardware queues.
2331 	 *
2332 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2333 	 */
2334 	for_each_possible_cpu(i) {
2335 		hctx_idx = q->mq_map[i];
2336 		/* unmapped hw queue can be remapped after CPU topo changed */
2337 		if (!set->tags[hctx_idx] &&
2338 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2339 			/*
2340 			 * If tags initialization fail for some hctx,
2341 			 * that hctx won't be brought online.  In this
2342 			 * case, remap the current ctx to hctx[0] which
2343 			 * is guaranteed to always have tags allocated
2344 			 */
2345 			q->mq_map[i] = 0;
2346 		}
2347 
2348 		ctx = per_cpu_ptr(q->queue_ctx, i);
2349 		hctx = blk_mq_map_queue(q, i);
2350 
2351 		cpumask_set_cpu(i, hctx->cpumask);
2352 		ctx->index_hw = hctx->nr_ctx;
2353 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2354 	}
2355 
2356 	mutex_unlock(&q->sysfs_lock);
2357 
2358 	queue_for_each_hw_ctx(q, hctx, i) {
2359 		/*
2360 		 * If no software queues are mapped to this hardware queue,
2361 		 * disable it and free the request entries.
2362 		 */
2363 		if (!hctx->nr_ctx) {
2364 			/* Never unmap queue 0.  We need it as a
2365 			 * fallback in case of a new remap fails
2366 			 * allocation
2367 			 */
2368 			if (i && set->tags[i])
2369 				blk_mq_free_map_and_requests(set, i);
2370 
2371 			hctx->tags = NULL;
2372 			continue;
2373 		}
2374 
2375 		hctx->tags = set->tags[i];
2376 		WARN_ON(!hctx->tags);
2377 
2378 		/*
2379 		 * Set the map size to the number of mapped software queues.
2380 		 * This is more accurate and more efficient than looping
2381 		 * over all possibly mapped software queues.
2382 		 */
2383 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2384 
2385 		/*
2386 		 * Initialize batch roundrobin counts
2387 		 */
2388 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2389 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2390 	}
2391 }
2392 
2393 /*
2394  * Caller needs to ensure that we're either frozen/quiesced, or that
2395  * the queue isn't live yet.
2396  */
2397 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2398 {
2399 	struct blk_mq_hw_ctx *hctx;
2400 	int i;
2401 
2402 	queue_for_each_hw_ctx(q, hctx, i) {
2403 		if (shared)
2404 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2405 		else
2406 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2407 	}
2408 }
2409 
2410 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2411 					bool shared)
2412 {
2413 	struct request_queue *q;
2414 
2415 	lockdep_assert_held(&set->tag_list_lock);
2416 
2417 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2418 		blk_mq_freeze_queue(q);
2419 		queue_set_hctx_shared(q, shared);
2420 		blk_mq_unfreeze_queue(q);
2421 	}
2422 }
2423 
2424 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2425 {
2426 	struct blk_mq_tag_set *set = q->tag_set;
2427 
2428 	mutex_lock(&set->tag_list_lock);
2429 	list_del_rcu(&q->tag_set_list);
2430 	if (list_is_singular(&set->tag_list)) {
2431 		/* just transitioned to unshared */
2432 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2433 		/* update existing queue */
2434 		blk_mq_update_tag_set_depth(set, false);
2435 	}
2436 	mutex_unlock(&set->tag_list_lock);
2437 	INIT_LIST_HEAD(&q->tag_set_list);
2438 }
2439 
2440 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2441 				     struct request_queue *q)
2442 {
2443 	q->tag_set = set;
2444 
2445 	mutex_lock(&set->tag_list_lock);
2446 
2447 	/*
2448 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2449 	 */
2450 	if (!list_empty(&set->tag_list) &&
2451 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2452 		set->flags |= BLK_MQ_F_TAG_SHARED;
2453 		/* update existing queue */
2454 		blk_mq_update_tag_set_depth(set, true);
2455 	}
2456 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2457 		queue_set_hctx_shared(q, true);
2458 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2459 
2460 	mutex_unlock(&set->tag_list_lock);
2461 }
2462 
2463 /*
2464  * It is the actual release handler for mq, but we do it from
2465  * request queue's release handler for avoiding use-after-free
2466  * and headache because q->mq_kobj shouldn't have been introduced,
2467  * but we can't group ctx/kctx kobj without it.
2468  */
2469 void blk_mq_release(struct request_queue *q)
2470 {
2471 	struct blk_mq_hw_ctx *hctx;
2472 	unsigned int i;
2473 
2474 	/* hctx kobj stays in hctx */
2475 	queue_for_each_hw_ctx(q, hctx, i) {
2476 		if (!hctx)
2477 			continue;
2478 		kobject_put(&hctx->kobj);
2479 	}
2480 
2481 	q->mq_map = NULL;
2482 
2483 	kfree(q->queue_hw_ctx);
2484 
2485 	/*
2486 	 * release .mq_kobj and sw queue's kobject now because
2487 	 * both share lifetime with request queue.
2488 	 */
2489 	blk_mq_sysfs_deinit(q);
2490 
2491 	free_percpu(q->queue_ctx);
2492 }
2493 
2494 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2495 {
2496 	struct request_queue *uninit_q, *q;
2497 
2498 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2499 	if (!uninit_q)
2500 		return ERR_PTR(-ENOMEM);
2501 
2502 	q = blk_mq_init_allocated_queue(set, uninit_q);
2503 	if (IS_ERR(q))
2504 		blk_cleanup_queue(uninit_q);
2505 
2506 	return q;
2507 }
2508 EXPORT_SYMBOL(blk_mq_init_queue);
2509 
2510 /*
2511  * Helper for setting up a queue with mq ops, given queue depth, and
2512  * the passed in mq ops flags.
2513  */
2514 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2515 					   const struct blk_mq_ops *ops,
2516 					   unsigned int queue_depth,
2517 					   unsigned int set_flags)
2518 {
2519 	struct request_queue *q;
2520 	int ret;
2521 
2522 	memset(set, 0, sizeof(*set));
2523 	set->ops = ops;
2524 	set->nr_hw_queues = 1;
2525 	set->queue_depth = queue_depth;
2526 	set->numa_node = NUMA_NO_NODE;
2527 	set->flags = set_flags;
2528 
2529 	ret = blk_mq_alloc_tag_set(set);
2530 	if (ret)
2531 		return ERR_PTR(ret);
2532 
2533 	q = blk_mq_init_queue(set);
2534 	if (IS_ERR(q)) {
2535 		blk_mq_free_tag_set(set);
2536 		return q;
2537 	}
2538 
2539 	return q;
2540 }
2541 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2542 
2543 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2544 {
2545 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2546 
2547 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2548 			   __alignof__(struct blk_mq_hw_ctx)) !=
2549 		     sizeof(struct blk_mq_hw_ctx));
2550 
2551 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2552 		hw_ctx_size += sizeof(struct srcu_struct);
2553 
2554 	return hw_ctx_size;
2555 }
2556 
2557 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2558 		struct blk_mq_tag_set *set, struct request_queue *q,
2559 		int hctx_idx, int node)
2560 {
2561 	struct blk_mq_hw_ctx *hctx;
2562 
2563 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2564 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2565 			node);
2566 	if (!hctx)
2567 		return NULL;
2568 
2569 	if (!zalloc_cpumask_var_node(&hctx->cpumask,
2570 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2571 				node)) {
2572 		kfree(hctx);
2573 		return NULL;
2574 	}
2575 
2576 	atomic_set(&hctx->nr_active, 0);
2577 	hctx->numa_node = node;
2578 	hctx->queue_num = hctx_idx;
2579 
2580 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2581 		free_cpumask_var(hctx->cpumask);
2582 		kfree(hctx);
2583 		return NULL;
2584 	}
2585 	blk_mq_hctx_kobj_init(hctx);
2586 
2587 	return hctx;
2588 }
2589 
2590 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2591 						struct request_queue *q)
2592 {
2593 	int i, j, end;
2594 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2595 
2596 	/* protect against switching io scheduler  */
2597 	mutex_lock(&q->sysfs_lock);
2598 	for (i = 0; i < set->nr_hw_queues; i++) {
2599 		int node;
2600 		struct blk_mq_hw_ctx *hctx;
2601 
2602 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2603 		/*
2604 		 * If the hw queue has been mapped to another numa node,
2605 		 * we need to realloc the hctx. If allocation fails, fallback
2606 		 * to use the previous one.
2607 		 */
2608 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2609 			continue;
2610 
2611 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2612 		if (hctx) {
2613 			if (hctxs[i]) {
2614 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2615 				kobject_put(&hctxs[i]->kobj);
2616 			}
2617 			hctxs[i] = hctx;
2618 		} else {
2619 			if (hctxs[i])
2620 				pr_warn("Allocate new hctx on node %d fails,\
2621 						fallback to previous one on node %d\n",
2622 						node, hctxs[i]->numa_node);
2623 			else
2624 				break;
2625 		}
2626 	}
2627 	/*
2628 	 * Increasing nr_hw_queues fails. Free the newly allocated
2629 	 * hctxs and keep the previous q->nr_hw_queues.
2630 	 */
2631 	if (i != set->nr_hw_queues) {
2632 		j = q->nr_hw_queues;
2633 		end = i;
2634 	} else {
2635 		j = i;
2636 		end = q->nr_hw_queues;
2637 		q->nr_hw_queues = set->nr_hw_queues;
2638 	}
2639 
2640 	for (; j < end; j++) {
2641 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2642 
2643 		if (hctx) {
2644 			if (hctx->tags)
2645 				blk_mq_free_map_and_requests(set, j);
2646 			blk_mq_exit_hctx(q, set, hctx, j);
2647 			kobject_put(&hctx->kobj);
2648 			hctxs[j] = NULL;
2649 
2650 		}
2651 	}
2652 	mutex_unlock(&q->sysfs_lock);
2653 }
2654 
2655 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2656 						  struct request_queue *q)
2657 {
2658 	/* mark the queue as mq asap */
2659 	q->mq_ops = set->ops;
2660 
2661 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2662 					     blk_mq_poll_stats_bkt,
2663 					     BLK_MQ_POLL_STATS_BKTS, q);
2664 	if (!q->poll_cb)
2665 		goto err_exit;
2666 
2667 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2668 	if (!q->queue_ctx)
2669 		goto err_exit;
2670 
2671 	/* init q->mq_kobj and sw queues' kobjects */
2672 	blk_mq_sysfs_init(q);
2673 
2674 	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2675 						GFP_KERNEL, set->numa_node);
2676 	if (!q->queue_hw_ctx)
2677 		goto err_percpu;
2678 
2679 	q->mq_map = set->mq_map;
2680 
2681 	blk_mq_realloc_hw_ctxs(set, q);
2682 	if (!q->nr_hw_queues)
2683 		goto err_hctxs;
2684 
2685 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2686 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2687 
2688 	q->nr_queues = nr_cpu_ids;
2689 
2690 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2691 
2692 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2693 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2694 
2695 	q->sg_reserved_size = INT_MAX;
2696 
2697 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2698 	INIT_LIST_HEAD(&q->requeue_list);
2699 	spin_lock_init(&q->requeue_lock);
2700 
2701 	blk_queue_make_request(q, blk_mq_make_request);
2702 	if (q->mq_ops->poll)
2703 		q->poll_fn = blk_mq_poll;
2704 
2705 	/*
2706 	 * Do this after blk_queue_make_request() overrides it...
2707 	 */
2708 	q->nr_requests = set->queue_depth;
2709 
2710 	/*
2711 	 * Default to classic polling
2712 	 */
2713 	q->poll_nsec = -1;
2714 
2715 	if (set->ops->complete)
2716 		blk_queue_softirq_done(q, set->ops->complete);
2717 
2718 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2719 	blk_mq_add_queue_tag_set(set, q);
2720 	blk_mq_map_swqueue(q);
2721 
2722 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2723 		int ret;
2724 
2725 		ret = elevator_init_mq(q);
2726 		if (ret)
2727 			return ERR_PTR(ret);
2728 	}
2729 
2730 	return q;
2731 
2732 err_hctxs:
2733 	kfree(q->queue_hw_ctx);
2734 err_percpu:
2735 	free_percpu(q->queue_ctx);
2736 err_exit:
2737 	q->mq_ops = NULL;
2738 	return ERR_PTR(-ENOMEM);
2739 }
2740 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2741 
2742 void blk_mq_free_queue(struct request_queue *q)
2743 {
2744 	struct blk_mq_tag_set	*set = q->tag_set;
2745 
2746 	blk_mq_del_queue_tag_set(q);
2747 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2748 }
2749 
2750 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2751 {
2752 	int i;
2753 
2754 	for (i = 0; i < set->nr_hw_queues; i++)
2755 		if (!__blk_mq_alloc_rq_map(set, i))
2756 			goto out_unwind;
2757 
2758 	return 0;
2759 
2760 out_unwind:
2761 	while (--i >= 0)
2762 		blk_mq_free_rq_map(set->tags[i]);
2763 
2764 	return -ENOMEM;
2765 }
2766 
2767 /*
2768  * Allocate the request maps associated with this tag_set. Note that this
2769  * may reduce the depth asked for, if memory is tight. set->queue_depth
2770  * will be updated to reflect the allocated depth.
2771  */
2772 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2773 {
2774 	unsigned int depth;
2775 	int err;
2776 
2777 	depth = set->queue_depth;
2778 	do {
2779 		err = __blk_mq_alloc_rq_maps(set);
2780 		if (!err)
2781 			break;
2782 
2783 		set->queue_depth >>= 1;
2784 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2785 			err = -ENOMEM;
2786 			break;
2787 		}
2788 	} while (set->queue_depth);
2789 
2790 	if (!set->queue_depth || err) {
2791 		pr_err("blk-mq: failed to allocate request map\n");
2792 		return -ENOMEM;
2793 	}
2794 
2795 	if (depth != set->queue_depth)
2796 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2797 						depth, set->queue_depth);
2798 
2799 	return 0;
2800 }
2801 
2802 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2803 {
2804 	if (set->ops->map_queues) {
2805 		/*
2806 		 * transport .map_queues is usually done in the following
2807 		 * way:
2808 		 *
2809 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2810 		 * 	mask = get_cpu_mask(queue)
2811 		 * 	for_each_cpu(cpu, mask)
2812 		 * 		set->mq_map[cpu] = queue;
2813 		 * }
2814 		 *
2815 		 * When we need to remap, the table has to be cleared for
2816 		 * killing stale mapping since one CPU may not be mapped
2817 		 * to any hw queue.
2818 		 */
2819 		blk_mq_clear_mq_map(set);
2820 
2821 		return set->ops->map_queues(set);
2822 	} else
2823 		return blk_mq_map_queues(set);
2824 }
2825 
2826 /*
2827  * Alloc a tag set to be associated with one or more request queues.
2828  * May fail with EINVAL for various error conditions. May adjust the
2829  * requested depth down, if it's too large. In that case, the set
2830  * value will be stored in set->queue_depth.
2831  */
2832 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2833 {
2834 	int ret;
2835 
2836 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2837 
2838 	if (!set->nr_hw_queues)
2839 		return -EINVAL;
2840 	if (!set->queue_depth)
2841 		return -EINVAL;
2842 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2843 		return -EINVAL;
2844 
2845 	if (!set->ops->queue_rq)
2846 		return -EINVAL;
2847 
2848 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2849 		return -EINVAL;
2850 
2851 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2852 		pr_info("blk-mq: reduced tag depth to %u\n",
2853 			BLK_MQ_MAX_DEPTH);
2854 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2855 	}
2856 
2857 	/*
2858 	 * If a crashdump is active, then we are potentially in a very
2859 	 * memory constrained environment. Limit us to 1 queue and
2860 	 * 64 tags to prevent using too much memory.
2861 	 */
2862 	if (is_kdump_kernel()) {
2863 		set->nr_hw_queues = 1;
2864 		set->queue_depth = min(64U, set->queue_depth);
2865 	}
2866 	/*
2867 	 * There is no use for more h/w queues than cpus.
2868 	 */
2869 	if (set->nr_hw_queues > nr_cpu_ids)
2870 		set->nr_hw_queues = nr_cpu_ids;
2871 
2872 	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2873 				 GFP_KERNEL, set->numa_node);
2874 	if (!set->tags)
2875 		return -ENOMEM;
2876 
2877 	ret = -ENOMEM;
2878 	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2879 				   GFP_KERNEL, set->numa_node);
2880 	if (!set->mq_map)
2881 		goto out_free_tags;
2882 
2883 	ret = blk_mq_update_queue_map(set);
2884 	if (ret)
2885 		goto out_free_mq_map;
2886 
2887 	ret = blk_mq_alloc_rq_maps(set);
2888 	if (ret)
2889 		goto out_free_mq_map;
2890 
2891 	mutex_init(&set->tag_list_lock);
2892 	INIT_LIST_HEAD(&set->tag_list);
2893 
2894 	return 0;
2895 
2896 out_free_mq_map:
2897 	kfree(set->mq_map);
2898 	set->mq_map = NULL;
2899 out_free_tags:
2900 	kfree(set->tags);
2901 	set->tags = NULL;
2902 	return ret;
2903 }
2904 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2905 
2906 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2907 {
2908 	int i;
2909 
2910 	for (i = 0; i < nr_cpu_ids; i++)
2911 		blk_mq_free_map_and_requests(set, i);
2912 
2913 	kfree(set->mq_map);
2914 	set->mq_map = NULL;
2915 
2916 	kfree(set->tags);
2917 	set->tags = NULL;
2918 }
2919 EXPORT_SYMBOL(blk_mq_free_tag_set);
2920 
2921 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2922 {
2923 	struct blk_mq_tag_set *set = q->tag_set;
2924 	struct blk_mq_hw_ctx *hctx;
2925 	int i, ret;
2926 
2927 	if (!set)
2928 		return -EINVAL;
2929 
2930 	blk_mq_freeze_queue(q);
2931 	blk_mq_quiesce_queue(q);
2932 
2933 	ret = 0;
2934 	queue_for_each_hw_ctx(q, hctx, i) {
2935 		if (!hctx->tags)
2936 			continue;
2937 		/*
2938 		 * If we're using an MQ scheduler, just update the scheduler
2939 		 * queue depth. This is similar to what the old code would do.
2940 		 */
2941 		if (!hctx->sched_tags) {
2942 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2943 							false);
2944 		} else {
2945 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2946 							nr, true);
2947 		}
2948 		if (ret)
2949 			break;
2950 	}
2951 
2952 	if (!ret)
2953 		q->nr_requests = nr;
2954 
2955 	blk_mq_unquiesce_queue(q);
2956 	blk_mq_unfreeze_queue(q);
2957 
2958 	return ret;
2959 }
2960 
2961 /*
2962  * request_queue and elevator_type pair.
2963  * It is just used by __blk_mq_update_nr_hw_queues to cache
2964  * the elevator_type associated with a request_queue.
2965  */
2966 struct blk_mq_qe_pair {
2967 	struct list_head node;
2968 	struct request_queue *q;
2969 	struct elevator_type *type;
2970 };
2971 
2972 /*
2973  * Cache the elevator_type in qe pair list and switch the
2974  * io scheduler to 'none'
2975  */
2976 static bool blk_mq_elv_switch_none(struct list_head *head,
2977 		struct request_queue *q)
2978 {
2979 	struct blk_mq_qe_pair *qe;
2980 
2981 	if (!q->elevator)
2982 		return true;
2983 
2984 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2985 	if (!qe)
2986 		return false;
2987 
2988 	INIT_LIST_HEAD(&qe->node);
2989 	qe->q = q;
2990 	qe->type = q->elevator->type;
2991 	list_add(&qe->node, head);
2992 
2993 	mutex_lock(&q->sysfs_lock);
2994 	/*
2995 	 * After elevator_switch_mq, the previous elevator_queue will be
2996 	 * released by elevator_release. The reference of the io scheduler
2997 	 * module get by elevator_get will also be put. So we need to get
2998 	 * a reference of the io scheduler module here to prevent it to be
2999 	 * removed.
3000 	 */
3001 	__module_get(qe->type->elevator_owner);
3002 	elevator_switch_mq(q, NULL);
3003 	mutex_unlock(&q->sysfs_lock);
3004 
3005 	return true;
3006 }
3007 
3008 static void blk_mq_elv_switch_back(struct list_head *head,
3009 		struct request_queue *q)
3010 {
3011 	struct blk_mq_qe_pair *qe;
3012 	struct elevator_type *t = NULL;
3013 
3014 	list_for_each_entry(qe, head, node)
3015 		if (qe->q == q) {
3016 			t = qe->type;
3017 			break;
3018 		}
3019 
3020 	if (!t)
3021 		return;
3022 
3023 	list_del(&qe->node);
3024 	kfree(qe);
3025 
3026 	mutex_lock(&q->sysfs_lock);
3027 	elevator_switch_mq(q, t);
3028 	mutex_unlock(&q->sysfs_lock);
3029 }
3030 
3031 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3032 							int nr_hw_queues)
3033 {
3034 	struct request_queue *q;
3035 	LIST_HEAD(head);
3036 	int prev_nr_hw_queues;
3037 
3038 	lockdep_assert_held(&set->tag_list_lock);
3039 
3040 	if (nr_hw_queues > nr_cpu_ids)
3041 		nr_hw_queues = nr_cpu_ids;
3042 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3043 		return;
3044 
3045 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3046 		blk_mq_freeze_queue(q);
3047 	/*
3048 	 * Sync with blk_mq_queue_tag_busy_iter.
3049 	 */
3050 	synchronize_rcu();
3051 	/*
3052 	 * Switch IO scheduler to 'none', cleaning up the data associated
3053 	 * with the previous scheduler. We will switch back once we are done
3054 	 * updating the new sw to hw queue mappings.
3055 	 */
3056 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3057 		if (!blk_mq_elv_switch_none(&head, q))
3058 			goto switch_back;
3059 
3060 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3061 		blk_mq_debugfs_unregister_hctxs(q);
3062 		blk_mq_sysfs_unregister(q);
3063 	}
3064 
3065 	prev_nr_hw_queues = set->nr_hw_queues;
3066 	set->nr_hw_queues = nr_hw_queues;
3067 	blk_mq_update_queue_map(set);
3068 fallback:
3069 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3070 		blk_mq_realloc_hw_ctxs(set, q);
3071 		if (q->nr_hw_queues != set->nr_hw_queues) {
3072 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3073 					nr_hw_queues, prev_nr_hw_queues);
3074 			set->nr_hw_queues = prev_nr_hw_queues;
3075 			blk_mq_map_queues(set);
3076 			goto fallback;
3077 		}
3078 		blk_mq_map_swqueue(q);
3079 	}
3080 
3081 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3082 		blk_mq_sysfs_register(q);
3083 		blk_mq_debugfs_register_hctxs(q);
3084 	}
3085 
3086 switch_back:
3087 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3088 		blk_mq_elv_switch_back(&head, q);
3089 
3090 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3091 		blk_mq_unfreeze_queue(q);
3092 }
3093 
3094 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3095 {
3096 	mutex_lock(&set->tag_list_lock);
3097 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3098 	mutex_unlock(&set->tag_list_lock);
3099 }
3100 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3101 
3102 /* Enable polling stats and return whether they were already enabled. */
3103 static bool blk_poll_stats_enable(struct request_queue *q)
3104 {
3105 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3106 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3107 		return true;
3108 	blk_stat_add_callback(q, q->poll_cb);
3109 	return false;
3110 }
3111 
3112 static void blk_mq_poll_stats_start(struct request_queue *q)
3113 {
3114 	/*
3115 	 * We don't arm the callback if polling stats are not enabled or the
3116 	 * callback is already active.
3117 	 */
3118 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3119 	    blk_stat_is_active(q->poll_cb))
3120 		return;
3121 
3122 	blk_stat_activate_msecs(q->poll_cb, 100);
3123 }
3124 
3125 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3126 {
3127 	struct request_queue *q = cb->data;
3128 	int bucket;
3129 
3130 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3131 		if (cb->stat[bucket].nr_samples)
3132 			q->poll_stat[bucket] = cb->stat[bucket];
3133 	}
3134 }
3135 
3136 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3137 				       struct blk_mq_hw_ctx *hctx,
3138 				       struct request *rq)
3139 {
3140 	unsigned long ret = 0;
3141 	int bucket;
3142 
3143 	/*
3144 	 * If stats collection isn't on, don't sleep but turn it on for
3145 	 * future users
3146 	 */
3147 	if (!blk_poll_stats_enable(q))
3148 		return 0;
3149 
3150 	/*
3151 	 * As an optimistic guess, use half of the mean service time
3152 	 * for this type of request. We can (and should) make this smarter.
3153 	 * For instance, if the completion latencies are tight, we can
3154 	 * get closer than just half the mean. This is especially
3155 	 * important on devices where the completion latencies are longer
3156 	 * than ~10 usec. We do use the stats for the relevant IO size
3157 	 * if available which does lead to better estimates.
3158 	 */
3159 	bucket = blk_mq_poll_stats_bkt(rq);
3160 	if (bucket < 0)
3161 		return ret;
3162 
3163 	if (q->poll_stat[bucket].nr_samples)
3164 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3165 
3166 	return ret;
3167 }
3168 
3169 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3170 				     struct blk_mq_hw_ctx *hctx,
3171 				     struct request *rq)
3172 {
3173 	struct hrtimer_sleeper hs;
3174 	enum hrtimer_mode mode;
3175 	unsigned int nsecs;
3176 	ktime_t kt;
3177 
3178 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3179 		return false;
3180 
3181 	/*
3182 	 * poll_nsec can be:
3183 	 *
3184 	 * -1:	don't ever hybrid sleep
3185 	 *  0:	use half of prev avg
3186 	 * >0:	use this specific value
3187 	 */
3188 	if (q->poll_nsec == -1)
3189 		return false;
3190 	else if (q->poll_nsec > 0)
3191 		nsecs = q->poll_nsec;
3192 	else
3193 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3194 
3195 	if (!nsecs)
3196 		return false;
3197 
3198 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3199 
3200 	/*
3201 	 * This will be replaced with the stats tracking code, using
3202 	 * 'avg_completion_time / 2' as the pre-sleep target.
3203 	 */
3204 	kt = nsecs;
3205 
3206 	mode = HRTIMER_MODE_REL;
3207 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3208 	hrtimer_set_expires(&hs.timer, kt);
3209 
3210 	hrtimer_init_sleeper(&hs, current);
3211 	do {
3212 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3213 			break;
3214 		set_current_state(TASK_UNINTERRUPTIBLE);
3215 		hrtimer_start_expires(&hs.timer, mode);
3216 		if (hs.task)
3217 			io_schedule();
3218 		hrtimer_cancel(&hs.timer);
3219 		mode = HRTIMER_MODE_ABS;
3220 	} while (hs.task && !signal_pending(current));
3221 
3222 	__set_current_state(TASK_RUNNING);
3223 	destroy_hrtimer_on_stack(&hs.timer);
3224 	return true;
3225 }
3226 
3227 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3228 {
3229 	struct request_queue *q = hctx->queue;
3230 	long state;
3231 
3232 	/*
3233 	 * If we sleep, have the caller restart the poll loop to reset
3234 	 * the state. Like for the other success return cases, the
3235 	 * caller is responsible for checking if the IO completed. If
3236 	 * the IO isn't complete, we'll get called again and will go
3237 	 * straight to the busy poll loop.
3238 	 */
3239 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3240 		return true;
3241 
3242 	hctx->poll_considered++;
3243 
3244 	state = current->state;
3245 	while (!need_resched()) {
3246 		int ret;
3247 
3248 		hctx->poll_invoked++;
3249 
3250 		ret = q->mq_ops->poll(hctx, rq->tag);
3251 		if (ret > 0) {
3252 			hctx->poll_success++;
3253 			set_current_state(TASK_RUNNING);
3254 			return true;
3255 		}
3256 
3257 		if (signal_pending_state(state, current))
3258 			set_current_state(TASK_RUNNING);
3259 
3260 		if (current->state == TASK_RUNNING)
3261 			return true;
3262 		if (ret < 0)
3263 			break;
3264 		cpu_relax();
3265 	}
3266 
3267 	__set_current_state(TASK_RUNNING);
3268 	return false;
3269 }
3270 
3271 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3272 {
3273 	struct blk_mq_hw_ctx *hctx;
3274 	struct request *rq;
3275 
3276 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3277 		return false;
3278 
3279 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3280 	if (!blk_qc_t_is_internal(cookie))
3281 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3282 	else {
3283 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3284 		/*
3285 		 * With scheduling, if the request has completed, we'll
3286 		 * get a NULL return here, as we clear the sched tag when
3287 		 * that happens. The request still remains valid, like always,
3288 		 * so we should be safe with just the NULL check.
3289 		 */
3290 		if (!rq)
3291 			return false;
3292 	}
3293 
3294 	return __blk_mq_poll(hctx, rq);
3295 }
3296 
3297 static int __init blk_mq_init(void)
3298 {
3299 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3300 				blk_mq_hctx_notify_dead);
3301 	return 0;
3302 }
3303 subsys_initcall(blk_mq_init);
3304