1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_inflight(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->part && blk_do_io_stat(rq) && 97 (!mi->part->bd_partno || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 unsigned int blk_mq_in_flight(struct request_queue *q, 105 struct block_device *part) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 110 111 return mi.inflight[0] + mi.inflight[1]; 112 } 113 114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 115 unsigned int inflight[2]) 116 { 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 inflight[0] = mi.inflight[0]; 121 inflight[1] = mi.inflight[1]; 122 } 123 124 void blk_freeze_queue_start(struct request_queue *q) 125 { 126 mutex_lock(&q->mq_freeze_lock); 127 if (++q->mq_freeze_depth == 1) { 128 percpu_ref_kill(&q->q_usage_counter); 129 mutex_unlock(&q->mq_freeze_lock); 130 if (queue_is_mq(q)) 131 blk_mq_run_hw_queues(q, false); 132 } else { 133 mutex_unlock(&q->mq_freeze_lock); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 137 138 void blk_mq_freeze_queue_wait(struct request_queue *q) 139 { 140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 143 144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 145 unsigned long timeout) 146 { 147 return wait_event_timeout(q->mq_freeze_wq, 148 percpu_ref_is_zero(&q->q_usage_counter), 149 timeout); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 152 153 /* 154 * Guarantee no request is in use, so we can change any data structure of 155 * the queue afterward. 156 */ 157 void blk_freeze_queue(struct request_queue *q) 158 { 159 /* 160 * In the !blk_mq case we are only calling this to kill the 161 * q_usage_counter, otherwise this increases the freeze depth 162 * and waits for it to return to zero. For this reason there is 163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 164 * exported to drivers as the only user for unfreeze is blk_mq. 165 */ 166 blk_freeze_queue_start(q); 167 blk_mq_freeze_queue_wait(q); 168 } 169 170 void blk_mq_freeze_queue(struct request_queue *q) 171 { 172 /* 173 * ...just an alias to keep freeze and unfreeze actions balanced 174 * in the blk_mq_* namespace 175 */ 176 blk_freeze_queue(q); 177 } 178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 179 180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 181 { 182 mutex_lock(&q->mq_freeze_lock); 183 if (force_atomic) 184 q->q_usage_counter.data->force_atomic = true; 185 q->mq_freeze_depth--; 186 WARN_ON_ONCE(q->mq_freeze_depth < 0); 187 if (!q->mq_freeze_depth) { 188 percpu_ref_resurrect(&q->q_usage_counter); 189 wake_up_all(&q->mq_freeze_wq); 190 } 191 mutex_unlock(&q->mq_freeze_lock); 192 } 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 __blk_mq_unfreeze_queue(q, false); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&q->queue_lock, flags); 209 if (!q->quiesce_depth++) 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 spin_unlock_irqrestore(&q->queue_lock, flags); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 214 215 /** 216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 217 * @set: tag_set to wait on 218 * 219 * Note: it is driver's responsibility for making sure that quiesce has 220 * been started on or more of the request_queues of the tag_set. This 221 * function only waits for the quiesce on those request_queues that had 222 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 223 */ 224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 225 { 226 if (set->flags & BLK_MQ_F_BLOCKING) 227 synchronize_srcu(set->srcu); 228 else 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 232 233 /** 234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 235 * @q: request queue. 236 * 237 * Note: this function does not prevent that the struct request end_io() 238 * callback function is invoked. Once this function is returned, we make 239 * sure no dispatch can happen until the queue is unquiesced via 240 * blk_mq_unquiesce_queue(). 241 */ 242 void blk_mq_quiesce_queue(struct request_queue *q) 243 { 244 blk_mq_quiesce_queue_nowait(q); 245 /* nothing to wait for non-mq queues */ 246 if (queue_is_mq(q)) 247 blk_mq_wait_quiesce_done(q->tag_set); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 250 251 /* 252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 253 * @q: request queue. 254 * 255 * This function recovers queue into the state before quiescing 256 * which is done by blk_mq_quiesce_queue. 257 */ 258 void blk_mq_unquiesce_queue(struct request_queue *q) 259 { 260 unsigned long flags; 261 bool run_queue = false; 262 263 spin_lock_irqsave(&q->queue_lock, flags); 264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 265 ; 266 } else if (!--q->quiesce_depth) { 267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 268 run_queue = true; 269 } 270 spin_unlock_irqrestore(&q->queue_lock, flags); 271 272 /* dispatch requests which are inserted during quiescing */ 273 if (run_queue) 274 blk_mq_run_hw_queues(q, true); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 277 278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 279 { 280 struct request_queue *q; 281 282 mutex_lock(&set->tag_list_lock); 283 list_for_each_entry(q, &set->tag_list, tag_set_list) { 284 if (!blk_queue_skip_tagset_quiesce(q)) 285 blk_mq_quiesce_queue_nowait(q); 286 } 287 blk_mq_wait_quiesce_done(set); 288 mutex_unlock(&set->tag_list_lock); 289 } 290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 291 292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 293 { 294 struct request_queue *q; 295 296 mutex_lock(&set->tag_list_lock); 297 list_for_each_entry(q, &set->tag_list, tag_set_list) { 298 if (!blk_queue_skip_tagset_quiesce(q)) 299 blk_mq_unquiesce_queue(q); 300 } 301 mutex_unlock(&set->tag_list_lock); 302 } 303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 304 305 void blk_mq_wake_waiters(struct request_queue *q) 306 { 307 struct blk_mq_hw_ctx *hctx; 308 unsigned long i; 309 310 queue_for_each_hw_ctx(q, hctx, i) 311 if (blk_mq_hw_queue_mapped(hctx)) 312 blk_mq_tag_wakeup_all(hctx->tags, true); 313 } 314 315 void blk_rq_init(struct request_queue *q, struct request *rq) 316 { 317 memset(rq, 0, sizeof(*rq)); 318 319 INIT_LIST_HEAD(&rq->queuelist); 320 rq->q = q; 321 rq->__sector = (sector_t) -1; 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->tag = BLK_MQ_NO_TAG; 325 rq->internal_tag = BLK_MQ_NO_TAG; 326 rq->start_time_ns = ktime_get_ns(); 327 rq->part = NULL; 328 blk_crypto_rq_set_defaults(rq); 329 } 330 EXPORT_SYMBOL(blk_rq_init); 331 332 /* Set start and alloc time when the allocated request is actually used */ 333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 334 { 335 if (blk_mq_need_time_stamp(rq)) 336 rq->start_time_ns = ktime_get_ns(); 337 else 338 rq->start_time_ns = 0; 339 340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 341 if (blk_queue_rq_alloc_time(rq->q)) 342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 343 else 344 rq->alloc_time_ns = 0; 345 #endif 346 } 347 348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 349 struct blk_mq_tags *tags, unsigned int tag) 350 { 351 struct blk_mq_ctx *ctx = data->ctx; 352 struct blk_mq_hw_ctx *hctx = data->hctx; 353 struct request_queue *q = data->q; 354 struct request *rq = tags->static_rqs[tag]; 355 356 rq->q = q; 357 rq->mq_ctx = ctx; 358 rq->mq_hctx = hctx; 359 rq->cmd_flags = data->cmd_flags; 360 361 if (data->flags & BLK_MQ_REQ_PM) 362 data->rq_flags |= RQF_PM; 363 if (blk_queue_io_stat(q)) 364 data->rq_flags |= RQF_IO_STAT; 365 rq->rq_flags = data->rq_flags; 366 367 if (data->rq_flags & RQF_SCHED_TAGS) { 368 rq->tag = BLK_MQ_NO_TAG; 369 rq->internal_tag = tag; 370 } else { 371 rq->tag = tag; 372 rq->internal_tag = BLK_MQ_NO_TAG; 373 } 374 rq->timeout = 0; 375 376 rq->part = NULL; 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_USE_SCHED) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (e->type->ops.prepare_request) 399 e->type->ops.prepare_request(rq); 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 407 { 408 unsigned int tag, tag_offset; 409 struct blk_mq_tags *tags; 410 struct request *rq; 411 unsigned long tag_mask; 412 int i, nr = 0; 413 414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 415 if (unlikely(!tag_mask)) 416 return NULL; 417 418 tags = blk_mq_tags_from_data(data); 419 for (i = 0; tag_mask; i++) { 420 if (!(tag_mask & (1UL << i))) 421 continue; 422 tag = tag_offset + i; 423 prefetch(tags->static_rqs[tag]); 424 tag_mask &= ~(1UL << i); 425 rq = blk_mq_rq_ctx_init(data, tags, tag); 426 rq_list_add(data->cached_rq, rq); 427 nr++; 428 } 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 if (q->elevator) { 451 /* 452 * All requests use scheduler tags when an I/O scheduler is 453 * enabled for the queue. 454 */ 455 data->rq_flags |= RQF_SCHED_TAGS; 456 457 /* 458 * Flush/passthrough requests are special and go directly to the 459 * dispatch list. 460 */ 461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 462 !blk_op_is_passthrough(data->cmd_flags)) { 463 struct elevator_mq_ops *ops = &q->elevator->type->ops; 464 465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 466 467 data->rq_flags |= RQF_USE_SCHED; 468 if (ops->limit_depth) 469 ops->limit_depth(data->cmd_flags, data); 470 } 471 } 472 473 retry: 474 data->ctx = blk_mq_get_ctx(q); 475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 476 if (!(data->rq_flags & RQF_SCHED_TAGS)) 477 blk_mq_tag_busy(data->hctx); 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data); 487 if (rq) { 488 blk_mq_rq_time_init(rq, alloc_time_ns); 489 return rq; 490 } 491 data->nr_tags = 1; 492 } 493 494 /* 495 * Waiting allocations only fail because of an inactive hctx. In that 496 * case just retry the hctx assignment and tag allocation as CPU hotplug 497 * should have migrated us to an online CPU by now. 498 */ 499 tag = blk_mq_get_tag(data); 500 if (tag == BLK_MQ_NO_TAG) { 501 if (data->flags & BLK_MQ_REQ_NOWAIT) 502 return NULL; 503 /* 504 * Give up the CPU and sleep for a random short time to 505 * ensure that thread using a realtime scheduling class 506 * are migrated off the CPU, and thus off the hctx that 507 * is going away. 508 */ 509 msleep(3); 510 goto retry; 511 } 512 513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 514 blk_mq_rq_time_init(rq, alloc_time_ns); 515 return rq; 516 } 517 518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 519 struct blk_plug *plug, 520 blk_opf_t opf, 521 blk_mq_req_flags_t flags) 522 { 523 struct blk_mq_alloc_data data = { 524 .q = q, 525 .flags = flags, 526 .cmd_flags = opf, 527 .nr_tags = plug->nr_ios, 528 .cached_rq = &plug->cached_rq, 529 }; 530 struct request *rq; 531 532 if (blk_queue_enter(q, flags)) 533 return NULL; 534 535 plug->nr_ios = 1; 536 537 rq = __blk_mq_alloc_requests(&data); 538 if (unlikely(!rq)) 539 blk_queue_exit(q); 540 return rq; 541 } 542 543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 544 blk_opf_t opf, 545 blk_mq_req_flags_t flags) 546 { 547 struct blk_plug *plug = current->plug; 548 struct request *rq; 549 550 if (!plug) 551 return NULL; 552 553 if (rq_list_empty(plug->cached_rq)) { 554 if (plug->nr_ios == 1) 555 return NULL; 556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 557 if (!rq) 558 return NULL; 559 } else { 560 rq = rq_list_peek(&plug->cached_rq); 561 if (!rq || rq->q != q) 562 return NULL; 563 564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 565 return NULL; 566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 567 return NULL; 568 569 plug->cached_rq = rq_list_next(rq); 570 blk_mq_rq_time_init(rq, 0); 571 } 572 573 rq->cmd_flags = opf; 574 INIT_LIST_HEAD(&rq->queuelist); 575 return rq; 576 } 577 578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 579 blk_mq_req_flags_t flags) 580 { 581 struct request *rq; 582 583 rq = blk_mq_alloc_cached_request(q, opf, flags); 584 if (!rq) { 585 struct blk_mq_alloc_data data = { 586 .q = q, 587 .flags = flags, 588 .cmd_flags = opf, 589 .nr_tags = 1, 590 }; 591 int ret; 592 593 ret = blk_queue_enter(q, flags); 594 if (ret) 595 return ERR_PTR(ret); 596 597 rq = __blk_mq_alloc_requests(&data); 598 if (!rq) 599 goto out_queue_exit; 600 } 601 rq->__data_len = 0; 602 rq->__sector = (sector_t) -1; 603 rq->bio = rq->biotail = NULL; 604 return rq; 605 out_queue_exit: 606 blk_queue_exit(q); 607 return ERR_PTR(-EWOULDBLOCK); 608 } 609 EXPORT_SYMBOL(blk_mq_alloc_request); 610 611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 613 { 614 struct blk_mq_alloc_data data = { 615 .q = q, 616 .flags = flags, 617 .cmd_flags = opf, 618 .nr_tags = 1, 619 }; 620 u64 alloc_time_ns = 0; 621 struct request *rq; 622 unsigned int cpu; 623 unsigned int tag; 624 int ret; 625 626 /* alloc_time includes depth and tag waits */ 627 if (blk_queue_rq_alloc_time(q)) 628 alloc_time_ns = ktime_get_ns(); 629 630 /* 631 * If the tag allocator sleeps we could get an allocation for a 632 * different hardware context. No need to complicate the low level 633 * allocator for this for the rare use case of a command tied to 634 * a specific queue. 635 */ 636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 638 return ERR_PTR(-EINVAL); 639 640 if (hctx_idx >= q->nr_hw_queues) 641 return ERR_PTR(-EIO); 642 643 ret = blk_queue_enter(q, flags); 644 if (ret) 645 return ERR_PTR(ret); 646 647 /* 648 * Check if the hardware context is actually mapped to anything. 649 * If not tell the caller that it should skip this queue. 650 */ 651 ret = -EXDEV; 652 data.hctx = xa_load(&q->hctx_table, hctx_idx); 653 if (!blk_mq_hw_queue_mapped(data.hctx)) 654 goto out_queue_exit; 655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 656 if (cpu >= nr_cpu_ids) 657 goto out_queue_exit; 658 data.ctx = __blk_mq_get_ctx(q, cpu); 659 660 if (q->elevator) 661 data.rq_flags |= RQF_SCHED_TAGS; 662 else 663 blk_mq_tag_busy(data.hctx); 664 665 if (flags & BLK_MQ_REQ_RESERVED) 666 data.rq_flags |= RQF_RESV; 667 668 ret = -EWOULDBLOCK; 669 tag = blk_mq_get_tag(&data); 670 if (tag == BLK_MQ_NO_TAG) 671 goto out_queue_exit; 672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 673 blk_mq_rq_time_init(rq, alloc_time_ns); 674 rq->__data_len = 0; 675 rq->__sector = (sector_t) -1; 676 rq->bio = rq->biotail = NULL; 677 return rq; 678 679 out_queue_exit: 680 blk_queue_exit(q); 681 return ERR_PTR(ret); 682 } 683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 684 685 static void blk_mq_finish_request(struct request *rq) 686 { 687 struct request_queue *q = rq->q; 688 689 if (rq->rq_flags & RQF_USE_SCHED) { 690 q->elevator->type->ops.finish_request(rq); 691 /* 692 * For postflush request that may need to be 693 * completed twice, we should clear this flag 694 * to avoid double finish_request() on the rq. 695 */ 696 rq->rq_flags &= ~RQF_USE_SCHED; 697 } 698 } 699 700 static void __blk_mq_free_request(struct request *rq) 701 { 702 struct request_queue *q = rq->q; 703 struct blk_mq_ctx *ctx = rq->mq_ctx; 704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 705 const int sched_tag = rq->internal_tag; 706 707 blk_crypto_free_request(rq); 708 blk_pm_mark_last_busy(rq); 709 rq->mq_hctx = NULL; 710 711 if (rq->rq_flags & RQF_MQ_INFLIGHT) 712 __blk_mq_dec_active_requests(hctx); 713 714 if (rq->tag != BLK_MQ_NO_TAG) 715 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 716 if (sched_tag != BLK_MQ_NO_TAG) 717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 718 blk_mq_sched_restart(hctx); 719 blk_queue_exit(q); 720 } 721 722 void blk_mq_free_request(struct request *rq) 723 { 724 struct request_queue *q = rq->q; 725 726 blk_mq_finish_request(rq); 727 728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 729 laptop_io_completion(q->disk->bdi); 730 731 rq_qos_done(q, rq); 732 733 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 734 if (req_ref_put_and_test(rq)) 735 __blk_mq_free_request(rq); 736 } 737 EXPORT_SYMBOL_GPL(blk_mq_free_request); 738 739 void blk_mq_free_plug_rqs(struct blk_plug *plug) 740 { 741 struct request *rq; 742 743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 744 blk_mq_free_request(rq); 745 } 746 747 void blk_dump_rq_flags(struct request *rq, char *msg) 748 { 749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 750 rq->q->disk ? rq->q->disk->disk_name : "?", 751 (__force unsigned long long) rq->cmd_flags); 752 753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 754 (unsigned long long)blk_rq_pos(rq), 755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 756 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 757 rq->bio, rq->biotail, blk_rq_bytes(rq)); 758 } 759 EXPORT_SYMBOL(blk_dump_rq_flags); 760 761 static void req_bio_endio(struct request *rq, struct bio *bio, 762 unsigned int nbytes, blk_status_t error) 763 { 764 if (unlikely(error)) { 765 bio->bi_status = error; 766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 767 /* 768 * Partial zone append completions cannot be supported as the 769 * BIO fragments may end up not being written sequentially. 770 * For such case, force the completed nbytes to be equal to 771 * the BIO size so that bio_advance() sets the BIO remaining 772 * size to 0 and we end up calling bio_endio() before returning. 773 */ 774 if (bio->bi_iter.bi_size != nbytes) { 775 bio->bi_status = BLK_STS_IOERR; 776 nbytes = bio->bi_iter.bi_size; 777 } else { 778 bio->bi_iter.bi_sector = rq->__sector; 779 } 780 } 781 782 bio_advance(bio, nbytes); 783 784 if (unlikely(rq->rq_flags & RQF_QUIET)) 785 bio_set_flag(bio, BIO_QUIET); 786 /* don't actually finish bio if it's part of flush sequence */ 787 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 788 bio_endio(bio); 789 } 790 791 static void blk_account_io_completion(struct request *req, unsigned int bytes) 792 { 793 if (req->part && blk_do_io_stat(req)) { 794 const int sgrp = op_stat_group(req_op(req)); 795 796 part_stat_lock(); 797 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 798 part_stat_unlock(); 799 } 800 } 801 802 static void blk_print_req_error(struct request *req, blk_status_t status) 803 { 804 printk_ratelimited(KERN_ERR 805 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 806 "phys_seg %u prio class %u\n", 807 blk_status_to_str(status), 808 req->q->disk ? req->q->disk->disk_name : "?", 809 blk_rq_pos(req), (__force u32)req_op(req), 810 blk_op_str(req_op(req)), 811 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 812 req->nr_phys_segments, 813 IOPRIO_PRIO_CLASS(req->ioprio)); 814 } 815 816 /* 817 * Fully end IO on a request. Does not support partial completions, or 818 * errors. 819 */ 820 static void blk_complete_request(struct request *req) 821 { 822 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 823 int total_bytes = blk_rq_bytes(req); 824 struct bio *bio = req->bio; 825 826 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 827 828 if (!bio) 829 return; 830 831 #ifdef CONFIG_BLK_DEV_INTEGRITY 832 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 833 req->q->integrity.profile->complete_fn(req, total_bytes); 834 #endif 835 836 /* 837 * Upper layers may call blk_crypto_evict_key() anytime after the last 838 * bio_endio(). Therefore, the keyslot must be released before that. 839 */ 840 blk_crypto_rq_put_keyslot(req); 841 842 blk_account_io_completion(req, total_bytes); 843 844 do { 845 struct bio *next = bio->bi_next; 846 847 /* Completion has already been traced */ 848 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 849 850 if (req_op(req) == REQ_OP_ZONE_APPEND) 851 bio->bi_iter.bi_sector = req->__sector; 852 853 if (!is_flush) 854 bio_endio(bio); 855 bio = next; 856 } while (bio); 857 858 /* 859 * Reset counters so that the request stacking driver 860 * can find how many bytes remain in the request 861 * later. 862 */ 863 if (!req->end_io) { 864 req->bio = NULL; 865 req->__data_len = 0; 866 } 867 } 868 869 /** 870 * blk_update_request - Complete multiple bytes without completing the request 871 * @req: the request being processed 872 * @error: block status code 873 * @nr_bytes: number of bytes to complete for @req 874 * 875 * Description: 876 * Ends I/O on a number of bytes attached to @req, but doesn't complete 877 * the request structure even if @req doesn't have leftover. 878 * If @req has leftover, sets it up for the next range of segments. 879 * 880 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 881 * %false return from this function. 882 * 883 * Note: 884 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 885 * except in the consistency check at the end of this function. 886 * 887 * Return: 888 * %false - this request doesn't have any more data 889 * %true - this request has more data 890 **/ 891 bool blk_update_request(struct request *req, blk_status_t error, 892 unsigned int nr_bytes) 893 { 894 int total_bytes; 895 896 trace_block_rq_complete(req, error, nr_bytes); 897 898 if (!req->bio) 899 return false; 900 901 #ifdef CONFIG_BLK_DEV_INTEGRITY 902 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 903 error == BLK_STS_OK) 904 req->q->integrity.profile->complete_fn(req, nr_bytes); 905 #endif 906 907 /* 908 * Upper layers may call blk_crypto_evict_key() anytime after the last 909 * bio_endio(). Therefore, the keyslot must be released before that. 910 */ 911 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 912 __blk_crypto_rq_put_keyslot(req); 913 914 if (unlikely(error && !blk_rq_is_passthrough(req) && 915 !(req->rq_flags & RQF_QUIET)) && 916 !test_bit(GD_DEAD, &req->q->disk->state)) { 917 blk_print_req_error(req, error); 918 trace_block_rq_error(req, error, nr_bytes); 919 } 920 921 blk_account_io_completion(req, nr_bytes); 922 923 total_bytes = 0; 924 while (req->bio) { 925 struct bio *bio = req->bio; 926 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 927 928 if (bio_bytes == bio->bi_iter.bi_size) 929 req->bio = bio->bi_next; 930 931 /* Completion has already been traced */ 932 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 933 req_bio_endio(req, bio, bio_bytes, error); 934 935 total_bytes += bio_bytes; 936 nr_bytes -= bio_bytes; 937 938 if (!nr_bytes) 939 break; 940 } 941 942 /* 943 * completely done 944 */ 945 if (!req->bio) { 946 /* 947 * Reset counters so that the request stacking driver 948 * can find how many bytes remain in the request 949 * later. 950 */ 951 req->__data_len = 0; 952 return false; 953 } 954 955 req->__data_len -= total_bytes; 956 957 /* update sector only for requests with clear definition of sector */ 958 if (!blk_rq_is_passthrough(req)) 959 req->__sector += total_bytes >> 9; 960 961 /* mixed attributes always follow the first bio */ 962 if (req->rq_flags & RQF_MIXED_MERGE) { 963 req->cmd_flags &= ~REQ_FAILFAST_MASK; 964 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 965 } 966 967 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 968 /* 969 * If total number of sectors is less than the first segment 970 * size, something has gone terribly wrong. 971 */ 972 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 973 blk_dump_rq_flags(req, "request botched"); 974 req->__data_len = blk_rq_cur_bytes(req); 975 } 976 977 /* recalculate the number of segments */ 978 req->nr_phys_segments = blk_recalc_rq_segments(req); 979 } 980 981 return true; 982 } 983 EXPORT_SYMBOL_GPL(blk_update_request); 984 985 static inline void blk_account_io_done(struct request *req, u64 now) 986 { 987 trace_block_io_done(req); 988 989 /* 990 * Account IO completion. flush_rq isn't accounted as a 991 * normal IO on queueing nor completion. Accounting the 992 * containing request is enough. 993 */ 994 if (blk_do_io_stat(req) && req->part && 995 !(req->rq_flags & RQF_FLUSH_SEQ)) { 996 const int sgrp = op_stat_group(req_op(req)); 997 998 part_stat_lock(); 999 update_io_ticks(req->part, jiffies, true); 1000 part_stat_inc(req->part, ios[sgrp]); 1001 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1002 part_stat_unlock(); 1003 } 1004 } 1005 1006 static inline void blk_account_io_start(struct request *req) 1007 { 1008 trace_block_io_start(req); 1009 1010 if (blk_do_io_stat(req)) { 1011 /* 1012 * All non-passthrough requests are created from a bio with one 1013 * exception: when a flush command that is part of a flush sequence 1014 * generated by the state machine in blk-flush.c is cloned onto the 1015 * lower device by dm-multipath we can get here without a bio. 1016 */ 1017 if (req->bio) 1018 req->part = req->bio->bi_bdev; 1019 else 1020 req->part = req->q->disk->part0; 1021 1022 part_stat_lock(); 1023 update_io_ticks(req->part, jiffies, false); 1024 part_stat_unlock(); 1025 } 1026 } 1027 1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1029 { 1030 if (rq->rq_flags & RQF_STATS) 1031 blk_stat_add(rq, now); 1032 1033 blk_mq_sched_completed_request(rq, now); 1034 blk_account_io_done(rq, now); 1035 } 1036 1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1038 { 1039 if (blk_mq_need_time_stamp(rq)) 1040 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1041 1042 blk_mq_finish_request(rq); 1043 1044 if (rq->end_io) { 1045 rq_qos_done(rq->q, rq); 1046 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1047 blk_mq_free_request(rq); 1048 } else { 1049 blk_mq_free_request(rq); 1050 } 1051 } 1052 EXPORT_SYMBOL(__blk_mq_end_request); 1053 1054 void blk_mq_end_request(struct request *rq, blk_status_t error) 1055 { 1056 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1057 BUG(); 1058 __blk_mq_end_request(rq, error); 1059 } 1060 EXPORT_SYMBOL(blk_mq_end_request); 1061 1062 #define TAG_COMP_BATCH 32 1063 1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1065 int *tag_array, int nr_tags) 1066 { 1067 struct request_queue *q = hctx->queue; 1068 1069 /* 1070 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1071 * update hctx->nr_active in batch 1072 */ 1073 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1074 __blk_mq_sub_active_requests(hctx, nr_tags); 1075 1076 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1077 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1078 } 1079 1080 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1081 { 1082 int tags[TAG_COMP_BATCH], nr_tags = 0; 1083 struct blk_mq_hw_ctx *cur_hctx = NULL; 1084 struct request *rq; 1085 u64 now = 0; 1086 1087 if (iob->need_ts) 1088 now = ktime_get_ns(); 1089 1090 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1091 prefetch(rq->bio); 1092 prefetch(rq->rq_next); 1093 1094 blk_complete_request(rq); 1095 if (iob->need_ts) 1096 __blk_mq_end_request_acct(rq, now); 1097 1098 blk_mq_finish_request(rq); 1099 1100 rq_qos_done(rq->q, rq); 1101 1102 /* 1103 * If end_io handler returns NONE, then it still has 1104 * ownership of the request. 1105 */ 1106 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1107 continue; 1108 1109 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1110 if (!req_ref_put_and_test(rq)) 1111 continue; 1112 1113 blk_crypto_free_request(rq); 1114 blk_pm_mark_last_busy(rq); 1115 1116 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1117 if (cur_hctx) 1118 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1119 nr_tags = 0; 1120 cur_hctx = rq->mq_hctx; 1121 } 1122 tags[nr_tags++] = rq->tag; 1123 } 1124 1125 if (nr_tags) 1126 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1127 } 1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1129 1130 static void blk_complete_reqs(struct llist_head *list) 1131 { 1132 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1133 struct request *rq, *next; 1134 1135 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1136 rq->q->mq_ops->complete(rq); 1137 } 1138 1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1140 { 1141 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1142 } 1143 1144 static int blk_softirq_cpu_dead(unsigned int cpu) 1145 { 1146 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1147 return 0; 1148 } 1149 1150 static void __blk_mq_complete_request_remote(void *data) 1151 { 1152 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1153 } 1154 1155 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1156 { 1157 int cpu = raw_smp_processor_id(); 1158 1159 if (!IS_ENABLED(CONFIG_SMP) || 1160 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1161 return false; 1162 /* 1163 * With force threaded interrupts enabled, raising softirq from an SMP 1164 * function call will always result in waking the ksoftirqd thread. 1165 * This is probably worse than completing the request on a different 1166 * cache domain. 1167 */ 1168 if (force_irqthreads()) 1169 return false; 1170 1171 /* same CPU or cache domain? Complete locally */ 1172 if (cpu == rq->mq_ctx->cpu || 1173 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1174 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1175 return false; 1176 1177 /* don't try to IPI to an offline CPU */ 1178 return cpu_online(rq->mq_ctx->cpu); 1179 } 1180 1181 static void blk_mq_complete_send_ipi(struct request *rq) 1182 { 1183 unsigned int cpu; 1184 1185 cpu = rq->mq_ctx->cpu; 1186 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1187 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1188 } 1189 1190 static void blk_mq_raise_softirq(struct request *rq) 1191 { 1192 struct llist_head *list; 1193 1194 preempt_disable(); 1195 list = this_cpu_ptr(&blk_cpu_done); 1196 if (llist_add(&rq->ipi_list, list)) 1197 raise_softirq(BLOCK_SOFTIRQ); 1198 preempt_enable(); 1199 } 1200 1201 bool blk_mq_complete_request_remote(struct request *rq) 1202 { 1203 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1204 1205 /* 1206 * For request which hctx has only one ctx mapping, 1207 * or a polled request, always complete locally, 1208 * it's pointless to redirect the completion. 1209 */ 1210 if ((rq->mq_hctx->nr_ctx == 1 && 1211 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1212 rq->cmd_flags & REQ_POLLED) 1213 return false; 1214 1215 if (blk_mq_complete_need_ipi(rq)) { 1216 blk_mq_complete_send_ipi(rq); 1217 return true; 1218 } 1219 1220 if (rq->q->nr_hw_queues == 1) { 1221 blk_mq_raise_softirq(rq); 1222 return true; 1223 } 1224 return false; 1225 } 1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1227 1228 /** 1229 * blk_mq_complete_request - end I/O on a request 1230 * @rq: the request being processed 1231 * 1232 * Description: 1233 * Complete a request by scheduling the ->complete_rq operation. 1234 **/ 1235 void blk_mq_complete_request(struct request *rq) 1236 { 1237 if (!blk_mq_complete_request_remote(rq)) 1238 rq->q->mq_ops->complete(rq); 1239 } 1240 EXPORT_SYMBOL(blk_mq_complete_request); 1241 1242 /** 1243 * blk_mq_start_request - Start processing a request 1244 * @rq: Pointer to request to be started 1245 * 1246 * Function used by device drivers to notify the block layer that a request 1247 * is going to be processed now, so blk layer can do proper initializations 1248 * such as starting the timeout timer. 1249 */ 1250 void blk_mq_start_request(struct request *rq) 1251 { 1252 struct request_queue *q = rq->q; 1253 1254 trace_block_rq_issue(rq); 1255 1256 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1257 rq->io_start_time_ns = ktime_get_ns(); 1258 rq->stats_sectors = blk_rq_sectors(rq); 1259 rq->rq_flags |= RQF_STATS; 1260 rq_qos_issue(q, rq); 1261 } 1262 1263 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1264 1265 blk_add_timer(rq); 1266 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1267 1268 #ifdef CONFIG_BLK_DEV_INTEGRITY 1269 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1270 q->integrity.profile->prepare_fn(rq); 1271 #endif 1272 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1273 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1274 } 1275 EXPORT_SYMBOL(blk_mq_start_request); 1276 1277 /* 1278 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1279 * queues. This is important for md arrays to benefit from merging 1280 * requests. 1281 */ 1282 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1283 { 1284 if (plug->multiple_queues) 1285 return BLK_MAX_REQUEST_COUNT * 2; 1286 return BLK_MAX_REQUEST_COUNT; 1287 } 1288 1289 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1290 { 1291 struct request *last = rq_list_peek(&plug->mq_list); 1292 1293 if (!plug->rq_count) { 1294 trace_block_plug(rq->q); 1295 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1296 (!blk_queue_nomerges(rq->q) && 1297 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1298 blk_mq_flush_plug_list(plug, false); 1299 last = NULL; 1300 trace_block_plug(rq->q); 1301 } 1302 1303 if (!plug->multiple_queues && last && last->q != rq->q) 1304 plug->multiple_queues = true; 1305 /* 1306 * Any request allocated from sched tags can't be issued to 1307 * ->queue_rqs() directly 1308 */ 1309 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1310 plug->has_elevator = true; 1311 rq->rq_next = NULL; 1312 rq_list_add(&plug->mq_list, rq); 1313 plug->rq_count++; 1314 } 1315 1316 /** 1317 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1318 * @rq: request to insert 1319 * @at_head: insert request at head or tail of queue 1320 * 1321 * Description: 1322 * Insert a fully prepared request at the back of the I/O scheduler queue 1323 * for execution. Don't wait for completion. 1324 * 1325 * Note: 1326 * This function will invoke @done directly if the queue is dead. 1327 */ 1328 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1329 { 1330 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1331 1332 WARN_ON(irqs_disabled()); 1333 WARN_ON(!blk_rq_is_passthrough(rq)); 1334 1335 blk_account_io_start(rq); 1336 1337 /* 1338 * As plugging can be enabled for passthrough requests on a zoned 1339 * device, directly accessing the plug instead of using blk_mq_plug() 1340 * should not have any consequences. 1341 */ 1342 if (current->plug && !at_head) { 1343 blk_add_rq_to_plug(current->plug, rq); 1344 return; 1345 } 1346 1347 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1348 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1349 } 1350 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1351 1352 struct blk_rq_wait { 1353 struct completion done; 1354 blk_status_t ret; 1355 }; 1356 1357 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1358 { 1359 struct blk_rq_wait *wait = rq->end_io_data; 1360 1361 wait->ret = ret; 1362 complete(&wait->done); 1363 return RQ_END_IO_NONE; 1364 } 1365 1366 bool blk_rq_is_poll(struct request *rq) 1367 { 1368 if (!rq->mq_hctx) 1369 return false; 1370 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1371 return false; 1372 return true; 1373 } 1374 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1375 1376 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1377 { 1378 do { 1379 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1380 cond_resched(); 1381 } while (!completion_done(wait)); 1382 } 1383 1384 /** 1385 * blk_execute_rq - insert a request into queue for execution 1386 * @rq: request to insert 1387 * @at_head: insert request at head or tail of queue 1388 * 1389 * Description: 1390 * Insert a fully prepared request at the back of the I/O scheduler queue 1391 * for execution and wait for completion. 1392 * Return: The blk_status_t result provided to blk_mq_end_request(). 1393 */ 1394 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1395 { 1396 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1397 struct blk_rq_wait wait = { 1398 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1399 }; 1400 1401 WARN_ON(irqs_disabled()); 1402 WARN_ON(!blk_rq_is_passthrough(rq)); 1403 1404 rq->end_io_data = &wait; 1405 rq->end_io = blk_end_sync_rq; 1406 1407 blk_account_io_start(rq); 1408 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1409 blk_mq_run_hw_queue(hctx, false); 1410 1411 if (blk_rq_is_poll(rq)) { 1412 blk_rq_poll_completion(rq, &wait.done); 1413 } else { 1414 /* 1415 * Prevent hang_check timer from firing at us during very long 1416 * I/O 1417 */ 1418 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1419 1420 if (hang_check) 1421 while (!wait_for_completion_io_timeout(&wait.done, 1422 hang_check * (HZ/2))) 1423 ; 1424 else 1425 wait_for_completion_io(&wait.done); 1426 } 1427 1428 return wait.ret; 1429 } 1430 EXPORT_SYMBOL(blk_execute_rq); 1431 1432 static void __blk_mq_requeue_request(struct request *rq) 1433 { 1434 struct request_queue *q = rq->q; 1435 1436 blk_mq_put_driver_tag(rq); 1437 1438 trace_block_rq_requeue(rq); 1439 rq_qos_requeue(q, rq); 1440 1441 if (blk_mq_request_started(rq)) { 1442 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1443 rq->rq_flags &= ~RQF_TIMED_OUT; 1444 } 1445 } 1446 1447 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1448 { 1449 struct request_queue *q = rq->q; 1450 unsigned long flags; 1451 1452 __blk_mq_requeue_request(rq); 1453 1454 /* this request will be re-inserted to io scheduler queue */ 1455 blk_mq_sched_requeue_request(rq); 1456 1457 spin_lock_irqsave(&q->requeue_lock, flags); 1458 list_add_tail(&rq->queuelist, &q->requeue_list); 1459 spin_unlock_irqrestore(&q->requeue_lock, flags); 1460 1461 if (kick_requeue_list) 1462 blk_mq_kick_requeue_list(q); 1463 } 1464 EXPORT_SYMBOL(blk_mq_requeue_request); 1465 1466 static void blk_mq_requeue_work(struct work_struct *work) 1467 { 1468 struct request_queue *q = 1469 container_of(work, struct request_queue, requeue_work.work); 1470 LIST_HEAD(rq_list); 1471 LIST_HEAD(flush_list); 1472 struct request *rq; 1473 1474 spin_lock_irq(&q->requeue_lock); 1475 list_splice_init(&q->requeue_list, &rq_list); 1476 list_splice_init(&q->flush_list, &flush_list); 1477 spin_unlock_irq(&q->requeue_lock); 1478 1479 while (!list_empty(&rq_list)) { 1480 rq = list_entry(rq_list.next, struct request, queuelist); 1481 /* 1482 * If RQF_DONTPREP ist set, the request has been started by the 1483 * driver already and might have driver-specific data allocated 1484 * already. Insert it into the hctx dispatch list to avoid 1485 * block layer merges for the request. 1486 */ 1487 if (rq->rq_flags & RQF_DONTPREP) { 1488 list_del_init(&rq->queuelist); 1489 blk_mq_request_bypass_insert(rq, 0); 1490 } else { 1491 list_del_init(&rq->queuelist); 1492 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1493 } 1494 } 1495 1496 while (!list_empty(&flush_list)) { 1497 rq = list_entry(flush_list.next, struct request, queuelist); 1498 list_del_init(&rq->queuelist); 1499 blk_mq_insert_request(rq, 0); 1500 } 1501 1502 blk_mq_run_hw_queues(q, false); 1503 } 1504 1505 void blk_mq_kick_requeue_list(struct request_queue *q) 1506 { 1507 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1508 } 1509 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1510 1511 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1512 unsigned long msecs) 1513 { 1514 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1515 msecs_to_jiffies(msecs)); 1516 } 1517 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1518 1519 static bool blk_is_flush_data_rq(struct request *rq) 1520 { 1521 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1522 } 1523 1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1525 { 1526 /* 1527 * If we find a request that isn't idle we know the queue is busy 1528 * as it's checked in the iter. 1529 * Return false to stop the iteration. 1530 * 1531 * In case of queue quiesce, if one flush data request is completed, 1532 * don't count it as inflight given the flush sequence is suspended, 1533 * and the original flush data request is invisible to driver, just 1534 * like other pending requests because of quiesce 1535 */ 1536 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1537 blk_is_flush_data_rq(rq) && 1538 blk_mq_request_completed(rq))) { 1539 bool *busy = priv; 1540 1541 *busy = true; 1542 return false; 1543 } 1544 1545 return true; 1546 } 1547 1548 bool blk_mq_queue_inflight(struct request_queue *q) 1549 { 1550 bool busy = false; 1551 1552 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1553 return busy; 1554 } 1555 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1556 1557 static void blk_mq_rq_timed_out(struct request *req) 1558 { 1559 req->rq_flags |= RQF_TIMED_OUT; 1560 if (req->q->mq_ops->timeout) { 1561 enum blk_eh_timer_return ret; 1562 1563 ret = req->q->mq_ops->timeout(req); 1564 if (ret == BLK_EH_DONE) 1565 return; 1566 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1567 } 1568 1569 blk_add_timer(req); 1570 } 1571 1572 struct blk_expired_data { 1573 bool has_timedout_rq; 1574 unsigned long next; 1575 unsigned long timeout_start; 1576 }; 1577 1578 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1579 { 1580 unsigned long deadline; 1581 1582 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1583 return false; 1584 if (rq->rq_flags & RQF_TIMED_OUT) 1585 return false; 1586 1587 deadline = READ_ONCE(rq->deadline); 1588 if (time_after_eq(expired->timeout_start, deadline)) 1589 return true; 1590 1591 if (expired->next == 0) 1592 expired->next = deadline; 1593 else if (time_after(expired->next, deadline)) 1594 expired->next = deadline; 1595 return false; 1596 } 1597 1598 void blk_mq_put_rq_ref(struct request *rq) 1599 { 1600 if (is_flush_rq(rq)) { 1601 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1602 blk_mq_free_request(rq); 1603 } else if (req_ref_put_and_test(rq)) { 1604 __blk_mq_free_request(rq); 1605 } 1606 } 1607 1608 static bool blk_mq_check_expired(struct request *rq, void *priv) 1609 { 1610 struct blk_expired_data *expired = priv; 1611 1612 /* 1613 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1614 * be reallocated underneath the timeout handler's processing, then 1615 * the expire check is reliable. If the request is not expired, then 1616 * it was completed and reallocated as a new request after returning 1617 * from blk_mq_check_expired(). 1618 */ 1619 if (blk_mq_req_expired(rq, expired)) { 1620 expired->has_timedout_rq = true; 1621 return false; 1622 } 1623 return true; 1624 } 1625 1626 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1627 { 1628 struct blk_expired_data *expired = priv; 1629 1630 if (blk_mq_req_expired(rq, expired)) 1631 blk_mq_rq_timed_out(rq); 1632 return true; 1633 } 1634 1635 static void blk_mq_timeout_work(struct work_struct *work) 1636 { 1637 struct request_queue *q = 1638 container_of(work, struct request_queue, timeout_work); 1639 struct blk_expired_data expired = { 1640 .timeout_start = jiffies, 1641 }; 1642 struct blk_mq_hw_ctx *hctx; 1643 unsigned long i; 1644 1645 /* A deadlock might occur if a request is stuck requiring a 1646 * timeout at the same time a queue freeze is waiting 1647 * completion, since the timeout code would not be able to 1648 * acquire the queue reference here. 1649 * 1650 * That's why we don't use blk_queue_enter here; instead, we use 1651 * percpu_ref_tryget directly, because we need to be able to 1652 * obtain a reference even in the short window between the queue 1653 * starting to freeze, by dropping the first reference in 1654 * blk_freeze_queue_start, and the moment the last request is 1655 * consumed, marked by the instant q_usage_counter reaches 1656 * zero. 1657 */ 1658 if (!percpu_ref_tryget(&q->q_usage_counter)) 1659 return; 1660 1661 /* check if there is any timed-out request */ 1662 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1663 if (expired.has_timedout_rq) { 1664 /* 1665 * Before walking tags, we must ensure any submit started 1666 * before the current time has finished. Since the submit 1667 * uses srcu or rcu, wait for a synchronization point to 1668 * ensure all running submits have finished 1669 */ 1670 blk_mq_wait_quiesce_done(q->tag_set); 1671 1672 expired.next = 0; 1673 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1674 } 1675 1676 if (expired.next != 0) { 1677 mod_timer(&q->timeout, expired.next); 1678 } else { 1679 /* 1680 * Request timeouts are handled as a forward rolling timer. If 1681 * we end up here it means that no requests are pending and 1682 * also that no request has been pending for a while. Mark 1683 * each hctx as idle. 1684 */ 1685 queue_for_each_hw_ctx(q, hctx, i) { 1686 /* the hctx may be unmapped, so check it here */ 1687 if (blk_mq_hw_queue_mapped(hctx)) 1688 blk_mq_tag_idle(hctx); 1689 } 1690 } 1691 blk_queue_exit(q); 1692 } 1693 1694 struct flush_busy_ctx_data { 1695 struct blk_mq_hw_ctx *hctx; 1696 struct list_head *list; 1697 }; 1698 1699 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1700 { 1701 struct flush_busy_ctx_data *flush_data = data; 1702 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1703 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1704 enum hctx_type type = hctx->type; 1705 1706 spin_lock(&ctx->lock); 1707 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1708 sbitmap_clear_bit(sb, bitnr); 1709 spin_unlock(&ctx->lock); 1710 return true; 1711 } 1712 1713 /* 1714 * Process software queues that have been marked busy, splicing them 1715 * to the for-dispatch 1716 */ 1717 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1718 { 1719 struct flush_busy_ctx_data data = { 1720 .hctx = hctx, 1721 .list = list, 1722 }; 1723 1724 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1725 } 1726 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1727 1728 struct dispatch_rq_data { 1729 struct blk_mq_hw_ctx *hctx; 1730 struct request *rq; 1731 }; 1732 1733 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1734 void *data) 1735 { 1736 struct dispatch_rq_data *dispatch_data = data; 1737 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1738 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1739 enum hctx_type type = hctx->type; 1740 1741 spin_lock(&ctx->lock); 1742 if (!list_empty(&ctx->rq_lists[type])) { 1743 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1744 list_del_init(&dispatch_data->rq->queuelist); 1745 if (list_empty(&ctx->rq_lists[type])) 1746 sbitmap_clear_bit(sb, bitnr); 1747 } 1748 spin_unlock(&ctx->lock); 1749 1750 return !dispatch_data->rq; 1751 } 1752 1753 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1754 struct blk_mq_ctx *start) 1755 { 1756 unsigned off = start ? start->index_hw[hctx->type] : 0; 1757 struct dispatch_rq_data data = { 1758 .hctx = hctx, 1759 .rq = NULL, 1760 }; 1761 1762 __sbitmap_for_each_set(&hctx->ctx_map, off, 1763 dispatch_rq_from_ctx, &data); 1764 1765 return data.rq; 1766 } 1767 1768 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1769 { 1770 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1771 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1772 int tag; 1773 1774 blk_mq_tag_busy(rq->mq_hctx); 1775 1776 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1777 bt = &rq->mq_hctx->tags->breserved_tags; 1778 tag_offset = 0; 1779 } else { 1780 if (!hctx_may_queue(rq->mq_hctx, bt)) 1781 return false; 1782 } 1783 1784 tag = __sbitmap_queue_get(bt); 1785 if (tag == BLK_MQ_NO_TAG) 1786 return false; 1787 1788 rq->tag = tag + tag_offset; 1789 return true; 1790 } 1791 1792 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1793 { 1794 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1795 return false; 1796 1797 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1798 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1799 rq->rq_flags |= RQF_MQ_INFLIGHT; 1800 __blk_mq_inc_active_requests(hctx); 1801 } 1802 hctx->tags->rqs[rq->tag] = rq; 1803 return true; 1804 } 1805 1806 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1807 int flags, void *key) 1808 { 1809 struct blk_mq_hw_ctx *hctx; 1810 1811 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1812 1813 spin_lock(&hctx->dispatch_wait_lock); 1814 if (!list_empty(&wait->entry)) { 1815 struct sbitmap_queue *sbq; 1816 1817 list_del_init(&wait->entry); 1818 sbq = &hctx->tags->bitmap_tags; 1819 atomic_dec(&sbq->ws_active); 1820 } 1821 spin_unlock(&hctx->dispatch_wait_lock); 1822 1823 blk_mq_run_hw_queue(hctx, true); 1824 return 1; 1825 } 1826 1827 /* 1828 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1829 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1830 * restart. For both cases, take care to check the condition again after 1831 * marking us as waiting. 1832 */ 1833 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1834 struct request *rq) 1835 { 1836 struct sbitmap_queue *sbq; 1837 struct wait_queue_head *wq; 1838 wait_queue_entry_t *wait; 1839 bool ret; 1840 1841 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1842 !(blk_mq_is_shared_tags(hctx->flags))) { 1843 blk_mq_sched_mark_restart_hctx(hctx); 1844 1845 /* 1846 * It's possible that a tag was freed in the window between the 1847 * allocation failure and adding the hardware queue to the wait 1848 * queue. 1849 * 1850 * Don't clear RESTART here, someone else could have set it. 1851 * At most this will cost an extra queue run. 1852 */ 1853 return blk_mq_get_driver_tag(rq); 1854 } 1855 1856 wait = &hctx->dispatch_wait; 1857 if (!list_empty_careful(&wait->entry)) 1858 return false; 1859 1860 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1861 sbq = &hctx->tags->breserved_tags; 1862 else 1863 sbq = &hctx->tags->bitmap_tags; 1864 wq = &bt_wait_ptr(sbq, hctx)->wait; 1865 1866 spin_lock_irq(&wq->lock); 1867 spin_lock(&hctx->dispatch_wait_lock); 1868 if (!list_empty(&wait->entry)) { 1869 spin_unlock(&hctx->dispatch_wait_lock); 1870 spin_unlock_irq(&wq->lock); 1871 return false; 1872 } 1873 1874 atomic_inc(&sbq->ws_active); 1875 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1876 __add_wait_queue(wq, wait); 1877 1878 /* 1879 * Add one explicit barrier since blk_mq_get_driver_tag() may 1880 * not imply barrier in case of failure. 1881 * 1882 * Order adding us to wait queue and allocating driver tag. 1883 * 1884 * The pair is the one implied in sbitmap_queue_wake_up() which 1885 * orders clearing sbitmap tag bits and waitqueue_active() in 1886 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1887 * 1888 * Otherwise, re-order of adding wait queue and getting driver tag 1889 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1890 * the waitqueue_active() may not observe us in wait queue. 1891 */ 1892 smp_mb(); 1893 1894 /* 1895 * It's possible that a tag was freed in the window between the 1896 * allocation failure and adding the hardware queue to the wait 1897 * queue. 1898 */ 1899 ret = blk_mq_get_driver_tag(rq); 1900 if (!ret) { 1901 spin_unlock(&hctx->dispatch_wait_lock); 1902 spin_unlock_irq(&wq->lock); 1903 return false; 1904 } 1905 1906 /* 1907 * We got a tag, remove ourselves from the wait queue to ensure 1908 * someone else gets the wakeup. 1909 */ 1910 list_del_init(&wait->entry); 1911 atomic_dec(&sbq->ws_active); 1912 spin_unlock(&hctx->dispatch_wait_lock); 1913 spin_unlock_irq(&wq->lock); 1914 1915 return true; 1916 } 1917 1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1919 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1920 /* 1921 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1922 * - EWMA is one simple way to compute running average value 1923 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1924 * - take 4 as factor for avoiding to get too small(0) result, and this 1925 * factor doesn't matter because EWMA decreases exponentially 1926 */ 1927 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1928 { 1929 unsigned int ewma; 1930 1931 ewma = hctx->dispatch_busy; 1932 1933 if (!ewma && !busy) 1934 return; 1935 1936 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1937 if (busy) 1938 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1939 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1940 1941 hctx->dispatch_busy = ewma; 1942 } 1943 1944 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1945 1946 static void blk_mq_handle_dev_resource(struct request *rq, 1947 struct list_head *list) 1948 { 1949 list_add(&rq->queuelist, list); 1950 __blk_mq_requeue_request(rq); 1951 } 1952 1953 static void blk_mq_handle_zone_resource(struct request *rq, 1954 struct list_head *zone_list) 1955 { 1956 /* 1957 * If we end up here it is because we cannot dispatch a request to a 1958 * specific zone due to LLD level zone-write locking or other zone 1959 * related resource not being available. In this case, set the request 1960 * aside in zone_list for retrying it later. 1961 */ 1962 list_add(&rq->queuelist, zone_list); 1963 __blk_mq_requeue_request(rq); 1964 } 1965 1966 enum prep_dispatch { 1967 PREP_DISPATCH_OK, 1968 PREP_DISPATCH_NO_TAG, 1969 PREP_DISPATCH_NO_BUDGET, 1970 }; 1971 1972 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1973 bool need_budget) 1974 { 1975 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1976 int budget_token = -1; 1977 1978 if (need_budget) { 1979 budget_token = blk_mq_get_dispatch_budget(rq->q); 1980 if (budget_token < 0) { 1981 blk_mq_put_driver_tag(rq); 1982 return PREP_DISPATCH_NO_BUDGET; 1983 } 1984 blk_mq_set_rq_budget_token(rq, budget_token); 1985 } 1986 1987 if (!blk_mq_get_driver_tag(rq)) { 1988 /* 1989 * The initial allocation attempt failed, so we need to 1990 * rerun the hardware queue when a tag is freed. The 1991 * waitqueue takes care of that. If the queue is run 1992 * before we add this entry back on the dispatch list, 1993 * we'll re-run it below. 1994 */ 1995 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1996 /* 1997 * All budgets not got from this function will be put 1998 * together during handling partial dispatch 1999 */ 2000 if (need_budget) 2001 blk_mq_put_dispatch_budget(rq->q, budget_token); 2002 return PREP_DISPATCH_NO_TAG; 2003 } 2004 } 2005 2006 return PREP_DISPATCH_OK; 2007 } 2008 2009 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2010 static void blk_mq_release_budgets(struct request_queue *q, 2011 struct list_head *list) 2012 { 2013 struct request *rq; 2014 2015 list_for_each_entry(rq, list, queuelist) { 2016 int budget_token = blk_mq_get_rq_budget_token(rq); 2017 2018 if (budget_token >= 0) 2019 blk_mq_put_dispatch_budget(q, budget_token); 2020 } 2021 } 2022 2023 /* 2024 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2025 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2026 * details) 2027 * Attention, we should explicitly call this in unusual cases: 2028 * 1) did not queue everything initially scheduled to queue 2029 * 2) the last attempt to queue a request failed 2030 */ 2031 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2032 bool from_schedule) 2033 { 2034 if (hctx->queue->mq_ops->commit_rqs && queued) { 2035 trace_block_unplug(hctx->queue, queued, !from_schedule); 2036 hctx->queue->mq_ops->commit_rqs(hctx); 2037 } 2038 } 2039 2040 /* 2041 * Returns true if we did some work AND can potentially do more. 2042 */ 2043 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2044 unsigned int nr_budgets) 2045 { 2046 enum prep_dispatch prep; 2047 struct request_queue *q = hctx->queue; 2048 struct request *rq; 2049 int queued; 2050 blk_status_t ret = BLK_STS_OK; 2051 LIST_HEAD(zone_list); 2052 bool needs_resource = false; 2053 2054 if (list_empty(list)) 2055 return false; 2056 2057 /* 2058 * Now process all the entries, sending them to the driver. 2059 */ 2060 queued = 0; 2061 do { 2062 struct blk_mq_queue_data bd; 2063 2064 rq = list_first_entry(list, struct request, queuelist); 2065 2066 WARN_ON_ONCE(hctx != rq->mq_hctx); 2067 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2068 if (prep != PREP_DISPATCH_OK) 2069 break; 2070 2071 list_del_init(&rq->queuelist); 2072 2073 bd.rq = rq; 2074 bd.last = list_empty(list); 2075 2076 /* 2077 * once the request is queued to lld, no need to cover the 2078 * budget any more 2079 */ 2080 if (nr_budgets) 2081 nr_budgets--; 2082 ret = q->mq_ops->queue_rq(hctx, &bd); 2083 switch (ret) { 2084 case BLK_STS_OK: 2085 queued++; 2086 break; 2087 case BLK_STS_RESOURCE: 2088 needs_resource = true; 2089 fallthrough; 2090 case BLK_STS_DEV_RESOURCE: 2091 blk_mq_handle_dev_resource(rq, list); 2092 goto out; 2093 case BLK_STS_ZONE_RESOURCE: 2094 /* 2095 * Move the request to zone_list and keep going through 2096 * the dispatch list to find more requests the drive can 2097 * accept. 2098 */ 2099 blk_mq_handle_zone_resource(rq, &zone_list); 2100 needs_resource = true; 2101 break; 2102 default: 2103 blk_mq_end_request(rq, ret); 2104 } 2105 } while (!list_empty(list)); 2106 out: 2107 if (!list_empty(&zone_list)) 2108 list_splice_tail_init(&zone_list, list); 2109 2110 /* If we didn't flush the entire list, we could have told the driver 2111 * there was more coming, but that turned out to be a lie. 2112 */ 2113 if (!list_empty(list) || ret != BLK_STS_OK) 2114 blk_mq_commit_rqs(hctx, queued, false); 2115 2116 /* 2117 * Any items that need requeuing? Stuff them into hctx->dispatch, 2118 * that is where we will continue on next queue run. 2119 */ 2120 if (!list_empty(list)) { 2121 bool needs_restart; 2122 /* For non-shared tags, the RESTART check will suffice */ 2123 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2124 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2125 blk_mq_is_shared_tags(hctx->flags)); 2126 2127 if (nr_budgets) 2128 blk_mq_release_budgets(q, list); 2129 2130 spin_lock(&hctx->lock); 2131 list_splice_tail_init(list, &hctx->dispatch); 2132 spin_unlock(&hctx->lock); 2133 2134 /* 2135 * Order adding requests to hctx->dispatch and checking 2136 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2137 * in blk_mq_sched_restart(). Avoid restart code path to 2138 * miss the new added requests to hctx->dispatch, meantime 2139 * SCHED_RESTART is observed here. 2140 */ 2141 smp_mb(); 2142 2143 /* 2144 * If SCHED_RESTART was set by the caller of this function and 2145 * it is no longer set that means that it was cleared by another 2146 * thread and hence that a queue rerun is needed. 2147 * 2148 * If 'no_tag' is set, that means that we failed getting 2149 * a driver tag with an I/O scheduler attached. If our dispatch 2150 * waitqueue is no longer active, ensure that we run the queue 2151 * AFTER adding our entries back to the list. 2152 * 2153 * If no I/O scheduler has been configured it is possible that 2154 * the hardware queue got stopped and restarted before requests 2155 * were pushed back onto the dispatch list. Rerun the queue to 2156 * avoid starvation. Notes: 2157 * - blk_mq_run_hw_queue() checks whether or not a queue has 2158 * been stopped before rerunning a queue. 2159 * - Some but not all block drivers stop a queue before 2160 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2161 * and dm-rq. 2162 * 2163 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2164 * bit is set, run queue after a delay to avoid IO stalls 2165 * that could otherwise occur if the queue is idle. We'll do 2166 * similar if we couldn't get budget or couldn't lock a zone 2167 * and SCHED_RESTART is set. 2168 */ 2169 needs_restart = blk_mq_sched_needs_restart(hctx); 2170 if (prep == PREP_DISPATCH_NO_BUDGET) 2171 needs_resource = true; 2172 if (!needs_restart || 2173 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2174 blk_mq_run_hw_queue(hctx, true); 2175 else if (needs_resource) 2176 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2177 2178 blk_mq_update_dispatch_busy(hctx, true); 2179 return false; 2180 } 2181 2182 blk_mq_update_dispatch_busy(hctx, false); 2183 return true; 2184 } 2185 2186 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2187 { 2188 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2189 2190 if (cpu >= nr_cpu_ids) 2191 cpu = cpumask_first(hctx->cpumask); 2192 return cpu; 2193 } 2194 2195 /* 2196 * It'd be great if the workqueue API had a way to pass 2197 * in a mask and had some smarts for more clever placement. 2198 * For now we just round-robin here, switching for every 2199 * BLK_MQ_CPU_WORK_BATCH queued items. 2200 */ 2201 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2202 { 2203 bool tried = false; 2204 int next_cpu = hctx->next_cpu; 2205 2206 if (hctx->queue->nr_hw_queues == 1) 2207 return WORK_CPU_UNBOUND; 2208 2209 if (--hctx->next_cpu_batch <= 0) { 2210 select_cpu: 2211 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2212 cpu_online_mask); 2213 if (next_cpu >= nr_cpu_ids) 2214 next_cpu = blk_mq_first_mapped_cpu(hctx); 2215 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2216 } 2217 2218 /* 2219 * Do unbound schedule if we can't find a online CPU for this hctx, 2220 * and it should only happen in the path of handling CPU DEAD. 2221 */ 2222 if (!cpu_online(next_cpu)) { 2223 if (!tried) { 2224 tried = true; 2225 goto select_cpu; 2226 } 2227 2228 /* 2229 * Make sure to re-select CPU next time once after CPUs 2230 * in hctx->cpumask become online again. 2231 */ 2232 hctx->next_cpu = next_cpu; 2233 hctx->next_cpu_batch = 1; 2234 return WORK_CPU_UNBOUND; 2235 } 2236 2237 hctx->next_cpu = next_cpu; 2238 return next_cpu; 2239 } 2240 2241 /** 2242 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2243 * @hctx: Pointer to the hardware queue to run. 2244 * @msecs: Milliseconds of delay to wait before running the queue. 2245 * 2246 * Run a hardware queue asynchronously with a delay of @msecs. 2247 */ 2248 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2249 { 2250 if (unlikely(blk_mq_hctx_stopped(hctx))) 2251 return; 2252 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2253 msecs_to_jiffies(msecs)); 2254 } 2255 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2256 2257 /** 2258 * blk_mq_run_hw_queue - Start to run a hardware queue. 2259 * @hctx: Pointer to the hardware queue to run. 2260 * @async: If we want to run the queue asynchronously. 2261 * 2262 * Check if the request queue is not in a quiesced state and if there are 2263 * pending requests to be sent. If this is true, run the queue to send requests 2264 * to hardware. 2265 */ 2266 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2267 { 2268 bool need_run; 2269 2270 /* 2271 * We can't run the queue inline with interrupts disabled. 2272 */ 2273 WARN_ON_ONCE(!async && in_interrupt()); 2274 2275 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2276 2277 /* 2278 * When queue is quiesced, we may be switching io scheduler, or 2279 * updating nr_hw_queues, or other things, and we can't run queue 2280 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2281 * 2282 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2283 * quiesced. 2284 */ 2285 __blk_mq_run_dispatch_ops(hctx->queue, false, 2286 need_run = !blk_queue_quiesced(hctx->queue) && 2287 blk_mq_hctx_has_pending(hctx)); 2288 2289 if (!need_run) 2290 return; 2291 2292 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2293 blk_mq_delay_run_hw_queue(hctx, 0); 2294 return; 2295 } 2296 2297 blk_mq_run_dispatch_ops(hctx->queue, 2298 blk_mq_sched_dispatch_requests(hctx)); 2299 } 2300 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2301 2302 /* 2303 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2304 * scheduler. 2305 */ 2306 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2307 { 2308 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2309 /* 2310 * If the IO scheduler does not respect hardware queues when 2311 * dispatching, we just don't bother with multiple HW queues and 2312 * dispatch from hctx for the current CPU since running multiple queues 2313 * just causes lock contention inside the scheduler and pointless cache 2314 * bouncing. 2315 */ 2316 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2317 2318 if (!blk_mq_hctx_stopped(hctx)) 2319 return hctx; 2320 return NULL; 2321 } 2322 2323 /** 2324 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2325 * @q: Pointer to the request queue to run. 2326 * @async: If we want to run the queue asynchronously. 2327 */ 2328 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2329 { 2330 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2331 unsigned long i; 2332 2333 sq_hctx = NULL; 2334 if (blk_queue_sq_sched(q)) 2335 sq_hctx = blk_mq_get_sq_hctx(q); 2336 queue_for_each_hw_ctx(q, hctx, i) { 2337 if (blk_mq_hctx_stopped(hctx)) 2338 continue; 2339 /* 2340 * Dispatch from this hctx either if there's no hctx preferred 2341 * by IO scheduler or if it has requests that bypass the 2342 * scheduler. 2343 */ 2344 if (!sq_hctx || sq_hctx == hctx || 2345 !list_empty_careful(&hctx->dispatch)) 2346 blk_mq_run_hw_queue(hctx, async); 2347 } 2348 } 2349 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2350 2351 /** 2352 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2353 * @q: Pointer to the request queue to run. 2354 * @msecs: Milliseconds of delay to wait before running the queues. 2355 */ 2356 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2357 { 2358 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2359 unsigned long i; 2360 2361 sq_hctx = NULL; 2362 if (blk_queue_sq_sched(q)) 2363 sq_hctx = blk_mq_get_sq_hctx(q); 2364 queue_for_each_hw_ctx(q, hctx, i) { 2365 if (blk_mq_hctx_stopped(hctx)) 2366 continue; 2367 /* 2368 * If there is already a run_work pending, leave the 2369 * pending delay untouched. Otherwise, a hctx can stall 2370 * if another hctx is re-delaying the other's work 2371 * before the work executes. 2372 */ 2373 if (delayed_work_pending(&hctx->run_work)) 2374 continue; 2375 /* 2376 * Dispatch from this hctx either if there's no hctx preferred 2377 * by IO scheduler or if it has requests that bypass the 2378 * scheduler. 2379 */ 2380 if (!sq_hctx || sq_hctx == hctx || 2381 !list_empty_careful(&hctx->dispatch)) 2382 blk_mq_delay_run_hw_queue(hctx, msecs); 2383 } 2384 } 2385 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2386 2387 /* 2388 * This function is often used for pausing .queue_rq() by driver when 2389 * there isn't enough resource or some conditions aren't satisfied, and 2390 * BLK_STS_RESOURCE is usually returned. 2391 * 2392 * We do not guarantee that dispatch can be drained or blocked 2393 * after blk_mq_stop_hw_queue() returns. Please use 2394 * blk_mq_quiesce_queue() for that requirement. 2395 */ 2396 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2397 { 2398 cancel_delayed_work(&hctx->run_work); 2399 2400 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2401 } 2402 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2403 2404 /* 2405 * This function is often used for pausing .queue_rq() by driver when 2406 * there isn't enough resource or some conditions aren't satisfied, and 2407 * BLK_STS_RESOURCE is usually returned. 2408 * 2409 * We do not guarantee that dispatch can be drained or blocked 2410 * after blk_mq_stop_hw_queues() returns. Please use 2411 * blk_mq_quiesce_queue() for that requirement. 2412 */ 2413 void blk_mq_stop_hw_queues(struct request_queue *q) 2414 { 2415 struct blk_mq_hw_ctx *hctx; 2416 unsigned long i; 2417 2418 queue_for_each_hw_ctx(q, hctx, i) 2419 blk_mq_stop_hw_queue(hctx); 2420 } 2421 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2422 2423 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2424 { 2425 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2426 2427 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2428 } 2429 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2430 2431 void blk_mq_start_hw_queues(struct request_queue *q) 2432 { 2433 struct blk_mq_hw_ctx *hctx; 2434 unsigned long i; 2435 2436 queue_for_each_hw_ctx(q, hctx, i) 2437 blk_mq_start_hw_queue(hctx); 2438 } 2439 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2440 2441 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2442 { 2443 if (!blk_mq_hctx_stopped(hctx)) 2444 return; 2445 2446 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2447 blk_mq_run_hw_queue(hctx, async); 2448 } 2449 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2450 2451 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2452 { 2453 struct blk_mq_hw_ctx *hctx; 2454 unsigned long i; 2455 2456 queue_for_each_hw_ctx(q, hctx, i) 2457 blk_mq_start_stopped_hw_queue(hctx, async || 2458 (hctx->flags & BLK_MQ_F_BLOCKING)); 2459 } 2460 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2461 2462 static void blk_mq_run_work_fn(struct work_struct *work) 2463 { 2464 struct blk_mq_hw_ctx *hctx = 2465 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2466 2467 blk_mq_run_dispatch_ops(hctx->queue, 2468 blk_mq_sched_dispatch_requests(hctx)); 2469 } 2470 2471 /** 2472 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2473 * @rq: Pointer to request to be inserted. 2474 * @flags: BLK_MQ_INSERT_* 2475 * 2476 * Should only be used carefully, when the caller knows we want to 2477 * bypass a potential IO scheduler on the target device. 2478 */ 2479 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2480 { 2481 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2482 2483 spin_lock(&hctx->lock); 2484 if (flags & BLK_MQ_INSERT_AT_HEAD) 2485 list_add(&rq->queuelist, &hctx->dispatch); 2486 else 2487 list_add_tail(&rq->queuelist, &hctx->dispatch); 2488 spin_unlock(&hctx->lock); 2489 } 2490 2491 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2492 struct blk_mq_ctx *ctx, struct list_head *list, 2493 bool run_queue_async) 2494 { 2495 struct request *rq; 2496 enum hctx_type type = hctx->type; 2497 2498 /* 2499 * Try to issue requests directly if the hw queue isn't busy to save an 2500 * extra enqueue & dequeue to the sw queue. 2501 */ 2502 if (!hctx->dispatch_busy && !run_queue_async) { 2503 blk_mq_run_dispatch_ops(hctx->queue, 2504 blk_mq_try_issue_list_directly(hctx, list)); 2505 if (list_empty(list)) 2506 goto out; 2507 } 2508 2509 /* 2510 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2511 * offline now 2512 */ 2513 list_for_each_entry(rq, list, queuelist) { 2514 BUG_ON(rq->mq_ctx != ctx); 2515 trace_block_rq_insert(rq); 2516 if (rq->cmd_flags & REQ_NOWAIT) 2517 run_queue_async = true; 2518 } 2519 2520 spin_lock(&ctx->lock); 2521 list_splice_tail_init(list, &ctx->rq_lists[type]); 2522 blk_mq_hctx_mark_pending(hctx, ctx); 2523 spin_unlock(&ctx->lock); 2524 out: 2525 blk_mq_run_hw_queue(hctx, run_queue_async); 2526 } 2527 2528 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2529 { 2530 struct request_queue *q = rq->q; 2531 struct blk_mq_ctx *ctx = rq->mq_ctx; 2532 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2533 2534 if (blk_rq_is_passthrough(rq)) { 2535 /* 2536 * Passthrough request have to be added to hctx->dispatch 2537 * directly. The device may be in a situation where it can't 2538 * handle FS request, and always returns BLK_STS_RESOURCE for 2539 * them, which gets them added to hctx->dispatch. 2540 * 2541 * If a passthrough request is required to unblock the queues, 2542 * and it is added to the scheduler queue, there is no chance to 2543 * dispatch it given we prioritize requests in hctx->dispatch. 2544 */ 2545 blk_mq_request_bypass_insert(rq, flags); 2546 } else if (req_op(rq) == REQ_OP_FLUSH) { 2547 /* 2548 * Firstly normal IO request is inserted to scheduler queue or 2549 * sw queue, meantime we add flush request to dispatch queue( 2550 * hctx->dispatch) directly and there is at most one in-flight 2551 * flush request for each hw queue, so it doesn't matter to add 2552 * flush request to tail or front of the dispatch queue. 2553 * 2554 * Secondly in case of NCQ, flush request belongs to non-NCQ 2555 * command, and queueing it will fail when there is any 2556 * in-flight normal IO request(NCQ command). When adding flush 2557 * rq to the front of hctx->dispatch, it is easier to introduce 2558 * extra time to flush rq's latency because of S_SCHED_RESTART 2559 * compared with adding to the tail of dispatch queue, then 2560 * chance of flush merge is increased, and less flush requests 2561 * will be issued to controller. It is observed that ~10% time 2562 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2563 * drive when adding flush rq to the front of hctx->dispatch. 2564 * 2565 * Simply queue flush rq to the front of hctx->dispatch so that 2566 * intensive flush workloads can benefit in case of NCQ HW. 2567 */ 2568 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2569 } else if (q->elevator) { 2570 LIST_HEAD(list); 2571 2572 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2573 2574 list_add(&rq->queuelist, &list); 2575 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2576 } else { 2577 trace_block_rq_insert(rq); 2578 2579 spin_lock(&ctx->lock); 2580 if (flags & BLK_MQ_INSERT_AT_HEAD) 2581 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2582 else 2583 list_add_tail(&rq->queuelist, 2584 &ctx->rq_lists[hctx->type]); 2585 blk_mq_hctx_mark_pending(hctx, ctx); 2586 spin_unlock(&ctx->lock); 2587 } 2588 } 2589 2590 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2591 unsigned int nr_segs) 2592 { 2593 int err; 2594 2595 if (bio->bi_opf & REQ_RAHEAD) 2596 rq->cmd_flags |= REQ_FAILFAST_MASK; 2597 2598 rq->__sector = bio->bi_iter.bi_sector; 2599 blk_rq_bio_prep(rq, bio, nr_segs); 2600 2601 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2602 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2603 WARN_ON_ONCE(err); 2604 2605 blk_account_io_start(rq); 2606 } 2607 2608 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2609 struct request *rq, bool last) 2610 { 2611 struct request_queue *q = rq->q; 2612 struct blk_mq_queue_data bd = { 2613 .rq = rq, 2614 .last = last, 2615 }; 2616 blk_status_t ret; 2617 2618 /* 2619 * For OK queue, we are done. For error, caller may kill it. 2620 * Any other error (busy), just add it to our list as we 2621 * previously would have done. 2622 */ 2623 ret = q->mq_ops->queue_rq(hctx, &bd); 2624 switch (ret) { 2625 case BLK_STS_OK: 2626 blk_mq_update_dispatch_busy(hctx, false); 2627 break; 2628 case BLK_STS_RESOURCE: 2629 case BLK_STS_DEV_RESOURCE: 2630 blk_mq_update_dispatch_busy(hctx, true); 2631 __blk_mq_requeue_request(rq); 2632 break; 2633 default: 2634 blk_mq_update_dispatch_busy(hctx, false); 2635 break; 2636 } 2637 2638 return ret; 2639 } 2640 2641 static bool blk_mq_get_budget_and_tag(struct request *rq) 2642 { 2643 int budget_token; 2644 2645 budget_token = blk_mq_get_dispatch_budget(rq->q); 2646 if (budget_token < 0) 2647 return false; 2648 blk_mq_set_rq_budget_token(rq, budget_token); 2649 if (!blk_mq_get_driver_tag(rq)) { 2650 blk_mq_put_dispatch_budget(rq->q, budget_token); 2651 return false; 2652 } 2653 return true; 2654 } 2655 2656 /** 2657 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2658 * @hctx: Pointer of the associated hardware queue. 2659 * @rq: Pointer to request to be sent. 2660 * 2661 * If the device has enough resources to accept a new request now, send the 2662 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2663 * we can try send it another time in the future. Requests inserted at this 2664 * queue have higher priority. 2665 */ 2666 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2667 struct request *rq) 2668 { 2669 blk_status_t ret; 2670 2671 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2672 blk_mq_insert_request(rq, 0); 2673 return; 2674 } 2675 2676 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2677 blk_mq_insert_request(rq, 0); 2678 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2679 return; 2680 } 2681 2682 ret = __blk_mq_issue_directly(hctx, rq, true); 2683 switch (ret) { 2684 case BLK_STS_OK: 2685 break; 2686 case BLK_STS_RESOURCE: 2687 case BLK_STS_DEV_RESOURCE: 2688 blk_mq_request_bypass_insert(rq, 0); 2689 blk_mq_run_hw_queue(hctx, false); 2690 break; 2691 default: 2692 blk_mq_end_request(rq, ret); 2693 break; 2694 } 2695 } 2696 2697 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2698 { 2699 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2700 2701 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2702 blk_mq_insert_request(rq, 0); 2703 return BLK_STS_OK; 2704 } 2705 2706 if (!blk_mq_get_budget_and_tag(rq)) 2707 return BLK_STS_RESOURCE; 2708 return __blk_mq_issue_directly(hctx, rq, last); 2709 } 2710 2711 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2712 { 2713 struct blk_mq_hw_ctx *hctx = NULL; 2714 struct request *rq; 2715 int queued = 0; 2716 blk_status_t ret = BLK_STS_OK; 2717 2718 while ((rq = rq_list_pop(&plug->mq_list))) { 2719 bool last = rq_list_empty(plug->mq_list); 2720 2721 if (hctx != rq->mq_hctx) { 2722 if (hctx) { 2723 blk_mq_commit_rqs(hctx, queued, false); 2724 queued = 0; 2725 } 2726 hctx = rq->mq_hctx; 2727 } 2728 2729 ret = blk_mq_request_issue_directly(rq, last); 2730 switch (ret) { 2731 case BLK_STS_OK: 2732 queued++; 2733 break; 2734 case BLK_STS_RESOURCE: 2735 case BLK_STS_DEV_RESOURCE: 2736 blk_mq_request_bypass_insert(rq, 0); 2737 blk_mq_run_hw_queue(hctx, false); 2738 goto out; 2739 default: 2740 blk_mq_end_request(rq, ret); 2741 break; 2742 } 2743 } 2744 2745 out: 2746 if (ret != BLK_STS_OK) 2747 blk_mq_commit_rqs(hctx, queued, false); 2748 } 2749 2750 static void __blk_mq_flush_plug_list(struct request_queue *q, 2751 struct blk_plug *plug) 2752 { 2753 if (blk_queue_quiesced(q)) 2754 return; 2755 q->mq_ops->queue_rqs(&plug->mq_list); 2756 } 2757 2758 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2759 { 2760 struct blk_mq_hw_ctx *this_hctx = NULL; 2761 struct blk_mq_ctx *this_ctx = NULL; 2762 struct request *requeue_list = NULL; 2763 struct request **requeue_lastp = &requeue_list; 2764 unsigned int depth = 0; 2765 bool is_passthrough = false; 2766 LIST_HEAD(list); 2767 2768 do { 2769 struct request *rq = rq_list_pop(&plug->mq_list); 2770 2771 if (!this_hctx) { 2772 this_hctx = rq->mq_hctx; 2773 this_ctx = rq->mq_ctx; 2774 is_passthrough = blk_rq_is_passthrough(rq); 2775 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2776 is_passthrough != blk_rq_is_passthrough(rq)) { 2777 rq_list_add_tail(&requeue_lastp, rq); 2778 continue; 2779 } 2780 list_add(&rq->queuelist, &list); 2781 depth++; 2782 } while (!rq_list_empty(plug->mq_list)); 2783 2784 plug->mq_list = requeue_list; 2785 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2786 2787 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2788 /* passthrough requests should never be issued to the I/O scheduler */ 2789 if (is_passthrough) { 2790 spin_lock(&this_hctx->lock); 2791 list_splice_tail_init(&list, &this_hctx->dispatch); 2792 spin_unlock(&this_hctx->lock); 2793 blk_mq_run_hw_queue(this_hctx, from_sched); 2794 } else if (this_hctx->queue->elevator) { 2795 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2796 &list, 0); 2797 blk_mq_run_hw_queue(this_hctx, from_sched); 2798 } else { 2799 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2800 } 2801 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2802 } 2803 2804 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2805 { 2806 struct request *rq; 2807 2808 /* 2809 * We may have been called recursively midway through handling 2810 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2811 * To avoid mq_list changing under our feet, clear rq_count early and 2812 * bail out specifically if rq_count is 0 rather than checking 2813 * whether the mq_list is empty. 2814 */ 2815 if (plug->rq_count == 0) 2816 return; 2817 plug->rq_count = 0; 2818 2819 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2820 struct request_queue *q; 2821 2822 rq = rq_list_peek(&plug->mq_list); 2823 q = rq->q; 2824 2825 /* 2826 * Peek first request and see if we have a ->queue_rqs() hook. 2827 * If we do, we can dispatch the whole plug list in one go. We 2828 * already know at this point that all requests belong to the 2829 * same queue, caller must ensure that's the case. 2830 * 2831 * Since we pass off the full list to the driver at this point, 2832 * we do not increment the active request count for the queue. 2833 * Bypass shared tags for now because of that. 2834 */ 2835 if (q->mq_ops->queue_rqs && 2836 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2837 blk_mq_run_dispatch_ops(q, 2838 __blk_mq_flush_plug_list(q, plug)); 2839 if (rq_list_empty(plug->mq_list)) 2840 return; 2841 } 2842 2843 blk_mq_run_dispatch_ops(q, 2844 blk_mq_plug_issue_direct(plug)); 2845 if (rq_list_empty(plug->mq_list)) 2846 return; 2847 } 2848 2849 do { 2850 blk_mq_dispatch_plug_list(plug, from_schedule); 2851 } while (!rq_list_empty(plug->mq_list)); 2852 } 2853 2854 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2855 struct list_head *list) 2856 { 2857 int queued = 0; 2858 blk_status_t ret = BLK_STS_OK; 2859 2860 while (!list_empty(list)) { 2861 struct request *rq = list_first_entry(list, struct request, 2862 queuelist); 2863 2864 list_del_init(&rq->queuelist); 2865 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2866 switch (ret) { 2867 case BLK_STS_OK: 2868 queued++; 2869 break; 2870 case BLK_STS_RESOURCE: 2871 case BLK_STS_DEV_RESOURCE: 2872 blk_mq_request_bypass_insert(rq, 0); 2873 if (list_empty(list)) 2874 blk_mq_run_hw_queue(hctx, false); 2875 goto out; 2876 default: 2877 blk_mq_end_request(rq, ret); 2878 break; 2879 } 2880 } 2881 2882 out: 2883 if (ret != BLK_STS_OK) 2884 blk_mq_commit_rqs(hctx, queued, false); 2885 } 2886 2887 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2888 struct bio *bio, unsigned int nr_segs) 2889 { 2890 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2891 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2892 return true; 2893 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2894 return true; 2895 } 2896 return false; 2897 } 2898 2899 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2900 struct blk_plug *plug, 2901 struct bio *bio, 2902 unsigned int nsegs) 2903 { 2904 struct blk_mq_alloc_data data = { 2905 .q = q, 2906 .nr_tags = 1, 2907 .cmd_flags = bio->bi_opf, 2908 }; 2909 struct request *rq; 2910 2911 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2912 return NULL; 2913 2914 rq_qos_throttle(q, bio); 2915 2916 if (plug) { 2917 data.nr_tags = plug->nr_ios; 2918 plug->nr_ios = 1; 2919 data.cached_rq = &plug->cached_rq; 2920 } 2921 2922 rq = __blk_mq_alloc_requests(&data); 2923 if (rq) 2924 return rq; 2925 rq_qos_cleanup(q, bio); 2926 if (bio->bi_opf & REQ_NOWAIT) 2927 bio_wouldblock_error(bio); 2928 return NULL; 2929 } 2930 2931 /* return true if this @rq can be used for @bio */ 2932 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug, 2933 struct bio *bio) 2934 { 2935 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf); 2936 enum hctx_type hctx_type = rq->mq_hctx->type; 2937 2938 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2939 2940 if (type != hctx_type && 2941 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2942 return false; 2943 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2944 return false; 2945 2946 /* 2947 * If any qos ->throttle() end up blocking, we will have flushed the 2948 * plug and hence killed the cached_rq list as well. Pop this entry 2949 * before we throttle. 2950 */ 2951 plug->cached_rq = rq_list_next(rq); 2952 rq_qos_throttle(rq->q, bio); 2953 2954 blk_mq_rq_time_init(rq, 0); 2955 rq->cmd_flags = bio->bi_opf; 2956 INIT_LIST_HEAD(&rq->queuelist); 2957 return true; 2958 } 2959 2960 static void bio_set_ioprio(struct bio *bio) 2961 { 2962 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2963 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2964 bio->bi_ioprio = get_current_ioprio(); 2965 blkcg_set_ioprio(bio); 2966 } 2967 2968 /** 2969 * blk_mq_submit_bio - Create and send a request to block device. 2970 * @bio: Bio pointer. 2971 * 2972 * Builds up a request structure from @q and @bio and send to the device. The 2973 * request may not be queued directly to hardware if: 2974 * * This request can be merged with another one 2975 * * We want to place request at plug queue for possible future merging 2976 * * There is an IO scheduler active at this queue 2977 * 2978 * It will not queue the request if there is an error with the bio, or at the 2979 * request creation. 2980 */ 2981 void blk_mq_submit_bio(struct bio *bio) 2982 { 2983 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2984 struct blk_plug *plug = blk_mq_plug(bio); 2985 const int is_sync = op_is_sync(bio->bi_opf); 2986 struct blk_mq_hw_ctx *hctx; 2987 struct request *rq = NULL; 2988 unsigned int nr_segs = 1; 2989 blk_status_t ret; 2990 2991 bio = blk_queue_bounce(bio, q); 2992 bio_set_ioprio(bio); 2993 2994 if (plug) { 2995 rq = rq_list_peek(&plug->cached_rq); 2996 if (rq && rq->q != q) 2997 rq = NULL; 2998 } 2999 if (rq) { 3000 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3001 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3002 if (!bio) 3003 return; 3004 } 3005 if (!bio_integrity_prep(bio)) 3006 return; 3007 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3008 return; 3009 if (blk_mq_can_use_cached_rq(rq, plug, bio)) 3010 goto done; 3011 percpu_ref_get(&q->q_usage_counter); 3012 } else { 3013 if (unlikely(bio_queue_enter(bio))) 3014 return; 3015 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3016 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3017 if (!bio) 3018 goto fail; 3019 } 3020 if (!bio_integrity_prep(bio)) 3021 goto fail; 3022 } 3023 3024 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3025 if (unlikely(!rq)) { 3026 fail: 3027 blk_queue_exit(q); 3028 return; 3029 } 3030 3031 done: 3032 trace_block_getrq(bio); 3033 3034 rq_qos_track(q, rq, bio); 3035 3036 blk_mq_bio_to_request(rq, bio, nr_segs); 3037 3038 ret = blk_crypto_rq_get_keyslot(rq); 3039 if (ret != BLK_STS_OK) { 3040 bio->bi_status = ret; 3041 bio_endio(bio); 3042 blk_mq_free_request(rq); 3043 return; 3044 } 3045 3046 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3047 return; 3048 3049 if (plug) { 3050 blk_add_rq_to_plug(plug, rq); 3051 return; 3052 } 3053 3054 hctx = rq->mq_hctx; 3055 if ((rq->rq_flags & RQF_USE_SCHED) || 3056 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3057 blk_mq_insert_request(rq, 0); 3058 blk_mq_run_hw_queue(hctx, true); 3059 } else { 3060 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3061 } 3062 } 3063 3064 #ifdef CONFIG_BLK_MQ_STACKING 3065 /** 3066 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3067 * @rq: the request being queued 3068 */ 3069 blk_status_t blk_insert_cloned_request(struct request *rq) 3070 { 3071 struct request_queue *q = rq->q; 3072 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3073 unsigned int max_segments = blk_rq_get_max_segments(rq); 3074 blk_status_t ret; 3075 3076 if (blk_rq_sectors(rq) > max_sectors) { 3077 /* 3078 * SCSI device does not have a good way to return if 3079 * Write Same/Zero is actually supported. If a device rejects 3080 * a non-read/write command (discard, write same,etc.) the 3081 * low-level device driver will set the relevant queue limit to 3082 * 0 to prevent blk-lib from issuing more of the offending 3083 * operations. Commands queued prior to the queue limit being 3084 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3085 * errors being propagated to upper layers. 3086 */ 3087 if (max_sectors == 0) 3088 return BLK_STS_NOTSUPP; 3089 3090 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3091 __func__, blk_rq_sectors(rq), max_sectors); 3092 return BLK_STS_IOERR; 3093 } 3094 3095 /* 3096 * The queue settings related to segment counting may differ from the 3097 * original queue. 3098 */ 3099 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3100 if (rq->nr_phys_segments > max_segments) { 3101 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3102 __func__, rq->nr_phys_segments, max_segments); 3103 return BLK_STS_IOERR; 3104 } 3105 3106 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3107 return BLK_STS_IOERR; 3108 3109 ret = blk_crypto_rq_get_keyslot(rq); 3110 if (ret != BLK_STS_OK) 3111 return ret; 3112 3113 blk_account_io_start(rq); 3114 3115 /* 3116 * Since we have a scheduler attached on the top device, 3117 * bypass a potential scheduler on the bottom device for 3118 * insert. 3119 */ 3120 blk_mq_run_dispatch_ops(q, 3121 ret = blk_mq_request_issue_directly(rq, true)); 3122 if (ret) 3123 blk_account_io_done(rq, ktime_get_ns()); 3124 return ret; 3125 } 3126 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3127 3128 /** 3129 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3130 * @rq: the clone request to be cleaned up 3131 * 3132 * Description: 3133 * Free all bios in @rq for a cloned request. 3134 */ 3135 void blk_rq_unprep_clone(struct request *rq) 3136 { 3137 struct bio *bio; 3138 3139 while ((bio = rq->bio) != NULL) { 3140 rq->bio = bio->bi_next; 3141 3142 bio_put(bio); 3143 } 3144 } 3145 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3146 3147 /** 3148 * blk_rq_prep_clone - Helper function to setup clone request 3149 * @rq: the request to be setup 3150 * @rq_src: original request to be cloned 3151 * @bs: bio_set that bios for clone are allocated from 3152 * @gfp_mask: memory allocation mask for bio 3153 * @bio_ctr: setup function to be called for each clone bio. 3154 * Returns %0 for success, non %0 for failure. 3155 * @data: private data to be passed to @bio_ctr 3156 * 3157 * Description: 3158 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3159 * Also, pages which the original bios are pointing to are not copied 3160 * and the cloned bios just point same pages. 3161 * So cloned bios must be completed before original bios, which means 3162 * the caller must complete @rq before @rq_src. 3163 */ 3164 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3165 struct bio_set *bs, gfp_t gfp_mask, 3166 int (*bio_ctr)(struct bio *, struct bio *, void *), 3167 void *data) 3168 { 3169 struct bio *bio, *bio_src; 3170 3171 if (!bs) 3172 bs = &fs_bio_set; 3173 3174 __rq_for_each_bio(bio_src, rq_src) { 3175 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3176 bs); 3177 if (!bio) 3178 goto free_and_out; 3179 3180 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3181 goto free_and_out; 3182 3183 if (rq->bio) { 3184 rq->biotail->bi_next = bio; 3185 rq->biotail = bio; 3186 } else { 3187 rq->bio = rq->biotail = bio; 3188 } 3189 bio = NULL; 3190 } 3191 3192 /* Copy attributes of the original request to the clone request. */ 3193 rq->__sector = blk_rq_pos(rq_src); 3194 rq->__data_len = blk_rq_bytes(rq_src); 3195 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3196 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3197 rq->special_vec = rq_src->special_vec; 3198 } 3199 rq->nr_phys_segments = rq_src->nr_phys_segments; 3200 rq->ioprio = rq_src->ioprio; 3201 3202 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3203 goto free_and_out; 3204 3205 return 0; 3206 3207 free_and_out: 3208 if (bio) 3209 bio_put(bio); 3210 blk_rq_unprep_clone(rq); 3211 3212 return -ENOMEM; 3213 } 3214 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3215 #endif /* CONFIG_BLK_MQ_STACKING */ 3216 3217 /* 3218 * Steal bios from a request and add them to a bio list. 3219 * The request must not have been partially completed before. 3220 */ 3221 void blk_steal_bios(struct bio_list *list, struct request *rq) 3222 { 3223 if (rq->bio) { 3224 if (list->tail) 3225 list->tail->bi_next = rq->bio; 3226 else 3227 list->head = rq->bio; 3228 list->tail = rq->biotail; 3229 3230 rq->bio = NULL; 3231 rq->biotail = NULL; 3232 } 3233 3234 rq->__data_len = 0; 3235 } 3236 EXPORT_SYMBOL_GPL(blk_steal_bios); 3237 3238 static size_t order_to_size(unsigned int order) 3239 { 3240 return (size_t)PAGE_SIZE << order; 3241 } 3242 3243 /* called before freeing request pool in @tags */ 3244 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3245 struct blk_mq_tags *tags) 3246 { 3247 struct page *page; 3248 unsigned long flags; 3249 3250 /* 3251 * There is no need to clear mapping if driver tags is not initialized 3252 * or the mapping belongs to the driver tags. 3253 */ 3254 if (!drv_tags || drv_tags == tags) 3255 return; 3256 3257 list_for_each_entry(page, &tags->page_list, lru) { 3258 unsigned long start = (unsigned long)page_address(page); 3259 unsigned long end = start + order_to_size(page->private); 3260 int i; 3261 3262 for (i = 0; i < drv_tags->nr_tags; i++) { 3263 struct request *rq = drv_tags->rqs[i]; 3264 unsigned long rq_addr = (unsigned long)rq; 3265 3266 if (rq_addr >= start && rq_addr < end) { 3267 WARN_ON_ONCE(req_ref_read(rq) != 0); 3268 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3269 } 3270 } 3271 } 3272 3273 /* 3274 * Wait until all pending iteration is done. 3275 * 3276 * Request reference is cleared and it is guaranteed to be observed 3277 * after the ->lock is released. 3278 */ 3279 spin_lock_irqsave(&drv_tags->lock, flags); 3280 spin_unlock_irqrestore(&drv_tags->lock, flags); 3281 } 3282 3283 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3284 unsigned int hctx_idx) 3285 { 3286 struct blk_mq_tags *drv_tags; 3287 struct page *page; 3288 3289 if (list_empty(&tags->page_list)) 3290 return; 3291 3292 if (blk_mq_is_shared_tags(set->flags)) 3293 drv_tags = set->shared_tags; 3294 else 3295 drv_tags = set->tags[hctx_idx]; 3296 3297 if (tags->static_rqs && set->ops->exit_request) { 3298 int i; 3299 3300 for (i = 0; i < tags->nr_tags; i++) { 3301 struct request *rq = tags->static_rqs[i]; 3302 3303 if (!rq) 3304 continue; 3305 set->ops->exit_request(set, rq, hctx_idx); 3306 tags->static_rqs[i] = NULL; 3307 } 3308 } 3309 3310 blk_mq_clear_rq_mapping(drv_tags, tags); 3311 3312 while (!list_empty(&tags->page_list)) { 3313 page = list_first_entry(&tags->page_list, struct page, lru); 3314 list_del_init(&page->lru); 3315 /* 3316 * Remove kmemleak object previously allocated in 3317 * blk_mq_alloc_rqs(). 3318 */ 3319 kmemleak_free(page_address(page)); 3320 __free_pages(page, page->private); 3321 } 3322 } 3323 3324 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3325 { 3326 kfree(tags->rqs); 3327 tags->rqs = NULL; 3328 kfree(tags->static_rqs); 3329 tags->static_rqs = NULL; 3330 3331 blk_mq_free_tags(tags); 3332 } 3333 3334 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3335 unsigned int hctx_idx) 3336 { 3337 int i; 3338 3339 for (i = 0; i < set->nr_maps; i++) { 3340 unsigned int start = set->map[i].queue_offset; 3341 unsigned int end = start + set->map[i].nr_queues; 3342 3343 if (hctx_idx >= start && hctx_idx < end) 3344 break; 3345 } 3346 3347 if (i >= set->nr_maps) 3348 i = HCTX_TYPE_DEFAULT; 3349 3350 return i; 3351 } 3352 3353 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3354 unsigned int hctx_idx) 3355 { 3356 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3357 3358 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3359 } 3360 3361 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3362 unsigned int hctx_idx, 3363 unsigned int nr_tags, 3364 unsigned int reserved_tags) 3365 { 3366 int node = blk_mq_get_hctx_node(set, hctx_idx); 3367 struct blk_mq_tags *tags; 3368 3369 if (node == NUMA_NO_NODE) 3370 node = set->numa_node; 3371 3372 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3373 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3374 if (!tags) 3375 return NULL; 3376 3377 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3378 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3379 node); 3380 if (!tags->rqs) 3381 goto err_free_tags; 3382 3383 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3384 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3385 node); 3386 if (!tags->static_rqs) 3387 goto err_free_rqs; 3388 3389 return tags; 3390 3391 err_free_rqs: 3392 kfree(tags->rqs); 3393 err_free_tags: 3394 blk_mq_free_tags(tags); 3395 return NULL; 3396 } 3397 3398 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3399 unsigned int hctx_idx, int node) 3400 { 3401 int ret; 3402 3403 if (set->ops->init_request) { 3404 ret = set->ops->init_request(set, rq, hctx_idx, node); 3405 if (ret) 3406 return ret; 3407 } 3408 3409 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3410 return 0; 3411 } 3412 3413 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3414 struct blk_mq_tags *tags, 3415 unsigned int hctx_idx, unsigned int depth) 3416 { 3417 unsigned int i, j, entries_per_page, max_order = 4; 3418 int node = blk_mq_get_hctx_node(set, hctx_idx); 3419 size_t rq_size, left; 3420 3421 if (node == NUMA_NO_NODE) 3422 node = set->numa_node; 3423 3424 INIT_LIST_HEAD(&tags->page_list); 3425 3426 /* 3427 * rq_size is the size of the request plus driver payload, rounded 3428 * to the cacheline size 3429 */ 3430 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3431 cache_line_size()); 3432 left = rq_size * depth; 3433 3434 for (i = 0; i < depth; ) { 3435 int this_order = max_order; 3436 struct page *page; 3437 int to_do; 3438 void *p; 3439 3440 while (this_order && left < order_to_size(this_order - 1)) 3441 this_order--; 3442 3443 do { 3444 page = alloc_pages_node(node, 3445 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3446 this_order); 3447 if (page) 3448 break; 3449 if (!this_order--) 3450 break; 3451 if (order_to_size(this_order) < rq_size) 3452 break; 3453 } while (1); 3454 3455 if (!page) 3456 goto fail; 3457 3458 page->private = this_order; 3459 list_add_tail(&page->lru, &tags->page_list); 3460 3461 p = page_address(page); 3462 /* 3463 * Allow kmemleak to scan these pages as they contain pointers 3464 * to additional allocations like via ops->init_request(). 3465 */ 3466 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3467 entries_per_page = order_to_size(this_order) / rq_size; 3468 to_do = min(entries_per_page, depth - i); 3469 left -= to_do * rq_size; 3470 for (j = 0; j < to_do; j++) { 3471 struct request *rq = p; 3472 3473 tags->static_rqs[i] = rq; 3474 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3475 tags->static_rqs[i] = NULL; 3476 goto fail; 3477 } 3478 3479 p += rq_size; 3480 i++; 3481 } 3482 } 3483 return 0; 3484 3485 fail: 3486 blk_mq_free_rqs(set, tags, hctx_idx); 3487 return -ENOMEM; 3488 } 3489 3490 struct rq_iter_data { 3491 struct blk_mq_hw_ctx *hctx; 3492 bool has_rq; 3493 }; 3494 3495 static bool blk_mq_has_request(struct request *rq, void *data) 3496 { 3497 struct rq_iter_data *iter_data = data; 3498 3499 if (rq->mq_hctx != iter_data->hctx) 3500 return true; 3501 iter_data->has_rq = true; 3502 return false; 3503 } 3504 3505 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3506 { 3507 struct blk_mq_tags *tags = hctx->sched_tags ? 3508 hctx->sched_tags : hctx->tags; 3509 struct rq_iter_data data = { 3510 .hctx = hctx, 3511 }; 3512 3513 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3514 return data.has_rq; 3515 } 3516 3517 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3518 struct blk_mq_hw_ctx *hctx) 3519 { 3520 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3521 return false; 3522 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3523 return false; 3524 return true; 3525 } 3526 3527 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3528 { 3529 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3530 struct blk_mq_hw_ctx, cpuhp_online); 3531 3532 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3533 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3534 return 0; 3535 3536 /* 3537 * Prevent new request from being allocated on the current hctx. 3538 * 3539 * The smp_mb__after_atomic() Pairs with the implied barrier in 3540 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3541 * seen once we return from the tag allocator. 3542 */ 3543 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3544 smp_mb__after_atomic(); 3545 3546 /* 3547 * Try to grab a reference to the queue and wait for any outstanding 3548 * requests. If we could not grab a reference the queue has been 3549 * frozen and there are no requests. 3550 */ 3551 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3552 while (blk_mq_hctx_has_requests(hctx)) 3553 msleep(5); 3554 percpu_ref_put(&hctx->queue->q_usage_counter); 3555 } 3556 3557 return 0; 3558 } 3559 3560 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3561 { 3562 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3563 struct blk_mq_hw_ctx, cpuhp_online); 3564 3565 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3566 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3567 return 0; 3568 } 3569 3570 /* 3571 * 'cpu' is going away. splice any existing rq_list entries from this 3572 * software queue to the hw queue dispatch list, and ensure that it 3573 * gets run. 3574 */ 3575 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3576 { 3577 struct blk_mq_hw_ctx *hctx; 3578 struct blk_mq_ctx *ctx; 3579 LIST_HEAD(tmp); 3580 enum hctx_type type; 3581 3582 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3583 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3584 return 0; 3585 3586 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3587 type = hctx->type; 3588 3589 spin_lock(&ctx->lock); 3590 if (!list_empty(&ctx->rq_lists[type])) { 3591 list_splice_init(&ctx->rq_lists[type], &tmp); 3592 blk_mq_hctx_clear_pending(hctx, ctx); 3593 } 3594 spin_unlock(&ctx->lock); 3595 3596 if (list_empty(&tmp)) 3597 return 0; 3598 3599 spin_lock(&hctx->lock); 3600 list_splice_tail_init(&tmp, &hctx->dispatch); 3601 spin_unlock(&hctx->lock); 3602 3603 blk_mq_run_hw_queue(hctx, true); 3604 return 0; 3605 } 3606 3607 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3608 { 3609 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3610 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3611 &hctx->cpuhp_online); 3612 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3613 &hctx->cpuhp_dead); 3614 } 3615 3616 /* 3617 * Before freeing hw queue, clearing the flush request reference in 3618 * tags->rqs[] for avoiding potential UAF. 3619 */ 3620 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3621 unsigned int queue_depth, struct request *flush_rq) 3622 { 3623 int i; 3624 unsigned long flags; 3625 3626 /* The hw queue may not be mapped yet */ 3627 if (!tags) 3628 return; 3629 3630 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3631 3632 for (i = 0; i < queue_depth; i++) 3633 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3634 3635 /* 3636 * Wait until all pending iteration is done. 3637 * 3638 * Request reference is cleared and it is guaranteed to be observed 3639 * after the ->lock is released. 3640 */ 3641 spin_lock_irqsave(&tags->lock, flags); 3642 spin_unlock_irqrestore(&tags->lock, flags); 3643 } 3644 3645 /* hctx->ctxs will be freed in queue's release handler */ 3646 static void blk_mq_exit_hctx(struct request_queue *q, 3647 struct blk_mq_tag_set *set, 3648 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3649 { 3650 struct request *flush_rq = hctx->fq->flush_rq; 3651 3652 if (blk_mq_hw_queue_mapped(hctx)) 3653 blk_mq_tag_idle(hctx); 3654 3655 if (blk_queue_init_done(q)) 3656 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3657 set->queue_depth, flush_rq); 3658 if (set->ops->exit_request) 3659 set->ops->exit_request(set, flush_rq, hctx_idx); 3660 3661 if (set->ops->exit_hctx) 3662 set->ops->exit_hctx(hctx, hctx_idx); 3663 3664 blk_mq_remove_cpuhp(hctx); 3665 3666 xa_erase(&q->hctx_table, hctx_idx); 3667 3668 spin_lock(&q->unused_hctx_lock); 3669 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3670 spin_unlock(&q->unused_hctx_lock); 3671 } 3672 3673 static void blk_mq_exit_hw_queues(struct request_queue *q, 3674 struct blk_mq_tag_set *set, int nr_queue) 3675 { 3676 struct blk_mq_hw_ctx *hctx; 3677 unsigned long i; 3678 3679 queue_for_each_hw_ctx(q, hctx, i) { 3680 if (i == nr_queue) 3681 break; 3682 blk_mq_exit_hctx(q, set, hctx, i); 3683 } 3684 } 3685 3686 static int blk_mq_init_hctx(struct request_queue *q, 3687 struct blk_mq_tag_set *set, 3688 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3689 { 3690 hctx->queue_num = hctx_idx; 3691 3692 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3693 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3694 &hctx->cpuhp_online); 3695 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3696 3697 hctx->tags = set->tags[hctx_idx]; 3698 3699 if (set->ops->init_hctx && 3700 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3701 goto unregister_cpu_notifier; 3702 3703 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3704 hctx->numa_node)) 3705 goto exit_hctx; 3706 3707 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3708 goto exit_flush_rq; 3709 3710 return 0; 3711 3712 exit_flush_rq: 3713 if (set->ops->exit_request) 3714 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3715 exit_hctx: 3716 if (set->ops->exit_hctx) 3717 set->ops->exit_hctx(hctx, hctx_idx); 3718 unregister_cpu_notifier: 3719 blk_mq_remove_cpuhp(hctx); 3720 return -1; 3721 } 3722 3723 static struct blk_mq_hw_ctx * 3724 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3725 int node) 3726 { 3727 struct blk_mq_hw_ctx *hctx; 3728 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3729 3730 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3731 if (!hctx) 3732 goto fail_alloc_hctx; 3733 3734 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3735 goto free_hctx; 3736 3737 atomic_set(&hctx->nr_active, 0); 3738 if (node == NUMA_NO_NODE) 3739 node = set->numa_node; 3740 hctx->numa_node = node; 3741 3742 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3743 spin_lock_init(&hctx->lock); 3744 INIT_LIST_HEAD(&hctx->dispatch); 3745 hctx->queue = q; 3746 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3747 3748 INIT_LIST_HEAD(&hctx->hctx_list); 3749 3750 /* 3751 * Allocate space for all possible cpus to avoid allocation at 3752 * runtime 3753 */ 3754 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3755 gfp, node); 3756 if (!hctx->ctxs) 3757 goto free_cpumask; 3758 3759 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3760 gfp, node, false, false)) 3761 goto free_ctxs; 3762 hctx->nr_ctx = 0; 3763 3764 spin_lock_init(&hctx->dispatch_wait_lock); 3765 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3766 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3767 3768 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3769 if (!hctx->fq) 3770 goto free_bitmap; 3771 3772 blk_mq_hctx_kobj_init(hctx); 3773 3774 return hctx; 3775 3776 free_bitmap: 3777 sbitmap_free(&hctx->ctx_map); 3778 free_ctxs: 3779 kfree(hctx->ctxs); 3780 free_cpumask: 3781 free_cpumask_var(hctx->cpumask); 3782 free_hctx: 3783 kfree(hctx); 3784 fail_alloc_hctx: 3785 return NULL; 3786 } 3787 3788 static void blk_mq_init_cpu_queues(struct request_queue *q, 3789 unsigned int nr_hw_queues) 3790 { 3791 struct blk_mq_tag_set *set = q->tag_set; 3792 unsigned int i, j; 3793 3794 for_each_possible_cpu(i) { 3795 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3796 struct blk_mq_hw_ctx *hctx; 3797 int k; 3798 3799 __ctx->cpu = i; 3800 spin_lock_init(&__ctx->lock); 3801 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3802 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3803 3804 __ctx->queue = q; 3805 3806 /* 3807 * Set local node, IFF we have more than one hw queue. If 3808 * not, we remain on the home node of the device 3809 */ 3810 for (j = 0; j < set->nr_maps; j++) { 3811 hctx = blk_mq_map_queue_type(q, j, i); 3812 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3813 hctx->numa_node = cpu_to_node(i); 3814 } 3815 } 3816 } 3817 3818 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3819 unsigned int hctx_idx, 3820 unsigned int depth) 3821 { 3822 struct blk_mq_tags *tags; 3823 int ret; 3824 3825 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3826 if (!tags) 3827 return NULL; 3828 3829 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3830 if (ret) { 3831 blk_mq_free_rq_map(tags); 3832 return NULL; 3833 } 3834 3835 return tags; 3836 } 3837 3838 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3839 int hctx_idx) 3840 { 3841 if (blk_mq_is_shared_tags(set->flags)) { 3842 set->tags[hctx_idx] = set->shared_tags; 3843 3844 return true; 3845 } 3846 3847 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3848 set->queue_depth); 3849 3850 return set->tags[hctx_idx]; 3851 } 3852 3853 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3854 struct blk_mq_tags *tags, 3855 unsigned int hctx_idx) 3856 { 3857 if (tags) { 3858 blk_mq_free_rqs(set, tags, hctx_idx); 3859 blk_mq_free_rq_map(tags); 3860 } 3861 } 3862 3863 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3864 unsigned int hctx_idx) 3865 { 3866 if (!blk_mq_is_shared_tags(set->flags)) 3867 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3868 3869 set->tags[hctx_idx] = NULL; 3870 } 3871 3872 static void blk_mq_map_swqueue(struct request_queue *q) 3873 { 3874 unsigned int j, hctx_idx; 3875 unsigned long i; 3876 struct blk_mq_hw_ctx *hctx; 3877 struct blk_mq_ctx *ctx; 3878 struct blk_mq_tag_set *set = q->tag_set; 3879 3880 queue_for_each_hw_ctx(q, hctx, i) { 3881 cpumask_clear(hctx->cpumask); 3882 hctx->nr_ctx = 0; 3883 hctx->dispatch_from = NULL; 3884 } 3885 3886 /* 3887 * Map software to hardware queues. 3888 * 3889 * If the cpu isn't present, the cpu is mapped to first hctx. 3890 */ 3891 for_each_possible_cpu(i) { 3892 3893 ctx = per_cpu_ptr(q->queue_ctx, i); 3894 for (j = 0; j < set->nr_maps; j++) { 3895 if (!set->map[j].nr_queues) { 3896 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3897 HCTX_TYPE_DEFAULT, i); 3898 continue; 3899 } 3900 hctx_idx = set->map[j].mq_map[i]; 3901 /* unmapped hw queue can be remapped after CPU topo changed */ 3902 if (!set->tags[hctx_idx] && 3903 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3904 /* 3905 * If tags initialization fail for some hctx, 3906 * that hctx won't be brought online. In this 3907 * case, remap the current ctx to hctx[0] which 3908 * is guaranteed to always have tags allocated 3909 */ 3910 set->map[j].mq_map[i] = 0; 3911 } 3912 3913 hctx = blk_mq_map_queue_type(q, j, i); 3914 ctx->hctxs[j] = hctx; 3915 /* 3916 * If the CPU is already set in the mask, then we've 3917 * mapped this one already. This can happen if 3918 * devices share queues across queue maps. 3919 */ 3920 if (cpumask_test_cpu(i, hctx->cpumask)) 3921 continue; 3922 3923 cpumask_set_cpu(i, hctx->cpumask); 3924 hctx->type = j; 3925 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3926 hctx->ctxs[hctx->nr_ctx++] = ctx; 3927 3928 /* 3929 * If the nr_ctx type overflows, we have exceeded the 3930 * amount of sw queues we can support. 3931 */ 3932 BUG_ON(!hctx->nr_ctx); 3933 } 3934 3935 for (; j < HCTX_MAX_TYPES; j++) 3936 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3937 HCTX_TYPE_DEFAULT, i); 3938 } 3939 3940 queue_for_each_hw_ctx(q, hctx, i) { 3941 /* 3942 * If no software queues are mapped to this hardware queue, 3943 * disable it and free the request entries. 3944 */ 3945 if (!hctx->nr_ctx) { 3946 /* Never unmap queue 0. We need it as a 3947 * fallback in case of a new remap fails 3948 * allocation 3949 */ 3950 if (i) 3951 __blk_mq_free_map_and_rqs(set, i); 3952 3953 hctx->tags = NULL; 3954 continue; 3955 } 3956 3957 hctx->tags = set->tags[i]; 3958 WARN_ON(!hctx->tags); 3959 3960 /* 3961 * Set the map size to the number of mapped software queues. 3962 * This is more accurate and more efficient than looping 3963 * over all possibly mapped software queues. 3964 */ 3965 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3966 3967 /* 3968 * Initialize batch roundrobin counts 3969 */ 3970 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3971 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3972 } 3973 } 3974 3975 /* 3976 * Caller needs to ensure that we're either frozen/quiesced, or that 3977 * the queue isn't live yet. 3978 */ 3979 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3980 { 3981 struct blk_mq_hw_ctx *hctx; 3982 unsigned long i; 3983 3984 queue_for_each_hw_ctx(q, hctx, i) { 3985 if (shared) { 3986 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3987 } else { 3988 blk_mq_tag_idle(hctx); 3989 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3990 } 3991 } 3992 } 3993 3994 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3995 bool shared) 3996 { 3997 struct request_queue *q; 3998 3999 lockdep_assert_held(&set->tag_list_lock); 4000 4001 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4002 blk_mq_freeze_queue(q); 4003 queue_set_hctx_shared(q, shared); 4004 blk_mq_unfreeze_queue(q); 4005 } 4006 } 4007 4008 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4009 { 4010 struct blk_mq_tag_set *set = q->tag_set; 4011 4012 mutex_lock(&set->tag_list_lock); 4013 list_del(&q->tag_set_list); 4014 if (list_is_singular(&set->tag_list)) { 4015 /* just transitioned to unshared */ 4016 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4017 /* update existing queue */ 4018 blk_mq_update_tag_set_shared(set, false); 4019 } 4020 mutex_unlock(&set->tag_list_lock); 4021 INIT_LIST_HEAD(&q->tag_set_list); 4022 } 4023 4024 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4025 struct request_queue *q) 4026 { 4027 mutex_lock(&set->tag_list_lock); 4028 4029 /* 4030 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4031 */ 4032 if (!list_empty(&set->tag_list) && 4033 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4034 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4035 /* update existing queue */ 4036 blk_mq_update_tag_set_shared(set, true); 4037 } 4038 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4039 queue_set_hctx_shared(q, true); 4040 list_add_tail(&q->tag_set_list, &set->tag_list); 4041 4042 mutex_unlock(&set->tag_list_lock); 4043 } 4044 4045 /* All allocations will be freed in release handler of q->mq_kobj */ 4046 static int blk_mq_alloc_ctxs(struct request_queue *q) 4047 { 4048 struct blk_mq_ctxs *ctxs; 4049 int cpu; 4050 4051 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4052 if (!ctxs) 4053 return -ENOMEM; 4054 4055 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4056 if (!ctxs->queue_ctx) 4057 goto fail; 4058 4059 for_each_possible_cpu(cpu) { 4060 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4061 ctx->ctxs = ctxs; 4062 } 4063 4064 q->mq_kobj = &ctxs->kobj; 4065 q->queue_ctx = ctxs->queue_ctx; 4066 4067 return 0; 4068 fail: 4069 kfree(ctxs); 4070 return -ENOMEM; 4071 } 4072 4073 /* 4074 * It is the actual release handler for mq, but we do it from 4075 * request queue's release handler for avoiding use-after-free 4076 * and headache because q->mq_kobj shouldn't have been introduced, 4077 * but we can't group ctx/kctx kobj without it. 4078 */ 4079 void blk_mq_release(struct request_queue *q) 4080 { 4081 struct blk_mq_hw_ctx *hctx, *next; 4082 unsigned long i; 4083 4084 queue_for_each_hw_ctx(q, hctx, i) 4085 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4086 4087 /* all hctx are in .unused_hctx_list now */ 4088 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4089 list_del_init(&hctx->hctx_list); 4090 kobject_put(&hctx->kobj); 4091 } 4092 4093 xa_destroy(&q->hctx_table); 4094 4095 /* 4096 * release .mq_kobj and sw queue's kobject now because 4097 * both share lifetime with request queue. 4098 */ 4099 blk_mq_sysfs_deinit(q); 4100 } 4101 4102 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4103 void *queuedata) 4104 { 4105 struct request_queue *q; 4106 int ret; 4107 4108 q = blk_alloc_queue(set->numa_node); 4109 if (!q) 4110 return ERR_PTR(-ENOMEM); 4111 q->queuedata = queuedata; 4112 ret = blk_mq_init_allocated_queue(set, q); 4113 if (ret) { 4114 blk_put_queue(q); 4115 return ERR_PTR(ret); 4116 } 4117 return q; 4118 } 4119 4120 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4121 { 4122 return blk_mq_init_queue_data(set, NULL); 4123 } 4124 EXPORT_SYMBOL(blk_mq_init_queue); 4125 4126 /** 4127 * blk_mq_destroy_queue - shutdown a request queue 4128 * @q: request queue to shutdown 4129 * 4130 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4131 * requests will be failed with -ENODEV. The caller is responsible for dropping 4132 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4133 * 4134 * Context: can sleep 4135 */ 4136 void blk_mq_destroy_queue(struct request_queue *q) 4137 { 4138 WARN_ON_ONCE(!queue_is_mq(q)); 4139 WARN_ON_ONCE(blk_queue_registered(q)); 4140 4141 might_sleep(); 4142 4143 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4144 blk_queue_start_drain(q); 4145 blk_mq_freeze_queue_wait(q); 4146 4147 blk_sync_queue(q); 4148 blk_mq_cancel_work_sync(q); 4149 blk_mq_exit_queue(q); 4150 } 4151 EXPORT_SYMBOL(blk_mq_destroy_queue); 4152 4153 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4154 struct lock_class_key *lkclass) 4155 { 4156 struct request_queue *q; 4157 struct gendisk *disk; 4158 4159 q = blk_mq_init_queue_data(set, queuedata); 4160 if (IS_ERR(q)) 4161 return ERR_CAST(q); 4162 4163 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4164 if (!disk) { 4165 blk_mq_destroy_queue(q); 4166 blk_put_queue(q); 4167 return ERR_PTR(-ENOMEM); 4168 } 4169 set_bit(GD_OWNS_QUEUE, &disk->state); 4170 return disk; 4171 } 4172 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4173 4174 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4175 struct lock_class_key *lkclass) 4176 { 4177 struct gendisk *disk; 4178 4179 if (!blk_get_queue(q)) 4180 return NULL; 4181 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4182 if (!disk) 4183 blk_put_queue(q); 4184 return disk; 4185 } 4186 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4187 4188 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4189 struct blk_mq_tag_set *set, struct request_queue *q, 4190 int hctx_idx, int node) 4191 { 4192 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4193 4194 /* reuse dead hctx first */ 4195 spin_lock(&q->unused_hctx_lock); 4196 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4197 if (tmp->numa_node == node) { 4198 hctx = tmp; 4199 break; 4200 } 4201 } 4202 if (hctx) 4203 list_del_init(&hctx->hctx_list); 4204 spin_unlock(&q->unused_hctx_lock); 4205 4206 if (!hctx) 4207 hctx = blk_mq_alloc_hctx(q, set, node); 4208 if (!hctx) 4209 goto fail; 4210 4211 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4212 goto free_hctx; 4213 4214 return hctx; 4215 4216 free_hctx: 4217 kobject_put(&hctx->kobj); 4218 fail: 4219 return NULL; 4220 } 4221 4222 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4223 struct request_queue *q) 4224 { 4225 struct blk_mq_hw_ctx *hctx; 4226 unsigned long i, j; 4227 4228 /* protect against switching io scheduler */ 4229 mutex_lock(&q->sysfs_lock); 4230 for (i = 0; i < set->nr_hw_queues; i++) { 4231 int old_node; 4232 int node = blk_mq_get_hctx_node(set, i); 4233 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4234 4235 if (old_hctx) { 4236 old_node = old_hctx->numa_node; 4237 blk_mq_exit_hctx(q, set, old_hctx, i); 4238 } 4239 4240 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4241 if (!old_hctx) 4242 break; 4243 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4244 node, old_node); 4245 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4246 WARN_ON_ONCE(!hctx); 4247 } 4248 } 4249 /* 4250 * Increasing nr_hw_queues fails. Free the newly allocated 4251 * hctxs and keep the previous q->nr_hw_queues. 4252 */ 4253 if (i != set->nr_hw_queues) { 4254 j = q->nr_hw_queues; 4255 } else { 4256 j = i; 4257 q->nr_hw_queues = set->nr_hw_queues; 4258 } 4259 4260 xa_for_each_start(&q->hctx_table, j, hctx, j) 4261 blk_mq_exit_hctx(q, set, hctx, j); 4262 mutex_unlock(&q->sysfs_lock); 4263 } 4264 4265 static void blk_mq_update_poll_flag(struct request_queue *q) 4266 { 4267 struct blk_mq_tag_set *set = q->tag_set; 4268 4269 if (set->nr_maps > HCTX_TYPE_POLL && 4270 set->map[HCTX_TYPE_POLL].nr_queues) 4271 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4272 else 4273 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4274 } 4275 4276 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4277 struct request_queue *q) 4278 { 4279 /* mark the queue as mq asap */ 4280 q->mq_ops = set->ops; 4281 4282 if (blk_mq_alloc_ctxs(q)) 4283 goto err_exit; 4284 4285 /* init q->mq_kobj and sw queues' kobjects */ 4286 blk_mq_sysfs_init(q); 4287 4288 INIT_LIST_HEAD(&q->unused_hctx_list); 4289 spin_lock_init(&q->unused_hctx_lock); 4290 4291 xa_init(&q->hctx_table); 4292 4293 blk_mq_realloc_hw_ctxs(set, q); 4294 if (!q->nr_hw_queues) 4295 goto err_hctxs; 4296 4297 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4298 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4299 4300 q->tag_set = set; 4301 4302 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4303 blk_mq_update_poll_flag(q); 4304 4305 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4306 INIT_LIST_HEAD(&q->flush_list); 4307 INIT_LIST_HEAD(&q->requeue_list); 4308 spin_lock_init(&q->requeue_lock); 4309 4310 q->nr_requests = set->queue_depth; 4311 4312 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4313 blk_mq_add_queue_tag_set(set, q); 4314 blk_mq_map_swqueue(q); 4315 return 0; 4316 4317 err_hctxs: 4318 blk_mq_release(q); 4319 err_exit: 4320 q->mq_ops = NULL; 4321 return -ENOMEM; 4322 } 4323 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4324 4325 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4326 void blk_mq_exit_queue(struct request_queue *q) 4327 { 4328 struct blk_mq_tag_set *set = q->tag_set; 4329 4330 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4331 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4332 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4333 blk_mq_del_queue_tag_set(q); 4334 } 4335 4336 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4337 { 4338 int i; 4339 4340 if (blk_mq_is_shared_tags(set->flags)) { 4341 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4342 BLK_MQ_NO_HCTX_IDX, 4343 set->queue_depth); 4344 if (!set->shared_tags) 4345 return -ENOMEM; 4346 } 4347 4348 for (i = 0; i < set->nr_hw_queues; i++) { 4349 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4350 goto out_unwind; 4351 cond_resched(); 4352 } 4353 4354 return 0; 4355 4356 out_unwind: 4357 while (--i >= 0) 4358 __blk_mq_free_map_and_rqs(set, i); 4359 4360 if (blk_mq_is_shared_tags(set->flags)) { 4361 blk_mq_free_map_and_rqs(set, set->shared_tags, 4362 BLK_MQ_NO_HCTX_IDX); 4363 } 4364 4365 return -ENOMEM; 4366 } 4367 4368 /* 4369 * Allocate the request maps associated with this tag_set. Note that this 4370 * may reduce the depth asked for, if memory is tight. set->queue_depth 4371 * will be updated to reflect the allocated depth. 4372 */ 4373 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4374 { 4375 unsigned int depth; 4376 int err; 4377 4378 depth = set->queue_depth; 4379 do { 4380 err = __blk_mq_alloc_rq_maps(set); 4381 if (!err) 4382 break; 4383 4384 set->queue_depth >>= 1; 4385 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4386 err = -ENOMEM; 4387 break; 4388 } 4389 } while (set->queue_depth); 4390 4391 if (!set->queue_depth || err) { 4392 pr_err("blk-mq: failed to allocate request map\n"); 4393 return -ENOMEM; 4394 } 4395 4396 if (depth != set->queue_depth) 4397 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4398 depth, set->queue_depth); 4399 4400 return 0; 4401 } 4402 4403 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4404 { 4405 /* 4406 * blk_mq_map_queues() and multiple .map_queues() implementations 4407 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4408 * number of hardware queues. 4409 */ 4410 if (set->nr_maps == 1) 4411 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4412 4413 if (set->ops->map_queues && !is_kdump_kernel()) { 4414 int i; 4415 4416 /* 4417 * transport .map_queues is usually done in the following 4418 * way: 4419 * 4420 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4421 * mask = get_cpu_mask(queue) 4422 * for_each_cpu(cpu, mask) 4423 * set->map[x].mq_map[cpu] = queue; 4424 * } 4425 * 4426 * When we need to remap, the table has to be cleared for 4427 * killing stale mapping since one CPU may not be mapped 4428 * to any hw queue. 4429 */ 4430 for (i = 0; i < set->nr_maps; i++) 4431 blk_mq_clear_mq_map(&set->map[i]); 4432 4433 set->ops->map_queues(set); 4434 } else { 4435 BUG_ON(set->nr_maps > 1); 4436 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4437 } 4438 } 4439 4440 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4441 int new_nr_hw_queues) 4442 { 4443 struct blk_mq_tags **new_tags; 4444 int i; 4445 4446 if (set->nr_hw_queues >= new_nr_hw_queues) 4447 goto done; 4448 4449 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4450 GFP_KERNEL, set->numa_node); 4451 if (!new_tags) 4452 return -ENOMEM; 4453 4454 if (set->tags) 4455 memcpy(new_tags, set->tags, set->nr_hw_queues * 4456 sizeof(*set->tags)); 4457 kfree(set->tags); 4458 set->tags = new_tags; 4459 4460 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4461 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4462 while (--i >= set->nr_hw_queues) 4463 __blk_mq_free_map_and_rqs(set, i); 4464 return -ENOMEM; 4465 } 4466 cond_resched(); 4467 } 4468 4469 done: 4470 set->nr_hw_queues = new_nr_hw_queues; 4471 return 0; 4472 } 4473 4474 /* 4475 * Alloc a tag set to be associated with one or more request queues. 4476 * May fail with EINVAL for various error conditions. May adjust the 4477 * requested depth down, if it's too large. In that case, the set 4478 * value will be stored in set->queue_depth. 4479 */ 4480 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4481 { 4482 int i, ret; 4483 4484 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4485 4486 if (!set->nr_hw_queues) 4487 return -EINVAL; 4488 if (!set->queue_depth) 4489 return -EINVAL; 4490 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4491 return -EINVAL; 4492 4493 if (!set->ops->queue_rq) 4494 return -EINVAL; 4495 4496 if (!set->ops->get_budget ^ !set->ops->put_budget) 4497 return -EINVAL; 4498 4499 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4500 pr_info("blk-mq: reduced tag depth to %u\n", 4501 BLK_MQ_MAX_DEPTH); 4502 set->queue_depth = BLK_MQ_MAX_DEPTH; 4503 } 4504 4505 if (!set->nr_maps) 4506 set->nr_maps = 1; 4507 else if (set->nr_maps > HCTX_MAX_TYPES) 4508 return -EINVAL; 4509 4510 /* 4511 * If a crashdump is active, then we are potentially in a very 4512 * memory constrained environment. Limit us to 1 queue and 4513 * 64 tags to prevent using too much memory. 4514 */ 4515 if (is_kdump_kernel()) { 4516 set->nr_hw_queues = 1; 4517 set->nr_maps = 1; 4518 set->queue_depth = min(64U, set->queue_depth); 4519 } 4520 /* 4521 * There is no use for more h/w queues than cpus if we just have 4522 * a single map 4523 */ 4524 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4525 set->nr_hw_queues = nr_cpu_ids; 4526 4527 if (set->flags & BLK_MQ_F_BLOCKING) { 4528 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4529 if (!set->srcu) 4530 return -ENOMEM; 4531 ret = init_srcu_struct(set->srcu); 4532 if (ret) 4533 goto out_free_srcu; 4534 } 4535 4536 ret = -ENOMEM; 4537 set->tags = kcalloc_node(set->nr_hw_queues, 4538 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4539 set->numa_node); 4540 if (!set->tags) 4541 goto out_cleanup_srcu; 4542 4543 for (i = 0; i < set->nr_maps; i++) { 4544 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4545 sizeof(set->map[i].mq_map[0]), 4546 GFP_KERNEL, set->numa_node); 4547 if (!set->map[i].mq_map) 4548 goto out_free_mq_map; 4549 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4550 } 4551 4552 blk_mq_update_queue_map(set); 4553 4554 ret = blk_mq_alloc_set_map_and_rqs(set); 4555 if (ret) 4556 goto out_free_mq_map; 4557 4558 mutex_init(&set->tag_list_lock); 4559 INIT_LIST_HEAD(&set->tag_list); 4560 4561 return 0; 4562 4563 out_free_mq_map: 4564 for (i = 0; i < set->nr_maps; i++) { 4565 kfree(set->map[i].mq_map); 4566 set->map[i].mq_map = NULL; 4567 } 4568 kfree(set->tags); 4569 set->tags = NULL; 4570 out_cleanup_srcu: 4571 if (set->flags & BLK_MQ_F_BLOCKING) 4572 cleanup_srcu_struct(set->srcu); 4573 out_free_srcu: 4574 if (set->flags & BLK_MQ_F_BLOCKING) 4575 kfree(set->srcu); 4576 return ret; 4577 } 4578 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4579 4580 /* allocate and initialize a tagset for a simple single-queue device */ 4581 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4582 const struct blk_mq_ops *ops, unsigned int queue_depth, 4583 unsigned int set_flags) 4584 { 4585 memset(set, 0, sizeof(*set)); 4586 set->ops = ops; 4587 set->nr_hw_queues = 1; 4588 set->nr_maps = 1; 4589 set->queue_depth = queue_depth; 4590 set->numa_node = NUMA_NO_NODE; 4591 set->flags = set_flags; 4592 return blk_mq_alloc_tag_set(set); 4593 } 4594 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4595 4596 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4597 { 4598 int i, j; 4599 4600 for (i = 0; i < set->nr_hw_queues; i++) 4601 __blk_mq_free_map_and_rqs(set, i); 4602 4603 if (blk_mq_is_shared_tags(set->flags)) { 4604 blk_mq_free_map_and_rqs(set, set->shared_tags, 4605 BLK_MQ_NO_HCTX_IDX); 4606 } 4607 4608 for (j = 0; j < set->nr_maps; j++) { 4609 kfree(set->map[j].mq_map); 4610 set->map[j].mq_map = NULL; 4611 } 4612 4613 kfree(set->tags); 4614 set->tags = NULL; 4615 if (set->flags & BLK_MQ_F_BLOCKING) { 4616 cleanup_srcu_struct(set->srcu); 4617 kfree(set->srcu); 4618 } 4619 } 4620 EXPORT_SYMBOL(blk_mq_free_tag_set); 4621 4622 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4623 { 4624 struct blk_mq_tag_set *set = q->tag_set; 4625 struct blk_mq_hw_ctx *hctx; 4626 int ret; 4627 unsigned long i; 4628 4629 if (!set) 4630 return -EINVAL; 4631 4632 if (q->nr_requests == nr) 4633 return 0; 4634 4635 blk_mq_freeze_queue(q); 4636 blk_mq_quiesce_queue(q); 4637 4638 ret = 0; 4639 queue_for_each_hw_ctx(q, hctx, i) { 4640 if (!hctx->tags) 4641 continue; 4642 /* 4643 * If we're using an MQ scheduler, just update the scheduler 4644 * queue depth. This is similar to what the old code would do. 4645 */ 4646 if (hctx->sched_tags) { 4647 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4648 nr, true); 4649 } else { 4650 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4651 false); 4652 } 4653 if (ret) 4654 break; 4655 if (q->elevator && q->elevator->type->ops.depth_updated) 4656 q->elevator->type->ops.depth_updated(hctx); 4657 } 4658 if (!ret) { 4659 q->nr_requests = nr; 4660 if (blk_mq_is_shared_tags(set->flags)) { 4661 if (q->elevator) 4662 blk_mq_tag_update_sched_shared_tags(q); 4663 else 4664 blk_mq_tag_resize_shared_tags(set, nr); 4665 } 4666 } 4667 4668 blk_mq_unquiesce_queue(q); 4669 blk_mq_unfreeze_queue(q); 4670 4671 return ret; 4672 } 4673 4674 /* 4675 * request_queue and elevator_type pair. 4676 * It is just used by __blk_mq_update_nr_hw_queues to cache 4677 * the elevator_type associated with a request_queue. 4678 */ 4679 struct blk_mq_qe_pair { 4680 struct list_head node; 4681 struct request_queue *q; 4682 struct elevator_type *type; 4683 }; 4684 4685 /* 4686 * Cache the elevator_type in qe pair list and switch the 4687 * io scheduler to 'none' 4688 */ 4689 static bool blk_mq_elv_switch_none(struct list_head *head, 4690 struct request_queue *q) 4691 { 4692 struct blk_mq_qe_pair *qe; 4693 4694 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4695 if (!qe) 4696 return false; 4697 4698 /* q->elevator needs protection from ->sysfs_lock */ 4699 mutex_lock(&q->sysfs_lock); 4700 4701 /* the check has to be done with holding sysfs_lock */ 4702 if (!q->elevator) { 4703 kfree(qe); 4704 goto unlock; 4705 } 4706 4707 INIT_LIST_HEAD(&qe->node); 4708 qe->q = q; 4709 qe->type = q->elevator->type; 4710 /* keep a reference to the elevator module as we'll switch back */ 4711 __elevator_get(qe->type); 4712 list_add(&qe->node, head); 4713 elevator_disable(q); 4714 unlock: 4715 mutex_unlock(&q->sysfs_lock); 4716 4717 return true; 4718 } 4719 4720 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4721 struct request_queue *q) 4722 { 4723 struct blk_mq_qe_pair *qe; 4724 4725 list_for_each_entry(qe, head, node) 4726 if (qe->q == q) 4727 return qe; 4728 4729 return NULL; 4730 } 4731 4732 static void blk_mq_elv_switch_back(struct list_head *head, 4733 struct request_queue *q) 4734 { 4735 struct blk_mq_qe_pair *qe; 4736 struct elevator_type *t; 4737 4738 qe = blk_lookup_qe_pair(head, q); 4739 if (!qe) 4740 return; 4741 t = qe->type; 4742 list_del(&qe->node); 4743 kfree(qe); 4744 4745 mutex_lock(&q->sysfs_lock); 4746 elevator_switch(q, t); 4747 /* drop the reference acquired in blk_mq_elv_switch_none */ 4748 elevator_put(t); 4749 mutex_unlock(&q->sysfs_lock); 4750 } 4751 4752 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4753 int nr_hw_queues) 4754 { 4755 struct request_queue *q; 4756 LIST_HEAD(head); 4757 int prev_nr_hw_queues = set->nr_hw_queues; 4758 int i; 4759 4760 lockdep_assert_held(&set->tag_list_lock); 4761 4762 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4763 nr_hw_queues = nr_cpu_ids; 4764 if (nr_hw_queues < 1) 4765 return; 4766 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4767 return; 4768 4769 list_for_each_entry(q, &set->tag_list, tag_set_list) 4770 blk_mq_freeze_queue(q); 4771 /* 4772 * Switch IO scheduler to 'none', cleaning up the data associated 4773 * with the previous scheduler. We will switch back once we are done 4774 * updating the new sw to hw queue mappings. 4775 */ 4776 list_for_each_entry(q, &set->tag_list, tag_set_list) 4777 if (!blk_mq_elv_switch_none(&head, q)) 4778 goto switch_back; 4779 4780 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4781 blk_mq_debugfs_unregister_hctxs(q); 4782 blk_mq_sysfs_unregister_hctxs(q); 4783 } 4784 4785 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4786 goto reregister; 4787 4788 fallback: 4789 blk_mq_update_queue_map(set); 4790 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4791 blk_mq_realloc_hw_ctxs(set, q); 4792 blk_mq_update_poll_flag(q); 4793 if (q->nr_hw_queues != set->nr_hw_queues) { 4794 int i = prev_nr_hw_queues; 4795 4796 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4797 nr_hw_queues, prev_nr_hw_queues); 4798 for (; i < set->nr_hw_queues; i++) 4799 __blk_mq_free_map_and_rqs(set, i); 4800 4801 set->nr_hw_queues = prev_nr_hw_queues; 4802 goto fallback; 4803 } 4804 blk_mq_map_swqueue(q); 4805 } 4806 4807 reregister: 4808 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4809 blk_mq_sysfs_register_hctxs(q); 4810 blk_mq_debugfs_register_hctxs(q); 4811 } 4812 4813 switch_back: 4814 list_for_each_entry(q, &set->tag_list, tag_set_list) 4815 blk_mq_elv_switch_back(&head, q); 4816 4817 list_for_each_entry(q, &set->tag_list, tag_set_list) 4818 blk_mq_unfreeze_queue(q); 4819 4820 /* Free the excess tags when nr_hw_queues shrink. */ 4821 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4822 __blk_mq_free_map_and_rqs(set, i); 4823 } 4824 4825 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4826 { 4827 mutex_lock(&set->tag_list_lock); 4828 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4829 mutex_unlock(&set->tag_list_lock); 4830 } 4831 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4832 4833 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4834 struct io_comp_batch *iob, unsigned int flags) 4835 { 4836 long state = get_current_state(); 4837 int ret; 4838 4839 do { 4840 ret = q->mq_ops->poll(hctx, iob); 4841 if (ret > 0) { 4842 __set_current_state(TASK_RUNNING); 4843 return ret; 4844 } 4845 4846 if (signal_pending_state(state, current)) 4847 __set_current_state(TASK_RUNNING); 4848 if (task_is_running(current)) 4849 return 1; 4850 4851 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4852 break; 4853 cpu_relax(); 4854 } while (!need_resched()); 4855 4856 __set_current_state(TASK_RUNNING); 4857 return 0; 4858 } 4859 4860 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4861 struct io_comp_batch *iob, unsigned int flags) 4862 { 4863 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4864 4865 return blk_hctx_poll(q, hctx, iob, flags); 4866 } 4867 4868 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4869 unsigned int poll_flags) 4870 { 4871 struct request_queue *q = rq->q; 4872 int ret; 4873 4874 if (!blk_rq_is_poll(rq)) 4875 return 0; 4876 if (!percpu_ref_tryget(&q->q_usage_counter)) 4877 return 0; 4878 4879 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4880 blk_queue_exit(q); 4881 4882 return ret; 4883 } 4884 EXPORT_SYMBOL_GPL(blk_rq_poll); 4885 4886 unsigned int blk_mq_rq_cpu(struct request *rq) 4887 { 4888 return rq->mq_ctx->cpu; 4889 } 4890 EXPORT_SYMBOL(blk_mq_rq_cpu); 4891 4892 void blk_mq_cancel_work_sync(struct request_queue *q) 4893 { 4894 struct blk_mq_hw_ctx *hctx; 4895 unsigned long i; 4896 4897 cancel_delayed_work_sync(&q->requeue_work); 4898 4899 queue_for_each_hw_ctx(q, hctx, i) 4900 cancel_delayed_work_sync(&hctx->run_work); 4901 } 4902 4903 static int __init blk_mq_init(void) 4904 { 4905 int i; 4906 4907 for_each_possible_cpu(i) 4908 init_llist_head(&per_cpu(blk_cpu_done, i)); 4909 for_each_possible_cpu(i) 4910 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4911 __blk_mq_complete_request_remote, NULL); 4912 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4913 4914 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4915 "block/softirq:dead", NULL, 4916 blk_softirq_cpu_dead); 4917 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4918 blk_mq_hctx_notify_dead); 4919 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4920 blk_mq_hctx_notify_online, 4921 blk_mq_hctx_notify_offline); 4922 return 0; 4923 } 4924 subsys_initcall(blk_mq_init); 4925