xref: /openbmc/linux/block/blk-mq.c (revision 8f762fe5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41 
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 	int ddir, bytes, bucket;
48 
49 	ddir = rq_data_dir(rq);
50 	bytes = blk_rq_bytes(rq);
51 
52 	bucket = ddir + 2*(ilog2(bytes) - 9);
53 
54 	if (bucket < 0)
55 		return -1;
56 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 
59 	return bucket;
60 }
61 
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 	return !list_empty_careful(&hctx->dispatch) ||
69 		sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			blk_mq_sched_has_work(hctx);
71 }
72 
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 				     struct blk_mq_ctx *ctx)
78 {
79 	const int bit = ctx->index_hw[hctx->type];
80 
81 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 		sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84 
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 				      struct blk_mq_ctx *ctx)
87 {
88 	const int bit = ctx->index_hw[hctx->type];
89 
90 	sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92 
93 struct mq_inflight {
94 	struct hd_struct *part;
95 	unsigned int *inflight;
96 };
97 
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99 				  struct request *rq, void *priv,
100 				  bool reserved)
101 {
102 	struct mq_inflight *mi = priv;
103 
104 	/*
105 	 * index[0] counts the specific partition that was asked for.
106 	 */
107 	if (rq->part == mi->part)
108 		mi->inflight[0]++;
109 
110 	return true;
111 }
112 
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115 	unsigned inflight[2];
116 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 
118 	inflight[0] = inflight[1] = 0;
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return inflight[0];
122 }
123 
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 				     struct request *rq, void *priv,
126 				     bool reserved)
127 {
128 	struct mq_inflight *mi = priv;
129 
130 	if (rq->part == mi->part)
131 		mi->inflight[rq_data_dir(rq)]++;
132 
133 	return true;
134 }
135 
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 			 unsigned int inflight[2])
138 {
139 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
140 
141 	inflight[0] = inflight[1] = 0;
142 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144 
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147 	int freeze_depth;
148 
149 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
150 	if (freeze_depth == 1) {
151 		percpu_ref_kill(&q->q_usage_counter);
152 		if (queue_is_mq(q))
153 			blk_mq_run_hw_queues(q, false);
154 	}
155 }
156 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
157 
158 void blk_mq_freeze_queue_wait(struct request_queue *q)
159 {
160 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
163 
164 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
165 				     unsigned long timeout)
166 {
167 	return wait_event_timeout(q->mq_freeze_wq,
168 					percpu_ref_is_zero(&q->q_usage_counter),
169 					timeout);
170 }
171 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
172 
173 /*
174  * Guarantee no request is in use, so we can change any data structure of
175  * the queue afterward.
176  */
177 void blk_freeze_queue(struct request_queue *q)
178 {
179 	/*
180 	 * In the !blk_mq case we are only calling this to kill the
181 	 * q_usage_counter, otherwise this increases the freeze depth
182 	 * and waits for it to return to zero.  For this reason there is
183 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
184 	 * exported to drivers as the only user for unfreeze is blk_mq.
185 	 */
186 	blk_freeze_queue_start(q);
187 	blk_mq_freeze_queue_wait(q);
188 }
189 
190 void blk_mq_freeze_queue(struct request_queue *q)
191 {
192 	/*
193 	 * ...just an alias to keep freeze and unfreeze actions balanced
194 	 * in the blk_mq_* namespace
195 	 */
196 	blk_freeze_queue(q);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
199 
200 void blk_mq_unfreeze_queue(struct request_queue *q)
201 {
202 	int freeze_depth;
203 
204 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
205 	WARN_ON_ONCE(freeze_depth < 0);
206 	if (!freeze_depth) {
207 		percpu_ref_resurrect(&q->q_usage_counter);
208 		wake_up_all(&q->mq_freeze_wq);
209 	}
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
212 
213 /*
214  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
215  * mpt3sas driver such that this function can be removed.
216  */
217 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
218 {
219 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
220 }
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222 
223 /**
224  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
225  * @q: request queue.
226  *
227  * Note: this function does not prevent that the struct request end_io()
228  * callback function is invoked. Once this function is returned, we make
229  * sure no dispatch can happen until the queue is unquiesced via
230  * blk_mq_unquiesce_queue().
231  */
232 void blk_mq_quiesce_queue(struct request_queue *q)
233 {
234 	struct blk_mq_hw_ctx *hctx;
235 	unsigned int i;
236 	bool rcu = false;
237 
238 	blk_mq_quiesce_queue_nowait(q);
239 
240 	queue_for_each_hw_ctx(q, hctx, i) {
241 		if (hctx->flags & BLK_MQ_F_BLOCKING)
242 			synchronize_srcu(hctx->srcu);
243 		else
244 			rcu = true;
245 	}
246 	if (rcu)
247 		synchronize_rcu();
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
261 
262 	/* dispatch requests which are inserted during quiescing */
263 	blk_mq_run_hw_queues(q, true);
264 }
265 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
266 
267 void blk_mq_wake_waiters(struct request_queue *q)
268 {
269 	struct blk_mq_hw_ctx *hctx;
270 	unsigned int i;
271 
272 	queue_for_each_hw_ctx(q, hctx, i)
273 		if (blk_mq_hw_queue_mapped(hctx))
274 			blk_mq_tag_wakeup_all(hctx->tags, true);
275 }
276 
277 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
278 {
279 	return blk_mq_has_free_tags(hctx->tags);
280 }
281 EXPORT_SYMBOL(blk_mq_can_queue);
282 
283 /*
284  * Only need start/end time stamping if we have stats enabled, or using
285  * an IO scheduler.
286  */
287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
290 }
291 
292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 		unsigned int tag, unsigned int op)
294 {
295 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 	struct request *rq = tags->static_rqs[tag];
297 	req_flags_t rq_flags = 0;
298 
299 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
300 		rq->tag = -1;
301 		rq->internal_tag = tag;
302 	} else {
303 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
304 			rq_flags = RQF_MQ_INFLIGHT;
305 			atomic_inc(&data->hctx->nr_active);
306 		}
307 		rq->tag = tag;
308 		rq->internal_tag = -1;
309 		data->hctx->tags->rqs[rq->tag] = rq;
310 	}
311 
312 	/* csd/requeue_work/fifo_time is initialized before use */
313 	rq->q = data->q;
314 	rq->mq_ctx = data->ctx;
315 	rq->mq_hctx = data->hctx;
316 	rq->rq_flags = rq_flags;
317 	rq->cmd_flags = op;
318 	if (data->flags & BLK_MQ_REQ_PREEMPT)
319 		rq->rq_flags |= RQF_PREEMPT;
320 	if (blk_queue_io_stat(data->q))
321 		rq->rq_flags |= RQF_IO_STAT;
322 	INIT_LIST_HEAD(&rq->queuelist);
323 	INIT_HLIST_NODE(&rq->hash);
324 	RB_CLEAR_NODE(&rq->rb_node);
325 	rq->rq_disk = NULL;
326 	rq->part = NULL;
327 	if (blk_mq_need_time_stamp(rq))
328 		rq->start_time_ns = ktime_get_ns();
329 	else
330 		rq->start_time_ns = 0;
331 	rq->io_start_time_ns = 0;
332 	rq->nr_phys_segments = 0;
333 #if defined(CONFIG_BLK_DEV_INTEGRITY)
334 	rq->nr_integrity_segments = 0;
335 #endif
336 	/* tag was already set */
337 	rq->extra_len = 0;
338 	WRITE_ONCE(rq->deadline, 0);
339 
340 	rq->timeout = 0;
341 
342 	rq->end_io = NULL;
343 	rq->end_io_data = NULL;
344 
345 	data->ctx->rq_dispatched[op_is_sync(op)]++;
346 	refcount_set(&rq->ref, 1);
347 	return rq;
348 }
349 
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 					  struct bio *bio,
352 					  struct blk_mq_alloc_data *data)
353 {
354 	struct elevator_queue *e = q->elevator;
355 	struct request *rq;
356 	unsigned int tag;
357 	bool put_ctx_on_error = false;
358 
359 	blk_queue_enter_live(q);
360 	data->q = q;
361 	if (likely(!data->ctx)) {
362 		data->ctx = blk_mq_get_ctx(q);
363 		put_ctx_on_error = true;
364 	}
365 	if (likely(!data->hctx))
366 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 						data->ctx);
368 	if (data->cmd_flags & REQ_NOWAIT)
369 		data->flags |= BLK_MQ_REQ_NOWAIT;
370 
371 	if (e) {
372 		data->flags |= BLK_MQ_REQ_INTERNAL;
373 
374 		/*
375 		 * Flush requests are special and go directly to the
376 		 * dispatch list. Don't include reserved tags in the
377 		 * limiting, as it isn't useful.
378 		 */
379 		if (!op_is_flush(data->cmd_flags) &&
380 		    e->type->ops.limit_depth &&
381 		    !(data->flags & BLK_MQ_REQ_RESERVED))
382 			e->type->ops.limit_depth(data->cmd_flags, data);
383 	} else {
384 		blk_mq_tag_busy(data->hctx);
385 	}
386 
387 	tag = blk_mq_get_tag(data);
388 	if (tag == BLK_MQ_TAG_FAIL) {
389 		if (put_ctx_on_error) {
390 			blk_mq_put_ctx(data->ctx);
391 			data->ctx = NULL;
392 		}
393 		blk_queue_exit(q);
394 		return NULL;
395 	}
396 
397 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 	if (!op_is_flush(data->cmd_flags)) {
399 		rq->elv.icq = NULL;
400 		if (e && e->type->ops.prepare_request) {
401 			if (e->type->icq_cache)
402 				blk_mq_sched_assign_ioc(rq);
403 
404 			e->type->ops.prepare_request(rq, bio);
405 			rq->rq_flags |= RQF_ELVPRIV;
406 		}
407 	}
408 	data->hctx->queued++;
409 	return rq;
410 }
411 
412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
413 		blk_mq_req_flags_t flags)
414 {
415 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
416 	struct request *rq;
417 	int ret;
418 
419 	ret = blk_queue_enter(q, flags);
420 	if (ret)
421 		return ERR_PTR(ret);
422 
423 	rq = blk_mq_get_request(q, NULL, &alloc_data);
424 	blk_queue_exit(q);
425 
426 	if (!rq)
427 		return ERR_PTR(-EWOULDBLOCK);
428 
429 	blk_mq_put_ctx(alloc_data.ctx);
430 
431 	rq->__data_len = 0;
432 	rq->__sector = (sector_t) -1;
433 	rq->bio = rq->biotail = NULL;
434 	return rq;
435 }
436 EXPORT_SYMBOL(blk_mq_alloc_request);
437 
438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 {
441 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
442 	struct request *rq;
443 	unsigned int cpu;
444 	int ret;
445 
446 	/*
447 	 * If the tag allocator sleeps we could get an allocation for a
448 	 * different hardware context.  No need to complicate the low level
449 	 * allocator for this for the rare use case of a command tied to
450 	 * a specific queue.
451 	 */
452 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 		return ERR_PTR(-EINVAL);
454 
455 	if (hctx_idx >= q->nr_hw_queues)
456 		return ERR_PTR(-EIO);
457 
458 	ret = blk_queue_enter(q, flags);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 	/*
463 	 * Check if the hardware context is actually mapped to anything.
464 	 * If not tell the caller that it should skip this queue.
465 	 */
466 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 		blk_queue_exit(q);
469 		return ERR_PTR(-EXDEV);
470 	}
471 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
472 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
473 
474 	rq = blk_mq_get_request(q, NULL, &alloc_data);
475 	blk_queue_exit(q);
476 
477 	if (!rq)
478 		return ERR_PTR(-EWOULDBLOCK);
479 
480 	return rq;
481 }
482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483 
484 static void __blk_mq_free_request(struct request *rq)
485 {
486 	struct request_queue *q = rq->q;
487 	struct blk_mq_ctx *ctx = rq->mq_ctx;
488 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
489 	const int sched_tag = rq->internal_tag;
490 
491 	blk_pm_mark_last_busy(rq);
492 	rq->mq_hctx = NULL;
493 	if (rq->tag != -1)
494 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 	if (sched_tag != -1)
496 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 	blk_mq_sched_restart(hctx);
498 	blk_queue_exit(q);
499 }
500 
501 void blk_mq_free_request(struct request *rq)
502 {
503 	struct request_queue *q = rq->q;
504 	struct elevator_queue *e = q->elevator;
505 	struct blk_mq_ctx *ctx = rq->mq_ctx;
506 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
507 
508 	if (rq->rq_flags & RQF_ELVPRIV) {
509 		if (e && e->type->ops.finish_request)
510 			e->type->ops.finish_request(rq);
511 		if (rq->elv.icq) {
512 			put_io_context(rq->elv.icq->ioc);
513 			rq->elv.icq = NULL;
514 		}
515 	}
516 
517 	ctx->rq_completed[rq_is_sync(rq)]++;
518 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
519 		atomic_dec(&hctx->nr_active);
520 
521 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 		laptop_io_completion(q->backing_dev_info);
523 
524 	rq_qos_done(q, rq);
525 
526 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 	if (refcount_dec_and_test(&rq->ref))
528 		__blk_mq_free_request(rq);
529 }
530 EXPORT_SYMBOL_GPL(blk_mq_free_request);
531 
532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 {
534 	u64 now = 0;
535 
536 	if (blk_mq_need_time_stamp(rq))
537 		now = ktime_get_ns();
538 
539 	if (rq->rq_flags & RQF_STATS) {
540 		blk_mq_poll_stats_start(rq->q);
541 		blk_stat_add(rq, now);
542 	}
543 
544 	if (rq->internal_tag != -1)
545 		blk_mq_sched_completed_request(rq, now);
546 
547 	blk_account_io_done(rq, now);
548 
549 	if (rq->end_io) {
550 		rq_qos_done(rq->q, rq);
551 		rq->end_io(rq, error);
552 	} else {
553 		blk_mq_free_request(rq);
554 	}
555 }
556 EXPORT_SYMBOL(__blk_mq_end_request);
557 
558 void blk_mq_end_request(struct request *rq, blk_status_t error)
559 {
560 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
561 		BUG();
562 	__blk_mq_end_request(rq, error);
563 }
564 EXPORT_SYMBOL(blk_mq_end_request);
565 
566 static void __blk_mq_complete_request_remote(void *data)
567 {
568 	struct request *rq = data;
569 	struct request_queue *q = rq->q;
570 
571 	q->mq_ops->complete(rq);
572 }
573 
574 static void __blk_mq_complete_request(struct request *rq)
575 {
576 	struct blk_mq_ctx *ctx = rq->mq_ctx;
577 	struct request_queue *q = rq->q;
578 	bool shared = false;
579 	int cpu;
580 
581 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
582 	/*
583 	 * Most of single queue controllers, there is only one irq vector
584 	 * for handling IO completion, and the only irq's affinity is set
585 	 * as all possible CPUs. On most of ARCHs, this affinity means the
586 	 * irq is handled on one specific CPU.
587 	 *
588 	 * So complete IO reqeust in softirq context in case of single queue
589 	 * for not degrading IO performance by irqsoff latency.
590 	 */
591 	if (q->nr_hw_queues == 1) {
592 		__blk_complete_request(rq);
593 		return;
594 	}
595 
596 	/*
597 	 * For a polled request, always complete locallly, it's pointless
598 	 * to redirect the completion.
599 	 */
600 	if ((rq->cmd_flags & REQ_HIPRI) ||
601 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
602 		q->mq_ops->complete(rq);
603 		return;
604 	}
605 
606 	cpu = get_cpu();
607 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
608 		shared = cpus_share_cache(cpu, ctx->cpu);
609 
610 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
611 		rq->csd.func = __blk_mq_complete_request_remote;
612 		rq->csd.info = rq;
613 		rq->csd.flags = 0;
614 		smp_call_function_single_async(ctx->cpu, &rq->csd);
615 	} else {
616 		q->mq_ops->complete(rq);
617 	}
618 	put_cpu();
619 }
620 
621 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
622 	__releases(hctx->srcu)
623 {
624 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
625 		rcu_read_unlock();
626 	else
627 		srcu_read_unlock(hctx->srcu, srcu_idx);
628 }
629 
630 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
631 	__acquires(hctx->srcu)
632 {
633 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
634 		/* shut up gcc false positive */
635 		*srcu_idx = 0;
636 		rcu_read_lock();
637 	} else
638 		*srcu_idx = srcu_read_lock(hctx->srcu);
639 }
640 
641 /**
642  * blk_mq_complete_request - end I/O on a request
643  * @rq:		the request being processed
644  *
645  * Description:
646  *	Ends all I/O on a request. It does not handle partial completions.
647  *	The actual completion happens out-of-order, through a IPI handler.
648  **/
649 bool blk_mq_complete_request(struct request *rq)
650 {
651 	if (unlikely(blk_should_fake_timeout(rq->q)))
652 		return false;
653 	__blk_mq_complete_request(rq);
654 	return true;
655 }
656 EXPORT_SYMBOL(blk_mq_complete_request);
657 
658 void blk_mq_complete_request_sync(struct request *rq)
659 {
660 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
661 	rq->q->mq_ops->complete(rq);
662 }
663 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
664 
665 int blk_mq_request_started(struct request *rq)
666 {
667 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
668 }
669 EXPORT_SYMBOL_GPL(blk_mq_request_started);
670 
671 void blk_mq_start_request(struct request *rq)
672 {
673 	struct request_queue *q = rq->q;
674 
675 	blk_mq_sched_started_request(rq);
676 
677 	trace_block_rq_issue(q, rq);
678 
679 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
680 		rq->io_start_time_ns = ktime_get_ns();
681 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
682 		rq->throtl_size = blk_rq_sectors(rq);
683 #endif
684 		rq->rq_flags |= RQF_STATS;
685 		rq_qos_issue(q, rq);
686 	}
687 
688 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
689 
690 	blk_add_timer(rq);
691 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
692 
693 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
694 		/*
695 		 * Make sure space for the drain appears.  We know we can do
696 		 * this because max_hw_segments has been adjusted to be one
697 		 * fewer than the device can handle.
698 		 */
699 		rq->nr_phys_segments++;
700 	}
701 }
702 EXPORT_SYMBOL(blk_mq_start_request);
703 
704 static void __blk_mq_requeue_request(struct request *rq)
705 {
706 	struct request_queue *q = rq->q;
707 
708 	blk_mq_put_driver_tag(rq);
709 
710 	trace_block_rq_requeue(q, rq);
711 	rq_qos_requeue(q, rq);
712 
713 	if (blk_mq_request_started(rq)) {
714 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
715 		rq->rq_flags &= ~RQF_TIMED_OUT;
716 		if (q->dma_drain_size && blk_rq_bytes(rq))
717 			rq->nr_phys_segments--;
718 	}
719 }
720 
721 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
722 {
723 	__blk_mq_requeue_request(rq);
724 
725 	/* this request will be re-inserted to io scheduler queue */
726 	blk_mq_sched_requeue_request(rq);
727 
728 	BUG_ON(!list_empty(&rq->queuelist));
729 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
730 }
731 EXPORT_SYMBOL(blk_mq_requeue_request);
732 
733 static void blk_mq_requeue_work(struct work_struct *work)
734 {
735 	struct request_queue *q =
736 		container_of(work, struct request_queue, requeue_work.work);
737 	LIST_HEAD(rq_list);
738 	struct request *rq, *next;
739 
740 	spin_lock_irq(&q->requeue_lock);
741 	list_splice_init(&q->requeue_list, &rq_list);
742 	spin_unlock_irq(&q->requeue_lock);
743 
744 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
745 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
746 			continue;
747 
748 		rq->rq_flags &= ~RQF_SOFTBARRIER;
749 		list_del_init(&rq->queuelist);
750 		/*
751 		 * If RQF_DONTPREP, rq has contained some driver specific
752 		 * data, so insert it to hctx dispatch list to avoid any
753 		 * merge.
754 		 */
755 		if (rq->rq_flags & RQF_DONTPREP)
756 			blk_mq_request_bypass_insert(rq, false);
757 		else
758 			blk_mq_sched_insert_request(rq, true, false, false);
759 	}
760 
761 	while (!list_empty(&rq_list)) {
762 		rq = list_entry(rq_list.next, struct request, queuelist);
763 		list_del_init(&rq->queuelist);
764 		blk_mq_sched_insert_request(rq, false, false, false);
765 	}
766 
767 	blk_mq_run_hw_queues(q, false);
768 }
769 
770 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
771 				bool kick_requeue_list)
772 {
773 	struct request_queue *q = rq->q;
774 	unsigned long flags;
775 
776 	/*
777 	 * We abuse this flag that is otherwise used by the I/O scheduler to
778 	 * request head insertion from the workqueue.
779 	 */
780 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
781 
782 	spin_lock_irqsave(&q->requeue_lock, flags);
783 	if (at_head) {
784 		rq->rq_flags |= RQF_SOFTBARRIER;
785 		list_add(&rq->queuelist, &q->requeue_list);
786 	} else {
787 		list_add_tail(&rq->queuelist, &q->requeue_list);
788 	}
789 	spin_unlock_irqrestore(&q->requeue_lock, flags);
790 
791 	if (kick_requeue_list)
792 		blk_mq_kick_requeue_list(q);
793 }
794 
795 void blk_mq_kick_requeue_list(struct request_queue *q)
796 {
797 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
798 }
799 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
800 
801 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
802 				    unsigned long msecs)
803 {
804 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
805 				    msecs_to_jiffies(msecs));
806 }
807 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
808 
809 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
810 {
811 	if (tag < tags->nr_tags) {
812 		prefetch(tags->rqs[tag]);
813 		return tags->rqs[tag];
814 	}
815 
816 	return NULL;
817 }
818 EXPORT_SYMBOL(blk_mq_tag_to_rq);
819 
820 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
821 			       void *priv, bool reserved)
822 {
823 	/*
824 	 * If we find a request that is inflight and the queue matches,
825 	 * we know the queue is busy. Return false to stop the iteration.
826 	 */
827 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
828 		bool *busy = priv;
829 
830 		*busy = true;
831 		return false;
832 	}
833 
834 	return true;
835 }
836 
837 bool blk_mq_queue_inflight(struct request_queue *q)
838 {
839 	bool busy = false;
840 
841 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
842 	return busy;
843 }
844 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
845 
846 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
847 {
848 	req->rq_flags |= RQF_TIMED_OUT;
849 	if (req->q->mq_ops->timeout) {
850 		enum blk_eh_timer_return ret;
851 
852 		ret = req->q->mq_ops->timeout(req, reserved);
853 		if (ret == BLK_EH_DONE)
854 			return;
855 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
856 	}
857 
858 	blk_add_timer(req);
859 }
860 
861 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
862 {
863 	unsigned long deadline;
864 
865 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
866 		return false;
867 	if (rq->rq_flags & RQF_TIMED_OUT)
868 		return false;
869 
870 	deadline = READ_ONCE(rq->deadline);
871 	if (time_after_eq(jiffies, deadline))
872 		return true;
873 
874 	if (*next == 0)
875 		*next = deadline;
876 	else if (time_after(*next, deadline))
877 		*next = deadline;
878 	return false;
879 }
880 
881 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
882 		struct request *rq, void *priv, bool reserved)
883 {
884 	unsigned long *next = priv;
885 
886 	/*
887 	 * Just do a quick check if it is expired before locking the request in
888 	 * so we're not unnecessarilly synchronizing across CPUs.
889 	 */
890 	if (!blk_mq_req_expired(rq, next))
891 		return true;
892 
893 	/*
894 	 * We have reason to believe the request may be expired. Take a
895 	 * reference on the request to lock this request lifetime into its
896 	 * currently allocated context to prevent it from being reallocated in
897 	 * the event the completion by-passes this timeout handler.
898 	 *
899 	 * If the reference was already released, then the driver beat the
900 	 * timeout handler to posting a natural completion.
901 	 */
902 	if (!refcount_inc_not_zero(&rq->ref))
903 		return true;
904 
905 	/*
906 	 * The request is now locked and cannot be reallocated underneath the
907 	 * timeout handler's processing. Re-verify this exact request is truly
908 	 * expired; if it is not expired, then the request was completed and
909 	 * reallocated as a new request.
910 	 */
911 	if (blk_mq_req_expired(rq, next))
912 		blk_mq_rq_timed_out(rq, reserved);
913 	if (refcount_dec_and_test(&rq->ref))
914 		__blk_mq_free_request(rq);
915 
916 	return true;
917 }
918 
919 static void blk_mq_timeout_work(struct work_struct *work)
920 {
921 	struct request_queue *q =
922 		container_of(work, struct request_queue, timeout_work);
923 	unsigned long next = 0;
924 	struct blk_mq_hw_ctx *hctx;
925 	int i;
926 
927 	/* A deadlock might occur if a request is stuck requiring a
928 	 * timeout at the same time a queue freeze is waiting
929 	 * completion, since the timeout code would not be able to
930 	 * acquire the queue reference here.
931 	 *
932 	 * That's why we don't use blk_queue_enter here; instead, we use
933 	 * percpu_ref_tryget directly, because we need to be able to
934 	 * obtain a reference even in the short window between the queue
935 	 * starting to freeze, by dropping the first reference in
936 	 * blk_freeze_queue_start, and the moment the last request is
937 	 * consumed, marked by the instant q_usage_counter reaches
938 	 * zero.
939 	 */
940 	if (!percpu_ref_tryget(&q->q_usage_counter))
941 		return;
942 
943 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
944 
945 	if (next != 0) {
946 		mod_timer(&q->timeout, next);
947 	} else {
948 		/*
949 		 * Request timeouts are handled as a forward rolling timer. If
950 		 * we end up here it means that no requests are pending and
951 		 * also that no request has been pending for a while. Mark
952 		 * each hctx as idle.
953 		 */
954 		queue_for_each_hw_ctx(q, hctx, i) {
955 			/* the hctx may be unmapped, so check it here */
956 			if (blk_mq_hw_queue_mapped(hctx))
957 				blk_mq_tag_idle(hctx);
958 		}
959 	}
960 	blk_queue_exit(q);
961 }
962 
963 struct flush_busy_ctx_data {
964 	struct blk_mq_hw_ctx *hctx;
965 	struct list_head *list;
966 };
967 
968 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
969 {
970 	struct flush_busy_ctx_data *flush_data = data;
971 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
972 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
973 	enum hctx_type type = hctx->type;
974 
975 	spin_lock(&ctx->lock);
976 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
977 	sbitmap_clear_bit(sb, bitnr);
978 	spin_unlock(&ctx->lock);
979 	return true;
980 }
981 
982 /*
983  * Process software queues that have been marked busy, splicing them
984  * to the for-dispatch
985  */
986 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
987 {
988 	struct flush_busy_ctx_data data = {
989 		.hctx = hctx,
990 		.list = list,
991 	};
992 
993 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
994 }
995 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
996 
997 struct dispatch_rq_data {
998 	struct blk_mq_hw_ctx *hctx;
999 	struct request *rq;
1000 };
1001 
1002 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1003 		void *data)
1004 {
1005 	struct dispatch_rq_data *dispatch_data = data;
1006 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1007 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1008 	enum hctx_type type = hctx->type;
1009 
1010 	spin_lock(&ctx->lock);
1011 	if (!list_empty(&ctx->rq_lists[type])) {
1012 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1013 		list_del_init(&dispatch_data->rq->queuelist);
1014 		if (list_empty(&ctx->rq_lists[type]))
1015 			sbitmap_clear_bit(sb, bitnr);
1016 	}
1017 	spin_unlock(&ctx->lock);
1018 
1019 	return !dispatch_data->rq;
1020 }
1021 
1022 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1023 					struct blk_mq_ctx *start)
1024 {
1025 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1026 	struct dispatch_rq_data data = {
1027 		.hctx = hctx,
1028 		.rq   = NULL,
1029 	};
1030 
1031 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1032 			       dispatch_rq_from_ctx, &data);
1033 
1034 	return data.rq;
1035 }
1036 
1037 static inline unsigned int queued_to_index(unsigned int queued)
1038 {
1039 	if (!queued)
1040 		return 0;
1041 
1042 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1043 }
1044 
1045 bool blk_mq_get_driver_tag(struct request *rq)
1046 {
1047 	struct blk_mq_alloc_data data = {
1048 		.q = rq->q,
1049 		.hctx = rq->mq_hctx,
1050 		.flags = BLK_MQ_REQ_NOWAIT,
1051 		.cmd_flags = rq->cmd_flags,
1052 	};
1053 	bool shared;
1054 
1055 	if (rq->tag != -1)
1056 		goto done;
1057 
1058 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1059 		data.flags |= BLK_MQ_REQ_RESERVED;
1060 
1061 	shared = blk_mq_tag_busy(data.hctx);
1062 	rq->tag = blk_mq_get_tag(&data);
1063 	if (rq->tag >= 0) {
1064 		if (shared) {
1065 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1066 			atomic_inc(&data.hctx->nr_active);
1067 		}
1068 		data.hctx->tags->rqs[rq->tag] = rq;
1069 	}
1070 
1071 done:
1072 	return rq->tag != -1;
1073 }
1074 
1075 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1076 				int flags, void *key)
1077 {
1078 	struct blk_mq_hw_ctx *hctx;
1079 
1080 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1081 
1082 	spin_lock(&hctx->dispatch_wait_lock);
1083 	if (!list_empty(&wait->entry)) {
1084 		struct sbitmap_queue *sbq;
1085 
1086 		list_del_init(&wait->entry);
1087 		sbq = &hctx->tags->bitmap_tags;
1088 		atomic_dec(&sbq->ws_active);
1089 	}
1090 	spin_unlock(&hctx->dispatch_wait_lock);
1091 
1092 	blk_mq_run_hw_queue(hctx, true);
1093 	return 1;
1094 }
1095 
1096 /*
1097  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1098  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1099  * restart. For both cases, take care to check the condition again after
1100  * marking us as waiting.
1101  */
1102 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1103 				 struct request *rq)
1104 {
1105 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1106 	struct wait_queue_head *wq;
1107 	wait_queue_entry_t *wait;
1108 	bool ret;
1109 
1110 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1111 		blk_mq_sched_mark_restart_hctx(hctx);
1112 
1113 		/*
1114 		 * It's possible that a tag was freed in the window between the
1115 		 * allocation failure and adding the hardware queue to the wait
1116 		 * queue.
1117 		 *
1118 		 * Don't clear RESTART here, someone else could have set it.
1119 		 * At most this will cost an extra queue run.
1120 		 */
1121 		return blk_mq_get_driver_tag(rq);
1122 	}
1123 
1124 	wait = &hctx->dispatch_wait;
1125 	if (!list_empty_careful(&wait->entry))
1126 		return false;
1127 
1128 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1129 
1130 	spin_lock_irq(&wq->lock);
1131 	spin_lock(&hctx->dispatch_wait_lock);
1132 	if (!list_empty(&wait->entry)) {
1133 		spin_unlock(&hctx->dispatch_wait_lock);
1134 		spin_unlock_irq(&wq->lock);
1135 		return false;
1136 	}
1137 
1138 	atomic_inc(&sbq->ws_active);
1139 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1140 	__add_wait_queue(wq, wait);
1141 
1142 	/*
1143 	 * It's possible that a tag was freed in the window between the
1144 	 * allocation failure and adding the hardware queue to the wait
1145 	 * queue.
1146 	 */
1147 	ret = blk_mq_get_driver_tag(rq);
1148 	if (!ret) {
1149 		spin_unlock(&hctx->dispatch_wait_lock);
1150 		spin_unlock_irq(&wq->lock);
1151 		return false;
1152 	}
1153 
1154 	/*
1155 	 * We got a tag, remove ourselves from the wait queue to ensure
1156 	 * someone else gets the wakeup.
1157 	 */
1158 	list_del_init(&wait->entry);
1159 	atomic_dec(&sbq->ws_active);
1160 	spin_unlock(&hctx->dispatch_wait_lock);
1161 	spin_unlock_irq(&wq->lock);
1162 
1163 	return true;
1164 }
1165 
1166 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1167 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1168 /*
1169  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1170  * - EWMA is one simple way to compute running average value
1171  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1172  * - take 4 as factor for avoiding to get too small(0) result, and this
1173  *   factor doesn't matter because EWMA decreases exponentially
1174  */
1175 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1176 {
1177 	unsigned int ewma;
1178 
1179 	if (hctx->queue->elevator)
1180 		return;
1181 
1182 	ewma = hctx->dispatch_busy;
1183 
1184 	if (!ewma && !busy)
1185 		return;
1186 
1187 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1188 	if (busy)
1189 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1190 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1191 
1192 	hctx->dispatch_busy = ewma;
1193 }
1194 
1195 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1196 
1197 /*
1198  * Returns true if we did some work AND can potentially do more.
1199  */
1200 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1201 			     bool got_budget)
1202 {
1203 	struct blk_mq_hw_ctx *hctx;
1204 	struct request *rq, *nxt;
1205 	bool no_tag = false;
1206 	int errors, queued;
1207 	blk_status_t ret = BLK_STS_OK;
1208 
1209 	if (list_empty(list))
1210 		return false;
1211 
1212 	WARN_ON(!list_is_singular(list) && got_budget);
1213 
1214 	/*
1215 	 * Now process all the entries, sending them to the driver.
1216 	 */
1217 	errors = queued = 0;
1218 	do {
1219 		struct blk_mq_queue_data bd;
1220 
1221 		rq = list_first_entry(list, struct request, queuelist);
1222 
1223 		hctx = rq->mq_hctx;
1224 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1225 			break;
1226 
1227 		if (!blk_mq_get_driver_tag(rq)) {
1228 			/*
1229 			 * The initial allocation attempt failed, so we need to
1230 			 * rerun the hardware queue when a tag is freed. The
1231 			 * waitqueue takes care of that. If the queue is run
1232 			 * before we add this entry back on the dispatch list,
1233 			 * we'll re-run it below.
1234 			 */
1235 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1236 				blk_mq_put_dispatch_budget(hctx);
1237 				/*
1238 				 * For non-shared tags, the RESTART check
1239 				 * will suffice.
1240 				 */
1241 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1242 					no_tag = true;
1243 				break;
1244 			}
1245 		}
1246 
1247 		list_del_init(&rq->queuelist);
1248 
1249 		bd.rq = rq;
1250 
1251 		/*
1252 		 * Flag last if we have no more requests, or if we have more
1253 		 * but can't assign a driver tag to it.
1254 		 */
1255 		if (list_empty(list))
1256 			bd.last = true;
1257 		else {
1258 			nxt = list_first_entry(list, struct request, queuelist);
1259 			bd.last = !blk_mq_get_driver_tag(nxt);
1260 		}
1261 
1262 		ret = q->mq_ops->queue_rq(hctx, &bd);
1263 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1264 			/*
1265 			 * If an I/O scheduler has been configured and we got a
1266 			 * driver tag for the next request already, free it
1267 			 * again.
1268 			 */
1269 			if (!list_empty(list)) {
1270 				nxt = list_first_entry(list, struct request, queuelist);
1271 				blk_mq_put_driver_tag(nxt);
1272 			}
1273 			list_add(&rq->queuelist, list);
1274 			__blk_mq_requeue_request(rq);
1275 			break;
1276 		}
1277 
1278 		if (unlikely(ret != BLK_STS_OK)) {
1279 			errors++;
1280 			blk_mq_end_request(rq, BLK_STS_IOERR);
1281 			continue;
1282 		}
1283 
1284 		queued++;
1285 	} while (!list_empty(list));
1286 
1287 	hctx->dispatched[queued_to_index(queued)]++;
1288 
1289 	/*
1290 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1291 	 * that is where we will continue on next queue run.
1292 	 */
1293 	if (!list_empty(list)) {
1294 		bool needs_restart;
1295 
1296 		/*
1297 		 * If we didn't flush the entire list, we could have told
1298 		 * the driver there was more coming, but that turned out to
1299 		 * be a lie.
1300 		 */
1301 		if (q->mq_ops->commit_rqs)
1302 			q->mq_ops->commit_rqs(hctx);
1303 
1304 		spin_lock(&hctx->lock);
1305 		list_splice_init(list, &hctx->dispatch);
1306 		spin_unlock(&hctx->lock);
1307 
1308 		/*
1309 		 * If SCHED_RESTART was set by the caller of this function and
1310 		 * it is no longer set that means that it was cleared by another
1311 		 * thread and hence that a queue rerun is needed.
1312 		 *
1313 		 * If 'no_tag' is set, that means that we failed getting
1314 		 * a driver tag with an I/O scheduler attached. If our dispatch
1315 		 * waitqueue is no longer active, ensure that we run the queue
1316 		 * AFTER adding our entries back to the list.
1317 		 *
1318 		 * If no I/O scheduler has been configured it is possible that
1319 		 * the hardware queue got stopped and restarted before requests
1320 		 * were pushed back onto the dispatch list. Rerun the queue to
1321 		 * avoid starvation. Notes:
1322 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1323 		 *   been stopped before rerunning a queue.
1324 		 * - Some but not all block drivers stop a queue before
1325 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1326 		 *   and dm-rq.
1327 		 *
1328 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1329 		 * bit is set, run queue after a delay to avoid IO stalls
1330 		 * that could otherwise occur if the queue is idle.
1331 		 */
1332 		needs_restart = blk_mq_sched_needs_restart(hctx);
1333 		if (!needs_restart ||
1334 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1335 			blk_mq_run_hw_queue(hctx, true);
1336 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1337 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1338 
1339 		blk_mq_update_dispatch_busy(hctx, true);
1340 		return false;
1341 	} else
1342 		blk_mq_update_dispatch_busy(hctx, false);
1343 
1344 	/*
1345 	 * If the host/device is unable to accept more work, inform the
1346 	 * caller of that.
1347 	 */
1348 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1349 		return false;
1350 
1351 	return (queued + errors) != 0;
1352 }
1353 
1354 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1355 {
1356 	int srcu_idx;
1357 
1358 	/*
1359 	 * We should be running this queue from one of the CPUs that
1360 	 * are mapped to it.
1361 	 *
1362 	 * There are at least two related races now between setting
1363 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1364 	 * __blk_mq_run_hw_queue():
1365 	 *
1366 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1367 	 *   but later it becomes online, then this warning is harmless
1368 	 *   at all
1369 	 *
1370 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1371 	 *   but later it becomes offline, then the warning can't be
1372 	 *   triggered, and we depend on blk-mq timeout handler to
1373 	 *   handle dispatched requests to this hctx
1374 	 */
1375 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1376 		cpu_online(hctx->next_cpu)) {
1377 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1378 			raw_smp_processor_id(),
1379 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1380 		dump_stack();
1381 	}
1382 
1383 	/*
1384 	 * We can't run the queue inline with ints disabled. Ensure that
1385 	 * we catch bad users of this early.
1386 	 */
1387 	WARN_ON_ONCE(in_interrupt());
1388 
1389 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1390 
1391 	hctx_lock(hctx, &srcu_idx);
1392 	blk_mq_sched_dispatch_requests(hctx);
1393 	hctx_unlock(hctx, srcu_idx);
1394 }
1395 
1396 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1397 {
1398 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1399 
1400 	if (cpu >= nr_cpu_ids)
1401 		cpu = cpumask_first(hctx->cpumask);
1402 	return cpu;
1403 }
1404 
1405 /*
1406  * It'd be great if the workqueue API had a way to pass
1407  * in a mask and had some smarts for more clever placement.
1408  * For now we just round-robin here, switching for every
1409  * BLK_MQ_CPU_WORK_BATCH queued items.
1410  */
1411 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1412 {
1413 	bool tried = false;
1414 	int next_cpu = hctx->next_cpu;
1415 
1416 	if (hctx->queue->nr_hw_queues == 1)
1417 		return WORK_CPU_UNBOUND;
1418 
1419 	if (--hctx->next_cpu_batch <= 0) {
1420 select_cpu:
1421 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1422 				cpu_online_mask);
1423 		if (next_cpu >= nr_cpu_ids)
1424 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1425 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1426 	}
1427 
1428 	/*
1429 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1430 	 * and it should only happen in the path of handling CPU DEAD.
1431 	 */
1432 	if (!cpu_online(next_cpu)) {
1433 		if (!tried) {
1434 			tried = true;
1435 			goto select_cpu;
1436 		}
1437 
1438 		/*
1439 		 * Make sure to re-select CPU next time once after CPUs
1440 		 * in hctx->cpumask become online again.
1441 		 */
1442 		hctx->next_cpu = next_cpu;
1443 		hctx->next_cpu_batch = 1;
1444 		return WORK_CPU_UNBOUND;
1445 	}
1446 
1447 	hctx->next_cpu = next_cpu;
1448 	return next_cpu;
1449 }
1450 
1451 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1452 					unsigned long msecs)
1453 {
1454 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1455 		return;
1456 
1457 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1458 		int cpu = get_cpu();
1459 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1460 			__blk_mq_run_hw_queue(hctx);
1461 			put_cpu();
1462 			return;
1463 		}
1464 
1465 		put_cpu();
1466 	}
1467 
1468 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1469 				    msecs_to_jiffies(msecs));
1470 }
1471 
1472 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1473 {
1474 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1475 }
1476 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1477 
1478 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1479 {
1480 	int srcu_idx;
1481 	bool need_run;
1482 
1483 	/*
1484 	 * When queue is quiesced, we may be switching io scheduler, or
1485 	 * updating nr_hw_queues, or other things, and we can't run queue
1486 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1487 	 *
1488 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1489 	 * quiesced.
1490 	 */
1491 	hctx_lock(hctx, &srcu_idx);
1492 	need_run = !blk_queue_quiesced(hctx->queue) &&
1493 		blk_mq_hctx_has_pending(hctx);
1494 	hctx_unlock(hctx, srcu_idx);
1495 
1496 	if (need_run) {
1497 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1498 		return true;
1499 	}
1500 
1501 	return false;
1502 }
1503 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1504 
1505 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1506 {
1507 	struct blk_mq_hw_ctx *hctx;
1508 	int i;
1509 
1510 	queue_for_each_hw_ctx(q, hctx, i) {
1511 		if (blk_mq_hctx_stopped(hctx))
1512 			continue;
1513 
1514 		blk_mq_run_hw_queue(hctx, async);
1515 	}
1516 }
1517 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1518 
1519 /**
1520  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1521  * @q: request queue.
1522  *
1523  * The caller is responsible for serializing this function against
1524  * blk_mq_{start,stop}_hw_queue().
1525  */
1526 bool blk_mq_queue_stopped(struct request_queue *q)
1527 {
1528 	struct blk_mq_hw_ctx *hctx;
1529 	int i;
1530 
1531 	queue_for_each_hw_ctx(q, hctx, i)
1532 		if (blk_mq_hctx_stopped(hctx))
1533 			return true;
1534 
1535 	return false;
1536 }
1537 EXPORT_SYMBOL(blk_mq_queue_stopped);
1538 
1539 /*
1540  * This function is often used for pausing .queue_rq() by driver when
1541  * there isn't enough resource or some conditions aren't satisfied, and
1542  * BLK_STS_RESOURCE is usually returned.
1543  *
1544  * We do not guarantee that dispatch can be drained or blocked
1545  * after blk_mq_stop_hw_queue() returns. Please use
1546  * blk_mq_quiesce_queue() for that requirement.
1547  */
1548 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1549 {
1550 	cancel_delayed_work(&hctx->run_work);
1551 
1552 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1553 }
1554 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1555 
1556 /*
1557  * This function is often used for pausing .queue_rq() by driver when
1558  * there isn't enough resource or some conditions aren't satisfied, and
1559  * BLK_STS_RESOURCE is usually returned.
1560  *
1561  * We do not guarantee that dispatch can be drained or blocked
1562  * after blk_mq_stop_hw_queues() returns. Please use
1563  * blk_mq_quiesce_queue() for that requirement.
1564  */
1565 void blk_mq_stop_hw_queues(struct request_queue *q)
1566 {
1567 	struct blk_mq_hw_ctx *hctx;
1568 	int i;
1569 
1570 	queue_for_each_hw_ctx(q, hctx, i)
1571 		blk_mq_stop_hw_queue(hctx);
1572 }
1573 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1574 
1575 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1576 {
1577 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1578 
1579 	blk_mq_run_hw_queue(hctx, false);
1580 }
1581 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1582 
1583 void blk_mq_start_hw_queues(struct request_queue *q)
1584 {
1585 	struct blk_mq_hw_ctx *hctx;
1586 	int i;
1587 
1588 	queue_for_each_hw_ctx(q, hctx, i)
1589 		blk_mq_start_hw_queue(hctx);
1590 }
1591 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1592 
1593 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1594 {
1595 	if (!blk_mq_hctx_stopped(hctx))
1596 		return;
1597 
1598 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1599 	blk_mq_run_hw_queue(hctx, async);
1600 }
1601 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1602 
1603 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1604 {
1605 	struct blk_mq_hw_ctx *hctx;
1606 	int i;
1607 
1608 	queue_for_each_hw_ctx(q, hctx, i)
1609 		blk_mq_start_stopped_hw_queue(hctx, async);
1610 }
1611 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1612 
1613 static void blk_mq_run_work_fn(struct work_struct *work)
1614 {
1615 	struct blk_mq_hw_ctx *hctx;
1616 
1617 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1618 
1619 	/*
1620 	 * If we are stopped, don't run the queue.
1621 	 */
1622 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1623 		return;
1624 
1625 	__blk_mq_run_hw_queue(hctx);
1626 }
1627 
1628 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1629 					    struct request *rq,
1630 					    bool at_head)
1631 {
1632 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1633 	enum hctx_type type = hctx->type;
1634 
1635 	lockdep_assert_held(&ctx->lock);
1636 
1637 	trace_block_rq_insert(hctx->queue, rq);
1638 
1639 	if (at_head)
1640 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1641 	else
1642 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1643 }
1644 
1645 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1646 			     bool at_head)
1647 {
1648 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1649 
1650 	lockdep_assert_held(&ctx->lock);
1651 
1652 	__blk_mq_insert_req_list(hctx, rq, at_head);
1653 	blk_mq_hctx_mark_pending(hctx, ctx);
1654 }
1655 
1656 /*
1657  * Should only be used carefully, when the caller knows we want to
1658  * bypass a potential IO scheduler on the target device.
1659  */
1660 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1661 {
1662 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1663 
1664 	spin_lock(&hctx->lock);
1665 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1666 	spin_unlock(&hctx->lock);
1667 
1668 	if (run_queue)
1669 		blk_mq_run_hw_queue(hctx, false);
1670 }
1671 
1672 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1673 			    struct list_head *list)
1674 
1675 {
1676 	struct request *rq;
1677 	enum hctx_type type = hctx->type;
1678 
1679 	/*
1680 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1681 	 * offline now
1682 	 */
1683 	list_for_each_entry(rq, list, queuelist) {
1684 		BUG_ON(rq->mq_ctx != ctx);
1685 		trace_block_rq_insert(hctx->queue, rq);
1686 	}
1687 
1688 	spin_lock(&ctx->lock);
1689 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1690 	blk_mq_hctx_mark_pending(hctx, ctx);
1691 	spin_unlock(&ctx->lock);
1692 }
1693 
1694 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1695 {
1696 	struct request *rqa = container_of(a, struct request, queuelist);
1697 	struct request *rqb = container_of(b, struct request, queuelist);
1698 
1699 	if (rqa->mq_ctx < rqb->mq_ctx)
1700 		return -1;
1701 	else if (rqa->mq_ctx > rqb->mq_ctx)
1702 		return 1;
1703 	else if (rqa->mq_hctx < rqb->mq_hctx)
1704 		return -1;
1705 	else if (rqa->mq_hctx > rqb->mq_hctx)
1706 		return 1;
1707 
1708 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1709 }
1710 
1711 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1712 {
1713 	struct blk_mq_hw_ctx *this_hctx;
1714 	struct blk_mq_ctx *this_ctx;
1715 	struct request_queue *this_q;
1716 	struct request *rq;
1717 	LIST_HEAD(list);
1718 	LIST_HEAD(rq_list);
1719 	unsigned int depth;
1720 
1721 	list_splice_init(&plug->mq_list, &list);
1722 
1723 	if (plug->rq_count > 2 && plug->multiple_queues)
1724 		list_sort(NULL, &list, plug_rq_cmp);
1725 
1726 	plug->rq_count = 0;
1727 
1728 	this_q = NULL;
1729 	this_hctx = NULL;
1730 	this_ctx = NULL;
1731 	depth = 0;
1732 
1733 	while (!list_empty(&list)) {
1734 		rq = list_entry_rq(list.next);
1735 		list_del_init(&rq->queuelist);
1736 		BUG_ON(!rq->q);
1737 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1738 			if (this_hctx) {
1739 				trace_block_unplug(this_q, depth, !from_schedule);
1740 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1741 								&rq_list,
1742 								from_schedule);
1743 			}
1744 
1745 			this_q = rq->q;
1746 			this_ctx = rq->mq_ctx;
1747 			this_hctx = rq->mq_hctx;
1748 			depth = 0;
1749 		}
1750 
1751 		depth++;
1752 		list_add_tail(&rq->queuelist, &rq_list);
1753 	}
1754 
1755 	/*
1756 	 * If 'this_hctx' is set, we know we have entries to complete
1757 	 * on 'rq_list'. Do those.
1758 	 */
1759 	if (this_hctx) {
1760 		trace_block_unplug(this_q, depth, !from_schedule);
1761 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1762 						from_schedule);
1763 	}
1764 }
1765 
1766 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1767 {
1768 	blk_init_request_from_bio(rq, bio);
1769 
1770 	blk_account_io_start(rq, true);
1771 }
1772 
1773 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1774 					    struct request *rq,
1775 					    blk_qc_t *cookie, bool last)
1776 {
1777 	struct request_queue *q = rq->q;
1778 	struct blk_mq_queue_data bd = {
1779 		.rq = rq,
1780 		.last = last,
1781 	};
1782 	blk_qc_t new_cookie;
1783 	blk_status_t ret;
1784 
1785 	new_cookie = request_to_qc_t(hctx, rq);
1786 
1787 	/*
1788 	 * For OK queue, we are done. For error, caller may kill it.
1789 	 * Any other error (busy), just add it to our list as we
1790 	 * previously would have done.
1791 	 */
1792 	ret = q->mq_ops->queue_rq(hctx, &bd);
1793 	switch (ret) {
1794 	case BLK_STS_OK:
1795 		blk_mq_update_dispatch_busy(hctx, false);
1796 		*cookie = new_cookie;
1797 		break;
1798 	case BLK_STS_RESOURCE:
1799 	case BLK_STS_DEV_RESOURCE:
1800 		blk_mq_update_dispatch_busy(hctx, true);
1801 		__blk_mq_requeue_request(rq);
1802 		break;
1803 	default:
1804 		blk_mq_update_dispatch_busy(hctx, false);
1805 		*cookie = BLK_QC_T_NONE;
1806 		break;
1807 	}
1808 
1809 	return ret;
1810 }
1811 
1812 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1813 						struct request *rq,
1814 						blk_qc_t *cookie,
1815 						bool bypass_insert, bool last)
1816 {
1817 	struct request_queue *q = rq->q;
1818 	bool run_queue = true;
1819 
1820 	/*
1821 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1822 	 *
1823 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1824 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1825 	 * and avoid driver to try to dispatch again.
1826 	 */
1827 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1828 		run_queue = false;
1829 		bypass_insert = false;
1830 		goto insert;
1831 	}
1832 
1833 	if (q->elevator && !bypass_insert)
1834 		goto insert;
1835 
1836 	if (!blk_mq_get_dispatch_budget(hctx))
1837 		goto insert;
1838 
1839 	if (!blk_mq_get_driver_tag(rq)) {
1840 		blk_mq_put_dispatch_budget(hctx);
1841 		goto insert;
1842 	}
1843 
1844 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1845 insert:
1846 	if (bypass_insert)
1847 		return BLK_STS_RESOURCE;
1848 
1849 	blk_mq_request_bypass_insert(rq, run_queue);
1850 	return BLK_STS_OK;
1851 }
1852 
1853 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1854 		struct request *rq, blk_qc_t *cookie)
1855 {
1856 	blk_status_t ret;
1857 	int srcu_idx;
1858 
1859 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1860 
1861 	hctx_lock(hctx, &srcu_idx);
1862 
1863 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1864 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1865 		blk_mq_request_bypass_insert(rq, true);
1866 	else if (ret != BLK_STS_OK)
1867 		blk_mq_end_request(rq, ret);
1868 
1869 	hctx_unlock(hctx, srcu_idx);
1870 }
1871 
1872 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1873 {
1874 	blk_status_t ret;
1875 	int srcu_idx;
1876 	blk_qc_t unused_cookie;
1877 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1878 
1879 	hctx_lock(hctx, &srcu_idx);
1880 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1881 	hctx_unlock(hctx, srcu_idx);
1882 
1883 	return ret;
1884 }
1885 
1886 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1887 		struct list_head *list)
1888 {
1889 	while (!list_empty(list)) {
1890 		blk_status_t ret;
1891 		struct request *rq = list_first_entry(list, struct request,
1892 				queuelist);
1893 
1894 		list_del_init(&rq->queuelist);
1895 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1896 		if (ret != BLK_STS_OK) {
1897 			if (ret == BLK_STS_RESOURCE ||
1898 					ret == BLK_STS_DEV_RESOURCE) {
1899 				blk_mq_request_bypass_insert(rq,
1900 							list_empty(list));
1901 				break;
1902 			}
1903 			blk_mq_end_request(rq, ret);
1904 		}
1905 	}
1906 
1907 	/*
1908 	 * If we didn't flush the entire list, we could have told
1909 	 * the driver there was more coming, but that turned out to
1910 	 * be a lie.
1911 	 */
1912 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1913 		hctx->queue->mq_ops->commit_rqs(hctx);
1914 }
1915 
1916 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1917 {
1918 	list_add_tail(&rq->queuelist, &plug->mq_list);
1919 	plug->rq_count++;
1920 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1921 		struct request *tmp;
1922 
1923 		tmp = list_first_entry(&plug->mq_list, struct request,
1924 						queuelist);
1925 		if (tmp->q != rq->q)
1926 			plug->multiple_queues = true;
1927 	}
1928 }
1929 
1930 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1931 {
1932 	const int is_sync = op_is_sync(bio->bi_opf);
1933 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1934 	struct blk_mq_alloc_data data = { .flags = 0};
1935 	struct request *rq;
1936 	struct blk_plug *plug;
1937 	struct request *same_queue_rq = NULL;
1938 	blk_qc_t cookie;
1939 
1940 	blk_queue_bounce(q, &bio);
1941 
1942 	blk_queue_split(q, &bio);
1943 
1944 	if (!bio_integrity_prep(bio))
1945 		return BLK_QC_T_NONE;
1946 
1947 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1948 	    blk_attempt_plug_merge(q, bio, &same_queue_rq))
1949 		return BLK_QC_T_NONE;
1950 
1951 	if (blk_mq_sched_bio_merge(q, bio))
1952 		return BLK_QC_T_NONE;
1953 
1954 	rq_qos_throttle(q, bio);
1955 
1956 	data.cmd_flags = bio->bi_opf;
1957 	rq = blk_mq_get_request(q, bio, &data);
1958 	if (unlikely(!rq)) {
1959 		rq_qos_cleanup(q, bio);
1960 		if (bio->bi_opf & REQ_NOWAIT)
1961 			bio_wouldblock_error(bio);
1962 		return BLK_QC_T_NONE;
1963 	}
1964 
1965 	trace_block_getrq(q, bio, bio->bi_opf);
1966 
1967 	rq_qos_track(q, rq, bio);
1968 
1969 	cookie = request_to_qc_t(data.hctx, rq);
1970 
1971 	plug = current->plug;
1972 	if (unlikely(is_flush_fua)) {
1973 		blk_mq_put_ctx(data.ctx);
1974 		blk_mq_bio_to_request(rq, bio);
1975 
1976 		/* bypass scheduler for flush rq */
1977 		blk_insert_flush(rq);
1978 		blk_mq_run_hw_queue(data.hctx, true);
1979 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1980 		/*
1981 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1982 		 * we know the driver uses bd->last in a smart fashion.
1983 		 */
1984 		unsigned int request_count = plug->rq_count;
1985 		struct request *last = NULL;
1986 
1987 		blk_mq_put_ctx(data.ctx);
1988 		blk_mq_bio_to_request(rq, bio);
1989 
1990 		if (!request_count)
1991 			trace_block_plug(q);
1992 		else
1993 			last = list_entry_rq(plug->mq_list.prev);
1994 
1995 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1996 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1997 			blk_flush_plug_list(plug, false);
1998 			trace_block_plug(q);
1999 		}
2000 
2001 		blk_add_rq_to_plug(plug, rq);
2002 	} else if (plug && !blk_queue_nomerges(q)) {
2003 		blk_mq_bio_to_request(rq, bio);
2004 
2005 		/*
2006 		 * We do limited plugging. If the bio can be merged, do that.
2007 		 * Otherwise the existing request in the plug list will be
2008 		 * issued. So the plug list will have one request at most
2009 		 * The plug list might get flushed before this. If that happens,
2010 		 * the plug list is empty, and same_queue_rq is invalid.
2011 		 */
2012 		if (list_empty(&plug->mq_list))
2013 			same_queue_rq = NULL;
2014 		if (same_queue_rq) {
2015 			list_del_init(&same_queue_rq->queuelist);
2016 			plug->rq_count--;
2017 		}
2018 		blk_add_rq_to_plug(plug, rq);
2019 		trace_block_plug(q);
2020 
2021 		blk_mq_put_ctx(data.ctx);
2022 
2023 		if (same_queue_rq) {
2024 			data.hctx = same_queue_rq->mq_hctx;
2025 			trace_block_unplug(q, 1, true);
2026 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2027 					&cookie);
2028 		}
2029 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2030 			!data.hctx->dispatch_busy)) {
2031 		blk_mq_put_ctx(data.ctx);
2032 		blk_mq_bio_to_request(rq, bio);
2033 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2034 	} else {
2035 		blk_mq_put_ctx(data.ctx);
2036 		blk_mq_bio_to_request(rq, bio);
2037 		blk_mq_sched_insert_request(rq, false, true, true);
2038 	}
2039 
2040 	return cookie;
2041 }
2042 
2043 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2044 		     unsigned int hctx_idx)
2045 {
2046 	struct page *page;
2047 
2048 	if (tags->rqs && set->ops->exit_request) {
2049 		int i;
2050 
2051 		for (i = 0; i < tags->nr_tags; i++) {
2052 			struct request *rq = tags->static_rqs[i];
2053 
2054 			if (!rq)
2055 				continue;
2056 			set->ops->exit_request(set, rq, hctx_idx);
2057 			tags->static_rqs[i] = NULL;
2058 		}
2059 	}
2060 
2061 	while (!list_empty(&tags->page_list)) {
2062 		page = list_first_entry(&tags->page_list, struct page, lru);
2063 		list_del_init(&page->lru);
2064 		/*
2065 		 * Remove kmemleak object previously allocated in
2066 		 * blk_mq_alloc_rqs().
2067 		 */
2068 		kmemleak_free(page_address(page));
2069 		__free_pages(page, page->private);
2070 	}
2071 }
2072 
2073 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2074 {
2075 	kfree(tags->rqs);
2076 	tags->rqs = NULL;
2077 	kfree(tags->static_rqs);
2078 	tags->static_rqs = NULL;
2079 
2080 	blk_mq_free_tags(tags);
2081 }
2082 
2083 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2084 					unsigned int hctx_idx,
2085 					unsigned int nr_tags,
2086 					unsigned int reserved_tags)
2087 {
2088 	struct blk_mq_tags *tags;
2089 	int node;
2090 
2091 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2092 	if (node == NUMA_NO_NODE)
2093 		node = set->numa_node;
2094 
2095 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2096 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2097 	if (!tags)
2098 		return NULL;
2099 
2100 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2101 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2102 				 node);
2103 	if (!tags->rqs) {
2104 		blk_mq_free_tags(tags);
2105 		return NULL;
2106 	}
2107 
2108 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2109 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2110 					node);
2111 	if (!tags->static_rqs) {
2112 		kfree(tags->rqs);
2113 		blk_mq_free_tags(tags);
2114 		return NULL;
2115 	}
2116 
2117 	return tags;
2118 }
2119 
2120 static size_t order_to_size(unsigned int order)
2121 {
2122 	return (size_t)PAGE_SIZE << order;
2123 }
2124 
2125 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2126 			       unsigned int hctx_idx, int node)
2127 {
2128 	int ret;
2129 
2130 	if (set->ops->init_request) {
2131 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2132 		if (ret)
2133 			return ret;
2134 	}
2135 
2136 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2137 	return 0;
2138 }
2139 
2140 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2141 		     unsigned int hctx_idx, unsigned int depth)
2142 {
2143 	unsigned int i, j, entries_per_page, max_order = 4;
2144 	size_t rq_size, left;
2145 	int node;
2146 
2147 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2148 	if (node == NUMA_NO_NODE)
2149 		node = set->numa_node;
2150 
2151 	INIT_LIST_HEAD(&tags->page_list);
2152 
2153 	/*
2154 	 * rq_size is the size of the request plus driver payload, rounded
2155 	 * to the cacheline size
2156 	 */
2157 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2158 				cache_line_size());
2159 	left = rq_size * depth;
2160 
2161 	for (i = 0; i < depth; ) {
2162 		int this_order = max_order;
2163 		struct page *page;
2164 		int to_do;
2165 		void *p;
2166 
2167 		while (this_order && left < order_to_size(this_order - 1))
2168 			this_order--;
2169 
2170 		do {
2171 			page = alloc_pages_node(node,
2172 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2173 				this_order);
2174 			if (page)
2175 				break;
2176 			if (!this_order--)
2177 				break;
2178 			if (order_to_size(this_order) < rq_size)
2179 				break;
2180 		} while (1);
2181 
2182 		if (!page)
2183 			goto fail;
2184 
2185 		page->private = this_order;
2186 		list_add_tail(&page->lru, &tags->page_list);
2187 
2188 		p = page_address(page);
2189 		/*
2190 		 * Allow kmemleak to scan these pages as they contain pointers
2191 		 * to additional allocations like via ops->init_request().
2192 		 */
2193 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2194 		entries_per_page = order_to_size(this_order) / rq_size;
2195 		to_do = min(entries_per_page, depth - i);
2196 		left -= to_do * rq_size;
2197 		for (j = 0; j < to_do; j++) {
2198 			struct request *rq = p;
2199 
2200 			tags->static_rqs[i] = rq;
2201 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2202 				tags->static_rqs[i] = NULL;
2203 				goto fail;
2204 			}
2205 
2206 			p += rq_size;
2207 			i++;
2208 		}
2209 	}
2210 	return 0;
2211 
2212 fail:
2213 	blk_mq_free_rqs(set, tags, hctx_idx);
2214 	return -ENOMEM;
2215 }
2216 
2217 /*
2218  * 'cpu' is going away. splice any existing rq_list entries from this
2219  * software queue to the hw queue dispatch list, and ensure that it
2220  * gets run.
2221  */
2222 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2223 {
2224 	struct blk_mq_hw_ctx *hctx;
2225 	struct blk_mq_ctx *ctx;
2226 	LIST_HEAD(tmp);
2227 	enum hctx_type type;
2228 
2229 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2230 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2231 	type = hctx->type;
2232 
2233 	spin_lock(&ctx->lock);
2234 	if (!list_empty(&ctx->rq_lists[type])) {
2235 		list_splice_init(&ctx->rq_lists[type], &tmp);
2236 		blk_mq_hctx_clear_pending(hctx, ctx);
2237 	}
2238 	spin_unlock(&ctx->lock);
2239 
2240 	if (list_empty(&tmp))
2241 		return 0;
2242 
2243 	spin_lock(&hctx->lock);
2244 	list_splice_tail_init(&tmp, &hctx->dispatch);
2245 	spin_unlock(&hctx->lock);
2246 
2247 	blk_mq_run_hw_queue(hctx, true);
2248 	return 0;
2249 }
2250 
2251 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2252 {
2253 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2254 					    &hctx->cpuhp_dead);
2255 }
2256 
2257 /* hctx->ctxs will be freed in queue's release handler */
2258 static void blk_mq_exit_hctx(struct request_queue *q,
2259 		struct blk_mq_tag_set *set,
2260 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2261 {
2262 	if (blk_mq_hw_queue_mapped(hctx))
2263 		blk_mq_tag_idle(hctx);
2264 
2265 	if (set->ops->exit_request)
2266 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2267 
2268 	if (set->ops->exit_hctx)
2269 		set->ops->exit_hctx(hctx, hctx_idx);
2270 
2271 	blk_mq_remove_cpuhp(hctx);
2272 
2273 	spin_lock(&q->unused_hctx_lock);
2274 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2275 	spin_unlock(&q->unused_hctx_lock);
2276 }
2277 
2278 static void blk_mq_exit_hw_queues(struct request_queue *q,
2279 		struct blk_mq_tag_set *set, int nr_queue)
2280 {
2281 	struct blk_mq_hw_ctx *hctx;
2282 	unsigned int i;
2283 
2284 	queue_for_each_hw_ctx(q, hctx, i) {
2285 		if (i == nr_queue)
2286 			break;
2287 		blk_mq_debugfs_unregister_hctx(hctx);
2288 		blk_mq_exit_hctx(q, set, hctx, i);
2289 	}
2290 }
2291 
2292 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2293 {
2294 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2295 
2296 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2297 			   __alignof__(struct blk_mq_hw_ctx)) !=
2298 		     sizeof(struct blk_mq_hw_ctx));
2299 
2300 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2301 		hw_ctx_size += sizeof(struct srcu_struct);
2302 
2303 	return hw_ctx_size;
2304 }
2305 
2306 static int blk_mq_init_hctx(struct request_queue *q,
2307 		struct blk_mq_tag_set *set,
2308 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2309 {
2310 	hctx->queue_num = hctx_idx;
2311 
2312 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2313 
2314 	hctx->tags = set->tags[hctx_idx];
2315 
2316 	if (set->ops->init_hctx &&
2317 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2318 		goto unregister_cpu_notifier;
2319 
2320 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2321 				hctx->numa_node))
2322 		goto exit_hctx;
2323 	return 0;
2324 
2325  exit_hctx:
2326 	if (set->ops->exit_hctx)
2327 		set->ops->exit_hctx(hctx, hctx_idx);
2328  unregister_cpu_notifier:
2329 	blk_mq_remove_cpuhp(hctx);
2330 	return -1;
2331 }
2332 
2333 static struct blk_mq_hw_ctx *
2334 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2335 		int node)
2336 {
2337 	struct blk_mq_hw_ctx *hctx;
2338 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2339 
2340 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2341 	if (!hctx)
2342 		goto fail_alloc_hctx;
2343 
2344 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2345 		goto free_hctx;
2346 
2347 	atomic_set(&hctx->nr_active, 0);
2348 	if (node == NUMA_NO_NODE)
2349 		node = set->numa_node;
2350 	hctx->numa_node = node;
2351 
2352 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2353 	spin_lock_init(&hctx->lock);
2354 	INIT_LIST_HEAD(&hctx->dispatch);
2355 	hctx->queue = q;
2356 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2357 
2358 	INIT_LIST_HEAD(&hctx->hctx_list);
2359 
2360 	/*
2361 	 * Allocate space for all possible cpus to avoid allocation at
2362 	 * runtime
2363 	 */
2364 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2365 			gfp, node);
2366 	if (!hctx->ctxs)
2367 		goto free_cpumask;
2368 
2369 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2370 				gfp, node))
2371 		goto free_ctxs;
2372 	hctx->nr_ctx = 0;
2373 
2374 	spin_lock_init(&hctx->dispatch_wait_lock);
2375 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2376 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2377 
2378 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2379 			gfp);
2380 	if (!hctx->fq)
2381 		goto free_bitmap;
2382 
2383 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2384 		init_srcu_struct(hctx->srcu);
2385 	blk_mq_hctx_kobj_init(hctx);
2386 
2387 	return hctx;
2388 
2389  free_bitmap:
2390 	sbitmap_free(&hctx->ctx_map);
2391  free_ctxs:
2392 	kfree(hctx->ctxs);
2393  free_cpumask:
2394 	free_cpumask_var(hctx->cpumask);
2395  free_hctx:
2396 	kfree(hctx);
2397  fail_alloc_hctx:
2398 	return NULL;
2399 }
2400 
2401 static void blk_mq_init_cpu_queues(struct request_queue *q,
2402 				   unsigned int nr_hw_queues)
2403 {
2404 	struct blk_mq_tag_set *set = q->tag_set;
2405 	unsigned int i, j;
2406 
2407 	for_each_possible_cpu(i) {
2408 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2409 		struct blk_mq_hw_ctx *hctx;
2410 		int k;
2411 
2412 		__ctx->cpu = i;
2413 		spin_lock_init(&__ctx->lock);
2414 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2415 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2416 
2417 		__ctx->queue = q;
2418 
2419 		/*
2420 		 * Set local node, IFF we have more than one hw queue. If
2421 		 * not, we remain on the home node of the device
2422 		 */
2423 		for (j = 0; j < set->nr_maps; j++) {
2424 			hctx = blk_mq_map_queue_type(q, j, i);
2425 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2426 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2427 		}
2428 	}
2429 }
2430 
2431 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2432 {
2433 	int ret = 0;
2434 
2435 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2436 					set->queue_depth, set->reserved_tags);
2437 	if (!set->tags[hctx_idx])
2438 		return false;
2439 
2440 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2441 				set->queue_depth);
2442 	if (!ret)
2443 		return true;
2444 
2445 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2446 	set->tags[hctx_idx] = NULL;
2447 	return false;
2448 }
2449 
2450 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2451 					 unsigned int hctx_idx)
2452 {
2453 	if (set->tags && set->tags[hctx_idx]) {
2454 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2455 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2456 		set->tags[hctx_idx] = NULL;
2457 	}
2458 }
2459 
2460 static void blk_mq_map_swqueue(struct request_queue *q)
2461 {
2462 	unsigned int i, j, hctx_idx;
2463 	struct blk_mq_hw_ctx *hctx;
2464 	struct blk_mq_ctx *ctx;
2465 	struct blk_mq_tag_set *set = q->tag_set;
2466 
2467 	/*
2468 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2469 	 */
2470 	mutex_lock(&q->sysfs_lock);
2471 
2472 	queue_for_each_hw_ctx(q, hctx, i) {
2473 		cpumask_clear(hctx->cpumask);
2474 		hctx->nr_ctx = 0;
2475 		hctx->dispatch_from = NULL;
2476 	}
2477 
2478 	/*
2479 	 * Map software to hardware queues.
2480 	 *
2481 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2482 	 */
2483 	for_each_possible_cpu(i) {
2484 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2485 		/* unmapped hw queue can be remapped after CPU topo changed */
2486 		if (!set->tags[hctx_idx] &&
2487 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2488 			/*
2489 			 * If tags initialization fail for some hctx,
2490 			 * that hctx won't be brought online.  In this
2491 			 * case, remap the current ctx to hctx[0] which
2492 			 * is guaranteed to always have tags allocated
2493 			 */
2494 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2495 		}
2496 
2497 		ctx = per_cpu_ptr(q->queue_ctx, i);
2498 		for (j = 0; j < set->nr_maps; j++) {
2499 			if (!set->map[j].nr_queues) {
2500 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2501 						HCTX_TYPE_DEFAULT, i);
2502 				continue;
2503 			}
2504 
2505 			hctx = blk_mq_map_queue_type(q, j, i);
2506 			ctx->hctxs[j] = hctx;
2507 			/*
2508 			 * If the CPU is already set in the mask, then we've
2509 			 * mapped this one already. This can happen if
2510 			 * devices share queues across queue maps.
2511 			 */
2512 			if (cpumask_test_cpu(i, hctx->cpumask))
2513 				continue;
2514 
2515 			cpumask_set_cpu(i, hctx->cpumask);
2516 			hctx->type = j;
2517 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2518 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2519 
2520 			/*
2521 			 * If the nr_ctx type overflows, we have exceeded the
2522 			 * amount of sw queues we can support.
2523 			 */
2524 			BUG_ON(!hctx->nr_ctx);
2525 		}
2526 
2527 		for (; j < HCTX_MAX_TYPES; j++)
2528 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2529 					HCTX_TYPE_DEFAULT, i);
2530 	}
2531 
2532 	mutex_unlock(&q->sysfs_lock);
2533 
2534 	queue_for_each_hw_ctx(q, hctx, i) {
2535 		/*
2536 		 * If no software queues are mapped to this hardware queue,
2537 		 * disable it and free the request entries.
2538 		 */
2539 		if (!hctx->nr_ctx) {
2540 			/* Never unmap queue 0.  We need it as a
2541 			 * fallback in case of a new remap fails
2542 			 * allocation
2543 			 */
2544 			if (i && set->tags[i])
2545 				blk_mq_free_map_and_requests(set, i);
2546 
2547 			hctx->tags = NULL;
2548 			continue;
2549 		}
2550 
2551 		hctx->tags = set->tags[i];
2552 		WARN_ON(!hctx->tags);
2553 
2554 		/*
2555 		 * Set the map size to the number of mapped software queues.
2556 		 * This is more accurate and more efficient than looping
2557 		 * over all possibly mapped software queues.
2558 		 */
2559 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2560 
2561 		/*
2562 		 * Initialize batch roundrobin counts
2563 		 */
2564 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2565 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2566 	}
2567 }
2568 
2569 /*
2570  * Caller needs to ensure that we're either frozen/quiesced, or that
2571  * the queue isn't live yet.
2572  */
2573 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2574 {
2575 	struct blk_mq_hw_ctx *hctx;
2576 	int i;
2577 
2578 	queue_for_each_hw_ctx(q, hctx, i) {
2579 		if (shared)
2580 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2581 		else
2582 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2583 	}
2584 }
2585 
2586 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2587 					bool shared)
2588 {
2589 	struct request_queue *q;
2590 
2591 	lockdep_assert_held(&set->tag_list_lock);
2592 
2593 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2594 		blk_mq_freeze_queue(q);
2595 		queue_set_hctx_shared(q, shared);
2596 		blk_mq_unfreeze_queue(q);
2597 	}
2598 }
2599 
2600 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2601 {
2602 	struct blk_mq_tag_set *set = q->tag_set;
2603 
2604 	mutex_lock(&set->tag_list_lock);
2605 	list_del_rcu(&q->tag_set_list);
2606 	if (list_is_singular(&set->tag_list)) {
2607 		/* just transitioned to unshared */
2608 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2609 		/* update existing queue */
2610 		blk_mq_update_tag_set_depth(set, false);
2611 	}
2612 	mutex_unlock(&set->tag_list_lock);
2613 	INIT_LIST_HEAD(&q->tag_set_list);
2614 }
2615 
2616 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2617 				     struct request_queue *q)
2618 {
2619 	mutex_lock(&set->tag_list_lock);
2620 
2621 	/*
2622 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2623 	 */
2624 	if (!list_empty(&set->tag_list) &&
2625 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2626 		set->flags |= BLK_MQ_F_TAG_SHARED;
2627 		/* update existing queue */
2628 		blk_mq_update_tag_set_depth(set, true);
2629 	}
2630 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2631 		queue_set_hctx_shared(q, true);
2632 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2633 
2634 	mutex_unlock(&set->tag_list_lock);
2635 }
2636 
2637 /* All allocations will be freed in release handler of q->mq_kobj */
2638 static int blk_mq_alloc_ctxs(struct request_queue *q)
2639 {
2640 	struct blk_mq_ctxs *ctxs;
2641 	int cpu;
2642 
2643 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2644 	if (!ctxs)
2645 		return -ENOMEM;
2646 
2647 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2648 	if (!ctxs->queue_ctx)
2649 		goto fail;
2650 
2651 	for_each_possible_cpu(cpu) {
2652 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2653 		ctx->ctxs = ctxs;
2654 	}
2655 
2656 	q->mq_kobj = &ctxs->kobj;
2657 	q->queue_ctx = ctxs->queue_ctx;
2658 
2659 	return 0;
2660  fail:
2661 	kfree(ctxs);
2662 	return -ENOMEM;
2663 }
2664 
2665 /*
2666  * It is the actual release handler for mq, but we do it from
2667  * request queue's release handler for avoiding use-after-free
2668  * and headache because q->mq_kobj shouldn't have been introduced,
2669  * but we can't group ctx/kctx kobj without it.
2670  */
2671 void blk_mq_release(struct request_queue *q)
2672 {
2673 	struct blk_mq_hw_ctx *hctx, *next;
2674 	int i;
2675 
2676 	cancel_delayed_work_sync(&q->requeue_work);
2677 
2678 	queue_for_each_hw_ctx(q, hctx, i)
2679 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2680 
2681 	/* all hctx are in .unused_hctx_list now */
2682 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2683 		list_del_init(&hctx->hctx_list);
2684 		kobject_put(&hctx->kobj);
2685 	}
2686 
2687 	kfree(q->queue_hw_ctx);
2688 
2689 	/*
2690 	 * release .mq_kobj and sw queue's kobject now because
2691 	 * both share lifetime with request queue.
2692 	 */
2693 	blk_mq_sysfs_deinit(q);
2694 }
2695 
2696 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2697 {
2698 	struct request_queue *uninit_q, *q;
2699 
2700 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2701 	if (!uninit_q)
2702 		return ERR_PTR(-ENOMEM);
2703 
2704 	q = blk_mq_init_allocated_queue(set, uninit_q);
2705 	if (IS_ERR(q))
2706 		blk_cleanup_queue(uninit_q);
2707 
2708 	return q;
2709 }
2710 EXPORT_SYMBOL(blk_mq_init_queue);
2711 
2712 /*
2713  * Helper for setting up a queue with mq ops, given queue depth, and
2714  * the passed in mq ops flags.
2715  */
2716 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2717 					   const struct blk_mq_ops *ops,
2718 					   unsigned int queue_depth,
2719 					   unsigned int set_flags)
2720 {
2721 	struct request_queue *q;
2722 	int ret;
2723 
2724 	memset(set, 0, sizeof(*set));
2725 	set->ops = ops;
2726 	set->nr_hw_queues = 1;
2727 	set->nr_maps = 1;
2728 	set->queue_depth = queue_depth;
2729 	set->numa_node = NUMA_NO_NODE;
2730 	set->flags = set_flags;
2731 
2732 	ret = blk_mq_alloc_tag_set(set);
2733 	if (ret)
2734 		return ERR_PTR(ret);
2735 
2736 	q = blk_mq_init_queue(set);
2737 	if (IS_ERR(q)) {
2738 		blk_mq_free_tag_set(set);
2739 		return q;
2740 	}
2741 
2742 	return q;
2743 }
2744 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2745 
2746 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2747 		struct blk_mq_tag_set *set, struct request_queue *q,
2748 		int hctx_idx, int node)
2749 {
2750 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2751 
2752 	/* reuse dead hctx first */
2753 	spin_lock(&q->unused_hctx_lock);
2754 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2755 		if (tmp->numa_node == node) {
2756 			hctx = tmp;
2757 			break;
2758 		}
2759 	}
2760 	if (hctx)
2761 		list_del_init(&hctx->hctx_list);
2762 	spin_unlock(&q->unused_hctx_lock);
2763 
2764 	if (!hctx)
2765 		hctx = blk_mq_alloc_hctx(q, set, node);
2766 	if (!hctx)
2767 		goto fail;
2768 
2769 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2770 		goto free_hctx;
2771 
2772 	return hctx;
2773 
2774  free_hctx:
2775 	kobject_put(&hctx->kobj);
2776  fail:
2777 	return NULL;
2778 }
2779 
2780 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2781 						struct request_queue *q)
2782 {
2783 	int i, j, end;
2784 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2785 
2786 	/* protect against switching io scheduler  */
2787 	mutex_lock(&q->sysfs_lock);
2788 	for (i = 0; i < set->nr_hw_queues; i++) {
2789 		int node;
2790 		struct blk_mq_hw_ctx *hctx;
2791 
2792 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2793 		/*
2794 		 * If the hw queue has been mapped to another numa node,
2795 		 * we need to realloc the hctx. If allocation fails, fallback
2796 		 * to use the previous one.
2797 		 */
2798 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2799 			continue;
2800 
2801 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2802 		if (hctx) {
2803 			if (hctxs[i])
2804 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2805 			hctxs[i] = hctx;
2806 		} else {
2807 			if (hctxs[i])
2808 				pr_warn("Allocate new hctx on node %d fails,\
2809 						fallback to previous one on node %d\n",
2810 						node, hctxs[i]->numa_node);
2811 			else
2812 				break;
2813 		}
2814 	}
2815 	/*
2816 	 * Increasing nr_hw_queues fails. Free the newly allocated
2817 	 * hctxs and keep the previous q->nr_hw_queues.
2818 	 */
2819 	if (i != set->nr_hw_queues) {
2820 		j = q->nr_hw_queues;
2821 		end = i;
2822 	} else {
2823 		j = i;
2824 		end = q->nr_hw_queues;
2825 		q->nr_hw_queues = set->nr_hw_queues;
2826 	}
2827 
2828 	for (; j < end; j++) {
2829 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2830 
2831 		if (hctx) {
2832 			if (hctx->tags)
2833 				blk_mq_free_map_and_requests(set, j);
2834 			blk_mq_exit_hctx(q, set, hctx, j);
2835 			hctxs[j] = NULL;
2836 		}
2837 	}
2838 	mutex_unlock(&q->sysfs_lock);
2839 }
2840 
2841 /*
2842  * Maximum number of hardware queues we support. For single sets, we'll never
2843  * have more than the CPUs (software queues). For multiple sets, the tag_set
2844  * user may have set ->nr_hw_queues larger.
2845  */
2846 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2847 {
2848 	if (set->nr_maps == 1)
2849 		return nr_cpu_ids;
2850 
2851 	return max(set->nr_hw_queues, nr_cpu_ids);
2852 }
2853 
2854 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2855 						  struct request_queue *q)
2856 {
2857 	/* mark the queue as mq asap */
2858 	q->mq_ops = set->ops;
2859 
2860 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2861 					     blk_mq_poll_stats_bkt,
2862 					     BLK_MQ_POLL_STATS_BKTS, q);
2863 	if (!q->poll_cb)
2864 		goto err_exit;
2865 
2866 	if (blk_mq_alloc_ctxs(q))
2867 		goto err_exit;
2868 
2869 	/* init q->mq_kobj and sw queues' kobjects */
2870 	blk_mq_sysfs_init(q);
2871 
2872 	q->nr_queues = nr_hw_queues(set);
2873 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2874 						GFP_KERNEL, set->numa_node);
2875 	if (!q->queue_hw_ctx)
2876 		goto err_sys_init;
2877 
2878 	INIT_LIST_HEAD(&q->unused_hctx_list);
2879 	spin_lock_init(&q->unused_hctx_lock);
2880 
2881 	blk_mq_realloc_hw_ctxs(set, q);
2882 	if (!q->nr_hw_queues)
2883 		goto err_hctxs;
2884 
2885 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2886 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2887 
2888 	q->tag_set = set;
2889 
2890 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2891 	if (set->nr_maps > HCTX_TYPE_POLL &&
2892 	    set->map[HCTX_TYPE_POLL].nr_queues)
2893 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2894 
2895 	q->sg_reserved_size = INT_MAX;
2896 
2897 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2898 	INIT_LIST_HEAD(&q->requeue_list);
2899 	spin_lock_init(&q->requeue_lock);
2900 
2901 	blk_queue_make_request(q, blk_mq_make_request);
2902 
2903 	/*
2904 	 * Do this after blk_queue_make_request() overrides it...
2905 	 */
2906 	q->nr_requests = set->queue_depth;
2907 
2908 	/*
2909 	 * Default to classic polling
2910 	 */
2911 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2912 
2913 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2914 	blk_mq_add_queue_tag_set(set, q);
2915 	blk_mq_map_swqueue(q);
2916 
2917 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2918 		int ret;
2919 
2920 		ret = elevator_init_mq(q);
2921 		if (ret)
2922 			return ERR_PTR(ret);
2923 	}
2924 
2925 	return q;
2926 
2927 err_hctxs:
2928 	kfree(q->queue_hw_ctx);
2929 err_sys_init:
2930 	blk_mq_sysfs_deinit(q);
2931 err_exit:
2932 	q->mq_ops = NULL;
2933 	return ERR_PTR(-ENOMEM);
2934 }
2935 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2936 
2937 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2938 void blk_mq_exit_queue(struct request_queue *q)
2939 {
2940 	struct blk_mq_tag_set	*set = q->tag_set;
2941 
2942 	blk_mq_del_queue_tag_set(q);
2943 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2944 }
2945 
2946 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2947 {
2948 	int i;
2949 
2950 	for (i = 0; i < set->nr_hw_queues; i++)
2951 		if (!__blk_mq_alloc_rq_map(set, i))
2952 			goto out_unwind;
2953 
2954 	return 0;
2955 
2956 out_unwind:
2957 	while (--i >= 0)
2958 		blk_mq_free_rq_map(set->tags[i]);
2959 
2960 	return -ENOMEM;
2961 }
2962 
2963 /*
2964  * Allocate the request maps associated with this tag_set. Note that this
2965  * may reduce the depth asked for, if memory is tight. set->queue_depth
2966  * will be updated to reflect the allocated depth.
2967  */
2968 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2969 {
2970 	unsigned int depth;
2971 	int err;
2972 
2973 	depth = set->queue_depth;
2974 	do {
2975 		err = __blk_mq_alloc_rq_maps(set);
2976 		if (!err)
2977 			break;
2978 
2979 		set->queue_depth >>= 1;
2980 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2981 			err = -ENOMEM;
2982 			break;
2983 		}
2984 	} while (set->queue_depth);
2985 
2986 	if (!set->queue_depth || err) {
2987 		pr_err("blk-mq: failed to allocate request map\n");
2988 		return -ENOMEM;
2989 	}
2990 
2991 	if (depth != set->queue_depth)
2992 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2993 						depth, set->queue_depth);
2994 
2995 	return 0;
2996 }
2997 
2998 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2999 {
3000 	if (set->ops->map_queues && !is_kdump_kernel()) {
3001 		int i;
3002 
3003 		/*
3004 		 * transport .map_queues is usually done in the following
3005 		 * way:
3006 		 *
3007 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3008 		 * 	mask = get_cpu_mask(queue)
3009 		 * 	for_each_cpu(cpu, mask)
3010 		 * 		set->map[x].mq_map[cpu] = queue;
3011 		 * }
3012 		 *
3013 		 * When we need to remap, the table has to be cleared for
3014 		 * killing stale mapping since one CPU may not be mapped
3015 		 * to any hw queue.
3016 		 */
3017 		for (i = 0; i < set->nr_maps; i++)
3018 			blk_mq_clear_mq_map(&set->map[i]);
3019 
3020 		return set->ops->map_queues(set);
3021 	} else {
3022 		BUG_ON(set->nr_maps > 1);
3023 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3024 	}
3025 }
3026 
3027 /*
3028  * Alloc a tag set to be associated with one or more request queues.
3029  * May fail with EINVAL for various error conditions. May adjust the
3030  * requested depth down, if it's too large. In that case, the set
3031  * value will be stored in set->queue_depth.
3032  */
3033 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3034 {
3035 	int i, ret;
3036 
3037 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3038 
3039 	if (!set->nr_hw_queues)
3040 		return -EINVAL;
3041 	if (!set->queue_depth)
3042 		return -EINVAL;
3043 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3044 		return -EINVAL;
3045 
3046 	if (!set->ops->queue_rq)
3047 		return -EINVAL;
3048 
3049 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3050 		return -EINVAL;
3051 
3052 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3053 		pr_info("blk-mq: reduced tag depth to %u\n",
3054 			BLK_MQ_MAX_DEPTH);
3055 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3056 	}
3057 
3058 	if (!set->nr_maps)
3059 		set->nr_maps = 1;
3060 	else if (set->nr_maps > HCTX_MAX_TYPES)
3061 		return -EINVAL;
3062 
3063 	/*
3064 	 * If a crashdump is active, then we are potentially in a very
3065 	 * memory constrained environment. Limit us to 1 queue and
3066 	 * 64 tags to prevent using too much memory.
3067 	 */
3068 	if (is_kdump_kernel()) {
3069 		set->nr_hw_queues = 1;
3070 		set->nr_maps = 1;
3071 		set->queue_depth = min(64U, set->queue_depth);
3072 	}
3073 	/*
3074 	 * There is no use for more h/w queues than cpus if we just have
3075 	 * a single map
3076 	 */
3077 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3078 		set->nr_hw_queues = nr_cpu_ids;
3079 
3080 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3081 				 GFP_KERNEL, set->numa_node);
3082 	if (!set->tags)
3083 		return -ENOMEM;
3084 
3085 	ret = -ENOMEM;
3086 	for (i = 0; i < set->nr_maps; i++) {
3087 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3088 						  sizeof(set->map[i].mq_map[0]),
3089 						  GFP_KERNEL, set->numa_node);
3090 		if (!set->map[i].mq_map)
3091 			goto out_free_mq_map;
3092 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3093 	}
3094 
3095 	ret = blk_mq_update_queue_map(set);
3096 	if (ret)
3097 		goto out_free_mq_map;
3098 
3099 	ret = blk_mq_alloc_rq_maps(set);
3100 	if (ret)
3101 		goto out_free_mq_map;
3102 
3103 	mutex_init(&set->tag_list_lock);
3104 	INIT_LIST_HEAD(&set->tag_list);
3105 
3106 	return 0;
3107 
3108 out_free_mq_map:
3109 	for (i = 0; i < set->nr_maps; i++) {
3110 		kfree(set->map[i].mq_map);
3111 		set->map[i].mq_map = NULL;
3112 	}
3113 	kfree(set->tags);
3114 	set->tags = NULL;
3115 	return ret;
3116 }
3117 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3118 
3119 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3120 {
3121 	int i, j;
3122 
3123 	for (i = 0; i < nr_hw_queues(set); i++)
3124 		blk_mq_free_map_and_requests(set, i);
3125 
3126 	for (j = 0; j < set->nr_maps; j++) {
3127 		kfree(set->map[j].mq_map);
3128 		set->map[j].mq_map = NULL;
3129 	}
3130 
3131 	kfree(set->tags);
3132 	set->tags = NULL;
3133 }
3134 EXPORT_SYMBOL(blk_mq_free_tag_set);
3135 
3136 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3137 {
3138 	struct blk_mq_tag_set *set = q->tag_set;
3139 	struct blk_mq_hw_ctx *hctx;
3140 	int i, ret;
3141 
3142 	if (!set)
3143 		return -EINVAL;
3144 
3145 	if (q->nr_requests == nr)
3146 		return 0;
3147 
3148 	blk_mq_freeze_queue(q);
3149 	blk_mq_quiesce_queue(q);
3150 
3151 	ret = 0;
3152 	queue_for_each_hw_ctx(q, hctx, i) {
3153 		if (!hctx->tags)
3154 			continue;
3155 		/*
3156 		 * If we're using an MQ scheduler, just update the scheduler
3157 		 * queue depth. This is similar to what the old code would do.
3158 		 */
3159 		if (!hctx->sched_tags) {
3160 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3161 							false);
3162 		} else {
3163 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3164 							nr, true);
3165 		}
3166 		if (ret)
3167 			break;
3168 		if (q->elevator && q->elevator->type->ops.depth_updated)
3169 			q->elevator->type->ops.depth_updated(hctx);
3170 	}
3171 
3172 	if (!ret)
3173 		q->nr_requests = nr;
3174 
3175 	blk_mq_unquiesce_queue(q);
3176 	blk_mq_unfreeze_queue(q);
3177 
3178 	return ret;
3179 }
3180 
3181 /*
3182  * request_queue and elevator_type pair.
3183  * It is just used by __blk_mq_update_nr_hw_queues to cache
3184  * the elevator_type associated with a request_queue.
3185  */
3186 struct blk_mq_qe_pair {
3187 	struct list_head node;
3188 	struct request_queue *q;
3189 	struct elevator_type *type;
3190 };
3191 
3192 /*
3193  * Cache the elevator_type in qe pair list and switch the
3194  * io scheduler to 'none'
3195  */
3196 static bool blk_mq_elv_switch_none(struct list_head *head,
3197 		struct request_queue *q)
3198 {
3199 	struct blk_mq_qe_pair *qe;
3200 
3201 	if (!q->elevator)
3202 		return true;
3203 
3204 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3205 	if (!qe)
3206 		return false;
3207 
3208 	INIT_LIST_HEAD(&qe->node);
3209 	qe->q = q;
3210 	qe->type = q->elevator->type;
3211 	list_add(&qe->node, head);
3212 
3213 	mutex_lock(&q->sysfs_lock);
3214 	/*
3215 	 * After elevator_switch_mq, the previous elevator_queue will be
3216 	 * released by elevator_release. The reference of the io scheduler
3217 	 * module get by elevator_get will also be put. So we need to get
3218 	 * a reference of the io scheduler module here to prevent it to be
3219 	 * removed.
3220 	 */
3221 	__module_get(qe->type->elevator_owner);
3222 	elevator_switch_mq(q, NULL);
3223 	mutex_unlock(&q->sysfs_lock);
3224 
3225 	return true;
3226 }
3227 
3228 static void blk_mq_elv_switch_back(struct list_head *head,
3229 		struct request_queue *q)
3230 {
3231 	struct blk_mq_qe_pair *qe;
3232 	struct elevator_type *t = NULL;
3233 
3234 	list_for_each_entry(qe, head, node)
3235 		if (qe->q == q) {
3236 			t = qe->type;
3237 			break;
3238 		}
3239 
3240 	if (!t)
3241 		return;
3242 
3243 	list_del(&qe->node);
3244 	kfree(qe);
3245 
3246 	mutex_lock(&q->sysfs_lock);
3247 	elevator_switch_mq(q, t);
3248 	mutex_unlock(&q->sysfs_lock);
3249 }
3250 
3251 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3252 							int nr_hw_queues)
3253 {
3254 	struct request_queue *q;
3255 	LIST_HEAD(head);
3256 	int prev_nr_hw_queues;
3257 
3258 	lockdep_assert_held(&set->tag_list_lock);
3259 
3260 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3261 		nr_hw_queues = nr_cpu_ids;
3262 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3263 		return;
3264 
3265 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3266 		blk_mq_freeze_queue(q);
3267 	/*
3268 	 * Sync with blk_mq_queue_tag_busy_iter.
3269 	 */
3270 	synchronize_rcu();
3271 	/*
3272 	 * Switch IO scheduler to 'none', cleaning up the data associated
3273 	 * with the previous scheduler. We will switch back once we are done
3274 	 * updating the new sw to hw queue mappings.
3275 	 */
3276 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3277 		if (!blk_mq_elv_switch_none(&head, q))
3278 			goto switch_back;
3279 
3280 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3281 		blk_mq_debugfs_unregister_hctxs(q);
3282 		blk_mq_sysfs_unregister(q);
3283 	}
3284 
3285 	prev_nr_hw_queues = set->nr_hw_queues;
3286 	set->nr_hw_queues = nr_hw_queues;
3287 	blk_mq_update_queue_map(set);
3288 fallback:
3289 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3290 		blk_mq_realloc_hw_ctxs(set, q);
3291 		if (q->nr_hw_queues != set->nr_hw_queues) {
3292 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3293 					nr_hw_queues, prev_nr_hw_queues);
3294 			set->nr_hw_queues = prev_nr_hw_queues;
3295 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3296 			goto fallback;
3297 		}
3298 		blk_mq_map_swqueue(q);
3299 	}
3300 
3301 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3302 		blk_mq_sysfs_register(q);
3303 		blk_mq_debugfs_register_hctxs(q);
3304 	}
3305 
3306 switch_back:
3307 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3308 		blk_mq_elv_switch_back(&head, q);
3309 
3310 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3311 		blk_mq_unfreeze_queue(q);
3312 }
3313 
3314 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3315 {
3316 	mutex_lock(&set->tag_list_lock);
3317 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3318 	mutex_unlock(&set->tag_list_lock);
3319 }
3320 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3321 
3322 /* Enable polling stats and return whether they were already enabled. */
3323 static bool blk_poll_stats_enable(struct request_queue *q)
3324 {
3325 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3326 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3327 		return true;
3328 	blk_stat_add_callback(q, q->poll_cb);
3329 	return false;
3330 }
3331 
3332 static void blk_mq_poll_stats_start(struct request_queue *q)
3333 {
3334 	/*
3335 	 * We don't arm the callback if polling stats are not enabled or the
3336 	 * callback is already active.
3337 	 */
3338 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3339 	    blk_stat_is_active(q->poll_cb))
3340 		return;
3341 
3342 	blk_stat_activate_msecs(q->poll_cb, 100);
3343 }
3344 
3345 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3346 {
3347 	struct request_queue *q = cb->data;
3348 	int bucket;
3349 
3350 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3351 		if (cb->stat[bucket].nr_samples)
3352 			q->poll_stat[bucket] = cb->stat[bucket];
3353 	}
3354 }
3355 
3356 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3357 				       struct blk_mq_hw_ctx *hctx,
3358 				       struct request *rq)
3359 {
3360 	unsigned long ret = 0;
3361 	int bucket;
3362 
3363 	/*
3364 	 * If stats collection isn't on, don't sleep but turn it on for
3365 	 * future users
3366 	 */
3367 	if (!blk_poll_stats_enable(q))
3368 		return 0;
3369 
3370 	/*
3371 	 * As an optimistic guess, use half of the mean service time
3372 	 * for this type of request. We can (and should) make this smarter.
3373 	 * For instance, if the completion latencies are tight, we can
3374 	 * get closer than just half the mean. This is especially
3375 	 * important on devices where the completion latencies are longer
3376 	 * than ~10 usec. We do use the stats for the relevant IO size
3377 	 * if available which does lead to better estimates.
3378 	 */
3379 	bucket = blk_mq_poll_stats_bkt(rq);
3380 	if (bucket < 0)
3381 		return ret;
3382 
3383 	if (q->poll_stat[bucket].nr_samples)
3384 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3385 
3386 	return ret;
3387 }
3388 
3389 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3390 				     struct blk_mq_hw_ctx *hctx,
3391 				     struct request *rq)
3392 {
3393 	struct hrtimer_sleeper hs;
3394 	enum hrtimer_mode mode;
3395 	unsigned int nsecs;
3396 	ktime_t kt;
3397 
3398 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3399 		return false;
3400 
3401 	/*
3402 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3403 	 *
3404 	 *  0:	use half of prev avg
3405 	 * >0:	use this specific value
3406 	 */
3407 	if (q->poll_nsec > 0)
3408 		nsecs = q->poll_nsec;
3409 	else
3410 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3411 
3412 	if (!nsecs)
3413 		return false;
3414 
3415 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3416 
3417 	/*
3418 	 * This will be replaced with the stats tracking code, using
3419 	 * 'avg_completion_time / 2' as the pre-sleep target.
3420 	 */
3421 	kt = nsecs;
3422 
3423 	mode = HRTIMER_MODE_REL;
3424 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3425 	hrtimer_set_expires(&hs.timer, kt);
3426 
3427 	hrtimer_init_sleeper(&hs, current);
3428 	do {
3429 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3430 			break;
3431 		set_current_state(TASK_UNINTERRUPTIBLE);
3432 		hrtimer_start_expires(&hs.timer, mode);
3433 		if (hs.task)
3434 			io_schedule();
3435 		hrtimer_cancel(&hs.timer);
3436 		mode = HRTIMER_MODE_ABS;
3437 	} while (hs.task && !signal_pending(current));
3438 
3439 	__set_current_state(TASK_RUNNING);
3440 	destroy_hrtimer_on_stack(&hs.timer);
3441 	return true;
3442 }
3443 
3444 static bool blk_mq_poll_hybrid(struct request_queue *q,
3445 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3446 {
3447 	struct request *rq;
3448 
3449 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3450 		return false;
3451 
3452 	if (!blk_qc_t_is_internal(cookie))
3453 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3454 	else {
3455 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3456 		/*
3457 		 * With scheduling, if the request has completed, we'll
3458 		 * get a NULL return here, as we clear the sched tag when
3459 		 * that happens. The request still remains valid, like always,
3460 		 * so we should be safe with just the NULL check.
3461 		 */
3462 		if (!rq)
3463 			return false;
3464 	}
3465 
3466 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3467 }
3468 
3469 /**
3470  * blk_poll - poll for IO completions
3471  * @q:  the queue
3472  * @cookie: cookie passed back at IO submission time
3473  * @spin: whether to spin for completions
3474  *
3475  * Description:
3476  *    Poll for completions on the passed in queue. Returns number of
3477  *    completed entries found. If @spin is true, then blk_poll will continue
3478  *    looping until at least one completion is found, unless the task is
3479  *    otherwise marked running (or we need to reschedule).
3480  */
3481 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3482 {
3483 	struct blk_mq_hw_ctx *hctx;
3484 	long state;
3485 
3486 	if (!blk_qc_t_valid(cookie) ||
3487 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3488 		return 0;
3489 
3490 	if (current->plug)
3491 		blk_flush_plug_list(current->plug, false);
3492 
3493 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3494 
3495 	/*
3496 	 * If we sleep, have the caller restart the poll loop to reset
3497 	 * the state. Like for the other success return cases, the
3498 	 * caller is responsible for checking if the IO completed. If
3499 	 * the IO isn't complete, we'll get called again and will go
3500 	 * straight to the busy poll loop.
3501 	 */
3502 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3503 		return 1;
3504 
3505 	hctx->poll_considered++;
3506 
3507 	state = current->state;
3508 	do {
3509 		int ret;
3510 
3511 		hctx->poll_invoked++;
3512 
3513 		ret = q->mq_ops->poll(hctx);
3514 		if (ret > 0) {
3515 			hctx->poll_success++;
3516 			__set_current_state(TASK_RUNNING);
3517 			return ret;
3518 		}
3519 
3520 		if (signal_pending_state(state, current))
3521 			__set_current_state(TASK_RUNNING);
3522 
3523 		if (current->state == TASK_RUNNING)
3524 			return 1;
3525 		if (ret < 0 || !spin)
3526 			break;
3527 		cpu_relax();
3528 	} while (!need_resched());
3529 
3530 	__set_current_state(TASK_RUNNING);
3531 	return 0;
3532 }
3533 EXPORT_SYMBOL_GPL(blk_poll);
3534 
3535 unsigned int blk_mq_rq_cpu(struct request *rq)
3536 {
3537 	return rq->mq_ctx->cpu;
3538 }
3539 EXPORT_SYMBOL(blk_mq_rq_cpu);
3540 
3541 static int __init blk_mq_init(void)
3542 {
3543 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3544 				blk_mq_hctx_notify_dead);
3545 	return 0;
3546 }
3547 subsys_initcall(blk_mq_init);
3548