1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 #include <linux/prefetch.h> 26 27 #include <trace/events/block.h> 28 29 #include <linux/blk-mq.h> 30 #include "blk.h" 31 #include "blk-mq.h" 32 #include "blk-mq-tag.h" 33 #include "blk-stat.h" 34 #include "blk-wbt.h" 35 36 static DEFINE_MUTEX(all_q_mutex); 37 static LIST_HEAD(all_q_list); 38 39 /* 40 * Check if any of the ctx's have pending work in this hardware queue 41 */ 42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 43 { 44 return sbitmap_any_bit_set(&hctx->ctx_map); 45 } 46 47 /* 48 * Mark this ctx as having pending work in this hardware queue 49 */ 50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 51 struct blk_mq_ctx *ctx) 52 { 53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 55 } 56 57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 58 struct blk_mq_ctx *ctx) 59 { 60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 61 } 62 63 void blk_mq_freeze_queue_start(struct request_queue *q) 64 { 65 int freeze_depth; 66 67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 68 if (freeze_depth == 1) { 69 percpu_ref_kill(&q->q_usage_counter); 70 blk_mq_run_hw_queues(q, false); 71 } 72 } 73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 74 75 static void blk_mq_freeze_queue_wait(struct request_queue *q) 76 { 77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 78 } 79 80 /* 81 * Guarantee no request is in use, so we can change any data structure of 82 * the queue afterward. 83 */ 84 void blk_freeze_queue(struct request_queue *q) 85 { 86 /* 87 * In the !blk_mq case we are only calling this to kill the 88 * q_usage_counter, otherwise this increases the freeze depth 89 * and waits for it to return to zero. For this reason there is 90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 91 * exported to drivers as the only user for unfreeze is blk_mq. 92 */ 93 blk_mq_freeze_queue_start(q); 94 blk_mq_freeze_queue_wait(q); 95 } 96 97 void blk_mq_freeze_queue(struct request_queue *q) 98 { 99 /* 100 * ...just an alias to keep freeze and unfreeze actions balanced 101 * in the blk_mq_* namespace 102 */ 103 blk_freeze_queue(q); 104 } 105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 106 107 void blk_mq_unfreeze_queue(struct request_queue *q) 108 { 109 int freeze_depth; 110 111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 112 WARN_ON_ONCE(freeze_depth < 0); 113 if (!freeze_depth) { 114 percpu_ref_reinit(&q->q_usage_counter); 115 wake_up_all(&q->mq_freeze_wq); 116 } 117 } 118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 119 120 /** 121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 122 * @q: request queue. 123 * 124 * Note: this function does not prevent that the struct request end_io() 125 * callback function is invoked. Additionally, it is not prevented that 126 * new queue_rq() calls occur unless the queue has been stopped first. 127 */ 128 void blk_mq_quiesce_queue(struct request_queue *q) 129 { 130 struct blk_mq_hw_ctx *hctx; 131 unsigned int i; 132 bool rcu = false; 133 134 blk_mq_stop_hw_queues(q); 135 136 queue_for_each_hw_ctx(q, hctx, i) { 137 if (hctx->flags & BLK_MQ_F_BLOCKING) 138 synchronize_srcu(&hctx->queue_rq_srcu); 139 else 140 rcu = true; 141 } 142 if (rcu) 143 synchronize_rcu(); 144 } 145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 146 147 void blk_mq_wake_waiters(struct request_queue *q) 148 { 149 struct blk_mq_hw_ctx *hctx; 150 unsigned int i; 151 152 queue_for_each_hw_ctx(q, hctx, i) 153 if (blk_mq_hw_queue_mapped(hctx)) 154 blk_mq_tag_wakeup_all(hctx->tags, true); 155 156 /* 157 * If we are called because the queue has now been marked as 158 * dying, we need to ensure that processes currently waiting on 159 * the queue are notified as well. 160 */ 161 wake_up_all(&q->mq_freeze_wq); 162 } 163 164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 165 { 166 return blk_mq_has_free_tags(hctx->tags); 167 } 168 EXPORT_SYMBOL(blk_mq_can_queue); 169 170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 171 struct request *rq, unsigned int op) 172 { 173 INIT_LIST_HEAD(&rq->queuelist); 174 /* csd/requeue_work/fifo_time is initialized before use */ 175 rq->q = q; 176 rq->mq_ctx = ctx; 177 rq->cmd_flags = op; 178 if (blk_queue_io_stat(q)) 179 rq->rq_flags |= RQF_IO_STAT; 180 /* do not touch atomic flags, it needs atomic ops against the timer */ 181 rq->cpu = -1; 182 INIT_HLIST_NODE(&rq->hash); 183 RB_CLEAR_NODE(&rq->rb_node); 184 rq->rq_disk = NULL; 185 rq->part = NULL; 186 rq->start_time = jiffies; 187 #ifdef CONFIG_BLK_CGROUP 188 rq->rl = NULL; 189 set_start_time_ns(rq); 190 rq->io_start_time_ns = 0; 191 #endif 192 rq->nr_phys_segments = 0; 193 #if defined(CONFIG_BLK_DEV_INTEGRITY) 194 rq->nr_integrity_segments = 0; 195 #endif 196 rq->special = NULL; 197 /* tag was already set */ 198 rq->errors = 0; 199 200 rq->cmd = rq->__cmd; 201 202 rq->extra_len = 0; 203 rq->sense_len = 0; 204 rq->resid_len = 0; 205 rq->sense = NULL; 206 207 INIT_LIST_HEAD(&rq->timeout_list); 208 rq->timeout = 0; 209 210 rq->end_io = NULL; 211 rq->end_io_data = NULL; 212 rq->next_rq = NULL; 213 214 ctx->rq_dispatched[op_is_sync(op)]++; 215 } 216 217 static struct request * 218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op) 219 { 220 struct request *rq; 221 unsigned int tag; 222 223 tag = blk_mq_get_tag(data); 224 if (tag != BLK_MQ_TAG_FAIL) { 225 rq = data->hctx->tags->rqs[tag]; 226 227 if (blk_mq_tag_busy(data->hctx)) { 228 rq->rq_flags = RQF_MQ_INFLIGHT; 229 atomic_inc(&data->hctx->nr_active); 230 } 231 232 rq->tag = tag; 233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 234 return rq; 235 } 236 237 return NULL; 238 } 239 240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 241 unsigned int flags) 242 { 243 struct blk_mq_ctx *ctx; 244 struct blk_mq_hw_ctx *hctx; 245 struct request *rq; 246 struct blk_mq_alloc_data alloc_data; 247 int ret; 248 249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 250 if (ret) 251 return ERR_PTR(ret); 252 253 ctx = blk_mq_get_ctx(q); 254 hctx = blk_mq_map_queue(q, ctx->cpu); 255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 256 rq = __blk_mq_alloc_request(&alloc_data, rw); 257 blk_mq_put_ctx(ctx); 258 259 if (!rq) { 260 blk_queue_exit(q); 261 return ERR_PTR(-EWOULDBLOCK); 262 } 263 264 rq->__data_len = 0; 265 rq->__sector = (sector_t) -1; 266 rq->bio = rq->biotail = NULL; 267 return rq; 268 } 269 EXPORT_SYMBOL(blk_mq_alloc_request); 270 271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 272 unsigned int flags, unsigned int hctx_idx) 273 { 274 struct blk_mq_hw_ctx *hctx; 275 struct blk_mq_ctx *ctx; 276 struct request *rq; 277 struct blk_mq_alloc_data alloc_data; 278 int ret; 279 280 /* 281 * If the tag allocator sleeps we could get an allocation for a 282 * different hardware context. No need to complicate the low level 283 * allocator for this for the rare use case of a command tied to 284 * a specific queue. 285 */ 286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 287 return ERR_PTR(-EINVAL); 288 289 if (hctx_idx >= q->nr_hw_queues) 290 return ERR_PTR(-EIO); 291 292 ret = blk_queue_enter(q, true); 293 if (ret) 294 return ERR_PTR(ret); 295 296 /* 297 * Check if the hardware context is actually mapped to anything. 298 * If not tell the caller that it should skip this queue. 299 */ 300 hctx = q->queue_hw_ctx[hctx_idx]; 301 if (!blk_mq_hw_queue_mapped(hctx)) { 302 ret = -EXDEV; 303 goto out_queue_exit; 304 } 305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); 306 307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 308 rq = __blk_mq_alloc_request(&alloc_data, rw); 309 if (!rq) { 310 ret = -EWOULDBLOCK; 311 goto out_queue_exit; 312 } 313 314 return rq; 315 316 out_queue_exit: 317 blk_queue_exit(q); 318 return ERR_PTR(ret); 319 } 320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 321 322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 323 struct blk_mq_ctx *ctx, struct request *rq) 324 { 325 const int tag = rq->tag; 326 struct request_queue *q = rq->q; 327 328 if (rq->rq_flags & RQF_MQ_INFLIGHT) 329 atomic_dec(&hctx->nr_active); 330 331 wbt_done(q->rq_wb, &rq->issue_stat); 332 rq->rq_flags = 0; 333 334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 336 blk_mq_put_tag(hctx, ctx, tag); 337 blk_queue_exit(q); 338 } 339 340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 341 { 342 struct blk_mq_ctx *ctx = rq->mq_ctx; 343 344 ctx->rq_completed[rq_is_sync(rq)]++; 345 __blk_mq_free_request(hctx, ctx, rq); 346 347 } 348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 349 350 void blk_mq_free_request(struct request *rq) 351 { 352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 353 } 354 EXPORT_SYMBOL_GPL(blk_mq_free_request); 355 356 inline void __blk_mq_end_request(struct request *rq, int error) 357 { 358 blk_account_io_done(rq); 359 360 if (rq->end_io) { 361 wbt_done(rq->q->rq_wb, &rq->issue_stat); 362 rq->end_io(rq, error); 363 } else { 364 if (unlikely(blk_bidi_rq(rq))) 365 blk_mq_free_request(rq->next_rq); 366 blk_mq_free_request(rq); 367 } 368 } 369 EXPORT_SYMBOL(__blk_mq_end_request); 370 371 void blk_mq_end_request(struct request *rq, int error) 372 { 373 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 374 BUG(); 375 __blk_mq_end_request(rq, error); 376 } 377 EXPORT_SYMBOL(blk_mq_end_request); 378 379 static void __blk_mq_complete_request_remote(void *data) 380 { 381 struct request *rq = data; 382 383 rq->q->softirq_done_fn(rq); 384 } 385 386 static void blk_mq_ipi_complete_request(struct request *rq) 387 { 388 struct blk_mq_ctx *ctx = rq->mq_ctx; 389 bool shared = false; 390 int cpu; 391 392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 393 rq->q->softirq_done_fn(rq); 394 return; 395 } 396 397 cpu = get_cpu(); 398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 399 shared = cpus_share_cache(cpu, ctx->cpu); 400 401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 402 rq->csd.func = __blk_mq_complete_request_remote; 403 rq->csd.info = rq; 404 rq->csd.flags = 0; 405 smp_call_function_single_async(ctx->cpu, &rq->csd); 406 } else { 407 rq->q->softirq_done_fn(rq); 408 } 409 put_cpu(); 410 } 411 412 static void blk_mq_stat_add(struct request *rq) 413 { 414 if (rq->rq_flags & RQF_STATS) { 415 /* 416 * We could rq->mq_ctx here, but there's less of a risk 417 * of races if we have the completion event add the stats 418 * to the local software queue. 419 */ 420 struct blk_mq_ctx *ctx; 421 422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); 423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); 424 } 425 } 426 427 static void __blk_mq_complete_request(struct request *rq) 428 { 429 struct request_queue *q = rq->q; 430 431 blk_mq_stat_add(rq); 432 433 if (!q->softirq_done_fn) 434 blk_mq_end_request(rq, rq->errors); 435 else 436 blk_mq_ipi_complete_request(rq); 437 } 438 439 /** 440 * blk_mq_complete_request - end I/O on a request 441 * @rq: the request being processed 442 * 443 * Description: 444 * Ends all I/O on a request. It does not handle partial completions. 445 * The actual completion happens out-of-order, through a IPI handler. 446 **/ 447 void blk_mq_complete_request(struct request *rq, int error) 448 { 449 struct request_queue *q = rq->q; 450 451 if (unlikely(blk_should_fake_timeout(q))) 452 return; 453 if (!blk_mark_rq_complete(rq)) { 454 rq->errors = error; 455 __blk_mq_complete_request(rq); 456 } 457 } 458 EXPORT_SYMBOL(blk_mq_complete_request); 459 460 int blk_mq_request_started(struct request *rq) 461 { 462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 463 } 464 EXPORT_SYMBOL_GPL(blk_mq_request_started); 465 466 void blk_mq_start_request(struct request *rq) 467 { 468 struct request_queue *q = rq->q; 469 470 trace_block_rq_issue(q, rq); 471 472 rq->resid_len = blk_rq_bytes(rq); 473 if (unlikely(blk_bidi_rq(rq))) 474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 475 476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 477 blk_stat_set_issue_time(&rq->issue_stat); 478 rq->rq_flags |= RQF_STATS; 479 wbt_issue(q->rq_wb, &rq->issue_stat); 480 } 481 482 blk_add_timer(rq); 483 484 /* 485 * Ensure that ->deadline is visible before set the started 486 * flag and clear the completed flag. 487 */ 488 smp_mb__before_atomic(); 489 490 /* 491 * Mark us as started and clear complete. Complete might have been 492 * set if requeue raced with timeout, which then marked it as 493 * complete. So be sure to clear complete again when we start 494 * the request, otherwise we'll ignore the completion event. 495 */ 496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 500 501 if (q->dma_drain_size && blk_rq_bytes(rq)) { 502 /* 503 * Make sure space for the drain appears. We know we can do 504 * this because max_hw_segments has been adjusted to be one 505 * fewer than the device can handle. 506 */ 507 rq->nr_phys_segments++; 508 } 509 } 510 EXPORT_SYMBOL(blk_mq_start_request); 511 512 static void __blk_mq_requeue_request(struct request *rq) 513 { 514 struct request_queue *q = rq->q; 515 516 trace_block_rq_requeue(q, rq); 517 wbt_requeue(q->rq_wb, &rq->issue_stat); 518 519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 520 if (q->dma_drain_size && blk_rq_bytes(rq)) 521 rq->nr_phys_segments--; 522 } 523 } 524 525 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 526 { 527 __blk_mq_requeue_request(rq); 528 529 BUG_ON(blk_queued_rq(rq)); 530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 531 } 532 EXPORT_SYMBOL(blk_mq_requeue_request); 533 534 static void blk_mq_requeue_work(struct work_struct *work) 535 { 536 struct request_queue *q = 537 container_of(work, struct request_queue, requeue_work.work); 538 LIST_HEAD(rq_list); 539 struct request *rq, *next; 540 unsigned long flags; 541 542 spin_lock_irqsave(&q->requeue_lock, flags); 543 list_splice_init(&q->requeue_list, &rq_list); 544 spin_unlock_irqrestore(&q->requeue_lock, flags); 545 546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 547 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 548 continue; 549 550 rq->rq_flags &= ~RQF_SOFTBARRIER; 551 list_del_init(&rq->queuelist); 552 blk_mq_insert_request(rq, true, false, false); 553 } 554 555 while (!list_empty(&rq_list)) { 556 rq = list_entry(rq_list.next, struct request, queuelist); 557 list_del_init(&rq->queuelist); 558 blk_mq_insert_request(rq, false, false, false); 559 } 560 561 blk_mq_run_hw_queues(q, false); 562 } 563 564 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 565 bool kick_requeue_list) 566 { 567 struct request_queue *q = rq->q; 568 unsigned long flags; 569 570 /* 571 * We abuse this flag that is otherwise used by the I/O scheduler to 572 * request head insertation from the workqueue. 573 */ 574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 575 576 spin_lock_irqsave(&q->requeue_lock, flags); 577 if (at_head) { 578 rq->rq_flags |= RQF_SOFTBARRIER; 579 list_add(&rq->queuelist, &q->requeue_list); 580 } else { 581 list_add_tail(&rq->queuelist, &q->requeue_list); 582 } 583 spin_unlock_irqrestore(&q->requeue_lock, flags); 584 585 if (kick_requeue_list) 586 blk_mq_kick_requeue_list(q); 587 } 588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 589 590 void blk_mq_kick_requeue_list(struct request_queue *q) 591 { 592 kblockd_schedule_delayed_work(&q->requeue_work, 0); 593 } 594 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 595 596 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 597 unsigned long msecs) 598 { 599 kblockd_schedule_delayed_work(&q->requeue_work, 600 msecs_to_jiffies(msecs)); 601 } 602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 603 604 void blk_mq_abort_requeue_list(struct request_queue *q) 605 { 606 unsigned long flags; 607 LIST_HEAD(rq_list); 608 609 spin_lock_irqsave(&q->requeue_lock, flags); 610 list_splice_init(&q->requeue_list, &rq_list); 611 spin_unlock_irqrestore(&q->requeue_lock, flags); 612 613 while (!list_empty(&rq_list)) { 614 struct request *rq; 615 616 rq = list_first_entry(&rq_list, struct request, queuelist); 617 list_del_init(&rq->queuelist); 618 rq->errors = -EIO; 619 blk_mq_end_request(rq, rq->errors); 620 } 621 } 622 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 623 624 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 625 { 626 if (tag < tags->nr_tags) { 627 prefetch(tags->rqs[tag]); 628 return tags->rqs[tag]; 629 } 630 631 return NULL; 632 } 633 EXPORT_SYMBOL(blk_mq_tag_to_rq); 634 635 struct blk_mq_timeout_data { 636 unsigned long next; 637 unsigned int next_set; 638 }; 639 640 void blk_mq_rq_timed_out(struct request *req, bool reserved) 641 { 642 struct blk_mq_ops *ops = req->q->mq_ops; 643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 644 645 /* 646 * We know that complete is set at this point. If STARTED isn't set 647 * anymore, then the request isn't active and the "timeout" should 648 * just be ignored. This can happen due to the bitflag ordering. 649 * Timeout first checks if STARTED is set, and if it is, assumes 650 * the request is active. But if we race with completion, then 651 * we both flags will get cleared. So check here again, and ignore 652 * a timeout event with a request that isn't active. 653 */ 654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 655 return; 656 657 if (ops->timeout) 658 ret = ops->timeout(req, reserved); 659 660 switch (ret) { 661 case BLK_EH_HANDLED: 662 __blk_mq_complete_request(req); 663 break; 664 case BLK_EH_RESET_TIMER: 665 blk_add_timer(req); 666 blk_clear_rq_complete(req); 667 break; 668 case BLK_EH_NOT_HANDLED: 669 break; 670 default: 671 printk(KERN_ERR "block: bad eh return: %d\n", ret); 672 break; 673 } 674 } 675 676 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 677 struct request *rq, void *priv, bool reserved) 678 { 679 struct blk_mq_timeout_data *data = priv; 680 681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 682 /* 683 * If a request wasn't started before the queue was 684 * marked dying, kill it here or it'll go unnoticed. 685 */ 686 if (unlikely(blk_queue_dying(rq->q))) { 687 rq->errors = -EIO; 688 blk_mq_end_request(rq, rq->errors); 689 } 690 return; 691 } 692 693 if (time_after_eq(jiffies, rq->deadline)) { 694 if (!blk_mark_rq_complete(rq)) 695 blk_mq_rq_timed_out(rq, reserved); 696 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 697 data->next = rq->deadline; 698 data->next_set = 1; 699 } 700 } 701 702 static void blk_mq_timeout_work(struct work_struct *work) 703 { 704 struct request_queue *q = 705 container_of(work, struct request_queue, timeout_work); 706 struct blk_mq_timeout_data data = { 707 .next = 0, 708 .next_set = 0, 709 }; 710 int i; 711 712 /* A deadlock might occur if a request is stuck requiring a 713 * timeout at the same time a queue freeze is waiting 714 * completion, since the timeout code would not be able to 715 * acquire the queue reference here. 716 * 717 * That's why we don't use blk_queue_enter here; instead, we use 718 * percpu_ref_tryget directly, because we need to be able to 719 * obtain a reference even in the short window between the queue 720 * starting to freeze, by dropping the first reference in 721 * blk_mq_freeze_queue_start, and the moment the last request is 722 * consumed, marked by the instant q_usage_counter reaches 723 * zero. 724 */ 725 if (!percpu_ref_tryget(&q->q_usage_counter)) 726 return; 727 728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 729 730 if (data.next_set) { 731 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 732 mod_timer(&q->timeout, data.next); 733 } else { 734 struct blk_mq_hw_ctx *hctx; 735 736 queue_for_each_hw_ctx(q, hctx, i) { 737 /* the hctx may be unmapped, so check it here */ 738 if (blk_mq_hw_queue_mapped(hctx)) 739 blk_mq_tag_idle(hctx); 740 } 741 } 742 blk_queue_exit(q); 743 } 744 745 /* 746 * Reverse check our software queue for entries that we could potentially 747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 748 * too much time checking for merges. 749 */ 750 static bool blk_mq_attempt_merge(struct request_queue *q, 751 struct blk_mq_ctx *ctx, struct bio *bio) 752 { 753 struct request *rq; 754 int checked = 8; 755 756 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 757 int el_ret; 758 759 if (!checked--) 760 break; 761 762 if (!blk_rq_merge_ok(rq, bio)) 763 continue; 764 765 el_ret = blk_try_merge(rq, bio); 766 if (el_ret == ELEVATOR_BACK_MERGE) { 767 if (bio_attempt_back_merge(q, rq, bio)) { 768 ctx->rq_merged++; 769 return true; 770 } 771 break; 772 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 773 if (bio_attempt_front_merge(q, rq, bio)) { 774 ctx->rq_merged++; 775 return true; 776 } 777 break; 778 } 779 } 780 781 return false; 782 } 783 784 struct flush_busy_ctx_data { 785 struct blk_mq_hw_ctx *hctx; 786 struct list_head *list; 787 }; 788 789 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 790 { 791 struct flush_busy_ctx_data *flush_data = data; 792 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 794 795 sbitmap_clear_bit(sb, bitnr); 796 spin_lock(&ctx->lock); 797 list_splice_tail_init(&ctx->rq_list, flush_data->list); 798 spin_unlock(&ctx->lock); 799 return true; 800 } 801 802 /* 803 * Process software queues that have been marked busy, splicing them 804 * to the for-dispatch 805 */ 806 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 807 { 808 struct flush_busy_ctx_data data = { 809 .hctx = hctx, 810 .list = list, 811 }; 812 813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 814 } 815 816 static inline unsigned int queued_to_index(unsigned int queued) 817 { 818 if (!queued) 819 return 0; 820 821 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 822 } 823 824 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) 825 { 826 struct request_queue *q = hctx->queue; 827 struct request *rq; 828 LIST_HEAD(driver_list); 829 struct list_head *dptr; 830 int queued, ret = BLK_MQ_RQ_QUEUE_OK; 831 832 /* 833 * Start off with dptr being NULL, so we start the first request 834 * immediately, even if we have more pending. 835 */ 836 dptr = NULL; 837 838 /* 839 * Now process all the entries, sending them to the driver. 840 */ 841 queued = 0; 842 while (!list_empty(list)) { 843 struct blk_mq_queue_data bd; 844 845 rq = list_first_entry(list, struct request, queuelist); 846 list_del_init(&rq->queuelist); 847 848 bd.rq = rq; 849 bd.list = dptr; 850 bd.last = list_empty(list); 851 852 ret = q->mq_ops->queue_rq(hctx, &bd); 853 switch (ret) { 854 case BLK_MQ_RQ_QUEUE_OK: 855 queued++; 856 break; 857 case BLK_MQ_RQ_QUEUE_BUSY: 858 list_add(&rq->queuelist, list); 859 __blk_mq_requeue_request(rq); 860 break; 861 default: 862 pr_err("blk-mq: bad return on queue: %d\n", ret); 863 case BLK_MQ_RQ_QUEUE_ERROR: 864 rq->errors = -EIO; 865 blk_mq_end_request(rq, rq->errors); 866 break; 867 } 868 869 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 870 break; 871 872 /* 873 * We've done the first request. If we have more than 1 874 * left in the list, set dptr to defer issue. 875 */ 876 if (!dptr && list->next != list->prev) 877 dptr = &driver_list; 878 } 879 880 hctx->dispatched[queued_to_index(queued)]++; 881 882 /* 883 * Any items that need requeuing? Stuff them into hctx->dispatch, 884 * that is where we will continue on next queue run. 885 */ 886 if (!list_empty(list)) { 887 spin_lock(&hctx->lock); 888 list_splice(list, &hctx->dispatch); 889 spin_unlock(&hctx->lock); 890 891 /* 892 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 893 * it's possible the queue is stopped and restarted again 894 * before this. Queue restart will dispatch requests. And since 895 * requests in rq_list aren't added into hctx->dispatch yet, 896 * the requests in rq_list might get lost. 897 * 898 * blk_mq_run_hw_queue() already checks the STOPPED bit 899 **/ 900 blk_mq_run_hw_queue(hctx, true); 901 } 902 903 return ret != BLK_MQ_RQ_QUEUE_BUSY; 904 } 905 906 /* 907 * Run this hardware queue, pulling any software queues mapped to it in. 908 * Note that this function currently has various problems around ordering 909 * of IO. In particular, we'd like FIFO behaviour on handling existing 910 * items on the hctx->dispatch list. Ignore that for now. 911 */ 912 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx) 913 { 914 LIST_HEAD(rq_list); 915 LIST_HEAD(driver_list); 916 917 if (unlikely(blk_mq_hctx_stopped(hctx))) 918 return; 919 920 hctx->run++; 921 922 /* 923 * Touch any software queue that has pending entries. 924 */ 925 flush_busy_ctxs(hctx, &rq_list); 926 927 /* 928 * If we have previous entries on our dispatch list, grab them 929 * and stuff them at the front for more fair dispatch. 930 */ 931 if (!list_empty_careful(&hctx->dispatch)) { 932 spin_lock(&hctx->lock); 933 if (!list_empty(&hctx->dispatch)) 934 list_splice_init(&hctx->dispatch, &rq_list); 935 spin_unlock(&hctx->lock); 936 } 937 938 blk_mq_dispatch_rq_list(hctx, &rq_list); 939 } 940 941 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 942 { 943 int srcu_idx; 944 945 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 946 cpu_online(hctx->next_cpu)); 947 948 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 949 rcu_read_lock(); 950 blk_mq_process_rq_list(hctx); 951 rcu_read_unlock(); 952 } else { 953 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 954 blk_mq_process_rq_list(hctx); 955 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 956 } 957 } 958 959 /* 960 * It'd be great if the workqueue API had a way to pass 961 * in a mask and had some smarts for more clever placement. 962 * For now we just round-robin here, switching for every 963 * BLK_MQ_CPU_WORK_BATCH queued items. 964 */ 965 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 966 { 967 if (hctx->queue->nr_hw_queues == 1) 968 return WORK_CPU_UNBOUND; 969 970 if (--hctx->next_cpu_batch <= 0) { 971 int next_cpu; 972 973 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 974 if (next_cpu >= nr_cpu_ids) 975 next_cpu = cpumask_first(hctx->cpumask); 976 977 hctx->next_cpu = next_cpu; 978 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 979 } 980 981 return hctx->next_cpu; 982 } 983 984 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 985 { 986 if (unlikely(blk_mq_hctx_stopped(hctx) || 987 !blk_mq_hw_queue_mapped(hctx))) 988 return; 989 990 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 991 int cpu = get_cpu(); 992 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 993 __blk_mq_run_hw_queue(hctx); 994 put_cpu(); 995 return; 996 } 997 998 put_cpu(); 999 } 1000 1001 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); 1002 } 1003 1004 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1005 { 1006 struct blk_mq_hw_ctx *hctx; 1007 int i; 1008 1009 queue_for_each_hw_ctx(q, hctx, i) { 1010 if ((!blk_mq_hctx_has_pending(hctx) && 1011 list_empty_careful(&hctx->dispatch)) || 1012 blk_mq_hctx_stopped(hctx)) 1013 continue; 1014 1015 blk_mq_run_hw_queue(hctx, async); 1016 } 1017 } 1018 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1019 1020 /** 1021 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1022 * @q: request queue. 1023 * 1024 * The caller is responsible for serializing this function against 1025 * blk_mq_{start,stop}_hw_queue(). 1026 */ 1027 bool blk_mq_queue_stopped(struct request_queue *q) 1028 { 1029 struct blk_mq_hw_ctx *hctx; 1030 int i; 1031 1032 queue_for_each_hw_ctx(q, hctx, i) 1033 if (blk_mq_hctx_stopped(hctx)) 1034 return true; 1035 1036 return false; 1037 } 1038 EXPORT_SYMBOL(blk_mq_queue_stopped); 1039 1040 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1041 { 1042 cancel_work(&hctx->run_work); 1043 cancel_delayed_work(&hctx->delay_work); 1044 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1045 } 1046 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1047 1048 void blk_mq_stop_hw_queues(struct request_queue *q) 1049 { 1050 struct blk_mq_hw_ctx *hctx; 1051 int i; 1052 1053 queue_for_each_hw_ctx(q, hctx, i) 1054 blk_mq_stop_hw_queue(hctx); 1055 } 1056 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1057 1058 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1059 { 1060 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1061 1062 blk_mq_run_hw_queue(hctx, false); 1063 } 1064 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1065 1066 void blk_mq_start_hw_queues(struct request_queue *q) 1067 { 1068 struct blk_mq_hw_ctx *hctx; 1069 int i; 1070 1071 queue_for_each_hw_ctx(q, hctx, i) 1072 blk_mq_start_hw_queue(hctx); 1073 } 1074 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1075 1076 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1077 { 1078 if (!blk_mq_hctx_stopped(hctx)) 1079 return; 1080 1081 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1082 blk_mq_run_hw_queue(hctx, async); 1083 } 1084 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1085 1086 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1087 { 1088 struct blk_mq_hw_ctx *hctx; 1089 int i; 1090 1091 queue_for_each_hw_ctx(q, hctx, i) 1092 blk_mq_start_stopped_hw_queue(hctx, async); 1093 } 1094 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1095 1096 static void blk_mq_run_work_fn(struct work_struct *work) 1097 { 1098 struct blk_mq_hw_ctx *hctx; 1099 1100 hctx = container_of(work, struct blk_mq_hw_ctx, run_work); 1101 1102 __blk_mq_run_hw_queue(hctx); 1103 } 1104 1105 static void blk_mq_delay_work_fn(struct work_struct *work) 1106 { 1107 struct blk_mq_hw_ctx *hctx; 1108 1109 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1110 1111 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1112 __blk_mq_run_hw_queue(hctx); 1113 } 1114 1115 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1116 { 1117 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1118 return; 1119 1120 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1121 &hctx->delay_work, msecs_to_jiffies(msecs)); 1122 } 1123 EXPORT_SYMBOL(blk_mq_delay_queue); 1124 1125 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1126 struct request *rq, 1127 bool at_head) 1128 { 1129 struct blk_mq_ctx *ctx = rq->mq_ctx; 1130 1131 trace_block_rq_insert(hctx->queue, rq); 1132 1133 if (at_head) 1134 list_add(&rq->queuelist, &ctx->rq_list); 1135 else 1136 list_add_tail(&rq->queuelist, &ctx->rq_list); 1137 } 1138 1139 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 1140 struct request *rq, bool at_head) 1141 { 1142 struct blk_mq_ctx *ctx = rq->mq_ctx; 1143 1144 __blk_mq_insert_req_list(hctx, rq, at_head); 1145 blk_mq_hctx_mark_pending(hctx, ctx); 1146 } 1147 1148 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1149 bool async) 1150 { 1151 struct blk_mq_ctx *ctx = rq->mq_ctx; 1152 struct request_queue *q = rq->q; 1153 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 1154 1155 spin_lock(&ctx->lock); 1156 __blk_mq_insert_request(hctx, rq, at_head); 1157 spin_unlock(&ctx->lock); 1158 1159 if (run_queue) 1160 blk_mq_run_hw_queue(hctx, async); 1161 } 1162 1163 static void blk_mq_insert_requests(struct request_queue *q, 1164 struct blk_mq_ctx *ctx, 1165 struct list_head *list, 1166 int depth, 1167 bool from_schedule) 1168 1169 { 1170 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 1171 1172 trace_block_unplug(q, depth, !from_schedule); 1173 1174 /* 1175 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1176 * offline now 1177 */ 1178 spin_lock(&ctx->lock); 1179 while (!list_empty(list)) { 1180 struct request *rq; 1181 1182 rq = list_first_entry(list, struct request, queuelist); 1183 BUG_ON(rq->mq_ctx != ctx); 1184 list_del_init(&rq->queuelist); 1185 __blk_mq_insert_req_list(hctx, rq, false); 1186 } 1187 blk_mq_hctx_mark_pending(hctx, ctx); 1188 spin_unlock(&ctx->lock); 1189 1190 blk_mq_run_hw_queue(hctx, from_schedule); 1191 } 1192 1193 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1194 { 1195 struct request *rqa = container_of(a, struct request, queuelist); 1196 struct request *rqb = container_of(b, struct request, queuelist); 1197 1198 return !(rqa->mq_ctx < rqb->mq_ctx || 1199 (rqa->mq_ctx == rqb->mq_ctx && 1200 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1201 } 1202 1203 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1204 { 1205 struct blk_mq_ctx *this_ctx; 1206 struct request_queue *this_q; 1207 struct request *rq; 1208 LIST_HEAD(list); 1209 LIST_HEAD(ctx_list); 1210 unsigned int depth; 1211 1212 list_splice_init(&plug->mq_list, &list); 1213 1214 list_sort(NULL, &list, plug_ctx_cmp); 1215 1216 this_q = NULL; 1217 this_ctx = NULL; 1218 depth = 0; 1219 1220 while (!list_empty(&list)) { 1221 rq = list_entry_rq(list.next); 1222 list_del_init(&rq->queuelist); 1223 BUG_ON(!rq->q); 1224 if (rq->mq_ctx != this_ctx) { 1225 if (this_ctx) { 1226 blk_mq_insert_requests(this_q, this_ctx, 1227 &ctx_list, depth, 1228 from_schedule); 1229 } 1230 1231 this_ctx = rq->mq_ctx; 1232 this_q = rq->q; 1233 depth = 0; 1234 } 1235 1236 depth++; 1237 list_add_tail(&rq->queuelist, &ctx_list); 1238 } 1239 1240 /* 1241 * If 'this_ctx' is set, we know we have entries to complete 1242 * on 'ctx_list'. Do those. 1243 */ 1244 if (this_ctx) { 1245 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1246 from_schedule); 1247 } 1248 } 1249 1250 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1251 { 1252 init_request_from_bio(rq, bio); 1253 1254 blk_account_io_start(rq, true); 1255 } 1256 1257 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1258 { 1259 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1260 !blk_queue_nomerges(hctx->queue); 1261 } 1262 1263 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1264 struct blk_mq_ctx *ctx, 1265 struct request *rq, struct bio *bio) 1266 { 1267 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1268 blk_mq_bio_to_request(rq, bio); 1269 spin_lock(&ctx->lock); 1270 insert_rq: 1271 __blk_mq_insert_request(hctx, rq, false); 1272 spin_unlock(&ctx->lock); 1273 return false; 1274 } else { 1275 struct request_queue *q = hctx->queue; 1276 1277 spin_lock(&ctx->lock); 1278 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1279 blk_mq_bio_to_request(rq, bio); 1280 goto insert_rq; 1281 } 1282 1283 spin_unlock(&ctx->lock); 1284 __blk_mq_free_request(hctx, ctx, rq); 1285 return true; 1286 } 1287 } 1288 1289 static struct request *blk_mq_map_request(struct request_queue *q, 1290 struct bio *bio, 1291 struct blk_mq_alloc_data *data) 1292 { 1293 struct blk_mq_hw_ctx *hctx; 1294 struct blk_mq_ctx *ctx; 1295 struct request *rq; 1296 1297 blk_queue_enter_live(q); 1298 ctx = blk_mq_get_ctx(q); 1299 hctx = blk_mq_map_queue(q, ctx->cpu); 1300 1301 trace_block_getrq(q, bio, bio->bi_opf); 1302 blk_mq_set_alloc_data(data, q, 0, ctx, hctx); 1303 rq = __blk_mq_alloc_request(data, bio->bi_opf); 1304 1305 data->hctx->queued++; 1306 return rq; 1307 } 1308 1309 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie) 1310 { 1311 int ret; 1312 struct request_queue *q = rq->q; 1313 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 1314 struct blk_mq_queue_data bd = { 1315 .rq = rq, 1316 .list = NULL, 1317 .last = 1 1318 }; 1319 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); 1320 1321 if (blk_mq_hctx_stopped(hctx)) 1322 goto insert; 1323 1324 /* 1325 * For OK queue, we are done. For error, kill it. Any other 1326 * error (busy), just add it to our list as we previously 1327 * would have done 1328 */ 1329 ret = q->mq_ops->queue_rq(hctx, &bd); 1330 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1331 *cookie = new_cookie; 1332 return; 1333 } 1334 1335 __blk_mq_requeue_request(rq); 1336 1337 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1338 *cookie = BLK_QC_T_NONE; 1339 rq->errors = -EIO; 1340 blk_mq_end_request(rq, rq->errors); 1341 return; 1342 } 1343 1344 insert: 1345 blk_mq_insert_request(rq, false, true, true); 1346 } 1347 1348 /* 1349 * Multiple hardware queue variant. This will not use per-process plugs, 1350 * but will attempt to bypass the hctx queueing if we can go straight to 1351 * hardware for SYNC IO. 1352 */ 1353 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1354 { 1355 const int is_sync = op_is_sync(bio->bi_opf); 1356 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); 1357 struct blk_mq_alloc_data data; 1358 struct request *rq; 1359 unsigned int request_count = 0, srcu_idx; 1360 struct blk_plug *plug; 1361 struct request *same_queue_rq = NULL; 1362 blk_qc_t cookie; 1363 unsigned int wb_acct; 1364 1365 blk_queue_bounce(q, &bio); 1366 1367 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1368 bio_io_error(bio); 1369 return BLK_QC_T_NONE; 1370 } 1371 1372 blk_queue_split(q, &bio, q->bio_split); 1373 1374 if (!is_flush_fua && !blk_queue_nomerges(q) && 1375 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1376 return BLK_QC_T_NONE; 1377 1378 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1379 1380 rq = blk_mq_map_request(q, bio, &data); 1381 if (unlikely(!rq)) { 1382 __wbt_done(q->rq_wb, wb_acct); 1383 return BLK_QC_T_NONE; 1384 } 1385 1386 wbt_track(&rq->issue_stat, wb_acct); 1387 1388 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1389 1390 if (unlikely(is_flush_fua)) { 1391 blk_mq_bio_to_request(rq, bio); 1392 blk_insert_flush(rq); 1393 goto run_queue; 1394 } 1395 1396 plug = current->plug; 1397 /* 1398 * If the driver supports defer issued based on 'last', then 1399 * queue it up like normal since we can potentially save some 1400 * CPU this way. 1401 */ 1402 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1403 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1404 struct request *old_rq = NULL; 1405 1406 blk_mq_bio_to_request(rq, bio); 1407 1408 /* 1409 * We do limited plugging. If the bio can be merged, do that. 1410 * Otherwise the existing request in the plug list will be 1411 * issued. So the plug list will have one request at most 1412 */ 1413 if (plug) { 1414 /* 1415 * The plug list might get flushed before this. If that 1416 * happens, same_queue_rq is invalid and plug list is 1417 * empty 1418 */ 1419 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1420 old_rq = same_queue_rq; 1421 list_del_init(&old_rq->queuelist); 1422 } 1423 list_add_tail(&rq->queuelist, &plug->mq_list); 1424 } else /* is_sync */ 1425 old_rq = rq; 1426 blk_mq_put_ctx(data.ctx); 1427 if (!old_rq) 1428 goto done; 1429 1430 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { 1431 rcu_read_lock(); 1432 blk_mq_try_issue_directly(old_rq, &cookie); 1433 rcu_read_unlock(); 1434 } else { 1435 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); 1436 blk_mq_try_issue_directly(old_rq, &cookie); 1437 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); 1438 } 1439 goto done; 1440 } 1441 1442 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1443 /* 1444 * For a SYNC request, send it to the hardware immediately. For 1445 * an ASYNC request, just ensure that we run it later on. The 1446 * latter allows for merging opportunities and more efficient 1447 * dispatching. 1448 */ 1449 run_queue: 1450 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1451 } 1452 blk_mq_put_ctx(data.ctx); 1453 done: 1454 return cookie; 1455 } 1456 1457 /* 1458 * Single hardware queue variant. This will attempt to use any per-process 1459 * plug for merging and IO deferral. 1460 */ 1461 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1462 { 1463 const int is_sync = op_is_sync(bio->bi_opf); 1464 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); 1465 struct blk_plug *plug; 1466 unsigned int request_count = 0; 1467 struct blk_mq_alloc_data data; 1468 struct request *rq; 1469 blk_qc_t cookie; 1470 unsigned int wb_acct; 1471 1472 blk_queue_bounce(q, &bio); 1473 1474 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1475 bio_io_error(bio); 1476 return BLK_QC_T_NONE; 1477 } 1478 1479 blk_queue_split(q, &bio, q->bio_split); 1480 1481 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1482 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1483 return BLK_QC_T_NONE; 1484 } else 1485 request_count = blk_plug_queued_count(q); 1486 1487 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1488 1489 rq = blk_mq_map_request(q, bio, &data); 1490 if (unlikely(!rq)) { 1491 __wbt_done(q->rq_wb, wb_acct); 1492 return BLK_QC_T_NONE; 1493 } 1494 1495 wbt_track(&rq->issue_stat, wb_acct); 1496 1497 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1498 1499 if (unlikely(is_flush_fua)) { 1500 blk_mq_bio_to_request(rq, bio); 1501 blk_insert_flush(rq); 1502 goto run_queue; 1503 } 1504 1505 /* 1506 * A task plug currently exists. Since this is completely lockless, 1507 * utilize that to temporarily store requests until the task is 1508 * either done or scheduled away. 1509 */ 1510 plug = current->plug; 1511 if (plug) { 1512 struct request *last = NULL; 1513 1514 blk_mq_bio_to_request(rq, bio); 1515 1516 /* 1517 * @request_count may become stale because of schedule 1518 * out, so check the list again. 1519 */ 1520 if (list_empty(&plug->mq_list)) 1521 request_count = 0; 1522 if (!request_count) 1523 trace_block_plug(q); 1524 else 1525 last = list_entry_rq(plug->mq_list.prev); 1526 1527 blk_mq_put_ctx(data.ctx); 1528 1529 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1530 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1531 blk_flush_plug_list(plug, false); 1532 trace_block_plug(q); 1533 } 1534 1535 list_add_tail(&rq->queuelist, &plug->mq_list); 1536 return cookie; 1537 } 1538 1539 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1540 /* 1541 * For a SYNC request, send it to the hardware immediately. For 1542 * an ASYNC request, just ensure that we run it later on. The 1543 * latter allows for merging opportunities and more efficient 1544 * dispatching. 1545 */ 1546 run_queue: 1547 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1548 } 1549 1550 blk_mq_put_ctx(data.ctx); 1551 return cookie; 1552 } 1553 1554 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1555 struct blk_mq_tags *tags, unsigned int hctx_idx) 1556 { 1557 struct page *page; 1558 1559 if (tags->rqs && set->ops->exit_request) { 1560 int i; 1561 1562 for (i = 0; i < tags->nr_tags; i++) { 1563 if (!tags->rqs[i]) 1564 continue; 1565 set->ops->exit_request(set->driver_data, tags->rqs[i], 1566 hctx_idx, i); 1567 tags->rqs[i] = NULL; 1568 } 1569 } 1570 1571 while (!list_empty(&tags->page_list)) { 1572 page = list_first_entry(&tags->page_list, struct page, lru); 1573 list_del_init(&page->lru); 1574 /* 1575 * Remove kmemleak object previously allocated in 1576 * blk_mq_init_rq_map(). 1577 */ 1578 kmemleak_free(page_address(page)); 1579 __free_pages(page, page->private); 1580 } 1581 1582 kfree(tags->rqs); 1583 1584 blk_mq_free_tags(tags); 1585 } 1586 1587 static size_t order_to_size(unsigned int order) 1588 { 1589 return (size_t)PAGE_SIZE << order; 1590 } 1591 1592 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1593 unsigned int hctx_idx) 1594 { 1595 struct blk_mq_tags *tags; 1596 unsigned int i, j, entries_per_page, max_order = 4; 1597 size_t rq_size, left; 1598 1599 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1600 set->numa_node, 1601 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1602 if (!tags) 1603 return NULL; 1604 1605 INIT_LIST_HEAD(&tags->page_list); 1606 1607 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1608 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1609 set->numa_node); 1610 if (!tags->rqs) { 1611 blk_mq_free_tags(tags); 1612 return NULL; 1613 } 1614 1615 /* 1616 * rq_size is the size of the request plus driver payload, rounded 1617 * to the cacheline size 1618 */ 1619 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1620 cache_line_size()); 1621 left = rq_size * set->queue_depth; 1622 1623 for (i = 0; i < set->queue_depth; ) { 1624 int this_order = max_order; 1625 struct page *page; 1626 int to_do; 1627 void *p; 1628 1629 while (this_order && left < order_to_size(this_order - 1)) 1630 this_order--; 1631 1632 do { 1633 page = alloc_pages_node(set->numa_node, 1634 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1635 this_order); 1636 if (page) 1637 break; 1638 if (!this_order--) 1639 break; 1640 if (order_to_size(this_order) < rq_size) 1641 break; 1642 } while (1); 1643 1644 if (!page) 1645 goto fail; 1646 1647 page->private = this_order; 1648 list_add_tail(&page->lru, &tags->page_list); 1649 1650 p = page_address(page); 1651 /* 1652 * Allow kmemleak to scan these pages as they contain pointers 1653 * to additional allocations like via ops->init_request(). 1654 */ 1655 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1656 entries_per_page = order_to_size(this_order) / rq_size; 1657 to_do = min(entries_per_page, set->queue_depth - i); 1658 left -= to_do * rq_size; 1659 for (j = 0; j < to_do; j++) { 1660 tags->rqs[i] = p; 1661 if (set->ops->init_request) { 1662 if (set->ops->init_request(set->driver_data, 1663 tags->rqs[i], hctx_idx, i, 1664 set->numa_node)) { 1665 tags->rqs[i] = NULL; 1666 goto fail; 1667 } 1668 } 1669 1670 p += rq_size; 1671 i++; 1672 } 1673 } 1674 return tags; 1675 1676 fail: 1677 blk_mq_free_rq_map(set, tags, hctx_idx); 1678 return NULL; 1679 } 1680 1681 /* 1682 * 'cpu' is going away. splice any existing rq_list entries from this 1683 * software queue to the hw queue dispatch list, and ensure that it 1684 * gets run. 1685 */ 1686 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1687 { 1688 struct blk_mq_hw_ctx *hctx; 1689 struct blk_mq_ctx *ctx; 1690 LIST_HEAD(tmp); 1691 1692 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1693 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1694 1695 spin_lock(&ctx->lock); 1696 if (!list_empty(&ctx->rq_list)) { 1697 list_splice_init(&ctx->rq_list, &tmp); 1698 blk_mq_hctx_clear_pending(hctx, ctx); 1699 } 1700 spin_unlock(&ctx->lock); 1701 1702 if (list_empty(&tmp)) 1703 return 0; 1704 1705 spin_lock(&hctx->lock); 1706 list_splice_tail_init(&tmp, &hctx->dispatch); 1707 spin_unlock(&hctx->lock); 1708 1709 blk_mq_run_hw_queue(hctx, true); 1710 return 0; 1711 } 1712 1713 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1714 { 1715 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1716 &hctx->cpuhp_dead); 1717 } 1718 1719 /* hctx->ctxs will be freed in queue's release handler */ 1720 static void blk_mq_exit_hctx(struct request_queue *q, 1721 struct blk_mq_tag_set *set, 1722 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1723 { 1724 unsigned flush_start_tag = set->queue_depth; 1725 1726 blk_mq_tag_idle(hctx); 1727 1728 if (set->ops->exit_request) 1729 set->ops->exit_request(set->driver_data, 1730 hctx->fq->flush_rq, hctx_idx, 1731 flush_start_tag + hctx_idx); 1732 1733 if (set->ops->exit_hctx) 1734 set->ops->exit_hctx(hctx, hctx_idx); 1735 1736 if (hctx->flags & BLK_MQ_F_BLOCKING) 1737 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1738 1739 blk_mq_remove_cpuhp(hctx); 1740 blk_free_flush_queue(hctx->fq); 1741 sbitmap_free(&hctx->ctx_map); 1742 } 1743 1744 static void blk_mq_exit_hw_queues(struct request_queue *q, 1745 struct blk_mq_tag_set *set, int nr_queue) 1746 { 1747 struct blk_mq_hw_ctx *hctx; 1748 unsigned int i; 1749 1750 queue_for_each_hw_ctx(q, hctx, i) { 1751 if (i == nr_queue) 1752 break; 1753 blk_mq_exit_hctx(q, set, hctx, i); 1754 } 1755 } 1756 1757 static void blk_mq_free_hw_queues(struct request_queue *q, 1758 struct blk_mq_tag_set *set) 1759 { 1760 struct blk_mq_hw_ctx *hctx; 1761 unsigned int i; 1762 1763 queue_for_each_hw_ctx(q, hctx, i) 1764 free_cpumask_var(hctx->cpumask); 1765 } 1766 1767 static int blk_mq_init_hctx(struct request_queue *q, 1768 struct blk_mq_tag_set *set, 1769 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1770 { 1771 int node; 1772 unsigned flush_start_tag = set->queue_depth; 1773 1774 node = hctx->numa_node; 1775 if (node == NUMA_NO_NODE) 1776 node = hctx->numa_node = set->numa_node; 1777 1778 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); 1779 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1780 spin_lock_init(&hctx->lock); 1781 INIT_LIST_HEAD(&hctx->dispatch); 1782 hctx->queue = q; 1783 hctx->queue_num = hctx_idx; 1784 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1785 1786 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1787 1788 hctx->tags = set->tags[hctx_idx]; 1789 1790 /* 1791 * Allocate space for all possible cpus to avoid allocation at 1792 * runtime 1793 */ 1794 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1795 GFP_KERNEL, node); 1796 if (!hctx->ctxs) 1797 goto unregister_cpu_notifier; 1798 1799 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1800 node)) 1801 goto free_ctxs; 1802 1803 hctx->nr_ctx = 0; 1804 1805 if (set->ops->init_hctx && 1806 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1807 goto free_bitmap; 1808 1809 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1810 if (!hctx->fq) 1811 goto exit_hctx; 1812 1813 if (set->ops->init_request && 1814 set->ops->init_request(set->driver_data, 1815 hctx->fq->flush_rq, hctx_idx, 1816 flush_start_tag + hctx_idx, node)) 1817 goto free_fq; 1818 1819 if (hctx->flags & BLK_MQ_F_BLOCKING) 1820 init_srcu_struct(&hctx->queue_rq_srcu); 1821 1822 return 0; 1823 1824 free_fq: 1825 kfree(hctx->fq); 1826 exit_hctx: 1827 if (set->ops->exit_hctx) 1828 set->ops->exit_hctx(hctx, hctx_idx); 1829 free_bitmap: 1830 sbitmap_free(&hctx->ctx_map); 1831 free_ctxs: 1832 kfree(hctx->ctxs); 1833 unregister_cpu_notifier: 1834 blk_mq_remove_cpuhp(hctx); 1835 return -1; 1836 } 1837 1838 static void blk_mq_init_cpu_queues(struct request_queue *q, 1839 unsigned int nr_hw_queues) 1840 { 1841 unsigned int i; 1842 1843 for_each_possible_cpu(i) { 1844 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1845 struct blk_mq_hw_ctx *hctx; 1846 1847 memset(__ctx, 0, sizeof(*__ctx)); 1848 __ctx->cpu = i; 1849 spin_lock_init(&__ctx->lock); 1850 INIT_LIST_HEAD(&__ctx->rq_list); 1851 __ctx->queue = q; 1852 blk_stat_init(&__ctx->stat[BLK_STAT_READ]); 1853 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); 1854 1855 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1856 if (!cpu_online(i)) 1857 continue; 1858 1859 hctx = blk_mq_map_queue(q, i); 1860 1861 /* 1862 * Set local node, IFF we have more than one hw queue. If 1863 * not, we remain on the home node of the device 1864 */ 1865 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1866 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1867 } 1868 } 1869 1870 static void blk_mq_map_swqueue(struct request_queue *q, 1871 const struct cpumask *online_mask) 1872 { 1873 unsigned int i, hctx_idx; 1874 struct blk_mq_hw_ctx *hctx; 1875 struct blk_mq_ctx *ctx; 1876 struct blk_mq_tag_set *set = q->tag_set; 1877 1878 /* 1879 * Avoid others reading imcomplete hctx->cpumask through sysfs 1880 */ 1881 mutex_lock(&q->sysfs_lock); 1882 1883 queue_for_each_hw_ctx(q, hctx, i) { 1884 cpumask_clear(hctx->cpumask); 1885 hctx->nr_ctx = 0; 1886 } 1887 1888 /* 1889 * Map software to hardware queues 1890 */ 1891 for_each_possible_cpu(i) { 1892 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1893 if (!cpumask_test_cpu(i, online_mask)) 1894 continue; 1895 1896 hctx_idx = q->mq_map[i]; 1897 /* unmapped hw queue can be remapped after CPU topo changed */ 1898 if (!set->tags[hctx_idx]) { 1899 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx); 1900 1901 /* 1902 * If tags initialization fail for some hctx, 1903 * that hctx won't be brought online. In this 1904 * case, remap the current ctx to hctx[0] which 1905 * is guaranteed to always have tags allocated 1906 */ 1907 if (!set->tags[hctx_idx]) 1908 q->mq_map[i] = 0; 1909 } 1910 1911 ctx = per_cpu_ptr(q->queue_ctx, i); 1912 hctx = blk_mq_map_queue(q, i); 1913 1914 cpumask_set_cpu(i, hctx->cpumask); 1915 ctx->index_hw = hctx->nr_ctx; 1916 hctx->ctxs[hctx->nr_ctx++] = ctx; 1917 } 1918 1919 mutex_unlock(&q->sysfs_lock); 1920 1921 queue_for_each_hw_ctx(q, hctx, i) { 1922 /* 1923 * If no software queues are mapped to this hardware queue, 1924 * disable it and free the request entries. 1925 */ 1926 if (!hctx->nr_ctx) { 1927 /* Never unmap queue 0. We need it as a 1928 * fallback in case of a new remap fails 1929 * allocation 1930 */ 1931 if (i && set->tags[i]) { 1932 blk_mq_free_rq_map(set, set->tags[i], i); 1933 set->tags[i] = NULL; 1934 } 1935 hctx->tags = NULL; 1936 continue; 1937 } 1938 1939 hctx->tags = set->tags[i]; 1940 WARN_ON(!hctx->tags); 1941 1942 /* 1943 * Set the map size to the number of mapped software queues. 1944 * This is more accurate and more efficient than looping 1945 * over all possibly mapped software queues. 1946 */ 1947 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 1948 1949 /* 1950 * Initialize batch roundrobin counts 1951 */ 1952 hctx->next_cpu = cpumask_first(hctx->cpumask); 1953 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1954 } 1955 } 1956 1957 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 1958 { 1959 struct blk_mq_hw_ctx *hctx; 1960 int i; 1961 1962 queue_for_each_hw_ctx(q, hctx, i) { 1963 if (shared) 1964 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1965 else 1966 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1967 } 1968 } 1969 1970 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 1971 { 1972 struct request_queue *q; 1973 1974 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1975 blk_mq_freeze_queue(q); 1976 queue_set_hctx_shared(q, shared); 1977 blk_mq_unfreeze_queue(q); 1978 } 1979 } 1980 1981 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1982 { 1983 struct blk_mq_tag_set *set = q->tag_set; 1984 1985 mutex_lock(&set->tag_list_lock); 1986 list_del_init(&q->tag_set_list); 1987 if (list_is_singular(&set->tag_list)) { 1988 /* just transitioned to unshared */ 1989 set->flags &= ~BLK_MQ_F_TAG_SHARED; 1990 /* update existing queue */ 1991 blk_mq_update_tag_set_depth(set, false); 1992 } 1993 mutex_unlock(&set->tag_list_lock); 1994 } 1995 1996 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1997 struct request_queue *q) 1998 { 1999 q->tag_set = set; 2000 2001 mutex_lock(&set->tag_list_lock); 2002 2003 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2004 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2005 set->flags |= BLK_MQ_F_TAG_SHARED; 2006 /* update existing queue */ 2007 blk_mq_update_tag_set_depth(set, true); 2008 } 2009 if (set->flags & BLK_MQ_F_TAG_SHARED) 2010 queue_set_hctx_shared(q, true); 2011 list_add_tail(&q->tag_set_list, &set->tag_list); 2012 2013 mutex_unlock(&set->tag_list_lock); 2014 } 2015 2016 /* 2017 * It is the actual release handler for mq, but we do it from 2018 * request queue's release handler for avoiding use-after-free 2019 * and headache because q->mq_kobj shouldn't have been introduced, 2020 * but we can't group ctx/kctx kobj without it. 2021 */ 2022 void blk_mq_release(struct request_queue *q) 2023 { 2024 struct blk_mq_hw_ctx *hctx; 2025 unsigned int i; 2026 2027 /* hctx kobj stays in hctx */ 2028 queue_for_each_hw_ctx(q, hctx, i) { 2029 if (!hctx) 2030 continue; 2031 kfree(hctx->ctxs); 2032 kfree(hctx); 2033 } 2034 2035 q->mq_map = NULL; 2036 2037 kfree(q->queue_hw_ctx); 2038 2039 /* ctx kobj stays in queue_ctx */ 2040 free_percpu(q->queue_ctx); 2041 } 2042 2043 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2044 { 2045 struct request_queue *uninit_q, *q; 2046 2047 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2048 if (!uninit_q) 2049 return ERR_PTR(-ENOMEM); 2050 2051 q = blk_mq_init_allocated_queue(set, uninit_q); 2052 if (IS_ERR(q)) 2053 blk_cleanup_queue(uninit_q); 2054 2055 return q; 2056 } 2057 EXPORT_SYMBOL(blk_mq_init_queue); 2058 2059 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2060 struct request_queue *q) 2061 { 2062 int i, j; 2063 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2064 2065 blk_mq_sysfs_unregister(q); 2066 for (i = 0; i < set->nr_hw_queues; i++) { 2067 int node; 2068 2069 if (hctxs[i]) 2070 continue; 2071 2072 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2073 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2074 GFP_KERNEL, node); 2075 if (!hctxs[i]) 2076 break; 2077 2078 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2079 node)) { 2080 kfree(hctxs[i]); 2081 hctxs[i] = NULL; 2082 break; 2083 } 2084 2085 atomic_set(&hctxs[i]->nr_active, 0); 2086 hctxs[i]->numa_node = node; 2087 hctxs[i]->queue_num = i; 2088 2089 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2090 free_cpumask_var(hctxs[i]->cpumask); 2091 kfree(hctxs[i]); 2092 hctxs[i] = NULL; 2093 break; 2094 } 2095 blk_mq_hctx_kobj_init(hctxs[i]); 2096 } 2097 for (j = i; j < q->nr_hw_queues; j++) { 2098 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2099 2100 if (hctx) { 2101 if (hctx->tags) { 2102 blk_mq_free_rq_map(set, hctx->tags, j); 2103 set->tags[j] = NULL; 2104 } 2105 blk_mq_exit_hctx(q, set, hctx, j); 2106 free_cpumask_var(hctx->cpumask); 2107 kobject_put(&hctx->kobj); 2108 kfree(hctx->ctxs); 2109 kfree(hctx); 2110 hctxs[j] = NULL; 2111 2112 } 2113 } 2114 q->nr_hw_queues = i; 2115 blk_mq_sysfs_register(q); 2116 } 2117 2118 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2119 struct request_queue *q) 2120 { 2121 /* mark the queue as mq asap */ 2122 q->mq_ops = set->ops; 2123 2124 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2125 if (!q->queue_ctx) 2126 goto err_exit; 2127 2128 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2129 GFP_KERNEL, set->numa_node); 2130 if (!q->queue_hw_ctx) 2131 goto err_percpu; 2132 2133 q->mq_map = set->mq_map; 2134 2135 blk_mq_realloc_hw_ctxs(set, q); 2136 if (!q->nr_hw_queues) 2137 goto err_hctxs; 2138 2139 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2140 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2141 2142 q->nr_queues = nr_cpu_ids; 2143 2144 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2145 2146 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2147 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2148 2149 q->sg_reserved_size = INT_MAX; 2150 2151 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2152 INIT_LIST_HEAD(&q->requeue_list); 2153 spin_lock_init(&q->requeue_lock); 2154 2155 if (q->nr_hw_queues > 1) 2156 blk_queue_make_request(q, blk_mq_make_request); 2157 else 2158 blk_queue_make_request(q, blk_sq_make_request); 2159 2160 /* 2161 * Do this after blk_queue_make_request() overrides it... 2162 */ 2163 q->nr_requests = set->queue_depth; 2164 2165 /* 2166 * Default to classic polling 2167 */ 2168 q->poll_nsec = -1; 2169 2170 if (set->ops->complete) 2171 blk_queue_softirq_done(q, set->ops->complete); 2172 2173 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2174 2175 get_online_cpus(); 2176 mutex_lock(&all_q_mutex); 2177 2178 list_add_tail(&q->all_q_node, &all_q_list); 2179 blk_mq_add_queue_tag_set(set, q); 2180 blk_mq_map_swqueue(q, cpu_online_mask); 2181 2182 mutex_unlock(&all_q_mutex); 2183 put_online_cpus(); 2184 2185 return q; 2186 2187 err_hctxs: 2188 kfree(q->queue_hw_ctx); 2189 err_percpu: 2190 free_percpu(q->queue_ctx); 2191 err_exit: 2192 q->mq_ops = NULL; 2193 return ERR_PTR(-ENOMEM); 2194 } 2195 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2196 2197 void blk_mq_free_queue(struct request_queue *q) 2198 { 2199 struct blk_mq_tag_set *set = q->tag_set; 2200 2201 mutex_lock(&all_q_mutex); 2202 list_del_init(&q->all_q_node); 2203 mutex_unlock(&all_q_mutex); 2204 2205 wbt_exit(q); 2206 2207 blk_mq_del_queue_tag_set(q); 2208 2209 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2210 blk_mq_free_hw_queues(q, set); 2211 } 2212 2213 /* Basically redo blk_mq_init_queue with queue frozen */ 2214 static void blk_mq_queue_reinit(struct request_queue *q, 2215 const struct cpumask *online_mask) 2216 { 2217 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2218 2219 blk_mq_sysfs_unregister(q); 2220 2221 /* 2222 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2223 * we should change hctx numa_node according to new topology (this 2224 * involves free and re-allocate memory, worthy doing?) 2225 */ 2226 2227 blk_mq_map_swqueue(q, online_mask); 2228 2229 blk_mq_sysfs_register(q); 2230 } 2231 2232 /* 2233 * New online cpumask which is going to be set in this hotplug event. 2234 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2235 * one-by-one and dynamically allocating this could result in a failure. 2236 */ 2237 static struct cpumask cpuhp_online_new; 2238 2239 static void blk_mq_queue_reinit_work(void) 2240 { 2241 struct request_queue *q; 2242 2243 mutex_lock(&all_q_mutex); 2244 /* 2245 * We need to freeze and reinit all existing queues. Freezing 2246 * involves synchronous wait for an RCU grace period and doing it 2247 * one by one may take a long time. Start freezing all queues in 2248 * one swoop and then wait for the completions so that freezing can 2249 * take place in parallel. 2250 */ 2251 list_for_each_entry(q, &all_q_list, all_q_node) 2252 blk_mq_freeze_queue_start(q); 2253 list_for_each_entry(q, &all_q_list, all_q_node) 2254 blk_mq_freeze_queue_wait(q); 2255 2256 list_for_each_entry(q, &all_q_list, all_q_node) 2257 blk_mq_queue_reinit(q, &cpuhp_online_new); 2258 2259 list_for_each_entry(q, &all_q_list, all_q_node) 2260 blk_mq_unfreeze_queue(q); 2261 2262 mutex_unlock(&all_q_mutex); 2263 } 2264 2265 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2266 { 2267 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2268 blk_mq_queue_reinit_work(); 2269 return 0; 2270 } 2271 2272 /* 2273 * Before hotadded cpu starts handling requests, new mappings must be 2274 * established. Otherwise, these requests in hw queue might never be 2275 * dispatched. 2276 * 2277 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2278 * for CPU0, and ctx1 for CPU1). 2279 * 2280 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2281 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2282 * 2283 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in 2284 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2285 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list 2286 * is ignored. 2287 */ 2288 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2289 { 2290 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2291 cpumask_set_cpu(cpu, &cpuhp_online_new); 2292 blk_mq_queue_reinit_work(); 2293 return 0; 2294 } 2295 2296 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2297 { 2298 int i; 2299 2300 for (i = 0; i < set->nr_hw_queues; i++) { 2301 set->tags[i] = blk_mq_init_rq_map(set, i); 2302 if (!set->tags[i]) 2303 goto out_unwind; 2304 } 2305 2306 return 0; 2307 2308 out_unwind: 2309 while (--i >= 0) 2310 blk_mq_free_rq_map(set, set->tags[i], i); 2311 2312 return -ENOMEM; 2313 } 2314 2315 /* 2316 * Allocate the request maps associated with this tag_set. Note that this 2317 * may reduce the depth asked for, if memory is tight. set->queue_depth 2318 * will be updated to reflect the allocated depth. 2319 */ 2320 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2321 { 2322 unsigned int depth; 2323 int err; 2324 2325 depth = set->queue_depth; 2326 do { 2327 err = __blk_mq_alloc_rq_maps(set); 2328 if (!err) 2329 break; 2330 2331 set->queue_depth >>= 1; 2332 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2333 err = -ENOMEM; 2334 break; 2335 } 2336 } while (set->queue_depth); 2337 2338 if (!set->queue_depth || err) { 2339 pr_err("blk-mq: failed to allocate request map\n"); 2340 return -ENOMEM; 2341 } 2342 2343 if (depth != set->queue_depth) 2344 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2345 depth, set->queue_depth); 2346 2347 return 0; 2348 } 2349 2350 /* 2351 * Alloc a tag set to be associated with one or more request queues. 2352 * May fail with EINVAL for various error conditions. May adjust the 2353 * requested depth down, if if it too large. In that case, the set 2354 * value will be stored in set->queue_depth. 2355 */ 2356 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2357 { 2358 int ret; 2359 2360 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2361 2362 if (!set->nr_hw_queues) 2363 return -EINVAL; 2364 if (!set->queue_depth) 2365 return -EINVAL; 2366 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2367 return -EINVAL; 2368 2369 if (!set->ops->queue_rq) 2370 return -EINVAL; 2371 2372 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2373 pr_info("blk-mq: reduced tag depth to %u\n", 2374 BLK_MQ_MAX_DEPTH); 2375 set->queue_depth = BLK_MQ_MAX_DEPTH; 2376 } 2377 2378 /* 2379 * If a crashdump is active, then we are potentially in a very 2380 * memory constrained environment. Limit us to 1 queue and 2381 * 64 tags to prevent using too much memory. 2382 */ 2383 if (is_kdump_kernel()) { 2384 set->nr_hw_queues = 1; 2385 set->queue_depth = min(64U, set->queue_depth); 2386 } 2387 /* 2388 * There is no use for more h/w queues than cpus. 2389 */ 2390 if (set->nr_hw_queues > nr_cpu_ids) 2391 set->nr_hw_queues = nr_cpu_ids; 2392 2393 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2394 GFP_KERNEL, set->numa_node); 2395 if (!set->tags) 2396 return -ENOMEM; 2397 2398 ret = -ENOMEM; 2399 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2400 GFP_KERNEL, set->numa_node); 2401 if (!set->mq_map) 2402 goto out_free_tags; 2403 2404 if (set->ops->map_queues) 2405 ret = set->ops->map_queues(set); 2406 else 2407 ret = blk_mq_map_queues(set); 2408 if (ret) 2409 goto out_free_mq_map; 2410 2411 ret = blk_mq_alloc_rq_maps(set); 2412 if (ret) 2413 goto out_free_mq_map; 2414 2415 mutex_init(&set->tag_list_lock); 2416 INIT_LIST_HEAD(&set->tag_list); 2417 2418 return 0; 2419 2420 out_free_mq_map: 2421 kfree(set->mq_map); 2422 set->mq_map = NULL; 2423 out_free_tags: 2424 kfree(set->tags); 2425 set->tags = NULL; 2426 return ret; 2427 } 2428 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2429 2430 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2431 { 2432 int i; 2433 2434 for (i = 0; i < nr_cpu_ids; i++) { 2435 if (set->tags[i]) 2436 blk_mq_free_rq_map(set, set->tags[i], i); 2437 } 2438 2439 kfree(set->mq_map); 2440 set->mq_map = NULL; 2441 2442 kfree(set->tags); 2443 set->tags = NULL; 2444 } 2445 EXPORT_SYMBOL(blk_mq_free_tag_set); 2446 2447 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2448 { 2449 struct blk_mq_tag_set *set = q->tag_set; 2450 struct blk_mq_hw_ctx *hctx; 2451 int i, ret; 2452 2453 if (!set || nr > set->queue_depth) 2454 return -EINVAL; 2455 2456 ret = 0; 2457 queue_for_each_hw_ctx(q, hctx, i) { 2458 if (!hctx->tags) 2459 continue; 2460 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2461 if (ret) 2462 break; 2463 } 2464 2465 if (!ret) 2466 q->nr_requests = nr; 2467 2468 return ret; 2469 } 2470 2471 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2472 { 2473 struct request_queue *q; 2474 2475 if (nr_hw_queues > nr_cpu_ids) 2476 nr_hw_queues = nr_cpu_ids; 2477 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2478 return; 2479 2480 list_for_each_entry(q, &set->tag_list, tag_set_list) 2481 blk_mq_freeze_queue(q); 2482 2483 set->nr_hw_queues = nr_hw_queues; 2484 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2485 blk_mq_realloc_hw_ctxs(set, q); 2486 2487 if (q->nr_hw_queues > 1) 2488 blk_queue_make_request(q, blk_mq_make_request); 2489 else 2490 blk_queue_make_request(q, blk_sq_make_request); 2491 2492 blk_mq_queue_reinit(q, cpu_online_mask); 2493 } 2494 2495 list_for_each_entry(q, &set->tag_list, tag_set_list) 2496 blk_mq_unfreeze_queue(q); 2497 } 2498 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2499 2500 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2501 struct blk_mq_hw_ctx *hctx, 2502 struct request *rq) 2503 { 2504 struct blk_rq_stat stat[2]; 2505 unsigned long ret = 0; 2506 2507 /* 2508 * If stats collection isn't on, don't sleep but turn it on for 2509 * future users 2510 */ 2511 if (!blk_stat_enable(q)) 2512 return 0; 2513 2514 /* 2515 * We don't have to do this once per IO, should optimize this 2516 * to just use the current window of stats until it changes 2517 */ 2518 memset(&stat, 0, sizeof(stat)); 2519 blk_hctx_stat_get(hctx, stat); 2520 2521 /* 2522 * As an optimistic guess, use half of the mean service time 2523 * for this type of request. We can (and should) make this smarter. 2524 * For instance, if the completion latencies are tight, we can 2525 * get closer than just half the mean. This is especially 2526 * important on devices where the completion latencies are longer 2527 * than ~10 usec. 2528 */ 2529 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) 2530 ret = (stat[BLK_STAT_READ].mean + 1) / 2; 2531 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) 2532 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; 2533 2534 return ret; 2535 } 2536 2537 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2538 struct blk_mq_hw_ctx *hctx, 2539 struct request *rq) 2540 { 2541 struct hrtimer_sleeper hs; 2542 enum hrtimer_mode mode; 2543 unsigned int nsecs; 2544 ktime_t kt; 2545 2546 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2547 return false; 2548 2549 /* 2550 * poll_nsec can be: 2551 * 2552 * -1: don't ever hybrid sleep 2553 * 0: use half of prev avg 2554 * >0: use this specific value 2555 */ 2556 if (q->poll_nsec == -1) 2557 return false; 2558 else if (q->poll_nsec > 0) 2559 nsecs = q->poll_nsec; 2560 else 2561 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2562 2563 if (!nsecs) 2564 return false; 2565 2566 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2567 2568 /* 2569 * This will be replaced with the stats tracking code, using 2570 * 'avg_completion_time / 2' as the pre-sleep target. 2571 */ 2572 kt = nsecs; 2573 2574 mode = HRTIMER_MODE_REL; 2575 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2576 hrtimer_set_expires(&hs.timer, kt); 2577 2578 hrtimer_init_sleeper(&hs, current); 2579 do { 2580 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2581 break; 2582 set_current_state(TASK_UNINTERRUPTIBLE); 2583 hrtimer_start_expires(&hs.timer, mode); 2584 if (hs.task) 2585 io_schedule(); 2586 hrtimer_cancel(&hs.timer); 2587 mode = HRTIMER_MODE_ABS; 2588 } while (hs.task && !signal_pending(current)); 2589 2590 __set_current_state(TASK_RUNNING); 2591 destroy_hrtimer_on_stack(&hs.timer); 2592 return true; 2593 } 2594 2595 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2596 { 2597 struct request_queue *q = hctx->queue; 2598 long state; 2599 2600 /* 2601 * If we sleep, have the caller restart the poll loop to reset 2602 * the state. Like for the other success return cases, the 2603 * caller is responsible for checking if the IO completed. If 2604 * the IO isn't complete, we'll get called again and will go 2605 * straight to the busy poll loop. 2606 */ 2607 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2608 return true; 2609 2610 hctx->poll_considered++; 2611 2612 state = current->state; 2613 while (!need_resched()) { 2614 int ret; 2615 2616 hctx->poll_invoked++; 2617 2618 ret = q->mq_ops->poll(hctx, rq->tag); 2619 if (ret > 0) { 2620 hctx->poll_success++; 2621 set_current_state(TASK_RUNNING); 2622 return true; 2623 } 2624 2625 if (signal_pending_state(state, current)) 2626 set_current_state(TASK_RUNNING); 2627 2628 if (current->state == TASK_RUNNING) 2629 return true; 2630 if (ret < 0) 2631 break; 2632 cpu_relax(); 2633 } 2634 2635 return false; 2636 } 2637 2638 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2639 { 2640 struct blk_mq_hw_ctx *hctx; 2641 struct blk_plug *plug; 2642 struct request *rq; 2643 2644 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2645 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2646 return false; 2647 2648 plug = current->plug; 2649 if (plug) 2650 blk_flush_plug_list(plug, false); 2651 2652 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2653 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2654 2655 return __blk_mq_poll(hctx, rq); 2656 } 2657 EXPORT_SYMBOL_GPL(blk_mq_poll); 2658 2659 void blk_mq_disable_hotplug(void) 2660 { 2661 mutex_lock(&all_q_mutex); 2662 } 2663 2664 void blk_mq_enable_hotplug(void) 2665 { 2666 mutex_unlock(&all_q_mutex); 2667 } 2668 2669 static int __init blk_mq_init(void) 2670 { 2671 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2672 blk_mq_hctx_notify_dead); 2673 2674 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2675 blk_mq_queue_reinit_prepare, 2676 blk_mq_queue_reinit_dead); 2677 return 0; 2678 } 2679 subsys_initcall(blk_mq_init); 2680