1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 #include <linux/crash_dump.h> 24 25 #include <trace/events/block.h> 26 27 #include <linux/blk-mq.h> 28 #include "blk.h" 29 #include "blk-mq.h" 30 #include "blk-mq-tag.h" 31 32 static DEFINE_MUTEX(all_q_mutex); 33 static LIST_HEAD(all_q_list); 34 35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 36 37 /* 38 * Check if any of the ctx's have pending work in this hardware queue 39 */ 40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int i; 43 44 for (i = 0; i < hctx->ctx_map.map_size; i++) 45 if (hctx->ctx_map.map[i].word) 46 return true; 47 48 return false; 49 } 50 51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 52 struct blk_mq_ctx *ctx) 53 { 54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 55 } 56 57 #define CTX_TO_BIT(hctx, ctx) \ 58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 59 60 /* 61 * Mark this ctx as having pending work in this hardware queue 62 */ 63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 64 struct blk_mq_ctx *ctx) 65 { 66 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 67 68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 70 } 71 72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 76 77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 78 } 79 80 static int blk_mq_queue_enter(struct request_queue *q) 81 { 82 while (true) { 83 int ret; 84 85 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 86 return 0; 87 88 ret = wait_event_interruptible(q->mq_freeze_wq, 89 !q->mq_freeze_depth || blk_queue_dying(q)); 90 if (blk_queue_dying(q)) 91 return -ENODEV; 92 if (ret) 93 return ret; 94 } 95 } 96 97 static void blk_mq_queue_exit(struct request_queue *q) 98 { 99 percpu_ref_put(&q->mq_usage_counter); 100 } 101 102 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 103 { 104 struct request_queue *q = 105 container_of(ref, struct request_queue, mq_usage_counter); 106 107 wake_up_all(&q->mq_freeze_wq); 108 } 109 110 static void blk_mq_freeze_queue_start(struct request_queue *q) 111 { 112 bool freeze; 113 114 spin_lock_irq(q->queue_lock); 115 freeze = !q->mq_freeze_depth++; 116 spin_unlock_irq(q->queue_lock); 117 118 if (freeze) { 119 percpu_ref_kill(&q->mq_usage_counter); 120 blk_mq_run_queues(q, false); 121 } 122 } 123 124 static void blk_mq_freeze_queue_wait(struct request_queue *q) 125 { 126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 127 } 128 129 /* 130 * Guarantee no request is in use, so we can change any data structure of 131 * the queue afterward. 132 */ 133 void blk_mq_freeze_queue(struct request_queue *q) 134 { 135 blk_mq_freeze_queue_start(q); 136 blk_mq_freeze_queue_wait(q); 137 } 138 139 static void blk_mq_unfreeze_queue(struct request_queue *q) 140 { 141 bool wake; 142 143 spin_lock_irq(q->queue_lock); 144 wake = !--q->mq_freeze_depth; 145 WARN_ON_ONCE(q->mq_freeze_depth < 0); 146 spin_unlock_irq(q->queue_lock); 147 if (wake) { 148 percpu_ref_reinit(&q->mq_usage_counter); 149 wake_up_all(&q->mq_freeze_wq); 150 } 151 } 152 153 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 154 { 155 return blk_mq_has_free_tags(hctx->tags); 156 } 157 EXPORT_SYMBOL(blk_mq_can_queue); 158 159 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 160 struct request *rq, unsigned int rw_flags) 161 { 162 if (blk_queue_io_stat(q)) 163 rw_flags |= REQ_IO_STAT; 164 165 INIT_LIST_HEAD(&rq->queuelist); 166 /* csd/requeue_work/fifo_time is initialized before use */ 167 rq->q = q; 168 rq->mq_ctx = ctx; 169 rq->cmd_flags |= rw_flags; 170 /* do not touch atomic flags, it needs atomic ops against the timer */ 171 rq->cpu = -1; 172 INIT_HLIST_NODE(&rq->hash); 173 RB_CLEAR_NODE(&rq->rb_node); 174 rq->rq_disk = NULL; 175 rq->part = NULL; 176 rq->start_time = jiffies; 177 #ifdef CONFIG_BLK_CGROUP 178 rq->rl = NULL; 179 set_start_time_ns(rq); 180 rq->io_start_time_ns = 0; 181 #endif 182 rq->nr_phys_segments = 0; 183 #if defined(CONFIG_BLK_DEV_INTEGRITY) 184 rq->nr_integrity_segments = 0; 185 #endif 186 rq->special = NULL; 187 /* tag was already set */ 188 rq->errors = 0; 189 190 rq->cmd = rq->__cmd; 191 192 rq->extra_len = 0; 193 rq->sense_len = 0; 194 rq->resid_len = 0; 195 rq->sense = NULL; 196 197 INIT_LIST_HEAD(&rq->timeout_list); 198 rq->timeout = 0; 199 200 rq->end_io = NULL; 201 rq->end_io_data = NULL; 202 rq->next_rq = NULL; 203 204 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 205 } 206 207 static struct request * 208 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 209 { 210 struct request *rq; 211 unsigned int tag; 212 213 tag = blk_mq_get_tag(data); 214 if (tag != BLK_MQ_TAG_FAIL) { 215 rq = data->hctx->tags->rqs[tag]; 216 217 if (blk_mq_tag_busy(data->hctx)) { 218 rq->cmd_flags = REQ_MQ_INFLIGHT; 219 atomic_inc(&data->hctx->nr_active); 220 } 221 222 rq->tag = tag; 223 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 224 return rq; 225 } 226 227 return NULL; 228 } 229 230 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 231 bool reserved) 232 { 233 struct blk_mq_ctx *ctx; 234 struct blk_mq_hw_ctx *hctx; 235 struct request *rq; 236 struct blk_mq_alloc_data alloc_data; 237 int ret; 238 239 ret = blk_mq_queue_enter(q); 240 if (ret) 241 return ERR_PTR(ret); 242 243 ctx = blk_mq_get_ctx(q); 244 hctx = q->mq_ops->map_queue(q, ctx->cpu); 245 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 246 reserved, ctx, hctx); 247 248 rq = __blk_mq_alloc_request(&alloc_data, rw); 249 if (!rq && (gfp & __GFP_WAIT)) { 250 __blk_mq_run_hw_queue(hctx); 251 blk_mq_put_ctx(ctx); 252 253 ctx = blk_mq_get_ctx(q); 254 hctx = q->mq_ops->map_queue(q, ctx->cpu); 255 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 256 hctx); 257 rq = __blk_mq_alloc_request(&alloc_data, rw); 258 ctx = alloc_data.ctx; 259 } 260 blk_mq_put_ctx(ctx); 261 if (!rq) 262 return ERR_PTR(-EWOULDBLOCK); 263 return rq; 264 } 265 EXPORT_SYMBOL(blk_mq_alloc_request); 266 267 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 268 struct blk_mq_ctx *ctx, struct request *rq) 269 { 270 const int tag = rq->tag; 271 struct request_queue *q = rq->q; 272 273 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 274 atomic_dec(&hctx->nr_active); 275 rq->cmd_flags = 0; 276 277 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 278 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 279 blk_mq_queue_exit(q); 280 } 281 282 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 283 { 284 struct blk_mq_ctx *ctx = rq->mq_ctx; 285 286 ctx->rq_completed[rq_is_sync(rq)]++; 287 __blk_mq_free_request(hctx, ctx, rq); 288 289 } 290 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 291 292 void blk_mq_free_request(struct request *rq) 293 { 294 struct blk_mq_hw_ctx *hctx; 295 struct request_queue *q = rq->q; 296 297 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 298 blk_mq_free_hctx_request(hctx, rq); 299 } 300 EXPORT_SYMBOL_GPL(blk_mq_free_request); 301 302 inline void __blk_mq_end_request(struct request *rq, int error) 303 { 304 blk_account_io_done(rq); 305 306 if (rq->end_io) { 307 rq->end_io(rq, error); 308 } else { 309 if (unlikely(blk_bidi_rq(rq))) 310 blk_mq_free_request(rq->next_rq); 311 blk_mq_free_request(rq); 312 } 313 } 314 EXPORT_SYMBOL(__blk_mq_end_request); 315 316 void blk_mq_end_request(struct request *rq, int error) 317 { 318 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 319 BUG(); 320 __blk_mq_end_request(rq, error); 321 } 322 EXPORT_SYMBOL(blk_mq_end_request); 323 324 static void __blk_mq_complete_request_remote(void *data) 325 { 326 struct request *rq = data; 327 328 rq->q->softirq_done_fn(rq); 329 } 330 331 static void blk_mq_ipi_complete_request(struct request *rq) 332 { 333 struct blk_mq_ctx *ctx = rq->mq_ctx; 334 bool shared = false; 335 int cpu; 336 337 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 338 rq->q->softirq_done_fn(rq); 339 return; 340 } 341 342 cpu = get_cpu(); 343 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 344 shared = cpus_share_cache(cpu, ctx->cpu); 345 346 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 347 rq->csd.func = __blk_mq_complete_request_remote; 348 rq->csd.info = rq; 349 rq->csd.flags = 0; 350 smp_call_function_single_async(ctx->cpu, &rq->csd); 351 } else { 352 rq->q->softirq_done_fn(rq); 353 } 354 put_cpu(); 355 } 356 357 void __blk_mq_complete_request(struct request *rq) 358 { 359 struct request_queue *q = rq->q; 360 361 if (!q->softirq_done_fn) 362 blk_mq_end_request(rq, rq->errors); 363 else 364 blk_mq_ipi_complete_request(rq); 365 } 366 367 /** 368 * blk_mq_complete_request - end I/O on a request 369 * @rq: the request being processed 370 * 371 * Description: 372 * Ends all I/O on a request. It does not handle partial completions. 373 * The actual completion happens out-of-order, through a IPI handler. 374 **/ 375 void blk_mq_complete_request(struct request *rq) 376 { 377 struct request_queue *q = rq->q; 378 379 if (unlikely(blk_should_fake_timeout(q))) 380 return; 381 if (!blk_mark_rq_complete(rq)) 382 __blk_mq_complete_request(rq); 383 } 384 EXPORT_SYMBOL(blk_mq_complete_request); 385 386 void blk_mq_start_request(struct request *rq) 387 { 388 struct request_queue *q = rq->q; 389 390 trace_block_rq_issue(q, rq); 391 392 rq->resid_len = blk_rq_bytes(rq); 393 if (unlikely(blk_bidi_rq(rq))) 394 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 395 396 blk_add_timer(rq); 397 398 /* 399 * Ensure that ->deadline is visible before set the started 400 * flag and clear the completed flag. 401 */ 402 smp_mb__before_atomic(); 403 404 /* 405 * Mark us as started and clear complete. Complete might have been 406 * set if requeue raced with timeout, which then marked it as 407 * complete. So be sure to clear complete again when we start 408 * the request, otherwise we'll ignore the completion event. 409 */ 410 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 411 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 412 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 413 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 414 415 if (q->dma_drain_size && blk_rq_bytes(rq)) { 416 /* 417 * Make sure space for the drain appears. We know we can do 418 * this because max_hw_segments has been adjusted to be one 419 * fewer than the device can handle. 420 */ 421 rq->nr_phys_segments++; 422 } 423 } 424 EXPORT_SYMBOL(blk_mq_start_request); 425 426 static void __blk_mq_requeue_request(struct request *rq) 427 { 428 struct request_queue *q = rq->q; 429 430 trace_block_rq_requeue(q, rq); 431 432 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 433 if (q->dma_drain_size && blk_rq_bytes(rq)) 434 rq->nr_phys_segments--; 435 } 436 } 437 438 void blk_mq_requeue_request(struct request *rq) 439 { 440 __blk_mq_requeue_request(rq); 441 442 BUG_ON(blk_queued_rq(rq)); 443 blk_mq_add_to_requeue_list(rq, true); 444 } 445 EXPORT_SYMBOL(blk_mq_requeue_request); 446 447 static void blk_mq_requeue_work(struct work_struct *work) 448 { 449 struct request_queue *q = 450 container_of(work, struct request_queue, requeue_work); 451 LIST_HEAD(rq_list); 452 struct request *rq, *next; 453 unsigned long flags; 454 455 spin_lock_irqsave(&q->requeue_lock, flags); 456 list_splice_init(&q->requeue_list, &rq_list); 457 spin_unlock_irqrestore(&q->requeue_lock, flags); 458 459 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 460 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 461 continue; 462 463 rq->cmd_flags &= ~REQ_SOFTBARRIER; 464 list_del_init(&rq->queuelist); 465 blk_mq_insert_request(rq, true, false, false); 466 } 467 468 while (!list_empty(&rq_list)) { 469 rq = list_entry(rq_list.next, struct request, queuelist); 470 list_del_init(&rq->queuelist); 471 blk_mq_insert_request(rq, false, false, false); 472 } 473 474 /* 475 * Use the start variant of queue running here, so that running 476 * the requeue work will kick stopped queues. 477 */ 478 blk_mq_start_hw_queues(q); 479 } 480 481 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 482 { 483 struct request_queue *q = rq->q; 484 unsigned long flags; 485 486 /* 487 * We abuse this flag that is otherwise used by the I/O scheduler to 488 * request head insertation from the workqueue. 489 */ 490 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 491 492 spin_lock_irqsave(&q->requeue_lock, flags); 493 if (at_head) { 494 rq->cmd_flags |= REQ_SOFTBARRIER; 495 list_add(&rq->queuelist, &q->requeue_list); 496 } else { 497 list_add_tail(&rq->queuelist, &q->requeue_list); 498 } 499 spin_unlock_irqrestore(&q->requeue_lock, flags); 500 } 501 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 502 503 void blk_mq_kick_requeue_list(struct request_queue *q) 504 { 505 kblockd_schedule_work(&q->requeue_work); 506 } 507 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 508 509 static inline bool is_flush_request(struct request *rq, 510 struct blk_flush_queue *fq, unsigned int tag) 511 { 512 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 513 fq->flush_rq->tag == tag); 514 } 515 516 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 517 { 518 struct request *rq = tags->rqs[tag]; 519 /* mq_ctx of flush rq is always cloned from the corresponding req */ 520 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx); 521 522 if (!is_flush_request(rq, fq, tag)) 523 return rq; 524 525 return fq->flush_rq; 526 } 527 EXPORT_SYMBOL(blk_mq_tag_to_rq); 528 529 struct blk_mq_timeout_data { 530 unsigned long next; 531 unsigned int next_set; 532 }; 533 534 void blk_mq_rq_timed_out(struct request *req, bool reserved) 535 { 536 struct blk_mq_ops *ops = req->q->mq_ops; 537 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 538 539 /* 540 * We know that complete is set at this point. If STARTED isn't set 541 * anymore, then the request isn't active and the "timeout" should 542 * just be ignored. This can happen due to the bitflag ordering. 543 * Timeout first checks if STARTED is set, and if it is, assumes 544 * the request is active. But if we race with completion, then 545 * we both flags will get cleared. So check here again, and ignore 546 * a timeout event with a request that isn't active. 547 */ 548 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 549 return; 550 551 if (ops->timeout) 552 ret = ops->timeout(req, reserved); 553 554 switch (ret) { 555 case BLK_EH_HANDLED: 556 __blk_mq_complete_request(req); 557 break; 558 case BLK_EH_RESET_TIMER: 559 blk_add_timer(req); 560 blk_clear_rq_complete(req); 561 break; 562 case BLK_EH_NOT_HANDLED: 563 break; 564 default: 565 printk(KERN_ERR "block: bad eh return: %d\n", ret); 566 break; 567 } 568 } 569 570 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 571 struct request *rq, void *priv, bool reserved) 572 { 573 struct blk_mq_timeout_data *data = priv; 574 575 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 576 return; 577 578 if (time_after_eq(jiffies, rq->deadline)) { 579 if (!blk_mark_rq_complete(rq)) 580 blk_mq_rq_timed_out(rq, reserved); 581 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 582 data->next = rq->deadline; 583 data->next_set = 1; 584 } 585 } 586 587 static void blk_mq_rq_timer(unsigned long priv) 588 { 589 struct request_queue *q = (struct request_queue *)priv; 590 struct blk_mq_timeout_data data = { 591 .next = 0, 592 .next_set = 0, 593 }; 594 struct blk_mq_hw_ctx *hctx; 595 int i; 596 597 queue_for_each_hw_ctx(q, hctx, i) { 598 /* 599 * If not software queues are currently mapped to this 600 * hardware queue, there's nothing to check 601 */ 602 if (!blk_mq_hw_queue_mapped(hctx)) 603 continue; 604 605 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data); 606 } 607 608 if (data.next_set) { 609 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 610 mod_timer(&q->timeout, data.next); 611 } else { 612 queue_for_each_hw_ctx(q, hctx, i) 613 blk_mq_tag_idle(hctx); 614 } 615 } 616 617 /* 618 * Reverse check our software queue for entries that we could potentially 619 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 620 * too much time checking for merges. 621 */ 622 static bool blk_mq_attempt_merge(struct request_queue *q, 623 struct blk_mq_ctx *ctx, struct bio *bio) 624 { 625 struct request *rq; 626 int checked = 8; 627 628 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 629 int el_ret; 630 631 if (!checked--) 632 break; 633 634 if (!blk_rq_merge_ok(rq, bio)) 635 continue; 636 637 el_ret = blk_try_merge(rq, bio); 638 if (el_ret == ELEVATOR_BACK_MERGE) { 639 if (bio_attempt_back_merge(q, rq, bio)) { 640 ctx->rq_merged++; 641 return true; 642 } 643 break; 644 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 645 if (bio_attempt_front_merge(q, rq, bio)) { 646 ctx->rq_merged++; 647 return true; 648 } 649 break; 650 } 651 } 652 653 return false; 654 } 655 656 /* 657 * Process software queues that have been marked busy, splicing them 658 * to the for-dispatch 659 */ 660 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 661 { 662 struct blk_mq_ctx *ctx; 663 int i; 664 665 for (i = 0; i < hctx->ctx_map.map_size; i++) { 666 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 667 unsigned int off, bit; 668 669 if (!bm->word) 670 continue; 671 672 bit = 0; 673 off = i * hctx->ctx_map.bits_per_word; 674 do { 675 bit = find_next_bit(&bm->word, bm->depth, bit); 676 if (bit >= bm->depth) 677 break; 678 679 ctx = hctx->ctxs[bit + off]; 680 clear_bit(bit, &bm->word); 681 spin_lock(&ctx->lock); 682 list_splice_tail_init(&ctx->rq_list, list); 683 spin_unlock(&ctx->lock); 684 685 bit++; 686 } while (1); 687 } 688 } 689 690 /* 691 * Run this hardware queue, pulling any software queues mapped to it in. 692 * Note that this function currently has various problems around ordering 693 * of IO. In particular, we'd like FIFO behaviour on handling existing 694 * items on the hctx->dispatch list. Ignore that for now. 695 */ 696 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 697 { 698 struct request_queue *q = hctx->queue; 699 struct request *rq; 700 LIST_HEAD(rq_list); 701 LIST_HEAD(driver_list); 702 struct list_head *dptr; 703 int queued; 704 705 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 706 707 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 708 return; 709 710 hctx->run++; 711 712 /* 713 * Touch any software queue that has pending entries. 714 */ 715 flush_busy_ctxs(hctx, &rq_list); 716 717 /* 718 * If we have previous entries on our dispatch list, grab them 719 * and stuff them at the front for more fair dispatch. 720 */ 721 if (!list_empty_careful(&hctx->dispatch)) { 722 spin_lock(&hctx->lock); 723 if (!list_empty(&hctx->dispatch)) 724 list_splice_init(&hctx->dispatch, &rq_list); 725 spin_unlock(&hctx->lock); 726 } 727 728 /* 729 * Start off with dptr being NULL, so we start the first request 730 * immediately, even if we have more pending. 731 */ 732 dptr = NULL; 733 734 /* 735 * Now process all the entries, sending them to the driver. 736 */ 737 queued = 0; 738 while (!list_empty(&rq_list)) { 739 struct blk_mq_queue_data bd; 740 int ret; 741 742 rq = list_first_entry(&rq_list, struct request, queuelist); 743 list_del_init(&rq->queuelist); 744 745 bd.rq = rq; 746 bd.list = dptr; 747 bd.last = list_empty(&rq_list); 748 749 ret = q->mq_ops->queue_rq(hctx, &bd); 750 switch (ret) { 751 case BLK_MQ_RQ_QUEUE_OK: 752 queued++; 753 continue; 754 case BLK_MQ_RQ_QUEUE_BUSY: 755 list_add(&rq->queuelist, &rq_list); 756 __blk_mq_requeue_request(rq); 757 break; 758 default: 759 pr_err("blk-mq: bad return on queue: %d\n", ret); 760 case BLK_MQ_RQ_QUEUE_ERROR: 761 rq->errors = -EIO; 762 blk_mq_end_request(rq, rq->errors); 763 break; 764 } 765 766 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 767 break; 768 769 /* 770 * We've done the first request. If we have more than 1 771 * left in the list, set dptr to defer issue. 772 */ 773 if (!dptr && rq_list.next != rq_list.prev) 774 dptr = &driver_list; 775 } 776 777 if (!queued) 778 hctx->dispatched[0]++; 779 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 780 hctx->dispatched[ilog2(queued) + 1]++; 781 782 /* 783 * Any items that need requeuing? Stuff them into hctx->dispatch, 784 * that is where we will continue on next queue run. 785 */ 786 if (!list_empty(&rq_list)) { 787 spin_lock(&hctx->lock); 788 list_splice(&rq_list, &hctx->dispatch); 789 spin_unlock(&hctx->lock); 790 } 791 } 792 793 /* 794 * It'd be great if the workqueue API had a way to pass 795 * in a mask and had some smarts for more clever placement. 796 * For now we just round-robin here, switching for every 797 * BLK_MQ_CPU_WORK_BATCH queued items. 798 */ 799 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 800 { 801 if (hctx->queue->nr_hw_queues == 1) 802 return WORK_CPU_UNBOUND; 803 804 if (--hctx->next_cpu_batch <= 0) { 805 int cpu = hctx->next_cpu, next_cpu; 806 807 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 808 if (next_cpu >= nr_cpu_ids) 809 next_cpu = cpumask_first(hctx->cpumask); 810 811 hctx->next_cpu = next_cpu; 812 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 813 814 return cpu; 815 } 816 817 return hctx->next_cpu; 818 } 819 820 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 821 { 822 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 823 !blk_mq_hw_queue_mapped(hctx))) 824 return; 825 826 if (!async) { 827 int cpu = get_cpu(); 828 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 829 __blk_mq_run_hw_queue(hctx); 830 put_cpu(); 831 return; 832 } 833 834 put_cpu(); 835 } 836 837 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 838 &hctx->run_work, 0); 839 } 840 841 void blk_mq_run_queues(struct request_queue *q, bool async) 842 { 843 struct blk_mq_hw_ctx *hctx; 844 int i; 845 846 queue_for_each_hw_ctx(q, hctx, i) { 847 if ((!blk_mq_hctx_has_pending(hctx) && 848 list_empty_careful(&hctx->dispatch)) || 849 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 850 continue; 851 852 blk_mq_run_hw_queue(hctx, async); 853 } 854 } 855 EXPORT_SYMBOL(blk_mq_run_queues); 856 857 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 858 { 859 cancel_delayed_work(&hctx->run_work); 860 cancel_delayed_work(&hctx->delay_work); 861 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 862 } 863 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 864 865 void blk_mq_stop_hw_queues(struct request_queue *q) 866 { 867 struct blk_mq_hw_ctx *hctx; 868 int i; 869 870 queue_for_each_hw_ctx(q, hctx, i) 871 blk_mq_stop_hw_queue(hctx); 872 } 873 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 874 875 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 876 { 877 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 878 879 blk_mq_run_hw_queue(hctx, false); 880 } 881 EXPORT_SYMBOL(blk_mq_start_hw_queue); 882 883 void blk_mq_start_hw_queues(struct request_queue *q) 884 { 885 struct blk_mq_hw_ctx *hctx; 886 int i; 887 888 queue_for_each_hw_ctx(q, hctx, i) 889 blk_mq_start_hw_queue(hctx); 890 } 891 EXPORT_SYMBOL(blk_mq_start_hw_queues); 892 893 894 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 895 { 896 struct blk_mq_hw_ctx *hctx; 897 int i; 898 899 queue_for_each_hw_ctx(q, hctx, i) { 900 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 901 continue; 902 903 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 904 blk_mq_run_hw_queue(hctx, async); 905 } 906 } 907 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 908 909 static void blk_mq_run_work_fn(struct work_struct *work) 910 { 911 struct blk_mq_hw_ctx *hctx; 912 913 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 914 915 __blk_mq_run_hw_queue(hctx); 916 } 917 918 static void blk_mq_delay_work_fn(struct work_struct *work) 919 { 920 struct blk_mq_hw_ctx *hctx; 921 922 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 923 924 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 925 __blk_mq_run_hw_queue(hctx); 926 } 927 928 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 929 { 930 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 931 return; 932 933 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 934 &hctx->delay_work, msecs_to_jiffies(msecs)); 935 } 936 EXPORT_SYMBOL(blk_mq_delay_queue); 937 938 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 939 struct request *rq, bool at_head) 940 { 941 struct blk_mq_ctx *ctx = rq->mq_ctx; 942 943 trace_block_rq_insert(hctx->queue, rq); 944 945 if (at_head) 946 list_add(&rq->queuelist, &ctx->rq_list); 947 else 948 list_add_tail(&rq->queuelist, &ctx->rq_list); 949 950 blk_mq_hctx_mark_pending(hctx, ctx); 951 } 952 953 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 954 bool async) 955 { 956 struct request_queue *q = rq->q; 957 struct blk_mq_hw_ctx *hctx; 958 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 959 960 current_ctx = blk_mq_get_ctx(q); 961 if (!cpu_online(ctx->cpu)) 962 rq->mq_ctx = ctx = current_ctx; 963 964 hctx = q->mq_ops->map_queue(q, ctx->cpu); 965 966 spin_lock(&ctx->lock); 967 __blk_mq_insert_request(hctx, rq, at_head); 968 spin_unlock(&ctx->lock); 969 970 if (run_queue) 971 blk_mq_run_hw_queue(hctx, async); 972 973 blk_mq_put_ctx(current_ctx); 974 } 975 976 static void blk_mq_insert_requests(struct request_queue *q, 977 struct blk_mq_ctx *ctx, 978 struct list_head *list, 979 int depth, 980 bool from_schedule) 981 982 { 983 struct blk_mq_hw_ctx *hctx; 984 struct blk_mq_ctx *current_ctx; 985 986 trace_block_unplug(q, depth, !from_schedule); 987 988 current_ctx = blk_mq_get_ctx(q); 989 990 if (!cpu_online(ctx->cpu)) 991 ctx = current_ctx; 992 hctx = q->mq_ops->map_queue(q, ctx->cpu); 993 994 /* 995 * preemption doesn't flush plug list, so it's possible ctx->cpu is 996 * offline now 997 */ 998 spin_lock(&ctx->lock); 999 while (!list_empty(list)) { 1000 struct request *rq; 1001 1002 rq = list_first_entry(list, struct request, queuelist); 1003 list_del_init(&rq->queuelist); 1004 rq->mq_ctx = ctx; 1005 __blk_mq_insert_request(hctx, rq, false); 1006 } 1007 spin_unlock(&ctx->lock); 1008 1009 blk_mq_run_hw_queue(hctx, from_schedule); 1010 blk_mq_put_ctx(current_ctx); 1011 } 1012 1013 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1014 { 1015 struct request *rqa = container_of(a, struct request, queuelist); 1016 struct request *rqb = container_of(b, struct request, queuelist); 1017 1018 return !(rqa->mq_ctx < rqb->mq_ctx || 1019 (rqa->mq_ctx == rqb->mq_ctx && 1020 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1021 } 1022 1023 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1024 { 1025 struct blk_mq_ctx *this_ctx; 1026 struct request_queue *this_q; 1027 struct request *rq; 1028 LIST_HEAD(list); 1029 LIST_HEAD(ctx_list); 1030 unsigned int depth; 1031 1032 list_splice_init(&plug->mq_list, &list); 1033 1034 list_sort(NULL, &list, plug_ctx_cmp); 1035 1036 this_q = NULL; 1037 this_ctx = NULL; 1038 depth = 0; 1039 1040 while (!list_empty(&list)) { 1041 rq = list_entry_rq(list.next); 1042 list_del_init(&rq->queuelist); 1043 BUG_ON(!rq->q); 1044 if (rq->mq_ctx != this_ctx) { 1045 if (this_ctx) { 1046 blk_mq_insert_requests(this_q, this_ctx, 1047 &ctx_list, depth, 1048 from_schedule); 1049 } 1050 1051 this_ctx = rq->mq_ctx; 1052 this_q = rq->q; 1053 depth = 0; 1054 } 1055 1056 depth++; 1057 list_add_tail(&rq->queuelist, &ctx_list); 1058 } 1059 1060 /* 1061 * If 'this_ctx' is set, we know we have entries to complete 1062 * on 'ctx_list'. Do those. 1063 */ 1064 if (this_ctx) { 1065 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1066 from_schedule); 1067 } 1068 } 1069 1070 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1071 { 1072 init_request_from_bio(rq, bio); 1073 1074 if (blk_do_io_stat(rq)) 1075 blk_account_io_start(rq, 1); 1076 } 1077 1078 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1079 { 1080 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1081 !blk_queue_nomerges(hctx->queue); 1082 } 1083 1084 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1085 struct blk_mq_ctx *ctx, 1086 struct request *rq, struct bio *bio) 1087 { 1088 if (!hctx_allow_merges(hctx)) { 1089 blk_mq_bio_to_request(rq, bio); 1090 spin_lock(&ctx->lock); 1091 insert_rq: 1092 __blk_mq_insert_request(hctx, rq, false); 1093 spin_unlock(&ctx->lock); 1094 return false; 1095 } else { 1096 struct request_queue *q = hctx->queue; 1097 1098 spin_lock(&ctx->lock); 1099 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1100 blk_mq_bio_to_request(rq, bio); 1101 goto insert_rq; 1102 } 1103 1104 spin_unlock(&ctx->lock); 1105 __blk_mq_free_request(hctx, ctx, rq); 1106 return true; 1107 } 1108 } 1109 1110 struct blk_map_ctx { 1111 struct blk_mq_hw_ctx *hctx; 1112 struct blk_mq_ctx *ctx; 1113 }; 1114 1115 static struct request *blk_mq_map_request(struct request_queue *q, 1116 struct bio *bio, 1117 struct blk_map_ctx *data) 1118 { 1119 struct blk_mq_hw_ctx *hctx; 1120 struct blk_mq_ctx *ctx; 1121 struct request *rq; 1122 int rw = bio_data_dir(bio); 1123 struct blk_mq_alloc_data alloc_data; 1124 1125 if (unlikely(blk_mq_queue_enter(q))) { 1126 bio_endio(bio, -EIO); 1127 return NULL; 1128 } 1129 1130 ctx = blk_mq_get_ctx(q); 1131 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1132 1133 if (rw_is_sync(bio->bi_rw)) 1134 rw |= REQ_SYNC; 1135 1136 trace_block_getrq(q, bio, rw); 1137 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1138 hctx); 1139 rq = __blk_mq_alloc_request(&alloc_data, rw); 1140 if (unlikely(!rq)) { 1141 __blk_mq_run_hw_queue(hctx); 1142 blk_mq_put_ctx(ctx); 1143 trace_block_sleeprq(q, bio, rw); 1144 1145 ctx = blk_mq_get_ctx(q); 1146 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1147 blk_mq_set_alloc_data(&alloc_data, q, 1148 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1149 rq = __blk_mq_alloc_request(&alloc_data, rw); 1150 ctx = alloc_data.ctx; 1151 hctx = alloc_data.hctx; 1152 } 1153 1154 hctx->queued++; 1155 data->hctx = hctx; 1156 data->ctx = ctx; 1157 return rq; 1158 } 1159 1160 /* 1161 * Multiple hardware queue variant. This will not use per-process plugs, 1162 * but will attempt to bypass the hctx queueing if we can go straight to 1163 * hardware for SYNC IO. 1164 */ 1165 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1166 { 1167 const int is_sync = rw_is_sync(bio->bi_rw); 1168 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1169 struct blk_map_ctx data; 1170 struct request *rq; 1171 1172 blk_queue_bounce(q, &bio); 1173 1174 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1175 bio_endio(bio, -EIO); 1176 return; 1177 } 1178 1179 rq = blk_mq_map_request(q, bio, &data); 1180 if (unlikely(!rq)) 1181 return; 1182 1183 if (unlikely(is_flush_fua)) { 1184 blk_mq_bio_to_request(rq, bio); 1185 blk_insert_flush(rq); 1186 goto run_queue; 1187 } 1188 1189 /* 1190 * If the driver supports defer issued based on 'last', then 1191 * queue it up like normal since we can potentially save some 1192 * CPU this way. 1193 */ 1194 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1195 struct blk_mq_queue_data bd = { 1196 .rq = rq, 1197 .list = NULL, 1198 .last = 1 1199 }; 1200 int ret; 1201 1202 blk_mq_bio_to_request(rq, bio); 1203 1204 /* 1205 * For OK queue, we are done. For error, kill it. Any other 1206 * error (busy), just add it to our list as we previously 1207 * would have done 1208 */ 1209 ret = q->mq_ops->queue_rq(data.hctx, &bd); 1210 if (ret == BLK_MQ_RQ_QUEUE_OK) 1211 goto done; 1212 else { 1213 __blk_mq_requeue_request(rq); 1214 1215 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1216 rq->errors = -EIO; 1217 blk_mq_end_request(rq, rq->errors); 1218 goto done; 1219 } 1220 } 1221 } 1222 1223 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1224 /* 1225 * For a SYNC request, send it to the hardware immediately. For 1226 * an ASYNC request, just ensure that we run it later on. The 1227 * latter allows for merging opportunities and more efficient 1228 * dispatching. 1229 */ 1230 run_queue: 1231 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1232 } 1233 done: 1234 blk_mq_put_ctx(data.ctx); 1235 } 1236 1237 /* 1238 * Single hardware queue variant. This will attempt to use any per-process 1239 * plug for merging and IO deferral. 1240 */ 1241 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1242 { 1243 const int is_sync = rw_is_sync(bio->bi_rw); 1244 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1245 unsigned int use_plug, request_count = 0; 1246 struct blk_map_ctx data; 1247 struct request *rq; 1248 1249 /* 1250 * If we have multiple hardware queues, just go directly to 1251 * one of those for sync IO. 1252 */ 1253 use_plug = !is_flush_fua && !is_sync; 1254 1255 blk_queue_bounce(q, &bio); 1256 1257 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1258 bio_endio(bio, -EIO); 1259 return; 1260 } 1261 1262 if (use_plug && !blk_queue_nomerges(q) && 1263 blk_attempt_plug_merge(q, bio, &request_count)) 1264 return; 1265 1266 rq = blk_mq_map_request(q, bio, &data); 1267 if (unlikely(!rq)) 1268 return; 1269 1270 if (unlikely(is_flush_fua)) { 1271 blk_mq_bio_to_request(rq, bio); 1272 blk_insert_flush(rq); 1273 goto run_queue; 1274 } 1275 1276 /* 1277 * A task plug currently exists. Since this is completely lockless, 1278 * utilize that to temporarily store requests until the task is 1279 * either done or scheduled away. 1280 */ 1281 if (use_plug) { 1282 struct blk_plug *plug = current->plug; 1283 1284 if (plug) { 1285 blk_mq_bio_to_request(rq, bio); 1286 if (list_empty(&plug->mq_list)) 1287 trace_block_plug(q); 1288 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1289 blk_flush_plug_list(plug, false); 1290 trace_block_plug(q); 1291 } 1292 list_add_tail(&rq->queuelist, &plug->mq_list); 1293 blk_mq_put_ctx(data.ctx); 1294 return; 1295 } 1296 } 1297 1298 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1299 /* 1300 * For a SYNC request, send it to the hardware immediately. For 1301 * an ASYNC request, just ensure that we run it later on. The 1302 * latter allows for merging opportunities and more efficient 1303 * dispatching. 1304 */ 1305 run_queue: 1306 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1307 } 1308 1309 blk_mq_put_ctx(data.ctx); 1310 } 1311 1312 /* 1313 * Default mapping to a software queue, since we use one per CPU. 1314 */ 1315 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1316 { 1317 return q->queue_hw_ctx[q->mq_map[cpu]]; 1318 } 1319 EXPORT_SYMBOL(blk_mq_map_queue); 1320 1321 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1322 struct blk_mq_tags *tags, unsigned int hctx_idx) 1323 { 1324 struct page *page; 1325 1326 if (tags->rqs && set->ops->exit_request) { 1327 int i; 1328 1329 for (i = 0; i < tags->nr_tags; i++) { 1330 if (!tags->rqs[i]) 1331 continue; 1332 set->ops->exit_request(set->driver_data, tags->rqs[i], 1333 hctx_idx, i); 1334 tags->rqs[i] = NULL; 1335 } 1336 } 1337 1338 while (!list_empty(&tags->page_list)) { 1339 page = list_first_entry(&tags->page_list, struct page, lru); 1340 list_del_init(&page->lru); 1341 __free_pages(page, page->private); 1342 } 1343 1344 kfree(tags->rqs); 1345 1346 blk_mq_free_tags(tags); 1347 } 1348 1349 static size_t order_to_size(unsigned int order) 1350 { 1351 return (size_t)PAGE_SIZE << order; 1352 } 1353 1354 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1355 unsigned int hctx_idx) 1356 { 1357 struct blk_mq_tags *tags; 1358 unsigned int i, j, entries_per_page, max_order = 4; 1359 size_t rq_size, left; 1360 1361 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1362 set->numa_node); 1363 if (!tags) 1364 return NULL; 1365 1366 INIT_LIST_HEAD(&tags->page_list); 1367 1368 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1369 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1370 set->numa_node); 1371 if (!tags->rqs) { 1372 blk_mq_free_tags(tags); 1373 return NULL; 1374 } 1375 1376 /* 1377 * rq_size is the size of the request plus driver payload, rounded 1378 * to the cacheline size 1379 */ 1380 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1381 cache_line_size()); 1382 left = rq_size * set->queue_depth; 1383 1384 for (i = 0; i < set->queue_depth; ) { 1385 int this_order = max_order; 1386 struct page *page; 1387 int to_do; 1388 void *p; 1389 1390 while (left < order_to_size(this_order - 1) && this_order) 1391 this_order--; 1392 1393 do { 1394 page = alloc_pages_node(set->numa_node, 1395 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1396 this_order); 1397 if (page) 1398 break; 1399 if (!this_order--) 1400 break; 1401 if (order_to_size(this_order) < rq_size) 1402 break; 1403 } while (1); 1404 1405 if (!page) 1406 goto fail; 1407 1408 page->private = this_order; 1409 list_add_tail(&page->lru, &tags->page_list); 1410 1411 p = page_address(page); 1412 entries_per_page = order_to_size(this_order) / rq_size; 1413 to_do = min(entries_per_page, set->queue_depth - i); 1414 left -= to_do * rq_size; 1415 for (j = 0; j < to_do; j++) { 1416 tags->rqs[i] = p; 1417 tags->rqs[i]->atomic_flags = 0; 1418 tags->rqs[i]->cmd_flags = 0; 1419 if (set->ops->init_request) { 1420 if (set->ops->init_request(set->driver_data, 1421 tags->rqs[i], hctx_idx, i, 1422 set->numa_node)) { 1423 tags->rqs[i] = NULL; 1424 goto fail; 1425 } 1426 } 1427 1428 p += rq_size; 1429 i++; 1430 } 1431 } 1432 1433 return tags; 1434 1435 fail: 1436 blk_mq_free_rq_map(set, tags, hctx_idx); 1437 return NULL; 1438 } 1439 1440 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1441 { 1442 kfree(bitmap->map); 1443 } 1444 1445 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1446 { 1447 unsigned int bpw = 8, total, num_maps, i; 1448 1449 bitmap->bits_per_word = bpw; 1450 1451 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1452 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1453 GFP_KERNEL, node); 1454 if (!bitmap->map) 1455 return -ENOMEM; 1456 1457 bitmap->map_size = num_maps; 1458 1459 total = nr_cpu_ids; 1460 for (i = 0; i < num_maps; i++) { 1461 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1462 total -= bitmap->map[i].depth; 1463 } 1464 1465 return 0; 1466 } 1467 1468 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1469 { 1470 struct request_queue *q = hctx->queue; 1471 struct blk_mq_ctx *ctx; 1472 LIST_HEAD(tmp); 1473 1474 /* 1475 * Move ctx entries to new CPU, if this one is going away. 1476 */ 1477 ctx = __blk_mq_get_ctx(q, cpu); 1478 1479 spin_lock(&ctx->lock); 1480 if (!list_empty(&ctx->rq_list)) { 1481 list_splice_init(&ctx->rq_list, &tmp); 1482 blk_mq_hctx_clear_pending(hctx, ctx); 1483 } 1484 spin_unlock(&ctx->lock); 1485 1486 if (list_empty(&tmp)) 1487 return NOTIFY_OK; 1488 1489 ctx = blk_mq_get_ctx(q); 1490 spin_lock(&ctx->lock); 1491 1492 while (!list_empty(&tmp)) { 1493 struct request *rq; 1494 1495 rq = list_first_entry(&tmp, struct request, queuelist); 1496 rq->mq_ctx = ctx; 1497 list_move_tail(&rq->queuelist, &ctx->rq_list); 1498 } 1499 1500 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1501 blk_mq_hctx_mark_pending(hctx, ctx); 1502 1503 spin_unlock(&ctx->lock); 1504 1505 blk_mq_run_hw_queue(hctx, true); 1506 blk_mq_put_ctx(ctx); 1507 return NOTIFY_OK; 1508 } 1509 1510 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1511 { 1512 struct request_queue *q = hctx->queue; 1513 struct blk_mq_tag_set *set = q->tag_set; 1514 1515 if (set->tags[hctx->queue_num]) 1516 return NOTIFY_OK; 1517 1518 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1519 if (!set->tags[hctx->queue_num]) 1520 return NOTIFY_STOP; 1521 1522 hctx->tags = set->tags[hctx->queue_num]; 1523 return NOTIFY_OK; 1524 } 1525 1526 static int blk_mq_hctx_notify(void *data, unsigned long action, 1527 unsigned int cpu) 1528 { 1529 struct blk_mq_hw_ctx *hctx = data; 1530 1531 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1532 return blk_mq_hctx_cpu_offline(hctx, cpu); 1533 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1534 return blk_mq_hctx_cpu_online(hctx, cpu); 1535 1536 return NOTIFY_OK; 1537 } 1538 1539 static void blk_mq_exit_hctx(struct request_queue *q, 1540 struct blk_mq_tag_set *set, 1541 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1542 { 1543 unsigned flush_start_tag = set->queue_depth; 1544 1545 blk_mq_tag_idle(hctx); 1546 1547 if (set->ops->exit_request) 1548 set->ops->exit_request(set->driver_data, 1549 hctx->fq->flush_rq, hctx_idx, 1550 flush_start_tag + hctx_idx); 1551 1552 if (set->ops->exit_hctx) 1553 set->ops->exit_hctx(hctx, hctx_idx); 1554 1555 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1556 blk_free_flush_queue(hctx->fq); 1557 kfree(hctx->ctxs); 1558 blk_mq_free_bitmap(&hctx->ctx_map); 1559 } 1560 1561 static void blk_mq_exit_hw_queues(struct request_queue *q, 1562 struct blk_mq_tag_set *set, int nr_queue) 1563 { 1564 struct blk_mq_hw_ctx *hctx; 1565 unsigned int i; 1566 1567 queue_for_each_hw_ctx(q, hctx, i) { 1568 if (i == nr_queue) 1569 break; 1570 blk_mq_exit_hctx(q, set, hctx, i); 1571 } 1572 } 1573 1574 static void blk_mq_free_hw_queues(struct request_queue *q, 1575 struct blk_mq_tag_set *set) 1576 { 1577 struct blk_mq_hw_ctx *hctx; 1578 unsigned int i; 1579 1580 queue_for_each_hw_ctx(q, hctx, i) { 1581 free_cpumask_var(hctx->cpumask); 1582 kfree(hctx); 1583 } 1584 } 1585 1586 static int blk_mq_init_hctx(struct request_queue *q, 1587 struct blk_mq_tag_set *set, 1588 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1589 { 1590 int node; 1591 unsigned flush_start_tag = set->queue_depth; 1592 1593 node = hctx->numa_node; 1594 if (node == NUMA_NO_NODE) 1595 node = hctx->numa_node = set->numa_node; 1596 1597 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1598 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1599 spin_lock_init(&hctx->lock); 1600 INIT_LIST_HEAD(&hctx->dispatch); 1601 hctx->queue = q; 1602 hctx->queue_num = hctx_idx; 1603 hctx->flags = set->flags; 1604 hctx->cmd_size = set->cmd_size; 1605 1606 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1607 blk_mq_hctx_notify, hctx); 1608 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1609 1610 hctx->tags = set->tags[hctx_idx]; 1611 1612 /* 1613 * Allocate space for all possible cpus to avoid allocation at 1614 * runtime 1615 */ 1616 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1617 GFP_KERNEL, node); 1618 if (!hctx->ctxs) 1619 goto unregister_cpu_notifier; 1620 1621 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1622 goto free_ctxs; 1623 1624 hctx->nr_ctx = 0; 1625 1626 if (set->ops->init_hctx && 1627 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1628 goto free_bitmap; 1629 1630 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1631 if (!hctx->fq) 1632 goto exit_hctx; 1633 1634 if (set->ops->init_request && 1635 set->ops->init_request(set->driver_data, 1636 hctx->fq->flush_rq, hctx_idx, 1637 flush_start_tag + hctx_idx, node)) 1638 goto free_fq; 1639 1640 return 0; 1641 1642 free_fq: 1643 kfree(hctx->fq); 1644 exit_hctx: 1645 if (set->ops->exit_hctx) 1646 set->ops->exit_hctx(hctx, hctx_idx); 1647 free_bitmap: 1648 blk_mq_free_bitmap(&hctx->ctx_map); 1649 free_ctxs: 1650 kfree(hctx->ctxs); 1651 unregister_cpu_notifier: 1652 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1653 1654 return -1; 1655 } 1656 1657 static int blk_mq_init_hw_queues(struct request_queue *q, 1658 struct blk_mq_tag_set *set) 1659 { 1660 struct blk_mq_hw_ctx *hctx; 1661 unsigned int i; 1662 1663 /* 1664 * Initialize hardware queues 1665 */ 1666 queue_for_each_hw_ctx(q, hctx, i) { 1667 if (blk_mq_init_hctx(q, set, hctx, i)) 1668 break; 1669 } 1670 1671 if (i == q->nr_hw_queues) 1672 return 0; 1673 1674 /* 1675 * Init failed 1676 */ 1677 blk_mq_exit_hw_queues(q, set, i); 1678 1679 return 1; 1680 } 1681 1682 static void blk_mq_init_cpu_queues(struct request_queue *q, 1683 unsigned int nr_hw_queues) 1684 { 1685 unsigned int i; 1686 1687 for_each_possible_cpu(i) { 1688 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1689 struct blk_mq_hw_ctx *hctx; 1690 1691 memset(__ctx, 0, sizeof(*__ctx)); 1692 __ctx->cpu = i; 1693 spin_lock_init(&__ctx->lock); 1694 INIT_LIST_HEAD(&__ctx->rq_list); 1695 __ctx->queue = q; 1696 1697 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1698 if (!cpu_online(i)) 1699 continue; 1700 1701 hctx = q->mq_ops->map_queue(q, i); 1702 cpumask_set_cpu(i, hctx->cpumask); 1703 hctx->nr_ctx++; 1704 1705 /* 1706 * Set local node, IFF we have more than one hw queue. If 1707 * not, we remain on the home node of the device 1708 */ 1709 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1710 hctx->numa_node = cpu_to_node(i); 1711 } 1712 } 1713 1714 static void blk_mq_map_swqueue(struct request_queue *q) 1715 { 1716 unsigned int i; 1717 struct blk_mq_hw_ctx *hctx; 1718 struct blk_mq_ctx *ctx; 1719 1720 queue_for_each_hw_ctx(q, hctx, i) { 1721 cpumask_clear(hctx->cpumask); 1722 hctx->nr_ctx = 0; 1723 } 1724 1725 /* 1726 * Map software to hardware queues 1727 */ 1728 queue_for_each_ctx(q, ctx, i) { 1729 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1730 if (!cpu_online(i)) 1731 continue; 1732 1733 hctx = q->mq_ops->map_queue(q, i); 1734 cpumask_set_cpu(i, hctx->cpumask); 1735 ctx->index_hw = hctx->nr_ctx; 1736 hctx->ctxs[hctx->nr_ctx++] = ctx; 1737 } 1738 1739 queue_for_each_hw_ctx(q, hctx, i) { 1740 /* 1741 * If no software queues are mapped to this hardware queue, 1742 * disable it and free the request entries. 1743 */ 1744 if (!hctx->nr_ctx) { 1745 struct blk_mq_tag_set *set = q->tag_set; 1746 1747 if (set->tags[i]) { 1748 blk_mq_free_rq_map(set, set->tags[i], i); 1749 set->tags[i] = NULL; 1750 hctx->tags = NULL; 1751 } 1752 continue; 1753 } 1754 1755 /* 1756 * Initialize batch roundrobin counts 1757 */ 1758 hctx->next_cpu = cpumask_first(hctx->cpumask); 1759 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1760 } 1761 } 1762 1763 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1764 { 1765 struct blk_mq_hw_ctx *hctx; 1766 struct request_queue *q; 1767 bool shared; 1768 int i; 1769 1770 if (set->tag_list.next == set->tag_list.prev) 1771 shared = false; 1772 else 1773 shared = true; 1774 1775 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1776 blk_mq_freeze_queue(q); 1777 1778 queue_for_each_hw_ctx(q, hctx, i) { 1779 if (shared) 1780 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1781 else 1782 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1783 } 1784 blk_mq_unfreeze_queue(q); 1785 } 1786 } 1787 1788 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1789 { 1790 struct blk_mq_tag_set *set = q->tag_set; 1791 1792 mutex_lock(&set->tag_list_lock); 1793 list_del_init(&q->tag_set_list); 1794 blk_mq_update_tag_set_depth(set); 1795 mutex_unlock(&set->tag_list_lock); 1796 } 1797 1798 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1799 struct request_queue *q) 1800 { 1801 q->tag_set = set; 1802 1803 mutex_lock(&set->tag_list_lock); 1804 list_add_tail(&q->tag_set_list, &set->tag_list); 1805 blk_mq_update_tag_set_depth(set); 1806 mutex_unlock(&set->tag_list_lock); 1807 } 1808 1809 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1810 { 1811 struct blk_mq_hw_ctx **hctxs; 1812 struct blk_mq_ctx __percpu *ctx; 1813 struct request_queue *q; 1814 unsigned int *map; 1815 int i; 1816 1817 ctx = alloc_percpu(struct blk_mq_ctx); 1818 if (!ctx) 1819 return ERR_PTR(-ENOMEM); 1820 1821 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1822 set->numa_node); 1823 1824 if (!hctxs) 1825 goto err_percpu; 1826 1827 map = blk_mq_make_queue_map(set); 1828 if (!map) 1829 goto err_map; 1830 1831 for (i = 0; i < set->nr_hw_queues; i++) { 1832 int node = blk_mq_hw_queue_to_node(map, i); 1833 1834 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1835 GFP_KERNEL, node); 1836 if (!hctxs[i]) 1837 goto err_hctxs; 1838 1839 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1840 node)) 1841 goto err_hctxs; 1842 1843 atomic_set(&hctxs[i]->nr_active, 0); 1844 hctxs[i]->numa_node = node; 1845 hctxs[i]->queue_num = i; 1846 } 1847 1848 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1849 if (!q) 1850 goto err_hctxs; 1851 1852 /* 1853 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1854 * See blk_register_queue() for details. 1855 */ 1856 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release, 1857 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1858 goto err_map; 1859 1860 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1861 blk_queue_rq_timeout(q, 30000); 1862 1863 q->nr_queues = nr_cpu_ids; 1864 q->nr_hw_queues = set->nr_hw_queues; 1865 q->mq_map = map; 1866 1867 q->queue_ctx = ctx; 1868 q->queue_hw_ctx = hctxs; 1869 1870 q->mq_ops = set->ops; 1871 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1872 1873 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1874 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1875 1876 q->sg_reserved_size = INT_MAX; 1877 1878 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1879 INIT_LIST_HEAD(&q->requeue_list); 1880 spin_lock_init(&q->requeue_lock); 1881 1882 if (q->nr_hw_queues > 1) 1883 blk_queue_make_request(q, blk_mq_make_request); 1884 else 1885 blk_queue_make_request(q, blk_sq_make_request); 1886 1887 if (set->timeout) 1888 blk_queue_rq_timeout(q, set->timeout); 1889 1890 /* 1891 * Do this after blk_queue_make_request() overrides it... 1892 */ 1893 q->nr_requests = set->queue_depth; 1894 1895 if (set->ops->complete) 1896 blk_queue_softirq_done(q, set->ops->complete); 1897 1898 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1899 1900 if (blk_mq_init_hw_queues(q, set)) 1901 goto err_hw; 1902 1903 mutex_lock(&all_q_mutex); 1904 list_add_tail(&q->all_q_node, &all_q_list); 1905 mutex_unlock(&all_q_mutex); 1906 1907 blk_mq_add_queue_tag_set(set, q); 1908 1909 blk_mq_map_swqueue(q); 1910 1911 return q; 1912 1913 err_hw: 1914 blk_cleanup_queue(q); 1915 err_hctxs: 1916 kfree(map); 1917 for (i = 0; i < set->nr_hw_queues; i++) { 1918 if (!hctxs[i]) 1919 break; 1920 free_cpumask_var(hctxs[i]->cpumask); 1921 kfree(hctxs[i]); 1922 } 1923 err_map: 1924 kfree(hctxs); 1925 err_percpu: 1926 free_percpu(ctx); 1927 return ERR_PTR(-ENOMEM); 1928 } 1929 EXPORT_SYMBOL(blk_mq_init_queue); 1930 1931 void blk_mq_free_queue(struct request_queue *q) 1932 { 1933 struct blk_mq_tag_set *set = q->tag_set; 1934 1935 blk_mq_del_queue_tag_set(q); 1936 1937 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 1938 blk_mq_free_hw_queues(q, set); 1939 1940 percpu_ref_exit(&q->mq_usage_counter); 1941 1942 free_percpu(q->queue_ctx); 1943 kfree(q->queue_hw_ctx); 1944 kfree(q->mq_map); 1945 1946 q->queue_ctx = NULL; 1947 q->queue_hw_ctx = NULL; 1948 q->mq_map = NULL; 1949 1950 mutex_lock(&all_q_mutex); 1951 list_del_init(&q->all_q_node); 1952 mutex_unlock(&all_q_mutex); 1953 } 1954 1955 /* Basically redo blk_mq_init_queue with queue frozen */ 1956 static void blk_mq_queue_reinit(struct request_queue *q) 1957 { 1958 WARN_ON_ONCE(!q->mq_freeze_depth); 1959 1960 blk_mq_sysfs_unregister(q); 1961 1962 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 1963 1964 /* 1965 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 1966 * we should change hctx numa_node according to new topology (this 1967 * involves free and re-allocate memory, worthy doing?) 1968 */ 1969 1970 blk_mq_map_swqueue(q); 1971 1972 blk_mq_sysfs_register(q); 1973 } 1974 1975 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 1976 unsigned long action, void *hcpu) 1977 { 1978 struct request_queue *q; 1979 1980 /* 1981 * Before new mappings are established, hotadded cpu might already 1982 * start handling requests. This doesn't break anything as we map 1983 * offline CPUs to first hardware queue. We will re-init the queue 1984 * below to get optimal settings. 1985 */ 1986 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 1987 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 1988 return NOTIFY_OK; 1989 1990 mutex_lock(&all_q_mutex); 1991 1992 /* 1993 * We need to freeze and reinit all existing queues. Freezing 1994 * involves synchronous wait for an RCU grace period and doing it 1995 * one by one may take a long time. Start freezing all queues in 1996 * one swoop and then wait for the completions so that freezing can 1997 * take place in parallel. 1998 */ 1999 list_for_each_entry(q, &all_q_list, all_q_node) 2000 blk_mq_freeze_queue_start(q); 2001 list_for_each_entry(q, &all_q_list, all_q_node) 2002 blk_mq_freeze_queue_wait(q); 2003 2004 list_for_each_entry(q, &all_q_list, all_q_node) 2005 blk_mq_queue_reinit(q); 2006 2007 list_for_each_entry(q, &all_q_list, all_q_node) 2008 blk_mq_unfreeze_queue(q); 2009 2010 mutex_unlock(&all_q_mutex); 2011 return NOTIFY_OK; 2012 } 2013 2014 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2015 { 2016 int i; 2017 2018 for (i = 0; i < set->nr_hw_queues; i++) { 2019 set->tags[i] = blk_mq_init_rq_map(set, i); 2020 if (!set->tags[i]) 2021 goto out_unwind; 2022 } 2023 2024 return 0; 2025 2026 out_unwind: 2027 while (--i >= 0) 2028 blk_mq_free_rq_map(set, set->tags[i], i); 2029 2030 return -ENOMEM; 2031 } 2032 2033 /* 2034 * Allocate the request maps associated with this tag_set. Note that this 2035 * may reduce the depth asked for, if memory is tight. set->queue_depth 2036 * will be updated to reflect the allocated depth. 2037 */ 2038 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2039 { 2040 unsigned int depth; 2041 int err; 2042 2043 depth = set->queue_depth; 2044 do { 2045 err = __blk_mq_alloc_rq_maps(set); 2046 if (!err) 2047 break; 2048 2049 set->queue_depth >>= 1; 2050 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2051 err = -ENOMEM; 2052 break; 2053 } 2054 } while (set->queue_depth); 2055 2056 if (!set->queue_depth || err) { 2057 pr_err("blk-mq: failed to allocate request map\n"); 2058 return -ENOMEM; 2059 } 2060 2061 if (depth != set->queue_depth) 2062 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2063 depth, set->queue_depth); 2064 2065 return 0; 2066 } 2067 2068 /* 2069 * Alloc a tag set to be associated with one or more request queues. 2070 * May fail with EINVAL for various error conditions. May adjust the 2071 * requested depth down, if if it too large. In that case, the set 2072 * value will be stored in set->queue_depth. 2073 */ 2074 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2075 { 2076 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2077 2078 if (!set->nr_hw_queues) 2079 return -EINVAL; 2080 if (!set->queue_depth) 2081 return -EINVAL; 2082 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2083 return -EINVAL; 2084 2085 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 2086 return -EINVAL; 2087 2088 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2089 pr_info("blk-mq: reduced tag depth to %u\n", 2090 BLK_MQ_MAX_DEPTH); 2091 set->queue_depth = BLK_MQ_MAX_DEPTH; 2092 } 2093 2094 /* 2095 * If a crashdump is active, then we are potentially in a very 2096 * memory constrained environment. Limit us to 1 queue and 2097 * 64 tags to prevent using too much memory. 2098 */ 2099 if (is_kdump_kernel()) { 2100 set->nr_hw_queues = 1; 2101 set->queue_depth = min(64U, set->queue_depth); 2102 } 2103 2104 set->tags = kmalloc_node(set->nr_hw_queues * 2105 sizeof(struct blk_mq_tags *), 2106 GFP_KERNEL, set->numa_node); 2107 if (!set->tags) 2108 return -ENOMEM; 2109 2110 if (blk_mq_alloc_rq_maps(set)) 2111 goto enomem; 2112 2113 mutex_init(&set->tag_list_lock); 2114 INIT_LIST_HEAD(&set->tag_list); 2115 2116 return 0; 2117 enomem: 2118 kfree(set->tags); 2119 set->tags = NULL; 2120 return -ENOMEM; 2121 } 2122 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2123 2124 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2125 { 2126 int i; 2127 2128 for (i = 0; i < set->nr_hw_queues; i++) { 2129 if (set->tags[i]) 2130 blk_mq_free_rq_map(set, set->tags[i], i); 2131 } 2132 2133 kfree(set->tags); 2134 set->tags = NULL; 2135 } 2136 EXPORT_SYMBOL(blk_mq_free_tag_set); 2137 2138 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2139 { 2140 struct blk_mq_tag_set *set = q->tag_set; 2141 struct blk_mq_hw_ctx *hctx; 2142 int i, ret; 2143 2144 if (!set || nr > set->queue_depth) 2145 return -EINVAL; 2146 2147 ret = 0; 2148 queue_for_each_hw_ctx(q, hctx, i) { 2149 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2150 if (ret) 2151 break; 2152 } 2153 2154 if (!ret) 2155 q->nr_requests = nr; 2156 2157 return ret; 2158 } 2159 2160 void blk_mq_disable_hotplug(void) 2161 { 2162 mutex_lock(&all_q_mutex); 2163 } 2164 2165 void blk_mq_enable_hotplug(void) 2166 { 2167 mutex_unlock(&all_q_mutex); 2168 } 2169 2170 static int __init blk_mq_init(void) 2171 { 2172 blk_mq_cpu_init(); 2173 2174 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2175 2176 return 0; 2177 } 2178 subsys_initcall(blk_mq_init); 2179