xref: /openbmc/linux/block/blk-mq.c (revision 858c0840)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->part && blk_do_io_stat(rq) &&
97 	    (!mi->part->bd_partno || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 	mutex_lock(&q->mq_freeze_lock);
127 	if (++q->mq_freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		mutex_unlock(&q->mq_freeze_lock);
130 		if (queue_is_mq(q))
131 			blk_mq_run_hw_queues(q, false);
132 	} else {
133 		mutex_unlock(&q->mq_freeze_lock);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 				     unsigned long timeout)
146 {
147 	return wait_event_timeout(q->mq_freeze_wq,
148 					percpu_ref_is_zero(&q->q_usage_counter),
149 					timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152 
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 	/*
160 	 * In the !blk_mq case we are only calling this to kill the
161 	 * q_usage_counter, otherwise this increases the freeze depth
162 	 * and waits for it to return to zero.  For this reason there is
163 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 	 * exported to drivers as the only user for unfreeze is blk_mq.
165 	 */
166 	blk_freeze_queue_start(q);
167 	blk_mq_freeze_queue_wait(q);
168 }
169 
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * ...just an alias to keep freeze and unfreeze actions balanced
174 	 * in the blk_mq_* namespace
175 	 */
176 	blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 	mutex_lock(&q->mq_freeze_lock);
183 	if (force_atomic)
184 		q->q_usage_counter.data->force_atomic = true;
185 	q->mq_freeze_depth--;
186 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 	if (!q->mq_freeze_depth) {
188 		percpu_ref_resurrect(&q->q_usage_counter);
189 		wake_up_all(&q->mq_freeze_wq);
190 	}
191 	mutex_unlock(&q->mq_freeze_lock);
192 }
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	__blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&q->queue_lock, flags);
209 	if (!q->quiesce_depth++)
210 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 	spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 	if (set->flags & BLK_MQ_F_BLOCKING)
227 		synchronize_srcu(set->srcu);
228 	else
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232 
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 	blk_mq_quiesce_queue_nowait(q);
245 	/* nothing to wait for non-mq queues */
246 	if (queue_is_mq(q))
247 		blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	unsigned long flags;
261 	bool run_queue = false;
262 
263 	spin_lock_irqsave(&q->queue_lock, flags);
264 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 		;
266 	} else if (!--q->quiesce_depth) {
267 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 		run_queue = true;
269 	}
270 	spin_unlock_irqrestore(&q->queue_lock, flags);
271 
272 	/* dispatch requests which are inserted during quiescing */
273 	if (run_queue)
274 		blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 	struct request_queue *q;
281 
282 	mutex_lock(&set->tag_list_lock);
283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 		if (!blk_queue_skip_tagset_quiesce(q))
285 			blk_mq_quiesce_queue_nowait(q);
286 	}
287 	blk_mq_wait_quiesce_done(set);
288 	mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 	struct request_queue *q;
295 
296 	mutex_lock(&set->tag_list_lock);
297 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 		if (!blk_queue_skip_tagset_quiesce(q))
299 			blk_mq_unquiesce_queue(q);
300 	}
301 	mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 	struct blk_mq_hw_ctx *hctx;
308 	unsigned long i;
309 
310 	queue_for_each_hw_ctx(q, hctx, i)
311 		if (blk_mq_hw_queue_mapped(hctx))
312 			blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314 
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 	memset(rq, 0, sizeof(*rq));
318 
319 	INIT_LIST_HEAD(&rq->queuelist);
320 	rq->q = q;
321 	rq->__sector = (sector_t) -1;
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->tag = BLK_MQ_NO_TAG;
325 	rq->internal_tag = BLK_MQ_NO_TAG;
326 	rq->start_time_ns = ktime_get_ns();
327 	rq->part = NULL;
328 	blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331 
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 	if (blk_mq_need_time_stamp(rq))
336 		rq->start_time_ns = ktime_get_ns();
337 	else
338 		rq->start_time_ns = 0;
339 
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 	if (blk_queue_rq_alloc_time(rq->q))
342 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 	else
344 		rq->alloc_time_ns = 0;
345 #endif
346 }
347 
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 		struct blk_mq_tags *tags, unsigned int tag)
350 {
351 	struct blk_mq_ctx *ctx = data->ctx;
352 	struct blk_mq_hw_ctx *hctx = data->hctx;
353 	struct request_queue *q = data->q;
354 	struct request *rq = tags->static_rqs[tag];
355 
356 	rq->q = q;
357 	rq->mq_ctx = ctx;
358 	rq->mq_hctx = hctx;
359 	rq->cmd_flags = data->cmd_flags;
360 
361 	if (data->flags & BLK_MQ_REQ_PM)
362 		data->rq_flags |= RQF_PM;
363 	if (blk_queue_io_stat(q))
364 		data->rq_flags |= RQF_IO_STAT;
365 	rq->rq_flags = data->rq_flags;
366 
367 	if (data->rq_flags & RQF_SCHED_TAGS) {
368 		rq->tag = BLK_MQ_NO_TAG;
369 		rq->internal_tag = tag;
370 	} else {
371 		rq->tag = tag;
372 		rq->internal_tag = BLK_MQ_NO_TAG;
373 	}
374 	rq->timeout = 0;
375 
376 	rq->part = NULL;
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_USE_SCHED) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (e->type->ops.prepare_request)
399 			e->type->ops.prepare_request(rq);
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	/* caller already holds a reference, add for remainder */
430 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 	data->nr_tags -= nr;
432 
433 	return rq_list_pop(data->cached_rq);
434 }
435 
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 	struct request_queue *q = data->q;
439 	u64 alloc_time_ns = 0;
440 	struct request *rq;
441 	unsigned int tag;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	if (data->cmd_flags & REQ_NOWAIT)
448 		data->flags |= BLK_MQ_REQ_NOWAIT;
449 
450 	if (q->elevator) {
451 		/*
452 		 * All requests use scheduler tags when an I/O scheduler is
453 		 * enabled for the queue.
454 		 */
455 		data->rq_flags |= RQF_SCHED_TAGS;
456 
457 		/*
458 		 * Flush/passthrough requests are special and go directly to the
459 		 * dispatch list.
460 		 */
461 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462 		    !blk_op_is_passthrough(data->cmd_flags)) {
463 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
464 
465 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466 
467 			data->rq_flags |= RQF_USE_SCHED;
468 			if (ops->limit_depth)
469 				ops->limit_depth(data->cmd_flags, data);
470 		}
471 	}
472 
473 retry:
474 	data->ctx = blk_mq_get_ctx(q);
475 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476 	if (!(data->rq_flags & RQF_SCHED_TAGS))
477 		blk_mq_tag_busy(data->hctx);
478 
479 	if (data->flags & BLK_MQ_REQ_RESERVED)
480 		data->rq_flags |= RQF_RESV;
481 
482 	/*
483 	 * Try batched alloc if we want more than 1 tag.
484 	 */
485 	if (data->nr_tags > 1) {
486 		rq = __blk_mq_alloc_requests_batch(data);
487 		if (rq) {
488 			blk_mq_rq_time_init(rq, alloc_time_ns);
489 			return rq;
490 		}
491 		data->nr_tags = 1;
492 	}
493 
494 	/*
495 	 * Waiting allocations only fail because of an inactive hctx.  In that
496 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 	 * should have migrated us to an online CPU by now.
498 	 */
499 	tag = blk_mq_get_tag(data);
500 	if (tag == BLK_MQ_NO_TAG) {
501 		if (data->flags & BLK_MQ_REQ_NOWAIT)
502 			return NULL;
503 		/*
504 		 * Give up the CPU and sleep for a random short time to
505 		 * ensure that thread using a realtime scheduling class
506 		 * are migrated off the CPU, and thus off the hctx that
507 		 * is going away.
508 		 */
509 		msleep(3);
510 		goto retry;
511 	}
512 
513 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514 	blk_mq_rq_time_init(rq, alloc_time_ns);
515 	return rq;
516 }
517 
518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519 					    struct blk_plug *plug,
520 					    blk_opf_t opf,
521 					    blk_mq_req_flags_t flags)
522 {
523 	struct blk_mq_alloc_data data = {
524 		.q		= q,
525 		.flags		= flags,
526 		.cmd_flags	= opf,
527 		.nr_tags	= plug->nr_ios,
528 		.cached_rq	= &plug->cached_rq,
529 	};
530 	struct request *rq;
531 
532 	if (blk_queue_enter(q, flags))
533 		return NULL;
534 
535 	plug->nr_ios = 1;
536 
537 	rq = __blk_mq_alloc_requests(&data);
538 	if (unlikely(!rq))
539 		blk_queue_exit(q);
540 	return rq;
541 }
542 
543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544 						   blk_opf_t opf,
545 						   blk_mq_req_flags_t flags)
546 {
547 	struct blk_plug *plug = current->plug;
548 	struct request *rq;
549 
550 	if (!plug)
551 		return NULL;
552 
553 	if (rq_list_empty(plug->cached_rq)) {
554 		if (plug->nr_ios == 1)
555 			return NULL;
556 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557 		if (!rq)
558 			return NULL;
559 	} else {
560 		rq = rq_list_peek(&plug->cached_rq);
561 		if (!rq || rq->q != q)
562 			return NULL;
563 
564 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565 			return NULL;
566 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567 			return NULL;
568 
569 		plug->cached_rq = rq_list_next(rq);
570 		blk_mq_rq_time_init(rq, 0);
571 	}
572 
573 	rq->cmd_flags = opf;
574 	INIT_LIST_HEAD(&rq->queuelist);
575 	return rq;
576 }
577 
578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579 		blk_mq_req_flags_t flags)
580 {
581 	struct request *rq;
582 
583 	rq = blk_mq_alloc_cached_request(q, opf, flags);
584 	if (!rq) {
585 		struct blk_mq_alloc_data data = {
586 			.q		= q,
587 			.flags		= flags,
588 			.cmd_flags	= opf,
589 			.nr_tags	= 1,
590 		};
591 		int ret;
592 
593 		ret = blk_queue_enter(q, flags);
594 		if (ret)
595 			return ERR_PTR(ret);
596 
597 		rq = __blk_mq_alloc_requests(&data);
598 		if (!rq)
599 			goto out_queue_exit;
600 	}
601 	rq->__data_len = 0;
602 	rq->__sector = (sector_t) -1;
603 	rq->bio = rq->biotail = NULL;
604 	return rq;
605 out_queue_exit:
606 	blk_queue_exit(q);
607 	return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610 
611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614 	struct blk_mq_alloc_data data = {
615 		.q		= q,
616 		.flags		= flags,
617 		.cmd_flags	= opf,
618 		.nr_tags	= 1,
619 	};
620 	u64 alloc_time_ns = 0;
621 	struct request *rq;
622 	unsigned int cpu;
623 	unsigned int tag;
624 	int ret;
625 
626 	/* alloc_time includes depth and tag waits */
627 	if (blk_queue_rq_alloc_time(q))
628 		alloc_time_ns = ktime_get_ns();
629 
630 	/*
631 	 * If the tag allocator sleeps we could get an allocation for a
632 	 * different hardware context.  No need to complicate the low level
633 	 * allocator for this for the rare use case of a command tied to
634 	 * a specific queue.
635 	 */
636 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638 		return ERR_PTR(-EINVAL);
639 
640 	if (hctx_idx >= q->nr_hw_queues)
641 		return ERR_PTR(-EIO);
642 
643 	ret = blk_queue_enter(q, flags);
644 	if (ret)
645 		return ERR_PTR(ret);
646 
647 	/*
648 	 * Check if the hardware context is actually mapped to anything.
649 	 * If not tell the caller that it should skip this queue.
650 	 */
651 	ret = -EXDEV;
652 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
653 	if (!blk_mq_hw_queue_mapped(data.hctx))
654 		goto out_queue_exit;
655 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656 	if (cpu >= nr_cpu_ids)
657 		goto out_queue_exit;
658 	data.ctx = __blk_mq_get_ctx(q, cpu);
659 
660 	if (q->elevator)
661 		data.rq_flags |= RQF_SCHED_TAGS;
662 	else
663 		blk_mq_tag_busy(data.hctx);
664 
665 	if (flags & BLK_MQ_REQ_RESERVED)
666 		data.rq_flags |= RQF_RESV;
667 
668 	ret = -EWOULDBLOCK;
669 	tag = blk_mq_get_tag(&data);
670 	if (tag == BLK_MQ_NO_TAG)
671 		goto out_queue_exit;
672 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673 	blk_mq_rq_time_init(rq, alloc_time_ns);
674 	rq->__data_len = 0;
675 	rq->__sector = (sector_t) -1;
676 	rq->bio = rq->biotail = NULL;
677 	return rq;
678 
679 out_queue_exit:
680 	blk_queue_exit(q);
681 	return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684 
685 static void blk_mq_finish_request(struct request *rq)
686 {
687 	struct request_queue *q = rq->q;
688 
689 	if (rq->rq_flags & RQF_USE_SCHED) {
690 		q->elevator->type->ops.finish_request(rq);
691 		/*
692 		 * For postflush request that may need to be
693 		 * completed twice, we should clear this flag
694 		 * to avoid double finish_request() on the rq.
695 		 */
696 		rq->rq_flags &= ~RQF_USE_SCHED;
697 	}
698 }
699 
700 static void __blk_mq_free_request(struct request *rq)
701 {
702 	struct request_queue *q = rq->q;
703 	struct blk_mq_ctx *ctx = rq->mq_ctx;
704 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705 	const int sched_tag = rq->internal_tag;
706 
707 	blk_crypto_free_request(rq);
708 	blk_pm_mark_last_busy(rq);
709 	rq->mq_hctx = NULL;
710 
711 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
712 		__blk_mq_dec_active_requests(hctx);
713 
714 	if (rq->tag != BLK_MQ_NO_TAG)
715 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716 	if (sched_tag != BLK_MQ_NO_TAG)
717 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718 	blk_mq_sched_restart(hctx);
719 	blk_queue_exit(q);
720 }
721 
722 void blk_mq_free_request(struct request *rq)
723 {
724 	struct request_queue *q = rq->q;
725 
726 	blk_mq_finish_request(rq);
727 
728 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729 		laptop_io_completion(q->disk->bdi);
730 
731 	rq_qos_done(q, rq);
732 
733 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734 	if (req_ref_put_and_test(rq))
735 		__blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738 
739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741 	struct request *rq;
742 
743 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744 		blk_mq_free_request(rq);
745 }
746 
747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750 		rq->q->disk ? rq->q->disk->disk_name : "?",
751 		(__force unsigned long long) rq->cmd_flags);
752 
753 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
754 	       (unsigned long long)blk_rq_pos(rq),
755 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
757 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760 
761 static void req_bio_endio(struct request *rq, struct bio *bio,
762 			  unsigned int nbytes, blk_status_t error)
763 {
764 	if (unlikely(error)) {
765 		bio->bi_status = error;
766 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767 		/*
768 		 * Partial zone append completions cannot be supported as the
769 		 * BIO fragments may end up not being written sequentially.
770 		 */
771 		if (bio->bi_iter.bi_size != nbytes)
772 			bio->bi_status = BLK_STS_IOERR;
773 		else
774 			bio->bi_iter.bi_sector = rq->__sector;
775 	}
776 
777 	bio_advance(bio, nbytes);
778 
779 	if (unlikely(rq->rq_flags & RQF_QUIET))
780 		bio_set_flag(bio, BIO_QUIET);
781 	/* don't actually finish bio if it's part of flush sequence */
782 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
783 		bio_endio(bio);
784 }
785 
786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
787 {
788 	if (req->part && blk_do_io_stat(req)) {
789 		const int sgrp = op_stat_group(req_op(req));
790 
791 		part_stat_lock();
792 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
793 		part_stat_unlock();
794 	}
795 }
796 
797 static void blk_print_req_error(struct request *req, blk_status_t status)
798 {
799 	printk_ratelimited(KERN_ERR
800 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
801 		"phys_seg %u prio class %u\n",
802 		blk_status_to_str(status),
803 		req->q->disk ? req->q->disk->disk_name : "?",
804 		blk_rq_pos(req), (__force u32)req_op(req),
805 		blk_op_str(req_op(req)),
806 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
807 		req->nr_phys_segments,
808 		IOPRIO_PRIO_CLASS(req->ioprio));
809 }
810 
811 /*
812  * Fully end IO on a request. Does not support partial completions, or
813  * errors.
814  */
815 static void blk_complete_request(struct request *req)
816 {
817 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
818 	int total_bytes = blk_rq_bytes(req);
819 	struct bio *bio = req->bio;
820 
821 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
822 
823 	if (!bio)
824 		return;
825 
826 #ifdef CONFIG_BLK_DEV_INTEGRITY
827 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
828 		req->q->integrity.profile->complete_fn(req, total_bytes);
829 #endif
830 
831 	/*
832 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
833 	 * bio_endio().  Therefore, the keyslot must be released before that.
834 	 */
835 	blk_crypto_rq_put_keyslot(req);
836 
837 	blk_account_io_completion(req, total_bytes);
838 
839 	do {
840 		struct bio *next = bio->bi_next;
841 
842 		/* Completion has already been traced */
843 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844 
845 		if (req_op(req) == REQ_OP_ZONE_APPEND)
846 			bio->bi_iter.bi_sector = req->__sector;
847 
848 		if (!is_flush)
849 			bio_endio(bio);
850 		bio = next;
851 	} while (bio);
852 
853 	/*
854 	 * Reset counters so that the request stacking driver
855 	 * can find how many bytes remain in the request
856 	 * later.
857 	 */
858 	if (!req->end_io) {
859 		req->bio = NULL;
860 		req->__data_len = 0;
861 	}
862 }
863 
864 /**
865  * blk_update_request - Complete multiple bytes without completing the request
866  * @req:      the request being processed
867  * @error:    block status code
868  * @nr_bytes: number of bytes to complete for @req
869  *
870  * Description:
871  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
872  *     the request structure even if @req doesn't have leftover.
873  *     If @req has leftover, sets it up for the next range of segments.
874  *
875  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876  *     %false return from this function.
877  *
878  * Note:
879  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880  *      except in the consistency check at the end of this function.
881  *
882  * Return:
883  *     %false - this request doesn't have any more data
884  *     %true  - this request has more data
885  **/
886 bool blk_update_request(struct request *req, blk_status_t error,
887 		unsigned int nr_bytes)
888 {
889 	int total_bytes;
890 
891 	trace_block_rq_complete(req, error, nr_bytes);
892 
893 	if (!req->bio)
894 		return false;
895 
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898 	    error == BLK_STS_OK)
899 		req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901 
902 	/*
903 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
904 	 * bio_endio().  Therefore, the keyslot must be released before that.
905 	 */
906 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
907 		__blk_crypto_rq_put_keyslot(req);
908 
909 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
910 		     !(req->rq_flags & RQF_QUIET)) &&
911 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
912 		blk_print_req_error(req, error);
913 		trace_block_rq_error(req, error, nr_bytes);
914 	}
915 
916 	blk_account_io_completion(req, nr_bytes);
917 
918 	total_bytes = 0;
919 	while (req->bio) {
920 		struct bio *bio = req->bio;
921 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922 
923 		if (bio_bytes == bio->bi_iter.bi_size)
924 			req->bio = bio->bi_next;
925 
926 		/* Completion has already been traced */
927 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
928 		req_bio_endio(req, bio, bio_bytes, error);
929 
930 		total_bytes += bio_bytes;
931 		nr_bytes -= bio_bytes;
932 
933 		if (!nr_bytes)
934 			break;
935 	}
936 
937 	/*
938 	 * completely done
939 	 */
940 	if (!req->bio) {
941 		/*
942 		 * Reset counters so that the request stacking driver
943 		 * can find how many bytes remain in the request
944 		 * later.
945 		 */
946 		req->__data_len = 0;
947 		return false;
948 	}
949 
950 	req->__data_len -= total_bytes;
951 
952 	/* update sector only for requests with clear definition of sector */
953 	if (!blk_rq_is_passthrough(req))
954 		req->__sector += total_bytes >> 9;
955 
956 	/* mixed attributes always follow the first bio */
957 	if (req->rq_flags & RQF_MIXED_MERGE) {
958 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
959 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960 	}
961 
962 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963 		/*
964 		 * If total number of sectors is less than the first segment
965 		 * size, something has gone terribly wrong.
966 		 */
967 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
968 			blk_dump_rq_flags(req, "request botched");
969 			req->__data_len = blk_rq_cur_bytes(req);
970 		}
971 
972 		/* recalculate the number of segments */
973 		req->nr_phys_segments = blk_recalc_rq_segments(req);
974 	}
975 
976 	return true;
977 }
978 EXPORT_SYMBOL_GPL(blk_update_request);
979 
980 static inline void blk_account_io_done(struct request *req, u64 now)
981 {
982 	trace_block_io_done(req);
983 
984 	/*
985 	 * Account IO completion.  flush_rq isn't accounted as a
986 	 * normal IO on queueing nor completion.  Accounting the
987 	 * containing request is enough.
988 	 */
989 	if (blk_do_io_stat(req) && req->part &&
990 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
991 		const int sgrp = op_stat_group(req_op(req));
992 
993 		part_stat_lock();
994 		update_io_ticks(req->part, jiffies, true);
995 		part_stat_inc(req->part, ios[sgrp]);
996 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
997 		part_stat_unlock();
998 	}
999 }
1000 
1001 static inline void blk_account_io_start(struct request *req)
1002 {
1003 	trace_block_io_start(req);
1004 
1005 	if (blk_do_io_stat(req)) {
1006 		/*
1007 		 * All non-passthrough requests are created from a bio with one
1008 		 * exception: when a flush command that is part of a flush sequence
1009 		 * generated by the state machine in blk-flush.c is cloned onto the
1010 		 * lower device by dm-multipath we can get here without a bio.
1011 		 */
1012 		if (req->bio)
1013 			req->part = req->bio->bi_bdev;
1014 		else
1015 			req->part = req->q->disk->part0;
1016 
1017 		part_stat_lock();
1018 		update_io_ticks(req->part, jiffies, false);
1019 		part_stat_unlock();
1020 	}
1021 }
1022 
1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1024 {
1025 	if (rq->rq_flags & RQF_STATS)
1026 		blk_stat_add(rq, now);
1027 
1028 	blk_mq_sched_completed_request(rq, now);
1029 	blk_account_io_done(rq, now);
1030 }
1031 
1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1033 {
1034 	if (blk_mq_need_time_stamp(rq))
1035 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1036 
1037 	blk_mq_finish_request(rq);
1038 
1039 	if (rq->end_io) {
1040 		rq_qos_done(rq->q, rq);
1041 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1042 			blk_mq_free_request(rq);
1043 	} else {
1044 		blk_mq_free_request(rq);
1045 	}
1046 }
1047 EXPORT_SYMBOL(__blk_mq_end_request);
1048 
1049 void blk_mq_end_request(struct request *rq, blk_status_t error)
1050 {
1051 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1052 		BUG();
1053 	__blk_mq_end_request(rq, error);
1054 }
1055 EXPORT_SYMBOL(blk_mq_end_request);
1056 
1057 #define TAG_COMP_BATCH		32
1058 
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1060 					  int *tag_array, int nr_tags)
1061 {
1062 	struct request_queue *q = hctx->queue;
1063 
1064 	/*
1065 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1066 	 * update hctx->nr_active in batch
1067 	 */
1068 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1069 		__blk_mq_sub_active_requests(hctx, nr_tags);
1070 
1071 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074 
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1078 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1079 	struct request *rq;
1080 	u64 now = 0;
1081 
1082 	if (iob->need_ts)
1083 		now = ktime_get_ns();
1084 
1085 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086 		prefetch(rq->bio);
1087 		prefetch(rq->rq_next);
1088 
1089 		blk_complete_request(rq);
1090 		if (iob->need_ts)
1091 			__blk_mq_end_request_acct(rq, now);
1092 
1093 		blk_mq_finish_request(rq);
1094 
1095 		rq_qos_done(rq->q, rq);
1096 
1097 		/*
1098 		 * If end_io handler returns NONE, then it still has
1099 		 * ownership of the request.
1100 		 */
1101 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102 			continue;
1103 
1104 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105 		if (!req_ref_put_and_test(rq))
1106 			continue;
1107 
1108 		blk_crypto_free_request(rq);
1109 		blk_pm_mark_last_busy(rq);
1110 
1111 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112 			if (cur_hctx)
1113 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114 			nr_tags = 0;
1115 			cur_hctx = rq->mq_hctx;
1116 		}
1117 		tags[nr_tags++] = rq->tag;
1118 	}
1119 
1120 	if (nr_tags)
1121 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124 
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128 	struct request *rq, *next;
1129 
1130 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131 		rq->q->mq_ops->complete(rq);
1132 }
1133 
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138 
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142 	return 0;
1143 }
1144 
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149 
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152 	int cpu = raw_smp_processor_id();
1153 
1154 	if (!IS_ENABLED(CONFIG_SMP) ||
1155 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156 		return false;
1157 	/*
1158 	 * With force threaded interrupts enabled, raising softirq from an SMP
1159 	 * function call will always result in waking the ksoftirqd thread.
1160 	 * This is probably worse than completing the request on a different
1161 	 * cache domain.
1162 	 */
1163 	if (force_irqthreads())
1164 		return false;
1165 
1166 	/* same CPU or cache domain?  Complete locally */
1167 	if (cpu == rq->mq_ctx->cpu ||
1168 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170 		return false;
1171 
1172 	/* don't try to IPI to an offline CPU */
1173 	return cpu_online(rq->mq_ctx->cpu);
1174 }
1175 
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178 	unsigned int cpu;
1179 
1180 	cpu = rq->mq_ctx->cpu;
1181 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184 
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187 	struct llist_head *list;
1188 
1189 	preempt_disable();
1190 	list = this_cpu_ptr(&blk_cpu_done);
1191 	if (llist_add(&rq->ipi_list, list))
1192 		raise_softirq(BLOCK_SOFTIRQ);
1193 	preempt_enable();
1194 }
1195 
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199 
1200 	/*
1201 	 * For request which hctx has only one ctx mapping,
1202 	 * or a polled request, always complete locally,
1203 	 * it's pointless to redirect the completion.
1204 	 */
1205 	if ((rq->mq_hctx->nr_ctx == 1 &&
1206 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207 	     rq->cmd_flags & REQ_POLLED)
1208 		return false;
1209 
1210 	if (blk_mq_complete_need_ipi(rq)) {
1211 		blk_mq_complete_send_ipi(rq);
1212 		return true;
1213 	}
1214 
1215 	if (rq->q->nr_hw_queues == 1) {
1216 		blk_mq_raise_softirq(rq);
1217 		return true;
1218 	}
1219 	return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222 
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:		the request being processed
1226  *
1227  * Description:
1228  *	Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232 	if (!blk_mq_complete_request_remote(rq))
1233 		rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236 
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247 	struct request_queue *q = rq->q;
1248 
1249 	trace_block_rq_issue(rq);
1250 
1251 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252 		rq->io_start_time_ns = ktime_get_ns();
1253 		rq->stats_sectors = blk_rq_sectors(rq);
1254 		rq->rq_flags |= RQF_STATS;
1255 		rq_qos_issue(q, rq);
1256 	}
1257 
1258 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259 
1260 	blk_add_timer(rq);
1261 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262 
1263 #ifdef CONFIG_BLK_DEV_INTEGRITY
1264 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1265 		q->integrity.profile->prepare_fn(rq);
1266 #endif
1267 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1268 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_request);
1271 
1272 /*
1273  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1274  * queues. This is important for md arrays to benefit from merging
1275  * requests.
1276  */
1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1278 {
1279 	if (plug->multiple_queues)
1280 		return BLK_MAX_REQUEST_COUNT * 2;
1281 	return BLK_MAX_REQUEST_COUNT;
1282 }
1283 
1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1285 {
1286 	struct request *last = rq_list_peek(&plug->mq_list);
1287 
1288 	if (!plug->rq_count) {
1289 		trace_block_plug(rq->q);
1290 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1291 		   (!blk_queue_nomerges(rq->q) &&
1292 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1293 		blk_mq_flush_plug_list(plug, false);
1294 		last = NULL;
1295 		trace_block_plug(rq->q);
1296 	}
1297 
1298 	if (!plug->multiple_queues && last && last->q != rq->q)
1299 		plug->multiple_queues = true;
1300 	/*
1301 	 * Any request allocated from sched tags can't be issued to
1302 	 * ->queue_rqs() directly
1303 	 */
1304 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1305 		plug->has_elevator = true;
1306 	rq->rq_next = NULL;
1307 	rq_list_add(&plug->mq_list, rq);
1308 	plug->rq_count++;
1309 }
1310 
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:		request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1326 
1327 	WARN_ON(irqs_disabled());
1328 	WARN_ON(!blk_rq_is_passthrough(rq));
1329 
1330 	blk_account_io_start(rq);
1331 
1332 	/*
1333 	 * As plugging can be enabled for passthrough requests on a zoned
1334 	 * device, directly accessing the plug instead of using blk_mq_plug()
1335 	 * should not have any consequences.
1336 	 */
1337 	if (current->plug && !at_head) {
1338 		blk_add_rq_to_plug(current->plug, rq);
1339 		return;
1340 	}
1341 
1342 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1343 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1344 }
1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1346 
1347 struct blk_rq_wait {
1348 	struct completion done;
1349 	blk_status_t ret;
1350 };
1351 
1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1353 {
1354 	struct blk_rq_wait *wait = rq->end_io_data;
1355 
1356 	wait->ret = ret;
1357 	complete(&wait->done);
1358 	return RQ_END_IO_NONE;
1359 }
1360 
1361 bool blk_rq_is_poll(struct request *rq)
1362 {
1363 	if (!rq->mq_hctx)
1364 		return false;
1365 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1366 		return false;
1367 	return true;
1368 }
1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1370 
1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1372 {
1373 	do {
1374 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1375 		cond_resched();
1376 	} while (!completion_done(wait));
1377 }
1378 
1379 /**
1380  * blk_execute_rq - insert a request into queue for execution
1381  * @rq:		request to insert
1382  * @at_head:    insert request at head or tail of queue
1383  *
1384  * Description:
1385  *    Insert a fully prepared request at the back of the I/O scheduler queue
1386  *    for execution and wait for completion.
1387  * Return: The blk_status_t result provided to blk_mq_end_request().
1388  */
1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1390 {
1391 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1392 	struct blk_rq_wait wait = {
1393 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1394 	};
1395 
1396 	WARN_ON(irqs_disabled());
1397 	WARN_ON(!blk_rq_is_passthrough(rq));
1398 
1399 	rq->end_io_data = &wait;
1400 	rq->end_io = blk_end_sync_rq;
1401 
1402 	blk_account_io_start(rq);
1403 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1404 	blk_mq_run_hw_queue(hctx, false);
1405 
1406 	if (blk_rq_is_poll(rq)) {
1407 		blk_rq_poll_completion(rq, &wait.done);
1408 	} else {
1409 		/*
1410 		 * Prevent hang_check timer from firing at us during very long
1411 		 * I/O
1412 		 */
1413 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1414 
1415 		if (hang_check)
1416 			while (!wait_for_completion_io_timeout(&wait.done,
1417 					hang_check * (HZ/2)))
1418 				;
1419 		else
1420 			wait_for_completion_io(&wait.done);
1421 	}
1422 
1423 	return wait.ret;
1424 }
1425 EXPORT_SYMBOL(blk_execute_rq);
1426 
1427 static void __blk_mq_requeue_request(struct request *rq)
1428 {
1429 	struct request_queue *q = rq->q;
1430 
1431 	blk_mq_put_driver_tag(rq);
1432 
1433 	trace_block_rq_requeue(rq);
1434 	rq_qos_requeue(q, rq);
1435 
1436 	if (blk_mq_request_started(rq)) {
1437 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1438 		rq->rq_flags &= ~RQF_TIMED_OUT;
1439 	}
1440 }
1441 
1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1443 {
1444 	struct request_queue *q = rq->q;
1445 	unsigned long flags;
1446 
1447 	__blk_mq_requeue_request(rq);
1448 
1449 	/* this request will be re-inserted to io scheduler queue */
1450 	blk_mq_sched_requeue_request(rq);
1451 
1452 	spin_lock_irqsave(&q->requeue_lock, flags);
1453 	list_add_tail(&rq->queuelist, &q->requeue_list);
1454 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1455 
1456 	if (kick_requeue_list)
1457 		blk_mq_kick_requeue_list(q);
1458 }
1459 EXPORT_SYMBOL(blk_mq_requeue_request);
1460 
1461 static void blk_mq_requeue_work(struct work_struct *work)
1462 {
1463 	struct request_queue *q =
1464 		container_of(work, struct request_queue, requeue_work.work);
1465 	LIST_HEAD(rq_list);
1466 	LIST_HEAD(flush_list);
1467 	struct request *rq;
1468 
1469 	spin_lock_irq(&q->requeue_lock);
1470 	list_splice_init(&q->requeue_list, &rq_list);
1471 	list_splice_init(&q->flush_list, &flush_list);
1472 	spin_unlock_irq(&q->requeue_lock);
1473 
1474 	while (!list_empty(&rq_list)) {
1475 		rq = list_entry(rq_list.next, struct request, queuelist);
1476 		/*
1477 		 * If RQF_DONTPREP ist set, the request has been started by the
1478 		 * driver already and might have driver-specific data allocated
1479 		 * already.  Insert it into the hctx dispatch list to avoid
1480 		 * block layer merges for the request.
1481 		 */
1482 		if (rq->rq_flags & RQF_DONTPREP) {
1483 			list_del_init(&rq->queuelist);
1484 			blk_mq_request_bypass_insert(rq, 0);
1485 		} else {
1486 			list_del_init(&rq->queuelist);
1487 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1488 		}
1489 	}
1490 
1491 	while (!list_empty(&flush_list)) {
1492 		rq = list_entry(flush_list.next, struct request, queuelist);
1493 		list_del_init(&rq->queuelist);
1494 		blk_mq_insert_request(rq, 0);
1495 	}
1496 
1497 	blk_mq_run_hw_queues(q, false);
1498 }
1499 
1500 void blk_mq_kick_requeue_list(struct request_queue *q)
1501 {
1502 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1503 }
1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1505 
1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1507 				    unsigned long msecs)
1508 {
1509 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1510 				    msecs_to_jiffies(msecs));
1511 }
1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1513 
1514 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1515 {
1516 	/*
1517 	 * If we find a request that isn't idle we know the queue is busy
1518 	 * as it's checked in the iter.
1519 	 * Return false to stop the iteration.
1520 	 */
1521 	if (blk_mq_request_started(rq)) {
1522 		bool *busy = priv;
1523 
1524 		*busy = true;
1525 		return false;
1526 	}
1527 
1528 	return true;
1529 }
1530 
1531 bool blk_mq_queue_inflight(struct request_queue *q)
1532 {
1533 	bool busy = false;
1534 
1535 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1536 	return busy;
1537 }
1538 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1539 
1540 static void blk_mq_rq_timed_out(struct request *req)
1541 {
1542 	req->rq_flags |= RQF_TIMED_OUT;
1543 	if (req->q->mq_ops->timeout) {
1544 		enum blk_eh_timer_return ret;
1545 
1546 		ret = req->q->mq_ops->timeout(req);
1547 		if (ret == BLK_EH_DONE)
1548 			return;
1549 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1550 	}
1551 
1552 	blk_add_timer(req);
1553 }
1554 
1555 struct blk_expired_data {
1556 	bool has_timedout_rq;
1557 	unsigned long next;
1558 	unsigned long timeout_start;
1559 };
1560 
1561 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1562 {
1563 	unsigned long deadline;
1564 
1565 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1566 		return false;
1567 	if (rq->rq_flags & RQF_TIMED_OUT)
1568 		return false;
1569 
1570 	deadline = READ_ONCE(rq->deadline);
1571 	if (time_after_eq(expired->timeout_start, deadline))
1572 		return true;
1573 
1574 	if (expired->next == 0)
1575 		expired->next = deadline;
1576 	else if (time_after(expired->next, deadline))
1577 		expired->next = deadline;
1578 	return false;
1579 }
1580 
1581 void blk_mq_put_rq_ref(struct request *rq)
1582 {
1583 	if (is_flush_rq(rq)) {
1584 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1585 			blk_mq_free_request(rq);
1586 	} else if (req_ref_put_and_test(rq)) {
1587 		__blk_mq_free_request(rq);
1588 	}
1589 }
1590 
1591 static bool blk_mq_check_expired(struct request *rq, void *priv)
1592 {
1593 	struct blk_expired_data *expired = priv;
1594 
1595 	/*
1596 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1597 	 * be reallocated underneath the timeout handler's processing, then
1598 	 * the expire check is reliable. If the request is not expired, then
1599 	 * it was completed and reallocated as a new request after returning
1600 	 * from blk_mq_check_expired().
1601 	 */
1602 	if (blk_mq_req_expired(rq, expired)) {
1603 		expired->has_timedout_rq = true;
1604 		return false;
1605 	}
1606 	return true;
1607 }
1608 
1609 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1610 {
1611 	struct blk_expired_data *expired = priv;
1612 
1613 	if (blk_mq_req_expired(rq, expired))
1614 		blk_mq_rq_timed_out(rq);
1615 	return true;
1616 }
1617 
1618 static void blk_mq_timeout_work(struct work_struct *work)
1619 {
1620 	struct request_queue *q =
1621 		container_of(work, struct request_queue, timeout_work);
1622 	struct blk_expired_data expired = {
1623 		.timeout_start = jiffies,
1624 	};
1625 	struct blk_mq_hw_ctx *hctx;
1626 	unsigned long i;
1627 
1628 	/* A deadlock might occur if a request is stuck requiring a
1629 	 * timeout at the same time a queue freeze is waiting
1630 	 * completion, since the timeout code would not be able to
1631 	 * acquire the queue reference here.
1632 	 *
1633 	 * That's why we don't use blk_queue_enter here; instead, we use
1634 	 * percpu_ref_tryget directly, because we need to be able to
1635 	 * obtain a reference even in the short window between the queue
1636 	 * starting to freeze, by dropping the first reference in
1637 	 * blk_freeze_queue_start, and the moment the last request is
1638 	 * consumed, marked by the instant q_usage_counter reaches
1639 	 * zero.
1640 	 */
1641 	if (!percpu_ref_tryget(&q->q_usage_counter))
1642 		return;
1643 
1644 	/* check if there is any timed-out request */
1645 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1646 	if (expired.has_timedout_rq) {
1647 		/*
1648 		 * Before walking tags, we must ensure any submit started
1649 		 * before the current time has finished. Since the submit
1650 		 * uses srcu or rcu, wait for a synchronization point to
1651 		 * ensure all running submits have finished
1652 		 */
1653 		blk_mq_wait_quiesce_done(q->tag_set);
1654 
1655 		expired.next = 0;
1656 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1657 	}
1658 
1659 	if (expired.next != 0) {
1660 		mod_timer(&q->timeout, expired.next);
1661 	} else {
1662 		/*
1663 		 * Request timeouts are handled as a forward rolling timer. If
1664 		 * we end up here it means that no requests are pending and
1665 		 * also that no request has been pending for a while. Mark
1666 		 * each hctx as idle.
1667 		 */
1668 		queue_for_each_hw_ctx(q, hctx, i) {
1669 			/* the hctx may be unmapped, so check it here */
1670 			if (blk_mq_hw_queue_mapped(hctx))
1671 				blk_mq_tag_idle(hctx);
1672 		}
1673 	}
1674 	blk_queue_exit(q);
1675 }
1676 
1677 struct flush_busy_ctx_data {
1678 	struct blk_mq_hw_ctx *hctx;
1679 	struct list_head *list;
1680 };
1681 
1682 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1683 {
1684 	struct flush_busy_ctx_data *flush_data = data;
1685 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1686 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1687 	enum hctx_type type = hctx->type;
1688 
1689 	spin_lock(&ctx->lock);
1690 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1691 	sbitmap_clear_bit(sb, bitnr);
1692 	spin_unlock(&ctx->lock);
1693 	return true;
1694 }
1695 
1696 /*
1697  * Process software queues that have been marked busy, splicing them
1698  * to the for-dispatch
1699  */
1700 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1701 {
1702 	struct flush_busy_ctx_data data = {
1703 		.hctx = hctx,
1704 		.list = list,
1705 	};
1706 
1707 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1708 }
1709 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1710 
1711 struct dispatch_rq_data {
1712 	struct blk_mq_hw_ctx *hctx;
1713 	struct request *rq;
1714 };
1715 
1716 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1717 		void *data)
1718 {
1719 	struct dispatch_rq_data *dispatch_data = data;
1720 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1721 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1722 	enum hctx_type type = hctx->type;
1723 
1724 	spin_lock(&ctx->lock);
1725 	if (!list_empty(&ctx->rq_lists[type])) {
1726 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1727 		list_del_init(&dispatch_data->rq->queuelist);
1728 		if (list_empty(&ctx->rq_lists[type]))
1729 			sbitmap_clear_bit(sb, bitnr);
1730 	}
1731 	spin_unlock(&ctx->lock);
1732 
1733 	return !dispatch_data->rq;
1734 }
1735 
1736 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1737 					struct blk_mq_ctx *start)
1738 {
1739 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1740 	struct dispatch_rq_data data = {
1741 		.hctx = hctx,
1742 		.rq   = NULL,
1743 	};
1744 
1745 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1746 			       dispatch_rq_from_ctx, &data);
1747 
1748 	return data.rq;
1749 }
1750 
1751 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1752 {
1753 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1754 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1755 	int tag;
1756 
1757 	blk_mq_tag_busy(rq->mq_hctx);
1758 
1759 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1760 		bt = &rq->mq_hctx->tags->breserved_tags;
1761 		tag_offset = 0;
1762 	} else {
1763 		if (!hctx_may_queue(rq->mq_hctx, bt))
1764 			return false;
1765 	}
1766 
1767 	tag = __sbitmap_queue_get(bt);
1768 	if (tag == BLK_MQ_NO_TAG)
1769 		return false;
1770 
1771 	rq->tag = tag + tag_offset;
1772 	return true;
1773 }
1774 
1775 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1776 {
1777 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1778 		return false;
1779 
1780 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1781 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1782 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1783 		__blk_mq_inc_active_requests(hctx);
1784 	}
1785 	hctx->tags->rqs[rq->tag] = rq;
1786 	return true;
1787 }
1788 
1789 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1790 				int flags, void *key)
1791 {
1792 	struct blk_mq_hw_ctx *hctx;
1793 
1794 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1795 
1796 	spin_lock(&hctx->dispatch_wait_lock);
1797 	if (!list_empty(&wait->entry)) {
1798 		struct sbitmap_queue *sbq;
1799 
1800 		list_del_init(&wait->entry);
1801 		sbq = &hctx->tags->bitmap_tags;
1802 		atomic_dec(&sbq->ws_active);
1803 	}
1804 	spin_unlock(&hctx->dispatch_wait_lock);
1805 
1806 	blk_mq_run_hw_queue(hctx, true);
1807 	return 1;
1808 }
1809 
1810 /*
1811  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1812  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1813  * restart. For both cases, take care to check the condition again after
1814  * marking us as waiting.
1815  */
1816 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1817 				 struct request *rq)
1818 {
1819 	struct sbitmap_queue *sbq;
1820 	struct wait_queue_head *wq;
1821 	wait_queue_entry_t *wait;
1822 	bool ret;
1823 
1824 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1825 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1826 		blk_mq_sched_mark_restart_hctx(hctx);
1827 
1828 		/*
1829 		 * It's possible that a tag was freed in the window between the
1830 		 * allocation failure and adding the hardware queue to the wait
1831 		 * queue.
1832 		 *
1833 		 * Don't clear RESTART here, someone else could have set it.
1834 		 * At most this will cost an extra queue run.
1835 		 */
1836 		return blk_mq_get_driver_tag(rq);
1837 	}
1838 
1839 	wait = &hctx->dispatch_wait;
1840 	if (!list_empty_careful(&wait->entry))
1841 		return false;
1842 
1843 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1844 		sbq = &hctx->tags->breserved_tags;
1845 	else
1846 		sbq = &hctx->tags->bitmap_tags;
1847 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1848 
1849 	spin_lock_irq(&wq->lock);
1850 	spin_lock(&hctx->dispatch_wait_lock);
1851 	if (!list_empty(&wait->entry)) {
1852 		spin_unlock(&hctx->dispatch_wait_lock);
1853 		spin_unlock_irq(&wq->lock);
1854 		return false;
1855 	}
1856 
1857 	atomic_inc(&sbq->ws_active);
1858 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1859 	__add_wait_queue(wq, wait);
1860 
1861 	/*
1862 	 * It's possible that a tag was freed in the window between the
1863 	 * allocation failure and adding the hardware queue to the wait
1864 	 * queue.
1865 	 */
1866 	ret = blk_mq_get_driver_tag(rq);
1867 	if (!ret) {
1868 		spin_unlock(&hctx->dispatch_wait_lock);
1869 		spin_unlock_irq(&wq->lock);
1870 		return false;
1871 	}
1872 
1873 	/*
1874 	 * We got a tag, remove ourselves from the wait queue to ensure
1875 	 * someone else gets the wakeup.
1876 	 */
1877 	list_del_init(&wait->entry);
1878 	atomic_dec(&sbq->ws_active);
1879 	spin_unlock(&hctx->dispatch_wait_lock);
1880 	spin_unlock_irq(&wq->lock);
1881 
1882 	return true;
1883 }
1884 
1885 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1886 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1887 /*
1888  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1889  * - EWMA is one simple way to compute running average value
1890  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1891  * - take 4 as factor for avoiding to get too small(0) result, and this
1892  *   factor doesn't matter because EWMA decreases exponentially
1893  */
1894 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1895 {
1896 	unsigned int ewma;
1897 
1898 	ewma = hctx->dispatch_busy;
1899 
1900 	if (!ewma && !busy)
1901 		return;
1902 
1903 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1904 	if (busy)
1905 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1906 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1907 
1908 	hctx->dispatch_busy = ewma;
1909 }
1910 
1911 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1912 
1913 static void blk_mq_handle_dev_resource(struct request *rq,
1914 				       struct list_head *list)
1915 {
1916 	list_add(&rq->queuelist, list);
1917 	__blk_mq_requeue_request(rq);
1918 }
1919 
1920 static void blk_mq_handle_zone_resource(struct request *rq,
1921 					struct list_head *zone_list)
1922 {
1923 	/*
1924 	 * If we end up here it is because we cannot dispatch a request to a
1925 	 * specific zone due to LLD level zone-write locking or other zone
1926 	 * related resource not being available. In this case, set the request
1927 	 * aside in zone_list for retrying it later.
1928 	 */
1929 	list_add(&rq->queuelist, zone_list);
1930 	__blk_mq_requeue_request(rq);
1931 }
1932 
1933 enum prep_dispatch {
1934 	PREP_DISPATCH_OK,
1935 	PREP_DISPATCH_NO_TAG,
1936 	PREP_DISPATCH_NO_BUDGET,
1937 };
1938 
1939 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1940 						  bool need_budget)
1941 {
1942 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1943 	int budget_token = -1;
1944 
1945 	if (need_budget) {
1946 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1947 		if (budget_token < 0) {
1948 			blk_mq_put_driver_tag(rq);
1949 			return PREP_DISPATCH_NO_BUDGET;
1950 		}
1951 		blk_mq_set_rq_budget_token(rq, budget_token);
1952 	}
1953 
1954 	if (!blk_mq_get_driver_tag(rq)) {
1955 		/*
1956 		 * The initial allocation attempt failed, so we need to
1957 		 * rerun the hardware queue when a tag is freed. The
1958 		 * waitqueue takes care of that. If the queue is run
1959 		 * before we add this entry back on the dispatch list,
1960 		 * we'll re-run it below.
1961 		 */
1962 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1963 			/*
1964 			 * All budgets not got from this function will be put
1965 			 * together during handling partial dispatch
1966 			 */
1967 			if (need_budget)
1968 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1969 			return PREP_DISPATCH_NO_TAG;
1970 		}
1971 	}
1972 
1973 	return PREP_DISPATCH_OK;
1974 }
1975 
1976 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1977 static void blk_mq_release_budgets(struct request_queue *q,
1978 		struct list_head *list)
1979 {
1980 	struct request *rq;
1981 
1982 	list_for_each_entry(rq, list, queuelist) {
1983 		int budget_token = blk_mq_get_rq_budget_token(rq);
1984 
1985 		if (budget_token >= 0)
1986 			blk_mq_put_dispatch_budget(q, budget_token);
1987 	}
1988 }
1989 
1990 /*
1991  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1992  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1993  * details)
1994  * Attention, we should explicitly call this in unusual cases:
1995  *  1) did not queue everything initially scheduled to queue
1996  *  2) the last attempt to queue a request failed
1997  */
1998 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1999 			      bool from_schedule)
2000 {
2001 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2002 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2003 		hctx->queue->mq_ops->commit_rqs(hctx);
2004 	}
2005 }
2006 
2007 /*
2008  * Returns true if we did some work AND can potentially do more.
2009  */
2010 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2011 			     unsigned int nr_budgets)
2012 {
2013 	enum prep_dispatch prep;
2014 	struct request_queue *q = hctx->queue;
2015 	struct request *rq;
2016 	int queued;
2017 	blk_status_t ret = BLK_STS_OK;
2018 	LIST_HEAD(zone_list);
2019 	bool needs_resource = false;
2020 
2021 	if (list_empty(list))
2022 		return false;
2023 
2024 	/*
2025 	 * Now process all the entries, sending them to the driver.
2026 	 */
2027 	queued = 0;
2028 	do {
2029 		struct blk_mq_queue_data bd;
2030 
2031 		rq = list_first_entry(list, struct request, queuelist);
2032 
2033 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2034 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2035 		if (prep != PREP_DISPATCH_OK)
2036 			break;
2037 
2038 		list_del_init(&rq->queuelist);
2039 
2040 		bd.rq = rq;
2041 		bd.last = list_empty(list);
2042 
2043 		/*
2044 		 * once the request is queued to lld, no need to cover the
2045 		 * budget any more
2046 		 */
2047 		if (nr_budgets)
2048 			nr_budgets--;
2049 		ret = q->mq_ops->queue_rq(hctx, &bd);
2050 		switch (ret) {
2051 		case BLK_STS_OK:
2052 			queued++;
2053 			break;
2054 		case BLK_STS_RESOURCE:
2055 			needs_resource = true;
2056 			fallthrough;
2057 		case BLK_STS_DEV_RESOURCE:
2058 			blk_mq_handle_dev_resource(rq, list);
2059 			goto out;
2060 		case BLK_STS_ZONE_RESOURCE:
2061 			/*
2062 			 * Move the request to zone_list and keep going through
2063 			 * the dispatch list to find more requests the drive can
2064 			 * accept.
2065 			 */
2066 			blk_mq_handle_zone_resource(rq, &zone_list);
2067 			needs_resource = true;
2068 			break;
2069 		default:
2070 			blk_mq_end_request(rq, ret);
2071 		}
2072 	} while (!list_empty(list));
2073 out:
2074 	if (!list_empty(&zone_list))
2075 		list_splice_tail_init(&zone_list, list);
2076 
2077 	/* If we didn't flush the entire list, we could have told the driver
2078 	 * there was more coming, but that turned out to be a lie.
2079 	 */
2080 	if (!list_empty(list) || ret != BLK_STS_OK)
2081 		blk_mq_commit_rqs(hctx, queued, false);
2082 
2083 	/*
2084 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2085 	 * that is where we will continue on next queue run.
2086 	 */
2087 	if (!list_empty(list)) {
2088 		bool needs_restart;
2089 		/* For non-shared tags, the RESTART check will suffice */
2090 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2091 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2092 			blk_mq_is_shared_tags(hctx->flags));
2093 
2094 		if (nr_budgets)
2095 			blk_mq_release_budgets(q, list);
2096 
2097 		spin_lock(&hctx->lock);
2098 		list_splice_tail_init(list, &hctx->dispatch);
2099 		spin_unlock(&hctx->lock);
2100 
2101 		/*
2102 		 * Order adding requests to hctx->dispatch and checking
2103 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2104 		 * in blk_mq_sched_restart(). Avoid restart code path to
2105 		 * miss the new added requests to hctx->dispatch, meantime
2106 		 * SCHED_RESTART is observed here.
2107 		 */
2108 		smp_mb();
2109 
2110 		/*
2111 		 * If SCHED_RESTART was set by the caller of this function and
2112 		 * it is no longer set that means that it was cleared by another
2113 		 * thread and hence that a queue rerun is needed.
2114 		 *
2115 		 * If 'no_tag' is set, that means that we failed getting
2116 		 * a driver tag with an I/O scheduler attached. If our dispatch
2117 		 * waitqueue is no longer active, ensure that we run the queue
2118 		 * AFTER adding our entries back to the list.
2119 		 *
2120 		 * If no I/O scheduler has been configured it is possible that
2121 		 * the hardware queue got stopped and restarted before requests
2122 		 * were pushed back onto the dispatch list. Rerun the queue to
2123 		 * avoid starvation. Notes:
2124 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2125 		 *   been stopped before rerunning a queue.
2126 		 * - Some but not all block drivers stop a queue before
2127 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2128 		 *   and dm-rq.
2129 		 *
2130 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2131 		 * bit is set, run queue after a delay to avoid IO stalls
2132 		 * that could otherwise occur if the queue is idle.  We'll do
2133 		 * similar if we couldn't get budget or couldn't lock a zone
2134 		 * and SCHED_RESTART is set.
2135 		 */
2136 		needs_restart = blk_mq_sched_needs_restart(hctx);
2137 		if (prep == PREP_DISPATCH_NO_BUDGET)
2138 			needs_resource = true;
2139 		if (!needs_restart ||
2140 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2141 			blk_mq_run_hw_queue(hctx, true);
2142 		else if (needs_resource)
2143 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2144 
2145 		blk_mq_update_dispatch_busy(hctx, true);
2146 		return false;
2147 	}
2148 
2149 	blk_mq_update_dispatch_busy(hctx, false);
2150 	return true;
2151 }
2152 
2153 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2154 {
2155 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2156 
2157 	if (cpu >= nr_cpu_ids)
2158 		cpu = cpumask_first(hctx->cpumask);
2159 	return cpu;
2160 }
2161 
2162 /*
2163  * It'd be great if the workqueue API had a way to pass
2164  * in a mask and had some smarts for more clever placement.
2165  * For now we just round-robin here, switching for every
2166  * BLK_MQ_CPU_WORK_BATCH queued items.
2167  */
2168 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2169 {
2170 	bool tried = false;
2171 	int next_cpu = hctx->next_cpu;
2172 
2173 	if (hctx->queue->nr_hw_queues == 1)
2174 		return WORK_CPU_UNBOUND;
2175 
2176 	if (--hctx->next_cpu_batch <= 0) {
2177 select_cpu:
2178 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2179 				cpu_online_mask);
2180 		if (next_cpu >= nr_cpu_ids)
2181 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2182 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2183 	}
2184 
2185 	/*
2186 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2187 	 * and it should only happen in the path of handling CPU DEAD.
2188 	 */
2189 	if (!cpu_online(next_cpu)) {
2190 		if (!tried) {
2191 			tried = true;
2192 			goto select_cpu;
2193 		}
2194 
2195 		/*
2196 		 * Make sure to re-select CPU next time once after CPUs
2197 		 * in hctx->cpumask become online again.
2198 		 */
2199 		hctx->next_cpu = next_cpu;
2200 		hctx->next_cpu_batch = 1;
2201 		return WORK_CPU_UNBOUND;
2202 	}
2203 
2204 	hctx->next_cpu = next_cpu;
2205 	return next_cpu;
2206 }
2207 
2208 /**
2209  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2210  * @hctx: Pointer to the hardware queue to run.
2211  * @msecs: Milliseconds of delay to wait before running the queue.
2212  *
2213  * Run a hardware queue asynchronously with a delay of @msecs.
2214  */
2215 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2216 {
2217 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2218 		return;
2219 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2220 				    msecs_to_jiffies(msecs));
2221 }
2222 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2223 
2224 /**
2225  * blk_mq_run_hw_queue - Start to run a hardware queue.
2226  * @hctx: Pointer to the hardware queue to run.
2227  * @async: If we want to run the queue asynchronously.
2228  *
2229  * Check if the request queue is not in a quiesced state and if there are
2230  * pending requests to be sent. If this is true, run the queue to send requests
2231  * to hardware.
2232  */
2233 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2234 {
2235 	bool need_run;
2236 
2237 	/*
2238 	 * We can't run the queue inline with interrupts disabled.
2239 	 */
2240 	WARN_ON_ONCE(!async && in_interrupt());
2241 
2242 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2243 
2244 	/*
2245 	 * When queue is quiesced, we may be switching io scheduler, or
2246 	 * updating nr_hw_queues, or other things, and we can't run queue
2247 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2248 	 *
2249 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2250 	 * quiesced.
2251 	 */
2252 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2253 		need_run = !blk_queue_quiesced(hctx->queue) &&
2254 		blk_mq_hctx_has_pending(hctx));
2255 
2256 	if (!need_run)
2257 		return;
2258 
2259 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2260 		blk_mq_delay_run_hw_queue(hctx, 0);
2261 		return;
2262 	}
2263 
2264 	blk_mq_run_dispatch_ops(hctx->queue,
2265 				blk_mq_sched_dispatch_requests(hctx));
2266 }
2267 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2268 
2269 /*
2270  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2271  * scheduler.
2272  */
2273 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2274 {
2275 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2276 	/*
2277 	 * If the IO scheduler does not respect hardware queues when
2278 	 * dispatching, we just don't bother with multiple HW queues and
2279 	 * dispatch from hctx for the current CPU since running multiple queues
2280 	 * just causes lock contention inside the scheduler and pointless cache
2281 	 * bouncing.
2282 	 */
2283 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2284 
2285 	if (!blk_mq_hctx_stopped(hctx))
2286 		return hctx;
2287 	return NULL;
2288 }
2289 
2290 /**
2291  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2292  * @q: Pointer to the request queue to run.
2293  * @async: If we want to run the queue asynchronously.
2294  */
2295 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2296 {
2297 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2298 	unsigned long i;
2299 
2300 	sq_hctx = NULL;
2301 	if (blk_queue_sq_sched(q))
2302 		sq_hctx = blk_mq_get_sq_hctx(q);
2303 	queue_for_each_hw_ctx(q, hctx, i) {
2304 		if (blk_mq_hctx_stopped(hctx))
2305 			continue;
2306 		/*
2307 		 * Dispatch from this hctx either if there's no hctx preferred
2308 		 * by IO scheduler or if it has requests that bypass the
2309 		 * scheduler.
2310 		 */
2311 		if (!sq_hctx || sq_hctx == hctx ||
2312 		    !list_empty_careful(&hctx->dispatch))
2313 			blk_mq_run_hw_queue(hctx, async);
2314 	}
2315 }
2316 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2317 
2318 /**
2319  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2320  * @q: Pointer to the request queue to run.
2321  * @msecs: Milliseconds of delay to wait before running the queues.
2322  */
2323 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2324 {
2325 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2326 	unsigned long i;
2327 
2328 	sq_hctx = NULL;
2329 	if (blk_queue_sq_sched(q))
2330 		sq_hctx = blk_mq_get_sq_hctx(q);
2331 	queue_for_each_hw_ctx(q, hctx, i) {
2332 		if (blk_mq_hctx_stopped(hctx))
2333 			continue;
2334 		/*
2335 		 * If there is already a run_work pending, leave the
2336 		 * pending delay untouched. Otherwise, a hctx can stall
2337 		 * if another hctx is re-delaying the other's work
2338 		 * before the work executes.
2339 		 */
2340 		if (delayed_work_pending(&hctx->run_work))
2341 			continue;
2342 		/*
2343 		 * Dispatch from this hctx either if there's no hctx preferred
2344 		 * by IO scheduler or if it has requests that bypass the
2345 		 * scheduler.
2346 		 */
2347 		if (!sq_hctx || sq_hctx == hctx ||
2348 		    !list_empty_careful(&hctx->dispatch))
2349 			blk_mq_delay_run_hw_queue(hctx, msecs);
2350 	}
2351 }
2352 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2353 
2354 /*
2355  * This function is often used for pausing .queue_rq() by driver when
2356  * there isn't enough resource or some conditions aren't satisfied, and
2357  * BLK_STS_RESOURCE is usually returned.
2358  *
2359  * We do not guarantee that dispatch can be drained or blocked
2360  * after blk_mq_stop_hw_queue() returns. Please use
2361  * blk_mq_quiesce_queue() for that requirement.
2362  */
2363 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2364 {
2365 	cancel_delayed_work(&hctx->run_work);
2366 
2367 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2368 }
2369 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2370 
2371 /*
2372  * This function is often used for pausing .queue_rq() by driver when
2373  * there isn't enough resource or some conditions aren't satisfied, and
2374  * BLK_STS_RESOURCE is usually returned.
2375  *
2376  * We do not guarantee that dispatch can be drained or blocked
2377  * after blk_mq_stop_hw_queues() returns. Please use
2378  * blk_mq_quiesce_queue() for that requirement.
2379  */
2380 void blk_mq_stop_hw_queues(struct request_queue *q)
2381 {
2382 	struct blk_mq_hw_ctx *hctx;
2383 	unsigned long i;
2384 
2385 	queue_for_each_hw_ctx(q, hctx, i)
2386 		blk_mq_stop_hw_queue(hctx);
2387 }
2388 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2389 
2390 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2391 {
2392 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2393 
2394 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2395 }
2396 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2397 
2398 void blk_mq_start_hw_queues(struct request_queue *q)
2399 {
2400 	struct blk_mq_hw_ctx *hctx;
2401 	unsigned long i;
2402 
2403 	queue_for_each_hw_ctx(q, hctx, i)
2404 		blk_mq_start_hw_queue(hctx);
2405 }
2406 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2407 
2408 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2409 {
2410 	if (!blk_mq_hctx_stopped(hctx))
2411 		return;
2412 
2413 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2414 	blk_mq_run_hw_queue(hctx, async);
2415 }
2416 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2417 
2418 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2419 {
2420 	struct blk_mq_hw_ctx *hctx;
2421 	unsigned long i;
2422 
2423 	queue_for_each_hw_ctx(q, hctx, i)
2424 		blk_mq_start_stopped_hw_queue(hctx, async ||
2425 					(hctx->flags & BLK_MQ_F_BLOCKING));
2426 }
2427 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2428 
2429 static void blk_mq_run_work_fn(struct work_struct *work)
2430 {
2431 	struct blk_mq_hw_ctx *hctx =
2432 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2433 
2434 	blk_mq_run_dispatch_ops(hctx->queue,
2435 				blk_mq_sched_dispatch_requests(hctx));
2436 }
2437 
2438 /**
2439  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2440  * @rq: Pointer to request to be inserted.
2441  * @flags: BLK_MQ_INSERT_*
2442  *
2443  * Should only be used carefully, when the caller knows we want to
2444  * bypass a potential IO scheduler on the target device.
2445  */
2446 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2447 {
2448 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2449 
2450 	spin_lock(&hctx->lock);
2451 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2452 		list_add(&rq->queuelist, &hctx->dispatch);
2453 	else
2454 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2455 	spin_unlock(&hctx->lock);
2456 }
2457 
2458 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2459 		struct blk_mq_ctx *ctx, struct list_head *list,
2460 		bool run_queue_async)
2461 {
2462 	struct request *rq;
2463 	enum hctx_type type = hctx->type;
2464 
2465 	/*
2466 	 * Try to issue requests directly if the hw queue isn't busy to save an
2467 	 * extra enqueue & dequeue to the sw queue.
2468 	 */
2469 	if (!hctx->dispatch_busy && !run_queue_async) {
2470 		blk_mq_run_dispatch_ops(hctx->queue,
2471 			blk_mq_try_issue_list_directly(hctx, list));
2472 		if (list_empty(list))
2473 			goto out;
2474 	}
2475 
2476 	/*
2477 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2478 	 * offline now
2479 	 */
2480 	list_for_each_entry(rq, list, queuelist) {
2481 		BUG_ON(rq->mq_ctx != ctx);
2482 		trace_block_rq_insert(rq);
2483 		if (rq->cmd_flags & REQ_NOWAIT)
2484 			run_queue_async = true;
2485 	}
2486 
2487 	spin_lock(&ctx->lock);
2488 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2489 	blk_mq_hctx_mark_pending(hctx, ctx);
2490 	spin_unlock(&ctx->lock);
2491 out:
2492 	blk_mq_run_hw_queue(hctx, run_queue_async);
2493 }
2494 
2495 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2496 {
2497 	struct request_queue *q = rq->q;
2498 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2499 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2500 
2501 	if (blk_rq_is_passthrough(rq)) {
2502 		/*
2503 		 * Passthrough request have to be added to hctx->dispatch
2504 		 * directly.  The device may be in a situation where it can't
2505 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2506 		 * them, which gets them added to hctx->dispatch.
2507 		 *
2508 		 * If a passthrough request is required to unblock the queues,
2509 		 * and it is added to the scheduler queue, there is no chance to
2510 		 * dispatch it given we prioritize requests in hctx->dispatch.
2511 		 */
2512 		blk_mq_request_bypass_insert(rq, flags);
2513 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2514 		/*
2515 		 * Firstly normal IO request is inserted to scheduler queue or
2516 		 * sw queue, meantime we add flush request to dispatch queue(
2517 		 * hctx->dispatch) directly and there is at most one in-flight
2518 		 * flush request for each hw queue, so it doesn't matter to add
2519 		 * flush request to tail or front of the dispatch queue.
2520 		 *
2521 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2522 		 * command, and queueing it will fail when there is any
2523 		 * in-flight normal IO request(NCQ command). When adding flush
2524 		 * rq to the front of hctx->dispatch, it is easier to introduce
2525 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2526 		 * compared with adding to the tail of dispatch queue, then
2527 		 * chance of flush merge is increased, and less flush requests
2528 		 * will be issued to controller. It is observed that ~10% time
2529 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2530 		 * drive when adding flush rq to the front of hctx->dispatch.
2531 		 *
2532 		 * Simply queue flush rq to the front of hctx->dispatch so that
2533 		 * intensive flush workloads can benefit in case of NCQ HW.
2534 		 */
2535 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2536 	} else if (q->elevator) {
2537 		LIST_HEAD(list);
2538 
2539 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2540 
2541 		list_add(&rq->queuelist, &list);
2542 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2543 	} else {
2544 		trace_block_rq_insert(rq);
2545 
2546 		spin_lock(&ctx->lock);
2547 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2548 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2549 		else
2550 			list_add_tail(&rq->queuelist,
2551 				      &ctx->rq_lists[hctx->type]);
2552 		blk_mq_hctx_mark_pending(hctx, ctx);
2553 		spin_unlock(&ctx->lock);
2554 	}
2555 }
2556 
2557 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2558 		unsigned int nr_segs)
2559 {
2560 	int err;
2561 
2562 	if (bio->bi_opf & REQ_RAHEAD)
2563 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2564 
2565 	rq->__sector = bio->bi_iter.bi_sector;
2566 	blk_rq_bio_prep(rq, bio, nr_segs);
2567 
2568 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2569 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2570 	WARN_ON_ONCE(err);
2571 
2572 	blk_account_io_start(rq);
2573 }
2574 
2575 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2576 					    struct request *rq, bool last)
2577 {
2578 	struct request_queue *q = rq->q;
2579 	struct blk_mq_queue_data bd = {
2580 		.rq = rq,
2581 		.last = last,
2582 	};
2583 	blk_status_t ret;
2584 
2585 	/*
2586 	 * For OK queue, we are done. For error, caller may kill it.
2587 	 * Any other error (busy), just add it to our list as we
2588 	 * previously would have done.
2589 	 */
2590 	ret = q->mq_ops->queue_rq(hctx, &bd);
2591 	switch (ret) {
2592 	case BLK_STS_OK:
2593 		blk_mq_update_dispatch_busy(hctx, false);
2594 		break;
2595 	case BLK_STS_RESOURCE:
2596 	case BLK_STS_DEV_RESOURCE:
2597 		blk_mq_update_dispatch_busy(hctx, true);
2598 		__blk_mq_requeue_request(rq);
2599 		break;
2600 	default:
2601 		blk_mq_update_dispatch_busy(hctx, false);
2602 		break;
2603 	}
2604 
2605 	return ret;
2606 }
2607 
2608 static bool blk_mq_get_budget_and_tag(struct request *rq)
2609 {
2610 	int budget_token;
2611 
2612 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2613 	if (budget_token < 0)
2614 		return false;
2615 	blk_mq_set_rq_budget_token(rq, budget_token);
2616 	if (!blk_mq_get_driver_tag(rq)) {
2617 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2618 		return false;
2619 	}
2620 	return true;
2621 }
2622 
2623 /**
2624  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2625  * @hctx: Pointer of the associated hardware queue.
2626  * @rq: Pointer to request to be sent.
2627  *
2628  * If the device has enough resources to accept a new request now, send the
2629  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2630  * we can try send it another time in the future. Requests inserted at this
2631  * queue have higher priority.
2632  */
2633 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2634 		struct request *rq)
2635 {
2636 	blk_status_t ret;
2637 
2638 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2639 		blk_mq_insert_request(rq, 0);
2640 		return;
2641 	}
2642 
2643 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2644 		blk_mq_insert_request(rq, 0);
2645 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2646 		return;
2647 	}
2648 
2649 	ret = __blk_mq_issue_directly(hctx, rq, true);
2650 	switch (ret) {
2651 	case BLK_STS_OK:
2652 		break;
2653 	case BLK_STS_RESOURCE:
2654 	case BLK_STS_DEV_RESOURCE:
2655 		blk_mq_request_bypass_insert(rq, 0);
2656 		blk_mq_run_hw_queue(hctx, false);
2657 		break;
2658 	default:
2659 		blk_mq_end_request(rq, ret);
2660 		break;
2661 	}
2662 }
2663 
2664 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2665 {
2666 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2667 
2668 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2669 		blk_mq_insert_request(rq, 0);
2670 		return BLK_STS_OK;
2671 	}
2672 
2673 	if (!blk_mq_get_budget_and_tag(rq))
2674 		return BLK_STS_RESOURCE;
2675 	return __blk_mq_issue_directly(hctx, rq, last);
2676 }
2677 
2678 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2679 {
2680 	struct blk_mq_hw_ctx *hctx = NULL;
2681 	struct request *rq;
2682 	int queued = 0;
2683 	blk_status_t ret = BLK_STS_OK;
2684 
2685 	while ((rq = rq_list_pop(&plug->mq_list))) {
2686 		bool last = rq_list_empty(plug->mq_list);
2687 
2688 		if (hctx != rq->mq_hctx) {
2689 			if (hctx) {
2690 				blk_mq_commit_rqs(hctx, queued, false);
2691 				queued = 0;
2692 			}
2693 			hctx = rq->mq_hctx;
2694 		}
2695 
2696 		ret = blk_mq_request_issue_directly(rq, last);
2697 		switch (ret) {
2698 		case BLK_STS_OK:
2699 			queued++;
2700 			break;
2701 		case BLK_STS_RESOURCE:
2702 		case BLK_STS_DEV_RESOURCE:
2703 			blk_mq_request_bypass_insert(rq, 0);
2704 			blk_mq_run_hw_queue(hctx, false);
2705 			goto out;
2706 		default:
2707 			blk_mq_end_request(rq, ret);
2708 			break;
2709 		}
2710 	}
2711 
2712 out:
2713 	if (ret != BLK_STS_OK)
2714 		blk_mq_commit_rqs(hctx, queued, false);
2715 }
2716 
2717 static void __blk_mq_flush_plug_list(struct request_queue *q,
2718 				     struct blk_plug *plug)
2719 {
2720 	if (blk_queue_quiesced(q))
2721 		return;
2722 	q->mq_ops->queue_rqs(&plug->mq_list);
2723 }
2724 
2725 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2726 {
2727 	struct blk_mq_hw_ctx *this_hctx = NULL;
2728 	struct blk_mq_ctx *this_ctx = NULL;
2729 	struct request *requeue_list = NULL;
2730 	struct request **requeue_lastp = &requeue_list;
2731 	unsigned int depth = 0;
2732 	bool is_passthrough = false;
2733 	LIST_HEAD(list);
2734 
2735 	do {
2736 		struct request *rq = rq_list_pop(&plug->mq_list);
2737 
2738 		if (!this_hctx) {
2739 			this_hctx = rq->mq_hctx;
2740 			this_ctx = rq->mq_ctx;
2741 			is_passthrough = blk_rq_is_passthrough(rq);
2742 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2743 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2744 			rq_list_add_tail(&requeue_lastp, rq);
2745 			continue;
2746 		}
2747 		list_add(&rq->queuelist, &list);
2748 		depth++;
2749 	} while (!rq_list_empty(plug->mq_list));
2750 
2751 	plug->mq_list = requeue_list;
2752 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2753 
2754 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2755 	/* passthrough requests should never be issued to the I/O scheduler */
2756 	if (is_passthrough) {
2757 		spin_lock(&this_hctx->lock);
2758 		list_splice_tail_init(&list, &this_hctx->dispatch);
2759 		spin_unlock(&this_hctx->lock);
2760 		blk_mq_run_hw_queue(this_hctx, from_sched);
2761 	} else if (this_hctx->queue->elevator) {
2762 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2763 				&list, 0);
2764 		blk_mq_run_hw_queue(this_hctx, from_sched);
2765 	} else {
2766 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2767 	}
2768 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2769 }
2770 
2771 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2772 {
2773 	struct request *rq;
2774 
2775 	/*
2776 	 * We may have been called recursively midway through handling
2777 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2778 	 * To avoid mq_list changing under our feet, clear rq_count early and
2779 	 * bail out specifically if rq_count is 0 rather than checking
2780 	 * whether the mq_list is empty.
2781 	 */
2782 	if (plug->rq_count == 0)
2783 		return;
2784 	plug->rq_count = 0;
2785 
2786 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2787 		struct request_queue *q;
2788 
2789 		rq = rq_list_peek(&plug->mq_list);
2790 		q = rq->q;
2791 
2792 		/*
2793 		 * Peek first request and see if we have a ->queue_rqs() hook.
2794 		 * If we do, we can dispatch the whole plug list in one go. We
2795 		 * already know at this point that all requests belong to the
2796 		 * same queue, caller must ensure that's the case.
2797 		 *
2798 		 * Since we pass off the full list to the driver at this point,
2799 		 * we do not increment the active request count for the queue.
2800 		 * Bypass shared tags for now because of that.
2801 		 */
2802 		if (q->mq_ops->queue_rqs &&
2803 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2804 			blk_mq_run_dispatch_ops(q,
2805 				__blk_mq_flush_plug_list(q, plug));
2806 			if (rq_list_empty(plug->mq_list))
2807 				return;
2808 		}
2809 
2810 		blk_mq_run_dispatch_ops(q,
2811 				blk_mq_plug_issue_direct(plug));
2812 		if (rq_list_empty(plug->mq_list))
2813 			return;
2814 	}
2815 
2816 	do {
2817 		blk_mq_dispatch_plug_list(plug, from_schedule);
2818 	} while (!rq_list_empty(plug->mq_list));
2819 }
2820 
2821 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2822 		struct list_head *list)
2823 {
2824 	int queued = 0;
2825 	blk_status_t ret = BLK_STS_OK;
2826 
2827 	while (!list_empty(list)) {
2828 		struct request *rq = list_first_entry(list, struct request,
2829 				queuelist);
2830 
2831 		list_del_init(&rq->queuelist);
2832 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2833 		switch (ret) {
2834 		case BLK_STS_OK:
2835 			queued++;
2836 			break;
2837 		case BLK_STS_RESOURCE:
2838 		case BLK_STS_DEV_RESOURCE:
2839 			blk_mq_request_bypass_insert(rq, 0);
2840 			if (list_empty(list))
2841 				blk_mq_run_hw_queue(hctx, false);
2842 			goto out;
2843 		default:
2844 			blk_mq_end_request(rq, ret);
2845 			break;
2846 		}
2847 	}
2848 
2849 out:
2850 	if (ret != BLK_STS_OK)
2851 		blk_mq_commit_rqs(hctx, queued, false);
2852 }
2853 
2854 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2855 				     struct bio *bio, unsigned int nr_segs)
2856 {
2857 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2858 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2859 			return true;
2860 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2861 			return true;
2862 	}
2863 	return false;
2864 }
2865 
2866 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2867 					       struct blk_plug *plug,
2868 					       struct bio *bio,
2869 					       unsigned int nsegs)
2870 {
2871 	struct blk_mq_alloc_data data = {
2872 		.q		= q,
2873 		.nr_tags	= 1,
2874 		.cmd_flags	= bio->bi_opf,
2875 	};
2876 	struct request *rq;
2877 
2878 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2879 		return NULL;
2880 
2881 	rq_qos_throttle(q, bio);
2882 
2883 	if (plug) {
2884 		data.nr_tags = plug->nr_ios;
2885 		plug->nr_ios = 1;
2886 		data.cached_rq = &plug->cached_rq;
2887 	}
2888 
2889 	rq = __blk_mq_alloc_requests(&data);
2890 	if (rq)
2891 		return rq;
2892 	rq_qos_cleanup(q, bio);
2893 	if (bio->bi_opf & REQ_NOWAIT)
2894 		bio_wouldblock_error(bio);
2895 	return NULL;
2896 }
2897 
2898 /* return true if this @rq can be used for @bio */
2899 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2900 		struct bio *bio)
2901 {
2902 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2903 	enum hctx_type hctx_type = rq->mq_hctx->type;
2904 
2905 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2906 
2907 	if (type != hctx_type &&
2908 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2909 		return false;
2910 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2911 		return false;
2912 
2913 	/*
2914 	 * If any qos ->throttle() end up blocking, we will have flushed the
2915 	 * plug and hence killed the cached_rq list as well. Pop this entry
2916 	 * before we throttle.
2917 	 */
2918 	plug->cached_rq = rq_list_next(rq);
2919 	rq_qos_throttle(rq->q, bio);
2920 
2921 	blk_mq_rq_time_init(rq, 0);
2922 	rq->cmd_flags = bio->bi_opf;
2923 	INIT_LIST_HEAD(&rq->queuelist);
2924 	return true;
2925 }
2926 
2927 static void bio_set_ioprio(struct bio *bio)
2928 {
2929 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2930 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2931 		bio->bi_ioprio = get_current_ioprio();
2932 	blkcg_set_ioprio(bio);
2933 }
2934 
2935 /**
2936  * blk_mq_submit_bio - Create and send a request to block device.
2937  * @bio: Bio pointer.
2938  *
2939  * Builds up a request structure from @q and @bio and send to the device. The
2940  * request may not be queued directly to hardware if:
2941  * * This request can be merged with another one
2942  * * We want to place request at plug queue for possible future merging
2943  * * There is an IO scheduler active at this queue
2944  *
2945  * It will not queue the request if there is an error with the bio, or at the
2946  * request creation.
2947  */
2948 void blk_mq_submit_bio(struct bio *bio)
2949 {
2950 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2951 	struct blk_plug *plug = blk_mq_plug(bio);
2952 	const int is_sync = op_is_sync(bio->bi_opf);
2953 	struct blk_mq_hw_ctx *hctx;
2954 	struct request *rq = NULL;
2955 	unsigned int nr_segs = 1;
2956 	blk_status_t ret;
2957 
2958 	bio = blk_queue_bounce(bio, q);
2959 	if (bio_may_exceed_limits(bio, &q->limits)) {
2960 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2961 		if (!bio)
2962 			return;
2963 	}
2964 
2965 	bio_set_ioprio(bio);
2966 
2967 	if (plug) {
2968 		rq = rq_list_peek(&plug->cached_rq);
2969 		if (rq && rq->q != q)
2970 			rq = NULL;
2971 	}
2972 	if (rq) {
2973 		if (!bio_integrity_prep(bio))
2974 			return;
2975 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2976 			return;
2977 		if (blk_mq_can_use_cached_rq(rq, plug, bio))
2978 			goto done;
2979 		percpu_ref_get(&q->q_usage_counter);
2980 	} else {
2981 		if (unlikely(bio_queue_enter(bio)))
2982 			return;
2983 		if (!bio_integrity_prep(bio))
2984 			goto fail;
2985 	}
2986 
2987 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2988 	if (unlikely(!rq)) {
2989 fail:
2990 		blk_queue_exit(q);
2991 		return;
2992 	}
2993 
2994 done:
2995 	trace_block_getrq(bio);
2996 
2997 	rq_qos_track(q, rq, bio);
2998 
2999 	blk_mq_bio_to_request(rq, bio, nr_segs);
3000 
3001 	ret = blk_crypto_rq_get_keyslot(rq);
3002 	if (ret != BLK_STS_OK) {
3003 		bio->bi_status = ret;
3004 		bio_endio(bio);
3005 		blk_mq_free_request(rq);
3006 		return;
3007 	}
3008 
3009 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3010 		return;
3011 
3012 	if (plug) {
3013 		blk_add_rq_to_plug(plug, rq);
3014 		return;
3015 	}
3016 
3017 	hctx = rq->mq_hctx;
3018 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3019 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3020 		blk_mq_insert_request(rq, 0);
3021 		blk_mq_run_hw_queue(hctx, true);
3022 	} else {
3023 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3024 	}
3025 }
3026 
3027 #ifdef CONFIG_BLK_MQ_STACKING
3028 /**
3029  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3030  * @rq: the request being queued
3031  */
3032 blk_status_t blk_insert_cloned_request(struct request *rq)
3033 {
3034 	struct request_queue *q = rq->q;
3035 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3036 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3037 	blk_status_t ret;
3038 
3039 	if (blk_rq_sectors(rq) > max_sectors) {
3040 		/*
3041 		 * SCSI device does not have a good way to return if
3042 		 * Write Same/Zero is actually supported. If a device rejects
3043 		 * a non-read/write command (discard, write same,etc.) the
3044 		 * low-level device driver will set the relevant queue limit to
3045 		 * 0 to prevent blk-lib from issuing more of the offending
3046 		 * operations. Commands queued prior to the queue limit being
3047 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3048 		 * errors being propagated to upper layers.
3049 		 */
3050 		if (max_sectors == 0)
3051 			return BLK_STS_NOTSUPP;
3052 
3053 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3054 			__func__, blk_rq_sectors(rq), max_sectors);
3055 		return BLK_STS_IOERR;
3056 	}
3057 
3058 	/*
3059 	 * The queue settings related to segment counting may differ from the
3060 	 * original queue.
3061 	 */
3062 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3063 	if (rq->nr_phys_segments > max_segments) {
3064 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3065 			__func__, rq->nr_phys_segments, max_segments);
3066 		return BLK_STS_IOERR;
3067 	}
3068 
3069 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3070 		return BLK_STS_IOERR;
3071 
3072 	ret = blk_crypto_rq_get_keyslot(rq);
3073 	if (ret != BLK_STS_OK)
3074 		return ret;
3075 
3076 	blk_account_io_start(rq);
3077 
3078 	/*
3079 	 * Since we have a scheduler attached on the top device,
3080 	 * bypass a potential scheduler on the bottom device for
3081 	 * insert.
3082 	 */
3083 	blk_mq_run_dispatch_ops(q,
3084 			ret = blk_mq_request_issue_directly(rq, true));
3085 	if (ret)
3086 		blk_account_io_done(rq, ktime_get_ns());
3087 	return ret;
3088 }
3089 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3090 
3091 /**
3092  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3093  * @rq: the clone request to be cleaned up
3094  *
3095  * Description:
3096  *     Free all bios in @rq for a cloned request.
3097  */
3098 void blk_rq_unprep_clone(struct request *rq)
3099 {
3100 	struct bio *bio;
3101 
3102 	while ((bio = rq->bio) != NULL) {
3103 		rq->bio = bio->bi_next;
3104 
3105 		bio_put(bio);
3106 	}
3107 }
3108 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3109 
3110 /**
3111  * blk_rq_prep_clone - Helper function to setup clone request
3112  * @rq: the request to be setup
3113  * @rq_src: original request to be cloned
3114  * @bs: bio_set that bios for clone are allocated from
3115  * @gfp_mask: memory allocation mask for bio
3116  * @bio_ctr: setup function to be called for each clone bio.
3117  *           Returns %0 for success, non %0 for failure.
3118  * @data: private data to be passed to @bio_ctr
3119  *
3120  * Description:
3121  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3122  *     Also, pages which the original bios are pointing to are not copied
3123  *     and the cloned bios just point same pages.
3124  *     So cloned bios must be completed before original bios, which means
3125  *     the caller must complete @rq before @rq_src.
3126  */
3127 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3128 		      struct bio_set *bs, gfp_t gfp_mask,
3129 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3130 		      void *data)
3131 {
3132 	struct bio *bio, *bio_src;
3133 
3134 	if (!bs)
3135 		bs = &fs_bio_set;
3136 
3137 	__rq_for_each_bio(bio_src, rq_src) {
3138 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3139 				      bs);
3140 		if (!bio)
3141 			goto free_and_out;
3142 
3143 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3144 			goto free_and_out;
3145 
3146 		if (rq->bio) {
3147 			rq->biotail->bi_next = bio;
3148 			rq->biotail = bio;
3149 		} else {
3150 			rq->bio = rq->biotail = bio;
3151 		}
3152 		bio = NULL;
3153 	}
3154 
3155 	/* Copy attributes of the original request to the clone request. */
3156 	rq->__sector = blk_rq_pos(rq_src);
3157 	rq->__data_len = blk_rq_bytes(rq_src);
3158 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3159 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3160 		rq->special_vec = rq_src->special_vec;
3161 	}
3162 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3163 	rq->ioprio = rq_src->ioprio;
3164 
3165 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3166 		goto free_and_out;
3167 
3168 	return 0;
3169 
3170 free_and_out:
3171 	if (bio)
3172 		bio_put(bio);
3173 	blk_rq_unprep_clone(rq);
3174 
3175 	return -ENOMEM;
3176 }
3177 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3178 #endif /* CONFIG_BLK_MQ_STACKING */
3179 
3180 /*
3181  * Steal bios from a request and add them to a bio list.
3182  * The request must not have been partially completed before.
3183  */
3184 void blk_steal_bios(struct bio_list *list, struct request *rq)
3185 {
3186 	if (rq->bio) {
3187 		if (list->tail)
3188 			list->tail->bi_next = rq->bio;
3189 		else
3190 			list->head = rq->bio;
3191 		list->tail = rq->biotail;
3192 
3193 		rq->bio = NULL;
3194 		rq->biotail = NULL;
3195 	}
3196 
3197 	rq->__data_len = 0;
3198 }
3199 EXPORT_SYMBOL_GPL(blk_steal_bios);
3200 
3201 static size_t order_to_size(unsigned int order)
3202 {
3203 	return (size_t)PAGE_SIZE << order;
3204 }
3205 
3206 /* called before freeing request pool in @tags */
3207 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3208 				    struct blk_mq_tags *tags)
3209 {
3210 	struct page *page;
3211 	unsigned long flags;
3212 
3213 	/*
3214 	 * There is no need to clear mapping if driver tags is not initialized
3215 	 * or the mapping belongs to the driver tags.
3216 	 */
3217 	if (!drv_tags || drv_tags == tags)
3218 		return;
3219 
3220 	list_for_each_entry(page, &tags->page_list, lru) {
3221 		unsigned long start = (unsigned long)page_address(page);
3222 		unsigned long end = start + order_to_size(page->private);
3223 		int i;
3224 
3225 		for (i = 0; i < drv_tags->nr_tags; i++) {
3226 			struct request *rq = drv_tags->rqs[i];
3227 			unsigned long rq_addr = (unsigned long)rq;
3228 
3229 			if (rq_addr >= start && rq_addr < end) {
3230 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3231 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3232 			}
3233 		}
3234 	}
3235 
3236 	/*
3237 	 * Wait until all pending iteration is done.
3238 	 *
3239 	 * Request reference is cleared and it is guaranteed to be observed
3240 	 * after the ->lock is released.
3241 	 */
3242 	spin_lock_irqsave(&drv_tags->lock, flags);
3243 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3244 }
3245 
3246 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3247 		     unsigned int hctx_idx)
3248 {
3249 	struct blk_mq_tags *drv_tags;
3250 	struct page *page;
3251 
3252 	if (list_empty(&tags->page_list))
3253 		return;
3254 
3255 	if (blk_mq_is_shared_tags(set->flags))
3256 		drv_tags = set->shared_tags;
3257 	else
3258 		drv_tags = set->tags[hctx_idx];
3259 
3260 	if (tags->static_rqs && set->ops->exit_request) {
3261 		int i;
3262 
3263 		for (i = 0; i < tags->nr_tags; i++) {
3264 			struct request *rq = tags->static_rqs[i];
3265 
3266 			if (!rq)
3267 				continue;
3268 			set->ops->exit_request(set, rq, hctx_idx);
3269 			tags->static_rqs[i] = NULL;
3270 		}
3271 	}
3272 
3273 	blk_mq_clear_rq_mapping(drv_tags, tags);
3274 
3275 	while (!list_empty(&tags->page_list)) {
3276 		page = list_first_entry(&tags->page_list, struct page, lru);
3277 		list_del_init(&page->lru);
3278 		/*
3279 		 * Remove kmemleak object previously allocated in
3280 		 * blk_mq_alloc_rqs().
3281 		 */
3282 		kmemleak_free(page_address(page));
3283 		__free_pages(page, page->private);
3284 	}
3285 }
3286 
3287 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3288 {
3289 	kfree(tags->rqs);
3290 	tags->rqs = NULL;
3291 	kfree(tags->static_rqs);
3292 	tags->static_rqs = NULL;
3293 
3294 	blk_mq_free_tags(tags);
3295 }
3296 
3297 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3298 		unsigned int hctx_idx)
3299 {
3300 	int i;
3301 
3302 	for (i = 0; i < set->nr_maps; i++) {
3303 		unsigned int start = set->map[i].queue_offset;
3304 		unsigned int end = start + set->map[i].nr_queues;
3305 
3306 		if (hctx_idx >= start && hctx_idx < end)
3307 			break;
3308 	}
3309 
3310 	if (i >= set->nr_maps)
3311 		i = HCTX_TYPE_DEFAULT;
3312 
3313 	return i;
3314 }
3315 
3316 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3317 		unsigned int hctx_idx)
3318 {
3319 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3320 
3321 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3322 }
3323 
3324 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3325 					       unsigned int hctx_idx,
3326 					       unsigned int nr_tags,
3327 					       unsigned int reserved_tags)
3328 {
3329 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3330 	struct blk_mq_tags *tags;
3331 
3332 	if (node == NUMA_NO_NODE)
3333 		node = set->numa_node;
3334 
3335 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3336 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3337 	if (!tags)
3338 		return NULL;
3339 
3340 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3341 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3342 				 node);
3343 	if (!tags->rqs)
3344 		goto err_free_tags;
3345 
3346 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3347 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3348 					node);
3349 	if (!tags->static_rqs)
3350 		goto err_free_rqs;
3351 
3352 	return tags;
3353 
3354 err_free_rqs:
3355 	kfree(tags->rqs);
3356 err_free_tags:
3357 	blk_mq_free_tags(tags);
3358 	return NULL;
3359 }
3360 
3361 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3362 			       unsigned int hctx_idx, int node)
3363 {
3364 	int ret;
3365 
3366 	if (set->ops->init_request) {
3367 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3368 		if (ret)
3369 			return ret;
3370 	}
3371 
3372 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3373 	return 0;
3374 }
3375 
3376 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3377 			    struct blk_mq_tags *tags,
3378 			    unsigned int hctx_idx, unsigned int depth)
3379 {
3380 	unsigned int i, j, entries_per_page, max_order = 4;
3381 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3382 	size_t rq_size, left;
3383 
3384 	if (node == NUMA_NO_NODE)
3385 		node = set->numa_node;
3386 
3387 	INIT_LIST_HEAD(&tags->page_list);
3388 
3389 	/*
3390 	 * rq_size is the size of the request plus driver payload, rounded
3391 	 * to the cacheline size
3392 	 */
3393 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3394 				cache_line_size());
3395 	left = rq_size * depth;
3396 
3397 	for (i = 0; i < depth; ) {
3398 		int this_order = max_order;
3399 		struct page *page;
3400 		int to_do;
3401 		void *p;
3402 
3403 		while (this_order && left < order_to_size(this_order - 1))
3404 			this_order--;
3405 
3406 		do {
3407 			page = alloc_pages_node(node,
3408 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3409 				this_order);
3410 			if (page)
3411 				break;
3412 			if (!this_order--)
3413 				break;
3414 			if (order_to_size(this_order) < rq_size)
3415 				break;
3416 		} while (1);
3417 
3418 		if (!page)
3419 			goto fail;
3420 
3421 		page->private = this_order;
3422 		list_add_tail(&page->lru, &tags->page_list);
3423 
3424 		p = page_address(page);
3425 		/*
3426 		 * Allow kmemleak to scan these pages as they contain pointers
3427 		 * to additional allocations like via ops->init_request().
3428 		 */
3429 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3430 		entries_per_page = order_to_size(this_order) / rq_size;
3431 		to_do = min(entries_per_page, depth - i);
3432 		left -= to_do * rq_size;
3433 		for (j = 0; j < to_do; j++) {
3434 			struct request *rq = p;
3435 
3436 			tags->static_rqs[i] = rq;
3437 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3438 				tags->static_rqs[i] = NULL;
3439 				goto fail;
3440 			}
3441 
3442 			p += rq_size;
3443 			i++;
3444 		}
3445 	}
3446 	return 0;
3447 
3448 fail:
3449 	blk_mq_free_rqs(set, tags, hctx_idx);
3450 	return -ENOMEM;
3451 }
3452 
3453 struct rq_iter_data {
3454 	struct blk_mq_hw_ctx *hctx;
3455 	bool has_rq;
3456 };
3457 
3458 static bool blk_mq_has_request(struct request *rq, void *data)
3459 {
3460 	struct rq_iter_data *iter_data = data;
3461 
3462 	if (rq->mq_hctx != iter_data->hctx)
3463 		return true;
3464 	iter_data->has_rq = true;
3465 	return false;
3466 }
3467 
3468 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3469 {
3470 	struct blk_mq_tags *tags = hctx->sched_tags ?
3471 			hctx->sched_tags : hctx->tags;
3472 	struct rq_iter_data data = {
3473 		.hctx	= hctx,
3474 	};
3475 
3476 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3477 	return data.has_rq;
3478 }
3479 
3480 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3481 		struct blk_mq_hw_ctx *hctx)
3482 {
3483 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3484 		return false;
3485 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3486 		return false;
3487 	return true;
3488 }
3489 
3490 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3491 {
3492 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3493 			struct blk_mq_hw_ctx, cpuhp_online);
3494 
3495 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3496 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3497 		return 0;
3498 
3499 	/*
3500 	 * Prevent new request from being allocated on the current hctx.
3501 	 *
3502 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3503 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3504 	 * seen once we return from the tag allocator.
3505 	 */
3506 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3507 	smp_mb__after_atomic();
3508 
3509 	/*
3510 	 * Try to grab a reference to the queue and wait for any outstanding
3511 	 * requests.  If we could not grab a reference the queue has been
3512 	 * frozen and there are no requests.
3513 	 */
3514 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3515 		while (blk_mq_hctx_has_requests(hctx))
3516 			msleep(5);
3517 		percpu_ref_put(&hctx->queue->q_usage_counter);
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3524 {
3525 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3526 			struct blk_mq_hw_ctx, cpuhp_online);
3527 
3528 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3529 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3530 	return 0;
3531 }
3532 
3533 /*
3534  * 'cpu' is going away. splice any existing rq_list entries from this
3535  * software queue to the hw queue dispatch list, and ensure that it
3536  * gets run.
3537  */
3538 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3539 {
3540 	struct blk_mq_hw_ctx *hctx;
3541 	struct blk_mq_ctx *ctx;
3542 	LIST_HEAD(tmp);
3543 	enum hctx_type type;
3544 
3545 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3546 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3547 		return 0;
3548 
3549 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3550 	type = hctx->type;
3551 
3552 	spin_lock(&ctx->lock);
3553 	if (!list_empty(&ctx->rq_lists[type])) {
3554 		list_splice_init(&ctx->rq_lists[type], &tmp);
3555 		blk_mq_hctx_clear_pending(hctx, ctx);
3556 	}
3557 	spin_unlock(&ctx->lock);
3558 
3559 	if (list_empty(&tmp))
3560 		return 0;
3561 
3562 	spin_lock(&hctx->lock);
3563 	list_splice_tail_init(&tmp, &hctx->dispatch);
3564 	spin_unlock(&hctx->lock);
3565 
3566 	blk_mq_run_hw_queue(hctx, true);
3567 	return 0;
3568 }
3569 
3570 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3571 {
3572 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3573 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3574 						    &hctx->cpuhp_online);
3575 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3576 					    &hctx->cpuhp_dead);
3577 }
3578 
3579 /*
3580  * Before freeing hw queue, clearing the flush request reference in
3581  * tags->rqs[] for avoiding potential UAF.
3582  */
3583 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3584 		unsigned int queue_depth, struct request *flush_rq)
3585 {
3586 	int i;
3587 	unsigned long flags;
3588 
3589 	/* The hw queue may not be mapped yet */
3590 	if (!tags)
3591 		return;
3592 
3593 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3594 
3595 	for (i = 0; i < queue_depth; i++)
3596 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3597 
3598 	/*
3599 	 * Wait until all pending iteration is done.
3600 	 *
3601 	 * Request reference is cleared and it is guaranteed to be observed
3602 	 * after the ->lock is released.
3603 	 */
3604 	spin_lock_irqsave(&tags->lock, flags);
3605 	spin_unlock_irqrestore(&tags->lock, flags);
3606 }
3607 
3608 /* hctx->ctxs will be freed in queue's release handler */
3609 static void blk_mq_exit_hctx(struct request_queue *q,
3610 		struct blk_mq_tag_set *set,
3611 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3612 {
3613 	struct request *flush_rq = hctx->fq->flush_rq;
3614 
3615 	if (blk_mq_hw_queue_mapped(hctx))
3616 		blk_mq_tag_idle(hctx);
3617 
3618 	if (blk_queue_init_done(q))
3619 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3620 				set->queue_depth, flush_rq);
3621 	if (set->ops->exit_request)
3622 		set->ops->exit_request(set, flush_rq, hctx_idx);
3623 
3624 	if (set->ops->exit_hctx)
3625 		set->ops->exit_hctx(hctx, hctx_idx);
3626 
3627 	blk_mq_remove_cpuhp(hctx);
3628 
3629 	xa_erase(&q->hctx_table, hctx_idx);
3630 
3631 	spin_lock(&q->unused_hctx_lock);
3632 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3633 	spin_unlock(&q->unused_hctx_lock);
3634 }
3635 
3636 static void blk_mq_exit_hw_queues(struct request_queue *q,
3637 		struct blk_mq_tag_set *set, int nr_queue)
3638 {
3639 	struct blk_mq_hw_ctx *hctx;
3640 	unsigned long i;
3641 
3642 	queue_for_each_hw_ctx(q, hctx, i) {
3643 		if (i == nr_queue)
3644 			break;
3645 		blk_mq_exit_hctx(q, set, hctx, i);
3646 	}
3647 }
3648 
3649 static int blk_mq_init_hctx(struct request_queue *q,
3650 		struct blk_mq_tag_set *set,
3651 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3652 {
3653 	hctx->queue_num = hctx_idx;
3654 
3655 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3656 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3657 				&hctx->cpuhp_online);
3658 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3659 
3660 	hctx->tags = set->tags[hctx_idx];
3661 
3662 	if (set->ops->init_hctx &&
3663 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3664 		goto unregister_cpu_notifier;
3665 
3666 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3667 				hctx->numa_node))
3668 		goto exit_hctx;
3669 
3670 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3671 		goto exit_flush_rq;
3672 
3673 	return 0;
3674 
3675  exit_flush_rq:
3676 	if (set->ops->exit_request)
3677 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3678  exit_hctx:
3679 	if (set->ops->exit_hctx)
3680 		set->ops->exit_hctx(hctx, hctx_idx);
3681  unregister_cpu_notifier:
3682 	blk_mq_remove_cpuhp(hctx);
3683 	return -1;
3684 }
3685 
3686 static struct blk_mq_hw_ctx *
3687 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3688 		int node)
3689 {
3690 	struct blk_mq_hw_ctx *hctx;
3691 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3692 
3693 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3694 	if (!hctx)
3695 		goto fail_alloc_hctx;
3696 
3697 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3698 		goto free_hctx;
3699 
3700 	atomic_set(&hctx->nr_active, 0);
3701 	if (node == NUMA_NO_NODE)
3702 		node = set->numa_node;
3703 	hctx->numa_node = node;
3704 
3705 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3706 	spin_lock_init(&hctx->lock);
3707 	INIT_LIST_HEAD(&hctx->dispatch);
3708 	hctx->queue = q;
3709 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3710 
3711 	INIT_LIST_HEAD(&hctx->hctx_list);
3712 
3713 	/*
3714 	 * Allocate space for all possible cpus to avoid allocation at
3715 	 * runtime
3716 	 */
3717 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3718 			gfp, node);
3719 	if (!hctx->ctxs)
3720 		goto free_cpumask;
3721 
3722 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3723 				gfp, node, false, false))
3724 		goto free_ctxs;
3725 	hctx->nr_ctx = 0;
3726 
3727 	spin_lock_init(&hctx->dispatch_wait_lock);
3728 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3729 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3730 
3731 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3732 	if (!hctx->fq)
3733 		goto free_bitmap;
3734 
3735 	blk_mq_hctx_kobj_init(hctx);
3736 
3737 	return hctx;
3738 
3739  free_bitmap:
3740 	sbitmap_free(&hctx->ctx_map);
3741  free_ctxs:
3742 	kfree(hctx->ctxs);
3743  free_cpumask:
3744 	free_cpumask_var(hctx->cpumask);
3745  free_hctx:
3746 	kfree(hctx);
3747  fail_alloc_hctx:
3748 	return NULL;
3749 }
3750 
3751 static void blk_mq_init_cpu_queues(struct request_queue *q,
3752 				   unsigned int nr_hw_queues)
3753 {
3754 	struct blk_mq_tag_set *set = q->tag_set;
3755 	unsigned int i, j;
3756 
3757 	for_each_possible_cpu(i) {
3758 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3759 		struct blk_mq_hw_ctx *hctx;
3760 		int k;
3761 
3762 		__ctx->cpu = i;
3763 		spin_lock_init(&__ctx->lock);
3764 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3765 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3766 
3767 		__ctx->queue = q;
3768 
3769 		/*
3770 		 * Set local node, IFF we have more than one hw queue. If
3771 		 * not, we remain on the home node of the device
3772 		 */
3773 		for (j = 0; j < set->nr_maps; j++) {
3774 			hctx = blk_mq_map_queue_type(q, j, i);
3775 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3776 				hctx->numa_node = cpu_to_node(i);
3777 		}
3778 	}
3779 }
3780 
3781 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3782 					     unsigned int hctx_idx,
3783 					     unsigned int depth)
3784 {
3785 	struct blk_mq_tags *tags;
3786 	int ret;
3787 
3788 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3789 	if (!tags)
3790 		return NULL;
3791 
3792 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3793 	if (ret) {
3794 		blk_mq_free_rq_map(tags);
3795 		return NULL;
3796 	}
3797 
3798 	return tags;
3799 }
3800 
3801 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3802 				       int hctx_idx)
3803 {
3804 	if (blk_mq_is_shared_tags(set->flags)) {
3805 		set->tags[hctx_idx] = set->shared_tags;
3806 
3807 		return true;
3808 	}
3809 
3810 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3811 						       set->queue_depth);
3812 
3813 	return set->tags[hctx_idx];
3814 }
3815 
3816 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3817 			     struct blk_mq_tags *tags,
3818 			     unsigned int hctx_idx)
3819 {
3820 	if (tags) {
3821 		blk_mq_free_rqs(set, tags, hctx_idx);
3822 		blk_mq_free_rq_map(tags);
3823 	}
3824 }
3825 
3826 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3827 				      unsigned int hctx_idx)
3828 {
3829 	if (!blk_mq_is_shared_tags(set->flags))
3830 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3831 
3832 	set->tags[hctx_idx] = NULL;
3833 }
3834 
3835 static void blk_mq_map_swqueue(struct request_queue *q)
3836 {
3837 	unsigned int j, hctx_idx;
3838 	unsigned long i;
3839 	struct blk_mq_hw_ctx *hctx;
3840 	struct blk_mq_ctx *ctx;
3841 	struct blk_mq_tag_set *set = q->tag_set;
3842 
3843 	queue_for_each_hw_ctx(q, hctx, i) {
3844 		cpumask_clear(hctx->cpumask);
3845 		hctx->nr_ctx = 0;
3846 		hctx->dispatch_from = NULL;
3847 	}
3848 
3849 	/*
3850 	 * Map software to hardware queues.
3851 	 *
3852 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3853 	 */
3854 	for_each_possible_cpu(i) {
3855 
3856 		ctx = per_cpu_ptr(q->queue_ctx, i);
3857 		for (j = 0; j < set->nr_maps; j++) {
3858 			if (!set->map[j].nr_queues) {
3859 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3860 						HCTX_TYPE_DEFAULT, i);
3861 				continue;
3862 			}
3863 			hctx_idx = set->map[j].mq_map[i];
3864 			/* unmapped hw queue can be remapped after CPU topo changed */
3865 			if (!set->tags[hctx_idx] &&
3866 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3867 				/*
3868 				 * If tags initialization fail for some hctx,
3869 				 * that hctx won't be brought online.  In this
3870 				 * case, remap the current ctx to hctx[0] which
3871 				 * is guaranteed to always have tags allocated
3872 				 */
3873 				set->map[j].mq_map[i] = 0;
3874 			}
3875 
3876 			hctx = blk_mq_map_queue_type(q, j, i);
3877 			ctx->hctxs[j] = hctx;
3878 			/*
3879 			 * If the CPU is already set in the mask, then we've
3880 			 * mapped this one already. This can happen if
3881 			 * devices share queues across queue maps.
3882 			 */
3883 			if (cpumask_test_cpu(i, hctx->cpumask))
3884 				continue;
3885 
3886 			cpumask_set_cpu(i, hctx->cpumask);
3887 			hctx->type = j;
3888 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3889 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3890 
3891 			/*
3892 			 * If the nr_ctx type overflows, we have exceeded the
3893 			 * amount of sw queues we can support.
3894 			 */
3895 			BUG_ON(!hctx->nr_ctx);
3896 		}
3897 
3898 		for (; j < HCTX_MAX_TYPES; j++)
3899 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3900 					HCTX_TYPE_DEFAULT, i);
3901 	}
3902 
3903 	queue_for_each_hw_ctx(q, hctx, i) {
3904 		/*
3905 		 * If no software queues are mapped to this hardware queue,
3906 		 * disable it and free the request entries.
3907 		 */
3908 		if (!hctx->nr_ctx) {
3909 			/* Never unmap queue 0.  We need it as a
3910 			 * fallback in case of a new remap fails
3911 			 * allocation
3912 			 */
3913 			if (i)
3914 				__blk_mq_free_map_and_rqs(set, i);
3915 
3916 			hctx->tags = NULL;
3917 			continue;
3918 		}
3919 
3920 		hctx->tags = set->tags[i];
3921 		WARN_ON(!hctx->tags);
3922 
3923 		/*
3924 		 * Set the map size to the number of mapped software queues.
3925 		 * This is more accurate and more efficient than looping
3926 		 * over all possibly mapped software queues.
3927 		 */
3928 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3929 
3930 		/*
3931 		 * Initialize batch roundrobin counts
3932 		 */
3933 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3934 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3935 	}
3936 }
3937 
3938 /*
3939  * Caller needs to ensure that we're either frozen/quiesced, or that
3940  * the queue isn't live yet.
3941  */
3942 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3943 {
3944 	struct blk_mq_hw_ctx *hctx;
3945 	unsigned long i;
3946 
3947 	queue_for_each_hw_ctx(q, hctx, i) {
3948 		if (shared) {
3949 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3950 		} else {
3951 			blk_mq_tag_idle(hctx);
3952 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3953 		}
3954 	}
3955 }
3956 
3957 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3958 					 bool shared)
3959 {
3960 	struct request_queue *q;
3961 
3962 	lockdep_assert_held(&set->tag_list_lock);
3963 
3964 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3965 		blk_mq_freeze_queue(q);
3966 		queue_set_hctx_shared(q, shared);
3967 		blk_mq_unfreeze_queue(q);
3968 	}
3969 }
3970 
3971 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3972 {
3973 	struct blk_mq_tag_set *set = q->tag_set;
3974 
3975 	mutex_lock(&set->tag_list_lock);
3976 	list_del(&q->tag_set_list);
3977 	if (list_is_singular(&set->tag_list)) {
3978 		/* just transitioned to unshared */
3979 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3980 		/* update existing queue */
3981 		blk_mq_update_tag_set_shared(set, false);
3982 	}
3983 	mutex_unlock(&set->tag_list_lock);
3984 	INIT_LIST_HEAD(&q->tag_set_list);
3985 }
3986 
3987 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3988 				     struct request_queue *q)
3989 {
3990 	mutex_lock(&set->tag_list_lock);
3991 
3992 	/*
3993 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3994 	 */
3995 	if (!list_empty(&set->tag_list) &&
3996 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3997 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3998 		/* update existing queue */
3999 		blk_mq_update_tag_set_shared(set, true);
4000 	}
4001 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4002 		queue_set_hctx_shared(q, true);
4003 	list_add_tail(&q->tag_set_list, &set->tag_list);
4004 
4005 	mutex_unlock(&set->tag_list_lock);
4006 }
4007 
4008 /* All allocations will be freed in release handler of q->mq_kobj */
4009 static int blk_mq_alloc_ctxs(struct request_queue *q)
4010 {
4011 	struct blk_mq_ctxs *ctxs;
4012 	int cpu;
4013 
4014 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4015 	if (!ctxs)
4016 		return -ENOMEM;
4017 
4018 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4019 	if (!ctxs->queue_ctx)
4020 		goto fail;
4021 
4022 	for_each_possible_cpu(cpu) {
4023 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4024 		ctx->ctxs = ctxs;
4025 	}
4026 
4027 	q->mq_kobj = &ctxs->kobj;
4028 	q->queue_ctx = ctxs->queue_ctx;
4029 
4030 	return 0;
4031  fail:
4032 	kfree(ctxs);
4033 	return -ENOMEM;
4034 }
4035 
4036 /*
4037  * It is the actual release handler for mq, but we do it from
4038  * request queue's release handler for avoiding use-after-free
4039  * and headache because q->mq_kobj shouldn't have been introduced,
4040  * but we can't group ctx/kctx kobj without it.
4041  */
4042 void blk_mq_release(struct request_queue *q)
4043 {
4044 	struct blk_mq_hw_ctx *hctx, *next;
4045 	unsigned long i;
4046 
4047 	queue_for_each_hw_ctx(q, hctx, i)
4048 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4049 
4050 	/* all hctx are in .unused_hctx_list now */
4051 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4052 		list_del_init(&hctx->hctx_list);
4053 		kobject_put(&hctx->kobj);
4054 	}
4055 
4056 	xa_destroy(&q->hctx_table);
4057 
4058 	/*
4059 	 * release .mq_kobj and sw queue's kobject now because
4060 	 * both share lifetime with request queue.
4061 	 */
4062 	blk_mq_sysfs_deinit(q);
4063 }
4064 
4065 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4066 		void *queuedata)
4067 {
4068 	struct request_queue *q;
4069 	int ret;
4070 
4071 	q = blk_alloc_queue(set->numa_node);
4072 	if (!q)
4073 		return ERR_PTR(-ENOMEM);
4074 	q->queuedata = queuedata;
4075 	ret = blk_mq_init_allocated_queue(set, q);
4076 	if (ret) {
4077 		blk_put_queue(q);
4078 		return ERR_PTR(ret);
4079 	}
4080 	return q;
4081 }
4082 
4083 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4084 {
4085 	return blk_mq_init_queue_data(set, NULL);
4086 }
4087 EXPORT_SYMBOL(blk_mq_init_queue);
4088 
4089 /**
4090  * blk_mq_destroy_queue - shutdown a request queue
4091  * @q: request queue to shutdown
4092  *
4093  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4094  * requests will be failed with -ENODEV. The caller is responsible for dropping
4095  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4096  *
4097  * Context: can sleep
4098  */
4099 void blk_mq_destroy_queue(struct request_queue *q)
4100 {
4101 	WARN_ON_ONCE(!queue_is_mq(q));
4102 	WARN_ON_ONCE(blk_queue_registered(q));
4103 
4104 	might_sleep();
4105 
4106 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4107 	blk_queue_start_drain(q);
4108 	blk_mq_freeze_queue_wait(q);
4109 
4110 	blk_sync_queue(q);
4111 	blk_mq_cancel_work_sync(q);
4112 	blk_mq_exit_queue(q);
4113 }
4114 EXPORT_SYMBOL(blk_mq_destroy_queue);
4115 
4116 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4117 		struct lock_class_key *lkclass)
4118 {
4119 	struct request_queue *q;
4120 	struct gendisk *disk;
4121 
4122 	q = blk_mq_init_queue_data(set, queuedata);
4123 	if (IS_ERR(q))
4124 		return ERR_CAST(q);
4125 
4126 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4127 	if (!disk) {
4128 		blk_mq_destroy_queue(q);
4129 		blk_put_queue(q);
4130 		return ERR_PTR(-ENOMEM);
4131 	}
4132 	set_bit(GD_OWNS_QUEUE, &disk->state);
4133 	return disk;
4134 }
4135 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4136 
4137 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4138 		struct lock_class_key *lkclass)
4139 {
4140 	struct gendisk *disk;
4141 
4142 	if (!blk_get_queue(q))
4143 		return NULL;
4144 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4145 	if (!disk)
4146 		blk_put_queue(q);
4147 	return disk;
4148 }
4149 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4150 
4151 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4152 		struct blk_mq_tag_set *set, struct request_queue *q,
4153 		int hctx_idx, int node)
4154 {
4155 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4156 
4157 	/* reuse dead hctx first */
4158 	spin_lock(&q->unused_hctx_lock);
4159 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4160 		if (tmp->numa_node == node) {
4161 			hctx = tmp;
4162 			break;
4163 		}
4164 	}
4165 	if (hctx)
4166 		list_del_init(&hctx->hctx_list);
4167 	spin_unlock(&q->unused_hctx_lock);
4168 
4169 	if (!hctx)
4170 		hctx = blk_mq_alloc_hctx(q, set, node);
4171 	if (!hctx)
4172 		goto fail;
4173 
4174 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4175 		goto free_hctx;
4176 
4177 	return hctx;
4178 
4179  free_hctx:
4180 	kobject_put(&hctx->kobj);
4181  fail:
4182 	return NULL;
4183 }
4184 
4185 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4186 						struct request_queue *q)
4187 {
4188 	struct blk_mq_hw_ctx *hctx;
4189 	unsigned long i, j;
4190 
4191 	/* protect against switching io scheduler  */
4192 	mutex_lock(&q->sysfs_lock);
4193 	for (i = 0; i < set->nr_hw_queues; i++) {
4194 		int old_node;
4195 		int node = blk_mq_get_hctx_node(set, i);
4196 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4197 
4198 		if (old_hctx) {
4199 			old_node = old_hctx->numa_node;
4200 			blk_mq_exit_hctx(q, set, old_hctx, i);
4201 		}
4202 
4203 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4204 			if (!old_hctx)
4205 				break;
4206 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4207 					node, old_node);
4208 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4209 			WARN_ON_ONCE(!hctx);
4210 		}
4211 	}
4212 	/*
4213 	 * Increasing nr_hw_queues fails. Free the newly allocated
4214 	 * hctxs and keep the previous q->nr_hw_queues.
4215 	 */
4216 	if (i != set->nr_hw_queues) {
4217 		j = q->nr_hw_queues;
4218 	} else {
4219 		j = i;
4220 		q->nr_hw_queues = set->nr_hw_queues;
4221 	}
4222 
4223 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4224 		blk_mq_exit_hctx(q, set, hctx, j);
4225 	mutex_unlock(&q->sysfs_lock);
4226 }
4227 
4228 static void blk_mq_update_poll_flag(struct request_queue *q)
4229 {
4230 	struct blk_mq_tag_set *set = q->tag_set;
4231 
4232 	if (set->nr_maps > HCTX_TYPE_POLL &&
4233 	    set->map[HCTX_TYPE_POLL].nr_queues)
4234 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4235 	else
4236 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4237 }
4238 
4239 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4240 		struct request_queue *q)
4241 {
4242 	/* mark the queue as mq asap */
4243 	q->mq_ops = set->ops;
4244 
4245 	if (blk_mq_alloc_ctxs(q))
4246 		goto err_exit;
4247 
4248 	/* init q->mq_kobj and sw queues' kobjects */
4249 	blk_mq_sysfs_init(q);
4250 
4251 	INIT_LIST_HEAD(&q->unused_hctx_list);
4252 	spin_lock_init(&q->unused_hctx_lock);
4253 
4254 	xa_init(&q->hctx_table);
4255 
4256 	blk_mq_realloc_hw_ctxs(set, q);
4257 	if (!q->nr_hw_queues)
4258 		goto err_hctxs;
4259 
4260 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4261 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4262 
4263 	q->tag_set = set;
4264 
4265 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4266 	blk_mq_update_poll_flag(q);
4267 
4268 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4269 	INIT_LIST_HEAD(&q->flush_list);
4270 	INIT_LIST_HEAD(&q->requeue_list);
4271 	spin_lock_init(&q->requeue_lock);
4272 
4273 	q->nr_requests = set->queue_depth;
4274 
4275 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4276 	blk_mq_add_queue_tag_set(set, q);
4277 	blk_mq_map_swqueue(q);
4278 	return 0;
4279 
4280 err_hctxs:
4281 	blk_mq_release(q);
4282 err_exit:
4283 	q->mq_ops = NULL;
4284 	return -ENOMEM;
4285 }
4286 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4287 
4288 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4289 void blk_mq_exit_queue(struct request_queue *q)
4290 {
4291 	struct blk_mq_tag_set *set = q->tag_set;
4292 
4293 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4294 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4295 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4296 	blk_mq_del_queue_tag_set(q);
4297 }
4298 
4299 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4300 {
4301 	int i;
4302 
4303 	if (blk_mq_is_shared_tags(set->flags)) {
4304 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4305 						BLK_MQ_NO_HCTX_IDX,
4306 						set->queue_depth);
4307 		if (!set->shared_tags)
4308 			return -ENOMEM;
4309 	}
4310 
4311 	for (i = 0; i < set->nr_hw_queues; i++) {
4312 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4313 			goto out_unwind;
4314 		cond_resched();
4315 	}
4316 
4317 	return 0;
4318 
4319 out_unwind:
4320 	while (--i >= 0)
4321 		__blk_mq_free_map_and_rqs(set, i);
4322 
4323 	if (blk_mq_is_shared_tags(set->flags)) {
4324 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4325 					BLK_MQ_NO_HCTX_IDX);
4326 	}
4327 
4328 	return -ENOMEM;
4329 }
4330 
4331 /*
4332  * Allocate the request maps associated with this tag_set. Note that this
4333  * may reduce the depth asked for, if memory is tight. set->queue_depth
4334  * will be updated to reflect the allocated depth.
4335  */
4336 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4337 {
4338 	unsigned int depth;
4339 	int err;
4340 
4341 	depth = set->queue_depth;
4342 	do {
4343 		err = __blk_mq_alloc_rq_maps(set);
4344 		if (!err)
4345 			break;
4346 
4347 		set->queue_depth >>= 1;
4348 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4349 			err = -ENOMEM;
4350 			break;
4351 		}
4352 	} while (set->queue_depth);
4353 
4354 	if (!set->queue_depth || err) {
4355 		pr_err("blk-mq: failed to allocate request map\n");
4356 		return -ENOMEM;
4357 	}
4358 
4359 	if (depth != set->queue_depth)
4360 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4361 						depth, set->queue_depth);
4362 
4363 	return 0;
4364 }
4365 
4366 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4367 {
4368 	/*
4369 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4370 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4371 	 * number of hardware queues.
4372 	 */
4373 	if (set->nr_maps == 1)
4374 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4375 
4376 	if (set->ops->map_queues && !is_kdump_kernel()) {
4377 		int i;
4378 
4379 		/*
4380 		 * transport .map_queues is usually done in the following
4381 		 * way:
4382 		 *
4383 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4384 		 * 	mask = get_cpu_mask(queue)
4385 		 * 	for_each_cpu(cpu, mask)
4386 		 * 		set->map[x].mq_map[cpu] = queue;
4387 		 * }
4388 		 *
4389 		 * When we need to remap, the table has to be cleared for
4390 		 * killing stale mapping since one CPU may not be mapped
4391 		 * to any hw queue.
4392 		 */
4393 		for (i = 0; i < set->nr_maps; i++)
4394 			blk_mq_clear_mq_map(&set->map[i]);
4395 
4396 		set->ops->map_queues(set);
4397 	} else {
4398 		BUG_ON(set->nr_maps > 1);
4399 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4400 	}
4401 }
4402 
4403 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4404 				       int new_nr_hw_queues)
4405 {
4406 	struct blk_mq_tags **new_tags;
4407 	int i;
4408 
4409 	if (set->nr_hw_queues >= new_nr_hw_queues)
4410 		goto done;
4411 
4412 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4413 				GFP_KERNEL, set->numa_node);
4414 	if (!new_tags)
4415 		return -ENOMEM;
4416 
4417 	if (set->tags)
4418 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4419 		       sizeof(*set->tags));
4420 	kfree(set->tags);
4421 	set->tags = new_tags;
4422 
4423 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4424 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4425 			while (--i >= set->nr_hw_queues)
4426 				__blk_mq_free_map_and_rqs(set, i);
4427 			return -ENOMEM;
4428 		}
4429 		cond_resched();
4430 	}
4431 
4432 done:
4433 	set->nr_hw_queues = new_nr_hw_queues;
4434 	return 0;
4435 }
4436 
4437 /*
4438  * Alloc a tag set to be associated with one or more request queues.
4439  * May fail with EINVAL for various error conditions. May adjust the
4440  * requested depth down, if it's too large. In that case, the set
4441  * value will be stored in set->queue_depth.
4442  */
4443 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4444 {
4445 	int i, ret;
4446 
4447 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4448 
4449 	if (!set->nr_hw_queues)
4450 		return -EINVAL;
4451 	if (!set->queue_depth)
4452 		return -EINVAL;
4453 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4454 		return -EINVAL;
4455 
4456 	if (!set->ops->queue_rq)
4457 		return -EINVAL;
4458 
4459 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4460 		return -EINVAL;
4461 
4462 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4463 		pr_info("blk-mq: reduced tag depth to %u\n",
4464 			BLK_MQ_MAX_DEPTH);
4465 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4466 	}
4467 
4468 	if (!set->nr_maps)
4469 		set->nr_maps = 1;
4470 	else if (set->nr_maps > HCTX_MAX_TYPES)
4471 		return -EINVAL;
4472 
4473 	/*
4474 	 * If a crashdump is active, then we are potentially in a very
4475 	 * memory constrained environment. Limit us to 1 queue and
4476 	 * 64 tags to prevent using too much memory.
4477 	 */
4478 	if (is_kdump_kernel()) {
4479 		set->nr_hw_queues = 1;
4480 		set->nr_maps = 1;
4481 		set->queue_depth = min(64U, set->queue_depth);
4482 	}
4483 	/*
4484 	 * There is no use for more h/w queues than cpus if we just have
4485 	 * a single map
4486 	 */
4487 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4488 		set->nr_hw_queues = nr_cpu_ids;
4489 
4490 	if (set->flags & BLK_MQ_F_BLOCKING) {
4491 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4492 		if (!set->srcu)
4493 			return -ENOMEM;
4494 		ret = init_srcu_struct(set->srcu);
4495 		if (ret)
4496 			goto out_free_srcu;
4497 	}
4498 
4499 	ret = -ENOMEM;
4500 	set->tags = kcalloc_node(set->nr_hw_queues,
4501 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4502 				 set->numa_node);
4503 	if (!set->tags)
4504 		goto out_cleanup_srcu;
4505 
4506 	for (i = 0; i < set->nr_maps; i++) {
4507 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4508 						  sizeof(set->map[i].mq_map[0]),
4509 						  GFP_KERNEL, set->numa_node);
4510 		if (!set->map[i].mq_map)
4511 			goto out_free_mq_map;
4512 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4513 	}
4514 
4515 	blk_mq_update_queue_map(set);
4516 
4517 	ret = blk_mq_alloc_set_map_and_rqs(set);
4518 	if (ret)
4519 		goto out_free_mq_map;
4520 
4521 	mutex_init(&set->tag_list_lock);
4522 	INIT_LIST_HEAD(&set->tag_list);
4523 
4524 	return 0;
4525 
4526 out_free_mq_map:
4527 	for (i = 0; i < set->nr_maps; i++) {
4528 		kfree(set->map[i].mq_map);
4529 		set->map[i].mq_map = NULL;
4530 	}
4531 	kfree(set->tags);
4532 	set->tags = NULL;
4533 out_cleanup_srcu:
4534 	if (set->flags & BLK_MQ_F_BLOCKING)
4535 		cleanup_srcu_struct(set->srcu);
4536 out_free_srcu:
4537 	if (set->flags & BLK_MQ_F_BLOCKING)
4538 		kfree(set->srcu);
4539 	return ret;
4540 }
4541 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4542 
4543 /* allocate and initialize a tagset for a simple single-queue device */
4544 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4545 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4546 		unsigned int set_flags)
4547 {
4548 	memset(set, 0, sizeof(*set));
4549 	set->ops = ops;
4550 	set->nr_hw_queues = 1;
4551 	set->nr_maps = 1;
4552 	set->queue_depth = queue_depth;
4553 	set->numa_node = NUMA_NO_NODE;
4554 	set->flags = set_flags;
4555 	return blk_mq_alloc_tag_set(set);
4556 }
4557 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4558 
4559 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4560 {
4561 	int i, j;
4562 
4563 	for (i = 0; i < set->nr_hw_queues; i++)
4564 		__blk_mq_free_map_and_rqs(set, i);
4565 
4566 	if (blk_mq_is_shared_tags(set->flags)) {
4567 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4568 					BLK_MQ_NO_HCTX_IDX);
4569 	}
4570 
4571 	for (j = 0; j < set->nr_maps; j++) {
4572 		kfree(set->map[j].mq_map);
4573 		set->map[j].mq_map = NULL;
4574 	}
4575 
4576 	kfree(set->tags);
4577 	set->tags = NULL;
4578 	if (set->flags & BLK_MQ_F_BLOCKING) {
4579 		cleanup_srcu_struct(set->srcu);
4580 		kfree(set->srcu);
4581 	}
4582 }
4583 EXPORT_SYMBOL(blk_mq_free_tag_set);
4584 
4585 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4586 {
4587 	struct blk_mq_tag_set *set = q->tag_set;
4588 	struct blk_mq_hw_ctx *hctx;
4589 	int ret;
4590 	unsigned long i;
4591 
4592 	if (!set)
4593 		return -EINVAL;
4594 
4595 	if (q->nr_requests == nr)
4596 		return 0;
4597 
4598 	blk_mq_freeze_queue(q);
4599 	blk_mq_quiesce_queue(q);
4600 
4601 	ret = 0;
4602 	queue_for_each_hw_ctx(q, hctx, i) {
4603 		if (!hctx->tags)
4604 			continue;
4605 		/*
4606 		 * If we're using an MQ scheduler, just update the scheduler
4607 		 * queue depth. This is similar to what the old code would do.
4608 		 */
4609 		if (hctx->sched_tags) {
4610 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4611 						      nr, true);
4612 		} else {
4613 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4614 						      false);
4615 		}
4616 		if (ret)
4617 			break;
4618 		if (q->elevator && q->elevator->type->ops.depth_updated)
4619 			q->elevator->type->ops.depth_updated(hctx);
4620 	}
4621 	if (!ret) {
4622 		q->nr_requests = nr;
4623 		if (blk_mq_is_shared_tags(set->flags)) {
4624 			if (q->elevator)
4625 				blk_mq_tag_update_sched_shared_tags(q);
4626 			else
4627 				blk_mq_tag_resize_shared_tags(set, nr);
4628 		}
4629 	}
4630 
4631 	blk_mq_unquiesce_queue(q);
4632 	blk_mq_unfreeze_queue(q);
4633 
4634 	return ret;
4635 }
4636 
4637 /*
4638  * request_queue and elevator_type pair.
4639  * It is just used by __blk_mq_update_nr_hw_queues to cache
4640  * the elevator_type associated with a request_queue.
4641  */
4642 struct blk_mq_qe_pair {
4643 	struct list_head node;
4644 	struct request_queue *q;
4645 	struct elevator_type *type;
4646 };
4647 
4648 /*
4649  * Cache the elevator_type in qe pair list and switch the
4650  * io scheduler to 'none'
4651  */
4652 static bool blk_mq_elv_switch_none(struct list_head *head,
4653 		struct request_queue *q)
4654 {
4655 	struct blk_mq_qe_pair *qe;
4656 
4657 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4658 	if (!qe)
4659 		return false;
4660 
4661 	/* q->elevator needs protection from ->sysfs_lock */
4662 	mutex_lock(&q->sysfs_lock);
4663 
4664 	/* the check has to be done with holding sysfs_lock */
4665 	if (!q->elevator) {
4666 		kfree(qe);
4667 		goto unlock;
4668 	}
4669 
4670 	INIT_LIST_HEAD(&qe->node);
4671 	qe->q = q;
4672 	qe->type = q->elevator->type;
4673 	/* keep a reference to the elevator module as we'll switch back */
4674 	__elevator_get(qe->type);
4675 	list_add(&qe->node, head);
4676 	elevator_disable(q);
4677 unlock:
4678 	mutex_unlock(&q->sysfs_lock);
4679 
4680 	return true;
4681 }
4682 
4683 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4684 						struct request_queue *q)
4685 {
4686 	struct blk_mq_qe_pair *qe;
4687 
4688 	list_for_each_entry(qe, head, node)
4689 		if (qe->q == q)
4690 			return qe;
4691 
4692 	return NULL;
4693 }
4694 
4695 static void blk_mq_elv_switch_back(struct list_head *head,
4696 				  struct request_queue *q)
4697 {
4698 	struct blk_mq_qe_pair *qe;
4699 	struct elevator_type *t;
4700 
4701 	qe = blk_lookup_qe_pair(head, q);
4702 	if (!qe)
4703 		return;
4704 	t = qe->type;
4705 	list_del(&qe->node);
4706 	kfree(qe);
4707 
4708 	mutex_lock(&q->sysfs_lock);
4709 	elevator_switch(q, t);
4710 	/* drop the reference acquired in blk_mq_elv_switch_none */
4711 	elevator_put(t);
4712 	mutex_unlock(&q->sysfs_lock);
4713 }
4714 
4715 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4716 							int nr_hw_queues)
4717 {
4718 	struct request_queue *q;
4719 	LIST_HEAD(head);
4720 	int prev_nr_hw_queues = set->nr_hw_queues;
4721 	int i;
4722 
4723 	lockdep_assert_held(&set->tag_list_lock);
4724 
4725 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4726 		nr_hw_queues = nr_cpu_ids;
4727 	if (nr_hw_queues < 1)
4728 		return;
4729 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4730 		return;
4731 
4732 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4733 		blk_mq_freeze_queue(q);
4734 	/*
4735 	 * Switch IO scheduler to 'none', cleaning up the data associated
4736 	 * with the previous scheduler. We will switch back once we are done
4737 	 * updating the new sw to hw queue mappings.
4738 	 */
4739 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4740 		if (!blk_mq_elv_switch_none(&head, q))
4741 			goto switch_back;
4742 
4743 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4744 		blk_mq_debugfs_unregister_hctxs(q);
4745 		blk_mq_sysfs_unregister_hctxs(q);
4746 	}
4747 
4748 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4749 		goto reregister;
4750 
4751 fallback:
4752 	blk_mq_update_queue_map(set);
4753 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4754 		blk_mq_realloc_hw_ctxs(set, q);
4755 		blk_mq_update_poll_flag(q);
4756 		if (q->nr_hw_queues != set->nr_hw_queues) {
4757 			int i = prev_nr_hw_queues;
4758 
4759 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4760 					nr_hw_queues, prev_nr_hw_queues);
4761 			for (; i < set->nr_hw_queues; i++)
4762 				__blk_mq_free_map_and_rqs(set, i);
4763 
4764 			set->nr_hw_queues = prev_nr_hw_queues;
4765 			goto fallback;
4766 		}
4767 		blk_mq_map_swqueue(q);
4768 	}
4769 
4770 reregister:
4771 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4772 		blk_mq_sysfs_register_hctxs(q);
4773 		blk_mq_debugfs_register_hctxs(q);
4774 	}
4775 
4776 switch_back:
4777 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4778 		blk_mq_elv_switch_back(&head, q);
4779 
4780 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4781 		blk_mq_unfreeze_queue(q);
4782 
4783 	/* Free the excess tags when nr_hw_queues shrink. */
4784 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4785 		__blk_mq_free_map_and_rqs(set, i);
4786 }
4787 
4788 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4789 {
4790 	mutex_lock(&set->tag_list_lock);
4791 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4792 	mutex_unlock(&set->tag_list_lock);
4793 }
4794 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4795 
4796 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4797 			 struct io_comp_batch *iob, unsigned int flags)
4798 {
4799 	long state = get_current_state();
4800 	int ret;
4801 
4802 	do {
4803 		ret = q->mq_ops->poll(hctx, iob);
4804 		if (ret > 0) {
4805 			__set_current_state(TASK_RUNNING);
4806 			return ret;
4807 		}
4808 
4809 		if (signal_pending_state(state, current))
4810 			__set_current_state(TASK_RUNNING);
4811 		if (task_is_running(current))
4812 			return 1;
4813 
4814 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4815 			break;
4816 		cpu_relax();
4817 	} while (!need_resched());
4818 
4819 	__set_current_state(TASK_RUNNING);
4820 	return 0;
4821 }
4822 
4823 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4824 		struct io_comp_batch *iob, unsigned int flags)
4825 {
4826 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4827 
4828 	return blk_hctx_poll(q, hctx, iob, flags);
4829 }
4830 
4831 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4832 		unsigned int poll_flags)
4833 {
4834 	struct request_queue *q = rq->q;
4835 	int ret;
4836 
4837 	if (!blk_rq_is_poll(rq))
4838 		return 0;
4839 	if (!percpu_ref_tryget(&q->q_usage_counter))
4840 		return 0;
4841 
4842 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4843 	blk_queue_exit(q);
4844 
4845 	return ret;
4846 }
4847 EXPORT_SYMBOL_GPL(blk_rq_poll);
4848 
4849 unsigned int blk_mq_rq_cpu(struct request *rq)
4850 {
4851 	return rq->mq_ctx->cpu;
4852 }
4853 EXPORT_SYMBOL(blk_mq_rq_cpu);
4854 
4855 void blk_mq_cancel_work_sync(struct request_queue *q)
4856 {
4857 	struct blk_mq_hw_ctx *hctx;
4858 	unsigned long i;
4859 
4860 	cancel_delayed_work_sync(&q->requeue_work);
4861 
4862 	queue_for_each_hw_ctx(q, hctx, i)
4863 		cancel_delayed_work_sync(&hctx->run_work);
4864 }
4865 
4866 static int __init blk_mq_init(void)
4867 {
4868 	int i;
4869 
4870 	for_each_possible_cpu(i)
4871 		init_llist_head(&per_cpu(blk_cpu_done, i));
4872 	for_each_possible_cpu(i)
4873 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4874 			 __blk_mq_complete_request_remote, NULL);
4875 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4876 
4877 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4878 				  "block/softirq:dead", NULL,
4879 				  blk_softirq_cpu_dead);
4880 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4881 				blk_mq_hctx_notify_dead);
4882 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4883 				blk_mq_hctx_notify_online,
4884 				blk_mq_hctx_notify_offline);
4885 	return 0;
4886 }
4887 subsys_initcall(blk_mq_init);
4888