1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #include <linux/blk-mq.h> 27 #include "blk.h" 28 #include "blk-mq.h" 29 #include "blk-mq-tag.h" 30 31 static DEFINE_MUTEX(all_q_mutex); 32 static LIST_HEAD(all_q_list); 33 34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 35 36 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, 37 unsigned int cpu) 38 { 39 return per_cpu_ptr(q->queue_ctx, cpu); 40 } 41 42 /* 43 * This assumes per-cpu software queueing queues. They could be per-node 44 * as well, for instance. For now this is hardcoded as-is. Note that we don't 45 * care about preemption, since we know the ctx's are persistent. This does 46 * mean that we can't rely on ctx always matching the currently running CPU. 47 */ 48 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) 49 { 50 return __blk_mq_get_ctx(q, get_cpu()); 51 } 52 53 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx) 54 { 55 put_cpu(); 56 } 57 58 /* 59 * Check if any of the ctx's have pending work in this hardware queue 60 */ 61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 62 { 63 unsigned int i; 64 65 for (i = 0; i < hctx->ctx_map.map_size; i++) 66 if (hctx->ctx_map.map[i].word) 67 return true; 68 69 return false; 70 } 71 72 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 76 } 77 78 #define CTX_TO_BIT(hctx, ctx) \ 79 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 80 81 /* 82 * Mark this ctx as having pending work in this hardware queue 83 */ 84 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 85 struct blk_mq_ctx *ctx) 86 { 87 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 88 89 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 90 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 91 } 92 93 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 94 struct blk_mq_ctx *ctx) 95 { 96 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 97 98 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 99 } 100 101 static int blk_mq_queue_enter(struct request_queue *q) 102 { 103 int ret; 104 105 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000); 106 smp_wmb(); 107 /* we have problems to freeze the queue if it's initializing */ 108 if (!blk_queue_bypass(q) || !blk_queue_init_done(q)) 109 return 0; 110 111 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000); 112 113 spin_lock_irq(q->queue_lock); 114 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq, 115 !blk_queue_bypass(q) || blk_queue_dying(q), 116 *q->queue_lock); 117 /* inc usage with lock hold to avoid freeze_queue runs here */ 118 if (!ret && !blk_queue_dying(q)) 119 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000); 120 else if (blk_queue_dying(q)) 121 ret = -ENODEV; 122 spin_unlock_irq(q->queue_lock); 123 124 return ret; 125 } 126 127 static void blk_mq_queue_exit(struct request_queue *q) 128 { 129 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000); 130 } 131 132 static void __blk_mq_drain_queue(struct request_queue *q) 133 { 134 while (true) { 135 s64 count; 136 137 spin_lock_irq(q->queue_lock); 138 count = percpu_counter_sum(&q->mq_usage_counter); 139 spin_unlock_irq(q->queue_lock); 140 141 if (count == 0) 142 break; 143 blk_mq_run_queues(q, false); 144 msleep(10); 145 } 146 } 147 148 /* 149 * Guarantee no request is in use, so we can change any data structure of 150 * the queue afterward. 151 */ 152 static void blk_mq_freeze_queue(struct request_queue *q) 153 { 154 bool drain; 155 156 spin_lock_irq(q->queue_lock); 157 drain = !q->bypass_depth++; 158 queue_flag_set(QUEUE_FLAG_BYPASS, q); 159 spin_unlock_irq(q->queue_lock); 160 161 if (drain) 162 __blk_mq_drain_queue(q); 163 } 164 165 void blk_mq_drain_queue(struct request_queue *q) 166 { 167 __blk_mq_drain_queue(q); 168 } 169 170 static void blk_mq_unfreeze_queue(struct request_queue *q) 171 { 172 bool wake = false; 173 174 spin_lock_irq(q->queue_lock); 175 if (!--q->bypass_depth) { 176 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 177 wake = true; 178 } 179 WARN_ON_ONCE(q->bypass_depth < 0); 180 spin_unlock_irq(q->queue_lock); 181 if (wake) 182 wake_up_all(&q->mq_freeze_wq); 183 } 184 185 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 186 { 187 return blk_mq_has_free_tags(hctx->tags); 188 } 189 EXPORT_SYMBOL(blk_mq_can_queue); 190 191 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 192 struct request *rq, unsigned int rw_flags) 193 { 194 if (blk_queue_io_stat(q)) 195 rw_flags |= REQ_IO_STAT; 196 197 INIT_LIST_HEAD(&rq->queuelist); 198 /* csd/requeue_work/fifo_time is initialized before use */ 199 rq->q = q; 200 rq->mq_ctx = ctx; 201 rq->cmd_flags |= rw_flags; 202 /* do not touch atomic flags, it needs atomic ops against the timer */ 203 rq->cpu = -1; 204 INIT_HLIST_NODE(&rq->hash); 205 RB_CLEAR_NODE(&rq->rb_node); 206 rq->rq_disk = NULL; 207 rq->part = NULL; 208 #ifdef CONFIG_BLK_CGROUP 209 rq->rl = NULL; 210 set_start_time_ns(rq); 211 rq->io_start_time_ns = 0; 212 #endif 213 rq->nr_phys_segments = 0; 214 #if defined(CONFIG_BLK_DEV_INTEGRITY) 215 rq->nr_integrity_segments = 0; 216 #endif 217 rq->special = NULL; 218 /* tag was already set */ 219 rq->errors = 0; 220 221 rq->extra_len = 0; 222 rq->sense_len = 0; 223 rq->resid_len = 0; 224 rq->sense = NULL; 225 226 INIT_LIST_HEAD(&rq->timeout_list); 227 rq->end_io = NULL; 228 rq->end_io_data = NULL; 229 rq->next_rq = NULL; 230 231 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 232 } 233 234 static struct request * 235 __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 236 struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved) 237 { 238 struct request *rq; 239 unsigned int tag; 240 241 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved); 242 if (tag != BLK_MQ_TAG_FAIL) { 243 rq = hctx->tags->rqs[tag]; 244 245 rq->cmd_flags = 0; 246 if (blk_mq_tag_busy(hctx)) { 247 rq->cmd_flags = REQ_MQ_INFLIGHT; 248 atomic_inc(&hctx->nr_active); 249 } 250 251 rq->tag = tag; 252 blk_mq_rq_ctx_init(q, ctx, rq, rw); 253 return rq; 254 } 255 256 return NULL; 257 } 258 259 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 260 bool reserved) 261 { 262 struct blk_mq_ctx *ctx; 263 struct blk_mq_hw_ctx *hctx; 264 struct request *rq; 265 266 if (blk_mq_queue_enter(q)) 267 return NULL; 268 269 ctx = blk_mq_get_ctx(q); 270 hctx = q->mq_ops->map_queue(q, ctx->cpu); 271 272 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT, 273 reserved); 274 if (!rq && (gfp & __GFP_WAIT)) { 275 __blk_mq_run_hw_queue(hctx); 276 blk_mq_put_ctx(ctx); 277 278 ctx = blk_mq_get_ctx(q); 279 hctx = q->mq_ops->map_queue(q, ctx->cpu); 280 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved); 281 } 282 blk_mq_put_ctx(ctx); 283 return rq; 284 } 285 EXPORT_SYMBOL(blk_mq_alloc_request); 286 287 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 288 struct blk_mq_ctx *ctx, struct request *rq) 289 { 290 const int tag = rq->tag; 291 struct request_queue *q = rq->q; 292 293 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 294 atomic_dec(&hctx->nr_active); 295 296 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 297 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 298 blk_mq_queue_exit(q); 299 } 300 301 void blk_mq_free_request(struct request *rq) 302 { 303 struct blk_mq_ctx *ctx = rq->mq_ctx; 304 struct blk_mq_hw_ctx *hctx; 305 struct request_queue *q = rq->q; 306 307 ctx->rq_completed[rq_is_sync(rq)]++; 308 309 hctx = q->mq_ops->map_queue(q, ctx->cpu); 310 __blk_mq_free_request(hctx, ctx, rq); 311 } 312 313 /* 314 * Clone all relevant state from a request that has been put on hold in 315 * the flush state machine into the preallocated flush request that hangs 316 * off the request queue. 317 * 318 * For a driver the flush request should be invisible, that's why we are 319 * impersonating the original request here. 320 */ 321 void blk_mq_clone_flush_request(struct request *flush_rq, 322 struct request *orig_rq) 323 { 324 struct blk_mq_hw_ctx *hctx = 325 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu); 326 327 flush_rq->mq_ctx = orig_rq->mq_ctx; 328 flush_rq->tag = orig_rq->tag; 329 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq), 330 hctx->cmd_size); 331 } 332 333 inline void __blk_mq_end_io(struct request *rq, int error) 334 { 335 blk_account_io_done(rq); 336 337 if (rq->end_io) { 338 rq->end_io(rq, error); 339 } else { 340 if (unlikely(blk_bidi_rq(rq))) 341 blk_mq_free_request(rq->next_rq); 342 blk_mq_free_request(rq); 343 } 344 } 345 EXPORT_SYMBOL(__blk_mq_end_io); 346 347 void blk_mq_end_io(struct request *rq, int error) 348 { 349 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 350 BUG(); 351 __blk_mq_end_io(rq, error); 352 } 353 EXPORT_SYMBOL(blk_mq_end_io); 354 355 static void __blk_mq_complete_request_remote(void *data) 356 { 357 struct request *rq = data; 358 359 rq->q->softirq_done_fn(rq); 360 } 361 362 static void blk_mq_ipi_complete_request(struct request *rq) 363 { 364 struct blk_mq_ctx *ctx = rq->mq_ctx; 365 bool shared = false; 366 int cpu; 367 368 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 369 rq->q->softirq_done_fn(rq); 370 return; 371 } 372 373 cpu = get_cpu(); 374 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 375 shared = cpus_share_cache(cpu, ctx->cpu); 376 377 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 378 rq->csd.func = __blk_mq_complete_request_remote; 379 rq->csd.info = rq; 380 rq->csd.flags = 0; 381 smp_call_function_single_async(ctx->cpu, &rq->csd); 382 } else { 383 rq->q->softirq_done_fn(rq); 384 } 385 put_cpu(); 386 } 387 388 void __blk_mq_complete_request(struct request *rq) 389 { 390 struct request_queue *q = rq->q; 391 392 if (!q->softirq_done_fn) 393 blk_mq_end_io(rq, rq->errors); 394 else 395 blk_mq_ipi_complete_request(rq); 396 } 397 398 /** 399 * blk_mq_complete_request - end I/O on a request 400 * @rq: the request being processed 401 * 402 * Description: 403 * Ends all I/O on a request. It does not handle partial completions. 404 * The actual completion happens out-of-order, through a IPI handler. 405 **/ 406 void blk_mq_complete_request(struct request *rq) 407 { 408 struct request_queue *q = rq->q; 409 410 if (unlikely(blk_should_fake_timeout(q))) 411 return; 412 if (!blk_mark_rq_complete(rq)) 413 __blk_mq_complete_request(rq); 414 } 415 EXPORT_SYMBOL(blk_mq_complete_request); 416 417 static void blk_mq_start_request(struct request *rq, bool last) 418 { 419 struct request_queue *q = rq->q; 420 421 trace_block_rq_issue(q, rq); 422 423 rq->resid_len = blk_rq_bytes(rq); 424 if (unlikely(blk_bidi_rq(rq))) 425 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 426 427 /* 428 * Just mark start time and set the started bit. Due to memory 429 * ordering, we know we'll see the correct deadline as long as 430 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout, 431 * unless one has been set in the request. 432 */ 433 if (!rq->timeout) 434 rq->deadline = jiffies + q->rq_timeout; 435 else 436 rq->deadline = jiffies + rq->timeout; 437 438 /* 439 * Mark us as started and clear complete. Complete might have been 440 * set if requeue raced with timeout, which then marked it as 441 * complete. So be sure to clear complete again when we start 442 * the request, otherwise we'll ignore the completion event. 443 */ 444 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 445 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 446 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 447 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 448 449 if (q->dma_drain_size && blk_rq_bytes(rq)) { 450 /* 451 * Make sure space for the drain appears. We know we can do 452 * this because max_hw_segments has been adjusted to be one 453 * fewer than the device can handle. 454 */ 455 rq->nr_phys_segments++; 456 } 457 458 /* 459 * Flag the last request in the series so that drivers know when IO 460 * should be kicked off, if they don't do it on a per-request basis. 461 * 462 * Note: the flag isn't the only condition drivers should do kick off. 463 * If drive is busy, the last request might not have the bit set. 464 */ 465 if (last) 466 rq->cmd_flags |= REQ_END; 467 } 468 469 static void __blk_mq_requeue_request(struct request *rq) 470 { 471 struct request_queue *q = rq->q; 472 473 trace_block_rq_requeue(q, rq); 474 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 475 476 rq->cmd_flags &= ~REQ_END; 477 478 if (q->dma_drain_size && blk_rq_bytes(rq)) 479 rq->nr_phys_segments--; 480 } 481 482 void blk_mq_requeue_request(struct request *rq) 483 { 484 __blk_mq_requeue_request(rq); 485 blk_clear_rq_complete(rq); 486 487 BUG_ON(blk_queued_rq(rq)); 488 blk_mq_add_to_requeue_list(rq, true); 489 } 490 EXPORT_SYMBOL(blk_mq_requeue_request); 491 492 static void blk_mq_requeue_work(struct work_struct *work) 493 { 494 struct request_queue *q = 495 container_of(work, struct request_queue, requeue_work); 496 LIST_HEAD(rq_list); 497 struct request *rq, *next; 498 unsigned long flags; 499 500 spin_lock_irqsave(&q->requeue_lock, flags); 501 list_splice_init(&q->requeue_list, &rq_list); 502 spin_unlock_irqrestore(&q->requeue_lock, flags); 503 504 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 505 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 506 continue; 507 508 rq->cmd_flags &= ~REQ_SOFTBARRIER; 509 list_del_init(&rq->queuelist); 510 blk_mq_insert_request(rq, true, false, false); 511 } 512 513 while (!list_empty(&rq_list)) { 514 rq = list_entry(rq_list.next, struct request, queuelist); 515 list_del_init(&rq->queuelist); 516 blk_mq_insert_request(rq, false, false, false); 517 } 518 519 blk_mq_run_queues(q, false); 520 } 521 522 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 523 { 524 struct request_queue *q = rq->q; 525 unsigned long flags; 526 527 /* 528 * We abuse this flag that is otherwise used by the I/O scheduler to 529 * request head insertation from the workqueue. 530 */ 531 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 532 533 spin_lock_irqsave(&q->requeue_lock, flags); 534 if (at_head) { 535 rq->cmd_flags |= REQ_SOFTBARRIER; 536 list_add(&rq->queuelist, &q->requeue_list); 537 } else { 538 list_add_tail(&rq->queuelist, &q->requeue_list); 539 } 540 spin_unlock_irqrestore(&q->requeue_lock, flags); 541 } 542 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 543 544 void blk_mq_kick_requeue_list(struct request_queue *q) 545 { 546 kblockd_schedule_work(&q->requeue_work); 547 } 548 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 549 550 struct request *blk_mq_tag_to_rq(struct blk_mq_hw_ctx *hctx, unsigned int tag) 551 { 552 struct request_queue *q = hctx->queue; 553 554 if ((q->flush_rq->cmd_flags & REQ_FLUSH_SEQ) && 555 q->flush_rq->tag == tag) 556 return q->flush_rq; 557 558 return hctx->tags->rqs[tag]; 559 } 560 EXPORT_SYMBOL(blk_mq_tag_to_rq); 561 562 struct blk_mq_timeout_data { 563 struct blk_mq_hw_ctx *hctx; 564 unsigned long *next; 565 unsigned int *next_set; 566 }; 567 568 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags) 569 { 570 struct blk_mq_timeout_data *data = __data; 571 struct blk_mq_hw_ctx *hctx = data->hctx; 572 unsigned int tag; 573 574 /* It may not be in flight yet (this is where 575 * the REQ_ATOMIC_STARTED flag comes in). The requests are 576 * statically allocated, so we know it's always safe to access the 577 * memory associated with a bit offset into ->rqs[]. 578 */ 579 tag = 0; 580 do { 581 struct request *rq; 582 583 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag); 584 if (tag >= hctx->tags->nr_tags) 585 break; 586 587 rq = blk_mq_tag_to_rq(hctx, tag++); 588 if (rq->q != hctx->queue) 589 continue; 590 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 591 continue; 592 593 blk_rq_check_expired(rq, data->next, data->next_set); 594 } while (1); 595 } 596 597 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx, 598 unsigned long *next, 599 unsigned int *next_set) 600 { 601 struct blk_mq_timeout_data data = { 602 .hctx = hctx, 603 .next = next, 604 .next_set = next_set, 605 }; 606 607 /* 608 * Ask the tagging code to iterate busy requests, so we can 609 * check them for timeout. 610 */ 611 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data); 612 } 613 614 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq) 615 { 616 struct request_queue *q = rq->q; 617 618 /* 619 * We know that complete is set at this point. If STARTED isn't set 620 * anymore, then the request isn't active and the "timeout" should 621 * just be ignored. This can happen due to the bitflag ordering. 622 * Timeout first checks if STARTED is set, and if it is, assumes 623 * the request is active. But if we race with completion, then 624 * we both flags will get cleared. So check here again, and ignore 625 * a timeout event with a request that isn't active. 626 */ 627 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 628 return BLK_EH_NOT_HANDLED; 629 630 if (!q->mq_ops->timeout) 631 return BLK_EH_RESET_TIMER; 632 633 return q->mq_ops->timeout(rq); 634 } 635 636 static void blk_mq_rq_timer(unsigned long data) 637 { 638 struct request_queue *q = (struct request_queue *) data; 639 struct blk_mq_hw_ctx *hctx; 640 unsigned long next = 0; 641 int i, next_set = 0; 642 643 queue_for_each_hw_ctx(q, hctx, i) { 644 /* 645 * If not software queues are currently mapped to this 646 * hardware queue, there's nothing to check 647 */ 648 if (!hctx->nr_ctx || !hctx->tags) 649 continue; 650 651 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set); 652 } 653 654 if (next_set) { 655 next = blk_rq_timeout(round_jiffies_up(next)); 656 mod_timer(&q->timeout, next); 657 } else { 658 queue_for_each_hw_ctx(q, hctx, i) 659 blk_mq_tag_idle(hctx); 660 } 661 } 662 663 /* 664 * Reverse check our software queue for entries that we could potentially 665 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 666 * too much time checking for merges. 667 */ 668 static bool blk_mq_attempt_merge(struct request_queue *q, 669 struct blk_mq_ctx *ctx, struct bio *bio) 670 { 671 struct request *rq; 672 int checked = 8; 673 674 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 675 int el_ret; 676 677 if (!checked--) 678 break; 679 680 if (!blk_rq_merge_ok(rq, bio)) 681 continue; 682 683 el_ret = blk_try_merge(rq, bio); 684 if (el_ret == ELEVATOR_BACK_MERGE) { 685 if (bio_attempt_back_merge(q, rq, bio)) { 686 ctx->rq_merged++; 687 return true; 688 } 689 break; 690 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 691 if (bio_attempt_front_merge(q, rq, bio)) { 692 ctx->rq_merged++; 693 return true; 694 } 695 break; 696 } 697 } 698 699 return false; 700 } 701 702 /* 703 * Process software queues that have been marked busy, splicing them 704 * to the for-dispatch 705 */ 706 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 707 { 708 struct blk_mq_ctx *ctx; 709 int i; 710 711 for (i = 0; i < hctx->ctx_map.map_size; i++) { 712 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 713 unsigned int off, bit; 714 715 if (!bm->word) 716 continue; 717 718 bit = 0; 719 off = i * hctx->ctx_map.bits_per_word; 720 do { 721 bit = find_next_bit(&bm->word, bm->depth, bit); 722 if (bit >= bm->depth) 723 break; 724 725 ctx = hctx->ctxs[bit + off]; 726 clear_bit(bit, &bm->word); 727 spin_lock(&ctx->lock); 728 list_splice_tail_init(&ctx->rq_list, list); 729 spin_unlock(&ctx->lock); 730 731 bit++; 732 } while (1); 733 } 734 } 735 736 /* 737 * Run this hardware queue, pulling any software queues mapped to it in. 738 * Note that this function currently has various problems around ordering 739 * of IO. In particular, we'd like FIFO behaviour on handling existing 740 * items on the hctx->dispatch list. Ignore that for now. 741 */ 742 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 743 { 744 struct request_queue *q = hctx->queue; 745 struct request *rq; 746 LIST_HEAD(rq_list); 747 int queued; 748 749 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 750 751 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 752 return; 753 754 hctx->run++; 755 756 /* 757 * Touch any software queue that has pending entries. 758 */ 759 flush_busy_ctxs(hctx, &rq_list); 760 761 /* 762 * If we have previous entries on our dispatch list, grab them 763 * and stuff them at the front for more fair dispatch. 764 */ 765 if (!list_empty_careful(&hctx->dispatch)) { 766 spin_lock(&hctx->lock); 767 if (!list_empty(&hctx->dispatch)) 768 list_splice_init(&hctx->dispatch, &rq_list); 769 spin_unlock(&hctx->lock); 770 } 771 772 /* 773 * Now process all the entries, sending them to the driver. 774 */ 775 queued = 0; 776 while (!list_empty(&rq_list)) { 777 int ret; 778 779 rq = list_first_entry(&rq_list, struct request, queuelist); 780 list_del_init(&rq->queuelist); 781 782 blk_mq_start_request(rq, list_empty(&rq_list)); 783 784 ret = q->mq_ops->queue_rq(hctx, rq); 785 switch (ret) { 786 case BLK_MQ_RQ_QUEUE_OK: 787 queued++; 788 continue; 789 case BLK_MQ_RQ_QUEUE_BUSY: 790 list_add(&rq->queuelist, &rq_list); 791 __blk_mq_requeue_request(rq); 792 break; 793 default: 794 pr_err("blk-mq: bad return on queue: %d\n", ret); 795 case BLK_MQ_RQ_QUEUE_ERROR: 796 rq->errors = -EIO; 797 blk_mq_end_io(rq, rq->errors); 798 break; 799 } 800 801 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 802 break; 803 } 804 805 if (!queued) 806 hctx->dispatched[0]++; 807 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 808 hctx->dispatched[ilog2(queued) + 1]++; 809 810 /* 811 * Any items that need requeuing? Stuff them into hctx->dispatch, 812 * that is where we will continue on next queue run. 813 */ 814 if (!list_empty(&rq_list)) { 815 spin_lock(&hctx->lock); 816 list_splice(&rq_list, &hctx->dispatch); 817 spin_unlock(&hctx->lock); 818 } 819 } 820 821 /* 822 * It'd be great if the workqueue API had a way to pass 823 * in a mask and had some smarts for more clever placement. 824 * For now we just round-robin here, switching for every 825 * BLK_MQ_CPU_WORK_BATCH queued items. 826 */ 827 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 828 { 829 int cpu = hctx->next_cpu; 830 831 if (--hctx->next_cpu_batch <= 0) { 832 int next_cpu; 833 834 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 835 if (next_cpu >= nr_cpu_ids) 836 next_cpu = cpumask_first(hctx->cpumask); 837 838 hctx->next_cpu = next_cpu; 839 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 840 } 841 842 return cpu; 843 } 844 845 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 846 { 847 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 848 return; 849 850 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask)) 851 __blk_mq_run_hw_queue(hctx); 852 else if (hctx->queue->nr_hw_queues == 1) 853 kblockd_schedule_delayed_work(&hctx->run_work, 0); 854 else { 855 unsigned int cpu; 856 857 cpu = blk_mq_hctx_next_cpu(hctx); 858 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); 859 } 860 } 861 862 void blk_mq_run_queues(struct request_queue *q, bool async) 863 { 864 struct blk_mq_hw_ctx *hctx; 865 int i; 866 867 queue_for_each_hw_ctx(q, hctx, i) { 868 if ((!blk_mq_hctx_has_pending(hctx) && 869 list_empty_careful(&hctx->dispatch)) || 870 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 871 continue; 872 873 preempt_disable(); 874 blk_mq_run_hw_queue(hctx, async); 875 preempt_enable(); 876 } 877 } 878 EXPORT_SYMBOL(blk_mq_run_queues); 879 880 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 881 { 882 cancel_delayed_work(&hctx->run_work); 883 cancel_delayed_work(&hctx->delay_work); 884 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 885 } 886 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 887 888 void blk_mq_stop_hw_queues(struct request_queue *q) 889 { 890 struct blk_mq_hw_ctx *hctx; 891 int i; 892 893 queue_for_each_hw_ctx(q, hctx, i) 894 blk_mq_stop_hw_queue(hctx); 895 } 896 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 897 898 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 899 { 900 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 901 902 preempt_disable(); 903 __blk_mq_run_hw_queue(hctx); 904 preempt_enable(); 905 } 906 EXPORT_SYMBOL(blk_mq_start_hw_queue); 907 908 void blk_mq_start_hw_queues(struct request_queue *q) 909 { 910 struct blk_mq_hw_ctx *hctx; 911 int i; 912 913 queue_for_each_hw_ctx(q, hctx, i) 914 blk_mq_start_hw_queue(hctx); 915 } 916 EXPORT_SYMBOL(blk_mq_start_hw_queues); 917 918 919 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 920 { 921 struct blk_mq_hw_ctx *hctx; 922 int i; 923 924 queue_for_each_hw_ctx(q, hctx, i) { 925 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 926 continue; 927 928 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 929 preempt_disable(); 930 blk_mq_run_hw_queue(hctx, async); 931 preempt_enable(); 932 } 933 } 934 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 935 936 static void blk_mq_run_work_fn(struct work_struct *work) 937 { 938 struct blk_mq_hw_ctx *hctx; 939 940 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 941 942 __blk_mq_run_hw_queue(hctx); 943 } 944 945 static void blk_mq_delay_work_fn(struct work_struct *work) 946 { 947 struct blk_mq_hw_ctx *hctx; 948 949 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 950 951 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 952 __blk_mq_run_hw_queue(hctx); 953 } 954 955 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 956 { 957 unsigned long tmo = msecs_to_jiffies(msecs); 958 959 if (hctx->queue->nr_hw_queues == 1) 960 kblockd_schedule_delayed_work(&hctx->delay_work, tmo); 961 else { 962 unsigned int cpu; 963 964 cpu = blk_mq_hctx_next_cpu(hctx); 965 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); 966 } 967 } 968 EXPORT_SYMBOL(blk_mq_delay_queue); 969 970 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 971 struct request *rq, bool at_head) 972 { 973 struct blk_mq_ctx *ctx = rq->mq_ctx; 974 975 trace_block_rq_insert(hctx->queue, rq); 976 977 if (at_head) 978 list_add(&rq->queuelist, &ctx->rq_list); 979 else 980 list_add_tail(&rq->queuelist, &ctx->rq_list); 981 982 blk_mq_hctx_mark_pending(hctx, ctx); 983 984 /* 985 * We do this early, to ensure we are on the right CPU. 986 */ 987 blk_add_timer(rq); 988 } 989 990 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 991 bool async) 992 { 993 struct request_queue *q = rq->q; 994 struct blk_mq_hw_ctx *hctx; 995 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 996 997 current_ctx = blk_mq_get_ctx(q); 998 if (!cpu_online(ctx->cpu)) 999 rq->mq_ctx = ctx = current_ctx; 1000 1001 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1002 1003 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) && 1004 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) { 1005 blk_insert_flush(rq); 1006 } else { 1007 spin_lock(&ctx->lock); 1008 __blk_mq_insert_request(hctx, rq, at_head); 1009 spin_unlock(&ctx->lock); 1010 } 1011 1012 if (run_queue) 1013 blk_mq_run_hw_queue(hctx, async); 1014 1015 blk_mq_put_ctx(current_ctx); 1016 } 1017 1018 static void blk_mq_insert_requests(struct request_queue *q, 1019 struct blk_mq_ctx *ctx, 1020 struct list_head *list, 1021 int depth, 1022 bool from_schedule) 1023 1024 { 1025 struct blk_mq_hw_ctx *hctx; 1026 struct blk_mq_ctx *current_ctx; 1027 1028 trace_block_unplug(q, depth, !from_schedule); 1029 1030 current_ctx = blk_mq_get_ctx(q); 1031 1032 if (!cpu_online(ctx->cpu)) 1033 ctx = current_ctx; 1034 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1035 1036 /* 1037 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1038 * offline now 1039 */ 1040 spin_lock(&ctx->lock); 1041 while (!list_empty(list)) { 1042 struct request *rq; 1043 1044 rq = list_first_entry(list, struct request, queuelist); 1045 list_del_init(&rq->queuelist); 1046 rq->mq_ctx = ctx; 1047 __blk_mq_insert_request(hctx, rq, false); 1048 } 1049 spin_unlock(&ctx->lock); 1050 1051 blk_mq_run_hw_queue(hctx, from_schedule); 1052 blk_mq_put_ctx(current_ctx); 1053 } 1054 1055 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1056 { 1057 struct request *rqa = container_of(a, struct request, queuelist); 1058 struct request *rqb = container_of(b, struct request, queuelist); 1059 1060 return !(rqa->mq_ctx < rqb->mq_ctx || 1061 (rqa->mq_ctx == rqb->mq_ctx && 1062 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1063 } 1064 1065 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1066 { 1067 struct blk_mq_ctx *this_ctx; 1068 struct request_queue *this_q; 1069 struct request *rq; 1070 LIST_HEAD(list); 1071 LIST_HEAD(ctx_list); 1072 unsigned int depth; 1073 1074 list_splice_init(&plug->mq_list, &list); 1075 1076 list_sort(NULL, &list, plug_ctx_cmp); 1077 1078 this_q = NULL; 1079 this_ctx = NULL; 1080 depth = 0; 1081 1082 while (!list_empty(&list)) { 1083 rq = list_entry_rq(list.next); 1084 list_del_init(&rq->queuelist); 1085 BUG_ON(!rq->q); 1086 if (rq->mq_ctx != this_ctx) { 1087 if (this_ctx) { 1088 blk_mq_insert_requests(this_q, this_ctx, 1089 &ctx_list, depth, 1090 from_schedule); 1091 } 1092 1093 this_ctx = rq->mq_ctx; 1094 this_q = rq->q; 1095 depth = 0; 1096 } 1097 1098 depth++; 1099 list_add_tail(&rq->queuelist, &ctx_list); 1100 } 1101 1102 /* 1103 * If 'this_ctx' is set, we know we have entries to complete 1104 * on 'ctx_list'. Do those. 1105 */ 1106 if (this_ctx) { 1107 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1108 from_schedule); 1109 } 1110 } 1111 1112 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1113 { 1114 init_request_from_bio(rq, bio); 1115 1116 if (blk_do_io_stat(rq)) { 1117 rq->start_time = jiffies; 1118 blk_account_io_start(rq, 1); 1119 } 1120 } 1121 1122 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1123 struct blk_mq_ctx *ctx, 1124 struct request *rq, struct bio *bio) 1125 { 1126 struct request_queue *q = hctx->queue; 1127 1128 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) { 1129 blk_mq_bio_to_request(rq, bio); 1130 spin_lock(&ctx->lock); 1131 insert_rq: 1132 __blk_mq_insert_request(hctx, rq, false); 1133 spin_unlock(&ctx->lock); 1134 return false; 1135 } else { 1136 spin_lock(&ctx->lock); 1137 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1138 blk_mq_bio_to_request(rq, bio); 1139 goto insert_rq; 1140 } 1141 1142 spin_unlock(&ctx->lock); 1143 __blk_mq_free_request(hctx, ctx, rq); 1144 return true; 1145 } 1146 } 1147 1148 struct blk_map_ctx { 1149 struct blk_mq_hw_ctx *hctx; 1150 struct blk_mq_ctx *ctx; 1151 }; 1152 1153 static struct request *blk_mq_map_request(struct request_queue *q, 1154 struct bio *bio, 1155 struct blk_map_ctx *data) 1156 { 1157 struct blk_mq_hw_ctx *hctx; 1158 struct blk_mq_ctx *ctx; 1159 struct request *rq; 1160 int rw = bio_data_dir(bio); 1161 1162 if (unlikely(blk_mq_queue_enter(q))) { 1163 bio_endio(bio, -EIO); 1164 return NULL; 1165 } 1166 1167 ctx = blk_mq_get_ctx(q); 1168 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1169 1170 if (rw_is_sync(bio->bi_rw)) 1171 rw |= REQ_SYNC; 1172 1173 trace_block_getrq(q, bio, rw); 1174 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false); 1175 if (unlikely(!rq)) { 1176 __blk_mq_run_hw_queue(hctx); 1177 blk_mq_put_ctx(ctx); 1178 trace_block_sleeprq(q, bio, rw); 1179 1180 ctx = blk_mq_get_ctx(q); 1181 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1182 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, 1183 __GFP_WAIT|GFP_ATOMIC, false); 1184 } 1185 1186 hctx->queued++; 1187 data->hctx = hctx; 1188 data->ctx = ctx; 1189 return rq; 1190 } 1191 1192 /* 1193 * Multiple hardware queue variant. This will not use per-process plugs, 1194 * but will attempt to bypass the hctx queueing if we can go straight to 1195 * hardware for SYNC IO. 1196 */ 1197 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1198 { 1199 const int is_sync = rw_is_sync(bio->bi_rw); 1200 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1201 struct blk_map_ctx data; 1202 struct request *rq; 1203 1204 blk_queue_bounce(q, &bio); 1205 1206 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1207 bio_endio(bio, -EIO); 1208 return; 1209 } 1210 1211 rq = blk_mq_map_request(q, bio, &data); 1212 if (unlikely(!rq)) 1213 return; 1214 1215 if (unlikely(is_flush_fua)) { 1216 blk_mq_bio_to_request(rq, bio); 1217 blk_insert_flush(rq); 1218 goto run_queue; 1219 } 1220 1221 if (is_sync) { 1222 int ret; 1223 1224 blk_mq_bio_to_request(rq, bio); 1225 blk_mq_start_request(rq, true); 1226 blk_add_timer(rq); 1227 1228 /* 1229 * For OK queue, we are done. For error, kill it. Any other 1230 * error (busy), just add it to our list as we previously 1231 * would have done 1232 */ 1233 ret = q->mq_ops->queue_rq(data.hctx, rq); 1234 if (ret == BLK_MQ_RQ_QUEUE_OK) 1235 goto done; 1236 else { 1237 __blk_mq_requeue_request(rq); 1238 1239 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1240 rq->errors = -EIO; 1241 blk_mq_end_io(rq, rq->errors); 1242 goto done; 1243 } 1244 } 1245 } 1246 1247 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1248 /* 1249 * For a SYNC request, send it to the hardware immediately. For 1250 * an ASYNC request, just ensure that we run it later on. The 1251 * latter allows for merging opportunities and more efficient 1252 * dispatching. 1253 */ 1254 run_queue: 1255 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1256 } 1257 done: 1258 blk_mq_put_ctx(data.ctx); 1259 } 1260 1261 /* 1262 * Single hardware queue variant. This will attempt to use any per-process 1263 * plug for merging and IO deferral. 1264 */ 1265 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1266 { 1267 const int is_sync = rw_is_sync(bio->bi_rw); 1268 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1269 unsigned int use_plug, request_count = 0; 1270 struct blk_map_ctx data; 1271 struct request *rq; 1272 1273 /* 1274 * If we have multiple hardware queues, just go directly to 1275 * one of those for sync IO. 1276 */ 1277 use_plug = !is_flush_fua && !is_sync; 1278 1279 blk_queue_bounce(q, &bio); 1280 1281 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1282 bio_endio(bio, -EIO); 1283 return; 1284 } 1285 1286 if (use_plug && !blk_queue_nomerges(q) && 1287 blk_attempt_plug_merge(q, bio, &request_count)) 1288 return; 1289 1290 rq = blk_mq_map_request(q, bio, &data); 1291 1292 if (unlikely(is_flush_fua)) { 1293 blk_mq_bio_to_request(rq, bio); 1294 blk_insert_flush(rq); 1295 goto run_queue; 1296 } 1297 1298 /* 1299 * A task plug currently exists. Since this is completely lockless, 1300 * utilize that to temporarily store requests until the task is 1301 * either done or scheduled away. 1302 */ 1303 if (use_plug) { 1304 struct blk_plug *plug = current->plug; 1305 1306 if (plug) { 1307 blk_mq_bio_to_request(rq, bio); 1308 if (list_empty(&plug->mq_list)) 1309 trace_block_plug(q); 1310 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1311 blk_flush_plug_list(plug, false); 1312 trace_block_plug(q); 1313 } 1314 list_add_tail(&rq->queuelist, &plug->mq_list); 1315 blk_mq_put_ctx(data.ctx); 1316 return; 1317 } 1318 } 1319 1320 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1321 /* 1322 * For a SYNC request, send it to the hardware immediately. For 1323 * an ASYNC request, just ensure that we run it later on. The 1324 * latter allows for merging opportunities and more efficient 1325 * dispatching. 1326 */ 1327 run_queue: 1328 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1329 } 1330 1331 blk_mq_put_ctx(data.ctx); 1332 } 1333 1334 /* 1335 * Default mapping to a software queue, since we use one per CPU. 1336 */ 1337 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1338 { 1339 return q->queue_hw_ctx[q->mq_map[cpu]]; 1340 } 1341 EXPORT_SYMBOL(blk_mq_map_queue); 1342 1343 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1344 struct blk_mq_tags *tags, unsigned int hctx_idx) 1345 { 1346 struct page *page; 1347 1348 if (tags->rqs && set->ops->exit_request) { 1349 int i; 1350 1351 for (i = 0; i < tags->nr_tags; i++) { 1352 if (!tags->rqs[i]) 1353 continue; 1354 set->ops->exit_request(set->driver_data, tags->rqs[i], 1355 hctx_idx, i); 1356 } 1357 } 1358 1359 while (!list_empty(&tags->page_list)) { 1360 page = list_first_entry(&tags->page_list, struct page, lru); 1361 list_del_init(&page->lru); 1362 __free_pages(page, page->private); 1363 } 1364 1365 kfree(tags->rqs); 1366 1367 blk_mq_free_tags(tags); 1368 } 1369 1370 static size_t order_to_size(unsigned int order) 1371 { 1372 return (size_t)PAGE_SIZE << order; 1373 } 1374 1375 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1376 unsigned int hctx_idx) 1377 { 1378 struct blk_mq_tags *tags; 1379 unsigned int i, j, entries_per_page, max_order = 4; 1380 size_t rq_size, left; 1381 1382 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1383 set->numa_node); 1384 if (!tags) 1385 return NULL; 1386 1387 INIT_LIST_HEAD(&tags->page_list); 1388 1389 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *), 1390 GFP_KERNEL, set->numa_node); 1391 if (!tags->rqs) { 1392 blk_mq_free_tags(tags); 1393 return NULL; 1394 } 1395 1396 /* 1397 * rq_size is the size of the request plus driver payload, rounded 1398 * to the cacheline size 1399 */ 1400 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1401 cache_line_size()); 1402 left = rq_size * set->queue_depth; 1403 1404 for (i = 0; i < set->queue_depth; ) { 1405 int this_order = max_order; 1406 struct page *page; 1407 int to_do; 1408 void *p; 1409 1410 while (left < order_to_size(this_order - 1) && this_order) 1411 this_order--; 1412 1413 do { 1414 page = alloc_pages_node(set->numa_node, GFP_KERNEL, 1415 this_order); 1416 if (page) 1417 break; 1418 if (!this_order--) 1419 break; 1420 if (order_to_size(this_order) < rq_size) 1421 break; 1422 } while (1); 1423 1424 if (!page) 1425 goto fail; 1426 1427 page->private = this_order; 1428 list_add_tail(&page->lru, &tags->page_list); 1429 1430 p = page_address(page); 1431 entries_per_page = order_to_size(this_order) / rq_size; 1432 to_do = min(entries_per_page, set->queue_depth - i); 1433 left -= to_do * rq_size; 1434 for (j = 0; j < to_do; j++) { 1435 tags->rqs[i] = p; 1436 if (set->ops->init_request) { 1437 if (set->ops->init_request(set->driver_data, 1438 tags->rqs[i], hctx_idx, i, 1439 set->numa_node)) 1440 goto fail; 1441 } 1442 1443 p += rq_size; 1444 i++; 1445 } 1446 } 1447 1448 return tags; 1449 1450 fail: 1451 pr_warn("%s: failed to allocate requests\n", __func__); 1452 blk_mq_free_rq_map(set, tags, hctx_idx); 1453 return NULL; 1454 } 1455 1456 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1457 { 1458 kfree(bitmap->map); 1459 } 1460 1461 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1462 { 1463 unsigned int bpw = 8, total, num_maps, i; 1464 1465 bitmap->bits_per_word = bpw; 1466 1467 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1468 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1469 GFP_KERNEL, node); 1470 if (!bitmap->map) 1471 return -ENOMEM; 1472 1473 bitmap->map_size = num_maps; 1474 1475 total = nr_cpu_ids; 1476 for (i = 0; i < num_maps; i++) { 1477 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1478 total -= bitmap->map[i].depth; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1485 { 1486 struct request_queue *q = hctx->queue; 1487 struct blk_mq_ctx *ctx; 1488 LIST_HEAD(tmp); 1489 1490 /* 1491 * Move ctx entries to new CPU, if this one is going away. 1492 */ 1493 ctx = __blk_mq_get_ctx(q, cpu); 1494 1495 spin_lock(&ctx->lock); 1496 if (!list_empty(&ctx->rq_list)) { 1497 list_splice_init(&ctx->rq_list, &tmp); 1498 blk_mq_hctx_clear_pending(hctx, ctx); 1499 } 1500 spin_unlock(&ctx->lock); 1501 1502 if (list_empty(&tmp)) 1503 return NOTIFY_OK; 1504 1505 ctx = blk_mq_get_ctx(q); 1506 spin_lock(&ctx->lock); 1507 1508 while (!list_empty(&tmp)) { 1509 struct request *rq; 1510 1511 rq = list_first_entry(&tmp, struct request, queuelist); 1512 rq->mq_ctx = ctx; 1513 list_move_tail(&rq->queuelist, &ctx->rq_list); 1514 } 1515 1516 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1517 blk_mq_hctx_mark_pending(hctx, ctx); 1518 1519 spin_unlock(&ctx->lock); 1520 1521 blk_mq_run_hw_queue(hctx, true); 1522 blk_mq_put_ctx(ctx); 1523 return NOTIFY_OK; 1524 } 1525 1526 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1527 { 1528 struct request_queue *q = hctx->queue; 1529 struct blk_mq_tag_set *set = q->tag_set; 1530 1531 if (set->tags[hctx->queue_num]) 1532 return NOTIFY_OK; 1533 1534 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1535 if (!set->tags[hctx->queue_num]) 1536 return NOTIFY_STOP; 1537 1538 hctx->tags = set->tags[hctx->queue_num]; 1539 return NOTIFY_OK; 1540 } 1541 1542 static int blk_mq_hctx_notify(void *data, unsigned long action, 1543 unsigned int cpu) 1544 { 1545 struct blk_mq_hw_ctx *hctx = data; 1546 1547 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1548 return blk_mq_hctx_cpu_offline(hctx, cpu); 1549 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1550 return blk_mq_hctx_cpu_online(hctx, cpu); 1551 1552 return NOTIFY_OK; 1553 } 1554 1555 static void blk_mq_exit_hw_queues(struct request_queue *q, 1556 struct blk_mq_tag_set *set, int nr_queue) 1557 { 1558 struct blk_mq_hw_ctx *hctx; 1559 unsigned int i; 1560 1561 queue_for_each_hw_ctx(q, hctx, i) { 1562 if (i == nr_queue) 1563 break; 1564 1565 if (set->ops->exit_hctx) 1566 set->ops->exit_hctx(hctx, i); 1567 1568 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1569 kfree(hctx->ctxs); 1570 blk_mq_free_bitmap(&hctx->ctx_map); 1571 } 1572 1573 } 1574 1575 static void blk_mq_free_hw_queues(struct request_queue *q, 1576 struct blk_mq_tag_set *set) 1577 { 1578 struct blk_mq_hw_ctx *hctx; 1579 unsigned int i; 1580 1581 queue_for_each_hw_ctx(q, hctx, i) { 1582 free_cpumask_var(hctx->cpumask); 1583 kfree(hctx); 1584 } 1585 } 1586 1587 static int blk_mq_init_hw_queues(struct request_queue *q, 1588 struct blk_mq_tag_set *set) 1589 { 1590 struct blk_mq_hw_ctx *hctx; 1591 unsigned int i; 1592 1593 /* 1594 * Initialize hardware queues 1595 */ 1596 queue_for_each_hw_ctx(q, hctx, i) { 1597 int node; 1598 1599 node = hctx->numa_node; 1600 if (node == NUMA_NO_NODE) 1601 node = hctx->numa_node = set->numa_node; 1602 1603 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1604 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1605 spin_lock_init(&hctx->lock); 1606 INIT_LIST_HEAD(&hctx->dispatch); 1607 hctx->queue = q; 1608 hctx->queue_num = i; 1609 hctx->flags = set->flags; 1610 hctx->cmd_size = set->cmd_size; 1611 1612 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1613 blk_mq_hctx_notify, hctx); 1614 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1615 1616 hctx->tags = set->tags[i]; 1617 1618 /* 1619 * Allocate space for all possible cpus to avoid allocation in 1620 * runtime 1621 */ 1622 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1623 GFP_KERNEL, node); 1624 if (!hctx->ctxs) 1625 break; 1626 1627 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1628 break; 1629 1630 hctx->nr_ctx = 0; 1631 1632 if (set->ops->init_hctx && 1633 set->ops->init_hctx(hctx, set->driver_data, i)) 1634 break; 1635 } 1636 1637 if (i == q->nr_hw_queues) 1638 return 0; 1639 1640 /* 1641 * Init failed 1642 */ 1643 blk_mq_exit_hw_queues(q, set, i); 1644 1645 return 1; 1646 } 1647 1648 static void blk_mq_init_cpu_queues(struct request_queue *q, 1649 unsigned int nr_hw_queues) 1650 { 1651 unsigned int i; 1652 1653 for_each_possible_cpu(i) { 1654 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1655 struct blk_mq_hw_ctx *hctx; 1656 1657 memset(__ctx, 0, sizeof(*__ctx)); 1658 __ctx->cpu = i; 1659 spin_lock_init(&__ctx->lock); 1660 INIT_LIST_HEAD(&__ctx->rq_list); 1661 __ctx->queue = q; 1662 1663 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1664 if (!cpu_online(i)) 1665 continue; 1666 1667 hctx = q->mq_ops->map_queue(q, i); 1668 cpumask_set_cpu(i, hctx->cpumask); 1669 hctx->nr_ctx++; 1670 1671 /* 1672 * Set local node, IFF we have more than one hw queue. If 1673 * not, we remain on the home node of the device 1674 */ 1675 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1676 hctx->numa_node = cpu_to_node(i); 1677 } 1678 } 1679 1680 static void blk_mq_map_swqueue(struct request_queue *q) 1681 { 1682 unsigned int i; 1683 struct blk_mq_hw_ctx *hctx; 1684 struct blk_mq_ctx *ctx; 1685 1686 queue_for_each_hw_ctx(q, hctx, i) { 1687 cpumask_clear(hctx->cpumask); 1688 hctx->nr_ctx = 0; 1689 } 1690 1691 /* 1692 * Map software to hardware queues 1693 */ 1694 queue_for_each_ctx(q, ctx, i) { 1695 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1696 if (!cpu_online(i)) 1697 continue; 1698 1699 hctx = q->mq_ops->map_queue(q, i); 1700 cpumask_set_cpu(i, hctx->cpumask); 1701 ctx->index_hw = hctx->nr_ctx; 1702 hctx->ctxs[hctx->nr_ctx++] = ctx; 1703 } 1704 1705 queue_for_each_hw_ctx(q, hctx, i) { 1706 /* 1707 * If not software queues are mapped to this hardware queue, 1708 * disable it and free the request entries 1709 */ 1710 if (!hctx->nr_ctx) { 1711 struct blk_mq_tag_set *set = q->tag_set; 1712 1713 if (set->tags[i]) { 1714 blk_mq_free_rq_map(set, set->tags[i], i); 1715 set->tags[i] = NULL; 1716 hctx->tags = NULL; 1717 } 1718 continue; 1719 } 1720 1721 /* 1722 * Initialize batch roundrobin counts 1723 */ 1724 hctx->next_cpu = cpumask_first(hctx->cpumask); 1725 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1726 } 1727 } 1728 1729 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1730 { 1731 struct blk_mq_hw_ctx *hctx; 1732 struct request_queue *q; 1733 bool shared; 1734 int i; 1735 1736 if (set->tag_list.next == set->tag_list.prev) 1737 shared = false; 1738 else 1739 shared = true; 1740 1741 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1742 blk_mq_freeze_queue(q); 1743 1744 queue_for_each_hw_ctx(q, hctx, i) { 1745 if (shared) 1746 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1747 else 1748 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1749 } 1750 blk_mq_unfreeze_queue(q); 1751 } 1752 } 1753 1754 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1755 { 1756 struct blk_mq_tag_set *set = q->tag_set; 1757 1758 blk_mq_freeze_queue(q); 1759 1760 mutex_lock(&set->tag_list_lock); 1761 list_del_init(&q->tag_set_list); 1762 blk_mq_update_tag_set_depth(set); 1763 mutex_unlock(&set->tag_list_lock); 1764 1765 blk_mq_unfreeze_queue(q); 1766 } 1767 1768 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1769 struct request_queue *q) 1770 { 1771 q->tag_set = set; 1772 1773 mutex_lock(&set->tag_list_lock); 1774 list_add_tail(&q->tag_set_list, &set->tag_list); 1775 blk_mq_update_tag_set_depth(set); 1776 mutex_unlock(&set->tag_list_lock); 1777 } 1778 1779 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1780 { 1781 struct blk_mq_hw_ctx **hctxs; 1782 struct blk_mq_ctx *ctx; 1783 struct request_queue *q; 1784 unsigned int *map; 1785 int i; 1786 1787 ctx = alloc_percpu(struct blk_mq_ctx); 1788 if (!ctx) 1789 return ERR_PTR(-ENOMEM); 1790 1791 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1792 set->numa_node); 1793 1794 if (!hctxs) 1795 goto err_percpu; 1796 1797 map = blk_mq_make_queue_map(set); 1798 if (!map) 1799 goto err_map; 1800 1801 for (i = 0; i < set->nr_hw_queues; i++) { 1802 int node = blk_mq_hw_queue_to_node(map, i); 1803 1804 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1805 GFP_KERNEL, node); 1806 if (!hctxs[i]) 1807 goto err_hctxs; 1808 1809 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL)) 1810 goto err_hctxs; 1811 1812 atomic_set(&hctxs[i]->nr_active, 0); 1813 hctxs[i]->numa_node = node; 1814 hctxs[i]->queue_num = i; 1815 } 1816 1817 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1818 if (!q) 1819 goto err_hctxs; 1820 1821 if (percpu_counter_init(&q->mq_usage_counter, 0)) 1822 goto err_map; 1823 1824 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1825 blk_queue_rq_timeout(q, 30000); 1826 1827 q->nr_queues = nr_cpu_ids; 1828 q->nr_hw_queues = set->nr_hw_queues; 1829 q->mq_map = map; 1830 1831 q->queue_ctx = ctx; 1832 q->queue_hw_ctx = hctxs; 1833 1834 q->mq_ops = set->ops; 1835 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1836 1837 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1838 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1839 1840 q->sg_reserved_size = INT_MAX; 1841 1842 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1843 INIT_LIST_HEAD(&q->requeue_list); 1844 spin_lock_init(&q->requeue_lock); 1845 1846 if (q->nr_hw_queues > 1) 1847 blk_queue_make_request(q, blk_mq_make_request); 1848 else 1849 blk_queue_make_request(q, blk_sq_make_request); 1850 1851 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out); 1852 if (set->timeout) 1853 blk_queue_rq_timeout(q, set->timeout); 1854 1855 /* 1856 * Do this after blk_queue_make_request() overrides it... 1857 */ 1858 q->nr_requests = set->queue_depth; 1859 1860 if (set->ops->complete) 1861 blk_queue_softirq_done(q, set->ops->complete); 1862 1863 blk_mq_init_flush(q); 1864 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1865 1866 q->flush_rq = kzalloc(round_up(sizeof(struct request) + 1867 set->cmd_size, cache_line_size()), 1868 GFP_KERNEL); 1869 if (!q->flush_rq) 1870 goto err_hw; 1871 1872 if (blk_mq_init_hw_queues(q, set)) 1873 goto err_flush_rq; 1874 1875 mutex_lock(&all_q_mutex); 1876 list_add_tail(&q->all_q_node, &all_q_list); 1877 mutex_unlock(&all_q_mutex); 1878 1879 blk_mq_add_queue_tag_set(set, q); 1880 1881 blk_mq_map_swqueue(q); 1882 1883 return q; 1884 1885 err_flush_rq: 1886 kfree(q->flush_rq); 1887 err_hw: 1888 blk_cleanup_queue(q); 1889 err_hctxs: 1890 kfree(map); 1891 for (i = 0; i < set->nr_hw_queues; i++) { 1892 if (!hctxs[i]) 1893 break; 1894 free_cpumask_var(hctxs[i]->cpumask); 1895 kfree(hctxs[i]); 1896 } 1897 err_map: 1898 kfree(hctxs); 1899 err_percpu: 1900 free_percpu(ctx); 1901 return ERR_PTR(-ENOMEM); 1902 } 1903 EXPORT_SYMBOL(blk_mq_init_queue); 1904 1905 void blk_mq_free_queue(struct request_queue *q) 1906 { 1907 struct blk_mq_tag_set *set = q->tag_set; 1908 1909 blk_mq_del_queue_tag_set(q); 1910 1911 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 1912 blk_mq_free_hw_queues(q, set); 1913 1914 percpu_counter_destroy(&q->mq_usage_counter); 1915 1916 free_percpu(q->queue_ctx); 1917 kfree(q->queue_hw_ctx); 1918 kfree(q->mq_map); 1919 1920 q->queue_ctx = NULL; 1921 q->queue_hw_ctx = NULL; 1922 q->mq_map = NULL; 1923 1924 mutex_lock(&all_q_mutex); 1925 list_del_init(&q->all_q_node); 1926 mutex_unlock(&all_q_mutex); 1927 } 1928 1929 /* Basically redo blk_mq_init_queue with queue frozen */ 1930 static void blk_mq_queue_reinit(struct request_queue *q) 1931 { 1932 blk_mq_freeze_queue(q); 1933 1934 blk_mq_sysfs_unregister(q); 1935 1936 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 1937 1938 /* 1939 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 1940 * we should change hctx numa_node according to new topology (this 1941 * involves free and re-allocate memory, worthy doing?) 1942 */ 1943 1944 blk_mq_map_swqueue(q); 1945 1946 blk_mq_sysfs_register(q); 1947 1948 blk_mq_unfreeze_queue(q); 1949 } 1950 1951 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 1952 unsigned long action, void *hcpu) 1953 { 1954 struct request_queue *q; 1955 1956 /* 1957 * Before new mappings are established, hotadded cpu might already 1958 * start handling requests. This doesn't break anything as we map 1959 * offline CPUs to first hardware queue. We will re-init the queue 1960 * below to get optimal settings. 1961 */ 1962 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 1963 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 1964 return NOTIFY_OK; 1965 1966 mutex_lock(&all_q_mutex); 1967 list_for_each_entry(q, &all_q_list, all_q_node) 1968 blk_mq_queue_reinit(q); 1969 mutex_unlock(&all_q_mutex); 1970 return NOTIFY_OK; 1971 } 1972 1973 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 1974 { 1975 int i; 1976 1977 if (!set->nr_hw_queues) 1978 return -EINVAL; 1979 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH) 1980 return -EINVAL; 1981 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 1982 return -EINVAL; 1983 1984 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 1985 return -EINVAL; 1986 1987 1988 set->tags = kmalloc_node(set->nr_hw_queues * 1989 sizeof(struct blk_mq_tags *), 1990 GFP_KERNEL, set->numa_node); 1991 if (!set->tags) 1992 goto out; 1993 1994 for (i = 0; i < set->nr_hw_queues; i++) { 1995 set->tags[i] = blk_mq_init_rq_map(set, i); 1996 if (!set->tags[i]) 1997 goto out_unwind; 1998 } 1999 2000 mutex_init(&set->tag_list_lock); 2001 INIT_LIST_HEAD(&set->tag_list); 2002 2003 return 0; 2004 2005 out_unwind: 2006 while (--i >= 0) 2007 blk_mq_free_rq_map(set, set->tags[i], i); 2008 out: 2009 return -ENOMEM; 2010 } 2011 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2012 2013 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2014 { 2015 int i; 2016 2017 for (i = 0; i < set->nr_hw_queues; i++) { 2018 if (set->tags[i]) 2019 blk_mq_free_rq_map(set, set->tags[i], i); 2020 } 2021 2022 kfree(set->tags); 2023 } 2024 EXPORT_SYMBOL(blk_mq_free_tag_set); 2025 2026 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2027 { 2028 struct blk_mq_tag_set *set = q->tag_set; 2029 struct blk_mq_hw_ctx *hctx; 2030 int i, ret; 2031 2032 if (!set || nr > set->queue_depth) 2033 return -EINVAL; 2034 2035 ret = 0; 2036 queue_for_each_hw_ctx(q, hctx, i) { 2037 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2038 if (ret) 2039 break; 2040 } 2041 2042 if (!ret) 2043 q->nr_requests = nr; 2044 2045 return ret; 2046 } 2047 2048 void blk_mq_disable_hotplug(void) 2049 { 2050 mutex_lock(&all_q_mutex); 2051 } 2052 2053 void blk_mq_enable_hotplug(void) 2054 { 2055 mutex_unlock(&all_q_mutex); 2056 } 2057 2058 static int __init blk_mq_init(void) 2059 { 2060 blk_mq_cpu_init(); 2061 2062 /* Must be called after percpu_counter_hotcpu_callback() */ 2063 hotcpu_notifier(blk_mq_queue_reinit_notify, -10); 2064 2065 return 0; 2066 } 2067 subsys_initcall(blk_mq_init); 2068