xref: /openbmc/linux/block/blk-mq.c (revision 84d517f3)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 
24 #include <trace/events/block.h>
25 
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30 
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33 
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35 
36 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
37 					   unsigned int cpu)
38 {
39 	return per_cpu_ptr(q->queue_ctx, cpu);
40 }
41 
42 /*
43  * This assumes per-cpu software queueing queues. They could be per-node
44  * as well, for instance. For now this is hardcoded as-is. Note that we don't
45  * care about preemption, since we know the ctx's are persistent. This does
46  * mean that we can't rely on ctx always matching the currently running CPU.
47  */
48 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
49 {
50 	return __blk_mq_get_ctx(q, get_cpu());
51 }
52 
53 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
54 {
55 	put_cpu();
56 }
57 
58 /*
59  * Check if any of the ctx's have pending work in this hardware queue
60  */
61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
62 {
63 	unsigned int i;
64 
65 	for (i = 0; i < hctx->ctx_map.map_size; i++)
66 		if (hctx->ctx_map.map[i].word)
67 			return true;
68 
69 	return false;
70 }
71 
72 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
73 					      struct blk_mq_ctx *ctx)
74 {
75 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
76 }
77 
78 #define CTX_TO_BIT(hctx, ctx)	\
79 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
80 
81 /*
82  * Mark this ctx as having pending work in this hardware queue
83  */
84 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
85 				     struct blk_mq_ctx *ctx)
86 {
87 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
88 
89 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
90 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
91 }
92 
93 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
94 				      struct blk_mq_ctx *ctx)
95 {
96 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
97 
98 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
99 }
100 
101 static int blk_mq_queue_enter(struct request_queue *q)
102 {
103 	int ret;
104 
105 	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
106 	smp_wmb();
107 	/* we have problems to freeze the queue if it's initializing */
108 	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
109 		return 0;
110 
111 	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
112 
113 	spin_lock_irq(q->queue_lock);
114 	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
115 		!blk_queue_bypass(q) || blk_queue_dying(q),
116 		*q->queue_lock);
117 	/* inc usage with lock hold to avoid freeze_queue runs here */
118 	if (!ret && !blk_queue_dying(q))
119 		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
120 	else if (blk_queue_dying(q))
121 		ret = -ENODEV;
122 	spin_unlock_irq(q->queue_lock);
123 
124 	return ret;
125 }
126 
127 static void blk_mq_queue_exit(struct request_queue *q)
128 {
129 	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130 }
131 
132 static void __blk_mq_drain_queue(struct request_queue *q)
133 {
134 	while (true) {
135 		s64 count;
136 
137 		spin_lock_irq(q->queue_lock);
138 		count = percpu_counter_sum(&q->mq_usage_counter);
139 		spin_unlock_irq(q->queue_lock);
140 
141 		if (count == 0)
142 			break;
143 		blk_mq_run_queues(q, false);
144 		msleep(10);
145 	}
146 }
147 
148 /*
149  * Guarantee no request is in use, so we can change any data structure of
150  * the queue afterward.
151  */
152 static void blk_mq_freeze_queue(struct request_queue *q)
153 {
154 	bool drain;
155 
156 	spin_lock_irq(q->queue_lock);
157 	drain = !q->bypass_depth++;
158 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
159 	spin_unlock_irq(q->queue_lock);
160 
161 	if (drain)
162 		__blk_mq_drain_queue(q);
163 }
164 
165 void blk_mq_drain_queue(struct request_queue *q)
166 {
167 	__blk_mq_drain_queue(q);
168 }
169 
170 static void blk_mq_unfreeze_queue(struct request_queue *q)
171 {
172 	bool wake = false;
173 
174 	spin_lock_irq(q->queue_lock);
175 	if (!--q->bypass_depth) {
176 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
177 		wake = true;
178 	}
179 	WARN_ON_ONCE(q->bypass_depth < 0);
180 	spin_unlock_irq(q->queue_lock);
181 	if (wake)
182 		wake_up_all(&q->mq_freeze_wq);
183 }
184 
185 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
186 {
187 	return blk_mq_has_free_tags(hctx->tags);
188 }
189 EXPORT_SYMBOL(blk_mq_can_queue);
190 
191 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
192 			       struct request *rq, unsigned int rw_flags)
193 {
194 	if (blk_queue_io_stat(q))
195 		rw_flags |= REQ_IO_STAT;
196 
197 	INIT_LIST_HEAD(&rq->queuelist);
198 	/* csd/requeue_work/fifo_time is initialized before use */
199 	rq->q = q;
200 	rq->mq_ctx = ctx;
201 	rq->cmd_flags |= rw_flags;
202 	/* do not touch atomic flags, it needs atomic ops against the timer */
203 	rq->cpu = -1;
204 	INIT_HLIST_NODE(&rq->hash);
205 	RB_CLEAR_NODE(&rq->rb_node);
206 	rq->rq_disk = NULL;
207 	rq->part = NULL;
208 #ifdef CONFIG_BLK_CGROUP
209 	rq->rl = NULL;
210 	set_start_time_ns(rq);
211 	rq->io_start_time_ns = 0;
212 #endif
213 	rq->nr_phys_segments = 0;
214 #if defined(CONFIG_BLK_DEV_INTEGRITY)
215 	rq->nr_integrity_segments = 0;
216 #endif
217 	rq->special = NULL;
218 	/* tag was already set */
219 	rq->errors = 0;
220 
221 	rq->extra_len = 0;
222 	rq->sense_len = 0;
223 	rq->resid_len = 0;
224 	rq->sense = NULL;
225 
226 	INIT_LIST_HEAD(&rq->timeout_list);
227 	rq->end_io = NULL;
228 	rq->end_io_data = NULL;
229 	rq->next_rq = NULL;
230 
231 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
232 }
233 
234 static struct request *
235 __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
236 		struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
237 {
238 	struct request *rq;
239 	unsigned int tag;
240 
241 	tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
242 	if (tag != BLK_MQ_TAG_FAIL) {
243 		rq = hctx->tags->rqs[tag];
244 
245 		rq->cmd_flags = 0;
246 		if (blk_mq_tag_busy(hctx)) {
247 			rq->cmd_flags = REQ_MQ_INFLIGHT;
248 			atomic_inc(&hctx->nr_active);
249 		}
250 
251 		rq->tag = tag;
252 		blk_mq_rq_ctx_init(q, ctx, rq, rw);
253 		return rq;
254 	}
255 
256 	return NULL;
257 }
258 
259 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
260 		bool reserved)
261 {
262 	struct blk_mq_ctx *ctx;
263 	struct blk_mq_hw_ctx *hctx;
264 	struct request *rq;
265 
266 	if (blk_mq_queue_enter(q))
267 		return NULL;
268 
269 	ctx = blk_mq_get_ctx(q);
270 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
271 
272 	rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT,
273 				    reserved);
274 	if (!rq && (gfp & __GFP_WAIT)) {
275 		__blk_mq_run_hw_queue(hctx);
276 		blk_mq_put_ctx(ctx);
277 
278 		ctx = blk_mq_get_ctx(q);
279 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
280 		rq =  __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved);
281 	}
282 	blk_mq_put_ctx(ctx);
283 	return rq;
284 }
285 EXPORT_SYMBOL(blk_mq_alloc_request);
286 
287 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
288 				  struct blk_mq_ctx *ctx, struct request *rq)
289 {
290 	const int tag = rq->tag;
291 	struct request_queue *q = rq->q;
292 
293 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
294 		atomic_dec(&hctx->nr_active);
295 
296 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
297 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
298 	blk_mq_queue_exit(q);
299 }
300 
301 void blk_mq_free_request(struct request *rq)
302 {
303 	struct blk_mq_ctx *ctx = rq->mq_ctx;
304 	struct blk_mq_hw_ctx *hctx;
305 	struct request_queue *q = rq->q;
306 
307 	ctx->rq_completed[rq_is_sync(rq)]++;
308 
309 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
310 	__blk_mq_free_request(hctx, ctx, rq);
311 }
312 
313 /*
314  * Clone all relevant state from a request that has been put on hold in
315  * the flush state machine into the preallocated flush request that hangs
316  * off the request queue.
317  *
318  * For a driver the flush request should be invisible, that's why we are
319  * impersonating the original request here.
320  */
321 void blk_mq_clone_flush_request(struct request *flush_rq,
322 		struct request *orig_rq)
323 {
324 	struct blk_mq_hw_ctx *hctx =
325 		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
326 
327 	flush_rq->mq_ctx = orig_rq->mq_ctx;
328 	flush_rq->tag = orig_rq->tag;
329 	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
330 		hctx->cmd_size);
331 }
332 
333 inline void __blk_mq_end_io(struct request *rq, int error)
334 {
335 	blk_account_io_done(rq);
336 
337 	if (rq->end_io) {
338 		rq->end_io(rq, error);
339 	} else {
340 		if (unlikely(blk_bidi_rq(rq)))
341 			blk_mq_free_request(rq->next_rq);
342 		blk_mq_free_request(rq);
343 	}
344 }
345 EXPORT_SYMBOL(__blk_mq_end_io);
346 
347 void blk_mq_end_io(struct request *rq, int error)
348 {
349 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
350 		BUG();
351 	__blk_mq_end_io(rq, error);
352 }
353 EXPORT_SYMBOL(blk_mq_end_io);
354 
355 static void __blk_mq_complete_request_remote(void *data)
356 {
357 	struct request *rq = data;
358 
359 	rq->q->softirq_done_fn(rq);
360 }
361 
362 static void blk_mq_ipi_complete_request(struct request *rq)
363 {
364 	struct blk_mq_ctx *ctx = rq->mq_ctx;
365 	bool shared = false;
366 	int cpu;
367 
368 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
369 		rq->q->softirq_done_fn(rq);
370 		return;
371 	}
372 
373 	cpu = get_cpu();
374 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
375 		shared = cpus_share_cache(cpu, ctx->cpu);
376 
377 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
378 		rq->csd.func = __blk_mq_complete_request_remote;
379 		rq->csd.info = rq;
380 		rq->csd.flags = 0;
381 		smp_call_function_single_async(ctx->cpu, &rq->csd);
382 	} else {
383 		rq->q->softirq_done_fn(rq);
384 	}
385 	put_cpu();
386 }
387 
388 void __blk_mq_complete_request(struct request *rq)
389 {
390 	struct request_queue *q = rq->q;
391 
392 	if (!q->softirq_done_fn)
393 		blk_mq_end_io(rq, rq->errors);
394 	else
395 		blk_mq_ipi_complete_request(rq);
396 }
397 
398 /**
399  * blk_mq_complete_request - end I/O on a request
400  * @rq:		the request being processed
401  *
402  * Description:
403  *	Ends all I/O on a request. It does not handle partial completions.
404  *	The actual completion happens out-of-order, through a IPI handler.
405  **/
406 void blk_mq_complete_request(struct request *rq)
407 {
408 	struct request_queue *q = rq->q;
409 
410 	if (unlikely(blk_should_fake_timeout(q)))
411 		return;
412 	if (!blk_mark_rq_complete(rq))
413 		__blk_mq_complete_request(rq);
414 }
415 EXPORT_SYMBOL(blk_mq_complete_request);
416 
417 static void blk_mq_start_request(struct request *rq, bool last)
418 {
419 	struct request_queue *q = rq->q;
420 
421 	trace_block_rq_issue(q, rq);
422 
423 	rq->resid_len = blk_rq_bytes(rq);
424 	if (unlikely(blk_bidi_rq(rq)))
425 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
426 
427 	/*
428 	 * Just mark start time and set the started bit. Due to memory
429 	 * ordering, we know we'll see the correct deadline as long as
430 	 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
431 	 * unless one has been set in the request.
432 	 */
433 	if (!rq->timeout)
434 		rq->deadline = jiffies + q->rq_timeout;
435 	else
436 		rq->deadline = jiffies + rq->timeout;
437 
438 	/*
439 	 * Mark us as started and clear complete. Complete might have been
440 	 * set if requeue raced with timeout, which then marked it as
441 	 * complete. So be sure to clear complete again when we start
442 	 * the request, otherwise we'll ignore the completion event.
443 	 */
444 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
445 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
446 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
447 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
448 
449 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
450 		/*
451 		 * Make sure space for the drain appears.  We know we can do
452 		 * this because max_hw_segments has been adjusted to be one
453 		 * fewer than the device can handle.
454 		 */
455 		rq->nr_phys_segments++;
456 	}
457 
458 	/*
459 	 * Flag the last request in the series so that drivers know when IO
460 	 * should be kicked off, if they don't do it on a per-request basis.
461 	 *
462 	 * Note: the flag isn't the only condition drivers should do kick off.
463 	 * If drive is busy, the last request might not have the bit set.
464 	 */
465 	if (last)
466 		rq->cmd_flags |= REQ_END;
467 }
468 
469 static void __blk_mq_requeue_request(struct request *rq)
470 {
471 	struct request_queue *q = rq->q;
472 
473 	trace_block_rq_requeue(q, rq);
474 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
475 
476 	rq->cmd_flags &= ~REQ_END;
477 
478 	if (q->dma_drain_size && blk_rq_bytes(rq))
479 		rq->nr_phys_segments--;
480 }
481 
482 void blk_mq_requeue_request(struct request *rq)
483 {
484 	__blk_mq_requeue_request(rq);
485 	blk_clear_rq_complete(rq);
486 
487 	BUG_ON(blk_queued_rq(rq));
488 	blk_mq_add_to_requeue_list(rq, true);
489 }
490 EXPORT_SYMBOL(blk_mq_requeue_request);
491 
492 static void blk_mq_requeue_work(struct work_struct *work)
493 {
494 	struct request_queue *q =
495 		container_of(work, struct request_queue, requeue_work);
496 	LIST_HEAD(rq_list);
497 	struct request *rq, *next;
498 	unsigned long flags;
499 
500 	spin_lock_irqsave(&q->requeue_lock, flags);
501 	list_splice_init(&q->requeue_list, &rq_list);
502 	spin_unlock_irqrestore(&q->requeue_lock, flags);
503 
504 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
505 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
506 			continue;
507 
508 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
509 		list_del_init(&rq->queuelist);
510 		blk_mq_insert_request(rq, true, false, false);
511 	}
512 
513 	while (!list_empty(&rq_list)) {
514 		rq = list_entry(rq_list.next, struct request, queuelist);
515 		list_del_init(&rq->queuelist);
516 		blk_mq_insert_request(rq, false, false, false);
517 	}
518 
519 	blk_mq_run_queues(q, false);
520 }
521 
522 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
523 {
524 	struct request_queue *q = rq->q;
525 	unsigned long flags;
526 
527 	/*
528 	 * We abuse this flag that is otherwise used by the I/O scheduler to
529 	 * request head insertation from the workqueue.
530 	 */
531 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
532 
533 	spin_lock_irqsave(&q->requeue_lock, flags);
534 	if (at_head) {
535 		rq->cmd_flags |= REQ_SOFTBARRIER;
536 		list_add(&rq->queuelist, &q->requeue_list);
537 	} else {
538 		list_add_tail(&rq->queuelist, &q->requeue_list);
539 	}
540 	spin_unlock_irqrestore(&q->requeue_lock, flags);
541 }
542 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
543 
544 void blk_mq_kick_requeue_list(struct request_queue *q)
545 {
546 	kblockd_schedule_work(&q->requeue_work);
547 }
548 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
549 
550 struct request *blk_mq_tag_to_rq(struct blk_mq_hw_ctx *hctx, unsigned int tag)
551 {
552 	struct request_queue *q = hctx->queue;
553 
554 	if ((q->flush_rq->cmd_flags & REQ_FLUSH_SEQ) &&
555 	    q->flush_rq->tag == tag)
556 		return q->flush_rq;
557 
558 	return hctx->tags->rqs[tag];
559 }
560 EXPORT_SYMBOL(blk_mq_tag_to_rq);
561 
562 struct blk_mq_timeout_data {
563 	struct blk_mq_hw_ctx *hctx;
564 	unsigned long *next;
565 	unsigned int *next_set;
566 };
567 
568 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
569 {
570 	struct blk_mq_timeout_data *data = __data;
571 	struct blk_mq_hw_ctx *hctx = data->hctx;
572 	unsigned int tag;
573 
574 	 /* It may not be in flight yet (this is where
575 	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
576 	 * statically allocated, so we know it's always safe to access the
577 	 * memory associated with a bit offset into ->rqs[].
578 	 */
579 	tag = 0;
580 	do {
581 		struct request *rq;
582 
583 		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
584 		if (tag >= hctx->tags->nr_tags)
585 			break;
586 
587 		rq = blk_mq_tag_to_rq(hctx, tag++);
588 		if (rq->q != hctx->queue)
589 			continue;
590 		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
591 			continue;
592 
593 		blk_rq_check_expired(rq, data->next, data->next_set);
594 	} while (1);
595 }
596 
597 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
598 					unsigned long *next,
599 					unsigned int *next_set)
600 {
601 	struct blk_mq_timeout_data data = {
602 		.hctx		= hctx,
603 		.next		= next,
604 		.next_set	= next_set,
605 	};
606 
607 	/*
608 	 * Ask the tagging code to iterate busy requests, so we can
609 	 * check them for timeout.
610 	 */
611 	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
612 }
613 
614 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
615 {
616 	struct request_queue *q = rq->q;
617 
618 	/*
619 	 * We know that complete is set at this point. If STARTED isn't set
620 	 * anymore, then the request isn't active and the "timeout" should
621 	 * just be ignored. This can happen due to the bitflag ordering.
622 	 * Timeout first checks if STARTED is set, and if it is, assumes
623 	 * the request is active. But if we race with completion, then
624 	 * we both flags will get cleared. So check here again, and ignore
625 	 * a timeout event with a request that isn't active.
626 	 */
627 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
628 		return BLK_EH_NOT_HANDLED;
629 
630 	if (!q->mq_ops->timeout)
631 		return BLK_EH_RESET_TIMER;
632 
633 	return q->mq_ops->timeout(rq);
634 }
635 
636 static void blk_mq_rq_timer(unsigned long data)
637 {
638 	struct request_queue *q = (struct request_queue *) data;
639 	struct blk_mq_hw_ctx *hctx;
640 	unsigned long next = 0;
641 	int i, next_set = 0;
642 
643 	queue_for_each_hw_ctx(q, hctx, i) {
644 		/*
645 		 * If not software queues are currently mapped to this
646 		 * hardware queue, there's nothing to check
647 		 */
648 		if (!hctx->nr_ctx || !hctx->tags)
649 			continue;
650 
651 		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
652 	}
653 
654 	if (next_set) {
655 		next = blk_rq_timeout(round_jiffies_up(next));
656 		mod_timer(&q->timeout, next);
657 	} else {
658 		queue_for_each_hw_ctx(q, hctx, i)
659 			blk_mq_tag_idle(hctx);
660 	}
661 }
662 
663 /*
664  * Reverse check our software queue for entries that we could potentially
665  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
666  * too much time checking for merges.
667  */
668 static bool blk_mq_attempt_merge(struct request_queue *q,
669 				 struct blk_mq_ctx *ctx, struct bio *bio)
670 {
671 	struct request *rq;
672 	int checked = 8;
673 
674 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
675 		int el_ret;
676 
677 		if (!checked--)
678 			break;
679 
680 		if (!blk_rq_merge_ok(rq, bio))
681 			continue;
682 
683 		el_ret = blk_try_merge(rq, bio);
684 		if (el_ret == ELEVATOR_BACK_MERGE) {
685 			if (bio_attempt_back_merge(q, rq, bio)) {
686 				ctx->rq_merged++;
687 				return true;
688 			}
689 			break;
690 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
691 			if (bio_attempt_front_merge(q, rq, bio)) {
692 				ctx->rq_merged++;
693 				return true;
694 			}
695 			break;
696 		}
697 	}
698 
699 	return false;
700 }
701 
702 /*
703  * Process software queues that have been marked busy, splicing them
704  * to the for-dispatch
705  */
706 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
707 {
708 	struct blk_mq_ctx *ctx;
709 	int i;
710 
711 	for (i = 0; i < hctx->ctx_map.map_size; i++) {
712 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
713 		unsigned int off, bit;
714 
715 		if (!bm->word)
716 			continue;
717 
718 		bit = 0;
719 		off = i * hctx->ctx_map.bits_per_word;
720 		do {
721 			bit = find_next_bit(&bm->word, bm->depth, bit);
722 			if (bit >= bm->depth)
723 				break;
724 
725 			ctx = hctx->ctxs[bit + off];
726 			clear_bit(bit, &bm->word);
727 			spin_lock(&ctx->lock);
728 			list_splice_tail_init(&ctx->rq_list, list);
729 			spin_unlock(&ctx->lock);
730 
731 			bit++;
732 		} while (1);
733 	}
734 }
735 
736 /*
737  * Run this hardware queue, pulling any software queues mapped to it in.
738  * Note that this function currently has various problems around ordering
739  * of IO. In particular, we'd like FIFO behaviour on handling existing
740  * items on the hctx->dispatch list. Ignore that for now.
741  */
742 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
743 {
744 	struct request_queue *q = hctx->queue;
745 	struct request *rq;
746 	LIST_HEAD(rq_list);
747 	int queued;
748 
749 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
750 
751 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
752 		return;
753 
754 	hctx->run++;
755 
756 	/*
757 	 * Touch any software queue that has pending entries.
758 	 */
759 	flush_busy_ctxs(hctx, &rq_list);
760 
761 	/*
762 	 * If we have previous entries on our dispatch list, grab them
763 	 * and stuff them at the front for more fair dispatch.
764 	 */
765 	if (!list_empty_careful(&hctx->dispatch)) {
766 		spin_lock(&hctx->lock);
767 		if (!list_empty(&hctx->dispatch))
768 			list_splice_init(&hctx->dispatch, &rq_list);
769 		spin_unlock(&hctx->lock);
770 	}
771 
772 	/*
773 	 * Now process all the entries, sending them to the driver.
774 	 */
775 	queued = 0;
776 	while (!list_empty(&rq_list)) {
777 		int ret;
778 
779 		rq = list_first_entry(&rq_list, struct request, queuelist);
780 		list_del_init(&rq->queuelist);
781 
782 		blk_mq_start_request(rq, list_empty(&rq_list));
783 
784 		ret = q->mq_ops->queue_rq(hctx, rq);
785 		switch (ret) {
786 		case BLK_MQ_RQ_QUEUE_OK:
787 			queued++;
788 			continue;
789 		case BLK_MQ_RQ_QUEUE_BUSY:
790 			list_add(&rq->queuelist, &rq_list);
791 			__blk_mq_requeue_request(rq);
792 			break;
793 		default:
794 			pr_err("blk-mq: bad return on queue: %d\n", ret);
795 		case BLK_MQ_RQ_QUEUE_ERROR:
796 			rq->errors = -EIO;
797 			blk_mq_end_io(rq, rq->errors);
798 			break;
799 		}
800 
801 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
802 			break;
803 	}
804 
805 	if (!queued)
806 		hctx->dispatched[0]++;
807 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
808 		hctx->dispatched[ilog2(queued) + 1]++;
809 
810 	/*
811 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
812 	 * that is where we will continue on next queue run.
813 	 */
814 	if (!list_empty(&rq_list)) {
815 		spin_lock(&hctx->lock);
816 		list_splice(&rq_list, &hctx->dispatch);
817 		spin_unlock(&hctx->lock);
818 	}
819 }
820 
821 /*
822  * It'd be great if the workqueue API had a way to pass
823  * in a mask and had some smarts for more clever placement.
824  * For now we just round-robin here, switching for every
825  * BLK_MQ_CPU_WORK_BATCH queued items.
826  */
827 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
828 {
829 	int cpu = hctx->next_cpu;
830 
831 	if (--hctx->next_cpu_batch <= 0) {
832 		int next_cpu;
833 
834 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
835 		if (next_cpu >= nr_cpu_ids)
836 			next_cpu = cpumask_first(hctx->cpumask);
837 
838 		hctx->next_cpu = next_cpu;
839 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
840 	}
841 
842 	return cpu;
843 }
844 
845 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
846 {
847 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
848 		return;
849 
850 	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
851 		__blk_mq_run_hw_queue(hctx);
852 	else if (hctx->queue->nr_hw_queues == 1)
853 		kblockd_schedule_delayed_work(&hctx->run_work, 0);
854 	else {
855 		unsigned int cpu;
856 
857 		cpu = blk_mq_hctx_next_cpu(hctx);
858 		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
859 	}
860 }
861 
862 void blk_mq_run_queues(struct request_queue *q, bool async)
863 {
864 	struct blk_mq_hw_ctx *hctx;
865 	int i;
866 
867 	queue_for_each_hw_ctx(q, hctx, i) {
868 		if ((!blk_mq_hctx_has_pending(hctx) &&
869 		    list_empty_careful(&hctx->dispatch)) ||
870 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
871 			continue;
872 
873 		preempt_disable();
874 		blk_mq_run_hw_queue(hctx, async);
875 		preempt_enable();
876 	}
877 }
878 EXPORT_SYMBOL(blk_mq_run_queues);
879 
880 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
881 {
882 	cancel_delayed_work(&hctx->run_work);
883 	cancel_delayed_work(&hctx->delay_work);
884 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
885 }
886 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
887 
888 void blk_mq_stop_hw_queues(struct request_queue *q)
889 {
890 	struct blk_mq_hw_ctx *hctx;
891 	int i;
892 
893 	queue_for_each_hw_ctx(q, hctx, i)
894 		blk_mq_stop_hw_queue(hctx);
895 }
896 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
897 
898 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
899 {
900 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
901 
902 	preempt_disable();
903 	__blk_mq_run_hw_queue(hctx);
904 	preempt_enable();
905 }
906 EXPORT_SYMBOL(blk_mq_start_hw_queue);
907 
908 void blk_mq_start_hw_queues(struct request_queue *q)
909 {
910 	struct blk_mq_hw_ctx *hctx;
911 	int i;
912 
913 	queue_for_each_hw_ctx(q, hctx, i)
914 		blk_mq_start_hw_queue(hctx);
915 }
916 EXPORT_SYMBOL(blk_mq_start_hw_queues);
917 
918 
919 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
920 {
921 	struct blk_mq_hw_ctx *hctx;
922 	int i;
923 
924 	queue_for_each_hw_ctx(q, hctx, i) {
925 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
926 			continue;
927 
928 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
929 		preempt_disable();
930 		blk_mq_run_hw_queue(hctx, async);
931 		preempt_enable();
932 	}
933 }
934 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
935 
936 static void blk_mq_run_work_fn(struct work_struct *work)
937 {
938 	struct blk_mq_hw_ctx *hctx;
939 
940 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
941 
942 	__blk_mq_run_hw_queue(hctx);
943 }
944 
945 static void blk_mq_delay_work_fn(struct work_struct *work)
946 {
947 	struct blk_mq_hw_ctx *hctx;
948 
949 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
950 
951 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
952 		__blk_mq_run_hw_queue(hctx);
953 }
954 
955 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
956 {
957 	unsigned long tmo = msecs_to_jiffies(msecs);
958 
959 	if (hctx->queue->nr_hw_queues == 1)
960 		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
961 	else {
962 		unsigned int cpu;
963 
964 		cpu = blk_mq_hctx_next_cpu(hctx);
965 		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
966 	}
967 }
968 EXPORT_SYMBOL(blk_mq_delay_queue);
969 
970 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
971 				    struct request *rq, bool at_head)
972 {
973 	struct blk_mq_ctx *ctx = rq->mq_ctx;
974 
975 	trace_block_rq_insert(hctx->queue, rq);
976 
977 	if (at_head)
978 		list_add(&rq->queuelist, &ctx->rq_list);
979 	else
980 		list_add_tail(&rq->queuelist, &ctx->rq_list);
981 
982 	blk_mq_hctx_mark_pending(hctx, ctx);
983 
984 	/*
985 	 * We do this early, to ensure we are on the right CPU.
986 	 */
987 	blk_add_timer(rq);
988 }
989 
990 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
991 		bool async)
992 {
993 	struct request_queue *q = rq->q;
994 	struct blk_mq_hw_ctx *hctx;
995 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
996 
997 	current_ctx = blk_mq_get_ctx(q);
998 	if (!cpu_online(ctx->cpu))
999 		rq->mq_ctx = ctx = current_ctx;
1000 
1001 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1002 
1003 	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
1004 	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
1005 		blk_insert_flush(rq);
1006 	} else {
1007 		spin_lock(&ctx->lock);
1008 		__blk_mq_insert_request(hctx, rq, at_head);
1009 		spin_unlock(&ctx->lock);
1010 	}
1011 
1012 	if (run_queue)
1013 		blk_mq_run_hw_queue(hctx, async);
1014 
1015 	blk_mq_put_ctx(current_ctx);
1016 }
1017 
1018 static void blk_mq_insert_requests(struct request_queue *q,
1019 				     struct blk_mq_ctx *ctx,
1020 				     struct list_head *list,
1021 				     int depth,
1022 				     bool from_schedule)
1023 
1024 {
1025 	struct blk_mq_hw_ctx *hctx;
1026 	struct blk_mq_ctx *current_ctx;
1027 
1028 	trace_block_unplug(q, depth, !from_schedule);
1029 
1030 	current_ctx = blk_mq_get_ctx(q);
1031 
1032 	if (!cpu_online(ctx->cpu))
1033 		ctx = current_ctx;
1034 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1035 
1036 	/*
1037 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1038 	 * offline now
1039 	 */
1040 	spin_lock(&ctx->lock);
1041 	while (!list_empty(list)) {
1042 		struct request *rq;
1043 
1044 		rq = list_first_entry(list, struct request, queuelist);
1045 		list_del_init(&rq->queuelist);
1046 		rq->mq_ctx = ctx;
1047 		__blk_mq_insert_request(hctx, rq, false);
1048 	}
1049 	spin_unlock(&ctx->lock);
1050 
1051 	blk_mq_run_hw_queue(hctx, from_schedule);
1052 	blk_mq_put_ctx(current_ctx);
1053 }
1054 
1055 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1056 {
1057 	struct request *rqa = container_of(a, struct request, queuelist);
1058 	struct request *rqb = container_of(b, struct request, queuelist);
1059 
1060 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1061 		 (rqa->mq_ctx == rqb->mq_ctx &&
1062 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1063 }
1064 
1065 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1066 {
1067 	struct blk_mq_ctx *this_ctx;
1068 	struct request_queue *this_q;
1069 	struct request *rq;
1070 	LIST_HEAD(list);
1071 	LIST_HEAD(ctx_list);
1072 	unsigned int depth;
1073 
1074 	list_splice_init(&plug->mq_list, &list);
1075 
1076 	list_sort(NULL, &list, plug_ctx_cmp);
1077 
1078 	this_q = NULL;
1079 	this_ctx = NULL;
1080 	depth = 0;
1081 
1082 	while (!list_empty(&list)) {
1083 		rq = list_entry_rq(list.next);
1084 		list_del_init(&rq->queuelist);
1085 		BUG_ON(!rq->q);
1086 		if (rq->mq_ctx != this_ctx) {
1087 			if (this_ctx) {
1088 				blk_mq_insert_requests(this_q, this_ctx,
1089 							&ctx_list, depth,
1090 							from_schedule);
1091 			}
1092 
1093 			this_ctx = rq->mq_ctx;
1094 			this_q = rq->q;
1095 			depth = 0;
1096 		}
1097 
1098 		depth++;
1099 		list_add_tail(&rq->queuelist, &ctx_list);
1100 	}
1101 
1102 	/*
1103 	 * If 'this_ctx' is set, we know we have entries to complete
1104 	 * on 'ctx_list'. Do those.
1105 	 */
1106 	if (this_ctx) {
1107 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1108 				       from_schedule);
1109 	}
1110 }
1111 
1112 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1113 {
1114 	init_request_from_bio(rq, bio);
1115 
1116 	if (blk_do_io_stat(rq)) {
1117 		rq->start_time = jiffies;
1118 		blk_account_io_start(rq, 1);
1119 	}
1120 }
1121 
1122 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1123 					 struct blk_mq_ctx *ctx,
1124 					 struct request *rq, struct bio *bio)
1125 {
1126 	struct request_queue *q = hctx->queue;
1127 
1128 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1129 		blk_mq_bio_to_request(rq, bio);
1130 		spin_lock(&ctx->lock);
1131 insert_rq:
1132 		__blk_mq_insert_request(hctx, rq, false);
1133 		spin_unlock(&ctx->lock);
1134 		return false;
1135 	} else {
1136 		spin_lock(&ctx->lock);
1137 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1138 			blk_mq_bio_to_request(rq, bio);
1139 			goto insert_rq;
1140 		}
1141 
1142 		spin_unlock(&ctx->lock);
1143 		__blk_mq_free_request(hctx, ctx, rq);
1144 		return true;
1145 	}
1146 }
1147 
1148 struct blk_map_ctx {
1149 	struct blk_mq_hw_ctx *hctx;
1150 	struct blk_mq_ctx *ctx;
1151 };
1152 
1153 static struct request *blk_mq_map_request(struct request_queue *q,
1154 					  struct bio *bio,
1155 					  struct blk_map_ctx *data)
1156 {
1157 	struct blk_mq_hw_ctx *hctx;
1158 	struct blk_mq_ctx *ctx;
1159 	struct request *rq;
1160 	int rw = bio_data_dir(bio);
1161 
1162 	if (unlikely(blk_mq_queue_enter(q))) {
1163 		bio_endio(bio, -EIO);
1164 		return NULL;
1165 	}
1166 
1167 	ctx = blk_mq_get_ctx(q);
1168 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1169 
1170 	if (rw_is_sync(bio->bi_rw))
1171 		rw |= REQ_SYNC;
1172 
1173 	trace_block_getrq(q, bio, rw);
1174 	rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
1175 	if (unlikely(!rq)) {
1176 		__blk_mq_run_hw_queue(hctx);
1177 		blk_mq_put_ctx(ctx);
1178 		trace_block_sleeprq(q, bio, rw);
1179 
1180 		ctx = blk_mq_get_ctx(q);
1181 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1182 		rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
1183 					    __GFP_WAIT|GFP_ATOMIC, false);
1184 	}
1185 
1186 	hctx->queued++;
1187 	data->hctx = hctx;
1188 	data->ctx = ctx;
1189 	return rq;
1190 }
1191 
1192 /*
1193  * Multiple hardware queue variant. This will not use per-process plugs,
1194  * but will attempt to bypass the hctx queueing if we can go straight to
1195  * hardware for SYNC IO.
1196  */
1197 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1198 {
1199 	const int is_sync = rw_is_sync(bio->bi_rw);
1200 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1201 	struct blk_map_ctx data;
1202 	struct request *rq;
1203 
1204 	blk_queue_bounce(q, &bio);
1205 
1206 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1207 		bio_endio(bio, -EIO);
1208 		return;
1209 	}
1210 
1211 	rq = blk_mq_map_request(q, bio, &data);
1212 	if (unlikely(!rq))
1213 		return;
1214 
1215 	if (unlikely(is_flush_fua)) {
1216 		blk_mq_bio_to_request(rq, bio);
1217 		blk_insert_flush(rq);
1218 		goto run_queue;
1219 	}
1220 
1221 	if (is_sync) {
1222 		int ret;
1223 
1224 		blk_mq_bio_to_request(rq, bio);
1225 		blk_mq_start_request(rq, true);
1226 		blk_add_timer(rq);
1227 
1228 		/*
1229 		 * For OK queue, we are done. For error, kill it. Any other
1230 		 * error (busy), just add it to our list as we previously
1231 		 * would have done
1232 		 */
1233 		ret = q->mq_ops->queue_rq(data.hctx, rq);
1234 		if (ret == BLK_MQ_RQ_QUEUE_OK)
1235 			goto done;
1236 		else {
1237 			__blk_mq_requeue_request(rq);
1238 
1239 			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1240 				rq->errors = -EIO;
1241 				blk_mq_end_io(rq, rq->errors);
1242 				goto done;
1243 			}
1244 		}
1245 	}
1246 
1247 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1248 		/*
1249 		 * For a SYNC request, send it to the hardware immediately. For
1250 		 * an ASYNC request, just ensure that we run it later on. The
1251 		 * latter allows for merging opportunities and more efficient
1252 		 * dispatching.
1253 		 */
1254 run_queue:
1255 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1256 	}
1257 done:
1258 	blk_mq_put_ctx(data.ctx);
1259 }
1260 
1261 /*
1262  * Single hardware queue variant. This will attempt to use any per-process
1263  * plug for merging and IO deferral.
1264  */
1265 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1266 {
1267 	const int is_sync = rw_is_sync(bio->bi_rw);
1268 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1269 	unsigned int use_plug, request_count = 0;
1270 	struct blk_map_ctx data;
1271 	struct request *rq;
1272 
1273 	/*
1274 	 * If we have multiple hardware queues, just go directly to
1275 	 * one of those for sync IO.
1276 	 */
1277 	use_plug = !is_flush_fua && !is_sync;
1278 
1279 	blk_queue_bounce(q, &bio);
1280 
1281 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1282 		bio_endio(bio, -EIO);
1283 		return;
1284 	}
1285 
1286 	if (use_plug && !blk_queue_nomerges(q) &&
1287 	    blk_attempt_plug_merge(q, bio, &request_count))
1288 		return;
1289 
1290 	rq = blk_mq_map_request(q, bio, &data);
1291 
1292 	if (unlikely(is_flush_fua)) {
1293 		blk_mq_bio_to_request(rq, bio);
1294 		blk_insert_flush(rq);
1295 		goto run_queue;
1296 	}
1297 
1298 	/*
1299 	 * A task plug currently exists. Since this is completely lockless,
1300 	 * utilize that to temporarily store requests until the task is
1301 	 * either done or scheduled away.
1302 	 */
1303 	if (use_plug) {
1304 		struct blk_plug *plug = current->plug;
1305 
1306 		if (plug) {
1307 			blk_mq_bio_to_request(rq, bio);
1308 			if (list_empty(&plug->mq_list))
1309 				trace_block_plug(q);
1310 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1311 				blk_flush_plug_list(plug, false);
1312 				trace_block_plug(q);
1313 			}
1314 			list_add_tail(&rq->queuelist, &plug->mq_list);
1315 			blk_mq_put_ctx(data.ctx);
1316 			return;
1317 		}
1318 	}
1319 
1320 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1321 		/*
1322 		 * For a SYNC request, send it to the hardware immediately. For
1323 		 * an ASYNC request, just ensure that we run it later on. The
1324 		 * latter allows for merging opportunities and more efficient
1325 		 * dispatching.
1326 		 */
1327 run_queue:
1328 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1329 	}
1330 
1331 	blk_mq_put_ctx(data.ctx);
1332 }
1333 
1334 /*
1335  * Default mapping to a software queue, since we use one per CPU.
1336  */
1337 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1338 {
1339 	return q->queue_hw_ctx[q->mq_map[cpu]];
1340 }
1341 EXPORT_SYMBOL(blk_mq_map_queue);
1342 
1343 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1344 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1345 {
1346 	struct page *page;
1347 
1348 	if (tags->rqs && set->ops->exit_request) {
1349 		int i;
1350 
1351 		for (i = 0; i < tags->nr_tags; i++) {
1352 			if (!tags->rqs[i])
1353 				continue;
1354 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1355 						hctx_idx, i);
1356 		}
1357 	}
1358 
1359 	while (!list_empty(&tags->page_list)) {
1360 		page = list_first_entry(&tags->page_list, struct page, lru);
1361 		list_del_init(&page->lru);
1362 		__free_pages(page, page->private);
1363 	}
1364 
1365 	kfree(tags->rqs);
1366 
1367 	blk_mq_free_tags(tags);
1368 }
1369 
1370 static size_t order_to_size(unsigned int order)
1371 {
1372 	return (size_t)PAGE_SIZE << order;
1373 }
1374 
1375 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1376 		unsigned int hctx_idx)
1377 {
1378 	struct blk_mq_tags *tags;
1379 	unsigned int i, j, entries_per_page, max_order = 4;
1380 	size_t rq_size, left;
1381 
1382 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1383 				set->numa_node);
1384 	if (!tags)
1385 		return NULL;
1386 
1387 	INIT_LIST_HEAD(&tags->page_list);
1388 
1389 	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1390 					GFP_KERNEL, set->numa_node);
1391 	if (!tags->rqs) {
1392 		blk_mq_free_tags(tags);
1393 		return NULL;
1394 	}
1395 
1396 	/*
1397 	 * rq_size is the size of the request plus driver payload, rounded
1398 	 * to the cacheline size
1399 	 */
1400 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1401 				cache_line_size());
1402 	left = rq_size * set->queue_depth;
1403 
1404 	for (i = 0; i < set->queue_depth; ) {
1405 		int this_order = max_order;
1406 		struct page *page;
1407 		int to_do;
1408 		void *p;
1409 
1410 		while (left < order_to_size(this_order - 1) && this_order)
1411 			this_order--;
1412 
1413 		do {
1414 			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1415 						this_order);
1416 			if (page)
1417 				break;
1418 			if (!this_order--)
1419 				break;
1420 			if (order_to_size(this_order) < rq_size)
1421 				break;
1422 		} while (1);
1423 
1424 		if (!page)
1425 			goto fail;
1426 
1427 		page->private = this_order;
1428 		list_add_tail(&page->lru, &tags->page_list);
1429 
1430 		p = page_address(page);
1431 		entries_per_page = order_to_size(this_order) / rq_size;
1432 		to_do = min(entries_per_page, set->queue_depth - i);
1433 		left -= to_do * rq_size;
1434 		for (j = 0; j < to_do; j++) {
1435 			tags->rqs[i] = p;
1436 			if (set->ops->init_request) {
1437 				if (set->ops->init_request(set->driver_data,
1438 						tags->rqs[i], hctx_idx, i,
1439 						set->numa_node))
1440 					goto fail;
1441 			}
1442 
1443 			p += rq_size;
1444 			i++;
1445 		}
1446 	}
1447 
1448 	return tags;
1449 
1450 fail:
1451 	pr_warn("%s: failed to allocate requests\n", __func__);
1452 	blk_mq_free_rq_map(set, tags, hctx_idx);
1453 	return NULL;
1454 }
1455 
1456 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1457 {
1458 	kfree(bitmap->map);
1459 }
1460 
1461 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1462 {
1463 	unsigned int bpw = 8, total, num_maps, i;
1464 
1465 	bitmap->bits_per_word = bpw;
1466 
1467 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1468 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1469 					GFP_KERNEL, node);
1470 	if (!bitmap->map)
1471 		return -ENOMEM;
1472 
1473 	bitmap->map_size = num_maps;
1474 
1475 	total = nr_cpu_ids;
1476 	for (i = 0; i < num_maps; i++) {
1477 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1478 		total -= bitmap->map[i].depth;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1485 {
1486 	struct request_queue *q = hctx->queue;
1487 	struct blk_mq_ctx *ctx;
1488 	LIST_HEAD(tmp);
1489 
1490 	/*
1491 	 * Move ctx entries to new CPU, if this one is going away.
1492 	 */
1493 	ctx = __blk_mq_get_ctx(q, cpu);
1494 
1495 	spin_lock(&ctx->lock);
1496 	if (!list_empty(&ctx->rq_list)) {
1497 		list_splice_init(&ctx->rq_list, &tmp);
1498 		blk_mq_hctx_clear_pending(hctx, ctx);
1499 	}
1500 	spin_unlock(&ctx->lock);
1501 
1502 	if (list_empty(&tmp))
1503 		return NOTIFY_OK;
1504 
1505 	ctx = blk_mq_get_ctx(q);
1506 	spin_lock(&ctx->lock);
1507 
1508 	while (!list_empty(&tmp)) {
1509 		struct request *rq;
1510 
1511 		rq = list_first_entry(&tmp, struct request, queuelist);
1512 		rq->mq_ctx = ctx;
1513 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1514 	}
1515 
1516 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1517 	blk_mq_hctx_mark_pending(hctx, ctx);
1518 
1519 	spin_unlock(&ctx->lock);
1520 
1521 	blk_mq_run_hw_queue(hctx, true);
1522 	blk_mq_put_ctx(ctx);
1523 	return NOTIFY_OK;
1524 }
1525 
1526 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1527 {
1528 	struct request_queue *q = hctx->queue;
1529 	struct blk_mq_tag_set *set = q->tag_set;
1530 
1531 	if (set->tags[hctx->queue_num])
1532 		return NOTIFY_OK;
1533 
1534 	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1535 	if (!set->tags[hctx->queue_num])
1536 		return NOTIFY_STOP;
1537 
1538 	hctx->tags = set->tags[hctx->queue_num];
1539 	return NOTIFY_OK;
1540 }
1541 
1542 static int blk_mq_hctx_notify(void *data, unsigned long action,
1543 			      unsigned int cpu)
1544 {
1545 	struct blk_mq_hw_ctx *hctx = data;
1546 
1547 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1548 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1549 	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1550 		return blk_mq_hctx_cpu_online(hctx, cpu);
1551 
1552 	return NOTIFY_OK;
1553 }
1554 
1555 static void blk_mq_exit_hw_queues(struct request_queue *q,
1556 		struct blk_mq_tag_set *set, int nr_queue)
1557 {
1558 	struct blk_mq_hw_ctx *hctx;
1559 	unsigned int i;
1560 
1561 	queue_for_each_hw_ctx(q, hctx, i) {
1562 		if (i == nr_queue)
1563 			break;
1564 
1565 		if (set->ops->exit_hctx)
1566 			set->ops->exit_hctx(hctx, i);
1567 
1568 		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1569 		kfree(hctx->ctxs);
1570 		blk_mq_free_bitmap(&hctx->ctx_map);
1571 	}
1572 
1573 }
1574 
1575 static void blk_mq_free_hw_queues(struct request_queue *q,
1576 		struct blk_mq_tag_set *set)
1577 {
1578 	struct blk_mq_hw_ctx *hctx;
1579 	unsigned int i;
1580 
1581 	queue_for_each_hw_ctx(q, hctx, i) {
1582 		free_cpumask_var(hctx->cpumask);
1583 		kfree(hctx);
1584 	}
1585 }
1586 
1587 static int blk_mq_init_hw_queues(struct request_queue *q,
1588 		struct blk_mq_tag_set *set)
1589 {
1590 	struct blk_mq_hw_ctx *hctx;
1591 	unsigned int i;
1592 
1593 	/*
1594 	 * Initialize hardware queues
1595 	 */
1596 	queue_for_each_hw_ctx(q, hctx, i) {
1597 		int node;
1598 
1599 		node = hctx->numa_node;
1600 		if (node == NUMA_NO_NODE)
1601 			node = hctx->numa_node = set->numa_node;
1602 
1603 		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1604 		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1605 		spin_lock_init(&hctx->lock);
1606 		INIT_LIST_HEAD(&hctx->dispatch);
1607 		hctx->queue = q;
1608 		hctx->queue_num = i;
1609 		hctx->flags = set->flags;
1610 		hctx->cmd_size = set->cmd_size;
1611 
1612 		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1613 						blk_mq_hctx_notify, hctx);
1614 		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1615 
1616 		hctx->tags = set->tags[i];
1617 
1618 		/*
1619 		 * Allocate space for all possible cpus to avoid allocation in
1620 		 * runtime
1621 		 */
1622 		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1623 						GFP_KERNEL, node);
1624 		if (!hctx->ctxs)
1625 			break;
1626 
1627 		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1628 			break;
1629 
1630 		hctx->nr_ctx = 0;
1631 
1632 		if (set->ops->init_hctx &&
1633 		    set->ops->init_hctx(hctx, set->driver_data, i))
1634 			break;
1635 	}
1636 
1637 	if (i == q->nr_hw_queues)
1638 		return 0;
1639 
1640 	/*
1641 	 * Init failed
1642 	 */
1643 	blk_mq_exit_hw_queues(q, set, i);
1644 
1645 	return 1;
1646 }
1647 
1648 static void blk_mq_init_cpu_queues(struct request_queue *q,
1649 				   unsigned int nr_hw_queues)
1650 {
1651 	unsigned int i;
1652 
1653 	for_each_possible_cpu(i) {
1654 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1655 		struct blk_mq_hw_ctx *hctx;
1656 
1657 		memset(__ctx, 0, sizeof(*__ctx));
1658 		__ctx->cpu = i;
1659 		spin_lock_init(&__ctx->lock);
1660 		INIT_LIST_HEAD(&__ctx->rq_list);
1661 		__ctx->queue = q;
1662 
1663 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1664 		if (!cpu_online(i))
1665 			continue;
1666 
1667 		hctx = q->mq_ops->map_queue(q, i);
1668 		cpumask_set_cpu(i, hctx->cpumask);
1669 		hctx->nr_ctx++;
1670 
1671 		/*
1672 		 * Set local node, IFF we have more than one hw queue. If
1673 		 * not, we remain on the home node of the device
1674 		 */
1675 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1676 			hctx->numa_node = cpu_to_node(i);
1677 	}
1678 }
1679 
1680 static void blk_mq_map_swqueue(struct request_queue *q)
1681 {
1682 	unsigned int i;
1683 	struct blk_mq_hw_ctx *hctx;
1684 	struct blk_mq_ctx *ctx;
1685 
1686 	queue_for_each_hw_ctx(q, hctx, i) {
1687 		cpumask_clear(hctx->cpumask);
1688 		hctx->nr_ctx = 0;
1689 	}
1690 
1691 	/*
1692 	 * Map software to hardware queues
1693 	 */
1694 	queue_for_each_ctx(q, ctx, i) {
1695 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1696 		if (!cpu_online(i))
1697 			continue;
1698 
1699 		hctx = q->mq_ops->map_queue(q, i);
1700 		cpumask_set_cpu(i, hctx->cpumask);
1701 		ctx->index_hw = hctx->nr_ctx;
1702 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1703 	}
1704 
1705 	queue_for_each_hw_ctx(q, hctx, i) {
1706 		/*
1707 		 * If not software queues are mapped to this hardware queue,
1708 		 * disable it and free the request entries
1709 		 */
1710 		if (!hctx->nr_ctx) {
1711 			struct blk_mq_tag_set *set = q->tag_set;
1712 
1713 			if (set->tags[i]) {
1714 				blk_mq_free_rq_map(set, set->tags[i], i);
1715 				set->tags[i] = NULL;
1716 				hctx->tags = NULL;
1717 			}
1718 			continue;
1719 		}
1720 
1721 		/*
1722 		 * Initialize batch roundrobin counts
1723 		 */
1724 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1725 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1726 	}
1727 }
1728 
1729 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1730 {
1731 	struct blk_mq_hw_ctx *hctx;
1732 	struct request_queue *q;
1733 	bool shared;
1734 	int i;
1735 
1736 	if (set->tag_list.next == set->tag_list.prev)
1737 		shared = false;
1738 	else
1739 		shared = true;
1740 
1741 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1742 		blk_mq_freeze_queue(q);
1743 
1744 		queue_for_each_hw_ctx(q, hctx, i) {
1745 			if (shared)
1746 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1747 			else
1748 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1749 		}
1750 		blk_mq_unfreeze_queue(q);
1751 	}
1752 }
1753 
1754 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1755 {
1756 	struct blk_mq_tag_set *set = q->tag_set;
1757 
1758 	blk_mq_freeze_queue(q);
1759 
1760 	mutex_lock(&set->tag_list_lock);
1761 	list_del_init(&q->tag_set_list);
1762 	blk_mq_update_tag_set_depth(set);
1763 	mutex_unlock(&set->tag_list_lock);
1764 
1765 	blk_mq_unfreeze_queue(q);
1766 }
1767 
1768 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1769 				     struct request_queue *q)
1770 {
1771 	q->tag_set = set;
1772 
1773 	mutex_lock(&set->tag_list_lock);
1774 	list_add_tail(&q->tag_set_list, &set->tag_list);
1775 	blk_mq_update_tag_set_depth(set);
1776 	mutex_unlock(&set->tag_list_lock);
1777 }
1778 
1779 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1780 {
1781 	struct blk_mq_hw_ctx **hctxs;
1782 	struct blk_mq_ctx *ctx;
1783 	struct request_queue *q;
1784 	unsigned int *map;
1785 	int i;
1786 
1787 	ctx = alloc_percpu(struct blk_mq_ctx);
1788 	if (!ctx)
1789 		return ERR_PTR(-ENOMEM);
1790 
1791 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1792 			set->numa_node);
1793 
1794 	if (!hctxs)
1795 		goto err_percpu;
1796 
1797 	map = blk_mq_make_queue_map(set);
1798 	if (!map)
1799 		goto err_map;
1800 
1801 	for (i = 0; i < set->nr_hw_queues; i++) {
1802 		int node = blk_mq_hw_queue_to_node(map, i);
1803 
1804 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1805 					GFP_KERNEL, node);
1806 		if (!hctxs[i])
1807 			goto err_hctxs;
1808 
1809 		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1810 			goto err_hctxs;
1811 
1812 		atomic_set(&hctxs[i]->nr_active, 0);
1813 		hctxs[i]->numa_node = node;
1814 		hctxs[i]->queue_num = i;
1815 	}
1816 
1817 	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1818 	if (!q)
1819 		goto err_hctxs;
1820 
1821 	if (percpu_counter_init(&q->mq_usage_counter, 0))
1822 		goto err_map;
1823 
1824 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1825 	blk_queue_rq_timeout(q, 30000);
1826 
1827 	q->nr_queues = nr_cpu_ids;
1828 	q->nr_hw_queues = set->nr_hw_queues;
1829 	q->mq_map = map;
1830 
1831 	q->queue_ctx = ctx;
1832 	q->queue_hw_ctx = hctxs;
1833 
1834 	q->mq_ops = set->ops;
1835 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1836 
1837 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1838 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1839 
1840 	q->sg_reserved_size = INT_MAX;
1841 
1842 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1843 	INIT_LIST_HEAD(&q->requeue_list);
1844 	spin_lock_init(&q->requeue_lock);
1845 
1846 	if (q->nr_hw_queues > 1)
1847 		blk_queue_make_request(q, blk_mq_make_request);
1848 	else
1849 		blk_queue_make_request(q, blk_sq_make_request);
1850 
1851 	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1852 	if (set->timeout)
1853 		blk_queue_rq_timeout(q, set->timeout);
1854 
1855 	/*
1856 	 * Do this after blk_queue_make_request() overrides it...
1857 	 */
1858 	q->nr_requests = set->queue_depth;
1859 
1860 	if (set->ops->complete)
1861 		blk_queue_softirq_done(q, set->ops->complete);
1862 
1863 	blk_mq_init_flush(q);
1864 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1865 
1866 	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1867 				set->cmd_size, cache_line_size()),
1868 				GFP_KERNEL);
1869 	if (!q->flush_rq)
1870 		goto err_hw;
1871 
1872 	if (blk_mq_init_hw_queues(q, set))
1873 		goto err_flush_rq;
1874 
1875 	mutex_lock(&all_q_mutex);
1876 	list_add_tail(&q->all_q_node, &all_q_list);
1877 	mutex_unlock(&all_q_mutex);
1878 
1879 	blk_mq_add_queue_tag_set(set, q);
1880 
1881 	blk_mq_map_swqueue(q);
1882 
1883 	return q;
1884 
1885 err_flush_rq:
1886 	kfree(q->flush_rq);
1887 err_hw:
1888 	blk_cleanup_queue(q);
1889 err_hctxs:
1890 	kfree(map);
1891 	for (i = 0; i < set->nr_hw_queues; i++) {
1892 		if (!hctxs[i])
1893 			break;
1894 		free_cpumask_var(hctxs[i]->cpumask);
1895 		kfree(hctxs[i]);
1896 	}
1897 err_map:
1898 	kfree(hctxs);
1899 err_percpu:
1900 	free_percpu(ctx);
1901 	return ERR_PTR(-ENOMEM);
1902 }
1903 EXPORT_SYMBOL(blk_mq_init_queue);
1904 
1905 void blk_mq_free_queue(struct request_queue *q)
1906 {
1907 	struct blk_mq_tag_set	*set = q->tag_set;
1908 
1909 	blk_mq_del_queue_tag_set(q);
1910 
1911 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1912 	blk_mq_free_hw_queues(q, set);
1913 
1914 	percpu_counter_destroy(&q->mq_usage_counter);
1915 
1916 	free_percpu(q->queue_ctx);
1917 	kfree(q->queue_hw_ctx);
1918 	kfree(q->mq_map);
1919 
1920 	q->queue_ctx = NULL;
1921 	q->queue_hw_ctx = NULL;
1922 	q->mq_map = NULL;
1923 
1924 	mutex_lock(&all_q_mutex);
1925 	list_del_init(&q->all_q_node);
1926 	mutex_unlock(&all_q_mutex);
1927 }
1928 
1929 /* Basically redo blk_mq_init_queue with queue frozen */
1930 static void blk_mq_queue_reinit(struct request_queue *q)
1931 {
1932 	blk_mq_freeze_queue(q);
1933 
1934 	blk_mq_sysfs_unregister(q);
1935 
1936 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1937 
1938 	/*
1939 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1940 	 * we should change hctx numa_node according to new topology (this
1941 	 * involves free and re-allocate memory, worthy doing?)
1942 	 */
1943 
1944 	blk_mq_map_swqueue(q);
1945 
1946 	blk_mq_sysfs_register(q);
1947 
1948 	blk_mq_unfreeze_queue(q);
1949 }
1950 
1951 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1952 				      unsigned long action, void *hcpu)
1953 {
1954 	struct request_queue *q;
1955 
1956 	/*
1957 	 * Before new mappings are established, hotadded cpu might already
1958 	 * start handling requests. This doesn't break anything as we map
1959 	 * offline CPUs to first hardware queue. We will re-init the queue
1960 	 * below to get optimal settings.
1961 	 */
1962 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1963 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1964 		return NOTIFY_OK;
1965 
1966 	mutex_lock(&all_q_mutex);
1967 	list_for_each_entry(q, &all_q_list, all_q_node)
1968 		blk_mq_queue_reinit(q);
1969 	mutex_unlock(&all_q_mutex);
1970 	return NOTIFY_OK;
1971 }
1972 
1973 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1974 {
1975 	int i;
1976 
1977 	if (!set->nr_hw_queues)
1978 		return -EINVAL;
1979 	if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1980 		return -EINVAL;
1981 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1982 		return -EINVAL;
1983 
1984 	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1985 		return -EINVAL;
1986 
1987 
1988 	set->tags = kmalloc_node(set->nr_hw_queues *
1989 				 sizeof(struct blk_mq_tags *),
1990 				 GFP_KERNEL, set->numa_node);
1991 	if (!set->tags)
1992 		goto out;
1993 
1994 	for (i = 0; i < set->nr_hw_queues; i++) {
1995 		set->tags[i] = blk_mq_init_rq_map(set, i);
1996 		if (!set->tags[i])
1997 			goto out_unwind;
1998 	}
1999 
2000 	mutex_init(&set->tag_list_lock);
2001 	INIT_LIST_HEAD(&set->tag_list);
2002 
2003 	return 0;
2004 
2005 out_unwind:
2006 	while (--i >= 0)
2007 		blk_mq_free_rq_map(set, set->tags[i], i);
2008 out:
2009 	return -ENOMEM;
2010 }
2011 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2012 
2013 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2014 {
2015 	int i;
2016 
2017 	for (i = 0; i < set->nr_hw_queues; i++) {
2018 		if (set->tags[i])
2019 			blk_mq_free_rq_map(set, set->tags[i], i);
2020 	}
2021 
2022 	kfree(set->tags);
2023 }
2024 EXPORT_SYMBOL(blk_mq_free_tag_set);
2025 
2026 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2027 {
2028 	struct blk_mq_tag_set *set = q->tag_set;
2029 	struct blk_mq_hw_ctx *hctx;
2030 	int i, ret;
2031 
2032 	if (!set || nr > set->queue_depth)
2033 		return -EINVAL;
2034 
2035 	ret = 0;
2036 	queue_for_each_hw_ctx(q, hctx, i) {
2037 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2038 		if (ret)
2039 			break;
2040 	}
2041 
2042 	if (!ret)
2043 		q->nr_requests = nr;
2044 
2045 	return ret;
2046 }
2047 
2048 void blk_mq_disable_hotplug(void)
2049 {
2050 	mutex_lock(&all_q_mutex);
2051 }
2052 
2053 void blk_mq_enable_hotplug(void)
2054 {
2055 	mutex_unlock(&all_q_mutex);
2056 }
2057 
2058 static int __init blk_mq_init(void)
2059 {
2060 	blk_mq_cpu_init();
2061 
2062 	/* Must be called after percpu_counter_hotcpu_callback() */
2063 	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2064 
2065 	return 0;
2066 }
2067 subsys_initcall(blk_mq_init);
2068