1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 79 } 80 81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 82 struct blk_mq_ctx *ctx) 83 { 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 85 } 86 87 struct mq_inflight { 88 struct hd_struct *part; 89 unsigned int *inflight; 90 }; 91 92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 93 struct request *rq, void *priv, 94 bool reserved) 95 { 96 struct mq_inflight *mi = priv; 97 98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) { 99 /* 100 * index[0] counts the specific partition that was asked 101 * for. index[1] counts the ones that are active on the 102 * whole device, so increment that if mi->part is indeed 103 * a partition, and not a whole device. 104 */ 105 if (rq->part == mi->part) 106 mi->inflight[0]++; 107 if (mi->part->partno) 108 mi->inflight[1]++; 109 } 110 } 111 112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 113 unsigned int inflight[2]) 114 { 115 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 116 117 inflight[0] = inflight[1] = 0; 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 } 120 121 void blk_freeze_queue_start(struct request_queue *q) 122 { 123 int freeze_depth; 124 125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 126 if (freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 if (q->mq_ops) 129 blk_mq_run_hw_queues(q, false); 130 } 131 } 132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 133 134 void blk_mq_freeze_queue_wait(struct request_queue *q) 135 { 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 137 } 138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 139 140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 141 unsigned long timeout) 142 { 143 return wait_event_timeout(q->mq_freeze_wq, 144 percpu_ref_is_zero(&q->q_usage_counter), 145 timeout); 146 } 147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 148 149 /* 150 * Guarantee no request is in use, so we can change any data structure of 151 * the queue afterward. 152 */ 153 void blk_freeze_queue(struct request_queue *q) 154 { 155 /* 156 * In the !blk_mq case we are only calling this to kill the 157 * q_usage_counter, otherwise this increases the freeze depth 158 * and waits for it to return to zero. For this reason there is 159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 160 * exported to drivers as the only user for unfreeze is blk_mq. 161 */ 162 blk_freeze_queue_start(q); 163 if (!q->mq_ops) 164 blk_drain_queue(q); 165 blk_mq_freeze_queue_wait(q); 166 } 167 168 void blk_mq_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * ...just an alias to keep freeze and unfreeze actions balanced 172 * in the blk_mq_* namespace 173 */ 174 blk_freeze_queue(q); 175 } 176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 177 178 void blk_mq_unfreeze_queue(struct request_queue *q) 179 { 180 int freeze_depth; 181 182 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 183 WARN_ON_ONCE(freeze_depth < 0); 184 if (!freeze_depth) { 185 percpu_ref_reinit(&q->q_usage_counter); 186 wake_up_all(&q->mq_freeze_wq); 187 } 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 190 191 /* 192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 193 * mpt3sas driver such that this function can be removed. 194 */ 195 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 196 { 197 unsigned long flags; 198 199 spin_lock_irqsave(q->queue_lock, flags); 200 queue_flag_set(QUEUE_FLAG_QUIESCED, q); 201 spin_unlock_irqrestore(q->queue_lock, flags); 202 } 203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 204 205 /** 206 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 207 * @q: request queue. 208 * 209 * Note: this function does not prevent that the struct request end_io() 210 * callback function is invoked. Once this function is returned, we make 211 * sure no dispatch can happen until the queue is unquiesced via 212 * blk_mq_unquiesce_queue(). 213 */ 214 void blk_mq_quiesce_queue(struct request_queue *q) 215 { 216 struct blk_mq_hw_ctx *hctx; 217 unsigned int i; 218 bool rcu = false; 219 220 blk_mq_quiesce_queue_nowait(q); 221 222 queue_for_each_hw_ctx(q, hctx, i) { 223 if (hctx->flags & BLK_MQ_F_BLOCKING) 224 synchronize_srcu(hctx->srcu); 225 else 226 rcu = true; 227 } 228 if (rcu) 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 232 233 /* 234 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 235 * @q: request queue. 236 * 237 * This function recovers queue into the state before quiescing 238 * which is done by blk_mq_quiesce_queue. 239 */ 240 void blk_mq_unquiesce_queue(struct request_queue *q) 241 { 242 unsigned long flags; 243 244 spin_lock_irqsave(q->queue_lock, flags); 245 queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 246 spin_unlock_irqrestore(q->queue_lock, flags); 247 248 /* dispatch requests which are inserted during quiescing */ 249 blk_mq_run_hw_queues(q, true); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 252 253 void blk_mq_wake_waiters(struct request_queue *q) 254 { 255 struct blk_mq_hw_ctx *hctx; 256 unsigned int i; 257 258 queue_for_each_hw_ctx(q, hctx, i) 259 if (blk_mq_hw_queue_mapped(hctx)) 260 blk_mq_tag_wakeup_all(hctx->tags, true); 261 } 262 263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 264 { 265 return blk_mq_has_free_tags(hctx->tags); 266 } 267 EXPORT_SYMBOL(blk_mq_can_queue); 268 269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 270 unsigned int tag, unsigned int op) 271 { 272 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 273 struct request *rq = tags->static_rqs[tag]; 274 req_flags_t rq_flags = 0; 275 276 if (data->flags & BLK_MQ_REQ_INTERNAL) { 277 rq->tag = -1; 278 rq->internal_tag = tag; 279 } else { 280 if (blk_mq_tag_busy(data->hctx)) { 281 rq_flags = RQF_MQ_INFLIGHT; 282 atomic_inc(&data->hctx->nr_active); 283 } 284 rq->tag = tag; 285 rq->internal_tag = -1; 286 data->hctx->tags->rqs[rq->tag] = rq; 287 } 288 289 /* csd/requeue_work/fifo_time is initialized before use */ 290 rq->q = data->q; 291 rq->mq_ctx = data->ctx; 292 rq->rq_flags = rq_flags; 293 rq->cpu = -1; 294 rq->cmd_flags = op; 295 if (data->flags & BLK_MQ_REQ_PREEMPT) 296 rq->rq_flags |= RQF_PREEMPT; 297 if (blk_queue_io_stat(data->q)) 298 rq->rq_flags |= RQF_IO_STAT; 299 INIT_LIST_HEAD(&rq->queuelist); 300 INIT_HLIST_NODE(&rq->hash); 301 RB_CLEAR_NODE(&rq->rb_node); 302 rq->rq_disk = NULL; 303 rq->part = NULL; 304 rq->start_time = jiffies; 305 rq->nr_phys_segments = 0; 306 #if defined(CONFIG_BLK_DEV_INTEGRITY) 307 rq->nr_integrity_segments = 0; 308 #endif 309 rq->special = NULL; 310 /* tag was already set */ 311 rq->extra_len = 0; 312 rq->__deadline = 0; 313 314 INIT_LIST_HEAD(&rq->timeout_list); 315 rq->timeout = 0; 316 317 rq->end_io = NULL; 318 rq->end_io_data = NULL; 319 rq->next_rq = NULL; 320 321 #ifdef CONFIG_BLK_CGROUP 322 rq->rl = NULL; 323 set_start_time_ns(rq); 324 rq->io_start_time_ns = 0; 325 #endif 326 327 data->ctx->rq_dispatched[op_is_sync(op)]++; 328 return rq; 329 } 330 331 static struct request *blk_mq_get_request(struct request_queue *q, 332 struct bio *bio, unsigned int op, 333 struct blk_mq_alloc_data *data) 334 { 335 struct elevator_queue *e = q->elevator; 336 struct request *rq; 337 unsigned int tag; 338 bool put_ctx_on_error = false; 339 340 blk_queue_enter_live(q); 341 data->q = q; 342 if (likely(!data->ctx)) { 343 data->ctx = blk_mq_get_ctx(q); 344 put_ctx_on_error = true; 345 } 346 if (likely(!data->hctx)) 347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 348 if (op & REQ_NOWAIT) 349 data->flags |= BLK_MQ_REQ_NOWAIT; 350 351 if (e) { 352 data->flags |= BLK_MQ_REQ_INTERNAL; 353 354 /* 355 * Flush requests are special and go directly to the 356 * dispatch list. 357 */ 358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth) 359 e->type->ops.mq.limit_depth(op, data); 360 } 361 362 tag = blk_mq_get_tag(data); 363 if (tag == BLK_MQ_TAG_FAIL) { 364 if (put_ctx_on_error) { 365 blk_mq_put_ctx(data->ctx); 366 data->ctx = NULL; 367 } 368 blk_queue_exit(q); 369 return NULL; 370 } 371 372 rq = blk_mq_rq_ctx_init(data, tag, op); 373 if (!op_is_flush(op)) { 374 rq->elv.icq = NULL; 375 if (e && e->type->ops.mq.prepare_request) { 376 if (e->type->icq_cache && rq_ioc(bio)) 377 blk_mq_sched_assign_ioc(rq, bio); 378 379 e->type->ops.mq.prepare_request(rq, bio); 380 rq->rq_flags |= RQF_ELVPRIV; 381 } 382 } 383 data->hctx->queued++; 384 return rq; 385 } 386 387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 388 blk_mq_req_flags_t flags) 389 { 390 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 391 struct request *rq; 392 int ret; 393 394 ret = blk_queue_enter(q, flags); 395 if (ret) 396 return ERR_PTR(ret); 397 398 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 399 blk_queue_exit(q); 400 401 if (!rq) 402 return ERR_PTR(-EWOULDBLOCK); 403 404 blk_mq_put_ctx(alloc_data.ctx); 405 406 rq->__data_len = 0; 407 rq->__sector = (sector_t) -1; 408 rq->bio = rq->biotail = NULL; 409 return rq; 410 } 411 EXPORT_SYMBOL(blk_mq_alloc_request); 412 413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 415 { 416 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 417 struct request *rq; 418 unsigned int cpu; 419 int ret; 420 421 /* 422 * If the tag allocator sleeps we could get an allocation for a 423 * different hardware context. No need to complicate the low level 424 * allocator for this for the rare use case of a command tied to 425 * a specific queue. 426 */ 427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 428 return ERR_PTR(-EINVAL); 429 430 if (hctx_idx >= q->nr_hw_queues) 431 return ERR_PTR(-EIO); 432 433 ret = blk_queue_enter(q, flags); 434 if (ret) 435 return ERR_PTR(ret); 436 437 /* 438 * Check if the hardware context is actually mapped to anything. 439 * If not tell the caller that it should skip this queue. 440 */ 441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 443 blk_queue_exit(q); 444 return ERR_PTR(-EXDEV); 445 } 446 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 448 449 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 450 blk_queue_exit(q); 451 452 if (!rq) 453 return ERR_PTR(-EWOULDBLOCK); 454 455 return rq; 456 } 457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 458 459 void blk_mq_free_request(struct request *rq) 460 { 461 struct request_queue *q = rq->q; 462 struct elevator_queue *e = q->elevator; 463 struct blk_mq_ctx *ctx = rq->mq_ctx; 464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 465 const int sched_tag = rq->internal_tag; 466 467 if (rq->rq_flags & RQF_ELVPRIV) { 468 if (e && e->type->ops.mq.finish_request) 469 e->type->ops.mq.finish_request(rq); 470 if (rq->elv.icq) { 471 put_io_context(rq->elv.icq->ioc); 472 rq->elv.icq = NULL; 473 } 474 } 475 476 ctx->rq_completed[rq_is_sync(rq)]++; 477 if (rq->rq_flags & RQF_MQ_INFLIGHT) 478 atomic_dec(&hctx->nr_active); 479 480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 481 laptop_io_completion(q->backing_dev_info); 482 483 wbt_done(q->rq_wb, &rq->issue_stat); 484 485 if (blk_rq_rl(rq)) 486 blk_put_rl(blk_rq_rl(rq)); 487 488 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 489 if (rq->tag != -1) 490 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 491 if (sched_tag != -1) 492 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 493 blk_mq_sched_restart(hctx); 494 blk_queue_exit(q); 495 } 496 EXPORT_SYMBOL_GPL(blk_mq_free_request); 497 498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 499 { 500 blk_account_io_done(rq); 501 502 if (rq->end_io) { 503 wbt_done(rq->q->rq_wb, &rq->issue_stat); 504 rq->end_io(rq, error); 505 } else { 506 if (unlikely(blk_bidi_rq(rq))) 507 blk_mq_free_request(rq->next_rq); 508 blk_mq_free_request(rq); 509 } 510 } 511 EXPORT_SYMBOL(__blk_mq_end_request); 512 513 void blk_mq_end_request(struct request *rq, blk_status_t error) 514 { 515 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 516 BUG(); 517 __blk_mq_end_request(rq, error); 518 } 519 EXPORT_SYMBOL(blk_mq_end_request); 520 521 static void __blk_mq_complete_request_remote(void *data) 522 { 523 struct request *rq = data; 524 525 rq->q->softirq_done_fn(rq); 526 } 527 528 static void __blk_mq_complete_request(struct request *rq) 529 { 530 struct blk_mq_ctx *ctx = rq->mq_ctx; 531 bool shared = false; 532 int cpu; 533 534 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT); 535 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE); 536 537 if (rq->internal_tag != -1) 538 blk_mq_sched_completed_request(rq); 539 if (rq->rq_flags & RQF_STATS) { 540 blk_mq_poll_stats_start(rq->q); 541 blk_stat_add(rq); 542 } 543 544 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 545 rq->q->softirq_done_fn(rq); 546 return; 547 } 548 549 cpu = get_cpu(); 550 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 551 shared = cpus_share_cache(cpu, ctx->cpu); 552 553 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 554 rq->csd.func = __blk_mq_complete_request_remote; 555 rq->csd.info = rq; 556 rq->csd.flags = 0; 557 smp_call_function_single_async(ctx->cpu, &rq->csd); 558 } else { 559 rq->q->softirq_done_fn(rq); 560 } 561 put_cpu(); 562 } 563 564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 565 __releases(hctx->srcu) 566 { 567 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 568 rcu_read_unlock(); 569 else 570 srcu_read_unlock(hctx->srcu, srcu_idx); 571 } 572 573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 574 __acquires(hctx->srcu) 575 { 576 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 577 /* shut up gcc false positive */ 578 *srcu_idx = 0; 579 rcu_read_lock(); 580 } else 581 *srcu_idx = srcu_read_lock(hctx->srcu); 582 } 583 584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate) 585 { 586 unsigned long flags; 587 588 /* 589 * blk_mq_rq_aborted_gstate() is used from the completion path and 590 * can thus be called from irq context. u64_stats_fetch in the 591 * middle of update on the same CPU leads to lockup. Disable irq 592 * while updating. 593 */ 594 local_irq_save(flags); 595 u64_stats_update_begin(&rq->aborted_gstate_sync); 596 rq->aborted_gstate = gstate; 597 u64_stats_update_end(&rq->aborted_gstate_sync); 598 local_irq_restore(flags); 599 } 600 601 static u64 blk_mq_rq_aborted_gstate(struct request *rq) 602 { 603 unsigned int start; 604 u64 aborted_gstate; 605 606 do { 607 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync); 608 aborted_gstate = rq->aborted_gstate; 609 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start)); 610 611 return aborted_gstate; 612 } 613 614 /** 615 * blk_mq_complete_request - end I/O on a request 616 * @rq: the request being processed 617 * 618 * Description: 619 * Ends all I/O on a request. It does not handle partial completions. 620 * The actual completion happens out-of-order, through a IPI handler. 621 **/ 622 void blk_mq_complete_request(struct request *rq) 623 { 624 struct request_queue *q = rq->q; 625 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 626 int srcu_idx; 627 628 if (unlikely(blk_should_fake_timeout(q))) 629 return; 630 631 /* 632 * If @rq->aborted_gstate equals the current instance, timeout is 633 * claiming @rq and we lost. This is synchronized through 634 * hctx_lock(). See blk_mq_timeout_work() for details. 635 * 636 * Completion path never blocks and we can directly use RCU here 637 * instead of hctx_lock() which can be either RCU or SRCU. 638 * However, that would complicate paths which want to synchronize 639 * against us. Let stay in sync with the issue path so that 640 * hctx_lock() covers both issue and completion paths. 641 */ 642 hctx_lock(hctx, &srcu_idx); 643 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate) 644 __blk_mq_complete_request(rq); 645 hctx_unlock(hctx, srcu_idx); 646 } 647 EXPORT_SYMBOL(blk_mq_complete_request); 648 649 int blk_mq_request_started(struct request *rq) 650 { 651 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 652 } 653 EXPORT_SYMBOL_GPL(blk_mq_request_started); 654 655 void blk_mq_start_request(struct request *rq) 656 { 657 struct request_queue *q = rq->q; 658 659 blk_mq_sched_started_request(rq); 660 661 trace_block_rq_issue(q, rq); 662 663 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 664 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq)); 665 rq->rq_flags |= RQF_STATS; 666 wbt_issue(q->rq_wb, &rq->issue_stat); 667 } 668 669 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 670 671 /* 672 * Mark @rq in-flight which also advances the generation number, 673 * and register for timeout. Protect with a seqcount to allow the 674 * timeout path to read both @rq->gstate and @rq->deadline 675 * coherently. 676 * 677 * This is the only place where a request is marked in-flight. If 678 * the timeout path reads an in-flight @rq->gstate, the 679 * @rq->deadline it reads together under @rq->gstate_seq is 680 * guaranteed to be the matching one. 681 */ 682 preempt_disable(); 683 write_seqcount_begin(&rq->gstate_seq); 684 685 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT); 686 blk_add_timer(rq); 687 688 write_seqcount_end(&rq->gstate_seq); 689 preempt_enable(); 690 691 if (q->dma_drain_size && blk_rq_bytes(rq)) { 692 /* 693 * Make sure space for the drain appears. We know we can do 694 * this because max_hw_segments has been adjusted to be one 695 * fewer than the device can handle. 696 */ 697 rq->nr_phys_segments++; 698 } 699 } 700 EXPORT_SYMBOL(blk_mq_start_request); 701 702 /* 703 * When we reach here because queue is busy, it's safe to change the state 704 * to IDLE without checking @rq->aborted_gstate because we should still be 705 * holding the RCU read lock and thus protected against timeout. 706 */ 707 static void __blk_mq_requeue_request(struct request *rq) 708 { 709 struct request_queue *q = rq->q; 710 711 blk_mq_put_driver_tag(rq); 712 713 trace_block_rq_requeue(q, rq); 714 wbt_requeue(q->rq_wb, &rq->issue_stat); 715 blk_mq_sched_requeue_request(rq); 716 717 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) { 718 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 719 if (q->dma_drain_size && blk_rq_bytes(rq)) 720 rq->nr_phys_segments--; 721 } 722 } 723 724 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 725 { 726 __blk_mq_requeue_request(rq); 727 728 BUG_ON(blk_queued_rq(rq)); 729 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 730 } 731 EXPORT_SYMBOL(blk_mq_requeue_request); 732 733 static void blk_mq_requeue_work(struct work_struct *work) 734 { 735 struct request_queue *q = 736 container_of(work, struct request_queue, requeue_work.work); 737 LIST_HEAD(rq_list); 738 struct request *rq, *next; 739 740 spin_lock_irq(&q->requeue_lock); 741 list_splice_init(&q->requeue_list, &rq_list); 742 spin_unlock_irq(&q->requeue_lock); 743 744 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 745 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 746 continue; 747 748 rq->rq_flags &= ~RQF_SOFTBARRIER; 749 list_del_init(&rq->queuelist); 750 blk_mq_sched_insert_request(rq, true, false, false); 751 } 752 753 while (!list_empty(&rq_list)) { 754 rq = list_entry(rq_list.next, struct request, queuelist); 755 list_del_init(&rq->queuelist); 756 blk_mq_sched_insert_request(rq, false, false, false); 757 } 758 759 blk_mq_run_hw_queues(q, false); 760 } 761 762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 763 bool kick_requeue_list) 764 { 765 struct request_queue *q = rq->q; 766 unsigned long flags; 767 768 /* 769 * We abuse this flag that is otherwise used by the I/O scheduler to 770 * request head insertion from the workqueue. 771 */ 772 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 773 774 spin_lock_irqsave(&q->requeue_lock, flags); 775 if (at_head) { 776 rq->rq_flags |= RQF_SOFTBARRIER; 777 list_add(&rq->queuelist, &q->requeue_list); 778 } else { 779 list_add_tail(&rq->queuelist, &q->requeue_list); 780 } 781 spin_unlock_irqrestore(&q->requeue_lock, flags); 782 783 if (kick_requeue_list) 784 blk_mq_kick_requeue_list(q); 785 } 786 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 787 788 void blk_mq_kick_requeue_list(struct request_queue *q) 789 { 790 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 791 } 792 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 793 794 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 795 unsigned long msecs) 796 { 797 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 798 msecs_to_jiffies(msecs)); 799 } 800 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 801 802 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 803 { 804 if (tag < tags->nr_tags) { 805 prefetch(tags->rqs[tag]); 806 return tags->rqs[tag]; 807 } 808 809 return NULL; 810 } 811 EXPORT_SYMBOL(blk_mq_tag_to_rq); 812 813 struct blk_mq_timeout_data { 814 unsigned long next; 815 unsigned int next_set; 816 unsigned int nr_expired; 817 }; 818 819 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 820 { 821 const struct blk_mq_ops *ops = req->q->mq_ops; 822 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 823 824 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED; 825 826 if (ops->timeout) 827 ret = ops->timeout(req, reserved); 828 829 switch (ret) { 830 case BLK_EH_HANDLED: 831 __blk_mq_complete_request(req); 832 break; 833 case BLK_EH_RESET_TIMER: 834 /* 835 * As nothing prevents from completion happening while 836 * ->aborted_gstate is set, this may lead to ignored 837 * completions and further spurious timeouts. 838 */ 839 blk_mq_rq_update_aborted_gstate(req, 0); 840 blk_add_timer(req); 841 break; 842 case BLK_EH_NOT_HANDLED: 843 break; 844 default: 845 printk(KERN_ERR "block: bad eh return: %d\n", ret); 846 break; 847 } 848 } 849 850 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 851 struct request *rq, void *priv, bool reserved) 852 { 853 struct blk_mq_timeout_data *data = priv; 854 unsigned long gstate, deadline; 855 int start; 856 857 might_sleep(); 858 859 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) 860 return; 861 862 /* read coherent snapshots of @rq->state_gen and @rq->deadline */ 863 while (true) { 864 start = read_seqcount_begin(&rq->gstate_seq); 865 gstate = READ_ONCE(rq->gstate); 866 deadline = blk_rq_deadline(rq); 867 if (!read_seqcount_retry(&rq->gstate_seq, start)) 868 break; 869 cond_resched(); 870 } 871 872 /* if in-flight && overdue, mark for abortion */ 873 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT && 874 time_after_eq(jiffies, deadline)) { 875 blk_mq_rq_update_aborted_gstate(rq, gstate); 876 data->nr_expired++; 877 hctx->nr_expired++; 878 } else if (!data->next_set || time_after(data->next, deadline)) { 879 data->next = deadline; 880 data->next_set = 1; 881 } 882 } 883 884 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx, 885 struct request *rq, void *priv, bool reserved) 886 { 887 /* 888 * We marked @rq->aborted_gstate and waited for RCU. If there were 889 * completions that we lost to, they would have finished and 890 * updated @rq->gstate by now; otherwise, the completion path is 891 * now guaranteed to see @rq->aborted_gstate and yield. If 892 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours. 893 */ 894 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) && 895 READ_ONCE(rq->gstate) == rq->aborted_gstate) 896 blk_mq_rq_timed_out(rq, reserved); 897 } 898 899 static void blk_mq_timeout_work(struct work_struct *work) 900 { 901 struct request_queue *q = 902 container_of(work, struct request_queue, timeout_work); 903 struct blk_mq_timeout_data data = { 904 .next = 0, 905 .next_set = 0, 906 .nr_expired = 0, 907 }; 908 struct blk_mq_hw_ctx *hctx; 909 int i; 910 911 /* A deadlock might occur if a request is stuck requiring a 912 * timeout at the same time a queue freeze is waiting 913 * completion, since the timeout code would not be able to 914 * acquire the queue reference here. 915 * 916 * That's why we don't use blk_queue_enter here; instead, we use 917 * percpu_ref_tryget directly, because we need to be able to 918 * obtain a reference even in the short window between the queue 919 * starting to freeze, by dropping the first reference in 920 * blk_freeze_queue_start, and the moment the last request is 921 * consumed, marked by the instant q_usage_counter reaches 922 * zero. 923 */ 924 if (!percpu_ref_tryget(&q->q_usage_counter)) 925 return; 926 927 /* scan for the expired ones and set their ->aborted_gstate */ 928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 929 930 if (data.nr_expired) { 931 bool has_rcu = false; 932 933 /* 934 * Wait till everyone sees ->aborted_gstate. The 935 * sequential waits for SRCUs aren't ideal. If this ever 936 * becomes a problem, we can add per-hw_ctx rcu_head and 937 * wait in parallel. 938 */ 939 queue_for_each_hw_ctx(q, hctx, i) { 940 if (!hctx->nr_expired) 941 continue; 942 943 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 944 has_rcu = true; 945 else 946 synchronize_srcu(hctx->srcu); 947 948 hctx->nr_expired = 0; 949 } 950 if (has_rcu) 951 synchronize_rcu(); 952 953 /* terminate the ones we won */ 954 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL); 955 } 956 957 if (data.next_set) { 958 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 959 mod_timer(&q->timeout, data.next); 960 } else { 961 /* 962 * Request timeouts are handled as a forward rolling timer. If 963 * we end up here it means that no requests are pending and 964 * also that no request has been pending for a while. Mark 965 * each hctx as idle. 966 */ 967 queue_for_each_hw_ctx(q, hctx, i) { 968 /* the hctx may be unmapped, so check it here */ 969 if (blk_mq_hw_queue_mapped(hctx)) 970 blk_mq_tag_idle(hctx); 971 } 972 } 973 blk_queue_exit(q); 974 } 975 976 struct flush_busy_ctx_data { 977 struct blk_mq_hw_ctx *hctx; 978 struct list_head *list; 979 }; 980 981 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 982 { 983 struct flush_busy_ctx_data *flush_data = data; 984 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 985 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 986 987 sbitmap_clear_bit(sb, bitnr); 988 spin_lock(&ctx->lock); 989 list_splice_tail_init(&ctx->rq_list, flush_data->list); 990 spin_unlock(&ctx->lock); 991 return true; 992 } 993 994 /* 995 * Process software queues that have been marked busy, splicing them 996 * to the for-dispatch 997 */ 998 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 999 { 1000 struct flush_busy_ctx_data data = { 1001 .hctx = hctx, 1002 .list = list, 1003 }; 1004 1005 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1006 } 1007 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1008 1009 struct dispatch_rq_data { 1010 struct blk_mq_hw_ctx *hctx; 1011 struct request *rq; 1012 }; 1013 1014 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1015 void *data) 1016 { 1017 struct dispatch_rq_data *dispatch_data = data; 1018 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1019 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1020 1021 spin_lock(&ctx->lock); 1022 if (unlikely(!list_empty(&ctx->rq_list))) { 1023 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 1024 list_del_init(&dispatch_data->rq->queuelist); 1025 if (list_empty(&ctx->rq_list)) 1026 sbitmap_clear_bit(sb, bitnr); 1027 } 1028 spin_unlock(&ctx->lock); 1029 1030 return !dispatch_data->rq; 1031 } 1032 1033 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1034 struct blk_mq_ctx *start) 1035 { 1036 unsigned off = start ? start->index_hw : 0; 1037 struct dispatch_rq_data data = { 1038 .hctx = hctx, 1039 .rq = NULL, 1040 }; 1041 1042 __sbitmap_for_each_set(&hctx->ctx_map, off, 1043 dispatch_rq_from_ctx, &data); 1044 1045 return data.rq; 1046 } 1047 1048 static inline unsigned int queued_to_index(unsigned int queued) 1049 { 1050 if (!queued) 1051 return 0; 1052 1053 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1054 } 1055 1056 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 1057 bool wait) 1058 { 1059 struct blk_mq_alloc_data data = { 1060 .q = rq->q, 1061 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 1062 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 1063 }; 1064 1065 might_sleep_if(wait); 1066 1067 if (rq->tag != -1) 1068 goto done; 1069 1070 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1071 data.flags |= BLK_MQ_REQ_RESERVED; 1072 1073 rq->tag = blk_mq_get_tag(&data); 1074 if (rq->tag >= 0) { 1075 if (blk_mq_tag_busy(data.hctx)) { 1076 rq->rq_flags |= RQF_MQ_INFLIGHT; 1077 atomic_inc(&data.hctx->nr_active); 1078 } 1079 data.hctx->tags->rqs[rq->tag] = rq; 1080 } 1081 1082 done: 1083 if (hctx) 1084 *hctx = data.hctx; 1085 return rq->tag != -1; 1086 } 1087 1088 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1089 int flags, void *key) 1090 { 1091 struct blk_mq_hw_ctx *hctx; 1092 1093 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1094 1095 list_del_init(&wait->entry); 1096 blk_mq_run_hw_queue(hctx, true); 1097 return 1; 1098 } 1099 1100 /* 1101 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1102 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1103 * restart. For both cases, take care to check the condition again after 1104 * marking us as waiting. 1105 */ 1106 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx, 1107 struct request *rq) 1108 { 1109 struct blk_mq_hw_ctx *this_hctx = *hctx; 1110 struct sbq_wait_state *ws; 1111 wait_queue_entry_t *wait; 1112 bool ret; 1113 1114 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1115 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state)) 1116 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state); 1117 1118 /* 1119 * It's possible that a tag was freed in the window between the 1120 * allocation failure and adding the hardware queue to the wait 1121 * queue. 1122 * 1123 * Don't clear RESTART here, someone else could have set it. 1124 * At most this will cost an extra queue run. 1125 */ 1126 return blk_mq_get_driver_tag(rq, hctx, false); 1127 } 1128 1129 wait = &this_hctx->dispatch_wait; 1130 if (!list_empty_careful(&wait->entry)) 1131 return false; 1132 1133 spin_lock(&this_hctx->lock); 1134 if (!list_empty(&wait->entry)) { 1135 spin_unlock(&this_hctx->lock); 1136 return false; 1137 } 1138 1139 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx); 1140 add_wait_queue(&ws->wait, wait); 1141 1142 /* 1143 * It's possible that a tag was freed in the window between the 1144 * allocation failure and adding the hardware queue to the wait 1145 * queue. 1146 */ 1147 ret = blk_mq_get_driver_tag(rq, hctx, false); 1148 if (!ret) { 1149 spin_unlock(&this_hctx->lock); 1150 return false; 1151 } 1152 1153 /* 1154 * We got a tag, remove ourselves from the wait queue to ensure 1155 * someone else gets the wakeup. 1156 */ 1157 spin_lock_irq(&ws->wait.lock); 1158 list_del_init(&wait->entry); 1159 spin_unlock_irq(&ws->wait.lock); 1160 spin_unlock(&this_hctx->lock); 1161 1162 return true; 1163 } 1164 1165 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1166 1167 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1168 bool got_budget) 1169 { 1170 struct blk_mq_hw_ctx *hctx; 1171 struct request *rq, *nxt; 1172 bool no_tag = false; 1173 int errors, queued; 1174 blk_status_t ret = BLK_STS_OK; 1175 1176 if (list_empty(list)) 1177 return false; 1178 1179 WARN_ON(!list_is_singular(list) && got_budget); 1180 1181 /* 1182 * Now process all the entries, sending them to the driver. 1183 */ 1184 errors = queued = 0; 1185 do { 1186 struct blk_mq_queue_data bd; 1187 1188 rq = list_first_entry(list, struct request, queuelist); 1189 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 1190 /* 1191 * The initial allocation attempt failed, so we need to 1192 * rerun the hardware queue when a tag is freed. The 1193 * waitqueue takes care of that. If the queue is run 1194 * before we add this entry back on the dispatch list, 1195 * we'll re-run it below. 1196 */ 1197 if (!blk_mq_mark_tag_wait(&hctx, rq)) { 1198 if (got_budget) 1199 blk_mq_put_dispatch_budget(hctx); 1200 /* 1201 * For non-shared tags, the RESTART check 1202 * will suffice. 1203 */ 1204 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1205 no_tag = true; 1206 break; 1207 } 1208 } 1209 1210 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) { 1211 blk_mq_put_driver_tag(rq); 1212 break; 1213 } 1214 1215 list_del_init(&rq->queuelist); 1216 1217 bd.rq = rq; 1218 1219 /* 1220 * Flag last if we have no more requests, or if we have more 1221 * but can't assign a driver tag to it. 1222 */ 1223 if (list_empty(list)) 1224 bd.last = true; 1225 else { 1226 nxt = list_first_entry(list, struct request, queuelist); 1227 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1228 } 1229 1230 ret = q->mq_ops->queue_rq(hctx, &bd); 1231 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1232 /* 1233 * If an I/O scheduler has been configured and we got a 1234 * driver tag for the next request already, free it 1235 * again. 1236 */ 1237 if (!list_empty(list)) { 1238 nxt = list_first_entry(list, struct request, queuelist); 1239 blk_mq_put_driver_tag(nxt); 1240 } 1241 list_add(&rq->queuelist, list); 1242 __blk_mq_requeue_request(rq); 1243 break; 1244 } 1245 1246 if (unlikely(ret != BLK_STS_OK)) { 1247 errors++; 1248 blk_mq_end_request(rq, BLK_STS_IOERR); 1249 continue; 1250 } 1251 1252 queued++; 1253 } while (!list_empty(list)); 1254 1255 hctx->dispatched[queued_to_index(queued)]++; 1256 1257 /* 1258 * Any items that need requeuing? Stuff them into hctx->dispatch, 1259 * that is where we will continue on next queue run. 1260 */ 1261 if (!list_empty(list)) { 1262 bool needs_restart; 1263 1264 spin_lock(&hctx->lock); 1265 list_splice_init(list, &hctx->dispatch); 1266 spin_unlock(&hctx->lock); 1267 1268 /* 1269 * If SCHED_RESTART was set by the caller of this function and 1270 * it is no longer set that means that it was cleared by another 1271 * thread and hence that a queue rerun is needed. 1272 * 1273 * If 'no_tag' is set, that means that we failed getting 1274 * a driver tag with an I/O scheduler attached. If our dispatch 1275 * waitqueue is no longer active, ensure that we run the queue 1276 * AFTER adding our entries back to the list. 1277 * 1278 * If no I/O scheduler has been configured it is possible that 1279 * the hardware queue got stopped and restarted before requests 1280 * were pushed back onto the dispatch list. Rerun the queue to 1281 * avoid starvation. Notes: 1282 * - blk_mq_run_hw_queue() checks whether or not a queue has 1283 * been stopped before rerunning a queue. 1284 * - Some but not all block drivers stop a queue before 1285 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1286 * and dm-rq. 1287 * 1288 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1289 * bit is set, run queue after a delay to avoid IO stalls 1290 * that could otherwise occur if the queue is idle. 1291 */ 1292 needs_restart = blk_mq_sched_needs_restart(hctx); 1293 if (!needs_restart || 1294 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1295 blk_mq_run_hw_queue(hctx, true); 1296 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1297 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1298 } 1299 1300 return (queued + errors) != 0; 1301 } 1302 1303 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1304 { 1305 int srcu_idx; 1306 1307 /* 1308 * We should be running this queue from one of the CPUs that 1309 * are mapped to it. 1310 * 1311 * There are at least two related races now between setting 1312 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1313 * __blk_mq_run_hw_queue(): 1314 * 1315 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1316 * but later it becomes online, then this warning is harmless 1317 * at all 1318 * 1319 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1320 * but later it becomes offline, then the warning can't be 1321 * triggered, and we depend on blk-mq timeout handler to 1322 * handle dispatched requests to this hctx 1323 */ 1324 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1325 cpu_online(hctx->next_cpu)) { 1326 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1327 raw_smp_processor_id(), 1328 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1329 dump_stack(); 1330 } 1331 1332 /* 1333 * We can't run the queue inline with ints disabled. Ensure that 1334 * we catch bad users of this early. 1335 */ 1336 WARN_ON_ONCE(in_interrupt()); 1337 1338 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1339 1340 hctx_lock(hctx, &srcu_idx); 1341 blk_mq_sched_dispatch_requests(hctx); 1342 hctx_unlock(hctx, srcu_idx); 1343 } 1344 1345 /* 1346 * It'd be great if the workqueue API had a way to pass 1347 * in a mask and had some smarts for more clever placement. 1348 * For now we just round-robin here, switching for every 1349 * BLK_MQ_CPU_WORK_BATCH queued items. 1350 */ 1351 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1352 { 1353 bool tried = false; 1354 1355 if (hctx->queue->nr_hw_queues == 1) 1356 return WORK_CPU_UNBOUND; 1357 1358 if (--hctx->next_cpu_batch <= 0) { 1359 int next_cpu; 1360 select_cpu: 1361 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask, 1362 cpu_online_mask); 1363 if (next_cpu >= nr_cpu_ids) 1364 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask); 1365 1366 /* 1367 * No online CPU is found, so have to make sure hctx->next_cpu 1368 * is set correctly for not breaking workqueue. 1369 */ 1370 if (next_cpu >= nr_cpu_ids) 1371 hctx->next_cpu = cpumask_first(hctx->cpumask); 1372 else 1373 hctx->next_cpu = next_cpu; 1374 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1375 } 1376 1377 /* 1378 * Do unbound schedule if we can't find a online CPU for this hctx, 1379 * and it should only happen in the path of handling CPU DEAD. 1380 */ 1381 if (!cpu_online(hctx->next_cpu)) { 1382 if (!tried) { 1383 tried = true; 1384 goto select_cpu; 1385 } 1386 1387 /* 1388 * Make sure to re-select CPU next time once after CPUs 1389 * in hctx->cpumask become online again. 1390 */ 1391 hctx->next_cpu_batch = 1; 1392 return WORK_CPU_UNBOUND; 1393 } 1394 return hctx->next_cpu; 1395 } 1396 1397 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1398 unsigned long msecs) 1399 { 1400 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1401 return; 1402 1403 if (unlikely(blk_mq_hctx_stopped(hctx))) 1404 return; 1405 1406 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1407 int cpu = get_cpu(); 1408 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1409 __blk_mq_run_hw_queue(hctx); 1410 put_cpu(); 1411 return; 1412 } 1413 1414 put_cpu(); 1415 } 1416 1417 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1418 msecs_to_jiffies(msecs)); 1419 } 1420 1421 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1422 { 1423 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1424 } 1425 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1426 1427 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1428 { 1429 int srcu_idx; 1430 bool need_run; 1431 1432 /* 1433 * When queue is quiesced, we may be switching io scheduler, or 1434 * updating nr_hw_queues, or other things, and we can't run queue 1435 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1436 * 1437 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1438 * quiesced. 1439 */ 1440 hctx_lock(hctx, &srcu_idx); 1441 need_run = !blk_queue_quiesced(hctx->queue) && 1442 blk_mq_hctx_has_pending(hctx); 1443 hctx_unlock(hctx, srcu_idx); 1444 1445 if (need_run) { 1446 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1447 return true; 1448 } 1449 1450 return false; 1451 } 1452 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1453 1454 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1455 { 1456 struct blk_mq_hw_ctx *hctx; 1457 int i; 1458 1459 queue_for_each_hw_ctx(q, hctx, i) { 1460 if (blk_mq_hctx_stopped(hctx)) 1461 continue; 1462 1463 blk_mq_run_hw_queue(hctx, async); 1464 } 1465 } 1466 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1467 1468 /** 1469 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1470 * @q: request queue. 1471 * 1472 * The caller is responsible for serializing this function against 1473 * blk_mq_{start,stop}_hw_queue(). 1474 */ 1475 bool blk_mq_queue_stopped(struct request_queue *q) 1476 { 1477 struct blk_mq_hw_ctx *hctx; 1478 int i; 1479 1480 queue_for_each_hw_ctx(q, hctx, i) 1481 if (blk_mq_hctx_stopped(hctx)) 1482 return true; 1483 1484 return false; 1485 } 1486 EXPORT_SYMBOL(blk_mq_queue_stopped); 1487 1488 /* 1489 * This function is often used for pausing .queue_rq() by driver when 1490 * there isn't enough resource or some conditions aren't satisfied, and 1491 * BLK_STS_RESOURCE is usually returned. 1492 * 1493 * We do not guarantee that dispatch can be drained or blocked 1494 * after blk_mq_stop_hw_queue() returns. Please use 1495 * blk_mq_quiesce_queue() for that requirement. 1496 */ 1497 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1498 { 1499 cancel_delayed_work(&hctx->run_work); 1500 1501 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1502 } 1503 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1504 1505 /* 1506 * This function is often used for pausing .queue_rq() by driver when 1507 * there isn't enough resource or some conditions aren't satisfied, and 1508 * BLK_STS_RESOURCE is usually returned. 1509 * 1510 * We do not guarantee that dispatch can be drained or blocked 1511 * after blk_mq_stop_hw_queues() returns. Please use 1512 * blk_mq_quiesce_queue() for that requirement. 1513 */ 1514 void blk_mq_stop_hw_queues(struct request_queue *q) 1515 { 1516 struct blk_mq_hw_ctx *hctx; 1517 int i; 1518 1519 queue_for_each_hw_ctx(q, hctx, i) 1520 blk_mq_stop_hw_queue(hctx); 1521 } 1522 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1523 1524 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1525 { 1526 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1527 1528 blk_mq_run_hw_queue(hctx, false); 1529 } 1530 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1531 1532 void blk_mq_start_hw_queues(struct request_queue *q) 1533 { 1534 struct blk_mq_hw_ctx *hctx; 1535 int i; 1536 1537 queue_for_each_hw_ctx(q, hctx, i) 1538 blk_mq_start_hw_queue(hctx); 1539 } 1540 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1541 1542 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1543 { 1544 if (!blk_mq_hctx_stopped(hctx)) 1545 return; 1546 1547 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1548 blk_mq_run_hw_queue(hctx, async); 1549 } 1550 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1551 1552 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1553 { 1554 struct blk_mq_hw_ctx *hctx; 1555 int i; 1556 1557 queue_for_each_hw_ctx(q, hctx, i) 1558 blk_mq_start_stopped_hw_queue(hctx, async); 1559 } 1560 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1561 1562 static void blk_mq_run_work_fn(struct work_struct *work) 1563 { 1564 struct blk_mq_hw_ctx *hctx; 1565 1566 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1567 1568 /* 1569 * If we are stopped, don't run the queue. The exception is if 1570 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear 1571 * the STOPPED bit and run it. 1572 */ 1573 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) { 1574 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state)) 1575 return; 1576 1577 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1578 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1579 } 1580 1581 __blk_mq_run_hw_queue(hctx); 1582 } 1583 1584 1585 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1586 { 1587 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1588 return; 1589 1590 /* 1591 * Stop the hw queue, then modify currently delayed work. 1592 * This should prevent us from running the queue prematurely. 1593 * Mark the queue as auto-clearing STOPPED when it runs. 1594 */ 1595 blk_mq_stop_hw_queue(hctx); 1596 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1597 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1598 &hctx->run_work, 1599 msecs_to_jiffies(msecs)); 1600 } 1601 EXPORT_SYMBOL(blk_mq_delay_queue); 1602 1603 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1604 struct request *rq, 1605 bool at_head) 1606 { 1607 struct blk_mq_ctx *ctx = rq->mq_ctx; 1608 1609 lockdep_assert_held(&ctx->lock); 1610 1611 trace_block_rq_insert(hctx->queue, rq); 1612 1613 if (at_head) 1614 list_add(&rq->queuelist, &ctx->rq_list); 1615 else 1616 list_add_tail(&rq->queuelist, &ctx->rq_list); 1617 } 1618 1619 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1620 bool at_head) 1621 { 1622 struct blk_mq_ctx *ctx = rq->mq_ctx; 1623 1624 lockdep_assert_held(&ctx->lock); 1625 1626 __blk_mq_insert_req_list(hctx, rq, at_head); 1627 blk_mq_hctx_mark_pending(hctx, ctx); 1628 } 1629 1630 /* 1631 * Should only be used carefully, when the caller knows we want to 1632 * bypass a potential IO scheduler on the target device. 1633 */ 1634 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1635 { 1636 struct blk_mq_ctx *ctx = rq->mq_ctx; 1637 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1638 1639 spin_lock(&hctx->lock); 1640 list_add_tail(&rq->queuelist, &hctx->dispatch); 1641 spin_unlock(&hctx->lock); 1642 1643 if (run_queue) 1644 blk_mq_run_hw_queue(hctx, false); 1645 } 1646 1647 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1648 struct list_head *list) 1649 1650 { 1651 /* 1652 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1653 * offline now 1654 */ 1655 spin_lock(&ctx->lock); 1656 while (!list_empty(list)) { 1657 struct request *rq; 1658 1659 rq = list_first_entry(list, struct request, queuelist); 1660 BUG_ON(rq->mq_ctx != ctx); 1661 list_del_init(&rq->queuelist); 1662 __blk_mq_insert_req_list(hctx, rq, false); 1663 } 1664 blk_mq_hctx_mark_pending(hctx, ctx); 1665 spin_unlock(&ctx->lock); 1666 } 1667 1668 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1669 { 1670 struct request *rqa = container_of(a, struct request, queuelist); 1671 struct request *rqb = container_of(b, struct request, queuelist); 1672 1673 return !(rqa->mq_ctx < rqb->mq_ctx || 1674 (rqa->mq_ctx == rqb->mq_ctx && 1675 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1676 } 1677 1678 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1679 { 1680 struct blk_mq_ctx *this_ctx; 1681 struct request_queue *this_q; 1682 struct request *rq; 1683 LIST_HEAD(list); 1684 LIST_HEAD(ctx_list); 1685 unsigned int depth; 1686 1687 list_splice_init(&plug->mq_list, &list); 1688 1689 list_sort(NULL, &list, plug_ctx_cmp); 1690 1691 this_q = NULL; 1692 this_ctx = NULL; 1693 depth = 0; 1694 1695 while (!list_empty(&list)) { 1696 rq = list_entry_rq(list.next); 1697 list_del_init(&rq->queuelist); 1698 BUG_ON(!rq->q); 1699 if (rq->mq_ctx != this_ctx) { 1700 if (this_ctx) { 1701 trace_block_unplug(this_q, depth, from_schedule); 1702 blk_mq_sched_insert_requests(this_q, this_ctx, 1703 &ctx_list, 1704 from_schedule); 1705 } 1706 1707 this_ctx = rq->mq_ctx; 1708 this_q = rq->q; 1709 depth = 0; 1710 } 1711 1712 depth++; 1713 list_add_tail(&rq->queuelist, &ctx_list); 1714 } 1715 1716 /* 1717 * If 'this_ctx' is set, we know we have entries to complete 1718 * on 'ctx_list'. Do those. 1719 */ 1720 if (this_ctx) { 1721 trace_block_unplug(this_q, depth, from_schedule); 1722 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1723 from_schedule); 1724 } 1725 } 1726 1727 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1728 { 1729 blk_init_request_from_bio(rq, bio); 1730 1731 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1732 1733 blk_account_io_start(rq, true); 1734 } 1735 1736 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx, 1737 struct blk_mq_ctx *ctx, 1738 struct request *rq) 1739 { 1740 spin_lock(&ctx->lock); 1741 __blk_mq_insert_request(hctx, rq, false); 1742 spin_unlock(&ctx->lock); 1743 } 1744 1745 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1746 { 1747 if (rq->tag != -1) 1748 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1749 1750 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1751 } 1752 1753 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1754 struct request *rq, 1755 blk_qc_t *cookie) 1756 { 1757 struct request_queue *q = rq->q; 1758 struct blk_mq_queue_data bd = { 1759 .rq = rq, 1760 .last = true, 1761 }; 1762 blk_qc_t new_cookie; 1763 blk_status_t ret; 1764 1765 new_cookie = request_to_qc_t(hctx, rq); 1766 1767 /* 1768 * For OK queue, we are done. For error, caller may kill it. 1769 * Any other error (busy), just add it to our list as we 1770 * previously would have done. 1771 */ 1772 ret = q->mq_ops->queue_rq(hctx, &bd); 1773 switch (ret) { 1774 case BLK_STS_OK: 1775 *cookie = new_cookie; 1776 break; 1777 case BLK_STS_RESOURCE: 1778 case BLK_STS_DEV_RESOURCE: 1779 __blk_mq_requeue_request(rq); 1780 break; 1781 default: 1782 *cookie = BLK_QC_T_NONE; 1783 break; 1784 } 1785 1786 return ret; 1787 } 1788 1789 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1790 struct request *rq, 1791 blk_qc_t *cookie, 1792 bool bypass_insert) 1793 { 1794 struct request_queue *q = rq->q; 1795 bool run_queue = true; 1796 1797 /* 1798 * RCU or SRCU read lock is needed before checking quiesced flag. 1799 * 1800 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1801 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1802 * and avoid driver to try to dispatch again. 1803 */ 1804 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1805 run_queue = false; 1806 bypass_insert = false; 1807 goto insert; 1808 } 1809 1810 if (q->elevator && !bypass_insert) 1811 goto insert; 1812 1813 if (!blk_mq_get_driver_tag(rq, NULL, false)) 1814 goto insert; 1815 1816 if (!blk_mq_get_dispatch_budget(hctx)) { 1817 blk_mq_put_driver_tag(rq); 1818 goto insert; 1819 } 1820 1821 return __blk_mq_issue_directly(hctx, rq, cookie); 1822 insert: 1823 if (bypass_insert) 1824 return BLK_STS_RESOURCE; 1825 1826 blk_mq_sched_insert_request(rq, false, run_queue, false); 1827 return BLK_STS_OK; 1828 } 1829 1830 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1831 struct request *rq, blk_qc_t *cookie) 1832 { 1833 blk_status_t ret; 1834 int srcu_idx; 1835 1836 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1837 1838 hctx_lock(hctx, &srcu_idx); 1839 1840 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1841 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1842 blk_mq_sched_insert_request(rq, false, true, false); 1843 else if (ret != BLK_STS_OK) 1844 blk_mq_end_request(rq, ret); 1845 1846 hctx_unlock(hctx, srcu_idx); 1847 } 1848 1849 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1850 { 1851 blk_status_t ret; 1852 int srcu_idx; 1853 blk_qc_t unused_cookie; 1854 struct blk_mq_ctx *ctx = rq->mq_ctx; 1855 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1856 1857 hctx_lock(hctx, &srcu_idx); 1858 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1859 hctx_unlock(hctx, srcu_idx); 1860 1861 return ret; 1862 } 1863 1864 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1865 { 1866 const int is_sync = op_is_sync(bio->bi_opf); 1867 const int is_flush_fua = op_is_flush(bio->bi_opf); 1868 struct blk_mq_alloc_data data = { .flags = 0 }; 1869 struct request *rq; 1870 unsigned int request_count = 0; 1871 struct blk_plug *plug; 1872 struct request *same_queue_rq = NULL; 1873 blk_qc_t cookie; 1874 unsigned int wb_acct; 1875 1876 blk_queue_bounce(q, &bio); 1877 1878 blk_queue_split(q, &bio); 1879 1880 if (!bio_integrity_prep(bio)) 1881 return BLK_QC_T_NONE; 1882 1883 if (!is_flush_fua && !blk_queue_nomerges(q) && 1884 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1885 return BLK_QC_T_NONE; 1886 1887 if (blk_mq_sched_bio_merge(q, bio)) 1888 return BLK_QC_T_NONE; 1889 1890 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1891 1892 trace_block_getrq(q, bio, bio->bi_opf); 1893 1894 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1895 if (unlikely(!rq)) { 1896 __wbt_done(q->rq_wb, wb_acct); 1897 if (bio->bi_opf & REQ_NOWAIT) 1898 bio_wouldblock_error(bio); 1899 return BLK_QC_T_NONE; 1900 } 1901 1902 wbt_track(&rq->issue_stat, wb_acct); 1903 1904 cookie = request_to_qc_t(data.hctx, rq); 1905 1906 plug = current->plug; 1907 if (unlikely(is_flush_fua)) { 1908 blk_mq_put_ctx(data.ctx); 1909 blk_mq_bio_to_request(rq, bio); 1910 1911 /* bypass scheduler for flush rq */ 1912 blk_insert_flush(rq); 1913 blk_mq_run_hw_queue(data.hctx, true); 1914 } else if (plug && q->nr_hw_queues == 1) { 1915 struct request *last = NULL; 1916 1917 blk_mq_put_ctx(data.ctx); 1918 blk_mq_bio_to_request(rq, bio); 1919 1920 /* 1921 * @request_count may become stale because of schedule 1922 * out, so check the list again. 1923 */ 1924 if (list_empty(&plug->mq_list)) 1925 request_count = 0; 1926 else if (blk_queue_nomerges(q)) 1927 request_count = blk_plug_queued_count(q); 1928 1929 if (!request_count) 1930 trace_block_plug(q); 1931 else 1932 last = list_entry_rq(plug->mq_list.prev); 1933 1934 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1935 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1936 blk_flush_plug_list(plug, false); 1937 trace_block_plug(q); 1938 } 1939 1940 list_add_tail(&rq->queuelist, &plug->mq_list); 1941 } else if (plug && !blk_queue_nomerges(q)) { 1942 blk_mq_bio_to_request(rq, bio); 1943 1944 /* 1945 * We do limited plugging. If the bio can be merged, do that. 1946 * Otherwise the existing request in the plug list will be 1947 * issued. So the plug list will have one request at most 1948 * The plug list might get flushed before this. If that happens, 1949 * the plug list is empty, and same_queue_rq is invalid. 1950 */ 1951 if (list_empty(&plug->mq_list)) 1952 same_queue_rq = NULL; 1953 if (same_queue_rq) 1954 list_del_init(&same_queue_rq->queuelist); 1955 list_add_tail(&rq->queuelist, &plug->mq_list); 1956 1957 blk_mq_put_ctx(data.ctx); 1958 1959 if (same_queue_rq) { 1960 data.hctx = blk_mq_map_queue(q, 1961 same_queue_rq->mq_ctx->cpu); 1962 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1963 &cookie); 1964 } 1965 } else if (q->nr_hw_queues > 1 && is_sync) { 1966 blk_mq_put_ctx(data.ctx); 1967 blk_mq_bio_to_request(rq, bio); 1968 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1969 } else if (q->elevator) { 1970 blk_mq_put_ctx(data.ctx); 1971 blk_mq_bio_to_request(rq, bio); 1972 blk_mq_sched_insert_request(rq, false, true, true); 1973 } else { 1974 blk_mq_put_ctx(data.ctx); 1975 blk_mq_bio_to_request(rq, bio); 1976 blk_mq_queue_io(data.hctx, data.ctx, rq); 1977 blk_mq_run_hw_queue(data.hctx, true); 1978 } 1979 1980 return cookie; 1981 } 1982 1983 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1984 unsigned int hctx_idx) 1985 { 1986 struct page *page; 1987 1988 if (tags->rqs && set->ops->exit_request) { 1989 int i; 1990 1991 for (i = 0; i < tags->nr_tags; i++) { 1992 struct request *rq = tags->static_rqs[i]; 1993 1994 if (!rq) 1995 continue; 1996 set->ops->exit_request(set, rq, hctx_idx); 1997 tags->static_rqs[i] = NULL; 1998 } 1999 } 2000 2001 while (!list_empty(&tags->page_list)) { 2002 page = list_first_entry(&tags->page_list, struct page, lru); 2003 list_del_init(&page->lru); 2004 /* 2005 * Remove kmemleak object previously allocated in 2006 * blk_mq_init_rq_map(). 2007 */ 2008 kmemleak_free(page_address(page)); 2009 __free_pages(page, page->private); 2010 } 2011 } 2012 2013 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2014 { 2015 kfree(tags->rqs); 2016 tags->rqs = NULL; 2017 kfree(tags->static_rqs); 2018 tags->static_rqs = NULL; 2019 2020 blk_mq_free_tags(tags); 2021 } 2022 2023 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2024 unsigned int hctx_idx, 2025 unsigned int nr_tags, 2026 unsigned int reserved_tags) 2027 { 2028 struct blk_mq_tags *tags; 2029 int node; 2030 2031 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2032 if (node == NUMA_NO_NODE) 2033 node = set->numa_node; 2034 2035 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2036 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2037 if (!tags) 2038 return NULL; 2039 2040 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2041 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2042 node); 2043 if (!tags->rqs) { 2044 blk_mq_free_tags(tags); 2045 return NULL; 2046 } 2047 2048 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2049 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2050 node); 2051 if (!tags->static_rqs) { 2052 kfree(tags->rqs); 2053 blk_mq_free_tags(tags); 2054 return NULL; 2055 } 2056 2057 return tags; 2058 } 2059 2060 static size_t order_to_size(unsigned int order) 2061 { 2062 return (size_t)PAGE_SIZE << order; 2063 } 2064 2065 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2066 unsigned int hctx_idx, int node) 2067 { 2068 int ret; 2069 2070 if (set->ops->init_request) { 2071 ret = set->ops->init_request(set, rq, hctx_idx, node); 2072 if (ret) 2073 return ret; 2074 } 2075 2076 seqcount_init(&rq->gstate_seq); 2077 u64_stats_init(&rq->aborted_gstate_sync); 2078 return 0; 2079 } 2080 2081 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2082 unsigned int hctx_idx, unsigned int depth) 2083 { 2084 unsigned int i, j, entries_per_page, max_order = 4; 2085 size_t rq_size, left; 2086 int node; 2087 2088 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2089 if (node == NUMA_NO_NODE) 2090 node = set->numa_node; 2091 2092 INIT_LIST_HEAD(&tags->page_list); 2093 2094 /* 2095 * rq_size is the size of the request plus driver payload, rounded 2096 * to the cacheline size 2097 */ 2098 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2099 cache_line_size()); 2100 left = rq_size * depth; 2101 2102 for (i = 0; i < depth; ) { 2103 int this_order = max_order; 2104 struct page *page; 2105 int to_do; 2106 void *p; 2107 2108 while (this_order && left < order_to_size(this_order - 1)) 2109 this_order--; 2110 2111 do { 2112 page = alloc_pages_node(node, 2113 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2114 this_order); 2115 if (page) 2116 break; 2117 if (!this_order--) 2118 break; 2119 if (order_to_size(this_order) < rq_size) 2120 break; 2121 } while (1); 2122 2123 if (!page) 2124 goto fail; 2125 2126 page->private = this_order; 2127 list_add_tail(&page->lru, &tags->page_list); 2128 2129 p = page_address(page); 2130 /* 2131 * Allow kmemleak to scan these pages as they contain pointers 2132 * to additional allocations like via ops->init_request(). 2133 */ 2134 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2135 entries_per_page = order_to_size(this_order) / rq_size; 2136 to_do = min(entries_per_page, depth - i); 2137 left -= to_do * rq_size; 2138 for (j = 0; j < to_do; j++) { 2139 struct request *rq = p; 2140 2141 tags->static_rqs[i] = rq; 2142 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2143 tags->static_rqs[i] = NULL; 2144 goto fail; 2145 } 2146 2147 p += rq_size; 2148 i++; 2149 } 2150 } 2151 return 0; 2152 2153 fail: 2154 blk_mq_free_rqs(set, tags, hctx_idx); 2155 return -ENOMEM; 2156 } 2157 2158 /* 2159 * 'cpu' is going away. splice any existing rq_list entries from this 2160 * software queue to the hw queue dispatch list, and ensure that it 2161 * gets run. 2162 */ 2163 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2164 { 2165 struct blk_mq_hw_ctx *hctx; 2166 struct blk_mq_ctx *ctx; 2167 LIST_HEAD(tmp); 2168 2169 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2170 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2171 2172 spin_lock(&ctx->lock); 2173 if (!list_empty(&ctx->rq_list)) { 2174 list_splice_init(&ctx->rq_list, &tmp); 2175 blk_mq_hctx_clear_pending(hctx, ctx); 2176 } 2177 spin_unlock(&ctx->lock); 2178 2179 if (list_empty(&tmp)) 2180 return 0; 2181 2182 spin_lock(&hctx->lock); 2183 list_splice_tail_init(&tmp, &hctx->dispatch); 2184 spin_unlock(&hctx->lock); 2185 2186 blk_mq_run_hw_queue(hctx, true); 2187 return 0; 2188 } 2189 2190 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2191 { 2192 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2193 &hctx->cpuhp_dead); 2194 } 2195 2196 /* hctx->ctxs will be freed in queue's release handler */ 2197 static void blk_mq_exit_hctx(struct request_queue *q, 2198 struct blk_mq_tag_set *set, 2199 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2200 { 2201 blk_mq_debugfs_unregister_hctx(hctx); 2202 2203 if (blk_mq_hw_queue_mapped(hctx)) 2204 blk_mq_tag_idle(hctx); 2205 2206 if (set->ops->exit_request) 2207 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2208 2209 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2210 2211 if (set->ops->exit_hctx) 2212 set->ops->exit_hctx(hctx, hctx_idx); 2213 2214 if (hctx->flags & BLK_MQ_F_BLOCKING) 2215 cleanup_srcu_struct(hctx->srcu); 2216 2217 blk_mq_remove_cpuhp(hctx); 2218 blk_free_flush_queue(hctx->fq); 2219 sbitmap_free(&hctx->ctx_map); 2220 } 2221 2222 static void blk_mq_exit_hw_queues(struct request_queue *q, 2223 struct blk_mq_tag_set *set, int nr_queue) 2224 { 2225 struct blk_mq_hw_ctx *hctx; 2226 unsigned int i; 2227 2228 queue_for_each_hw_ctx(q, hctx, i) { 2229 if (i == nr_queue) 2230 break; 2231 blk_mq_exit_hctx(q, set, hctx, i); 2232 } 2233 } 2234 2235 static int blk_mq_init_hctx(struct request_queue *q, 2236 struct blk_mq_tag_set *set, 2237 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2238 { 2239 int node; 2240 2241 node = hctx->numa_node; 2242 if (node == NUMA_NO_NODE) 2243 node = hctx->numa_node = set->numa_node; 2244 2245 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2246 spin_lock_init(&hctx->lock); 2247 INIT_LIST_HEAD(&hctx->dispatch); 2248 hctx->queue = q; 2249 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2250 2251 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2252 2253 hctx->tags = set->tags[hctx_idx]; 2254 2255 /* 2256 * Allocate space for all possible cpus to avoid allocation at 2257 * runtime 2258 */ 2259 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2260 GFP_KERNEL, node); 2261 if (!hctx->ctxs) 2262 goto unregister_cpu_notifier; 2263 2264 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2265 node)) 2266 goto free_ctxs; 2267 2268 hctx->nr_ctx = 0; 2269 2270 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2271 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2272 2273 if (set->ops->init_hctx && 2274 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2275 goto free_bitmap; 2276 2277 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 2278 goto exit_hctx; 2279 2280 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2281 if (!hctx->fq) 2282 goto sched_exit_hctx; 2283 2284 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2285 goto free_fq; 2286 2287 if (hctx->flags & BLK_MQ_F_BLOCKING) 2288 init_srcu_struct(hctx->srcu); 2289 2290 blk_mq_debugfs_register_hctx(q, hctx); 2291 2292 return 0; 2293 2294 free_fq: 2295 kfree(hctx->fq); 2296 sched_exit_hctx: 2297 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2298 exit_hctx: 2299 if (set->ops->exit_hctx) 2300 set->ops->exit_hctx(hctx, hctx_idx); 2301 free_bitmap: 2302 sbitmap_free(&hctx->ctx_map); 2303 free_ctxs: 2304 kfree(hctx->ctxs); 2305 unregister_cpu_notifier: 2306 blk_mq_remove_cpuhp(hctx); 2307 return -1; 2308 } 2309 2310 static void blk_mq_init_cpu_queues(struct request_queue *q, 2311 unsigned int nr_hw_queues) 2312 { 2313 unsigned int i; 2314 2315 for_each_possible_cpu(i) { 2316 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2317 struct blk_mq_hw_ctx *hctx; 2318 2319 __ctx->cpu = i; 2320 spin_lock_init(&__ctx->lock); 2321 INIT_LIST_HEAD(&__ctx->rq_list); 2322 __ctx->queue = q; 2323 2324 /* 2325 * Set local node, IFF we have more than one hw queue. If 2326 * not, we remain on the home node of the device 2327 */ 2328 hctx = blk_mq_map_queue(q, i); 2329 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2330 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2331 } 2332 } 2333 2334 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2335 { 2336 int ret = 0; 2337 2338 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2339 set->queue_depth, set->reserved_tags); 2340 if (!set->tags[hctx_idx]) 2341 return false; 2342 2343 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2344 set->queue_depth); 2345 if (!ret) 2346 return true; 2347 2348 blk_mq_free_rq_map(set->tags[hctx_idx]); 2349 set->tags[hctx_idx] = NULL; 2350 return false; 2351 } 2352 2353 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2354 unsigned int hctx_idx) 2355 { 2356 if (set->tags[hctx_idx]) { 2357 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2358 blk_mq_free_rq_map(set->tags[hctx_idx]); 2359 set->tags[hctx_idx] = NULL; 2360 } 2361 } 2362 2363 static void blk_mq_map_swqueue(struct request_queue *q) 2364 { 2365 unsigned int i, hctx_idx; 2366 struct blk_mq_hw_ctx *hctx; 2367 struct blk_mq_ctx *ctx; 2368 struct blk_mq_tag_set *set = q->tag_set; 2369 2370 /* 2371 * Avoid others reading imcomplete hctx->cpumask through sysfs 2372 */ 2373 mutex_lock(&q->sysfs_lock); 2374 2375 queue_for_each_hw_ctx(q, hctx, i) { 2376 cpumask_clear(hctx->cpumask); 2377 hctx->nr_ctx = 0; 2378 } 2379 2380 /* 2381 * Map software to hardware queues. 2382 * 2383 * If the cpu isn't present, the cpu is mapped to first hctx. 2384 */ 2385 for_each_possible_cpu(i) { 2386 hctx_idx = q->mq_map[i]; 2387 /* unmapped hw queue can be remapped after CPU topo changed */ 2388 if (!set->tags[hctx_idx] && 2389 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2390 /* 2391 * If tags initialization fail for some hctx, 2392 * that hctx won't be brought online. In this 2393 * case, remap the current ctx to hctx[0] which 2394 * is guaranteed to always have tags allocated 2395 */ 2396 q->mq_map[i] = 0; 2397 } 2398 2399 ctx = per_cpu_ptr(q->queue_ctx, i); 2400 hctx = blk_mq_map_queue(q, i); 2401 2402 cpumask_set_cpu(i, hctx->cpumask); 2403 ctx->index_hw = hctx->nr_ctx; 2404 hctx->ctxs[hctx->nr_ctx++] = ctx; 2405 } 2406 2407 mutex_unlock(&q->sysfs_lock); 2408 2409 queue_for_each_hw_ctx(q, hctx, i) { 2410 /* 2411 * If no software queues are mapped to this hardware queue, 2412 * disable it and free the request entries. 2413 */ 2414 if (!hctx->nr_ctx) { 2415 /* Never unmap queue 0. We need it as a 2416 * fallback in case of a new remap fails 2417 * allocation 2418 */ 2419 if (i && set->tags[i]) 2420 blk_mq_free_map_and_requests(set, i); 2421 2422 hctx->tags = NULL; 2423 continue; 2424 } 2425 2426 hctx->tags = set->tags[i]; 2427 WARN_ON(!hctx->tags); 2428 2429 /* 2430 * Set the map size to the number of mapped software queues. 2431 * This is more accurate and more efficient than looping 2432 * over all possibly mapped software queues. 2433 */ 2434 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2435 2436 /* 2437 * Initialize batch roundrobin counts 2438 */ 2439 hctx->next_cpu = cpumask_first_and(hctx->cpumask, 2440 cpu_online_mask); 2441 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2442 } 2443 } 2444 2445 /* 2446 * Caller needs to ensure that we're either frozen/quiesced, or that 2447 * the queue isn't live yet. 2448 */ 2449 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2450 { 2451 struct blk_mq_hw_ctx *hctx; 2452 int i; 2453 2454 queue_for_each_hw_ctx(q, hctx, i) { 2455 if (shared) { 2456 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2457 atomic_inc(&q->shared_hctx_restart); 2458 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2459 } else { 2460 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2461 atomic_dec(&q->shared_hctx_restart); 2462 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2463 } 2464 } 2465 } 2466 2467 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2468 bool shared) 2469 { 2470 struct request_queue *q; 2471 2472 lockdep_assert_held(&set->tag_list_lock); 2473 2474 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2475 blk_mq_freeze_queue(q); 2476 queue_set_hctx_shared(q, shared); 2477 blk_mq_unfreeze_queue(q); 2478 } 2479 } 2480 2481 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2482 { 2483 struct blk_mq_tag_set *set = q->tag_set; 2484 2485 mutex_lock(&set->tag_list_lock); 2486 list_del_rcu(&q->tag_set_list); 2487 INIT_LIST_HEAD(&q->tag_set_list); 2488 if (list_is_singular(&set->tag_list)) { 2489 /* just transitioned to unshared */ 2490 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2491 /* update existing queue */ 2492 blk_mq_update_tag_set_depth(set, false); 2493 } 2494 mutex_unlock(&set->tag_list_lock); 2495 2496 synchronize_rcu(); 2497 } 2498 2499 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2500 struct request_queue *q) 2501 { 2502 q->tag_set = set; 2503 2504 mutex_lock(&set->tag_list_lock); 2505 2506 /* 2507 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2508 */ 2509 if (!list_empty(&set->tag_list) && 2510 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2511 set->flags |= BLK_MQ_F_TAG_SHARED; 2512 /* update existing queue */ 2513 blk_mq_update_tag_set_depth(set, true); 2514 } 2515 if (set->flags & BLK_MQ_F_TAG_SHARED) 2516 queue_set_hctx_shared(q, true); 2517 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2518 2519 mutex_unlock(&set->tag_list_lock); 2520 } 2521 2522 /* 2523 * It is the actual release handler for mq, but we do it from 2524 * request queue's release handler for avoiding use-after-free 2525 * and headache because q->mq_kobj shouldn't have been introduced, 2526 * but we can't group ctx/kctx kobj without it. 2527 */ 2528 void blk_mq_release(struct request_queue *q) 2529 { 2530 struct blk_mq_hw_ctx *hctx; 2531 unsigned int i; 2532 2533 /* hctx kobj stays in hctx */ 2534 queue_for_each_hw_ctx(q, hctx, i) { 2535 if (!hctx) 2536 continue; 2537 kobject_put(&hctx->kobj); 2538 } 2539 2540 q->mq_map = NULL; 2541 2542 kfree(q->queue_hw_ctx); 2543 2544 /* 2545 * release .mq_kobj and sw queue's kobject now because 2546 * both share lifetime with request queue. 2547 */ 2548 blk_mq_sysfs_deinit(q); 2549 2550 free_percpu(q->queue_ctx); 2551 } 2552 2553 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2554 { 2555 struct request_queue *uninit_q, *q; 2556 2557 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2558 if (!uninit_q) 2559 return ERR_PTR(-ENOMEM); 2560 2561 q = blk_mq_init_allocated_queue(set, uninit_q); 2562 if (IS_ERR(q)) 2563 blk_cleanup_queue(uninit_q); 2564 2565 return q; 2566 } 2567 EXPORT_SYMBOL(blk_mq_init_queue); 2568 2569 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2570 { 2571 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2572 2573 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2574 __alignof__(struct blk_mq_hw_ctx)) != 2575 sizeof(struct blk_mq_hw_ctx)); 2576 2577 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2578 hw_ctx_size += sizeof(struct srcu_struct); 2579 2580 return hw_ctx_size; 2581 } 2582 2583 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2584 struct request_queue *q) 2585 { 2586 int i, j; 2587 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2588 2589 blk_mq_sysfs_unregister(q); 2590 2591 /* protect against switching io scheduler */ 2592 mutex_lock(&q->sysfs_lock); 2593 for (i = 0; i < set->nr_hw_queues; i++) { 2594 int node; 2595 2596 if (hctxs[i]) 2597 continue; 2598 2599 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2600 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2601 GFP_KERNEL, node); 2602 if (!hctxs[i]) 2603 break; 2604 2605 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2606 node)) { 2607 kfree(hctxs[i]); 2608 hctxs[i] = NULL; 2609 break; 2610 } 2611 2612 atomic_set(&hctxs[i]->nr_active, 0); 2613 hctxs[i]->numa_node = node; 2614 hctxs[i]->queue_num = i; 2615 2616 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2617 free_cpumask_var(hctxs[i]->cpumask); 2618 kfree(hctxs[i]); 2619 hctxs[i] = NULL; 2620 break; 2621 } 2622 blk_mq_hctx_kobj_init(hctxs[i]); 2623 } 2624 for (j = i; j < q->nr_hw_queues; j++) { 2625 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2626 2627 if (hctx) { 2628 if (hctx->tags) 2629 blk_mq_free_map_and_requests(set, j); 2630 blk_mq_exit_hctx(q, set, hctx, j); 2631 kobject_put(&hctx->kobj); 2632 hctxs[j] = NULL; 2633 2634 } 2635 } 2636 q->nr_hw_queues = i; 2637 mutex_unlock(&q->sysfs_lock); 2638 blk_mq_sysfs_register(q); 2639 } 2640 2641 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2642 struct request_queue *q) 2643 { 2644 /* mark the queue as mq asap */ 2645 q->mq_ops = set->ops; 2646 2647 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2648 blk_mq_poll_stats_bkt, 2649 BLK_MQ_POLL_STATS_BKTS, q); 2650 if (!q->poll_cb) 2651 goto err_exit; 2652 2653 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2654 if (!q->queue_ctx) 2655 goto err_exit; 2656 2657 /* init q->mq_kobj and sw queues' kobjects */ 2658 blk_mq_sysfs_init(q); 2659 2660 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2661 GFP_KERNEL, set->numa_node); 2662 if (!q->queue_hw_ctx) 2663 goto err_percpu; 2664 2665 q->mq_map = set->mq_map; 2666 2667 blk_mq_realloc_hw_ctxs(set, q); 2668 if (!q->nr_hw_queues) 2669 goto err_hctxs; 2670 2671 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2672 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2673 2674 q->nr_queues = nr_cpu_ids; 2675 2676 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2677 2678 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2679 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2680 2681 q->sg_reserved_size = INT_MAX; 2682 2683 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2684 INIT_LIST_HEAD(&q->requeue_list); 2685 spin_lock_init(&q->requeue_lock); 2686 2687 blk_queue_make_request(q, blk_mq_make_request); 2688 if (q->mq_ops->poll) 2689 q->poll_fn = blk_mq_poll; 2690 2691 /* 2692 * Do this after blk_queue_make_request() overrides it... 2693 */ 2694 q->nr_requests = set->queue_depth; 2695 2696 /* 2697 * Default to classic polling 2698 */ 2699 q->poll_nsec = -1; 2700 2701 if (set->ops->complete) 2702 blk_queue_softirq_done(q, set->ops->complete); 2703 2704 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2705 blk_mq_add_queue_tag_set(set, q); 2706 blk_mq_map_swqueue(q); 2707 2708 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2709 int ret; 2710 2711 ret = blk_mq_sched_init(q); 2712 if (ret) 2713 return ERR_PTR(ret); 2714 } 2715 2716 return q; 2717 2718 err_hctxs: 2719 kfree(q->queue_hw_ctx); 2720 err_percpu: 2721 free_percpu(q->queue_ctx); 2722 err_exit: 2723 q->mq_ops = NULL; 2724 return ERR_PTR(-ENOMEM); 2725 } 2726 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2727 2728 void blk_mq_free_queue(struct request_queue *q) 2729 { 2730 struct blk_mq_tag_set *set = q->tag_set; 2731 2732 blk_mq_del_queue_tag_set(q); 2733 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2734 } 2735 2736 /* Basically redo blk_mq_init_queue with queue frozen */ 2737 static void blk_mq_queue_reinit(struct request_queue *q) 2738 { 2739 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2740 2741 blk_mq_debugfs_unregister_hctxs(q); 2742 blk_mq_sysfs_unregister(q); 2743 2744 /* 2745 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2746 * we should change hctx numa_node according to the new topology (this 2747 * involves freeing and re-allocating memory, worth doing?) 2748 */ 2749 blk_mq_map_swqueue(q); 2750 2751 blk_mq_sysfs_register(q); 2752 blk_mq_debugfs_register_hctxs(q); 2753 } 2754 2755 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2756 { 2757 int i; 2758 2759 for (i = 0; i < set->nr_hw_queues; i++) 2760 if (!__blk_mq_alloc_rq_map(set, i)) 2761 goto out_unwind; 2762 2763 return 0; 2764 2765 out_unwind: 2766 while (--i >= 0) 2767 blk_mq_free_rq_map(set->tags[i]); 2768 2769 return -ENOMEM; 2770 } 2771 2772 /* 2773 * Allocate the request maps associated with this tag_set. Note that this 2774 * may reduce the depth asked for, if memory is tight. set->queue_depth 2775 * will be updated to reflect the allocated depth. 2776 */ 2777 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2778 { 2779 unsigned int depth; 2780 int err; 2781 2782 depth = set->queue_depth; 2783 do { 2784 err = __blk_mq_alloc_rq_maps(set); 2785 if (!err) 2786 break; 2787 2788 set->queue_depth >>= 1; 2789 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2790 err = -ENOMEM; 2791 break; 2792 } 2793 } while (set->queue_depth); 2794 2795 if (!set->queue_depth || err) { 2796 pr_err("blk-mq: failed to allocate request map\n"); 2797 return -ENOMEM; 2798 } 2799 2800 if (depth != set->queue_depth) 2801 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2802 depth, set->queue_depth); 2803 2804 return 0; 2805 } 2806 2807 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2808 { 2809 if (set->ops->map_queues) { 2810 int cpu; 2811 /* 2812 * transport .map_queues is usually done in the following 2813 * way: 2814 * 2815 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2816 * mask = get_cpu_mask(queue) 2817 * for_each_cpu(cpu, mask) 2818 * set->mq_map[cpu] = queue; 2819 * } 2820 * 2821 * When we need to remap, the table has to be cleared for 2822 * killing stale mapping since one CPU may not be mapped 2823 * to any hw queue. 2824 */ 2825 for_each_possible_cpu(cpu) 2826 set->mq_map[cpu] = 0; 2827 2828 return set->ops->map_queues(set); 2829 } else 2830 return blk_mq_map_queues(set); 2831 } 2832 2833 /* 2834 * Alloc a tag set to be associated with one or more request queues. 2835 * May fail with EINVAL for various error conditions. May adjust the 2836 * requested depth down, if if it too large. In that case, the set 2837 * value will be stored in set->queue_depth. 2838 */ 2839 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2840 { 2841 int ret; 2842 2843 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2844 2845 if (!set->nr_hw_queues) 2846 return -EINVAL; 2847 if (!set->queue_depth) 2848 return -EINVAL; 2849 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2850 return -EINVAL; 2851 2852 if (!set->ops->queue_rq) 2853 return -EINVAL; 2854 2855 if (!set->ops->get_budget ^ !set->ops->put_budget) 2856 return -EINVAL; 2857 2858 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2859 pr_info("blk-mq: reduced tag depth to %u\n", 2860 BLK_MQ_MAX_DEPTH); 2861 set->queue_depth = BLK_MQ_MAX_DEPTH; 2862 } 2863 2864 /* 2865 * If a crashdump is active, then we are potentially in a very 2866 * memory constrained environment. Limit us to 1 queue and 2867 * 64 tags to prevent using too much memory. 2868 */ 2869 if (is_kdump_kernel()) { 2870 set->nr_hw_queues = 1; 2871 set->queue_depth = min(64U, set->queue_depth); 2872 } 2873 /* 2874 * There is no use for more h/w queues than cpus. 2875 */ 2876 if (set->nr_hw_queues > nr_cpu_ids) 2877 set->nr_hw_queues = nr_cpu_ids; 2878 2879 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2880 GFP_KERNEL, set->numa_node); 2881 if (!set->tags) 2882 return -ENOMEM; 2883 2884 ret = -ENOMEM; 2885 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2886 GFP_KERNEL, set->numa_node); 2887 if (!set->mq_map) 2888 goto out_free_tags; 2889 2890 ret = blk_mq_update_queue_map(set); 2891 if (ret) 2892 goto out_free_mq_map; 2893 2894 ret = blk_mq_alloc_rq_maps(set); 2895 if (ret) 2896 goto out_free_mq_map; 2897 2898 mutex_init(&set->tag_list_lock); 2899 INIT_LIST_HEAD(&set->tag_list); 2900 2901 return 0; 2902 2903 out_free_mq_map: 2904 kfree(set->mq_map); 2905 set->mq_map = NULL; 2906 out_free_tags: 2907 kfree(set->tags); 2908 set->tags = NULL; 2909 return ret; 2910 } 2911 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2912 2913 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2914 { 2915 int i; 2916 2917 for (i = 0; i < nr_cpu_ids; i++) 2918 blk_mq_free_map_and_requests(set, i); 2919 2920 kfree(set->mq_map); 2921 set->mq_map = NULL; 2922 2923 kfree(set->tags); 2924 set->tags = NULL; 2925 } 2926 EXPORT_SYMBOL(blk_mq_free_tag_set); 2927 2928 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2929 { 2930 struct blk_mq_tag_set *set = q->tag_set; 2931 struct blk_mq_hw_ctx *hctx; 2932 int i, ret; 2933 2934 if (!set) 2935 return -EINVAL; 2936 2937 blk_mq_freeze_queue(q); 2938 blk_mq_quiesce_queue(q); 2939 2940 ret = 0; 2941 queue_for_each_hw_ctx(q, hctx, i) { 2942 if (!hctx->tags) 2943 continue; 2944 /* 2945 * If we're using an MQ scheduler, just update the scheduler 2946 * queue depth. This is similar to what the old code would do. 2947 */ 2948 if (!hctx->sched_tags) { 2949 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2950 false); 2951 } else { 2952 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2953 nr, true); 2954 } 2955 if (ret) 2956 break; 2957 } 2958 2959 if (!ret) 2960 q->nr_requests = nr; 2961 2962 blk_mq_unquiesce_queue(q); 2963 blk_mq_unfreeze_queue(q); 2964 2965 return ret; 2966 } 2967 2968 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2969 int nr_hw_queues) 2970 { 2971 struct request_queue *q; 2972 2973 lockdep_assert_held(&set->tag_list_lock); 2974 2975 if (nr_hw_queues > nr_cpu_ids) 2976 nr_hw_queues = nr_cpu_ids; 2977 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2978 return; 2979 2980 list_for_each_entry(q, &set->tag_list, tag_set_list) 2981 blk_mq_freeze_queue(q); 2982 2983 set->nr_hw_queues = nr_hw_queues; 2984 blk_mq_update_queue_map(set); 2985 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2986 blk_mq_realloc_hw_ctxs(set, q); 2987 blk_mq_queue_reinit(q); 2988 } 2989 2990 list_for_each_entry(q, &set->tag_list, tag_set_list) 2991 blk_mq_unfreeze_queue(q); 2992 } 2993 2994 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2995 { 2996 mutex_lock(&set->tag_list_lock); 2997 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 2998 mutex_unlock(&set->tag_list_lock); 2999 } 3000 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3001 3002 /* Enable polling stats and return whether they were already enabled. */ 3003 static bool blk_poll_stats_enable(struct request_queue *q) 3004 { 3005 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3006 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags)) 3007 return true; 3008 blk_stat_add_callback(q, q->poll_cb); 3009 return false; 3010 } 3011 3012 static void blk_mq_poll_stats_start(struct request_queue *q) 3013 { 3014 /* 3015 * We don't arm the callback if polling stats are not enabled or the 3016 * callback is already active. 3017 */ 3018 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3019 blk_stat_is_active(q->poll_cb)) 3020 return; 3021 3022 blk_stat_activate_msecs(q->poll_cb, 100); 3023 } 3024 3025 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3026 { 3027 struct request_queue *q = cb->data; 3028 int bucket; 3029 3030 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3031 if (cb->stat[bucket].nr_samples) 3032 q->poll_stat[bucket] = cb->stat[bucket]; 3033 } 3034 } 3035 3036 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3037 struct blk_mq_hw_ctx *hctx, 3038 struct request *rq) 3039 { 3040 unsigned long ret = 0; 3041 int bucket; 3042 3043 /* 3044 * If stats collection isn't on, don't sleep but turn it on for 3045 * future users 3046 */ 3047 if (!blk_poll_stats_enable(q)) 3048 return 0; 3049 3050 /* 3051 * As an optimistic guess, use half of the mean service time 3052 * for this type of request. We can (and should) make this smarter. 3053 * For instance, if the completion latencies are tight, we can 3054 * get closer than just half the mean. This is especially 3055 * important on devices where the completion latencies are longer 3056 * than ~10 usec. We do use the stats for the relevant IO size 3057 * if available which does lead to better estimates. 3058 */ 3059 bucket = blk_mq_poll_stats_bkt(rq); 3060 if (bucket < 0) 3061 return ret; 3062 3063 if (q->poll_stat[bucket].nr_samples) 3064 ret = (q->poll_stat[bucket].mean + 1) / 2; 3065 3066 return ret; 3067 } 3068 3069 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3070 struct blk_mq_hw_ctx *hctx, 3071 struct request *rq) 3072 { 3073 struct hrtimer_sleeper hs; 3074 enum hrtimer_mode mode; 3075 unsigned int nsecs; 3076 ktime_t kt; 3077 3078 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3079 return false; 3080 3081 /* 3082 * poll_nsec can be: 3083 * 3084 * -1: don't ever hybrid sleep 3085 * 0: use half of prev avg 3086 * >0: use this specific value 3087 */ 3088 if (q->poll_nsec == -1) 3089 return false; 3090 else if (q->poll_nsec > 0) 3091 nsecs = q->poll_nsec; 3092 else 3093 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3094 3095 if (!nsecs) 3096 return false; 3097 3098 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3099 3100 /* 3101 * This will be replaced with the stats tracking code, using 3102 * 'avg_completion_time / 2' as the pre-sleep target. 3103 */ 3104 kt = nsecs; 3105 3106 mode = HRTIMER_MODE_REL; 3107 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3108 hrtimer_set_expires(&hs.timer, kt); 3109 3110 hrtimer_init_sleeper(&hs, current); 3111 do { 3112 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3113 break; 3114 set_current_state(TASK_UNINTERRUPTIBLE); 3115 hrtimer_start_expires(&hs.timer, mode); 3116 if (hs.task) 3117 io_schedule(); 3118 hrtimer_cancel(&hs.timer); 3119 mode = HRTIMER_MODE_ABS; 3120 } while (hs.task && !signal_pending(current)); 3121 3122 __set_current_state(TASK_RUNNING); 3123 destroy_hrtimer_on_stack(&hs.timer); 3124 return true; 3125 } 3126 3127 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 3128 { 3129 struct request_queue *q = hctx->queue; 3130 long state; 3131 3132 /* 3133 * If we sleep, have the caller restart the poll loop to reset 3134 * the state. Like for the other success return cases, the 3135 * caller is responsible for checking if the IO completed. If 3136 * the IO isn't complete, we'll get called again and will go 3137 * straight to the busy poll loop. 3138 */ 3139 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3140 return true; 3141 3142 hctx->poll_considered++; 3143 3144 state = current->state; 3145 while (!need_resched()) { 3146 int ret; 3147 3148 hctx->poll_invoked++; 3149 3150 ret = q->mq_ops->poll(hctx, rq->tag); 3151 if (ret > 0) { 3152 hctx->poll_success++; 3153 set_current_state(TASK_RUNNING); 3154 return true; 3155 } 3156 3157 if (signal_pending_state(state, current)) 3158 set_current_state(TASK_RUNNING); 3159 3160 if (current->state == TASK_RUNNING) 3161 return true; 3162 if (ret < 0) 3163 break; 3164 cpu_relax(); 3165 } 3166 3167 __set_current_state(TASK_RUNNING); 3168 return false; 3169 } 3170 3171 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3172 { 3173 struct blk_mq_hw_ctx *hctx; 3174 struct request *rq; 3175 3176 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3177 return false; 3178 3179 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3180 if (!blk_qc_t_is_internal(cookie)) 3181 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3182 else { 3183 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3184 /* 3185 * With scheduling, if the request has completed, we'll 3186 * get a NULL return here, as we clear the sched tag when 3187 * that happens. The request still remains valid, like always, 3188 * so we should be safe with just the NULL check. 3189 */ 3190 if (!rq) 3191 return false; 3192 } 3193 3194 return __blk_mq_poll(hctx, rq); 3195 } 3196 3197 static int __init blk_mq_init(void) 3198 { 3199 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3200 blk_mq_hctx_notify_dead); 3201 return 0; 3202 } 3203 subsys_initcall(blk_mq_init); 3204