xref: /openbmc/linux/block/blk-mq.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99 		/*
100 		 * index[0] counts the specific partition that was asked
101 		 * for. index[1] counts the ones that are active on the
102 		 * whole device, so increment that if mi->part is indeed
103 		 * a partition, and not a whole device.
104 		 */
105 		if (rq->part == mi->part)
106 			mi->inflight[0]++;
107 		if (mi->part->partno)
108 			mi->inflight[1]++;
109 	}
110 }
111 
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 		      unsigned int inflight[2])
114 {
115 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
116 
117 	inflight[0] = inflight[1] = 0;
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120 
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 	int freeze_depth;
124 
125 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 	if (freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		if (q->mq_ops)
129 			blk_mq_run_hw_queues(q, false);
130 	}
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133 
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139 
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 				     unsigned long timeout)
142 {
143 	return wait_event_timeout(q->mq_freeze_wq,
144 					percpu_ref_is_zero(&q->q_usage_counter),
145 					timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148 
149 /*
150  * Guarantee no request is in use, so we can change any data structure of
151  * the queue afterward.
152  */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 	/*
156 	 * In the !blk_mq case we are only calling this to kill the
157 	 * q_usage_counter, otherwise this increases the freeze depth
158 	 * and waits for it to return to zero.  For this reason there is
159 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 	 * exported to drivers as the only user for unfreeze is blk_mq.
161 	 */
162 	blk_freeze_queue_start(q);
163 	if (!q->mq_ops)
164 		blk_drain_queue(q);
165 	blk_mq_freeze_queue_wait(q);
166 }
167 
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * ...just an alias to keep freeze and unfreeze actions balanced
172 	 * in the blk_mq_* namespace
173 	 */
174 	blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177 
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180 	int freeze_depth;
181 
182 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183 	WARN_ON_ONCE(freeze_depth < 0);
184 	if (!freeze_depth) {
185 		percpu_ref_reinit(&q->q_usage_counter);
186 		wake_up_all(&q->mq_freeze_wq);
187 	}
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190 
191 /*
192  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193  * mpt3sas driver such that this function can be removed.
194  */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197 	unsigned long flags;
198 
199 	spin_lock_irqsave(q->queue_lock, flags);
200 	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
201 	spin_unlock_irqrestore(q->queue_lock, flags);
202 }
203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
204 
205 /**
206  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
207  * @q: request queue.
208  *
209  * Note: this function does not prevent that the struct request end_io()
210  * callback function is invoked. Once this function is returned, we make
211  * sure no dispatch can happen until the queue is unquiesced via
212  * blk_mq_unquiesce_queue().
213  */
214 void blk_mq_quiesce_queue(struct request_queue *q)
215 {
216 	struct blk_mq_hw_ctx *hctx;
217 	unsigned int i;
218 	bool rcu = false;
219 
220 	blk_mq_quiesce_queue_nowait(q);
221 
222 	queue_for_each_hw_ctx(q, hctx, i) {
223 		if (hctx->flags & BLK_MQ_F_BLOCKING)
224 			synchronize_srcu(hctx->srcu);
225 		else
226 			rcu = true;
227 	}
228 	if (rcu)
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
232 
233 /*
234  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
235  * @q: request queue.
236  *
237  * This function recovers queue into the state before quiescing
238  * which is done by blk_mq_quiesce_queue.
239  */
240 void blk_mq_unquiesce_queue(struct request_queue *q)
241 {
242 	unsigned long flags;
243 
244 	spin_lock_irqsave(q->queue_lock, flags);
245 	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
246 	spin_unlock_irqrestore(q->queue_lock, flags);
247 
248 	/* dispatch requests which are inserted during quiescing */
249 	blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252 
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255 	struct blk_mq_hw_ctx *hctx;
256 	unsigned int i;
257 
258 	queue_for_each_hw_ctx(q, hctx, i)
259 		if (blk_mq_hw_queue_mapped(hctx))
260 			blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262 
263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
264 {
265 	return blk_mq_has_free_tags(hctx->tags);
266 }
267 EXPORT_SYMBOL(blk_mq_can_queue);
268 
269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
270 		unsigned int tag, unsigned int op)
271 {
272 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
273 	struct request *rq = tags->static_rqs[tag];
274 	req_flags_t rq_flags = 0;
275 
276 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 		rq->tag = -1;
278 		rq->internal_tag = tag;
279 	} else {
280 		if (blk_mq_tag_busy(data->hctx)) {
281 			rq_flags = RQF_MQ_INFLIGHT;
282 			atomic_inc(&data->hctx->nr_active);
283 		}
284 		rq->tag = tag;
285 		rq->internal_tag = -1;
286 		data->hctx->tags->rqs[rq->tag] = rq;
287 	}
288 
289 	/* csd/requeue_work/fifo_time is initialized before use */
290 	rq->q = data->q;
291 	rq->mq_ctx = data->ctx;
292 	rq->rq_flags = rq_flags;
293 	rq->cpu = -1;
294 	rq->cmd_flags = op;
295 	if (data->flags & BLK_MQ_REQ_PREEMPT)
296 		rq->rq_flags |= RQF_PREEMPT;
297 	if (blk_queue_io_stat(data->q))
298 		rq->rq_flags |= RQF_IO_STAT;
299 	INIT_LIST_HEAD(&rq->queuelist);
300 	INIT_HLIST_NODE(&rq->hash);
301 	RB_CLEAR_NODE(&rq->rb_node);
302 	rq->rq_disk = NULL;
303 	rq->part = NULL;
304 	rq->start_time = jiffies;
305 	rq->nr_phys_segments = 0;
306 #if defined(CONFIG_BLK_DEV_INTEGRITY)
307 	rq->nr_integrity_segments = 0;
308 #endif
309 	rq->special = NULL;
310 	/* tag was already set */
311 	rq->extra_len = 0;
312 	rq->__deadline = 0;
313 
314 	INIT_LIST_HEAD(&rq->timeout_list);
315 	rq->timeout = 0;
316 
317 	rq->end_io = NULL;
318 	rq->end_io_data = NULL;
319 	rq->next_rq = NULL;
320 
321 #ifdef CONFIG_BLK_CGROUP
322 	rq->rl = NULL;
323 	set_start_time_ns(rq);
324 	rq->io_start_time_ns = 0;
325 #endif
326 
327 	data->ctx->rq_dispatched[op_is_sync(op)]++;
328 	return rq;
329 }
330 
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 		struct bio *bio, unsigned int op,
333 		struct blk_mq_alloc_data *data)
334 {
335 	struct elevator_queue *e = q->elevator;
336 	struct request *rq;
337 	unsigned int tag;
338 	bool put_ctx_on_error = false;
339 
340 	blk_queue_enter_live(q);
341 	data->q = q;
342 	if (likely(!data->ctx)) {
343 		data->ctx = blk_mq_get_ctx(q);
344 		put_ctx_on_error = true;
345 	}
346 	if (likely(!data->hctx))
347 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 	if (op & REQ_NOWAIT)
349 		data->flags |= BLK_MQ_REQ_NOWAIT;
350 
351 	if (e) {
352 		data->flags |= BLK_MQ_REQ_INTERNAL;
353 
354 		/*
355 		 * Flush requests are special and go directly to the
356 		 * dispatch list.
357 		 */
358 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 			e->type->ops.mq.limit_depth(op, data);
360 	}
361 
362 	tag = blk_mq_get_tag(data);
363 	if (tag == BLK_MQ_TAG_FAIL) {
364 		if (put_ctx_on_error) {
365 			blk_mq_put_ctx(data->ctx);
366 			data->ctx = NULL;
367 		}
368 		blk_queue_exit(q);
369 		return NULL;
370 	}
371 
372 	rq = blk_mq_rq_ctx_init(data, tag, op);
373 	if (!op_is_flush(op)) {
374 		rq->elv.icq = NULL;
375 		if (e && e->type->ops.mq.prepare_request) {
376 			if (e->type->icq_cache && rq_ioc(bio))
377 				blk_mq_sched_assign_ioc(rq, bio);
378 
379 			e->type->ops.mq.prepare_request(rq, bio);
380 			rq->rq_flags |= RQF_ELVPRIV;
381 		}
382 	}
383 	data->hctx->queued++;
384 	return rq;
385 }
386 
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 		blk_mq_req_flags_t flags)
389 {
390 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 	struct request *rq;
392 	int ret;
393 
394 	ret = blk_queue_enter(q, flags);
395 	if (ret)
396 		return ERR_PTR(ret);
397 
398 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 	blk_queue_exit(q);
400 
401 	if (!rq)
402 		return ERR_PTR(-EWOULDBLOCK);
403 
404 	blk_mq_put_ctx(alloc_data.ctx);
405 
406 	rq->__data_len = 0;
407 	rq->__sector = (sector_t) -1;
408 	rq->bio = rq->biotail = NULL;
409 	return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412 
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 	struct request *rq;
418 	unsigned int cpu;
419 	int ret;
420 
421 	/*
422 	 * If the tag allocator sleeps we could get an allocation for a
423 	 * different hardware context.  No need to complicate the low level
424 	 * allocator for this for the rare use case of a command tied to
425 	 * a specific queue.
426 	 */
427 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 		return ERR_PTR(-EINVAL);
429 
430 	if (hctx_idx >= q->nr_hw_queues)
431 		return ERR_PTR(-EIO);
432 
433 	ret = blk_queue_enter(q, flags);
434 	if (ret)
435 		return ERR_PTR(ret);
436 
437 	/*
438 	 * Check if the hardware context is actually mapped to anything.
439 	 * If not tell the caller that it should skip this queue.
440 	 */
441 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 		blk_queue_exit(q);
444 		return ERR_PTR(-EXDEV);
445 	}
446 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448 
449 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 	blk_queue_exit(q);
451 
452 	if (!rq)
453 		return ERR_PTR(-EWOULDBLOCK);
454 
455 	return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458 
459 void blk_mq_free_request(struct request *rq)
460 {
461 	struct request_queue *q = rq->q;
462 	struct elevator_queue *e = q->elevator;
463 	struct blk_mq_ctx *ctx = rq->mq_ctx;
464 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 	const int sched_tag = rq->internal_tag;
466 
467 	if (rq->rq_flags & RQF_ELVPRIV) {
468 		if (e && e->type->ops.mq.finish_request)
469 			e->type->ops.mq.finish_request(rq);
470 		if (rq->elv.icq) {
471 			put_io_context(rq->elv.icq->ioc);
472 			rq->elv.icq = NULL;
473 		}
474 	}
475 
476 	ctx->rq_completed[rq_is_sync(rq)]++;
477 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 		atomic_dec(&hctx->nr_active);
479 
480 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 		laptop_io_completion(q->backing_dev_info);
482 
483 	wbt_done(q->rq_wb, &rq->issue_stat);
484 
485 	if (blk_rq_rl(rq))
486 		blk_put_rl(blk_rq_rl(rq));
487 
488 	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
489 	if (rq->tag != -1)
490 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491 	if (sched_tag != -1)
492 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493 	blk_mq_sched_restart(hctx);
494 	blk_queue_exit(q);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497 
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 {
500 	blk_account_io_done(rq);
501 
502 	if (rq->end_io) {
503 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
504 		rq->end_io(rq, error);
505 	} else {
506 		if (unlikely(blk_bidi_rq(rq)))
507 			blk_mq_free_request(rq->next_rq);
508 		blk_mq_free_request(rq);
509 	}
510 }
511 EXPORT_SYMBOL(__blk_mq_end_request);
512 
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516 		BUG();
517 	__blk_mq_end_request(rq, error);
518 }
519 EXPORT_SYMBOL(blk_mq_end_request);
520 
521 static void __blk_mq_complete_request_remote(void *data)
522 {
523 	struct request *rq = data;
524 
525 	rq->q->softirq_done_fn(rq);
526 }
527 
528 static void __blk_mq_complete_request(struct request *rq)
529 {
530 	struct blk_mq_ctx *ctx = rq->mq_ctx;
531 	bool shared = false;
532 	int cpu;
533 
534 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
535 	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
536 
537 	if (rq->internal_tag != -1)
538 		blk_mq_sched_completed_request(rq);
539 	if (rq->rq_flags & RQF_STATS) {
540 		blk_mq_poll_stats_start(rq->q);
541 		blk_stat_add(rq);
542 	}
543 
544 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 		rq->q->softirq_done_fn(rq);
546 		return;
547 	}
548 
549 	cpu = get_cpu();
550 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551 		shared = cpus_share_cache(cpu, ctx->cpu);
552 
553 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554 		rq->csd.func = __blk_mq_complete_request_remote;
555 		rq->csd.info = rq;
556 		rq->csd.flags = 0;
557 		smp_call_function_single_async(ctx->cpu, &rq->csd);
558 	} else {
559 		rq->q->softirq_done_fn(rq);
560 	}
561 	put_cpu();
562 }
563 
564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
565 	__releases(hctx->srcu)
566 {
567 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
568 		rcu_read_unlock();
569 	else
570 		srcu_read_unlock(hctx->srcu, srcu_idx);
571 }
572 
573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
574 	__acquires(hctx->srcu)
575 {
576 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
577 		/* shut up gcc false positive */
578 		*srcu_idx = 0;
579 		rcu_read_lock();
580 	} else
581 		*srcu_idx = srcu_read_lock(hctx->srcu);
582 }
583 
584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
585 {
586 	unsigned long flags;
587 
588 	/*
589 	 * blk_mq_rq_aborted_gstate() is used from the completion path and
590 	 * can thus be called from irq context.  u64_stats_fetch in the
591 	 * middle of update on the same CPU leads to lockup.  Disable irq
592 	 * while updating.
593 	 */
594 	local_irq_save(flags);
595 	u64_stats_update_begin(&rq->aborted_gstate_sync);
596 	rq->aborted_gstate = gstate;
597 	u64_stats_update_end(&rq->aborted_gstate_sync);
598 	local_irq_restore(flags);
599 }
600 
601 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
602 {
603 	unsigned int start;
604 	u64 aborted_gstate;
605 
606 	do {
607 		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
608 		aborted_gstate = rq->aborted_gstate;
609 	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
610 
611 	return aborted_gstate;
612 }
613 
614 /**
615  * blk_mq_complete_request - end I/O on a request
616  * @rq:		the request being processed
617  *
618  * Description:
619  *	Ends all I/O on a request. It does not handle partial completions.
620  *	The actual completion happens out-of-order, through a IPI handler.
621  **/
622 void blk_mq_complete_request(struct request *rq)
623 {
624 	struct request_queue *q = rq->q;
625 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
626 	int srcu_idx;
627 
628 	if (unlikely(blk_should_fake_timeout(q)))
629 		return;
630 
631 	/*
632 	 * If @rq->aborted_gstate equals the current instance, timeout is
633 	 * claiming @rq and we lost.  This is synchronized through
634 	 * hctx_lock().  See blk_mq_timeout_work() for details.
635 	 *
636 	 * Completion path never blocks and we can directly use RCU here
637 	 * instead of hctx_lock() which can be either RCU or SRCU.
638 	 * However, that would complicate paths which want to synchronize
639 	 * against us.  Let stay in sync with the issue path so that
640 	 * hctx_lock() covers both issue and completion paths.
641 	 */
642 	hctx_lock(hctx, &srcu_idx);
643 	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
644 		__blk_mq_complete_request(rq);
645 	hctx_unlock(hctx, srcu_idx);
646 }
647 EXPORT_SYMBOL(blk_mq_complete_request);
648 
649 int blk_mq_request_started(struct request *rq)
650 {
651 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
652 }
653 EXPORT_SYMBOL_GPL(blk_mq_request_started);
654 
655 void blk_mq_start_request(struct request *rq)
656 {
657 	struct request_queue *q = rq->q;
658 
659 	blk_mq_sched_started_request(rq);
660 
661 	trace_block_rq_issue(q, rq);
662 
663 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
664 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
665 		rq->rq_flags |= RQF_STATS;
666 		wbt_issue(q->rq_wb, &rq->issue_stat);
667 	}
668 
669 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
670 
671 	/*
672 	 * Mark @rq in-flight which also advances the generation number,
673 	 * and register for timeout.  Protect with a seqcount to allow the
674 	 * timeout path to read both @rq->gstate and @rq->deadline
675 	 * coherently.
676 	 *
677 	 * This is the only place where a request is marked in-flight.  If
678 	 * the timeout path reads an in-flight @rq->gstate, the
679 	 * @rq->deadline it reads together under @rq->gstate_seq is
680 	 * guaranteed to be the matching one.
681 	 */
682 	preempt_disable();
683 	write_seqcount_begin(&rq->gstate_seq);
684 
685 	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
686 	blk_add_timer(rq);
687 
688 	write_seqcount_end(&rq->gstate_seq);
689 	preempt_enable();
690 
691 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
692 		/*
693 		 * Make sure space for the drain appears.  We know we can do
694 		 * this because max_hw_segments has been adjusted to be one
695 		 * fewer than the device can handle.
696 		 */
697 		rq->nr_phys_segments++;
698 	}
699 }
700 EXPORT_SYMBOL(blk_mq_start_request);
701 
702 /*
703  * When we reach here because queue is busy, it's safe to change the state
704  * to IDLE without checking @rq->aborted_gstate because we should still be
705  * holding the RCU read lock and thus protected against timeout.
706  */
707 static void __blk_mq_requeue_request(struct request *rq)
708 {
709 	struct request_queue *q = rq->q;
710 
711 	blk_mq_put_driver_tag(rq);
712 
713 	trace_block_rq_requeue(q, rq);
714 	wbt_requeue(q->rq_wb, &rq->issue_stat);
715 	blk_mq_sched_requeue_request(rq);
716 
717 	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
718 		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
719 		if (q->dma_drain_size && blk_rq_bytes(rq))
720 			rq->nr_phys_segments--;
721 	}
722 }
723 
724 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
725 {
726 	__blk_mq_requeue_request(rq);
727 
728 	BUG_ON(blk_queued_rq(rq));
729 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
730 }
731 EXPORT_SYMBOL(blk_mq_requeue_request);
732 
733 static void blk_mq_requeue_work(struct work_struct *work)
734 {
735 	struct request_queue *q =
736 		container_of(work, struct request_queue, requeue_work.work);
737 	LIST_HEAD(rq_list);
738 	struct request *rq, *next;
739 
740 	spin_lock_irq(&q->requeue_lock);
741 	list_splice_init(&q->requeue_list, &rq_list);
742 	spin_unlock_irq(&q->requeue_lock);
743 
744 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
745 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
746 			continue;
747 
748 		rq->rq_flags &= ~RQF_SOFTBARRIER;
749 		list_del_init(&rq->queuelist);
750 		blk_mq_sched_insert_request(rq, true, false, false);
751 	}
752 
753 	while (!list_empty(&rq_list)) {
754 		rq = list_entry(rq_list.next, struct request, queuelist);
755 		list_del_init(&rq->queuelist);
756 		blk_mq_sched_insert_request(rq, false, false, false);
757 	}
758 
759 	blk_mq_run_hw_queues(q, false);
760 }
761 
762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
763 				bool kick_requeue_list)
764 {
765 	struct request_queue *q = rq->q;
766 	unsigned long flags;
767 
768 	/*
769 	 * We abuse this flag that is otherwise used by the I/O scheduler to
770 	 * request head insertion from the workqueue.
771 	 */
772 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
773 
774 	spin_lock_irqsave(&q->requeue_lock, flags);
775 	if (at_head) {
776 		rq->rq_flags |= RQF_SOFTBARRIER;
777 		list_add(&rq->queuelist, &q->requeue_list);
778 	} else {
779 		list_add_tail(&rq->queuelist, &q->requeue_list);
780 	}
781 	spin_unlock_irqrestore(&q->requeue_lock, flags);
782 
783 	if (kick_requeue_list)
784 		blk_mq_kick_requeue_list(q);
785 }
786 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
787 
788 void blk_mq_kick_requeue_list(struct request_queue *q)
789 {
790 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
791 }
792 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
793 
794 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
795 				    unsigned long msecs)
796 {
797 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
798 				    msecs_to_jiffies(msecs));
799 }
800 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
801 
802 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
803 {
804 	if (tag < tags->nr_tags) {
805 		prefetch(tags->rqs[tag]);
806 		return tags->rqs[tag];
807 	}
808 
809 	return NULL;
810 }
811 EXPORT_SYMBOL(blk_mq_tag_to_rq);
812 
813 struct blk_mq_timeout_data {
814 	unsigned long next;
815 	unsigned int next_set;
816 	unsigned int nr_expired;
817 };
818 
819 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
820 {
821 	const struct blk_mq_ops *ops = req->q->mq_ops;
822 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
823 
824 	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
825 
826 	if (ops->timeout)
827 		ret = ops->timeout(req, reserved);
828 
829 	switch (ret) {
830 	case BLK_EH_HANDLED:
831 		__blk_mq_complete_request(req);
832 		break;
833 	case BLK_EH_RESET_TIMER:
834 		/*
835 		 * As nothing prevents from completion happening while
836 		 * ->aborted_gstate is set, this may lead to ignored
837 		 * completions and further spurious timeouts.
838 		 */
839 		blk_mq_rq_update_aborted_gstate(req, 0);
840 		blk_add_timer(req);
841 		break;
842 	case BLK_EH_NOT_HANDLED:
843 		break;
844 	default:
845 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
846 		break;
847 	}
848 }
849 
850 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
851 		struct request *rq, void *priv, bool reserved)
852 {
853 	struct blk_mq_timeout_data *data = priv;
854 	unsigned long gstate, deadline;
855 	int start;
856 
857 	might_sleep();
858 
859 	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
860 		return;
861 
862 	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
863 	while (true) {
864 		start = read_seqcount_begin(&rq->gstate_seq);
865 		gstate = READ_ONCE(rq->gstate);
866 		deadline = blk_rq_deadline(rq);
867 		if (!read_seqcount_retry(&rq->gstate_seq, start))
868 			break;
869 		cond_resched();
870 	}
871 
872 	/* if in-flight && overdue, mark for abortion */
873 	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
874 	    time_after_eq(jiffies, deadline)) {
875 		blk_mq_rq_update_aborted_gstate(rq, gstate);
876 		data->nr_expired++;
877 		hctx->nr_expired++;
878 	} else if (!data->next_set || time_after(data->next, deadline)) {
879 		data->next = deadline;
880 		data->next_set = 1;
881 	}
882 }
883 
884 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
885 		struct request *rq, void *priv, bool reserved)
886 {
887 	/*
888 	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
889 	 * completions that we lost to, they would have finished and
890 	 * updated @rq->gstate by now; otherwise, the completion path is
891 	 * now guaranteed to see @rq->aborted_gstate and yield.  If
892 	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
893 	 */
894 	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
895 	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
896 		blk_mq_rq_timed_out(rq, reserved);
897 }
898 
899 static void blk_mq_timeout_work(struct work_struct *work)
900 {
901 	struct request_queue *q =
902 		container_of(work, struct request_queue, timeout_work);
903 	struct blk_mq_timeout_data data = {
904 		.next		= 0,
905 		.next_set	= 0,
906 		.nr_expired	= 0,
907 	};
908 	struct blk_mq_hw_ctx *hctx;
909 	int i;
910 
911 	/* A deadlock might occur if a request is stuck requiring a
912 	 * timeout at the same time a queue freeze is waiting
913 	 * completion, since the timeout code would not be able to
914 	 * acquire the queue reference here.
915 	 *
916 	 * That's why we don't use blk_queue_enter here; instead, we use
917 	 * percpu_ref_tryget directly, because we need to be able to
918 	 * obtain a reference even in the short window between the queue
919 	 * starting to freeze, by dropping the first reference in
920 	 * blk_freeze_queue_start, and the moment the last request is
921 	 * consumed, marked by the instant q_usage_counter reaches
922 	 * zero.
923 	 */
924 	if (!percpu_ref_tryget(&q->q_usage_counter))
925 		return;
926 
927 	/* scan for the expired ones and set their ->aborted_gstate */
928 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
929 
930 	if (data.nr_expired) {
931 		bool has_rcu = false;
932 
933 		/*
934 		 * Wait till everyone sees ->aborted_gstate.  The
935 		 * sequential waits for SRCUs aren't ideal.  If this ever
936 		 * becomes a problem, we can add per-hw_ctx rcu_head and
937 		 * wait in parallel.
938 		 */
939 		queue_for_each_hw_ctx(q, hctx, i) {
940 			if (!hctx->nr_expired)
941 				continue;
942 
943 			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
944 				has_rcu = true;
945 			else
946 				synchronize_srcu(hctx->srcu);
947 
948 			hctx->nr_expired = 0;
949 		}
950 		if (has_rcu)
951 			synchronize_rcu();
952 
953 		/* terminate the ones we won */
954 		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
955 	}
956 
957 	if (data.next_set) {
958 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
959 		mod_timer(&q->timeout, data.next);
960 	} else {
961 		/*
962 		 * Request timeouts are handled as a forward rolling timer. If
963 		 * we end up here it means that no requests are pending and
964 		 * also that no request has been pending for a while. Mark
965 		 * each hctx as idle.
966 		 */
967 		queue_for_each_hw_ctx(q, hctx, i) {
968 			/* the hctx may be unmapped, so check it here */
969 			if (blk_mq_hw_queue_mapped(hctx))
970 				blk_mq_tag_idle(hctx);
971 		}
972 	}
973 	blk_queue_exit(q);
974 }
975 
976 struct flush_busy_ctx_data {
977 	struct blk_mq_hw_ctx *hctx;
978 	struct list_head *list;
979 };
980 
981 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
982 {
983 	struct flush_busy_ctx_data *flush_data = data;
984 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
985 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
986 
987 	sbitmap_clear_bit(sb, bitnr);
988 	spin_lock(&ctx->lock);
989 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
990 	spin_unlock(&ctx->lock);
991 	return true;
992 }
993 
994 /*
995  * Process software queues that have been marked busy, splicing them
996  * to the for-dispatch
997  */
998 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
999 {
1000 	struct flush_busy_ctx_data data = {
1001 		.hctx = hctx,
1002 		.list = list,
1003 	};
1004 
1005 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1006 }
1007 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1008 
1009 struct dispatch_rq_data {
1010 	struct blk_mq_hw_ctx *hctx;
1011 	struct request *rq;
1012 };
1013 
1014 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1015 		void *data)
1016 {
1017 	struct dispatch_rq_data *dispatch_data = data;
1018 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1019 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1020 
1021 	spin_lock(&ctx->lock);
1022 	if (unlikely(!list_empty(&ctx->rq_list))) {
1023 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1024 		list_del_init(&dispatch_data->rq->queuelist);
1025 		if (list_empty(&ctx->rq_list))
1026 			sbitmap_clear_bit(sb, bitnr);
1027 	}
1028 	spin_unlock(&ctx->lock);
1029 
1030 	return !dispatch_data->rq;
1031 }
1032 
1033 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034 					struct blk_mq_ctx *start)
1035 {
1036 	unsigned off = start ? start->index_hw : 0;
1037 	struct dispatch_rq_data data = {
1038 		.hctx = hctx,
1039 		.rq   = NULL,
1040 	};
1041 
1042 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1043 			       dispatch_rq_from_ctx, &data);
1044 
1045 	return data.rq;
1046 }
1047 
1048 static inline unsigned int queued_to_index(unsigned int queued)
1049 {
1050 	if (!queued)
1051 		return 0;
1052 
1053 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1054 }
1055 
1056 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1057 			   bool wait)
1058 {
1059 	struct blk_mq_alloc_data data = {
1060 		.q = rq->q,
1061 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1062 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1063 	};
1064 
1065 	might_sleep_if(wait);
1066 
1067 	if (rq->tag != -1)
1068 		goto done;
1069 
1070 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1071 		data.flags |= BLK_MQ_REQ_RESERVED;
1072 
1073 	rq->tag = blk_mq_get_tag(&data);
1074 	if (rq->tag >= 0) {
1075 		if (blk_mq_tag_busy(data.hctx)) {
1076 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1077 			atomic_inc(&data.hctx->nr_active);
1078 		}
1079 		data.hctx->tags->rqs[rq->tag] = rq;
1080 	}
1081 
1082 done:
1083 	if (hctx)
1084 		*hctx = data.hctx;
1085 	return rq->tag != -1;
1086 }
1087 
1088 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1089 				int flags, void *key)
1090 {
1091 	struct blk_mq_hw_ctx *hctx;
1092 
1093 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1094 
1095 	list_del_init(&wait->entry);
1096 	blk_mq_run_hw_queue(hctx, true);
1097 	return 1;
1098 }
1099 
1100 /*
1101  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1102  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1103  * restart. For both cases, take care to check the condition again after
1104  * marking us as waiting.
1105  */
1106 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1107 				 struct request *rq)
1108 {
1109 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1110 	struct sbq_wait_state *ws;
1111 	wait_queue_entry_t *wait;
1112 	bool ret;
1113 
1114 	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1115 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1116 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1117 
1118 		/*
1119 		 * It's possible that a tag was freed in the window between the
1120 		 * allocation failure and adding the hardware queue to the wait
1121 		 * queue.
1122 		 *
1123 		 * Don't clear RESTART here, someone else could have set it.
1124 		 * At most this will cost an extra queue run.
1125 		 */
1126 		return blk_mq_get_driver_tag(rq, hctx, false);
1127 	}
1128 
1129 	wait = &this_hctx->dispatch_wait;
1130 	if (!list_empty_careful(&wait->entry))
1131 		return false;
1132 
1133 	spin_lock(&this_hctx->lock);
1134 	if (!list_empty(&wait->entry)) {
1135 		spin_unlock(&this_hctx->lock);
1136 		return false;
1137 	}
1138 
1139 	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1140 	add_wait_queue(&ws->wait, wait);
1141 
1142 	/*
1143 	 * It's possible that a tag was freed in the window between the
1144 	 * allocation failure and adding the hardware queue to the wait
1145 	 * queue.
1146 	 */
1147 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1148 	if (!ret) {
1149 		spin_unlock(&this_hctx->lock);
1150 		return false;
1151 	}
1152 
1153 	/*
1154 	 * We got a tag, remove ourselves from the wait queue to ensure
1155 	 * someone else gets the wakeup.
1156 	 */
1157 	spin_lock_irq(&ws->wait.lock);
1158 	list_del_init(&wait->entry);
1159 	spin_unlock_irq(&ws->wait.lock);
1160 	spin_unlock(&this_hctx->lock);
1161 
1162 	return true;
1163 }
1164 
1165 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1166 
1167 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1168 			     bool got_budget)
1169 {
1170 	struct blk_mq_hw_ctx *hctx;
1171 	struct request *rq, *nxt;
1172 	bool no_tag = false;
1173 	int errors, queued;
1174 	blk_status_t ret = BLK_STS_OK;
1175 
1176 	if (list_empty(list))
1177 		return false;
1178 
1179 	WARN_ON(!list_is_singular(list) && got_budget);
1180 
1181 	/*
1182 	 * Now process all the entries, sending them to the driver.
1183 	 */
1184 	errors = queued = 0;
1185 	do {
1186 		struct blk_mq_queue_data bd;
1187 
1188 		rq = list_first_entry(list, struct request, queuelist);
1189 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1190 			/*
1191 			 * The initial allocation attempt failed, so we need to
1192 			 * rerun the hardware queue when a tag is freed. The
1193 			 * waitqueue takes care of that. If the queue is run
1194 			 * before we add this entry back on the dispatch list,
1195 			 * we'll re-run it below.
1196 			 */
1197 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1198 				if (got_budget)
1199 					blk_mq_put_dispatch_budget(hctx);
1200 				/*
1201 				 * For non-shared tags, the RESTART check
1202 				 * will suffice.
1203 				 */
1204 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1205 					no_tag = true;
1206 				break;
1207 			}
1208 		}
1209 
1210 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1211 			blk_mq_put_driver_tag(rq);
1212 			break;
1213 		}
1214 
1215 		list_del_init(&rq->queuelist);
1216 
1217 		bd.rq = rq;
1218 
1219 		/*
1220 		 * Flag last if we have no more requests, or if we have more
1221 		 * but can't assign a driver tag to it.
1222 		 */
1223 		if (list_empty(list))
1224 			bd.last = true;
1225 		else {
1226 			nxt = list_first_entry(list, struct request, queuelist);
1227 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1228 		}
1229 
1230 		ret = q->mq_ops->queue_rq(hctx, &bd);
1231 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1232 			/*
1233 			 * If an I/O scheduler has been configured and we got a
1234 			 * driver tag for the next request already, free it
1235 			 * again.
1236 			 */
1237 			if (!list_empty(list)) {
1238 				nxt = list_first_entry(list, struct request, queuelist);
1239 				blk_mq_put_driver_tag(nxt);
1240 			}
1241 			list_add(&rq->queuelist, list);
1242 			__blk_mq_requeue_request(rq);
1243 			break;
1244 		}
1245 
1246 		if (unlikely(ret != BLK_STS_OK)) {
1247 			errors++;
1248 			blk_mq_end_request(rq, BLK_STS_IOERR);
1249 			continue;
1250 		}
1251 
1252 		queued++;
1253 	} while (!list_empty(list));
1254 
1255 	hctx->dispatched[queued_to_index(queued)]++;
1256 
1257 	/*
1258 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1259 	 * that is where we will continue on next queue run.
1260 	 */
1261 	if (!list_empty(list)) {
1262 		bool needs_restart;
1263 
1264 		spin_lock(&hctx->lock);
1265 		list_splice_init(list, &hctx->dispatch);
1266 		spin_unlock(&hctx->lock);
1267 
1268 		/*
1269 		 * If SCHED_RESTART was set by the caller of this function and
1270 		 * it is no longer set that means that it was cleared by another
1271 		 * thread and hence that a queue rerun is needed.
1272 		 *
1273 		 * If 'no_tag' is set, that means that we failed getting
1274 		 * a driver tag with an I/O scheduler attached. If our dispatch
1275 		 * waitqueue is no longer active, ensure that we run the queue
1276 		 * AFTER adding our entries back to the list.
1277 		 *
1278 		 * If no I/O scheduler has been configured it is possible that
1279 		 * the hardware queue got stopped and restarted before requests
1280 		 * were pushed back onto the dispatch list. Rerun the queue to
1281 		 * avoid starvation. Notes:
1282 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1283 		 *   been stopped before rerunning a queue.
1284 		 * - Some but not all block drivers stop a queue before
1285 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1286 		 *   and dm-rq.
1287 		 *
1288 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1289 		 * bit is set, run queue after a delay to avoid IO stalls
1290 		 * that could otherwise occur if the queue is idle.
1291 		 */
1292 		needs_restart = blk_mq_sched_needs_restart(hctx);
1293 		if (!needs_restart ||
1294 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1295 			blk_mq_run_hw_queue(hctx, true);
1296 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1297 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1298 	}
1299 
1300 	return (queued + errors) != 0;
1301 }
1302 
1303 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1304 {
1305 	int srcu_idx;
1306 
1307 	/*
1308 	 * We should be running this queue from one of the CPUs that
1309 	 * are mapped to it.
1310 	 *
1311 	 * There are at least two related races now between setting
1312 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1313 	 * __blk_mq_run_hw_queue():
1314 	 *
1315 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1316 	 *   but later it becomes online, then this warning is harmless
1317 	 *   at all
1318 	 *
1319 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1320 	 *   but later it becomes offline, then the warning can't be
1321 	 *   triggered, and we depend on blk-mq timeout handler to
1322 	 *   handle dispatched requests to this hctx
1323 	 */
1324 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1325 		cpu_online(hctx->next_cpu)) {
1326 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1327 			raw_smp_processor_id(),
1328 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1329 		dump_stack();
1330 	}
1331 
1332 	/*
1333 	 * We can't run the queue inline with ints disabled. Ensure that
1334 	 * we catch bad users of this early.
1335 	 */
1336 	WARN_ON_ONCE(in_interrupt());
1337 
1338 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1339 
1340 	hctx_lock(hctx, &srcu_idx);
1341 	blk_mq_sched_dispatch_requests(hctx);
1342 	hctx_unlock(hctx, srcu_idx);
1343 }
1344 
1345 /*
1346  * It'd be great if the workqueue API had a way to pass
1347  * in a mask and had some smarts for more clever placement.
1348  * For now we just round-robin here, switching for every
1349  * BLK_MQ_CPU_WORK_BATCH queued items.
1350  */
1351 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1352 {
1353 	bool tried = false;
1354 
1355 	if (hctx->queue->nr_hw_queues == 1)
1356 		return WORK_CPU_UNBOUND;
1357 
1358 	if (--hctx->next_cpu_batch <= 0) {
1359 		int next_cpu;
1360 select_cpu:
1361 		next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1362 				cpu_online_mask);
1363 		if (next_cpu >= nr_cpu_ids)
1364 			next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1365 
1366 		/*
1367 		 * No online CPU is found, so have to make sure hctx->next_cpu
1368 		 * is set correctly for not breaking workqueue.
1369 		 */
1370 		if (next_cpu >= nr_cpu_ids)
1371 			hctx->next_cpu = cpumask_first(hctx->cpumask);
1372 		else
1373 			hctx->next_cpu = next_cpu;
1374 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1375 	}
1376 
1377 	/*
1378 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1379 	 * and it should only happen in the path of handling CPU DEAD.
1380 	 */
1381 	if (!cpu_online(hctx->next_cpu)) {
1382 		if (!tried) {
1383 			tried = true;
1384 			goto select_cpu;
1385 		}
1386 
1387 		/*
1388 		 * Make sure to re-select CPU next time once after CPUs
1389 		 * in hctx->cpumask become online again.
1390 		 */
1391 		hctx->next_cpu_batch = 1;
1392 		return WORK_CPU_UNBOUND;
1393 	}
1394 	return hctx->next_cpu;
1395 }
1396 
1397 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1398 					unsigned long msecs)
1399 {
1400 	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1401 		return;
1402 
1403 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1404 		return;
1405 
1406 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1407 		int cpu = get_cpu();
1408 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1409 			__blk_mq_run_hw_queue(hctx);
1410 			put_cpu();
1411 			return;
1412 		}
1413 
1414 		put_cpu();
1415 	}
1416 
1417 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1418 				    msecs_to_jiffies(msecs));
1419 }
1420 
1421 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1422 {
1423 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1424 }
1425 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1426 
1427 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1428 {
1429 	int srcu_idx;
1430 	bool need_run;
1431 
1432 	/*
1433 	 * When queue is quiesced, we may be switching io scheduler, or
1434 	 * updating nr_hw_queues, or other things, and we can't run queue
1435 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1436 	 *
1437 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1438 	 * quiesced.
1439 	 */
1440 	hctx_lock(hctx, &srcu_idx);
1441 	need_run = !blk_queue_quiesced(hctx->queue) &&
1442 		blk_mq_hctx_has_pending(hctx);
1443 	hctx_unlock(hctx, srcu_idx);
1444 
1445 	if (need_run) {
1446 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1447 		return true;
1448 	}
1449 
1450 	return false;
1451 }
1452 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1453 
1454 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1455 {
1456 	struct blk_mq_hw_ctx *hctx;
1457 	int i;
1458 
1459 	queue_for_each_hw_ctx(q, hctx, i) {
1460 		if (blk_mq_hctx_stopped(hctx))
1461 			continue;
1462 
1463 		blk_mq_run_hw_queue(hctx, async);
1464 	}
1465 }
1466 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1467 
1468 /**
1469  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1470  * @q: request queue.
1471  *
1472  * The caller is responsible for serializing this function against
1473  * blk_mq_{start,stop}_hw_queue().
1474  */
1475 bool blk_mq_queue_stopped(struct request_queue *q)
1476 {
1477 	struct blk_mq_hw_ctx *hctx;
1478 	int i;
1479 
1480 	queue_for_each_hw_ctx(q, hctx, i)
1481 		if (blk_mq_hctx_stopped(hctx))
1482 			return true;
1483 
1484 	return false;
1485 }
1486 EXPORT_SYMBOL(blk_mq_queue_stopped);
1487 
1488 /*
1489  * This function is often used for pausing .queue_rq() by driver when
1490  * there isn't enough resource or some conditions aren't satisfied, and
1491  * BLK_STS_RESOURCE is usually returned.
1492  *
1493  * We do not guarantee that dispatch can be drained or blocked
1494  * after blk_mq_stop_hw_queue() returns. Please use
1495  * blk_mq_quiesce_queue() for that requirement.
1496  */
1497 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1498 {
1499 	cancel_delayed_work(&hctx->run_work);
1500 
1501 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1502 }
1503 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1504 
1505 /*
1506  * This function is often used for pausing .queue_rq() by driver when
1507  * there isn't enough resource or some conditions aren't satisfied, and
1508  * BLK_STS_RESOURCE is usually returned.
1509  *
1510  * We do not guarantee that dispatch can be drained or blocked
1511  * after blk_mq_stop_hw_queues() returns. Please use
1512  * blk_mq_quiesce_queue() for that requirement.
1513  */
1514 void blk_mq_stop_hw_queues(struct request_queue *q)
1515 {
1516 	struct blk_mq_hw_ctx *hctx;
1517 	int i;
1518 
1519 	queue_for_each_hw_ctx(q, hctx, i)
1520 		blk_mq_stop_hw_queue(hctx);
1521 }
1522 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1523 
1524 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1525 {
1526 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1527 
1528 	blk_mq_run_hw_queue(hctx, false);
1529 }
1530 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1531 
1532 void blk_mq_start_hw_queues(struct request_queue *q)
1533 {
1534 	struct blk_mq_hw_ctx *hctx;
1535 	int i;
1536 
1537 	queue_for_each_hw_ctx(q, hctx, i)
1538 		blk_mq_start_hw_queue(hctx);
1539 }
1540 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1541 
1542 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1543 {
1544 	if (!blk_mq_hctx_stopped(hctx))
1545 		return;
1546 
1547 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1548 	blk_mq_run_hw_queue(hctx, async);
1549 }
1550 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1551 
1552 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1553 {
1554 	struct blk_mq_hw_ctx *hctx;
1555 	int i;
1556 
1557 	queue_for_each_hw_ctx(q, hctx, i)
1558 		blk_mq_start_stopped_hw_queue(hctx, async);
1559 }
1560 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1561 
1562 static void blk_mq_run_work_fn(struct work_struct *work)
1563 {
1564 	struct blk_mq_hw_ctx *hctx;
1565 
1566 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1567 
1568 	/*
1569 	 * If we are stopped, don't run the queue. The exception is if
1570 	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1571 	 * the STOPPED bit and run it.
1572 	 */
1573 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1574 		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1575 			return;
1576 
1577 		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1578 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579 	}
1580 
1581 	__blk_mq_run_hw_queue(hctx);
1582 }
1583 
1584 
1585 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1586 {
1587 	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1588 		return;
1589 
1590 	/*
1591 	 * Stop the hw queue, then modify currently delayed work.
1592 	 * This should prevent us from running the queue prematurely.
1593 	 * Mark the queue as auto-clearing STOPPED when it runs.
1594 	 */
1595 	blk_mq_stop_hw_queue(hctx);
1596 	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1597 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1598 					&hctx->run_work,
1599 					msecs_to_jiffies(msecs));
1600 }
1601 EXPORT_SYMBOL(blk_mq_delay_queue);
1602 
1603 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1604 					    struct request *rq,
1605 					    bool at_head)
1606 {
1607 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1608 
1609 	lockdep_assert_held(&ctx->lock);
1610 
1611 	trace_block_rq_insert(hctx->queue, rq);
1612 
1613 	if (at_head)
1614 		list_add(&rq->queuelist, &ctx->rq_list);
1615 	else
1616 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1617 }
1618 
1619 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1620 			     bool at_head)
1621 {
1622 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1623 
1624 	lockdep_assert_held(&ctx->lock);
1625 
1626 	__blk_mq_insert_req_list(hctx, rq, at_head);
1627 	blk_mq_hctx_mark_pending(hctx, ctx);
1628 }
1629 
1630 /*
1631  * Should only be used carefully, when the caller knows we want to
1632  * bypass a potential IO scheduler on the target device.
1633  */
1634 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1635 {
1636 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1637 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1638 
1639 	spin_lock(&hctx->lock);
1640 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1641 	spin_unlock(&hctx->lock);
1642 
1643 	if (run_queue)
1644 		blk_mq_run_hw_queue(hctx, false);
1645 }
1646 
1647 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1648 			    struct list_head *list)
1649 
1650 {
1651 	/*
1652 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1653 	 * offline now
1654 	 */
1655 	spin_lock(&ctx->lock);
1656 	while (!list_empty(list)) {
1657 		struct request *rq;
1658 
1659 		rq = list_first_entry(list, struct request, queuelist);
1660 		BUG_ON(rq->mq_ctx != ctx);
1661 		list_del_init(&rq->queuelist);
1662 		__blk_mq_insert_req_list(hctx, rq, false);
1663 	}
1664 	blk_mq_hctx_mark_pending(hctx, ctx);
1665 	spin_unlock(&ctx->lock);
1666 }
1667 
1668 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1669 {
1670 	struct request *rqa = container_of(a, struct request, queuelist);
1671 	struct request *rqb = container_of(b, struct request, queuelist);
1672 
1673 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1674 		 (rqa->mq_ctx == rqb->mq_ctx &&
1675 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1676 }
1677 
1678 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1679 {
1680 	struct blk_mq_ctx *this_ctx;
1681 	struct request_queue *this_q;
1682 	struct request *rq;
1683 	LIST_HEAD(list);
1684 	LIST_HEAD(ctx_list);
1685 	unsigned int depth;
1686 
1687 	list_splice_init(&plug->mq_list, &list);
1688 
1689 	list_sort(NULL, &list, plug_ctx_cmp);
1690 
1691 	this_q = NULL;
1692 	this_ctx = NULL;
1693 	depth = 0;
1694 
1695 	while (!list_empty(&list)) {
1696 		rq = list_entry_rq(list.next);
1697 		list_del_init(&rq->queuelist);
1698 		BUG_ON(!rq->q);
1699 		if (rq->mq_ctx != this_ctx) {
1700 			if (this_ctx) {
1701 				trace_block_unplug(this_q, depth, from_schedule);
1702 				blk_mq_sched_insert_requests(this_q, this_ctx,
1703 								&ctx_list,
1704 								from_schedule);
1705 			}
1706 
1707 			this_ctx = rq->mq_ctx;
1708 			this_q = rq->q;
1709 			depth = 0;
1710 		}
1711 
1712 		depth++;
1713 		list_add_tail(&rq->queuelist, &ctx_list);
1714 	}
1715 
1716 	/*
1717 	 * If 'this_ctx' is set, we know we have entries to complete
1718 	 * on 'ctx_list'. Do those.
1719 	 */
1720 	if (this_ctx) {
1721 		trace_block_unplug(this_q, depth, from_schedule);
1722 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1723 						from_schedule);
1724 	}
1725 }
1726 
1727 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1728 {
1729 	blk_init_request_from_bio(rq, bio);
1730 
1731 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1732 
1733 	blk_account_io_start(rq, true);
1734 }
1735 
1736 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1737 				   struct blk_mq_ctx *ctx,
1738 				   struct request *rq)
1739 {
1740 	spin_lock(&ctx->lock);
1741 	__blk_mq_insert_request(hctx, rq, false);
1742 	spin_unlock(&ctx->lock);
1743 }
1744 
1745 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1746 {
1747 	if (rq->tag != -1)
1748 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1749 
1750 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1751 }
1752 
1753 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1754 					    struct request *rq,
1755 					    blk_qc_t *cookie)
1756 {
1757 	struct request_queue *q = rq->q;
1758 	struct blk_mq_queue_data bd = {
1759 		.rq = rq,
1760 		.last = true,
1761 	};
1762 	blk_qc_t new_cookie;
1763 	blk_status_t ret;
1764 
1765 	new_cookie = request_to_qc_t(hctx, rq);
1766 
1767 	/*
1768 	 * For OK queue, we are done. For error, caller may kill it.
1769 	 * Any other error (busy), just add it to our list as we
1770 	 * previously would have done.
1771 	 */
1772 	ret = q->mq_ops->queue_rq(hctx, &bd);
1773 	switch (ret) {
1774 	case BLK_STS_OK:
1775 		*cookie = new_cookie;
1776 		break;
1777 	case BLK_STS_RESOURCE:
1778 	case BLK_STS_DEV_RESOURCE:
1779 		__blk_mq_requeue_request(rq);
1780 		break;
1781 	default:
1782 		*cookie = BLK_QC_T_NONE;
1783 		break;
1784 	}
1785 
1786 	return ret;
1787 }
1788 
1789 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1790 						struct request *rq,
1791 						blk_qc_t *cookie,
1792 						bool bypass_insert)
1793 {
1794 	struct request_queue *q = rq->q;
1795 	bool run_queue = true;
1796 
1797 	/*
1798 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1799 	 *
1800 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1801 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1802 	 * and avoid driver to try to dispatch again.
1803 	 */
1804 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1805 		run_queue = false;
1806 		bypass_insert = false;
1807 		goto insert;
1808 	}
1809 
1810 	if (q->elevator && !bypass_insert)
1811 		goto insert;
1812 
1813 	if (!blk_mq_get_driver_tag(rq, NULL, false))
1814 		goto insert;
1815 
1816 	if (!blk_mq_get_dispatch_budget(hctx)) {
1817 		blk_mq_put_driver_tag(rq);
1818 		goto insert;
1819 	}
1820 
1821 	return __blk_mq_issue_directly(hctx, rq, cookie);
1822 insert:
1823 	if (bypass_insert)
1824 		return BLK_STS_RESOURCE;
1825 
1826 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1827 	return BLK_STS_OK;
1828 }
1829 
1830 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1831 		struct request *rq, blk_qc_t *cookie)
1832 {
1833 	blk_status_t ret;
1834 	int srcu_idx;
1835 
1836 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1837 
1838 	hctx_lock(hctx, &srcu_idx);
1839 
1840 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1841 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1842 		blk_mq_sched_insert_request(rq, false, true, false);
1843 	else if (ret != BLK_STS_OK)
1844 		blk_mq_end_request(rq, ret);
1845 
1846 	hctx_unlock(hctx, srcu_idx);
1847 }
1848 
1849 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1850 {
1851 	blk_status_t ret;
1852 	int srcu_idx;
1853 	blk_qc_t unused_cookie;
1854 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1855 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1856 
1857 	hctx_lock(hctx, &srcu_idx);
1858 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1859 	hctx_unlock(hctx, srcu_idx);
1860 
1861 	return ret;
1862 }
1863 
1864 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1865 {
1866 	const int is_sync = op_is_sync(bio->bi_opf);
1867 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1868 	struct blk_mq_alloc_data data = { .flags = 0 };
1869 	struct request *rq;
1870 	unsigned int request_count = 0;
1871 	struct blk_plug *plug;
1872 	struct request *same_queue_rq = NULL;
1873 	blk_qc_t cookie;
1874 	unsigned int wb_acct;
1875 
1876 	blk_queue_bounce(q, &bio);
1877 
1878 	blk_queue_split(q, &bio);
1879 
1880 	if (!bio_integrity_prep(bio))
1881 		return BLK_QC_T_NONE;
1882 
1883 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1884 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1885 		return BLK_QC_T_NONE;
1886 
1887 	if (blk_mq_sched_bio_merge(q, bio))
1888 		return BLK_QC_T_NONE;
1889 
1890 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1891 
1892 	trace_block_getrq(q, bio, bio->bi_opf);
1893 
1894 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1895 	if (unlikely(!rq)) {
1896 		__wbt_done(q->rq_wb, wb_acct);
1897 		if (bio->bi_opf & REQ_NOWAIT)
1898 			bio_wouldblock_error(bio);
1899 		return BLK_QC_T_NONE;
1900 	}
1901 
1902 	wbt_track(&rq->issue_stat, wb_acct);
1903 
1904 	cookie = request_to_qc_t(data.hctx, rq);
1905 
1906 	plug = current->plug;
1907 	if (unlikely(is_flush_fua)) {
1908 		blk_mq_put_ctx(data.ctx);
1909 		blk_mq_bio_to_request(rq, bio);
1910 
1911 		/* bypass scheduler for flush rq */
1912 		blk_insert_flush(rq);
1913 		blk_mq_run_hw_queue(data.hctx, true);
1914 	} else if (plug && q->nr_hw_queues == 1) {
1915 		struct request *last = NULL;
1916 
1917 		blk_mq_put_ctx(data.ctx);
1918 		blk_mq_bio_to_request(rq, bio);
1919 
1920 		/*
1921 		 * @request_count may become stale because of schedule
1922 		 * out, so check the list again.
1923 		 */
1924 		if (list_empty(&plug->mq_list))
1925 			request_count = 0;
1926 		else if (blk_queue_nomerges(q))
1927 			request_count = blk_plug_queued_count(q);
1928 
1929 		if (!request_count)
1930 			trace_block_plug(q);
1931 		else
1932 			last = list_entry_rq(plug->mq_list.prev);
1933 
1934 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1935 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1936 			blk_flush_plug_list(plug, false);
1937 			trace_block_plug(q);
1938 		}
1939 
1940 		list_add_tail(&rq->queuelist, &plug->mq_list);
1941 	} else if (plug && !blk_queue_nomerges(q)) {
1942 		blk_mq_bio_to_request(rq, bio);
1943 
1944 		/*
1945 		 * We do limited plugging. If the bio can be merged, do that.
1946 		 * Otherwise the existing request in the plug list will be
1947 		 * issued. So the plug list will have one request at most
1948 		 * The plug list might get flushed before this. If that happens,
1949 		 * the plug list is empty, and same_queue_rq is invalid.
1950 		 */
1951 		if (list_empty(&plug->mq_list))
1952 			same_queue_rq = NULL;
1953 		if (same_queue_rq)
1954 			list_del_init(&same_queue_rq->queuelist);
1955 		list_add_tail(&rq->queuelist, &plug->mq_list);
1956 
1957 		blk_mq_put_ctx(data.ctx);
1958 
1959 		if (same_queue_rq) {
1960 			data.hctx = blk_mq_map_queue(q,
1961 					same_queue_rq->mq_ctx->cpu);
1962 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1963 					&cookie);
1964 		}
1965 	} else if (q->nr_hw_queues > 1 && is_sync) {
1966 		blk_mq_put_ctx(data.ctx);
1967 		blk_mq_bio_to_request(rq, bio);
1968 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1969 	} else if (q->elevator) {
1970 		blk_mq_put_ctx(data.ctx);
1971 		blk_mq_bio_to_request(rq, bio);
1972 		blk_mq_sched_insert_request(rq, false, true, true);
1973 	} else {
1974 		blk_mq_put_ctx(data.ctx);
1975 		blk_mq_bio_to_request(rq, bio);
1976 		blk_mq_queue_io(data.hctx, data.ctx, rq);
1977 		blk_mq_run_hw_queue(data.hctx, true);
1978 	}
1979 
1980 	return cookie;
1981 }
1982 
1983 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1984 		     unsigned int hctx_idx)
1985 {
1986 	struct page *page;
1987 
1988 	if (tags->rqs && set->ops->exit_request) {
1989 		int i;
1990 
1991 		for (i = 0; i < tags->nr_tags; i++) {
1992 			struct request *rq = tags->static_rqs[i];
1993 
1994 			if (!rq)
1995 				continue;
1996 			set->ops->exit_request(set, rq, hctx_idx);
1997 			tags->static_rqs[i] = NULL;
1998 		}
1999 	}
2000 
2001 	while (!list_empty(&tags->page_list)) {
2002 		page = list_first_entry(&tags->page_list, struct page, lru);
2003 		list_del_init(&page->lru);
2004 		/*
2005 		 * Remove kmemleak object previously allocated in
2006 		 * blk_mq_init_rq_map().
2007 		 */
2008 		kmemleak_free(page_address(page));
2009 		__free_pages(page, page->private);
2010 	}
2011 }
2012 
2013 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2014 {
2015 	kfree(tags->rqs);
2016 	tags->rqs = NULL;
2017 	kfree(tags->static_rqs);
2018 	tags->static_rqs = NULL;
2019 
2020 	blk_mq_free_tags(tags);
2021 }
2022 
2023 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2024 					unsigned int hctx_idx,
2025 					unsigned int nr_tags,
2026 					unsigned int reserved_tags)
2027 {
2028 	struct blk_mq_tags *tags;
2029 	int node;
2030 
2031 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2032 	if (node == NUMA_NO_NODE)
2033 		node = set->numa_node;
2034 
2035 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2036 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2037 	if (!tags)
2038 		return NULL;
2039 
2040 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2041 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2042 				 node);
2043 	if (!tags->rqs) {
2044 		blk_mq_free_tags(tags);
2045 		return NULL;
2046 	}
2047 
2048 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2049 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2050 				 node);
2051 	if (!tags->static_rqs) {
2052 		kfree(tags->rqs);
2053 		blk_mq_free_tags(tags);
2054 		return NULL;
2055 	}
2056 
2057 	return tags;
2058 }
2059 
2060 static size_t order_to_size(unsigned int order)
2061 {
2062 	return (size_t)PAGE_SIZE << order;
2063 }
2064 
2065 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2066 			       unsigned int hctx_idx, int node)
2067 {
2068 	int ret;
2069 
2070 	if (set->ops->init_request) {
2071 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2072 		if (ret)
2073 			return ret;
2074 	}
2075 
2076 	seqcount_init(&rq->gstate_seq);
2077 	u64_stats_init(&rq->aborted_gstate_sync);
2078 	return 0;
2079 }
2080 
2081 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2082 		     unsigned int hctx_idx, unsigned int depth)
2083 {
2084 	unsigned int i, j, entries_per_page, max_order = 4;
2085 	size_t rq_size, left;
2086 	int node;
2087 
2088 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2089 	if (node == NUMA_NO_NODE)
2090 		node = set->numa_node;
2091 
2092 	INIT_LIST_HEAD(&tags->page_list);
2093 
2094 	/*
2095 	 * rq_size is the size of the request plus driver payload, rounded
2096 	 * to the cacheline size
2097 	 */
2098 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2099 				cache_line_size());
2100 	left = rq_size * depth;
2101 
2102 	for (i = 0; i < depth; ) {
2103 		int this_order = max_order;
2104 		struct page *page;
2105 		int to_do;
2106 		void *p;
2107 
2108 		while (this_order && left < order_to_size(this_order - 1))
2109 			this_order--;
2110 
2111 		do {
2112 			page = alloc_pages_node(node,
2113 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2114 				this_order);
2115 			if (page)
2116 				break;
2117 			if (!this_order--)
2118 				break;
2119 			if (order_to_size(this_order) < rq_size)
2120 				break;
2121 		} while (1);
2122 
2123 		if (!page)
2124 			goto fail;
2125 
2126 		page->private = this_order;
2127 		list_add_tail(&page->lru, &tags->page_list);
2128 
2129 		p = page_address(page);
2130 		/*
2131 		 * Allow kmemleak to scan these pages as they contain pointers
2132 		 * to additional allocations like via ops->init_request().
2133 		 */
2134 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2135 		entries_per_page = order_to_size(this_order) / rq_size;
2136 		to_do = min(entries_per_page, depth - i);
2137 		left -= to_do * rq_size;
2138 		for (j = 0; j < to_do; j++) {
2139 			struct request *rq = p;
2140 
2141 			tags->static_rqs[i] = rq;
2142 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2143 				tags->static_rqs[i] = NULL;
2144 				goto fail;
2145 			}
2146 
2147 			p += rq_size;
2148 			i++;
2149 		}
2150 	}
2151 	return 0;
2152 
2153 fail:
2154 	blk_mq_free_rqs(set, tags, hctx_idx);
2155 	return -ENOMEM;
2156 }
2157 
2158 /*
2159  * 'cpu' is going away. splice any existing rq_list entries from this
2160  * software queue to the hw queue dispatch list, and ensure that it
2161  * gets run.
2162  */
2163 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2164 {
2165 	struct blk_mq_hw_ctx *hctx;
2166 	struct blk_mq_ctx *ctx;
2167 	LIST_HEAD(tmp);
2168 
2169 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2170 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2171 
2172 	spin_lock(&ctx->lock);
2173 	if (!list_empty(&ctx->rq_list)) {
2174 		list_splice_init(&ctx->rq_list, &tmp);
2175 		blk_mq_hctx_clear_pending(hctx, ctx);
2176 	}
2177 	spin_unlock(&ctx->lock);
2178 
2179 	if (list_empty(&tmp))
2180 		return 0;
2181 
2182 	spin_lock(&hctx->lock);
2183 	list_splice_tail_init(&tmp, &hctx->dispatch);
2184 	spin_unlock(&hctx->lock);
2185 
2186 	blk_mq_run_hw_queue(hctx, true);
2187 	return 0;
2188 }
2189 
2190 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2191 {
2192 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2193 					    &hctx->cpuhp_dead);
2194 }
2195 
2196 /* hctx->ctxs will be freed in queue's release handler */
2197 static void blk_mq_exit_hctx(struct request_queue *q,
2198 		struct blk_mq_tag_set *set,
2199 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2200 {
2201 	blk_mq_debugfs_unregister_hctx(hctx);
2202 
2203 	if (blk_mq_hw_queue_mapped(hctx))
2204 		blk_mq_tag_idle(hctx);
2205 
2206 	if (set->ops->exit_request)
2207 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2208 
2209 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2210 
2211 	if (set->ops->exit_hctx)
2212 		set->ops->exit_hctx(hctx, hctx_idx);
2213 
2214 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2215 		cleanup_srcu_struct(hctx->srcu);
2216 
2217 	blk_mq_remove_cpuhp(hctx);
2218 	blk_free_flush_queue(hctx->fq);
2219 	sbitmap_free(&hctx->ctx_map);
2220 }
2221 
2222 static void blk_mq_exit_hw_queues(struct request_queue *q,
2223 		struct blk_mq_tag_set *set, int nr_queue)
2224 {
2225 	struct blk_mq_hw_ctx *hctx;
2226 	unsigned int i;
2227 
2228 	queue_for_each_hw_ctx(q, hctx, i) {
2229 		if (i == nr_queue)
2230 			break;
2231 		blk_mq_exit_hctx(q, set, hctx, i);
2232 	}
2233 }
2234 
2235 static int blk_mq_init_hctx(struct request_queue *q,
2236 		struct blk_mq_tag_set *set,
2237 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2238 {
2239 	int node;
2240 
2241 	node = hctx->numa_node;
2242 	if (node == NUMA_NO_NODE)
2243 		node = hctx->numa_node = set->numa_node;
2244 
2245 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2246 	spin_lock_init(&hctx->lock);
2247 	INIT_LIST_HEAD(&hctx->dispatch);
2248 	hctx->queue = q;
2249 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2250 
2251 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2252 
2253 	hctx->tags = set->tags[hctx_idx];
2254 
2255 	/*
2256 	 * Allocate space for all possible cpus to avoid allocation at
2257 	 * runtime
2258 	 */
2259 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2260 					GFP_KERNEL, node);
2261 	if (!hctx->ctxs)
2262 		goto unregister_cpu_notifier;
2263 
2264 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2265 			      node))
2266 		goto free_ctxs;
2267 
2268 	hctx->nr_ctx = 0;
2269 
2270 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2271 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2272 
2273 	if (set->ops->init_hctx &&
2274 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2275 		goto free_bitmap;
2276 
2277 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2278 		goto exit_hctx;
2279 
2280 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2281 	if (!hctx->fq)
2282 		goto sched_exit_hctx;
2283 
2284 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2285 		goto free_fq;
2286 
2287 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2288 		init_srcu_struct(hctx->srcu);
2289 
2290 	blk_mq_debugfs_register_hctx(q, hctx);
2291 
2292 	return 0;
2293 
2294  free_fq:
2295 	kfree(hctx->fq);
2296  sched_exit_hctx:
2297 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2298  exit_hctx:
2299 	if (set->ops->exit_hctx)
2300 		set->ops->exit_hctx(hctx, hctx_idx);
2301  free_bitmap:
2302 	sbitmap_free(&hctx->ctx_map);
2303  free_ctxs:
2304 	kfree(hctx->ctxs);
2305  unregister_cpu_notifier:
2306 	blk_mq_remove_cpuhp(hctx);
2307 	return -1;
2308 }
2309 
2310 static void blk_mq_init_cpu_queues(struct request_queue *q,
2311 				   unsigned int nr_hw_queues)
2312 {
2313 	unsigned int i;
2314 
2315 	for_each_possible_cpu(i) {
2316 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2317 		struct blk_mq_hw_ctx *hctx;
2318 
2319 		__ctx->cpu = i;
2320 		spin_lock_init(&__ctx->lock);
2321 		INIT_LIST_HEAD(&__ctx->rq_list);
2322 		__ctx->queue = q;
2323 
2324 		/*
2325 		 * Set local node, IFF we have more than one hw queue. If
2326 		 * not, we remain on the home node of the device
2327 		 */
2328 		hctx = blk_mq_map_queue(q, i);
2329 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2330 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2331 	}
2332 }
2333 
2334 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2335 {
2336 	int ret = 0;
2337 
2338 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2339 					set->queue_depth, set->reserved_tags);
2340 	if (!set->tags[hctx_idx])
2341 		return false;
2342 
2343 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2344 				set->queue_depth);
2345 	if (!ret)
2346 		return true;
2347 
2348 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2349 	set->tags[hctx_idx] = NULL;
2350 	return false;
2351 }
2352 
2353 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2354 					 unsigned int hctx_idx)
2355 {
2356 	if (set->tags[hctx_idx]) {
2357 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2358 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2359 		set->tags[hctx_idx] = NULL;
2360 	}
2361 }
2362 
2363 static void blk_mq_map_swqueue(struct request_queue *q)
2364 {
2365 	unsigned int i, hctx_idx;
2366 	struct blk_mq_hw_ctx *hctx;
2367 	struct blk_mq_ctx *ctx;
2368 	struct blk_mq_tag_set *set = q->tag_set;
2369 
2370 	/*
2371 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2372 	 */
2373 	mutex_lock(&q->sysfs_lock);
2374 
2375 	queue_for_each_hw_ctx(q, hctx, i) {
2376 		cpumask_clear(hctx->cpumask);
2377 		hctx->nr_ctx = 0;
2378 	}
2379 
2380 	/*
2381 	 * Map software to hardware queues.
2382 	 *
2383 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2384 	 */
2385 	for_each_possible_cpu(i) {
2386 		hctx_idx = q->mq_map[i];
2387 		/* unmapped hw queue can be remapped after CPU topo changed */
2388 		if (!set->tags[hctx_idx] &&
2389 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2390 			/*
2391 			 * If tags initialization fail for some hctx,
2392 			 * that hctx won't be brought online.  In this
2393 			 * case, remap the current ctx to hctx[0] which
2394 			 * is guaranteed to always have tags allocated
2395 			 */
2396 			q->mq_map[i] = 0;
2397 		}
2398 
2399 		ctx = per_cpu_ptr(q->queue_ctx, i);
2400 		hctx = blk_mq_map_queue(q, i);
2401 
2402 		cpumask_set_cpu(i, hctx->cpumask);
2403 		ctx->index_hw = hctx->nr_ctx;
2404 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2405 	}
2406 
2407 	mutex_unlock(&q->sysfs_lock);
2408 
2409 	queue_for_each_hw_ctx(q, hctx, i) {
2410 		/*
2411 		 * If no software queues are mapped to this hardware queue,
2412 		 * disable it and free the request entries.
2413 		 */
2414 		if (!hctx->nr_ctx) {
2415 			/* Never unmap queue 0.  We need it as a
2416 			 * fallback in case of a new remap fails
2417 			 * allocation
2418 			 */
2419 			if (i && set->tags[i])
2420 				blk_mq_free_map_and_requests(set, i);
2421 
2422 			hctx->tags = NULL;
2423 			continue;
2424 		}
2425 
2426 		hctx->tags = set->tags[i];
2427 		WARN_ON(!hctx->tags);
2428 
2429 		/*
2430 		 * Set the map size to the number of mapped software queues.
2431 		 * This is more accurate and more efficient than looping
2432 		 * over all possibly mapped software queues.
2433 		 */
2434 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2435 
2436 		/*
2437 		 * Initialize batch roundrobin counts
2438 		 */
2439 		hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2440 				cpu_online_mask);
2441 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2442 	}
2443 }
2444 
2445 /*
2446  * Caller needs to ensure that we're either frozen/quiesced, or that
2447  * the queue isn't live yet.
2448  */
2449 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2450 {
2451 	struct blk_mq_hw_ctx *hctx;
2452 	int i;
2453 
2454 	queue_for_each_hw_ctx(q, hctx, i) {
2455 		if (shared) {
2456 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2457 				atomic_inc(&q->shared_hctx_restart);
2458 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2459 		} else {
2460 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2461 				atomic_dec(&q->shared_hctx_restart);
2462 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2463 		}
2464 	}
2465 }
2466 
2467 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2468 					bool shared)
2469 {
2470 	struct request_queue *q;
2471 
2472 	lockdep_assert_held(&set->tag_list_lock);
2473 
2474 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2475 		blk_mq_freeze_queue(q);
2476 		queue_set_hctx_shared(q, shared);
2477 		blk_mq_unfreeze_queue(q);
2478 	}
2479 }
2480 
2481 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2482 {
2483 	struct blk_mq_tag_set *set = q->tag_set;
2484 
2485 	mutex_lock(&set->tag_list_lock);
2486 	list_del_rcu(&q->tag_set_list);
2487 	INIT_LIST_HEAD(&q->tag_set_list);
2488 	if (list_is_singular(&set->tag_list)) {
2489 		/* just transitioned to unshared */
2490 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2491 		/* update existing queue */
2492 		blk_mq_update_tag_set_depth(set, false);
2493 	}
2494 	mutex_unlock(&set->tag_list_lock);
2495 
2496 	synchronize_rcu();
2497 }
2498 
2499 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2500 				     struct request_queue *q)
2501 {
2502 	q->tag_set = set;
2503 
2504 	mutex_lock(&set->tag_list_lock);
2505 
2506 	/*
2507 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2508 	 */
2509 	if (!list_empty(&set->tag_list) &&
2510 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2511 		set->flags |= BLK_MQ_F_TAG_SHARED;
2512 		/* update existing queue */
2513 		blk_mq_update_tag_set_depth(set, true);
2514 	}
2515 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2516 		queue_set_hctx_shared(q, true);
2517 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2518 
2519 	mutex_unlock(&set->tag_list_lock);
2520 }
2521 
2522 /*
2523  * It is the actual release handler for mq, but we do it from
2524  * request queue's release handler for avoiding use-after-free
2525  * and headache because q->mq_kobj shouldn't have been introduced,
2526  * but we can't group ctx/kctx kobj without it.
2527  */
2528 void blk_mq_release(struct request_queue *q)
2529 {
2530 	struct blk_mq_hw_ctx *hctx;
2531 	unsigned int i;
2532 
2533 	/* hctx kobj stays in hctx */
2534 	queue_for_each_hw_ctx(q, hctx, i) {
2535 		if (!hctx)
2536 			continue;
2537 		kobject_put(&hctx->kobj);
2538 	}
2539 
2540 	q->mq_map = NULL;
2541 
2542 	kfree(q->queue_hw_ctx);
2543 
2544 	/*
2545 	 * release .mq_kobj and sw queue's kobject now because
2546 	 * both share lifetime with request queue.
2547 	 */
2548 	blk_mq_sysfs_deinit(q);
2549 
2550 	free_percpu(q->queue_ctx);
2551 }
2552 
2553 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2554 {
2555 	struct request_queue *uninit_q, *q;
2556 
2557 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2558 	if (!uninit_q)
2559 		return ERR_PTR(-ENOMEM);
2560 
2561 	q = blk_mq_init_allocated_queue(set, uninit_q);
2562 	if (IS_ERR(q))
2563 		blk_cleanup_queue(uninit_q);
2564 
2565 	return q;
2566 }
2567 EXPORT_SYMBOL(blk_mq_init_queue);
2568 
2569 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2570 {
2571 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2572 
2573 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2574 			   __alignof__(struct blk_mq_hw_ctx)) !=
2575 		     sizeof(struct blk_mq_hw_ctx));
2576 
2577 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2578 		hw_ctx_size += sizeof(struct srcu_struct);
2579 
2580 	return hw_ctx_size;
2581 }
2582 
2583 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2584 						struct request_queue *q)
2585 {
2586 	int i, j;
2587 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2588 
2589 	blk_mq_sysfs_unregister(q);
2590 
2591 	/* protect against switching io scheduler  */
2592 	mutex_lock(&q->sysfs_lock);
2593 	for (i = 0; i < set->nr_hw_queues; i++) {
2594 		int node;
2595 
2596 		if (hctxs[i])
2597 			continue;
2598 
2599 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2600 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2601 					GFP_KERNEL, node);
2602 		if (!hctxs[i])
2603 			break;
2604 
2605 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2606 						node)) {
2607 			kfree(hctxs[i]);
2608 			hctxs[i] = NULL;
2609 			break;
2610 		}
2611 
2612 		atomic_set(&hctxs[i]->nr_active, 0);
2613 		hctxs[i]->numa_node = node;
2614 		hctxs[i]->queue_num = i;
2615 
2616 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2617 			free_cpumask_var(hctxs[i]->cpumask);
2618 			kfree(hctxs[i]);
2619 			hctxs[i] = NULL;
2620 			break;
2621 		}
2622 		blk_mq_hctx_kobj_init(hctxs[i]);
2623 	}
2624 	for (j = i; j < q->nr_hw_queues; j++) {
2625 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2626 
2627 		if (hctx) {
2628 			if (hctx->tags)
2629 				blk_mq_free_map_and_requests(set, j);
2630 			blk_mq_exit_hctx(q, set, hctx, j);
2631 			kobject_put(&hctx->kobj);
2632 			hctxs[j] = NULL;
2633 
2634 		}
2635 	}
2636 	q->nr_hw_queues = i;
2637 	mutex_unlock(&q->sysfs_lock);
2638 	blk_mq_sysfs_register(q);
2639 }
2640 
2641 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2642 						  struct request_queue *q)
2643 {
2644 	/* mark the queue as mq asap */
2645 	q->mq_ops = set->ops;
2646 
2647 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2648 					     blk_mq_poll_stats_bkt,
2649 					     BLK_MQ_POLL_STATS_BKTS, q);
2650 	if (!q->poll_cb)
2651 		goto err_exit;
2652 
2653 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2654 	if (!q->queue_ctx)
2655 		goto err_exit;
2656 
2657 	/* init q->mq_kobj and sw queues' kobjects */
2658 	blk_mq_sysfs_init(q);
2659 
2660 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2661 						GFP_KERNEL, set->numa_node);
2662 	if (!q->queue_hw_ctx)
2663 		goto err_percpu;
2664 
2665 	q->mq_map = set->mq_map;
2666 
2667 	blk_mq_realloc_hw_ctxs(set, q);
2668 	if (!q->nr_hw_queues)
2669 		goto err_hctxs;
2670 
2671 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2672 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2673 
2674 	q->nr_queues = nr_cpu_ids;
2675 
2676 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2677 
2678 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2679 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2680 
2681 	q->sg_reserved_size = INT_MAX;
2682 
2683 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2684 	INIT_LIST_HEAD(&q->requeue_list);
2685 	spin_lock_init(&q->requeue_lock);
2686 
2687 	blk_queue_make_request(q, blk_mq_make_request);
2688 	if (q->mq_ops->poll)
2689 		q->poll_fn = blk_mq_poll;
2690 
2691 	/*
2692 	 * Do this after blk_queue_make_request() overrides it...
2693 	 */
2694 	q->nr_requests = set->queue_depth;
2695 
2696 	/*
2697 	 * Default to classic polling
2698 	 */
2699 	q->poll_nsec = -1;
2700 
2701 	if (set->ops->complete)
2702 		blk_queue_softirq_done(q, set->ops->complete);
2703 
2704 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2705 	blk_mq_add_queue_tag_set(set, q);
2706 	blk_mq_map_swqueue(q);
2707 
2708 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2709 		int ret;
2710 
2711 		ret = blk_mq_sched_init(q);
2712 		if (ret)
2713 			return ERR_PTR(ret);
2714 	}
2715 
2716 	return q;
2717 
2718 err_hctxs:
2719 	kfree(q->queue_hw_ctx);
2720 err_percpu:
2721 	free_percpu(q->queue_ctx);
2722 err_exit:
2723 	q->mq_ops = NULL;
2724 	return ERR_PTR(-ENOMEM);
2725 }
2726 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2727 
2728 void blk_mq_free_queue(struct request_queue *q)
2729 {
2730 	struct blk_mq_tag_set	*set = q->tag_set;
2731 
2732 	blk_mq_del_queue_tag_set(q);
2733 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2734 }
2735 
2736 /* Basically redo blk_mq_init_queue with queue frozen */
2737 static void blk_mq_queue_reinit(struct request_queue *q)
2738 {
2739 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2740 
2741 	blk_mq_debugfs_unregister_hctxs(q);
2742 	blk_mq_sysfs_unregister(q);
2743 
2744 	/*
2745 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2746 	 * we should change hctx numa_node according to the new topology (this
2747 	 * involves freeing and re-allocating memory, worth doing?)
2748 	 */
2749 	blk_mq_map_swqueue(q);
2750 
2751 	blk_mq_sysfs_register(q);
2752 	blk_mq_debugfs_register_hctxs(q);
2753 }
2754 
2755 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2756 {
2757 	int i;
2758 
2759 	for (i = 0; i < set->nr_hw_queues; i++)
2760 		if (!__blk_mq_alloc_rq_map(set, i))
2761 			goto out_unwind;
2762 
2763 	return 0;
2764 
2765 out_unwind:
2766 	while (--i >= 0)
2767 		blk_mq_free_rq_map(set->tags[i]);
2768 
2769 	return -ENOMEM;
2770 }
2771 
2772 /*
2773  * Allocate the request maps associated with this tag_set. Note that this
2774  * may reduce the depth asked for, if memory is tight. set->queue_depth
2775  * will be updated to reflect the allocated depth.
2776  */
2777 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2778 {
2779 	unsigned int depth;
2780 	int err;
2781 
2782 	depth = set->queue_depth;
2783 	do {
2784 		err = __blk_mq_alloc_rq_maps(set);
2785 		if (!err)
2786 			break;
2787 
2788 		set->queue_depth >>= 1;
2789 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2790 			err = -ENOMEM;
2791 			break;
2792 		}
2793 	} while (set->queue_depth);
2794 
2795 	if (!set->queue_depth || err) {
2796 		pr_err("blk-mq: failed to allocate request map\n");
2797 		return -ENOMEM;
2798 	}
2799 
2800 	if (depth != set->queue_depth)
2801 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2802 						depth, set->queue_depth);
2803 
2804 	return 0;
2805 }
2806 
2807 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2808 {
2809 	if (set->ops->map_queues) {
2810 		int cpu;
2811 		/*
2812 		 * transport .map_queues is usually done in the following
2813 		 * way:
2814 		 *
2815 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2816 		 * 	mask = get_cpu_mask(queue)
2817 		 * 	for_each_cpu(cpu, mask)
2818 		 * 		set->mq_map[cpu] = queue;
2819 		 * }
2820 		 *
2821 		 * When we need to remap, the table has to be cleared for
2822 		 * killing stale mapping since one CPU may not be mapped
2823 		 * to any hw queue.
2824 		 */
2825 		for_each_possible_cpu(cpu)
2826 			set->mq_map[cpu] = 0;
2827 
2828 		return set->ops->map_queues(set);
2829 	} else
2830 		return blk_mq_map_queues(set);
2831 }
2832 
2833 /*
2834  * Alloc a tag set to be associated with one or more request queues.
2835  * May fail with EINVAL for various error conditions. May adjust the
2836  * requested depth down, if if it too large. In that case, the set
2837  * value will be stored in set->queue_depth.
2838  */
2839 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2840 {
2841 	int ret;
2842 
2843 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2844 
2845 	if (!set->nr_hw_queues)
2846 		return -EINVAL;
2847 	if (!set->queue_depth)
2848 		return -EINVAL;
2849 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2850 		return -EINVAL;
2851 
2852 	if (!set->ops->queue_rq)
2853 		return -EINVAL;
2854 
2855 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2856 		return -EINVAL;
2857 
2858 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2859 		pr_info("blk-mq: reduced tag depth to %u\n",
2860 			BLK_MQ_MAX_DEPTH);
2861 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2862 	}
2863 
2864 	/*
2865 	 * If a crashdump is active, then we are potentially in a very
2866 	 * memory constrained environment. Limit us to 1 queue and
2867 	 * 64 tags to prevent using too much memory.
2868 	 */
2869 	if (is_kdump_kernel()) {
2870 		set->nr_hw_queues = 1;
2871 		set->queue_depth = min(64U, set->queue_depth);
2872 	}
2873 	/*
2874 	 * There is no use for more h/w queues than cpus.
2875 	 */
2876 	if (set->nr_hw_queues > nr_cpu_ids)
2877 		set->nr_hw_queues = nr_cpu_ids;
2878 
2879 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2880 				 GFP_KERNEL, set->numa_node);
2881 	if (!set->tags)
2882 		return -ENOMEM;
2883 
2884 	ret = -ENOMEM;
2885 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2886 			GFP_KERNEL, set->numa_node);
2887 	if (!set->mq_map)
2888 		goto out_free_tags;
2889 
2890 	ret = blk_mq_update_queue_map(set);
2891 	if (ret)
2892 		goto out_free_mq_map;
2893 
2894 	ret = blk_mq_alloc_rq_maps(set);
2895 	if (ret)
2896 		goto out_free_mq_map;
2897 
2898 	mutex_init(&set->tag_list_lock);
2899 	INIT_LIST_HEAD(&set->tag_list);
2900 
2901 	return 0;
2902 
2903 out_free_mq_map:
2904 	kfree(set->mq_map);
2905 	set->mq_map = NULL;
2906 out_free_tags:
2907 	kfree(set->tags);
2908 	set->tags = NULL;
2909 	return ret;
2910 }
2911 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2912 
2913 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2914 {
2915 	int i;
2916 
2917 	for (i = 0; i < nr_cpu_ids; i++)
2918 		blk_mq_free_map_and_requests(set, i);
2919 
2920 	kfree(set->mq_map);
2921 	set->mq_map = NULL;
2922 
2923 	kfree(set->tags);
2924 	set->tags = NULL;
2925 }
2926 EXPORT_SYMBOL(blk_mq_free_tag_set);
2927 
2928 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2929 {
2930 	struct blk_mq_tag_set *set = q->tag_set;
2931 	struct blk_mq_hw_ctx *hctx;
2932 	int i, ret;
2933 
2934 	if (!set)
2935 		return -EINVAL;
2936 
2937 	blk_mq_freeze_queue(q);
2938 	blk_mq_quiesce_queue(q);
2939 
2940 	ret = 0;
2941 	queue_for_each_hw_ctx(q, hctx, i) {
2942 		if (!hctx->tags)
2943 			continue;
2944 		/*
2945 		 * If we're using an MQ scheduler, just update the scheduler
2946 		 * queue depth. This is similar to what the old code would do.
2947 		 */
2948 		if (!hctx->sched_tags) {
2949 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2950 							false);
2951 		} else {
2952 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2953 							nr, true);
2954 		}
2955 		if (ret)
2956 			break;
2957 	}
2958 
2959 	if (!ret)
2960 		q->nr_requests = nr;
2961 
2962 	blk_mq_unquiesce_queue(q);
2963 	blk_mq_unfreeze_queue(q);
2964 
2965 	return ret;
2966 }
2967 
2968 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2969 							int nr_hw_queues)
2970 {
2971 	struct request_queue *q;
2972 
2973 	lockdep_assert_held(&set->tag_list_lock);
2974 
2975 	if (nr_hw_queues > nr_cpu_ids)
2976 		nr_hw_queues = nr_cpu_ids;
2977 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2978 		return;
2979 
2980 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2981 		blk_mq_freeze_queue(q);
2982 
2983 	set->nr_hw_queues = nr_hw_queues;
2984 	blk_mq_update_queue_map(set);
2985 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2986 		blk_mq_realloc_hw_ctxs(set, q);
2987 		blk_mq_queue_reinit(q);
2988 	}
2989 
2990 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2991 		blk_mq_unfreeze_queue(q);
2992 }
2993 
2994 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2995 {
2996 	mutex_lock(&set->tag_list_lock);
2997 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2998 	mutex_unlock(&set->tag_list_lock);
2999 }
3000 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3001 
3002 /* Enable polling stats and return whether they were already enabled. */
3003 static bool blk_poll_stats_enable(struct request_queue *q)
3004 {
3005 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3006 	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
3007 		return true;
3008 	blk_stat_add_callback(q, q->poll_cb);
3009 	return false;
3010 }
3011 
3012 static void blk_mq_poll_stats_start(struct request_queue *q)
3013 {
3014 	/*
3015 	 * We don't arm the callback if polling stats are not enabled or the
3016 	 * callback is already active.
3017 	 */
3018 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3019 	    blk_stat_is_active(q->poll_cb))
3020 		return;
3021 
3022 	blk_stat_activate_msecs(q->poll_cb, 100);
3023 }
3024 
3025 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3026 {
3027 	struct request_queue *q = cb->data;
3028 	int bucket;
3029 
3030 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3031 		if (cb->stat[bucket].nr_samples)
3032 			q->poll_stat[bucket] = cb->stat[bucket];
3033 	}
3034 }
3035 
3036 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3037 				       struct blk_mq_hw_ctx *hctx,
3038 				       struct request *rq)
3039 {
3040 	unsigned long ret = 0;
3041 	int bucket;
3042 
3043 	/*
3044 	 * If stats collection isn't on, don't sleep but turn it on for
3045 	 * future users
3046 	 */
3047 	if (!blk_poll_stats_enable(q))
3048 		return 0;
3049 
3050 	/*
3051 	 * As an optimistic guess, use half of the mean service time
3052 	 * for this type of request. We can (and should) make this smarter.
3053 	 * For instance, if the completion latencies are tight, we can
3054 	 * get closer than just half the mean. This is especially
3055 	 * important on devices where the completion latencies are longer
3056 	 * than ~10 usec. We do use the stats for the relevant IO size
3057 	 * if available which does lead to better estimates.
3058 	 */
3059 	bucket = blk_mq_poll_stats_bkt(rq);
3060 	if (bucket < 0)
3061 		return ret;
3062 
3063 	if (q->poll_stat[bucket].nr_samples)
3064 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3065 
3066 	return ret;
3067 }
3068 
3069 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3070 				     struct blk_mq_hw_ctx *hctx,
3071 				     struct request *rq)
3072 {
3073 	struct hrtimer_sleeper hs;
3074 	enum hrtimer_mode mode;
3075 	unsigned int nsecs;
3076 	ktime_t kt;
3077 
3078 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3079 		return false;
3080 
3081 	/*
3082 	 * poll_nsec can be:
3083 	 *
3084 	 * -1:	don't ever hybrid sleep
3085 	 *  0:	use half of prev avg
3086 	 * >0:	use this specific value
3087 	 */
3088 	if (q->poll_nsec == -1)
3089 		return false;
3090 	else if (q->poll_nsec > 0)
3091 		nsecs = q->poll_nsec;
3092 	else
3093 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3094 
3095 	if (!nsecs)
3096 		return false;
3097 
3098 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3099 
3100 	/*
3101 	 * This will be replaced with the stats tracking code, using
3102 	 * 'avg_completion_time / 2' as the pre-sleep target.
3103 	 */
3104 	kt = nsecs;
3105 
3106 	mode = HRTIMER_MODE_REL;
3107 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3108 	hrtimer_set_expires(&hs.timer, kt);
3109 
3110 	hrtimer_init_sleeper(&hs, current);
3111 	do {
3112 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3113 			break;
3114 		set_current_state(TASK_UNINTERRUPTIBLE);
3115 		hrtimer_start_expires(&hs.timer, mode);
3116 		if (hs.task)
3117 			io_schedule();
3118 		hrtimer_cancel(&hs.timer);
3119 		mode = HRTIMER_MODE_ABS;
3120 	} while (hs.task && !signal_pending(current));
3121 
3122 	__set_current_state(TASK_RUNNING);
3123 	destroy_hrtimer_on_stack(&hs.timer);
3124 	return true;
3125 }
3126 
3127 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3128 {
3129 	struct request_queue *q = hctx->queue;
3130 	long state;
3131 
3132 	/*
3133 	 * If we sleep, have the caller restart the poll loop to reset
3134 	 * the state. Like for the other success return cases, the
3135 	 * caller is responsible for checking if the IO completed. If
3136 	 * the IO isn't complete, we'll get called again and will go
3137 	 * straight to the busy poll loop.
3138 	 */
3139 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3140 		return true;
3141 
3142 	hctx->poll_considered++;
3143 
3144 	state = current->state;
3145 	while (!need_resched()) {
3146 		int ret;
3147 
3148 		hctx->poll_invoked++;
3149 
3150 		ret = q->mq_ops->poll(hctx, rq->tag);
3151 		if (ret > 0) {
3152 			hctx->poll_success++;
3153 			set_current_state(TASK_RUNNING);
3154 			return true;
3155 		}
3156 
3157 		if (signal_pending_state(state, current))
3158 			set_current_state(TASK_RUNNING);
3159 
3160 		if (current->state == TASK_RUNNING)
3161 			return true;
3162 		if (ret < 0)
3163 			break;
3164 		cpu_relax();
3165 	}
3166 
3167 	__set_current_state(TASK_RUNNING);
3168 	return false;
3169 }
3170 
3171 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3172 {
3173 	struct blk_mq_hw_ctx *hctx;
3174 	struct request *rq;
3175 
3176 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3177 		return false;
3178 
3179 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3180 	if (!blk_qc_t_is_internal(cookie))
3181 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3182 	else {
3183 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3184 		/*
3185 		 * With scheduling, if the request has completed, we'll
3186 		 * get a NULL return here, as we clear the sched tag when
3187 		 * that happens. The request still remains valid, like always,
3188 		 * so we should be safe with just the NULL check.
3189 		 */
3190 		if (!rq)
3191 			return false;
3192 	}
3193 
3194 	return __blk_mq_poll(hctx, rq);
3195 }
3196 
3197 static int __init blk_mq_init(void)
3198 {
3199 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3200 				blk_mq_hctx_notify_dead);
3201 	return 0;
3202 }
3203 subsys_initcall(blk_mq_init);
3204