1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @q: request queue. 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started. 261 */ 262 void blk_mq_wait_quiesce_done(struct request_queue *q) 263 { 264 if (blk_queue_has_srcu(q)) 265 synchronize_srcu(q->srcu); 266 else 267 synchronize_rcu(); 268 } 269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 270 271 /** 272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 273 * @q: request queue. 274 * 275 * Note: this function does not prevent that the struct request end_io() 276 * callback function is invoked. Once this function is returned, we make 277 * sure no dispatch can happen until the queue is unquiesced via 278 * blk_mq_unquiesce_queue(). 279 */ 280 void blk_mq_quiesce_queue(struct request_queue *q) 281 { 282 blk_mq_quiesce_queue_nowait(q); 283 blk_mq_wait_quiesce_done(q); 284 } 285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 286 287 /* 288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 289 * @q: request queue. 290 * 291 * This function recovers queue into the state before quiescing 292 * which is done by blk_mq_quiesce_queue. 293 */ 294 void blk_mq_unquiesce_queue(struct request_queue *q) 295 { 296 unsigned long flags; 297 bool run_queue = false; 298 299 spin_lock_irqsave(&q->queue_lock, flags); 300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 301 ; 302 } else if (!--q->quiesce_depth) { 303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 304 run_queue = true; 305 } 306 spin_unlock_irqrestore(&q->queue_lock, flags); 307 308 /* dispatch requests which are inserted during quiescing */ 309 if (run_queue) 310 blk_mq_run_hw_queues(q, true); 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 313 314 void blk_mq_wake_waiters(struct request_queue *q) 315 { 316 struct blk_mq_hw_ctx *hctx; 317 unsigned long i; 318 319 queue_for_each_hw_ctx(q, hctx, i) 320 if (blk_mq_hw_queue_mapped(hctx)) 321 blk_mq_tag_wakeup_all(hctx->tags, true); 322 } 323 324 void blk_rq_init(struct request_queue *q, struct request *rq) 325 { 326 memset(rq, 0, sizeof(*rq)); 327 328 INIT_LIST_HEAD(&rq->queuelist); 329 rq->q = q; 330 rq->__sector = (sector_t) -1; 331 INIT_HLIST_NODE(&rq->hash); 332 RB_CLEAR_NODE(&rq->rb_node); 333 rq->tag = BLK_MQ_NO_TAG; 334 rq->internal_tag = BLK_MQ_NO_TAG; 335 rq->start_time_ns = ktime_get_ns(); 336 rq->part = NULL; 337 blk_crypto_rq_set_defaults(rq); 338 } 339 EXPORT_SYMBOL(blk_rq_init); 340 341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 343 { 344 struct blk_mq_ctx *ctx = data->ctx; 345 struct blk_mq_hw_ctx *hctx = data->hctx; 346 struct request_queue *q = data->q; 347 struct request *rq = tags->static_rqs[tag]; 348 349 rq->q = q; 350 rq->mq_ctx = ctx; 351 rq->mq_hctx = hctx; 352 rq->cmd_flags = data->cmd_flags; 353 354 if (data->flags & BLK_MQ_REQ_PM) 355 data->rq_flags |= RQF_PM; 356 if (blk_queue_io_stat(q)) 357 data->rq_flags |= RQF_IO_STAT; 358 rq->rq_flags = data->rq_flags; 359 360 if (!(data->rq_flags & RQF_ELV)) { 361 rq->tag = tag; 362 rq->internal_tag = BLK_MQ_NO_TAG; 363 } else { 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = tag; 366 } 367 rq->timeout = 0; 368 369 if (blk_mq_need_time_stamp(rq)) 370 rq->start_time_ns = ktime_get_ns(); 371 else 372 rq->start_time_ns = 0; 373 rq->part = NULL; 374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 375 rq->alloc_time_ns = alloc_time_ns; 376 #endif 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_ELV) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (!op_is_flush(data->cmd_flags) && 399 e->type->ops.prepare_request) { 400 e->type->ops.prepare_request(rq); 401 rq->rq_flags |= RQF_ELVPRIV; 402 } 403 } 404 405 return rq; 406 } 407 408 static inline struct request * 409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 410 u64 alloc_time_ns) 411 { 412 unsigned int tag, tag_offset; 413 struct blk_mq_tags *tags; 414 struct request *rq; 415 unsigned long tag_mask; 416 int i, nr = 0; 417 418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 419 if (unlikely(!tag_mask)) 420 return NULL; 421 422 tags = blk_mq_tags_from_data(data); 423 for (i = 0; tag_mask; i++) { 424 if (!(tag_mask & (1UL << i))) 425 continue; 426 tag = tag_offset + i; 427 prefetch(tags->static_rqs[tag]); 428 tag_mask &= ~(1UL << i); 429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 430 rq_list_add(data->cached_rq, rq); 431 nr++; 432 } 433 /* caller already holds a reference, add for remainder */ 434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 435 data->nr_tags -= nr; 436 437 return rq_list_pop(data->cached_rq); 438 } 439 440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 441 { 442 struct request_queue *q = data->q; 443 u64 alloc_time_ns = 0; 444 struct request *rq; 445 unsigned int tag; 446 447 /* alloc_time includes depth and tag waits */ 448 if (blk_queue_rq_alloc_time(q)) 449 alloc_time_ns = ktime_get_ns(); 450 451 if (data->cmd_flags & REQ_NOWAIT) 452 data->flags |= BLK_MQ_REQ_NOWAIT; 453 454 if (q->elevator) { 455 struct elevator_queue *e = q->elevator; 456 457 data->rq_flags |= RQF_ELV; 458 459 /* 460 * Flush/passthrough requests are special and go directly to the 461 * dispatch list. Don't include reserved tags in the 462 * limiting, as it isn't useful. 463 */ 464 if (!op_is_flush(data->cmd_flags) && 465 !blk_op_is_passthrough(data->cmd_flags) && 466 e->type->ops.limit_depth && 467 !(data->flags & BLK_MQ_REQ_RESERVED)) 468 e->type->ops.limit_depth(data->cmd_flags, data); 469 } 470 471 retry: 472 data->ctx = blk_mq_get_ctx(q); 473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 474 if (!(data->rq_flags & RQF_ELV)) 475 blk_mq_tag_busy(data->hctx); 476 477 if (data->flags & BLK_MQ_REQ_RESERVED) 478 data->rq_flags |= RQF_RESV; 479 480 /* 481 * Try batched alloc if we want more than 1 tag. 482 */ 483 if (data->nr_tags > 1) { 484 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 485 if (rq) 486 return rq; 487 data->nr_tags = 1; 488 } 489 490 /* 491 * Waiting allocations only fail because of an inactive hctx. In that 492 * case just retry the hctx assignment and tag allocation as CPU hotplug 493 * should have migrated us to an online CPU by now. 494 */ 495 tag = blk_mq_get_tag(data); 496 if (tag == BLK_MQ_NO_TAG) { 497 if (data->flags & BLK_MQ_REQ_NOWAIT) 498 return NULL; 499 /* 500 * Give up the CPU and sleep for a random short time to 501 * ensure that thread using a realtime scheduling class 502 * are migrated off the CPU, and thus off the hctx that 503 * is going away. 504 */ 505 msleep(3); 506 goto retry; 507 } 508 509 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 510 alloc_time_ns); 511 } 512 513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 514 struct blk_plug *plug, 515 blk_opf_t opf, 516 blk_mq_req_flags_t flags) 517 { 518 struct blk_mq_alloc_data data = { 519 .q = q, 520 .flags = flags, 521 .cmd_flags = opf, 522 .nr_tags = plug->nr_ios, 523 .cached_rq = &plug->cached_rq, 524 }; 525 struct request *rq; 526 527 if (blk_queue_enter(q, flags)) 528 return NULL; 529 530 plug->nr_ios = 1; 531 532 rq = __blk_mq_alloc_requests(&data); 533 if (unlikely(!rq)) 534 blk_queue_exit(q); 535 return rq; 536 } 537 538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 539 blk_opf_t opf, 540 blk_mq_req_flags_t flags) 541 { 542 struct blk_plug *plug = current->plug; 543 struct request *rq; 544 545 if (!plug) 546 return NULL; 547 if (rq_list_empty(plug->cached_rq)) { 548 if (plug->nr_ios == 1) 549 return NULL; 550 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 551 if (rq) 552 goto got_it; 553 return NULL; 554 } 555 rq = rq_list_peek(&plug->cached_rq); 556 if (!rq || rq->q != q) 557 return NULL; 558 559 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 560 return NULL; 561 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 562 return NULL; 563 564 plug->cached_rq = rq_list_next(rq); 565 got_it: 566 rq->cmd_flags = opf; 567 INIT_LIST_HEAD(&rq->queuelist); 568 return rq; 569 } 570 571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 572 blk_mq_req_flags_t flags) 573 { 574 struct request *rq; 575 576 rq = blk_mq_alloc_cached_request(q, opf, flags); 577 if (!rq) { 578 struct blk_mq_alloc_data data = { 579 .q = q, 580 .flags = flags, 581 .cmd_flags = opf, 582 .nr_tags = 1, 583 }; 584 int ret; 585 586 ret = blk_queue_enter(q, flags); 587 if (ret) 588 return ERR_PTR(ret); 589 590 rq = __blk_mq_alloc_requests(&data); 591 if (!rq) 592 goto out_queue_exit; 593 } 594 rq->__data_len = 0; 595 rq->__sector = (sector_t) -1; 596 rq->bio = rq->biotail = NULL; 597 return rq; 598 out_queue_exit: 599 blk_queue_exit(q); 600 return ERR_PTR(-EWOULDBLOCK); 601 } 602 EXPORT_SYMBOL(blk_mq_alloc_request); 603 604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 605 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 606 { 607 struct blk_mq_alloc_data data = { 608 .q = q, 609 .flags = flags, 610 .cmd_flags = opf, 611 .nr_tags = 1, 612 }; 613 u64 alloc_time_ns = 0; 614 struct request *rq; 615 unsigned int cpu; 616 unsigned int tag; 617 int ret; 618 619 /* alloc_time includes depth and tag waits */ 620 if (blk_queue_rq_alloc_time(q)) 621 alloc_time_ns = ktime_get_ns(); 622 623 /* 624 * If the tag allocator sleeps we could get an allocation for a 625 * different hardware context. No need to complicate the low level 626 * allocator for this for the rare use case of a command tied to 627 * a specific queue. 628 */ 629 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 630 return ERR_PTR(-EINVAL); 631 632 if (hctx_idx >= q->nr_hw_queues) 633 return ERR_PTR(-EIO); 634 635 ret = blk_queue_enter(q, flags); 636 if (ret) 637 return ERR_PTR(ret); 638 639 /* 640 * Check if the hardware context is actually mapped to anything. 641 * If not tell the caller that it should skip this queue. 642 */ 643 ret = -EXDEV; 644 data.hctx = xa_load(&q->hctx_table, hctx_idx); 645 if (!blk_mq_hw_queue_mapped(data.hctx)) 646 goto out_queue_exit; 647 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 648 if (cpu >= nr_cpu_ids) 649 goto out_queue_exit; 650 data.ctx = __blk_mq_get_ctx(q, cpu); 651 652 if (!q->elevator) 653 blk_mq_tag_busy(data.hctx); 654 else 655 data.rq_flags |= RQF_ELV; 656 657 if (flags & BLK_MQ_REQ_RESERVED) 658 data.rq_flags |= RQF_RESV; 659 660 ret = -EWOULDBLOCK; 661 tag = blk_mq_get_tag(&data); 662 if (tag == BLK_MQ_NO_TAG) 663 goto out_queue_exit; 664 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 665 alloc_time_ns); 666 rq->__data_len = 0; 667 rq->__sector = (sector_t) -1; 668 rq->bio = rq->biotail = NULL; 669 return rq; 670 671 out_queue_exit: 672 blk_queue_exit(q); 673 return ERR_PTR(ret); 674 } 675 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 676 677 static void __blk_mq_free_request(struct request *rq) 678 { 679 struct request_queue *q = rq->q; 680 struct blk_mq_ctx *ctx = rq->mq_ctx; 681 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 682 const int sched_tag = rq->internal_tag; 683 684 blk_crypto_free_request(rq); 685 blk_pm_mark_last_busy(rq); 686 rq->mq_hctx = NULL; 687 if (rq->tag != BLK_MQ_NO_TAG) 688 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 689 if (sched_tag != BLK_MQ_NO_TAG) 690 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 691 blk_mq_sched_restart(hctx); 692 blk_queue_exit(q); 693 } 694 695 void blk_mq_free_request(struct request *rq) 696 { 697 struct request_queue *q = rq->q; 698 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 699 700 if ((rq->rq_flags & RQF_ELVPRIV) && 701 q->elevator->type->ops.finish_request) 702 q->elevator->type->ops.finish_request(rq); 703 704 if (rq->rq_flags & RQF_MQ_INFLIGHT) 705 __blk_mq_dec_active_requests(hctx); 706 707 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 708 laptop_io_completion(q->disk->bdi); 709 710 rq_qos_done(q, rq); 711 712 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 713 if (req_ref_put_and_test(rq)) 714 __blk_mq_free_request(rq); 715 } 716 EXPORT_SYMBOL_GPL(blk_mq_free_request); 717 718 void blk_mq_free_plug_rqs(struct blk_plug *plug) 719 { 720 struct request *rq; 721 722 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 723 blk_mq_free_request(rq); 724 } 725 726 void blk_dump_rq_flags(struct request *rq, char *msg) 727 { 728 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 729 rq->q->disk ? rq->q->disk->disk_name : "?", 730 (__force unsigned long long) rq->cmd_flags); 731 732 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 733 (unsigned long long)blk_rq_pos(rq), 734 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 735 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 736 rq->bio, rq->biotail, blk_rq_bytes(rq)); 737 } 738 EXPORT_SYMBOL(blk_dump_rq_flags); 739 740 static void req_bio_endio(struct request *rq, struct bio *bio, 741 unsigned int nbytes, blk_status_t error) 742 { 743 if (unlikely(error)) { 744 bio->bi_status = error; 745 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 746 /* 747 * Partial zone append completions cannot be supported as the 748 * BIO fragments may end up not being written sequentially. 749 */ 750 if (bio->bi_iter.bi_size != nbytes) 751 bio->bi_status = BLK_STS_IOERR; 752 else 753 bio->bi_iter.bi_sector = rq->__sector; 754 } 755 756 bio_advance(bio, nbytes); 757 758 if (unlikely(rq->rq_flags & RQF_QUIET)) 759 bio_set_flag(bio, BIO_QUIET); 760 /* don't actually finish bio if it's part of flush sequence */ 761 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 762 bio_endio(bio); 763 } 764 765 static void blk_account_io_completion(struct request *req, unsigned int bytes) 766 { 767 if (req->part && blk_do_io_stat(req)) { 768 const int sgrp = op_stat_group(req_op(req)); 769 770 part_stat_lock(); 771 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 772 part_stat_unlock(); 773 } 774 } 775 776 static void blk_print_req_error(struct request *req, blk_status_t status) 777 { 778 printk_ratelimited(KERN_ERR 779 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 780 "phys_seg %u prio class %u\n", 781 blk_status_to_str(status), 782 req->q->disk ? req->q->disk->disk_name : "?", 783 blk_rq_pos(req), (__force u32)req_op(req), 784 blk_op_str(req_op(req)), 785 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 786 req->nr_phys_segments, 787 IOPRIO_PRIO_CLASS(req->ioprio)); 788 } 789 790 /* 791 * Fully end IO on a request. Does not support partial completions, or 792 * errors. 793 */ 794 static void blk_complete_request(struct request *req) 795 { 796 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 797 int total_bytes = blk_rq_bytes(req); 798 struct bio *bio = req->bio; 799 800 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 801 802 if (!bio) 803 return; 804 805 #ifdef CONFIG_BLK_DEV_INTEGRITY 806 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 807 req->q->integrity.profile->complete_fn(req, total_bytes); 808 #endif 809 810 blk_account_io_completion(req, total_bytes); 811 812 do { 813 struct bio *next = bio->bi_next; 814 815 /* Completion has already been traced */ 816 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 817 818 if (req_op(req) == REQ_OP_ZONE_APPEND) 819 bio->bi_iter.bi_sector = req->__sector; 820 821 if (!is_flush) 822 bio_endio(bio); 823 bio = next; 824 } while (bio); 825 826 /* 827 * Reset counters so that the request stacking driver 828 * can find how many bytes remain in the request 829 * later. 830 */ 831 if (!req->end_io) { 832 req->bio = NULL; 833 req->__data_len = 0; 834 } 835 } 836 837 /** 838 * blk_update_request - Complete multiple bytes without completing the request 839 * @req: the request being processed 840 * @error: block status code 841 * @nr_bytes: number of bytes to complete for @req 842 * 843 * Description: 844 * Ends I/O on a number of bytes attached to @req, but doesn't complete 845 * the request structure even if @req doesn't have leftover. 846 * If @req has leftover, sets it up for the next range of segments. 847 * 848 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 849 * %false return from this function. 850 * 851 * Note: 852 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 853 * except in the consistency check at the end of this function. 854 * 855 * Return: 856 * %false - this request doesn't have any more data 857 * %true - this request has more data 858 **/ 859 bool blk_update_request(struct request *req, blk_status_t error, 860 unsigned int nr_bytes) 861 { 862 int total_bytes; 863 864 trace_block_rq_complete(req, error, nr_bytes); 865 866 if (!req->bio) 867 return false; 868 869 #ifdef CONFIG_BLK_DEV_INTEGRITY 870 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 871 error == BLK_STS_OK) 872 req->q->integrity.profile->complete_fn(req, nr_bytes); 873 #endif 874 875 if (unlikely(error && !blk_rq_is_passthrough(req) && 876 !(req->rq_flags & RQF_QUIET)) && 877 !test_bit(GD_DEAD, &req->q->disk->state)) { 878 blk_print_req_error(req, error); 879 trace_block_rq_error(req, error, nr_bytes); 880 } 881 882 blk_account_io_completion(req, nr_bytes); 883 884 total_bytes = 0; 885 while (req->bio) { 886 struct bio *bio = req->bio; 887 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 888 889 if (bio_bytes == bio->bi_iter.bi_size) 890 req->bio = bio->bi_next; 891 892 /* Completion has already been traced */ 893 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 894 req_bio_endio(req, bio, bio_bytes, error); 895 896 total_bytes += bio_bytes; 897 nr_bytes -= bio_bytes; 898 899 if (!nr_bytes) 900 break; 901 } 902 903 /* 904 * completely done 905 */ 906 if (!req->bio) { 907 /* 908 * Reset counters so that the request stacking driver 909 * can find how many bytes remain in the request 910 * later. 911 */ 912 req->__data_len = 0; 913 return false; 914 } 915 916 req->__data_len -= total_bytes; 917 918 /* update sector only for requests with clear definition of sector */ 919 if (!blk_rq_is_passthrough(req)) 920 req->__sector += total_bytes >> 9; 921 922 /* mixed attributes always follow the first bio */ 923 if (req->rq_flags & RQF_MIXED_MERGE) { 924 req->cmd_flags &= ~REQ_FAILFAST_MASK; 925 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 926 } 927 928 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 929 /* 930 * If total number of sectors is less than the first segment 931 * size, something has gone terribly wrong. 932 */ 933 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 934 blk_dump_rq_flags(req, "request botched"); 935 req->__data_len = blk_rq_cur_bytes(req); 936 } 937 938 /* recalculate the number of segments */ 939 req->nr_phys_segments = blk_recalc_rq_segments(req); 940 } 941 942 return true; 943 } 944 EXPORT_SYMBOL_GPL(blk_update_request); 945 946 static void __blk_account_io_done(struct request *req, u64 now) 947 { 948 const int sgrp = op_stat_group(req_op(req)); 949 950 part_stat_lock(); 951 update_io_ticks(req->part, jiffies, true); 952 part_stat_inc(req->part, ios[sgrp]); 953 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 954 part_stat_unlock(); 955 } 956 957 static inline void blk_account_io_done(struct request *req, u64 now) 958 { 959 /* 960 * Account IO completion. flush_rq isn't accounted as a 961 * normal IO on queueing nor completion. Accounting the 962 * containing request is enough. 963 */ 964 if (blk_do_io_stat(req) && req->part && 965 !(req->rq_flags & RQF_FLUSH_SEQ)) 966 __blk_account_io_done(req, now); 967 } 968 969 static void __blk_account_io_start(struct request *rq) 970 { 971 /* 972 * All non-passthrough requests are created from a bio with one 973 * exception: when a flush command that is part of a flush sequence 974 * generated by the state machine in blk-flush.c is cloned onto the 975 * lower device by dm-multipath we can get here without a bio. 976 */ 977 if (rq->bio) 978 rq->part = rq->bio->bi_bdev; 979 else 980 rq->part = rq->q->disk->part0; 981 982 part_stat_lock(); 983 update_io_ticks(rq->part, jiffies, false); 984 part_stat_unlock(); 985 } 986 987 static inline void blk_account_io_start(struct request *req) 988 { 989 if (blk_do_io_stat(req)) 990 __blk_account_io_start(req); 991 } 992 993 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 994 { 995 if (rq->rq_flags & RQF_STATS) { 996 blk_mq_poll_stats_start(rq->q); 997 blk_stat_add(rq, now); 998 } 999 1000 blk_mq_sched_completed_request(rq, now); 1001 blk_account_io_done(rq, now); 1002 } 1003 1004 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1005 { 1006 if (blk_mq_need_time_stamp(rq)) 1007 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1008 1009 if (rq->end_io) { 1010 rq_qos_done(rq->q, rq); 1011 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1012 blk_mq_free_request(rq); 1013 } else { 1014 blk_mq_free_request(rq); 1015 } 1016 } 1017 EXPORT_SYMBOL(__blk_mq_end_request); 1018 1019 void blk_mq_end_request(struct request *rq, blk_status_t error) 1020 { 1021 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1022 BUG(); 1023 __blk_mq_end_request(rq, error); 1024 } 1025 EXPORT_SYMBOL(blk_mq_end_request); 1026 1027 #define TAG_COMP_BATCH 32 1028 1029 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1030 int *tag_array, int nr_tags) 1031 { 1032 struct request_queue *q = hctx->queue; 1033 1034 /* 1035 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1036 * update hctx->nr_active in batch 1037 */ 1038 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1039 __blk_mq_sub_active_requests(hctx, nr_tags); 1040 1041 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1042 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1043 } 1044 1045 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1046 { 1047 int tags[TAG_COMP_BATCH], nr_tags = 0; 1048 struct blk_mq_hw_ctx *cur_hctx = NULL; 1049 struct request *rq; 1050 u64 now = 0; 1051 1052 if (iob->need_ts) 1053 now = ktime_get_ns(); 1054 1055 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1056 prefetch(rq->bio); 1057 prefetch(rq->rq_next); 1058 1059 blk_complete_request(rq); 1060 if (iob->need_ts) 1061 __blk_mq_end_request_acct(rq, now); 1062 1063 rq_qos_done(rq->q, rq); 1064 1065 /* 1066 * If end_io handler returns NONE, then it still has 1067 * ownership of the request. 1068 */ 1069 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1070 continue; 1071 1072 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1073 if (!req_ref_put_and_test(rq)) 1074 continue; 1075 1076 blk_crypto_free_request(rq); 1077 blk_pm_mark_last_busy(rq); 1078 1079 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1080 if (cur_hctx) 1081 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1082 nr_tags = 0; 1083 cur_hctx = rq->mq_hctx; 1084 } 1085 tags[nr_tags++] = rq->tag; 1086 } 1087 1088 if (nr_tags) 1089 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1090 } 1091 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1092 1093 static void blk_complete_reqs(struct llist_head *list) 1094 { 1095 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1096 struct request *rq, *next; 1097 1098 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1099 rq->q->mq_ops->complete(rq); 1100 } 1101 1102 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1103 { 1104 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1105 } 1106 1107 static int blk_softirq_cpu_dead(unsigned int cpu) 1108 { 1109 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1110 return 0; 1111 } 1112 1113 static void __blk_mq_complete_request_remote(void *data) 1114 { 1115 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1116 } 1117 1118 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1119 { 1120 int cpu = raw_smp_processor_id(); 1121 1122 if (!IS_ENABLED(CONFIG_SMP) || 1123 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1124 return false; 1125 /* 1126 * With force threaded interrupts enabled, raising softirq from an SMP 1127 * function call will always result in waking the ksoftirqd thread. 1128 * This is probably worse than completing the request on a different 1129 * cache domain. 1130 */ 1131 if (force_irqthreads()) 1132 return false; 1133 1134 /* same CPU or cache domain? Complete locally */ 1135 if (cpu == rq->mq_ctx->cpu || 1136 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1137 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1138 return false; 1139 1140 /* don't try to IPI to an offline CPU */ 1141 return cpu_online(rq->mq_ctx->cpu); 1142 } 1143 1144 static void blk_mq_complete_send_ipi(struct request *rq) 1145 { 1146 struct llist_head *list; 1147 unsigned int cpu; 1148 1149 cpu = rq->mq_ctx->cpu; 1150 list = &per_cpu(blk_cpu_done, cpu); 1151 if (llist_add(&rq->ipi_list, list)) { 1152 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1153 smp_call_function_single_async(cpu, &rq->csd); 1154 } 1155 } 1156 1157 static void blk_mq_raise_softirq(struct request *rq) 1158 { 1159 struct llist_head *list; 1160 1161 preempt_disable(); 1162 list = this_cpu_ptr(&blk_cpu_done); 1163 if (llist_add(&rq->ipi_list, list)) 1164 raise_softirq(BLOCK_SOFTIRQ); 1165 preempt_enable(); 1166 } 1167 1168 bool blk_mq_complete_request_remote(struct request *rq) 1169 { 1170 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1171 1172 /* 1173 * For request which hctx has only one ctx mapping, 1174 * or a polled request, always complete locally, 1175 * it's pointless to redirect the completion. 1176 */ 1177 if (rq->mq_hctx->nr_ctx == 1 || 1178 rq->cmd_flags & REQ_POLLED) 1179 return false; 1180 1181 if (blk_mq_complete_need_ipi(rq)) { 1182 blk_mq_complete_send_ipi(rq); 1183 return true; 1184 } 1185 1186 if (rq->q->nr_hw_queues == 1) { 1187 blk_mq_raise_softirq(rq); 1188 return true; 1189 } 1190 return false; 1191 } 1192 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1193 1194 /** 1195 * blk_mq_complete_request - end I/O on a request 1196 * @rq: the request being processed 1197 * 1198 * Description: 1199 * Complete a request by scheduling the ->complete_rq operation. 1200 **/ 1201 void blk_mq_complete_request(struct request *rq) 1202 { 1203 if (!blk_mq_complete_request_remote(rq)) 1204 rq->q->mq_ops->complete(rq); 1205 } 1206 EXPORT_SYMBOL(blk_mq_complete_request); 1207 1208 /** 1209 * blk_mq_start_request - Start processing a request 1210 * @rq: Pointer to request to be started 1211 * 1212 * Function used by device drivers to notify the block layer that a request 1213 * is going to be processed now, so blk layer can do proper initializations 1214 * such as starting the timeout timer. 1215 */ 1216 void blk_mq_start_request(struct request *rq) 1217 { 1218 struct request_queue *q = rq->q; 1219 1220 trace_block_rq_issue(rq); 1221 1222 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1223 rq->io_start_time_ns = ktime_get_ns(); 1224 rq->stats_sectors = blk_rq_sectors(rq); 1225 rq->rq_flags |= RQF_STATS; 1226 rq_qos_issue(q, rq); 1227 } 1228 1229 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1230 1231 blk_add_timer(rq); 1232 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1233 1234 #ifdef CONFIG_BLK_DEV_INTEGRITY 1235 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1236 q->integrity.profile->prepare_fn(rq); 1237 #endif 1238 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1239 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1240 } 1241 EXPORT_SYMBOL(blk_mq_start_request); 1242 1243 /* 1244 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1245 * queues. This is important for md arrays to benefit from merging 1246 * requests. 1247 */ 1248 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1249 { 1250 if (plug->multiple_queues) 1251 return BLK_MAX_REQUEST_COUNT * 2; 1252 return BLK_MAX_REQUEST_COUNT; 1253 } 1254 1255 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1256 { 1257 struct request *last = rq_list_peek(&plug->mq_list); 1258 1259 if (!plug->rq_count) { 1260 trace_block_plug(rq->q); 1261 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1262 (!blk_queue_nomerges(rq->q) && 1263 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1264 blk_mq_flush_plug_list(plug, false); 1265 last = NULL; 1266 trace_block_plug(rq->q); 1267 } 1268 1269 if (!plug->multiple_queues && last && last->q != rq->q) 1270 plug->multiple_queues = true; 1271 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1272 plug->has_elevator = true; 1273 rq->rq_next = NULL; 1274 rq_list_add(&plug->mq_list, rq); 1275 plug->rq_count++; 1276 } 1277 1278 /** 1279 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1280 * @rq: request to insert 1281 * @at_head: insert request at head or tail of queue 1282 * 1283 * Description: 1284 * Insert a fully prepared request at the back of the I/O scheduler queue 1285 * for execution. Don't wait for completion. 1286 * 1287 * Note: 1288 * This function will invoke @done directly if the queue is dead. 1289 */ 1290 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1291 { 1292 WARN_ON(irqs_disabled()); 1293 WARN_ON(!blk_rq_is_passthrough(rq)); 1294 1295 blk_account_io_start(rq); 1296 1297 /* 1298 * As plugging can be enabled for passthrough requests on a zoned 1299 * device, directly accessing the plug instead of using blk_mq_plug() 1300 * should not have any consequences. 1301 */ 1302 if (current->plug) 1303 blk_add_rq_to_plug(current->plug, rq); 1304 else 1305 blk_mq_sched_insert_request(rq, at_head, true, false); 1306 } 1307 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1308 1309 struct blk_rq_wait { 1310 struct completion done; 1311 blk_status_t ret; 1312 }; 1313 1314 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1315 { 1316 struct blk_rq_wait *wait = rq->end_io_data; 1317 1318 wait->ret = ret; 1319 complete(&wait->done); 1320 return RQ_END_IO_NONE; 1321 } 1322 1323 bool blk_rq_is_poll(struct request *rq) 1324 { 1325 if (!rq->mq_hctx) 1326 return false; 1327 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1328 return false; 1329 if (WARN_ON_ONCE(!rq->bio)) 1330 return false; 1331 return true; 1332 } 1333 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1334 1335 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1336 { 1337 do { 1338 bio_poll(rq->bio, NULL, 0); 1339 cond_resched(); 1340 } while (!completion_done(wait)); 1341 } 1342 1343 /** 1344 * blk_execute_rq - insert a request into queue for execution 1345 * @rq: request to insert 1346 * @at_head: insert request at head or tail of queue 1347 * 1348 * Description: 1349 * Insert a fully prepared request at the back of the I/O scheduler queue 1350 * for execution and wait for completion. 1351 * Return: The blk_status_t result provided to blk_mq_end_request(). 1352 */ 1353 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1354 { 1355 struct blk_rq_wait wait = { 1356 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1357 }; 1358 1359 WARN_ON(irqs_disabled()); 1360 WARN_ON(!blk_rq_is_passthrough(rq)); 1361 1362 rq->end_io_data = &wait; 1363 rq->end_io = blk_end_sync_rq; 1364 1365 blk_account_io_start(rq); 1366 blk_mq_sched_insert_request(rq, at_head, true, false); 1367 1368 if (blk_rq_is_poll(rq)) { 1369 blk_rq_poll_completion(rq, &wait.done); 1370 } else { 1371 /* 1372 * Prevent hang_check timer from firing at us during very long 1373 * I/O 1374 */ 1375 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1376 1377 if (hang_check) 1378 while (!wait_for_completion_io_timeout(&wait.done, 1379 hang_check * (HZ/2))) 1380 ; 1381 else 1382 wait_for_completion_io(&wait.done); 1383 } 1384 1385 return wait.ret; 1386 } 1387 EXPORT_SYMBOL(blk_execute_rq); 1388 1389 static void __blk_mq_requeue_request(struct request *rq) 1390 { 1391 struct request_queue *q = rq->q; 1392 1393 blk_mq_put_driver_tag(rq); 1394 1395 trace_block_rq_requeue(rq); 1396 rq_qos_requeue(q, rq); 1397 1398 if (blk_mq_request_started(rq)) { 1399 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1400 rq->rq_flags &= ~RQF_TIMED_OUT; 1401 } 1402 } 1403 1404 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1405 { 1406 __blk_mq_requeue_request(rq); 1407 1408 /* this request will be re-inserted to io scheduler queue */ 1409 blk_mq_sched_requeue_request(rq); 1410 1411 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1412 } 1413 EXPORT_SYMBOL(blk_mq_requeue_request); 1414 1415 static void blk_mq_requeue_work(struct work_struct *work) 1416 { 1417 struct request_queue *q = 1418 container_of(work, struct request_queue, requeue_work.work); 1419 LIST_HEAD(rq_list); 1420 struct request *rq, *next; 1421 1422 spin_lock_irq(&q->requeue_lock); 1423 list_splice_init(&q->requeue_list, &rq_list); 1424 spin_unlock_irq(&q->requeue_lock); 1425 1426 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1427 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1428 continue; 1429 1430 rq->rq_flags &= ~RQF_SOFTBARRIER; 1431 list_del_init(&rq->queuelist); 1432 /* 1433 * If RQF_DONTPREP, rq has contained some driver specific 1434 * data, so insert it to hctx dispatch list to avoid any 1435 * merge. 1436 */ 1437 if (rq->rq_flags & RQF_DONTPREP) 1438 blk_mq_request_bypass_insert(rq, false, false); 1439 else 1440 blk_mq_sched_insert_request(rq, true, false, false); 1441 } 1442 1443 while (!list_empty(&rq_list)) { 1444 rq = list_entry(rq_list.next, struct request, queuelist); 1445 list_del_init(&rq->queuelist); 1446 blk_mq_sched_insert_request(rq, false, false, false); 1447 } 1448 1449 blk_mq_run_hw_queues(q, false); 1450 } 1451 1452 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1453 bool kick_requeue_list) 1454 { 1455 struct request_queue *q = rq->q; 1456 unsigned long flags; 1457 1458 /* 1459 * We abuse this flag that is otherwise used by the I/O scheduler to 1460 * request head insertion from the workqueue. 1461 */ 1462 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1463 1464 spin_lock_irqsave(&q->requeue_lock, flags); 1465 if (at_head) { 1466 rq->rq_flags |= RQF_SOFTBARRIER; 1467 list_add(&rq->queuelist, &q->requeue_list); 1468 } else { 1469 list_add_tail(&rq->queuelist, &q->requeue_list); 1470 } 1471 spin_unlock_irqrestore(&q->requeue_lock, flags); 1472 1473 if (kick_requeue_list) 1474 blk_mq_kick_requeue_list(q); 1475 } 1476 1477 void blk_mq_kick_requeue_list(struct request_queue *q) 1478 { 1479 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1480 } 1481 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1482 1483 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1484 unsigned long msecs) 1485 { 1486 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1487 msecs_to_jiffies(msecs)); 1488 } 1489 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1490 1491 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1492 { 1493 /* 1494 * If we find a request that isn't idle we know the queue is busy 1495 * as it's checked in the iter. 1496 * Return false to stop the iteration. 1497 */ 1498 if (blk_mq_request_started(rq)) { 1499 bool *busy = priv; 1500 1501 *busy = true; 1502 return false; 1503 } 1504 1505 return true; 1506 } 1507 1508 bool blk_mq_queue_inflight(struct request_queue *q) 1509 { 1510 bool busy = false; 1511 1512 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1513 return busy; 1514 } 1515 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1516 1517 static void blk_mq_rq_timed_out(struct request *req) 1518 { 1519 req->rq_flags |= RQF_TIMED_OUT; 1520 if (req->q->mq_ops->timeout) { 1521 enum blk_eh_timer_return ret; 1522 1523 ret = req->q->mq_ops->timeout(req); 1524 if (ret == BLK_EH_DONE) 1525 return; 1526 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1527 } 1528 1529 blk_add_timer(req); 1530 } 1531 1532 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1533 { 1534 unsigned long deadline; 1535 1536 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1537 return false; 1538 if (rq->rq_flags & RQF_TIMED_OUT) 1539 return false; 1540 1541 deadline = READ_ONCE(rq->deadline); 1542 if (time_after_eq(jiffies, deadline)) 1543 return true; 1544 1545 if (*next == 0) 1546 *next = deadline; 1547 else if (time_after(*next, deadline)) 1548 *next = deadline; 1549 return false; 1550 } 1551 1552 void blk_mq_put_rq_ref(struct request *rq) 1553 { 1554 if (is_flush_rq(rq)) { 1555 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1556 blk_mq_free_request(rq); 1557 } else if (req_ref_put_and_test(rq)) { 1558 __blk_mq_free_request(rq); 1559 } 1560 } 1561 1562 static bool blk_mq_check_expired(struct request *rq, void *priv) 1563 { 1564 unsigned long *next = priv; 1565 1566 /* 1567 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1568 * be reallocated underneath the timeout handler's processing, then 1569 * the expire check is reliable. If the request is not expired, then 1570 * it was completed and reallocated as a new request after returning 1571 * from blk_mq_check_expired(). 1572 */ 1573 if (blk_mq_req_expired(rq, next)) 1574 blk_mq_rq_timed_out(rq); 1575 return true; 1576 } 1577 1578 static void blk_mq_timeout_work(struct work_struct *work) 1579 { 1580 struct request_queue *q = 1581 container_of(work, struct request_queue, timeout_work); 1582 unsigned long next = 0; 1583 struct blk_mq_hw_ctx *hctx; 1584 unsigned long i; 1585 1586 /* A deadlock might occur if a request is stuck requiring a 1587 * timeout at the same time a queue freeze is waiting 1588 * completion, since the timeout code would not be able to 1589 * acquire the queue reference here. 1590 * 1591 * That's why we don't use blk_queue_enter here; instead, we use 1592 * percpu_ref_tryget directly, because we need to be able to 1593 * obtain a reference even in the short window between the queue 1594 * starting to freeze, by dropping the first reference in 1595 * blk_freeze_queue_start, and the moment the last request is 1596 * consumed, marked by the instant q_usage_counter reaches 1597 * zero. 1598 */ 1599 if (!percpu_ref_tryget(&q->q_usage_counter)) 1600 return; 1601 1602 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1603 1604 if (next != 0) { 1605 mod_timer(&q->timeout, next); 1606 } else { 1607 /* 1608 * Request timeouts are handled as a forward rolling timer. If 1609 * we end up here it means that no requests are pending and 1610 * also that no request has been pending for a while. Mark 1611 * each hctx as idle. 1612 */ 1613 queue_for_each_hw_ctx(q, hctx, i) { 1614 /* the hctx may be unmapped, so check it here */ 1615 if (blk_mq_hw_queue_mapped(hctx)) 1616 blk_mq_tag_idle(hctx); 1617 } 1618 } 1619 blk_queue_exit(q); 1620 } 1621 1622 struct flush_busy_ctx_data { 1623 struct blk_mq_hw_ctx *hctx; 1624 struct list_head *list; 1625 }; 1626 1627 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1628 { 1629 struct flush_busy_ctx_data *flush_data = data; 1630 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1631 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1632 enum hctx_type type = hctx->type; 1633 1634 spin_lock(&ctx->lock); 1635 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1636 sbitmap_clear_bit(sb, bitnr); 1637 spin_unlock(&ctx->lock); 1638 return true; 1639 } 1640 1641 /* 1642 * Process software queues that have been marked busy, splicing them 1643 * to the for-dispatch 1644 */ 1645 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1646 { 1647 struct flush_busy_ctx_data data = { 1648 .hctx = hctx, 1649 .list = list, 1650 }; 1651 1652 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1653 } 1654 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1655 1656 struct dispatch_rq_data { 1657 struct blk_mq_hw_ctx *hctx; 1658 struct request *rq; 1659 }; 1660 1661 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1662 void *data) 1663 { 1664 struct dispatch_rq_data *dispatch_data = data; 1665 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1666 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1667 enum hctx_type type = hctx->type; 1668 1669 spin_lock(&ctx->lock); 1670 if (!list_empty(&ctx->rq_lists[type])) { 1671 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1672 list_del_init(&dispatch_data->rq->queuelist); 1673 if (list_empty(&ctx->rq_lists[type])) 1674 sbitmap_clear_bit(sb, bitnr); 1675 } 1676 spin_unlock(&ctx->lock); 1677 1678 return !dispatch_data->rq; 1679 } 1680 1681 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1682 struct blk_mq_ctx *start) 1683 { 1684 unsigned off = start ? start->index_hw[hctx->type] : 0; 1685 struct dispatch_rq_data data = { 1686 .hctx = hctx, 1687 .rq = NULL, 1688 }; 1689 1690 __sbitmap_for_each_set(&hctx->ctx_map, off, 1691 dispatch_rq_from_ctx, &data); 1692 1693 return data.rq; 1694 } 1695 1696 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1697 { 1698 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1699 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1700 int tag; 1701 1702 blk_mq_tag_busy(rq->mq_hctx); 1703 1704 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1705 bt = &rq->mq_hctx->tags->breserved_tags; 1706 tag_offset = 0; 1707 } else { 1708 if (!hctx_may_queue(rq->mq_hctx, bt)) 1709 return false; 1710 } 1711 1712 tag = __sbitmap_queue_get(bt); 1713 if (tag == BLK_MQ_NO_TAG) 1714 return false; 1715 1716 rq->tag = tag + tag_offset; 1717 return true; 1718 } 1719 1720 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1721 { 1722 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1723 return false; 1724 1725 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1726 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1727 rq->rq_flags |= RQF_MQ_INFLIGHT; 1728 __blk_mq_inc_active_requests(hctx); 1729 } 1730 hctx->tags->rqs[rq->tag] = rq; 1731 return true; 1732 } 1733 1734 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1735 int flags, void *key) 1736 { 1737 struct blk_mq_hw_ctx *hctx; 1738 1739 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1740 1741 spin_lock(&hctx->dispatch_wait_lock); 1742 if (!list_empty(&wait->entry)) { 1743 struct sbitmap_queue *sbq; 1744 1745 list_del_init(&wait->entry); 1746 sbq = &hctx->tags->bitmap_tags; 1747 atomic_dec(&sbq->ws_active); 1748 } 1749 spin_unlock(&hctx->dispatch_wait_lock); 1750 1751 blk_mq_run_hw_queue(hctx, true); 1752 return 1; 1753 } 1754 1755 /* 1756 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1757 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1758 * restart. For both cases, take care to check the condition again after 1759 * marking us as waiting. 1760 */ 1761 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1762 struct request *rq) 1763 { 1764 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1765 struct wait_queue_head *wq; 1766 wait_queue_entry_t *wait; 1767 bool ret; 1768 1769 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1770 blk_mq_sched_mark_restart_hctx(hctx); 1771 1772 /* 1773 * It's possible that a tag was freed in the window between the 1774 * allocation failure and adding the hardware queue to the wait 1775 * queue. 1776 * 1777 * Don't clear RESTART here, someone else could have set it. 1778 * At most this will cost an extra queue run. 1779 */ 1780 return blk_mq_get_driver_tag(rq); 1781 } 1782 1783 wait = &hctx->dispatch_wait; 1784 if (!list_empty_careful(&wait->entry)) 1785 return false; 1786 1787 wq = &bt_wait_ptr(sbq, hctx)->wait; 1788 1789 spin_lock_irq(&wq->lock); 1790 spin_lock(&hctx->dispatch_wait_lock); 1791 if (!list_empty(&wait->entry)) { 1792 spin_unlock(&hctx->dispatch_wait_lock); 1793 spin_unlock_irq(&wq->lock); 1794 return false; 1795 } 1796 1797 atomic_inc(&sbq->ws_active); 1798 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1799 __add_wait_queue(wq, wait); 1800 1801 /* 1802 * It's possible that a tag was freed in the window between the 1803 * allocation failure and adding the hardware queue to the wait 1804 * queue. 1805 */ 1806 ret = blk_mq_get_driver_tag(rq); 1807 if (!ret) { 1808 spin_unlock(&hctx->dispatch_wait_lock); 1809 spin_unlock_irq(&wq->lock); 1810 return false; 1811 } 1812 1813 /* 1814 * We got a tag, remove ourselves from the wait queue to ensure 1815 * someone else gets the wakeup. 1816 */ 1817 list_del_init(&wait->entry); 1818 atomic_dec(&sbq->ws_active); 1819 spin_unlock(&hctx->dispatch_wait_lock); 1820 spin_unlock_irq(&wq->lock); 1821 1822 return true; 1823 } 1824 1825 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1826 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1827 /* 1828 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1829 * - EWMA is one simple way to compute running average value 1830 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1831 * - take 4 as factor for avoiding to get too small(0) result, and this 1832 * factor doesn't matter because EWMA decreases exponentially 1833 */ 1834 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1835 { 1836 unsigned int ewma; 1837 1838 ewma = hctx->dispatch_busy; 1839 1840 if (!ewma && !busy) 1841 return; 1842 1843 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1844 if (busy) 1845 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1846 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1847 1848 hctx->dispatch_busy = ewma; 1849 } 1850 1851 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1852 1853 static void blk_mq_handle_dev_resource(struct request *rq, 1854 struct list_head *list) 1855 { 1856 struct request *next = 1857 list_first_entry_or_null(list, struct request, queuelist); 1858 1859 /* 1860 * If an I/O scheduler has been configured and we got a driver tag for 1861 * the next request already, free it. 1862 */ 1863 if (next) 1864 blk_mq_put_driver_tag(next); 1865 1866 list_add(&rq->queuelist, list); 1867 __blk_mq_requeue_request(rq); 1868 } 1869 1870 static void blk_mq_handle_zone_resource(struct request *rq, 1871 struct list_head *zone_list) 1872 { 1873 /* 1874 * If we end up here it is because we cannot dispatch a request to a 1875 * specific zone due to LLD level zone-write locking or other zone 1876 * related resource not being available. In this case, set the request 1877 * aside in zone_list for retrying it later. 1878 */ 1879 list_add(&rq->queuelist, zone_list); 1880 __blk_mq_requeue_request(rq); 1881 } 1882 1883 enum prep_dispatch { 1884 PREP_DISPATCH_OK, 1885 PREP_DISPATCH_NO_TAG, 1886 PREP_DISPATCH_NO_BUDGET, 1887 }; 1888 1889 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1890 bool need_budget) 1891 { 1892 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1893 int budget_token = -1; 1894 1895 if (need_budget) { 1896 budget_token = blk_mq_get_dispatch_budget(rq->q); 1897 if (budget_token < 0) { 1898 blk_mq_put_driver_tag(rq); 1899 return PREP_DISPATCH_NO_BUDGET; 1900 } 1901 blk_mq_set_rq_budget_token(rq, budget_token); 1902 } 1903 1904 if (!blk_mq_get_driver_tag(rq)) { 1905 /* 1906 * The initial allocation attempt failed, so we need to 1907 * rerun the hardware queue when a tag is freed. The 1908 * waitqueue takes care of that. If the queue is run 1909 * before we add this entry back on the dispatch list, 1910 * we'll re-run it below. 1911 */ 1912 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1913 /* 1914 * All budgets not got from this function will be put 1915 * together during handling partial dispatch 1916 */ 1917 if (need_budget) 1918 blk_mq_put_dispatch_budget(rq->q, budget_token); 1919 return PREP_DISPATCH_NO_TAG; 1920 } 1921 } 1922 1923 return PREP_DISPATCH_OK; 1924 } 1925 1926 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1927 static void blk_mq_release_budgets(struct request_queue *q, 1928 struct list_head *list) 1929 { 1930 struct request *rq; 1931 1932 list_for_each_entry(rq, list, queuelist) { 1933 int budget_token = blk_mq_get_rq_budget_token(rq); 1934 1935 if (budget_token >= 0) 1936 blk_mq_put_dispatch_budget(q, budget_token); 1937 } 1938 } 1939 1940 /* 1941 * Returns true if we did some work AND can potentially do more. 1942 */ 1943 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1944 unsigned int nr_budgets) 1945 { 1946 enum prep_dispatch prep; 1947 struct request_queue *q = hctx->queue; 1948 struct request *rq, *nxt; 1949 int errors, queued; 1950 blk_status_t ret = BLK_STS_OK; 1951 LIST_HEAD(zone_list); 1952 bool needs_resource = false; 1953 1954 if (list_empty(list)) 1955 return false; 1956 1957 /* 1958 * Now process all the entries, sending them to the driver. 1959 */ 1960 errors = queued = 0; 1961 do { 1962 struct blk_mq_queue_data bd; 1963 1964 rq = list_first_entry(list, struct request, queuelist); 1965 1966 WARN_ON_ONCE(hctx != rq->mq_hctx); 1967 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1968 if (prep != PREP_DISPATCH_OK) 1969 break; 1970 1971 list_del_init(&rq->queuelist); 1972 1973 bd.rq = rq; 1974 1975 /* 1976 * Flag last if we have no more requests, or if we have more 1977 * but can't assign a driver tag to it. 1978 */ 1979 if (list_empty(list)) 1980 bd.last = true; 1981 else { 1982 nxt = list_first_entry(list, struct request, queuelist); 1983 bd.last = !blk_mq_get_driver_tag(nxt); 1984 } 1985 1986 /* 1987 * once the request is queued to lld, no need to cover the 1988 * budget any more 1989 */ 1990 if (nr_budgets) 1991 nr_budgets--; 1992 ret = q->mq_ops->queue_rq(hctx, &bd); 1993 switch (ret) { 1994 case BLK_STS_OK: 1995 queued++; 1996 break; 1997 case BLK_STS_RESOURCE: 1998 needs_resource = true; 1999 fallthrough; 2000 case BLK_STS_DEV_RESOURCE: 2001 blk_mq_handle_dev_resource(rq, list); 2002 goto out; 2003 case BLK_STS_ZONE_RESOURCE: 2004 /* 2005 * Move the request to zone_list and keep going through 2006 * the dispatch list to find more requests the drive can 2007 * accept. 2008 */ 2009 blk_mq_handle_zone_resource(rq, &zone_list); 2010 needs_resource = true; 2011 break; 2012 default: 2013 errors++; 2014 blk_mq_end_request(rq, ret); 2015 } 2016 } while (!list_empty(list)); 2017 out: 2018 if (!list_empty(&zone_list)) 2019 list_splice_tail_init(&zone_list, list); 2020 2021 /* If we didn't flush the entire list, we could have told the driver 2022 * there was more coming, but that turned out to be a lie. 2023 */ 2024 if ((!list_empty(list) || errors || needs_resource || 2025 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued) 2026 q->mq_ops->commit_rqs(hctx); 2027 /* 2028 * Any items that need requeuing? Stuff them into hctx->dispatch, 2029 * that is where we will continue on next queue run. 2030 */ 2031 if (!list_empty(list)) { 2032 bool needs_restart; 2033 /* For non-shared tags, the RESTART check will suffice */ 2034 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2035 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 2036 2037 if (nr_budgets) 2038 blk_mq_release_budgets(q, list); 2039 2040 spin_lock(&hctx->lock); 2041 list_splice_tail_init(list, &hctx->dispatch); 2042 spin_unlock(&hctx->lock); 2043 2044 /* 2045 * Order adding requests to hctx->dispatch and checking 2046 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2047 * in blk_mq_sched_restart(). Avoid restart code path to 2048 * miss the new added requests to hctx->dispatch, meantime 2049 * SCHED_RESTART is observed here. 2050 */ 2051 smp_mb(); 2052 2053 /* 2054 * If SCHED_RESTART was set by the caller of this function and 2055 * it is no longer set that means that it was cleared by another 2056 * thread and hence that a queue rerun is needed. 2057 * 2058 * If 'no_tag' is set, that means that we failed getting 2059 * a driver tag with an I/O scheduler attached. If our dispatch 2060 * waitqueue is no longer active, ensure that we run the queue 2061 * AFTER adding our entries back to the list. 2062 * 2063 * If no I/O scheduler has been configured it is possible that 2064 * the hardware queue got stopped and restarted before requests 2065 * were pushed back onto the dispatch list. Rerun the queue to 2066 * avoid starvation. Notes: 2067 * - blk_mq_run_hw_queue() checks whether or not a queue has 2068 * been stopped before rerunning a queue. 2069 * - Some but not all block drivers stop a queue before 2070 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2071 * and dm-rq. 2072 * 2073 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2074 * bit is set, run queue after a delay to avoid IO stalls 2075 * that could otherwise occur if the queue is idle. We'll do 2076 * similar if we couldn't get budget or couldn't lock a zone 2077 * and SCHED_RESTART is set. 2078 */ 2079 needs_restart = blk_mq_sched_needs_restart(hctx); 2080 if (prep == PREP_DISPATCH_NO_BUDGET) 2081 needs_resource = true; 2082 if (!needs_restart || 2083 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2084 blk_mq_run_hw_queue(hctx, true); 2085 else if (needs_resource) 2086 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2087 2088 blk_mq_update_dispatch_busy(hctx, true); 2089 return false; 2090 } else 2091 blk_mq_update_dispatch_busy(hctx, false); 2092 2093 return (queued + errors) != 0; 2094 } 2095 2096 /** 2097 * __blk_mq_run_hw_queue - Run a hardware queue. 2098 * @hctx: Pointer to the hardware queue to run. 2099 * 2100 * Send pending requests to the hardware. 2101 */ 2102 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2103 { 2104 /* 2105 * We can't run the queue inline with ints disabled. Ensure that 2106 * we catch bad users of this early. 2107 */ 2108 WARN_ON_ONCE(in_interrupt()); 2109 2110 blk_mq_run_dispatch_ops(hctx->queue, 2111 blk_mq_sched_dispatch_requests(hctx)); 2112 } 2113 2114 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2115 { 2116 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2117 2118 if (cpu >= nr_cpu_ids) 2119 cpu = cpumask_first(hctx->cpumask); 2120 return cpu; 2121 } 2122 2123 /* 2124 * It'd be great if the workqueue API had a way to pass 2125 * in a mask and had some smarts for more clever placement. 2126 * For now we just round-robin here, switching for every 2127 * BLK_MQ_CPU_WORK_BATCH queued items. 2128 */ 2129 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2130 { 2131 bool tried = false; 2132 int next_cpu = hctx->next_cpu; 2133 2134 if (hctx->queue->nr_hw_queues == 1) 2135 return WORK_CPU_UNBOUND; 2136 2137 if (--hctx->next_cpu_batch <= 0) { 2138 select_cpu: 2139 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2140 cpu_online_mask); 2141 if (next_cpu >= nr_cpu_ids) 2142 next_cpu = blk_mq_first_mapped_cpu(hctx); 2143 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2144 } 2145 2146 /* 2147 * Do unbound schedule if we can't find a online CPU for this hctx, 2148 * and it should only happen in the path of handling CPU DEAD. 2149 */ 2150 if (!cpu_online(next_cpu)) { 2151 if (!tried) { 2152 tried = true; 2153 goto select_cpu; 2154 } 2155 2156 /* 2157 * Make sure to re-select CPU next time once after CPUs 2158 * in hctx->cpumask become online again. 2159 */ 2160 hctx->next_cpu = next_cpu; 2161 hctx->next_cpu_batch = 1; 2162 return WORK_CPU_UNBOUND; 2163 } 2164 2165 hctx->next_cpu = next_cpu; 2166 return next_cpu; 2167 } 2168 2169 /** 2170 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2171 * @hctx: Pointer to the hardware queue to run. 2172 * @async: If we want to run the queue asynchronously. 2173 * @msecs: Milliseconds of delay to wait before running the queue. 2174 * 2175 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2176 * with a delay of @msecs. 2177 */ 2178 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2179 unsigned long msecs) 2180 { 2181 if (unlikely(blk_mq_hctx_stopped(hctx))) 2182 return; 2183 2184 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2185 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2186 __blk_mq_run_hw_queue(hctx); 2187 return; 2188 } 2189 } 2190 2191 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2192 msecs_to_jiffies(msecs)); 2193 } 2194 2195 /** 2196 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2197 * @hctx: Pointer to the hardware queue to run. 2198 * @msecs: Milliseconds of delay to wait before running the queue. 2199 * 2200 * Run a hardware queue asynchronously with a delay of @msecs. 2201 */ 2202 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2203 { 2204 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2205 } 2206 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2207 2208 /** 2209 * blk_mq_run_hw_queue - Start to run a hardware queue. 2210 * @hctx: Pointer to the hardware queue to run. 2211 * @async: If we want to run the queue asynchronously. 2212 * 2213 * Check if the request queue is not in a quiesced state and if there are 2214 * pending requests to be sent. If this is true, run the queue to send requests 2215 * to hardware. 2216 */ 2217 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2218 { 2219 bool need_run; 2220 2221 /* 2222 * When queue is quiesced, we may be switching io scheduler, or 2223 * updating nr_hw_queues, or other things, and we can't run queue 2224 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2225 * 2226 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2227 * quiesced. 2228 */ 2229 __blk_mq_run_dispatch_ops(hctx->queue, false, 2230 need_run = !blk_queue_quiesced(hctx->queue) && 2231 blk_mq_hctx_has_pending(hctx)); 2232 2233 if (need_run) 2234 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2235 } 2236 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2237 2238 /* 2239 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2240 * scheduler. 2241 */ 2242 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2243 { 2244 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2245 /* 2246 * If the IO scheduler does not respect hardware queues when 2247 * dispatching, we just don't bother with multiple HW queues and 2248 * dispatch from hctx for the current CPU since running multiple queues 2249 * just causes lock contention inside the scheduler and pointless cache 2250 * bouncing. 2251 */ 2252 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2253 2254 if (!blk_mq_hctx_stopped(hctx)) 2255 return hctx; 2256 return NULL; 2257 } 2258 2259 /** 2260 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2261 * @q: Pointer to the request queue to run. 2262 * @async: If we want to run the queue asynchronously. 2263 */ 2264 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2265 { 2266 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2267 unsigned long i; 2268 2269 sq_hctx = NULL; 2270 if (blk_queue_sq_sched(q)) 2271 sq_hctx = blk_mq_get_sq_hctx(q); 2272 queue_for_each_hw_ctx(q, hctx, i) { 2273 if (blk_mq_hctx_stopped(hctx)) 2274 continue; 2275 /* 2276 * Dispatch from this hctx either if there's no hctx preferred 2277 * by IO scheduler or if it has requests that bypass the 2278 * scheduler. 2279 */ 2280 if (!sq_hctx || sq_hctx == hctx || 2281 !list_empty_careful(&hctx->dispatch)) 2282 blk_mq_run_hw_queue(hctx, async); 2283 } 2284 } 2285 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2286 2287 /** 2288 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2289 * @q: Pointer to the request queue to run. 2290 * @msecs: Milliseconds of delay to wait before running the queues. 2291 */ 2292 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2293 { 2294 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2295 unsigned long i; 2296 2297 sq_hctx = NULL; 2298 if (blk_queue_sq_sched(q)) 2299 sq_hctx = blk_mq_get_sq_hctx(q); 2300 queue_for_each_hw_ctx(q, hctx, i) { 2301 if (blk_mq_hctx_stopped(hctx)) 2302 continue; 2303 /* 2304 * If there is already a run_work pending, leave the 2305 * pending delay untouched. Otherwise, a hctx can stall 2306 * if another hctx is re-delaying the other's work 2307 * before the work executes. 2308 */ 2309 if (delayed_work_pending(&hctx->run_work)) 2310 continue; 2311 /* 2312 * Dispatch from this hctx either if there's no hctx preferred 2313 * by IO scheduler or if it has requests that bypass the 2314 * scheduler. 2315 */ 2316 if (!sq_hctx || sq_hctx == hctx || 2317 !list_empty_careful(&hctx->dispatch)) 2318 blk_mq_delay_run_hw_queue(hctx, msecs); 2319 } 2320 } 2321 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2322 2323 /* 2324 * This function is often used for pausing .queue_rq() by driver when 2325 * there isn't enough resource or some conditions aren't satisfied, and 2326 * BLK_STS_RESOURCE is usually returned. 2327 * 2328 * We do not guarantee that dispatch can be drained or blocked 2329 * after blk_mq_stop_hw_queue() returns. Please use 2330 * blk_mq_quiesce_queue() for that requirement. 2331 */ 2332 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2333 { 2334 cancel_delayed_work(&hctx->run_work); 2335 2336 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2337 } 2338 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2339 2340 /* 2341 * This function is often used for pausing .queue_rq() by driver when 2342 * there isn't enough resource or some conditions aren't satisfied, and 2343 * BLK_STS_RESOURCE is usually returned. 2344 * 2345 * We do not guarantee that dispatch can be drained or blocked 2346 * after blk_mq_stop_hw_queues() returns. Please use 2347 * blk_mq_quiesce_queue() for that requirement. 2348 */ 2349 void blk_mq_stop_hw_queues(struct request_queue *q) 2350 { 2351 struct blk_mq_hw_ctx *hctx; 2352 unsigned long i; 2353 2354 queue_for_each_hw_ctx(q, hctx, i) 2355 blk_mq_stop_hw_queue(hctx); 2356 } 2357 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2358 2359 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2360 { 2361 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2362 2363 blk_mq_run_hw_queue(hctx, false); 2364 } 2365 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2366 2367 void blk_mq_start_hw_queues(struct request_queue *q) 2368 { 2369 struct blk_mq_hw_ctx *hctx; 2370 unsigned long i; 2371 2372 queue_for_each_hw_ctx(q, hctx, i) 2373 blk_mq_start_hw_queue(hctx); 2374 } 2375 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2376 2377 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2378 { 2379 if (!blk_mq_hctx_stopped(hctx)) 2380 return; 2381 2382 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2383 blk_mq_run_hw_queue(hctx, async); 2384 } 2385 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2386 2387 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2388 { 2389 struct blk_mq_hw_ctx *hctx; 2390 unsigned long i; 2391 2392 queue_for_each_hw_ctx(q, hctx, i) 2393 blk_mq_start_stopped_hw_queue(hctx, async); 2394 } 2395 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2396 2397 static void blk_mq_run_work_fn(struct work_struct *work) 2398 { 2399 struct blk_mq_hw_ctx *hctx; 2400 2401 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2402 2403 /* 2404 * If we are stopped, don't run the queue. 2405 */ 2406 if (blk_mq_hctx_stopped(hctx)) 2407 return; 2408 2409 __blk_mq_run_hw_queue(hctx); 2410 } 2411 2412 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2413 struct request *rq, 2414 bool at_head) 2415 { 2416 struct blk_mq_ctx *ctx = rq->mq_ctx; 2417 enum hctx_type type = hctx->type; 2418 2419 lockdep_assert_held(&ctx->lock); 2420 2421 trace_block_rq_insert(rq); 2422 2423 if (at_head) 2424 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2425 else 2426 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2427 } 2428 2429 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2430 bool at_head) 2431 { 2432 struct blk_mq_ctx *ctx = rq->mq_ctx; 2433 2434 lockdep_assert_held(&ctx->lock); 2435 2436 __blk_mq_insert_req_list(hctx, rq, at_head); 2437 blk_mq_hctx_mark_pending(hctx, ctx); 2438 } 2439 2440 /** 2441 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2442 * @rq: Pointer to request to be inserted. 2443 * @at_head: true if the request should be inserted at the head of the list. 2444 * @run_queue: If we should run the hardware queue after inserting the request. 2445 * 2446 * Should only be used carefully, when the caller knows we want to 2447 * bypass a potential IO scheduler on the target device. 2448 */ 2449 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2450 bool run_queue) 2451 { 2452 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2453 2454 spin_lock(&hctx->lock); 2455 if (at_head) 2456 list_add(&rq->queuelist, &hctx->dispatch); 2457 else 2458 list_add_tail(&rq->queuelist, &hctx->dispatch); 2459 spin_unlock(&hctx->lock); 2460 2461 if (run_queue) 2462 blk_mq_run_hw_queue(hctx, false); 2463 } 2464 2465 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2466 struct list_head *list) 2467 2468 { 2469 struct request *rq; 2470 enum hctx_type type = hctx->type; 2471 2472 /* 2473 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2474 * offline now 2475 */ 2476 list_for_each_entry(rq, list, queuelist) { 2477 BUG_ON(rq->mq_ctx != ctx); 2478 trace_block_rq_insert(rq); 2479 } 2480 2481 spin_lock(&ctx->lock); 2482 list_splice_tail_init(list, &ctx->rq_lists[type]); 2483 blk_mq_hctx_mark_pending(hctx, ctx); 2484 spin_unlock(&ctx->lock); 2485 } 2486 2487 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2488 bool from_schedule) 2489 { 2490 if (hctx->queue->mq_ops->commit_rqs) { 2491 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2492 hctx->queue->mq_ops->commit_rqs(hctx); 2493 } 2494 *queued = 0; 2495 } 2496 2497 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2498 unsigned int nr_segs) 2499 { 2500 int err; 2501 2502 if (bio->bi_opf & REQ_RAHEAD) 2503 rq->cmd_flags |= REQ_FAILFAST_MASK; 2504 2505 rq->__sector = bio->bi_iter.bi_sector; 2506 blk_rq_bio_prep(rq, bio, nr_segs); 2507 2508 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2509 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2510 WARN_ON_ONCE(err); 2511 2512 blk_account_io_start(rq); 2513 } 2514 2515 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2516 struct request *rq, bool last) 2517 { 2518 struct request_queue *q = rq->q; 2519 struct blk_mq_queue_data bd = { 2520 .rq = rq, 2521 .last = last, 2522 }; 2523 blk_status_t ret; 2524 2525 /* 2526 * For OK queue, we are done. For error, caller may kill it. 2527 * Any other error (busy), just add it to our list as we 2528 * previously would have done. 2529 */ 2530 ret = q->mq_ops->queue_rq(hctx, &bd); 2531 switch (ret) { 2532 case BLK_STS_OK: 2533 blk_mq_update_dispatch_busy(hctx, false); 2534 break; 2535 case BLK_STS_RESOURCE: 2536 case BLK_STS_DEV_RESOURCE: 2537 blk_mq_update_dispatch_busy(hctx, true); 2538 __blk_mq_requeue_request(rq); 2539 break; 2540 default: 2541 blk_mq_update_dispatch_busy(hctx, false); 2542 break; 2543 } 2544 2545 return ret; 2546 } 2547 2548 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2549 struct request *rq, 2550 bool bypass_insert, bool last) 2551 { 2552 struct request_queue *q = rq->q; 2553 bool run_queue = true; 2554 int budget_token; 2555 2556 /* 2557 * RCU or SRCU read lock is needed before checking quiesced flag. 2558 * 2559 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2560 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2561 * and avoid driver to try to dispatch again. 2562 */ 2563 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2564 run_queue = false; 2565 bypass_insert = false; 2566 goto insert; 2567 } 2568 2569 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2570 goto insert; 2571 2572 budget_token = blk_mq_get_dispatch_budget(q); 2573 if (budget_token < 0) 2574 goto insert; 2575 2576 blk_mq_set_rq_budget_token(rq, budget_token); 2577 2578 if (!blk_mq_get_driver_tag(rq)) { 2579 blk_mq_put_dispatch_budget(q, budget_token); 2580 goto insert; 2581 } 2582 2583 return __blk_mq_issue_directly(hctx, rq, last); 2584 insert: 2585 if (bypass_insert) 2586 return BLK_STS_RESOURCE; 2587 2588 blk_mq_sched_insert_request(rq, false, run_queue, false); 2589 2590 return BLK_STS_OK; 2591 } 2592 2593 /** 2594 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2595 * @hctx: Pointer of the associated hardware queue. 2596 * @rq: Pointer to request to be sent. 2597 * 2598 * If the device has enough resources to accept a new request now, send the 2599 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2600 * we can try send it another time in the future. Requests inserted at this 2601 * queue have higher priority. 2602 */ 2603 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2604 struct request *rq) 2605 { 2606 blk_status_t ret = 2607 __blk_mq_try_issue_directly(hctx, rq, false, true); 2608 2609 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2610 blk_mq_request_bypass_insert(rq, false, true); 2611 else if (ret != BLK_STS_OK) 2612 blk_mq_end_request(rq, ret); 2613 } 2614 2615 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2616 { 2617 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2618 } 2619 2620 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2621 { 2622 struct blk_mq_hw_ctx *hctx = NULL; 2623 struct request *rq; 2624 int queued = 0; 2625 int errors = 0; 2626 2627 while ((rq = rq_list_pop(&plug->mq_list))) { 2628 bool last = rq_list_empty(plug->mq_list); 2629 blk_status_t ret; 2630 2631 if (hctx != rq->mq_hctx) { 2632 if (hctx) 2633 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2634 hctx = rq->mq_hctx; 2635 } 2636 2637 ret = blk_mq_request_issue_directly(rq, last); 2638 switch (ret) { 2639 case BLK_STS_OK: 2640 queued++; 2641 break; 2642 case BLK_STS_RESOURCE: 2643 case BLK_STS_DEV_RESOURCE: 2644 blk_mq_request_bypass_insert(rq, false, true); 2645 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2646 return; 2647 default: 2648 blk_mq_end_request(rq, ret); 2649 errors++; 2650 break; 2651 } 2652 } 2653 2654 /* 2655 * If we didn't flush the entire list, we could have told the driver 2656 * there was more coming, but that turned out to be a lie. 2657 */ 2658 if (errors) 2659 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2660 } 2661 2662 static void __blk_mq_flush_plug_list(struct request_queue *q, 2663 struct blk_plug *plug) 2664 { 2665 if (blk_queue_quiesced(q)) 2666 return; 2667 q->mq_ops->queue_rqs(&plug->mq_list); 2668 } 2669 2670 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2671 { 2672 struct blk_mq_hw_ctx *this_hctx = NULL; 2673 struct blk_mq_ctx *this_ctx = NULL; 2674 struct request *requeue_list = NULL; 2675 unsigned int depth = 0; 2676 LIST_HEAD(list); 2677 2678 do { 2679 struct request *rq = rq_list_pop(&plug->mq_list); 2680 2681 if (!this_hctx) { 2682 this_hctx = rq->mq_hctx; 2683 this_ctx = rq->mq_ctx; 2684 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2685 rq_list_add(&requeue_list, rq); 2686 continue; 2687 } 2688 list_add_tail(&rq->queuelist, &list); 2689 depth++; 2690 } while (!rq_list_empty(plug->mq_list)); 2691 2692 plug->mq_list = requeue_list; 2693 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2694 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2695 } 2696 2697 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2698 { 2699 struct request *rq; 2700 2701 if (rq_list_empty(plug->mq_list)) 2702 return; 2703 plug->rq_count = 0; 2704 2705 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2706 struct request_queue *q; 2707 2708 rq = rq_list_peek(&plug->mq_list); 2709 q = rq->q; 2710 2711 /* 2712 * Peek first request and see if we have a ->queue_rqs() hook. 2713 * If we do, we can dispatch the whole plug list in one go. We 2714 * already know at this point that all requests belong to the 2715 * same queue, caller must ensure that's the case. 2716 * 2717 * Since we pass off the full list to the driver at this point, 2718 * we do not increment the active request count for the queue. 2719 * Bypass shared tags for now because of that. 2720 */ 2721 if (q->mq_ops->queue_rqs && 2722 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2723 blk_mq_run_dispatch_ops(q, 2724 __blk_mq_flush_plug_list(q, plug)); 2725 if (rq_list_empty(plug->mq_list)) 2726 return; 2727 } 2728 2729 blk_mq_run_dispatch_ops(q, 2730 blk_mq_plug_issue_direct(plug, false)); 2731 if (rq_list_empty(plug->mq_list)) 2732 return; 2733 } 2734 2735 do { 2736 blk_mq_dispatch_plug_list(plug, from_schedule); 2737 } while (!rq_list_empty(plug->mq_list)); 2738 } 2739 2740 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2741 struct list_head *list) 2742 { 2743 int queued = 0; 2744 int errors = 0; 2745 2746 while (!list_empty(list)) { 2747 blk_status_t ret; 2748 struct request *rq = list_first_entry(list, struct request, 2749 queuelist); 2750 2751 list_del_init(&rq->queuelist); 2752 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2753 if (ret != BLK_STS_OK) { 2754 errors++; 2755 if (ret == BLK_STS_RESOURCE || 2756 ret == BLK_STS_DEV_RESOURCE) { 2757 blk_mq_request_bypass_insert(rq, false, 2758 list_empty(list)); 2759 break; 2760 } 2761 blk_mq_end_request(rq, ret); 2762 } else 2763 queued++; 2764 } 2765 2766 /* 2767 * If we didn't flush the entire list, we could have told 2768 * the driver there was more coming, but that turned out to 2769 * be a lie. 2770 */ 2771 if ((!list_empty(list) || errors) && 2772 hctx->queue->mq_ops->commit_rqs && queued) 2773 hctx->queue->mq_ops->commit_rqs(hctx); 2774 } 2775 2776 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2777 struct bio *bio, unsigned int nr_segs) 2778 { 2779 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2780 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2781 return true; 2782 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2783 return true; 2784 } 2785 return false; 2786 } 2787 2788 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2789 struct blk_plug *plug, 2790 struct bio *bio, 2791 unsigned int nsegs) 2792 { 2793 struct blk_mq_alloc_data data = { 2794 .q = q, 2795 .nr_tags = 1, 2796 .cmd_flags = bio->bi_opf, 2797 }; 2798 struct request *rq; 2799 2800 if (unlikely(bio_queue_enter(bio))) 2801 return NULL; 2802 2803 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2804 goto queue_exit; 2805 2806 rq_qos_throttle(q, bio); 2807 2808 if (plug) { 2809 data.nr_tags = plug->nr_ios; 2810 plug->nr_ios = 1; 2811 data.cached_rq = &plug->cached_rq; 2812 } 2813 2814 rq = __blk_mq_alloc_requests(&data); 2815 if (rq) 2816 return rq; 2817 rq_qos_cleanup(q, bio); 2818 if (bio->bi_opf & REQ_NOWAIT) 2819 bio_wouldblock_error(bio); 2820 queue_exit: 2821 blk_queue_exit(q); 2822 return NULL; 2823 } 2824 2825 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2826 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2827 { 2828 struct request *rq; 2829 2830 if (!plug) 2831 return NULL; 2832 rq = rq_list_peek(&plug->cached_rq); 2833 if (!rq || rq->q != q) 2834 return NULL; 2835 2836 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2837 *bio = NULL; 2838 return NULL; 2839 } 2840 2841 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) 2842 return NULL; 2843 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2844 return NULL; 2845 2846 /* 2847 * If any qos ->throttle() end up blocking, we will have flushed the 2848 * plug and hence killed the cached_rq list as well. Pop this entry 2849 * before we throttle. 2850 */ 2851 plug->cached_rq = rq_list_next(rq); 2852 rq_qos_throttle(q, *bio); 2853 2854 rq->cmd_flags = (*bio)->bi_opf; 2855 INIT_LIST_HEAD(&rq->queuelist); 2856 return rq; 2857 } 2858 2859 static void bio_set_ioprio(struct bio *bio) 2860 { 2861 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2862 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2863 bio->bi_ioprio = get_current_ioprio(); 2864 blkcg_set_ioprio(bio); 2865 } 2866 2867 /** 2868 * blk_mq_submit_bio - Create and send a request to block device. 2869 * @bio: Bio pointer. 2870 * 2871 * Builds up a request structure from @q and @bio and send to the device. The 2872 * request may not be queued directly to hardware if: 2873 * * This request can be merged with another one 2874 * * We want to place request at plug queue for possible future merging 2875 * * There is an IO scheduler active at this queue 2876 * 2877 * It will not queue the request if there is an error with the bio, or at the 2878 * request creation. 2879 */ 2880 void blk_mq_submit_bio(struct bio *bio) 2881 { 2882 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2883 struct blk_plug *plug = blk_mq_plug(bio); 2884 const int is_sync = op_is_sync(bio->bi_opf); 2885 struct request *rq; 2886 unsigned int nr_segs = 1; 2887 blk_status_t ret; 2888 2889 bio = blk_queue_bounce(bio, q); 2890 if (bio_may_exceed_limits(bio, &q->limits)) 2891 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2892 2893 if (!bio_integrity_prep(bio)) 2894 return; 2895 2896 bio_set_ioprio(bio); 2897 2898 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2899 if (!rq) { 2900 if (!bio) 2901 return; 2902 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2903 if (unlikely(!rq)) 2904 return; 2905 } 2906 2907 trace_block_getrq(bio); 2908 2909 rq_qos_track(q, rq, bio); 2910 2911 blk_mq_bio_to_request(rq, bio, nr_segs); 2912 2913 ret = blk_crypto_init_request(rq); 2914 if (ret != BLK_STS_OK) { 2915 bio->bi_status = ret; 2916 bio_endio(bio); 2917 blk_mq_free_request(rq); 2918 return; 2919 } 2920 2921 if (op_is_flush(bio->bi_opf)) { 2922 blk_insert_flush(rq); 2923 return; 2924 } 2925 2926 if (plug) 2927 blk_add_rq_to_plug(plug, rq); 2928 else if ((rq->rq_flags & RQF_ELV) || 2929 (rq->mq_hctx->dispatch_busy && 2930 (q->nr_hw_queues == 1 || !is_sync))) 2931 blk_mq_sched_insert_request(rq, false, true, true); 2932 else 2933 blk_mq_run_dispatch_ops(rq->q, 2934 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2935 } 2936 2937 #ifdef CONFIG_BLK_MQ_STACKING 2938 /** 2939 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2940 * @rq: the request being queued 2941 */ 2942 blk_status_t blk_insert_cloned_request(struct request *rq) 2943 { 2944 struct request_queue *q = rq->q; 2945 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 2946 blk_status_t ret; 2947 2948 if (blk_rq_sectors(rq) > max_sectors) { 2949 /* 2950 * SCSI device does not have a good way to return if 2951 * Write Same/Zero is actually supported. If a device rejects 2952 * a non-read/write command (discard, write same,etc.) the 2953 * low-level device driver will set the relevant queue limit to 2954 * 0 to prevent blk-lib from issuing more of the offending 2955 * operations. Commands queued prior to the queue limit being 2956 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 2957 * errors being propagated to upper layers. 2958 */ 2959 if (max_sectors == 0) 2960 return BLK_STS_NOTSUPP; 2961 2962 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 2963 __func__, blk_rq_sectors(rq), max_sectors); 2964 return BLK_STS_IOERR; 2965 } 2966 2967 /* 2968 * The queue settings related to segment counting may differ from the 2969 * original queue. 2970 */ 2971 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 2972 if (rq->nr_phys_segments > queue_max_segments(q)) { 2973 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 2974 __func__, rq->nr_phys_segments, queue_max_segments(q)); 2975 return BLK_STS_IOERR; 2976 } 2977 2978 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 2979 return BLK_STS_IOERR; 2980 2981 if (blk_crypto_insert_cloned_request(rq)) 2982 return BLK_STS_IOERR; 2983 2984 blk_account_io_start(rq); 2985 2986 /* 2987 * Since we have a scheduler attached on the top device, 2988 * bypass a potential scheduler on the bottom device for 2989 * insert. 2990 */ 2991 blk_mq_run_dispatch_ops(q, 2992 ret = blk_mq_request_issue_directly(rq, true)); 2993 if (ret) 2994 blk_account_io_done(rq, ktime_get_ns()); 2995 return ret; 2996 } 2997 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2998 2999 /** 3000 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3001 * @rq: the clone request to be cleaned up 3002 * 3003 * Description: 3004 * Free all bios in @rq for a cloned request. 3005 */ 3006 void blk_rq_unprep_clone(struct request *rq) 3007 { 3008 struct bio *bio; 3009 3010 while ((bio = rq->bio) != NULL) { 3011 rq->bio = bio->bi_next; 3012 3013 bio_put(bio); 3014 } 3015 } 3016 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3017 3018 /** 3019 * blk_rq_prep_clone - Helper function to setup clone request 3020 * @rq: the request to be setup 3021 * @rq_src: original request to be cloned 3022 * @bs: bio_set that bios for clone are allocated from 3023 * @gfp_mask: memory allocation mask for bio 3024 * @bio_ctr: setup function to be called for each clone bio. 3025 * Returns %0 for success, non %0 for failure. 3026 * @data: private data to be passed to @bio_ctr 3027 * 3028 * Description: 3029 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3030 * Also, pages which the original bios are pointing to are not copied 3031 * and the cloned bios just point same pages. 3032 * So cloned bios must be completed before original bios, which means 3033 * the caller must complete @rq before @rq_src. 3034 */ 3035 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3036 struct bio_set *bs, gfp_t gfp_mask, 3037 int (*bio_ctr)(struct bio *, struct bio *, void *), 3038 void *data) 3039 { 3040 struct bio *bio, *bio_src; 3041 3042 if (!bs) 3043 bs = &fs_bio_set; 3044 3045 __rq_for_each_bio(bio_src, rq_src) { 3046 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3047 bs); 3048 if (!bio) 3049 goto free_and_out; 3050 3051 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3052 goto free_and_out; 3053 3054 if (rq->bio) { 3055 rq->biotail->bi_next = bio; 3056 rq->biotail = bio; 3057 } else { 3058 rq->bio = rq->biotail = bio; 3059 } 3060 bio = NULL; 3061 } 3062 3063 /* Copy attributes of the original request to the clone request. */ 3064 rq->__sector = blk_rq_pos(rq_src); 3065 rq->__data_len = blk_rq_bytes(rq_src); 3066 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3067 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3068 rq->special_vec = rq_src->special_vec; 3069 } 3070 rq->nr_phys_segments = rq_src->nr_phys_segments; 3071 rq->ioprio = rq_src->ioprio; 3072 3073 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3074 goto free_and_out; 3075 3076 return 0; 3077 3078 free_and_out: 3079 if (bio) 3080 bio_put(bio); 3081 blk_rq_unprep_clone(rq); 3082 3083 return -ENOMEM; 3084 } 3085 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3086 #endif /* CONFIG_BLK_MQ_STACKING */ 3087 3088 /* 3089 * Steal bios from a request and add them to a bio list. 3090 * The request must not have been partially completed before. 3091 */ 3092 void blk_steal_bios(struct bio_list *list, struct request *rq) 3093 { 3094 if (rq->bio) { 3095 if (list->tail) 3096 list->tail->bi_next = rq->bio; 3097 else 3098 list->head = rq->bio; 3099 list->tail = rq->biotail; 3100 3101 rq->bio = NULL; 3102 rq->biotail = NULL; 3103 } 3104 3105 rq->__data_len = 0; 3106 } 3107 EXPORT_SYMBOL_GPL(blk_steal_bios); 3108 3109 static size_t order_to_size(unsigned int order) 3110 { 3111 return (size_t)PAGE_SIZE << order; 3112 } 3113 3114 /* called before freeing request pool in @tags */ 3115 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3116 struct blk_mq_tags *tags) 3117 { 3118 struct page *page; 3119 unsigned long flags; 3120 3121 /* 3122 * There is no need to clear mapping if driver tags is not initialized 3123 * or the mapping belongs to the driver tags. 3124 */ 3125 if (!drv_tags || drv_tags == tags) 3126 return; 3127 3128 list_for_each_entry(page, &tags->page_list, lru) { 3129 unsigned long start = (unsigned long)page_address(page); 3130 unsigned long end = start + order_to_size(page->private); 3131 int i; 3132 3133 for (i = 0; i < drv_tags->nr_tags; i++) { 3134 struct request *rq = drv_tags->rqs[i]; 3135 unsigned long rq_addr = (unsigned long)rq; 3136 3137 if (rq_addr >= start && rq_addr < end) { 3138 WARN_ON_ONCE(req_ref_read(rq) != 0); 3139 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3140 } 3141 } 3142 } 3143 3144 /* 3145 * Wait until all pending iteration is done. 3146 * 3147 * Request reference is cleared and it is guaranteed to be observed 3148 * after the ->lock is released. 3149 */ 3150 spin_lock_irqsave(&drv_tags->lock, flags); 3151 spin_unlock_irqrestore(&drv_tags->lock, flags); 3152 } 3153 3154 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3155 unsigned int hctx_idx) 3156 { 3157 struct blk_mq_tags *drv_tags; 3158 struct page *page; 3159 3160 if (list_empty(&tags->page_list)) 3161 return; 3162 3163 if (blk_mq_is_shared_tags(set->flags)) 3164 drv_tags = set->shared_tags; 3165 else 3166 drv_tags = set->tags[hctx_idx]; 3167 3168 if (tags->static_rqs && set->ops->exit_request) { 3169 int i; 3170 3171 for (i = 0; i < tags->nr_tags; i++) { 3172 struct request *rq = tags->static_rqs[i]; 3173 3174 if (!rq) 3175 continue; 3176 set->ops->exit_request(set, rq, hctx_idx); 3177 tags->static_rqs[i] = NULL; 3178 } 3179 } 3180 3181 blk_mq_clear_rq_mapping(drv_tags, tags); 3182 3183 while (!list_empty(&tags->page_list)) { 3184 page = list_first_entry(&tags->page_list, struct page, lru); 3185 list_del_init(&page->lru); 3186 /* 3187 * Remove kmemleak object previously allocated in 3188 * blk_mq_alloc_rqs(). 3189 */ 3190 kmemleak_free(page_address(page)); 3191 __free_pages(page, page->private); 3192 } 3193 } 3194 3195 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3196 { 3197 kfree(tags->rqs); 3198 tags->rqs = NULL; 3199 kfree(tags->static_rqs); 3200 tags->static_rqs = NULL; 3201 3202 blk_mq_free_tags(tags); 3203 } 3204 3205 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3206 unsigned int hctx_idx) 3207 { 3208 int i; 3209 3210 for (i = 0; i < set->nr_maps; i++) { 3211 unsigned int start = set->map[i].queue_offset; 3212 unsigned int end = start + set->map[i].nr_queues; 3213 3214 if (hctx_idx >= start && hctx_idx < end) 3215 break; 3216 } 3217 3218 if (i >= set->nr_maps) 3219 i = HCTX_TYPE_DEFAULT; 3220 3221 return i; 3222 } 3223 3224 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3225 unsigned int hctx_idx) 3226 { 3227 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3228 3229 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3230 } 3231 3232 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3233 unsigned int hctx_idx, 3234 unsigned int nr_tags, 3235 unsigned int reserved_tags) 3236 { 3237 int node = blk_mq_get_hctx_node(set, hctx_idx); 3238 struct blk_mq_tags *tags; 3239 3240 if (node == NUMA_NO_NODE) 3241 node = set->numa_node; 3242 3243 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3244 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3245 if (!tags) 3246 return NULL; 3247 3248 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3249 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3250 node); 3251 if (!tags->rqs) { 3252 blk_mq_free_tags(tags); 3253 return NULL; 3254 } 3255 3256 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3257 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3258 node); 3259 if (!tags->static_rqs) { 3260 kfree(tags->rqs); 3261 blk_mq_free_tags(tags); 3262 return NULL; 3263 } 3264 3265 return tags; 3266 } 3267 3268 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3269 unsigned int hctx_idx, int node) 3270 { 3271 int ret; 3272 3273 if (set->ops->init_request) { 3274 ret = set->ops->init_request(set, rq, hctx_idx, node); 3275 if (ret) 3276 return ret; 3277 } 3278 3279 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3280 return 0; 3281 } 3282 3283 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3284 struct blk_mq_tags *tags, 3285 unsigned int hctx_idx, unsigned int depth) 3286 { 3287 unsigned int i, j, entries_per_page, max_order = 4; 3288 int node = blk_mq_get_hctx_node(set, hctx_idx); 3289 size_t rq_size, left; 3290 3291 if (node == NUMA_NO_NODE) 3292 node = set->numa_node; 3293 3294 INIT_LIST_HEAD(&tags->page_list); 3295 3296 /* 3297 * rq_size is the size of the request plus driver payload, rounded 3298 * to the cacheline size 3299 */ 3300 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3301 cache_line_size()); 3302 left = rq_size * depth; 3303 3304 for (i = 0; i < depth; ) { 3305 int this_order = max_order; 3306 struct page *page; 3307 int to_do; 3308 void *p; 3309 3310 while (this_order && left < order_to_size(this_order - 1)) 3311 this_order--; 3312 3313 do { 3314 page = alloc_pages_node(node, 3315 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3316 this_order); 3317 if (page) 3318 break; 3319 if (!this_order--) 3320 break; 3321 if (order_to_size(this_order) < rq_size) 3322 break; 3323 } while (1); 3324 3325 if (!page) 3326 goto fail; 3327 3328 page->private = this_order; 3329 list_add_tail(&page->lru, &tags->page_list); 3330 3331 p = page_address(page); 3332 /* 3333 * Allow kmemleak to scan these pages as they contain pointers 3334 * to additional allocations like via ops->init_request(). 3335 */ 3336 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3337 entries_per_page = order_to_size(this_order) / rq_size; 3338 to_do = min(entries_per_page, depth - i); 3339 left -= to_do * rq_size; 3340 for (j = 0; j < to_do; j++) { 3341 struct request *rq = p; 3342 3343 tags->static_rqs[i] = rq; 3344 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3345 tags->static_rqs[i] = NULL; 3346 goto fail; 3347 } 3348 3349 p += rq_size; 3350 i++; 3351 } 3352 } 3353 return 0; 3354 3355 fail: 3356 blk_mq_free_rqs(set, tags, hctx_idx); 3357 return -ENOMEM; 3358 } 3359 3360 struct rq_iter_data { 3361 struct blk_mq_hw_ctx *hctx; 3362 bool has_rq; 3363 }; 3364 3365 static bool blk_mq_has_request(struct request *rq, void *data) 3366 { 3367 struct rq_iter_data *iter_data = data; 3368 3369 if (rq->mq_hctx != iter_data->hctx) 3370 return true; 3371 iter_data->has_rq = true; 3372 return false; 3373 } 3374 3375 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3376 { 3377 struct blk_mq_tags *tags = hctx->sched_tags ? 3378 hctx->sched_tags : hctx->tags; 3379 struct rq_iter_data data = { 3380 .hctx = hctx, 3381 }; 3382 3383 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3384 return data.has_rq; 3385 } 3386 3387 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3388 struct blk_mq_hw_ctx *hctx) 3389 { 3390 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3391 return false; 3392 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3393 return false; 3394 return true; 3395 } 3396 3397 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3398 { 3399 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3400 struct blk_mq_hw_ctx, cpuhp_online); 3401 3402 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3403 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3404 return 0; 3405 3406 /* 3407 * Prevent new request from being allocated on the current hctx. 3408 * 3409 * The smp_mb__after_atomic() Pairs with the implied barrier in 3410 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3411 * seen once we return from the tag allocator. 3412 */ 3413 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3414 smp_mb__after_atomic(); 3415 3416 /* 3417 * Try to grab a reference to the queue and wait for any outstanding 3418 * requests. If we could not grab a reference the queue has been 3419 * frozen and there are no requests. 3420 */ 3421 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3422 while (blk_mq_hctx_has_requests(hctx)) 3423 msleep(5); 3424 percpu_ref_put(&hctx->queue->q_usage_counter); 3425 } 3426 3427 return 0; 3428 } 3429 3430 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3431 { 3432 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3433 struct blk_mq_hw_ctx, cpuhp_online); 3434 3435 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3436 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3437 return 0; 3438 } 3439 3440 /* 3441 * 'cpu' is going away. splice any existing rq_list entries from this 3442 * software queue to the hw queue dispatch list, and ensure that it 3443 * gets run. 3444 */ 3445 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3446 { 3447 struct blk_mq_hw_ctx *hctx; 3448 struct blk_mq_ctx *ctx; 3449 LIST_HEAD(tmp); 3450 enum hctx_type type; 3451 3452 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3453 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3454 return 0; 3455 3456 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3457 type = hctx->type; 3458 3459 spin_lock(&ctx->lock); 3460 if (!list_empty(&ctx->rq_lists[type])) { 3461 list_splice_init(&ctx->rq_lists[type], &tmp); 3462 blk_mq_hctx_clear_pending(hctx, ctx); 3463 } 3464 spin_unlock(&ctx->lock); 3465 3466 if (list_empty(&tmp)) 3467 return 0; 3468 3469 spin_lock(&hctx->lock); 3470 list_splice_tail_init(&tmp, &hctx->dispatch); 3471 spin_unlock(&hctx->lock); 3472 3473 blk_mq_run_hw_queue(hctx, true); 3474 return 0; 3475 } 3476 3477 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3478 { 3479 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3480 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3481 &hctx->cpuhp_online); 3482 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3483 &hctx->cpuhp_dead); 3484 } 3485 3486 /* 3487 * Before freeing hw queue, clearing the flush request reference in 3488 * tags->rqs[] for avoiding potential UAF. 3489 */ 3490 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3491 unsigned int queue_depth, struct request *flush_rq) 3492 { 3493 int i; 3494 unsigned long flags; 3495 3496 /* The hw queue may not be mapped yet */ 3497 if (!tags) 3498 return; 3499 3500 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3501 3502 for (i = 0; i < queue_depth; i++) 3503 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3504 3505 /* 3506 * Wait until all pending iteration is done. 3507 * 3508 * Request reference is cleared and it is guaranteed to be observed 3509 * after the ->lock is released. 3510 */ 3511 spin_lock_irqsave(&tags->lock, flags); 3512 spin_unlock_irqrestore(&tags->lock, flags); 3513 } 3514 3515 /* hctx->ctxs will be freed in queue's release handler */ 3516 static void blk_mq_exit_hctx(struct request_queue *q, 3517 struct blk_mq_tag_set *set, 3518 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3519 { 3520 struct request *flush_rq = hctx->fq->flush_rq; 3521 3522 if (blk_mq_hw_queue_mapped(hctx)) 3523 blk_mq_tag_idle(hctx); 3524 3525 if (blk_queue_init_done(q)) 3526 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3527 set->queue_depth, flush_rq); 3528 if (set->ops->exit_request) 3529 set->ops->exit_request(set, flush_rq, hctx_idx); 3530 3531 if (set->ops->exit_hctx) 3532 set->ops->exit_hctx(hctx, hctx_idx); 3533 3534 blk_mq_remove_cpuhp(hctx); 3535 3536 xa_erase(&q->hctx_table, hctx_idx); 3537 3538 spin_lock(&q->unused_hctx_lock); 3539 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3540 spin_unlock(&q->unused_hctx_lock); 3541 } 3542 3543 static void blk_mq_exit_hw_queues(struct request_queue *q, 3544 struct blk_mq_tag_set *set, int nr_queue) 3545 { 3546 struct blk_mq_hw_ctx *hctx; 3547 unsigned long i; 3548 3549 queue_for_each_hw_ctx(q, hctx, i) { 3550 if (i == nr_queue) 3551 break; 3552 blk_mq_exit_hctx(q, set, hctx, i); 3553 } 3554 } 3555 3556 static int blk_mq_init_hctx(struct request_queue *q, 3557 struct blk_mq_tag_set *set, 3558 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3559 { 3560 hctx->queue_num = hctx_idx; 3561 3562 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3563 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3564 &hctx->cpuhp_online); 3565 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3566 3567 hctx->tags = set->tags[hctx_idx]; 3568 3569 if (set->ops->init_hctx && 3570 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3571 goto unregister_cpu_notifier; 3572 3573 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3574 hctx->numa_node)) 3575 goto exit_hctx; 3576 3577 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3578 goto exit_flush_rq; 3579 3580 return 0; 3581 3582 exit_flush_rq: 3583 if (set->ops->exit_request) 3584 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3585 exit_hctx: 3586 if (set->ops->exit_hctx) 3587 set->ops->exit_hctx(hctx, hctx_idx); 3588 unregister_cpu_notifier: 3589 blk_mq_remove_cpuhp(hctx); 3590 return -1; 3591 } 3592 3593 static struct blk_mq_hw_ctx * 3594 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3595 int node) 3596 { 3597 struct blk_mq_hw_ctx *hctx; 3598 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3599 3600 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3601 if (!hctx) 3602 goto fail_alloc_hctx; 3603 3604 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3605 goto free_hctx; 3606 3607 atomic_set(&hctx->nr_active, 0); 3608 if (node == NUMA_NO_NODE) 3609 node = set->numa_node; 3610 hctx->numa_node = node; 3611 3612 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3613 spin_lock_init(&hctx->lock); 3614 INIT_LIST_HEAD(&hctx->dispatch); 3615 hctx->queue = q; 3616 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3617 3618 INIT_LIST_HEAD(&hctx->hctx_list); 3619 3620 /* 3621 * Allocate space for all possible cpus to avoid allocation at 3622 * runtime 3623 */ 3624 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3625 gfp, node); 3626 if (!hctx->ctxs) 3627 goto free_cpumask; 3628 3629 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3630 gfp, node, false, false)) 3631 goto free_ctxs; 3632 hctx->nr_ctx = 0; 3633 3634 spin_lock_init(&hctx->dispatch_wait_lock); 3635 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3636 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3637 3638 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3639 if (!hctx->fq) 3640 goto free_bitmap; 3641 3642 blk_mq_hctx_kobj_init(hctx); 3643 3644 return hctx; 3645 3646 free_bitmap: 3647 sbitmap_free(&hctx->ctx_map); 3648 free_ctxs: 3649 kfree(hctx->ctxs); 3650 free_cpumask: 3651 free_cpumask_var(hctx->cpumask); 3652 free_hctx: 3653 kfree(hctx); 3654 fail_alloc_hctx: 3655 return NULL; 3656 } 3657 3658 static void blk_mq_init_cpu_queues(struct request_queue *q, 3659 unsigned int nr_hw_queues) 3660 { 3661 struct blk_mq_tag_set *set = q->tag_set; 3662 unsigned int i, j; 3663 3664 for_each_possible_cpu(i) { 3665 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3666 struct blk_mq_hw_ctx *hctx; 3667 int k; 3668 3669 __ctx->cpu = i; 3670 spin_lock_init(&__ctx->lock); 3671 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3672 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3673 3674 __ctx->queue = q; 3675 3676 /* 3677 * Set local node, IFF we have more than one hw queue. If 3678 * not, we remain on the home node of the device 3679 */ 3680 for (j = 0; j < set->nr_maps; j++) { 3681 hctx = blk_mq_map_queue_type(q, j, i); 3682 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3683 hctx->numa_node = cpu_to_node(i); 3684 } 3685 } 3686 } 3687 3688 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3689 unsigned int hctx_idx, 3690 unsigned int depth) 3691 { 3692 struct blk_mq_tags *tags; 3693 int ret; 3694 3695 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3696 if (!tags) 3697 return NULL; 3698 3699 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3700 if (ret) { 3701 blk_mq_free_rq_map(tags); 3702 return NULL; 3703 } 3704 3705 return tags; 3706 } 3707 3708 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3709 int hctx_idx) 3710 { 3711 if (blk_mq_is_shared_tags(set->flags)) { 3712 set->tags[hctx_idx] = set->shared_tags; 3713 3714 return true; 3715 } 3716 3717 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3718 set->queue_depth); 3719 3720 return set->tags[hctx_idx]; 3721 } 3722 3723 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3724 struct blk_mq_tags *tags, 3725 unsigned int hctx_idx) 3726 { 3727 if (tags) { 3728 blk_mq_free_rqs(set, tags, hctx_idx); 3729 blk_mq_free_rq_map(tags); 3730 } 3731 } 3732 3733 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3734 unsigned int hctx_idx) 3735 { 3736 if (!blk_mq_is_shared_tags(set->flags)) 3737 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3738 3739 set->tags[hctx_idx] = NULL; 3740 } 3741 3742 static void blk_mq_map_swqueue(struct request_queue *q) 3743 { 3744 unsigned int j, hctx_idx; 3745 unsigned long i; 3746 struct blk_mq_hw_ctx *hctx; 3747 struct blk_mq_ctx *ctx; 3748 struct blk_mq_tag_set *set = q->tag_set; 3749 3750 queue_for_each_hw_ctx(q, hctx, i) { 3751 cpumask_clear(hctx->cpumask); 3752 hctx->nr_ctx = 0; 3753 hctx->dispatch_from = NULL; 3754 } 3755 3756 /* 3757 * Map software to hardware queues. 3758 * 3759 * If the cpu isn't present, the cpu is mapped to first hctx. 3760 */ 3761 for_each_possible_cpu(i) { 3762 3763 ctx = per_cpu_ptr(q->queue_ctx, i); 3764 for (j = 0; j < set->nr_maps; j++) { 3765 if (!set->map[j].nr_queues) { 3766 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3767 HCTX_TYPE_DEFAULT, i); 3768 continue; 3769 } 3770 hctx_idx = set->map[j].mq_map[i]; 3771 /* unmapped hw queue can be remapped after CPU topo changed */ 3772 if (!set->tags[hctx_idx] && 3773 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3774 /* 3775 * If tags initialization fail for some hctx, 3776 * that hctx won't be brought online. In this 3777 * case, remap the current ctx to hctx[0] which 3778 * is guaranteed to always have tags allocated 3779 */ 3780 set->map[j].mq_map[i] = 0; 3781 } 3782 3783 hctx = blk_mq_map_queue_type(q, j, i); 3784 ctx->hctxs[j] = hctx; 3785 /* 3786 * If the CPU is already set in the mask, then we've 3787 * mapped this one already. This can happen if 3788 * devices share queues across queue maps. 3789 */ 3790 if (cpumask_test_cpu(i, hctx->cpumask)) 3791 continue; 3792 3793 cpumask_set_cpu(i, hctx->cpumask); 3794 hctx->type = j; 3795 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3796 hctx->ctxs[hctx->nr_ctx++] = ctx; 3797 3798 /* 3799 * If the nr_ctx type overflows, we have exceeded the 3800 * amount of sw queues we can support. 3801 */ 3802 BUG_ON(!hctx->nr_ctx); 3803 } 3804 3805 for (; j < HCTX_MAX_TYPES; j++) 3806 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3807 HCTX_TYPE_DEFAULT, i); 3808 } 3809 3810 queue_for_each_hw_ctx(q, hctx, i) { 3811 /* 3812 * If no software queues are mapped to this hardware queue, 3813 * disable it and free the request entries. 3814 */ 3815 if (!hctx->nr_ctx) { 3816 /* Never unmap queue 0. We need it as a 3817 * fallback in case of a new remap fails 3818 * allocation 3819 */ 3820 if (i) 3821 __blk_mq_free_map_and_rqs(set, i); 3822 3823 hctx->tags = NULL; 3824 continue; 3825 } 3826 3827 hctx->tags = set->tags[i]; 3828 WARN_ON(!hctx->tags); 3829 3830 /* 3831 * Set the map size to the number of mapped software queues. 3832 * This is more accurate and more efficient than looping 3833 * over all possibly mapped software queues. 3834 */ 3835 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3836 3837 /* 3838 * Initialize batch roundrobin counts 3839 */ 3840 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3841 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3842 } 3843 } 3844 3845 /* 3846 * Caller needs to ensure that we're either frozen/quiesced, or that 3847 * the queue isn't live yet. 3848 */ 3849 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3850 { 3851 struct blk_mq_hw_ctx *hctx; 3852 unsigned long i; 3853 3854 queue_for_each_hw_ctx(q, hctx, i) { 3855 if (shared) { 3856 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3857 } else { 3858 blk_mq_tag_idle(hctx); 3859 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3860 } 3861 } 3862 } 3863 3864 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3865 bool shared) 3866 { 3867 struct request_queue *q; 3868 3869 lockdep_assert_held(&set->tag_list_lock); 3870 3871 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3872 blk_mq_freeze_queue(q); 3873 queue_set_hctx_shared(q, shared); 3874 blk_mq_unfreeze_queue(q); 3875 } 3876 } 3877 3878 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3879 { 3880 struct blk_mq_tag_set *set = q->tag_set; 3881 3882 mutex_lock(&set->tag_list_lock); 3883 list_del(&q->tag_set_list); 3884 if (list_is_singular(&set->tag_list)) { 3885 /* just transitioned to unshared */ 3886 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3887 /* update existing queue */ 3888 blk_mq_update_tag_set_shared(set, false); 3889 } 3890 mutex_unlock(&set->tag_list_lock); 3891 INIT_LIST_HEAD(&q->tag_set_list); 3892 } 3893 3894 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3895 struct request_queue *q) 3896 { 3897 mutex_lock(&set->tag_list_lock); 3898 3899 /* 3900 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3901 */ 3902 if (!list_empty(&set->tag_list) && 3903 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3904 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3905 /* update existing queue */ 3906 blk_mq_update_tag_set_shared(set, true); 3907 } 3908 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3909 queue_set_hctx_shared(q, true); 3910 list_add_tail(&q->tag_set_list, &set->tag_list); 3911 3912 mutex_unlock(&set->tag_list_lock); 3913 } 3914 3915 /* All allocations will be freed in release handler of q->mq_kobj */ 3916 static int blk_mq_alloc_ctxs(struct request_queue *q) 3917 { 3918 struct blk_mq_ctxs *ctxs; 3919 int cpu; 3920 3921 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3922 if (!ctxs) 3923 return -ENOMEM; 3924 3925 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3926 if (!ctxs->queue_ctx) 3927 goto fail; 3928 3929 for_each_possible_cpu(cpu) { 3930 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3931 ctx->ctxs = ctxs; 3932 } 3933 3934 q->mq_kobj = &ctxs->kobj; 3935 q->queue_ctx = ctxs->queue_ctx; 3936 3937 return 0; 3938 fail: 3939 kfree(ctxs); 3940 return -ENOMEM; 3941 } 3942 3943 /* 3944 * It is the actual release handler for mq, but we do it from 3945 * request queue's release handler for avoiding use-after-free 3946 * and headache because q->mq_kobj shouldn't have been introduced, 3947 * but we can't group ctx/kctx kobj without it. 3948 */ 3949 void blk_mq_release(struct request_queue *q) 3950 { 3951 struct blk_mq_hw_ctx *hctx, *next; 3952 unsigned long i; 3953 3954 queue_for_each_hw_ctx(q, hctx, i) 3955 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3956 3957 /* all hctx are in .unused_hctx_list now */ 3958 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3959 list_del_init(&hctx->hctx_list); 3960 kobject_put(&hctx->kobj); 3961 } 3962 3963 xa_destroy(&q->hctx_table); 3964 3965 /* 3966 * release .mq_kobj and sw queue's kobject now because 3967 * both share lifetime with request queue. 3968 */ 3969 blk_mq_sysfs_deinit(q); 3970 } 3971 3972 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3973 void *queuedata) 3974 { 3975 struct request_queue *q; 3976 int ret; 3977 3978 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); 3979 if (!q) 3980 return ERR_PTR(-ENOMEM); 3981 q->queuedata = queuedata; 3982 ret = blk_mq_init_allocated_queue(set, q); 3983 if (ret) { 3984 blk_put_queue(q); 3985 return ERR_PTR(ret); 3986 } 3987 return q; 3988 } 3989 3990 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3991 { 3992 return blk_mq_init_queue_data(set, NULL); 3993 } 3994 EXPORT_SYMBOL(blk_mq_init_queue); 3995 3996 /** 3997 * blk_mq_destroy_queue - shutdown a request queue 3998 * @q: request queue to shutdown 3999 * 4000 * This shuts down a request queue allocated by blk_mq_init_queue() and drops 4001 * the initial reference. All future requests will failed with -ENODEV. 4002 * 4003 * Context: can sleep 4004 */ 4005 void blk_mq_destroy_queue(struct request_queue *q) 4006 { 4007 WARN_ON_ONCE(!queue_is_mq(q)); 4008 WARN_ON_ONCE(blk_queue_registered(q)); 4009 4010 might_sleep(); 4011 4012 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4013 blk_queue_start_drain(q); 4014 blk_freeze_queue(q); 4015 4016 blk_sync_queue(q); 4017 blk_mq_cancel_work_sync(q); 4018 blk_mq_exit_queue(q); 4019 4020 /* @q is and will stay empty, shutdown and put */ 4021 blk_put_queue(q); 4022 } 4023 EXPORT_SYMBOL(blk_mq_destroy_queue); 4024 4025 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4026 struct lock_class_key *lkclass) 4027 { 4028 struct request_queue *q; 4029 struct gendisk *disk; 4030 4031 q = blk_mq_init_queue_data(set, queuedata); 4032 if (IS_ERR(q)) 4033 return ERR_CAST(q); 4034 4035 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4036 if (!disk) { 4037 blk_mq_destroy_queue(q); 4038 return ERR_PTR(-ENOMEM); 4039 } 4040 set_bit(GD_OWNS_QUEUE, &disk->state); 4041 return disk; 4042 } 4043 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4044 4045 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4046 struct lock_class_key *lkclass) 4047 { 4048 struct gendisk *disk; 4049 4050 if (!blk_get_queue(q)) 4051 return NULL; 4052 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4053 if (!disk) 4054 blk_put_queue(q); 4055 return disk; 4056 } 4057 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4058 4059 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4060 struct blk_mq_tag_set *set, struct request_queue *q, 4061 int hctx_idx, int node) 4062 { 4063 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4064 4065 /* reuse dead hctx first */ 4066 spin_lock(&q->unused_hctx_lock); 4067 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4068 if (tmp->numa_node == node) { 4069 hctx = tmp; 4070 break; 4071 } 4072 } 4073 if (hctx) 4074 list_del_init(&hctx->hctx_list); 4075 spin_unlock(&q->unused_hctx_lock); 4076 4077 if (!hctx) 4078 hctx = blk_mq_alloc_hctx(q, set, node); 4079 if (!hctx) 4080 goto fail; 4081 4082 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4083 goto free_hctx; 4084 4085 return hctx; 4086 4087 free_hctx: 4088 kobject_put(&hctx->kobj); 4089 fail: 4090 return NULL; 4091 } 4092 4093 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4094 struct request_queue *q) 4095 { 4096 struct blk_mq_hw_ctx *hctx; 4097 unsigned long i, j; 4098 4099 /* protect against switching io scheduler */ 4100 mutex_lock(&q->sysfs_lock); 4101 for (i = 0; i < set->nr_hw_queues; i++) { 4102 int old_node; 4103 int node = blk_mq_get_hctx_node(set, i); 4104 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4105 4106 if (old_hctx) { 4107 old_node = old_hctx->numa_node; 4108 blk_mq_exit_hctx(q, set, old_hctx, i); 4109 } 4110 4111 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4112 if (!old_hctx) 4113 break; 4114 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4115 node, old_node); 4116 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4117 WARN_ON_ONCE(!hctx); 4118 } 4119 } 4120 /* 4121 * Increasing nr_hw_queues fails. Free the newly allocated 4122 * hctxs and keep the previous q->nr_hw_queues. 4123 */ 4124 if (i != set->nr_hw_queues) { 4125 j = q->nr_hw_queues; 4126 } else { 4127 j = i; 4128 q->nr_hw_queues = set->nr_hw_queues; 4129 } 4130 4131 xa_for_each_start(&q->hctx_table, j, hctx, j) 4132 blk_mq_exit_hctx(q, set, hctx, j); 4133 mutex_unlock(&q->sysfs_lock); 4134 } 4135 4136 static void blk_mq_update_poll_flag(struct request_queue *q) 4137 { 4138 struct blk_mq_tag_set *set = q->tag_set; 4139 4140 if (set->nr_maps > HCTX_TYPE_POLL && 4141 set->map[HCTX_TYPE_POLL].nr_queues) 4142 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4143 else 4144 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4145 } 4146 4147 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4148 struct request_queue *q) 4149 { 4150 WARN_ON_ONCE(blk_queue_has_srcu(q) != 4151 !!(set->flags & BLK_MQ_F_BLOCKING)); 4152 4153 /* mark the queue as mq asap */ 4154 q->mq_ops = set->ops; 4155 4156 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4157 blk_mq_poll_stats_bkt, 4158 BLK_MQ_POLL_STATS_BKTS, q); 4159 if (!q->poll_cb) 4160 goto err_exit; 4161 4162 if (blk_mq_alloc_ctxs(q)) 4163 goto err_poll; 4164 4165 /* init q->mq_kobj and sw queues' kobjects */ 4166 blk_mq_sysfs_init(q); 4167 4168 INIT_LIST_HEAD(&q->unused_hctx_list); 4169 spin_lock_init(&q->unused_hctx_lock); 4170 4171 xa_init(&q->hctx_table); 4172 4173 blk_mq_realloc_hw_ctxs(set, q); 4174 if (!q->nr_hw_queues) 4175 goto err_hctxs; 4176 4177 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4178 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4179 4180 q->tag_set = set; 4181 4182 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4183 blk_mq_update_poll_flag(q); 4184 4185 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4186 INIT_LIST_HEAD(&q->requeue_list); 4187 spin_lock_init(&q->requeue_lock); 4188 4189 q->nr_requests = set->queue_depth; 4190 4191 /* 4192 * Default to classic polling 4193 */ 4194 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4195 4196 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4197 blk_mq_add_queue_tag_set(set, q); 4198 blk_mq_map_swqueue(q); 4199 return 0; 4200 4201 err_hctxs: 4202 blk_mq_release(q); 4203 err_poll: 4204 blk_stat_free_callback(q->poll_cb); 4205 q->poll_cb = NULL; 4206 err_exit: 4207 q->mq_ops = NULL; 4208 return -ENOMEM; 4209 } 4210 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4211 4212 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4213 void blk_mq_exit_queue(struct request_queue *q) 4214 { 4215 struct blk_mq_tag_set *set = q->tag_set; 4216 4217 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4218 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4219 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4220 blk_mq_del_queue_tag_set(q); 4221 } 4222 4223 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4224 { 4225 int i; 4226 4227 if (blk_mq_is_shared_tags(set->flags)) { 4228 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4229 BLK_MQ_NO_HCTX_IDX, 4230 set->queue_depth); 4231 if (!set->shared_tags) 4232 return -ENOMEM; 4233 } 4234 4235 for (i = 0; i < set->nr_hw_queues; i++) { 4236 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4237 goto out_unwind; 4238 cond_resched(); 4239 } 4240 4241 return 0; 4242 4243 out_unwind: 4244 while (--i >= 0) 4245 __blk_mq_free_map_and_rqs(set, i); 4246 4247 if (blk_mq_is_shared_tags(set->flags)) { 4248 blk_mq_free_map_and_rqs(set, set->shared_tags, 4249 BLK_MQ_NO_HCTX_IDX); 4250 } 4251 4252 return -ENOMEM; 4253 } 4254 4255 /* 4256 * Allocate the request maps associated with this tag_set. Note that this 4257 * may reduce the depth asked for, if memory is tight. set->queue_depth 4258 * will be updated to reflect the allocated depth. 4259 */ 4260 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4261 { 4262 unsigned int depth; 4263 int err; 4264 4265 depth = set->queue_depth; 4266 do { 4267 err = __blk_mq_alloc_rq_maps(set); 4268 if (!err) 4269 break; 4270 4271 set->queue_depth >>= 1; 4272 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4273 err = -ENOMEM; 4274 break; 4275 } 4276 } while (set->queue_depth); 4277 4278 if (!set->queue_depth || err) { 4279 pr_err("blk-mq: failed to allocate request map\n"); 4280 return -ENOMEM; 4281 } 4282 4283 if (depth != set->queue_depth) 4284 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4285 depth, set->queue_depth); 4286 4287 return 0; 4288 } 4289 4290 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4291 { 4292 /* 4293 * blk_mq_map_queues() and multiple .map_queues() implementations 4294 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4295 * number of hardware queues. 4296 */ 4297 if (set->nr_maps == 1) 4298 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4299 4300 if (set->ops->map_queues && !is_kdump_kernel()) { 4301 int i; 4302 4303 /* 4304 * transport .map_queues is usually done in the following 4305 * way: 4306 * 4307 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4308 * mask = get_cpu_mask(queue) 4309 * for_each_cpu(cpu, mask) 4310 * set->map[x].mq_map[cpu] = queue; 4311 * } 4312 * 4313 * When we need to remap, the table has to be cleared for 4314 * killing stale mapping since one CPU may not be mapped 4315 * to any hw queue. 4316 */ 4317 for (i = 0; i < set->nr_maps; i++) 4318 blk_mq_clear_mq_map(&set->map[i]); 4319 4320 set->ops->map_queues(set); 4321 } else { 4322 BUG_ON(set->nr_maps > 1); 4323 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4324 } 4325 } 4326 4327 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4328 int cur_nr_hw_queues, int new_nr_hw_queues) 4329 { 4330 struct blk_mq_tags **new_tags; 4331 4332 if (cur_nr_hw_queues >= new_nr_hw_queues) 4333 return 0; 4334 4335 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4336 GFP_KERNEL, set->numa_node); 4337 if (!new_tags) 4338 return -ENOMEM; 4339 4340 if (set->tags) 4341 memcpy(new_tags, set->tags, cur_nr_hw_queues * 4342 sizeof(*set->tags)); 4343 kfree(set->tags); 4344 set->tags = new_tags; 4345 set->nr_hw_queues = new_nr_hw_queues; 4346 4347 return 0; 4348 } 4349 4350 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 4351 int new_nr_hw_queues) 4352 { 4353 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 4354 } 4355 4356 /* 4357 * Alloc a tag set to be associated with one or more request queues. 4358 * May fail with EINVAL for various error conditions. May adjust the 4359 * requested depth down, if it's too large. In that case, the set 4360 * value will be stored in set->queue_depth. 4361 */ 4362 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4363 { 4364 int i, ret; 4365 4366 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4367 4368 if (!set->nr_hw_queues) 4369 return -EINVAL; 4370 if (!set->queue_depth) 4371 return -EINVAL; 4372 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4373 return -EINVAL; 4374 4375 if (!set->ops->queue_rq) 4376 return -EINVAL; 4377 4378 if (!set->ops->get_budget ^ !set->ops->put_budget) 4379 return -EINVAL; 4380 4381 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4382 pr_info("blk-mq: reduced tag depth to %u\n", 4383 BLK_MQ_MAX_DEPTH); 4384 set->queue_depth = BLK_MQ_MAX_DEPTH; 4385 } 4386 4387 if (!set->nr_maps) 4388 set->nr_maps = 1; 4389 else if (set->nr_maps > HCTX_MAX_TYPES) 4390 return -EINVAL; 4391 4392 /* 4393 * If a crashdump is active, then we are potentially in a very 4394 * memory constrained environment. Limit us to 1 queue and 4395 * 64 tags to prevent using too much memory. 4396 */ 4397 if (is_kdump_kernel()) { 4398 set->nr_hw_queues = 1; 4399 set->nr_maps = 1; 4400 set->queue_depth = min(64U, set->queue_depth); 4401 } 4402 /* 4403 * There is no use for more h/w queues than cpus if we just have 4404 * a single map 4405 */ 4406 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4407 set->nr_hw_queues = nr_cpu_ids; 4408 4409 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 4410 return -ENOMEM; 4411 4412 ret = -ENOMEM; 4413 for (i = 0; i < set->nr_maps; i++) { 4414 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4415 sizeof(set->map[i].mq_map[0]), 4416 GFP_KERNEL, set->numa_node); 4417 if (!set->map[i].mq_map) 4418 goto out_free_mq_map; 4419 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4420 } 4421 4422 blk_mq_update_queue_map(set); 4423 4424 ret = blk_mq_alloc_set_map_and_rqs(set); 4425 if (ret) 4426 goto out_free_mq_map; 4427 4428 mutex_init(&set->tag_list_lock); 4429 INIT_LIST_HEAD(&set->tag_list); 4430 4431 return 0; 4432 4433 out_free_mq_map: 4434 for (i = 0; i < set->nr_maps; i++) { 4435 kfree(set->map[i].mq_map); 4436 set->map[i].mq_map = NULL; 4437 } 4438 kfree(set->tags); 4439 set->tags = NULL; 4440 return ret; 4441 } 4442 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4443 4444 /* allocate and initialize a tagset for a simple single-queue device */ 4445 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4446 const struct blk_mq_ops *ops, unsigned int queue_depth, 4447 unsigned int set_flags) 4448 { 4449 memset(set, 0, sizeof(*set)); 4450 set->ops = ops; 4451 set->nr_hw_queues = 1; 4452 set->nr_maps = 1; 4453 set->queue_depth = queue_depth; 4454 set->numa_node = NUMA_NO_NODE; 4455 set->flags = set_flags; 4456 return blk_mq_alloc_tag_set(set); 4457 } 4458 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4459 4460 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4461 { 4462 int i, j; 4463 4464 for (i = 0; i < set->nr_hw_queues; i++) 4465 __blk_mq_free_map_and_rqs(set, i); 4466 4467 if (blk_mq_is_shared_tags(set->flags)) { 4468 blk_mq_free_map_and_rqs(set, set->shared_tags, 4469 BLK_MQ_NO_HCTX_IDX); 4470 } 4471 4472 for (j = 0; j < set->nr_maps; j++) { 4473 kfree(set->map[j].mq_map); 4474 set->map[j].mq_map = NULL; 4475 } 4476 4477 kfree(set->tags); 4478 set->tags = NULL; 4479 } 4480 EXPORT_SYMBOL(blk_mq_free_tag_set); 4481 4482 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4483 { 4484 struct blk_mq_tag_set *set = q->tag_set; 4485 struct blk_mq_hw_ctx *hctx; 4486 int ret; 4487 unsigned long i; 4488 4489 if (!set) 4490 return -EINVAL; 4491 4492 if (q->nr_requests == nr) 4493 return 0; 4494 4495 blk_mq_freeze_queue(q); 4496 blk_mq_quiesce_queue(q); 4497 4498 ret = 0; 4499 queue_for_each_hw_ctx(q, hctx, i) { 4500 if (!hctx->tags) 4501 continue; 4502 /* 4503 * If we're using an MQ scheduler, just update the scheduler 4504 * queue depth. This is similar to what the old code would do. 4505 */ 4506 if (hctx->sched_tags) { 4507 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4508 nr, true); 4509 } else { 4510 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4511 false); 4512 } 4513 if (ret) 4514 break; 4515 if (q->elevator && q->elevator->type->ops.depth_updated) 4516 q->elevator->type->ops.depth_updated(hctx); 4517 } 4518 if (!ret) { 4519 q->nr_requests = nr; 4520 if (blk_mq_is_shared_tags(set->flags)) { 4521 if (q->elevator) 4522 blk_mq_tag_update_sched_shared_tags(q); 4523 else 4524 blk_mq_tag_resize_shared_tags(set, nr); 4525 } 4526 } 4527 4528 blk_mq_unquiesce_queue(q); 4529 blk_mq_unfreeze_queue(q); 4530 4531 return ret; 4532 } 4533 4534 /* 4535 * request_queue and elevator_type pair. 4536 * It is just used by __blk_mq_update_nr_hw_queues to cache 4537 * the elevator_type associated with a request_queue. 4538 */ 4539 struct blk_mq_qe_pair { 4540 struct list_head node; 4541 struct request_queue *q; 4542 struct elevator_type *type; 4543 }; 4544 4545 /* 4546 * Cache the elevator_type in qe pair list and switch the 4547 * io scheduler to 'none' 4548 */ 4549 static bool blk_mq_elv_switch_none(struct list_head *head, 4550 struct request_queue *q) 4551 { 4552 struct blk_mq_qe_pair *qe; 4553 4554 if (!q->elevator) 4555 return true; 4556 4557 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4558 if (!qe) 4559 return false; 4560 4561 /* q->elevator needs protection from ->sysfs_lock */ 4562 mutex_lock(&q->sysfs_lock); 4563 4564 INIT_LIST_HEAD(&qe->node); 4565 qe->q = q; 4566 qe->type = q->elevator->type; 4567 list_add(&qe->node, head); 4568 4569 /* 4570 * After elevator_switch, the previous elevator_queue will be 4571 * released by elevator_release. The reference of the io scheduler 4572 * module get by elevator_get will also be put. So we need to get 4573 * a reference of the io scheduler module here to prevent it to be 4574 * removed. 4575 */ 4576 __module_get(qe->type->elevator_owner); 4577 elevator_switch(q, NULL); 4578 mutex_unlock(&q->sysfs_lock); 4579 4580 return true; 4581 } 4582 4583 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4584 struct request_queue *q) 4585 { 4586 struct blk_mq_qe_pair *qe; 4587 4588 list_for_each_entry(qe, head, node) 4589 if (qe->q == q) 4590 return qe; 4591 4592 return NULL; 4593 } 4594 4595 static void blk_mq_elv_switch_back(struct list_head *head, 4596 struct request_queue *q) 4597 { 4598 struct blk_mq_qe_pair *qe; 4599 struct elevator_type *t; 4600 4601 qe = blk_lookup_qe_pair(head, q); 4602 if (!qe) 4603 return; 4604 t = qe->type; 4605 list_del(&qe->node); 4606 kfree(qe); 4607 4608 mutex_lock(&q->sysfs_lock); 4609 elevator_switch(q, t); 4610 mutex_unlock(&q->sysfs_lock); 4611 } 4612 4613 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4614 int nr_hw_queues) 4615 { 4616 struct request_queue *q; 4617 LIST_HEAD(head); 4618 int prev_nr_hw_queues; 4619 4620 lockdep_assert_held(&set->tag_list_lock); 4621 4622 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4623 nr_hw_queues = nr_cpu_ids; 4624 if (nr_hw_queues < 1) 4625 return; 4626 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4627 return; 4628 4629 list_for_each_entry(q, &set->tag_list, tag_set_list) 4630 blk_mq_freeze_queue(q); 4631 /* 4632 * Switch IO scheduler to 'none', cleaning up the data associated 4633 * with the previous scheduler. We will switch back once we are done 4634 * updating the new sw to hw queue mappings. 4635 */ 4636 list_for_each_entry(q, &set->tag_list, tag_set_list) 4637 if (!blk_mq_elv_switch_none(&head, q)) 4638 goto switch_back; 4639 4640 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4641 blk_mq_debugfs_unregister_hctxs(q); 4642 blk_mq_sysfs_unregister_hctxs(q); 4643 } 4644 4645 prev_nr_hw_queues = set->nr_hw_queues; 4646 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4647 0) 4648 goto reregister; 4649 4650 set->nr_hw_queues = nr_hw_queues; 4651 fallback: 4652 blk_mq_update_queue_map(set); 4653 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4654 blk_mq_realloc_hw_ctxs(set, q); 4655 blk_mq_update_poll_flag(q); 4656 if (q->nr_hw_queues != set->nr_hw_queues) { 4657 int i = prev_nr_hw_queues; 4658 4659 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4660 nr_hw_queues, prev_nr_hw_queues); 4661 for (; i < set->nr_hw_queues; i++) 4662 __blk_mq_free_map_and_rqs(set, i); 4663 4664 set->nr_hw_queues = prev_nr_hw_queues; 4665 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4666 goto fallback; 4667 } 4668 blk_mq_map_swqueue(q); 4669 } 4670 4671 reregister: 4672 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4673 blk_mq_sysfs_register_hctxs(q); 4674 blk_mq_debugfs_register_hctxs(q); 4675 } 4676 4677 switch_back: 4678 list_for_each_entry(q, &set->tag_list, tag_set_list) 4679 blk_mq_elv_switch_back(&head, q); 4680 4681 list_for_each_entry(q, &set->tag_list, tag_set_list) 4682 blk_mq_unfreeze_queue(q); 4683 } 4684 4685 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4686 { 4687 mutex_lock(&set->tag_list_lock); 4688 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4689 mutex_unlock(&set->tag_list_lock); 4690 } 4691 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4692 4693 /* Enable polling stats and return whether they were already enabled. */ 4694 static bool blk_poll_stats_enable(struct request_queue *q) 4695 { 4696 if (q->poll_stat) 4697 return true; 4698 4699 return blk_stats_alloc_enable(q); 4700 } 4701 4702 static void blk_mq_poll_stats_start(struct request_queue *q) 4703 { 4704 /* 4705 * We don't arm the callback if polling stats are not enabled or the 4706 * callback is already active. 4707 */ 4708 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4709 return; 4710 4711 blk_stat_activate_msecs(q->poll_cb, 100); 4712 } 4713 4714 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4715 { 4716 struct request_queue *q = cb->data; 4717 int bucket; 4718 4719 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4720 if (cb->stat[bucket].nr_samples) 4721 q->poll_stat[bucket] = cb->stat[bucket]; 4722 } 4723 } 4724 4725 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4726 struct request *rq) 4727 { 4728 unsigned long ret = 0; 4729 int bucket; 4730 4731 /* 4732 * If stats collection isn't on, don't sleep but turn it on for 4733 * future users 4734 */ 4735 if (!blk_poll_stats_enable(q)) 4736 return 0; 4737 4738 /* 4739 * As an optimistic guess, use half of the mean service time 4740 * for this type of request. We can (and should) make this smarter. 4741 * For instance, if the completion latencies are tight, we can 4742 * get closer than just half the mean. This is especially 4743 * important on devices where the completion latencies are longer 4744 * than ~10 usec. We do use the stats for the relevant IO size 4745 * if available which does lead to better estimates. 4746 */ 4747 bucket = blk_mq_poll_stats_bkt(rq); 4748 if (bucket < 0) 4749 return ret; 4750 4751 if (q->poll_stat[bucket].nr_samples) 4752 ret = (q->poll_stat[bucket].mean + 1) / 2; 4753 4754 return ret; 4755 } 4756 4757 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4758 { 4759 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4760 struct request *rq = blk_qc_to_rq(hctx, qc); 4761 struct hrtimer_sleeper hs; 4762 enum hrtimer_mode mode; 4763 unsigned int nsecs; 4764 ktime_t kt; 4765 4766 /* 4767 * If a request has completed on queue that uses an I/O scheduler, we 4768 * won't get back a request from blk_qc_to_rq. 4769 */ 4770 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4771 return false; 4772 4773 /* 4774 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4775 * 4776 * 0: use half of prev avg 4777 * >0: use this specific value 4778 */ 4779 if (q->poll_nsec > 0) 4780 nsecs = q->poll_nsec; 4781 else 4782 nsecs = blk_mq_poll_nsecs(q, rq); 4783 4784 if (!nsecs) 4785 return false; 4786 4787 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4788 4789 /* 4790 * This will be replaced with the stats tracking code, using 4791 * 'avg_completion_time / 2' as the pre-sleep target. 4792 */ 4793 kt = nsecs; 4794 4795 mode = HRTIMER_MODE_REL; 4796 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4797 hrtimer_set_expires(&hs.timer, kt); 4798 4799 do { 4800 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4801 break; 4802 set_current_state(TASK_UNINTERRUPTIBLE); 4803 hrtimer_sleeper_start_expires(&hs, mode); 4804 if (hs.task) 4805 io_schedule(); 4806 hrtimer_cancel(&hs.timer); 4807 mode = HRTIMER_MODE_ABS; 4808 } while (hs.task && !signal_pending(current)); 4809 4810 __set_current_state(TASK_RUNNING); 4811 destroy_hrtimer_on_stack(&hs.timer); 4812 4813 /* 4814 * If we sleep, have the caller restart the poll loop to reset the 4815 * state. Like for the other success return cases, the caller is 4816 * responsible for checking if the IO completed. If the IO isn't 4817 * complete, we'll get called again and will go straight to the busy 4818 * poll loop. 4819 */ 4820 return true; 4821 } 4822 4823 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4824 struct io_comp_batch *iob, unsigned int flags) 4825 { 4826 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4827 long state = get_current_state(); 4828 int ret; 4829 4830 do { 4831 ret = q->mq_ops->poll(hctx, iob); 4832 if (ret > 0) { 4833 __set_current_state(TASK_RUNNING); 4834 return ret; 4835 } 4836 4837 if (signal_pending_state(state, current)) 4838 __set_current_state(TASK_RUNNING); 4839 if (task_is_running(current)) 4840 return 1; 4841 4842 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4843 break; 4844 cpu_relax(); 4845 } while (!need_resched()); 4846 4847 __set_current_state(TASK_RUNNING); 4848 return 0; 4849 } 4850 4851 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4852 unsigned int flags) 4853 { 4854 if (!(flags & BLK_POLL_NOSLEEP) && 4855 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4856 if (blk_mq_poll_hybrid(q, cookie)) 4857 return 1; 4858 } 4859 return blk_mq_poll_classic(q, cookie, iob, flags); 4860 } 4861 4862 unsigned int blk_mq_rq_cpu(struct request *rq) 4863 { 4864 return rq->mq_ctx->cpu; 4865 } 4866 EXPORT_SYMBOL(blk_mq_rq_cpu); 4867 4868 void blk_mq_cancel_work_sync(struct request_queue *q) 4869 { 4870 if (queue_is_mq(q)) { 4871 struct blk_mq_hw_ctx *hctx; 4872 unsigned long i; 4873 4874 cancel_delayed_work_sync(&q->requeue_work); 4875 4876 queue_for_each_hw_ctx(q, hctx, i) 4877 cancel_delayed_work_sync(&hctx->run_work); 4878 } 4879 } 4880 4881 static int __init blk_mq_init(void) 4882 { 4883 int i; 4884 4885 for_each_possible_cpu(i) 4886 init_llist_head(&per_cpu(blk_cpu_done, i)); 4887 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4888 4889 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4890 "block/softirq:dead", NULL, 4891 blk_softirq_cpu_dead); 4892 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4893 blk_mq_hctx_notify_dead); 4894 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4895 blk_mq_hctx_notify_online, 4896 blk_mq_hctx_notify_offline); 4897 return 0; 4898 } 4899 subsys_initcall(blk_mq_init); 4900