1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 #include <linux/prefetch.h> 26 27 #include <trace/events/block.h> 28 29 #include <linux/blk-mq.h> 30 #include "blk.h" 31 #include "blk-mq.h" 32 #include "blk-mq-tag.h" 33 #include "blk-stat.h" 34 #include "blk-wbt.h" 35 #include "blk-mq-sched.h" 36 37 static DEFINE_MUTEX(all_q_mutex); 38 static LIST_HEAD(all_q_list); 39 40 /* 41 * Check if any of the ctx's have pending work in this hardware queue 42 */ 43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 44 { 45 return sbitmap_any_bit_set(&hctx->ctx_map) || 46 !list_empty_careful(&hctx->dispatch) || 47 blk_mq_sched_has_work(hctx); 48 } 49 50 /* 51 * Mark this ctx as having pending work in this hardware queue 52 */ 53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 54 struct blk_mq_ctx *ctx) 55 { 56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 58 } 59 60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 61 struct blk_mq_ctx *ctx) 62 { 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 64 } 65 66 void blk_mq_freeze_queue_start(struct request_queue *q) 67 { 68 int freeze_depth; 69 70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 71 if (freeze_depth == 1) { 72 percpu_ref_kill(&q->q_usage_counter); 73 blk_mq_run_hw_queues(q, false); 74 } 75 } 76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 77 78 static void blk_mq_freeze_queue_wait(struct request_queue *q) 79 { 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 81 } 82 83 /* 84 * Guarantee no request is in use, so we can change any data structure of 85 * the queue afterward. 86 */ 87 void blk_freeze_queue(struct request_queue *q) 88 { 89 /* 90 * In the !blk_mq case we are only calling this to kill the 91 * q_usage_counter, otherwise this increases the freeze depth 92 * and waits for it to return to zero. For this reason there is 93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 94 * exported to drivers as the only user for unfreeze is blk_mq. 95 */ 96 blk_mq_freeze_queue_start(q); 97 blk_mq_freeze_queue_wait(q); 98 } 99 100 void blk_mq_freeze_queue(struct request_queue *q) 101 { 102 /* 103 * ...just an alias to keep freeze and unfreeze actions balanced 104 * in the blk_mq_* namespace 105 */ 106 blk_freeze_queue(q); 107 } 108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 109 110 void blk_mq_unfreeze_queue(struct request_queue *q) 111 { 112 int freeze_depth; 113 114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 115 WARN_ON_ONCE(freeze_depth < 0); 116 if (!freeze_depth) { 117 percpu_ref_reinit(&q->q_usage_counter); 118 wake_up_all(&q->mq_freeze_wq); 119 } 120 } 121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 122 123 /** 124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 125 * @q: request queue. 126 * 127 * Note: this function does not prevent that the struct request end_io() 128 * callback function is invoked. Additionally, it is not prevented that 129 * new queue_rq() calls occur unless the queue has been stopped first. 130 */ 131 void blk_mq_quiesce_queue(struct request_queue *q) 132 { 133 struct blk_mq_hw_ctx *hctx; 134 unsigned int i; 135 bool rcu = false; 136 137 blk_mq_stop_hw_queues(q); 138 139 queue_for_each_hw_ctx(q, hctx, i) { 140 if (hctx->flags & BLK_MQ_F_BLOCKING) 141 synchronize_srcu(&hctx->queue_rq_srcu); 142 else 143 rcu = true; 144 } 145 if (rcu) 146 synchronize_rcu(); 147 } 148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 149 150 void blk_mq_wake_waiters(struct request_queue *q) 151 { 152 struct blk_mq_hw_ctx *hctx; 153 unsigned int i; 154 155 queue_for_each_hw_ctx(q, hctx, i) 156 if (blk_mq_hw_queue_mapped(hctx)) 157 blk_mq_tag_wakeup_all(hctx->tags, true); 158 159 /* 160 * If we are called because the queue has now been marked as 161 * dying, we need to ensure that processes currently waiting on 162 * the queue are notified as well. 163 */ 164 wake_up_all(&q->mq_freeze_wq); 165 } 166 167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 168 { 169 return blk_mq_has_free_tags(hctx->tags); 170 } 171 EXPORT_SYMBOL(blk_mq_can_queue); 172 173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 174 struct request *rq, unsigned int op) 175 { 176 INIT_LIST_HEAD(&rq->queuelist); 177 /* csd/requeue_work/fifo_time is initialized before use */ 178 rq->q = q; 179 rq->mq_ctx = ctx; 180 rq->cmd_flags = op; 181 if (blk_queue_io_stat(q)) 182 rq->rq_flags |= RQF_IO_STAT; 183 /* do not touch atomic flags, it needs atomic ops against the timer */ 184 rq->cpu = -1; 185 INIT_HLIST_NODE(&rq->hash); 186 RB_CLEAR_NODE(&rq->rb_node); 187 rq->rq_disk = NULL; 188 rq->part = NULL; 189 rq->start_time = jiffies; 190 #ifdef CONFIG_BLK_CGROUP 191 rq->rl = NULL; 192 set_start_time_ns(rq); 193 rq->io_start_time_ns = 0; 194 #endif 195 rq->nr_phys_segments = 0; 196 #if defined(CONFIG_BLK_DEV_INTEGRITY) 197 rq->nr_integrity_segments = 0; 198 #endif 199 rq->special = NULL; 200 /* tag was already set */ 201 rq->errors = 0; 202 rq->extra_len = 0; 203 204 INIT_LIST_HEAD(&rq->timeout_list); 205 rq->timeout = 0; 206 207 rq->end_io = NULL; 208 rq->end_io_data = NULL; 209 rq->next_rq = NULL; 210 211 ctx->rq_dispatched[op_is_sync(op)]++; 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init); 214 215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data, 216 unsigned int op) 217 { 218 struct request *rq; 219 unsigned int tag; 220 221 tag = blk_mq_get_tag(data); 222 if (tag != BLK_MQ_TAG_FAIL) { 223 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 224 225 rq = tags->static_rqs[tag]; 226 227 if (data->flags & BLK_MQ_REQ_INTERNAL) { 228 rq->tag = -1; 229 rq->internal_tag = tag; 230 } else { 231 if (blk_mq_tag_busy(data->hctx)) { 232 rq->rq_flags = RQF_MQ_INFLIGHT; 233 atomic_inc(&data->hctx->nr_active); 234 } 235 rq->tag = tag; 236 rq->internal_tag = -1; 237 } 238 239 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 240 return rq; 241 } 242 243 return NULL; 244 } 245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request); 246 247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 248 unsigned int flags) 249 { 250 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 251 struct request *rq; 252 int ret; 253 254 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 255 if (ret) 256 return ERR_PTR(ret); 257 258 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 259 260 blk_mq_put_ctx(alloc_data.ctx); 261 blk_queue_exit(q); 262 263 if (!rq) 264 return ERR_PTR(-EWOULDBLOCK); 265 266 rq->__data_len = 0; 267 rq->__sector = (sector_t) -1; 268 rq->bio = rq->biotail = NULL; 269 return rq; 270 } 271 EXPORT_SYMBOL(blk_mq_alloc_request); 272 273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 274 unsigned int flags, unsigned int hctx_idx) 275 { 276 struct blk_mq_hw_ctx *hctx; 277 struct blk_mq_ctx *ctx; 278 struct request *rq; 279 struct blk_mq_alloc_data alloc_data; 280 int ret; 281 282 /* 283 * If the tag allocator sleeps we could get an allocation for a 284 * different hardware context. No need to complicate the low level 285 * allocator for this for the rare use case of a command tied to 286 * a specific queue. 287 */ 288 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 289 return ERR_PTR(-EINVAL); 290 291 if (hctx_idx >= q->nr_hw_queues) 292 return ERR_PTR(-EIO); 293 294 ret = blk_queue_enter(q, true); 295 if (ret) 296 return ERR_PTR(ret); 297 298 /* 299 * Check if the hardware context is actually mapped to anything. 300 * If not tell the caller that it should skip this queue. 301 */ 302 hctx = q->queue_hw_ctx[hctx_idx]; 303 if (!blk_mq_hw_queue_mapped(hctx)) { 304 ret = -EXDEV; 305 goto out_queue_exit; 306 } 307 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); 308 309 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 310 rq = __blk_mq_alloc_request(&alloc_data, rw); 311 if (!rq) { 312 ret = -EWOULDBLOCK; 313 goto out_queue_exit; 314 } 315 316 return rq; 317 318 out_queue_exit: 319 blk_queue_exit(q); 320 return ERR_PTR(ret); 321 } 322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 323 324 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 325 struct request *rq) 326 { 327 const int sched_tag = rq->internal_tag; 328 struct request_queue *q = rq->q; 329 330 if (rq->rq_flags & RQF_MQ_INFLIGHT) 331 atomic_dec(&hctx->nr_active); 332 333 wbt_done(q->rq_wb, &rq->issue_stat); 334 rq->rq_flags = 0; 335 336 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 337 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 338 if (rq->tag != -1) 339 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 340 if (sched_tag != -1) 341 blk_mq_sched_completed_request(hctx, rq); 342 blk_mq_sched_restart_queues(hctx); 343 blk_queue_exit(q); 344 } 345 346 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx, 347 struct request *rq) 348 { 349 struct blk_mq_ctx *ctx = rq->mq_ctx; 350 351 ctx->rq_completed[rq_is_sync(rq)]++; 352 __blk_mq_finish_request(hctx, ctx, rq); 353 } 354 355 void blk_mq_finish_request(struct request *rq) 356 { 357 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 358 } 359 360 void blk_mq_free_request(struct request *rq) 361 { 362 blk_mq_sched_put_request(rq); 363 } 364 EXPORT_SYMBOL_GPL(blk_mq_free_request); 365 366 inline void __blk_mq_end_request(struct request *rq, int error) 367 { 368 blk_account_io_done(rq); 369 370 if (rq->end_io) { 371 wbt_done(rq->q->rq_wb, &rq->issue_stat); 372 rq->end_io(rq, error); 373 } else { 374 if (unlikely(blk_bidi_rq(rq))) 375 blk_mq_free_request(rq->next_rq); 376 blk_mq_free_request(rq); 377 } 378 } 379 EXPORT_SYMBOL(__blk_mq_end_request); 380 381 void blk_mq_end_request(struct request *rq, int error) 382 { 383 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 384 BUG(); 385 __blk_mq_end_request(rq, error); 386 } 387 EXPORT_SYMBOL(blk_mq_end_request); 388 389 static void __blk_mq_complete_request_remote(void *data) 390 { 391 struct request *rq = data; 392 393 rq->q->softirq_done_fn(rq); 394 } 395 396 static void blk_mq_ipi_complete_request(struct request *rq) 397 { 398 struct blk_mq_ctx *ctx = rq->mq_ctx; 399 bool shared = false; 400 int cpu; 401 402 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 403 rq->q->softirq_done_fn(rq); 404 return; 405 } 406 407 cpu = get_cpu(); 408 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 409 shared = cpus_share_cache(cpu, ctx->cpu); 410 411 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 412 rq->csd.func = __blk_mq_complete_request_remote; 413 rq->csd.info = rq; 414 rq->csd.flags = 0; 415 smp_call_function_single_async(ctx->cpu, &rq->csd); 416 } else { 417 rq->q->softirq_done_fn(rq); 418 } 419 put_cpu(); 420 } 421 422 static void blk_mq_stat_add(struct request *rq) 423 { 424 if (rq->rq_flags & RQF_STATS) { 425 /* 426 * We could rq->mq_ctx here, but there's less of a risk 427 * of races if we have the completion event add the stats 428 * to the local software queue. 429 */ 430 struct blk_mq_ctx *ctx; 431 432 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); 433 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); 434 } 435 } 436 437 static void __blk_mq_complete_request(struct request *rq) 438 { 439 struct request_queue *q = rq->q; 440 441 blk_mq_stat_add(rq); 442 443 if (!q->softirq_done_fn) 444 blk_mq_end_request(rq, rq->errors); 445 else 446 blk_mq_ipi_complete_request(rq); 447 } 448 449 /** 450 * blk_mq_complete_request - end I/O on a request 451 * @rq: the request being processed 452 * 453 * Description: 454 * Ends all I/O on a request. It does not handle partial completions. 455 * The actual completion happens out-of-order, through a IPI handler. 456 **/ 457 void blk_mq_complete_request(struct request *rq, int error) 458 { 459 struct request_queue *q = rq->q; 460 461 if (unlikely(blk_should_fake_timeout(q))) 462 return; 463 if (!blk_mark_rq_complete(rq)) { 464 rq->errors = error; 465 __blk_mq_complete_request(rq); 466 } 467 } 468 EXPORT_SYMBOL(blk_mq_complete_request); 469 470 int blk_mq_request_started(struct request *rq) 471 { 472 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 473 } 474 EXPORT_SYMBOL_GPL(blk_mq_request_started); 475 476 void blk_mq_start_request(struct request *rq) 477 { 478 struct request_queue *q = rq->q; 479 480 blk_mq_sched_started_request(rq); 481 482 trace_block_rq_issue(q, rq); 483 484 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 485 blk_stat_set_issue_time(&rq->issue_stat); 486 rq->rq_flags |= RQF_STATS; 487 wbt_issue(q->rq_wb, &rq->issue_stat); 488 } 489 490 blk_add_timer(rq); 491 492 /* 493 * Ensure that ->deadline is visible before set the started 494 * flag and clear the completed flag. 495 */ 496 smp_mb__before_atomic(); 497 498 /* 499 * Mark us as started and clear complete. Complete might have been 500 * set if requeue raced with timeout, which then marked it as 501 * complete. So be sure to clear complete again when we start 502 * the request, otherwise we'll ignore the completion event. 503 */ 504 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 505 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 506 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 507 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 508 509 if (q->dma_drain_size && blk_rq_bytes(rq)) { 510 /* 511 * Make sure space for the drain appears. We know we can do 512 * this because max_hw_segments has been adjusted to be one 513 * fewer than the device can handle. 514 */ 515 rq->nr_phys_segments++; 516 } 517 } 518 EXPORT_SYMBOL(blk_mq_start_request); 519 520 static void __blk_mq_requeue_request(struct request *rq) 521 { 522 struct request_queue *q = rq->q; 523 524 trace_block_rq_requeue(q, rq); 525 wbt_requeue(q->rq_wb, &rq->issue_stat); 526 blk_mq_sched_requeue_request(rq); 527 528 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 529 if (q->dma_drain_size && blk_rq_bytes(rq)) 530 rq->nr_phys_segments--; 531 } 532 } 533 534 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 535 { 536 __blk_mq_requeue_request(rq); 537 538 BUG_ON(blk_queued_rq(rq)); 539 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 540 } 541 EXPORT_SYMBOL(blk_mq_requeue_request); 542 543 static void blk_mq_requeue_work(struct work_struct *work) 544 { 545 struct request_queue *q = 546 container_of(work, struct request_queue, requeue_work.work); 547 LIST_HEAD(rq_list); 548 struct request *rq, *next; 549 unsigned long flags; 550 551 spin_lock_irqsave(&q->requeue_lock, flags); 552 list_splice_init(&q->requeue_list, &rq_list); 553 spin_unlock_irqrestore(&q->requeue_lock, flags); 554 555 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 556 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 557 continue; 558 559 rq->rq_flags &= ~RQF_SOFTBARRIER; 560 list_del_init(&rq->queuelist); 561 blk_mq_sched_insert_request(rq, true, false, false, true); 562 } 563 564 while (!list_empty(&rq_list)) { 565 rq = list_entry(rq_list.next, struct request, queuelist); 566 list_del_init(&rq->queuelist); 567 blk_mq_sched_insert_request(rq, false, false, false, true); 568 } 569 570 blk_mq_run_hw_queues(q, false); 571 } 572 573 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 574 bool kick_requeue_list) 575 { 576 struct request_queue *q = rq->q; 577 unsigned long flags; 578 579 /* 580 * We abuse this flag that is otherwise used by the I/O scheduler to 581 * request head insertation from the workqueue. 582 */ 583 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 584 585 spin_lock_irqsave(&q->requeue_lock, flags); 586 if (at_head) { 587 rq->rq_flags |= RQF_SOFTBARRIER; 588 list_add(&rq->queuelist, &q->requeue_list); 589 } else { 590 list_add_tail(&rq->queuelist, &q->requeue_list); 591 } 592 spin_unlock_irqrestore(&q->requeue_lock, flags); 593 594 if (kick_requeue_list) 595 blk_mq_kick_requeue_list(q); 596 } 597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 598 599 void blk_mq_kick_requeue_list(struct request_queue *q) 600 { 601 kblockd_schedule_delayed_work(&q->requeue_work, 0); 602 } 603 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 604 605 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 606 unsigned long msecs) 607 { 608 kblockd_schedule_delayed_work(&q->requeue_work, 609 msecs_to_jiffies(msecs)); 610 } 611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 612 613 void blk_mq_abort_requeue_list(struct request_queue *q) 614 { 615 unsigned long flags; 616 LIST_HEAD(rq_list); 617 618 spin_lock_irqsave(&q->requeue_lock, flags); 619 list_splice_init(&q->requeue_list, &rq_list); 620 spin_unlock_irqrestore(&q->requeue_lock, flags); 621 622 while (!list_empty(&rq_list)) { 623 struct request *rq; 624 625 rq = list_first_entry(&rq_list, struct request, queuelist); 626 list_del_init(&rq->queuelist); 627 rq->errors = -EIO; 628 blk_mq_end_request(rq, rq->errors); 629 } 630 } 631 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 632 633 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 634 { 635 if (tag < tags->nr_tags) { 636 prefetch(tags->rqs[tag]); 637 return tags->rqs[tag]; 638 } 639 640 return NULL; 641 } 642 EXPORT_SYMBOL(blk_mq_tag_to_rq); 643 644 struct blk_mq_timeout_data { 645 unsigned long next; 646 unsigned int next_set; 647 }; 648 649 void blk_mq_rq_timed_out(struct request *req, bool reserved) 650 { 651 const struct blk_mq_ops *ops = req->q->mq_ops; 652 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 653 654 /* 655 * We know that complete is set at this point. If STARTED isn't set 656 * anymore, then the request isn't active and the "timeout" should 657 * just be ignored. This can happen due to the bitflag ordering. 658 * Timeout first checks if STARTED is set, and if it is, assumes 659 * the request is active. But if we race with completion, then 660 * we both flags will get cleared. So check here again, and ignore 661 * a timeout event with a request that isn't active. 662 */ 663 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 664 return; 665 666 if (ops->timeout) 667 ret = ops->timeout(req, reserved); 668 669 switch (ret) { 670 case BLK_EH_HANDLED: 671 __blk_mq_complete_request(req); 672 break; 673 case BLK_EH_RESET_TIMER: 674 blk_add_timer(req); 675 blk_clear_rq_complete(req); 676 break; 677 case BLK_EH_NOT_HANDLED: 678 break; 679 default: 680 printk(KERN_ERR "block: bad eh return: %d\n", ret); 681 break; 682 } 683 } 684 685 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 686 struct request *rq, void *priv, bool reserved) 687 { 688 struct blk_mq_timeout_data *data = priv; 689 690 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 691 /* 692 * If a request wasn't started before the queue was 693 * marked dying, kill it here or it'll go unnoticed. 694 */ 695 if (unlikely(blk_queue_dying(rq->q))) { 696 rq->errors = -EIO; 697 blk_mq_end_request(rq, rq->errors); 698 } 699 return; 700 } 701 702 if (time_after_eq(jiffies, rq->deadline)) { 703 if (!blk_mark_rq_complete(rq)) 704 blk_mq_rq_timed_out(rq, reserved); 705 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 706 data->next = rq->deadline; 707 data->next_set = 1; 708 } 709 } 710 711 static void blk_mq_timeout_work(struct work_struct *work) 712 { 713 struct request_queue *q = 714 container_of(work, struct request_queue, timeout_work); 715 struct blk_mq_timeout_data data = { 716 .next = 0, 717 .next_set = 0, 718 }; 719 int i; 720 721 /* A deadlock might occur if a request is stuck requiring a 722 * timeout at the same time a queue freeze is waiting 723 * completion, since the timeout code would not be able to 724 * acquire the queue reference here. 725 * 726 * That's why we don't use blk_queue_enter here; instead, we use 727 * percpu_ref_tryget directly, because we need to be able to 728 * obtain a reference even in the short window between the queue 729 * starting to freeze, by dropping the first reference in 730 * blk_mq_freeze_queue_start, and the moment the last request is 731 * consumed, marked by the instant q_usage_counter reaches 732 * zero. 733 */ 734 if (!percpu_ref_tryget(&q->q_usage_counter)) 735 return; 736 737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 738 739 if (data.next_set) { 740 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 741 mod_timer(&q->timeout, data.next); 742 } else { 743 struct blk_mq_hw_ctx *hctx; 744 745 queue_for_each_hw_ctx(q, hctx, i) { 746 /* the hctx may be unmapped, so check it here */ 747 if (blk_mq_hw_queue_mapped(hctx)) 748 blk_mq_tag_idle(hctx); 749 } 750 } 751 blk_queue_exit(q); 752 } 753 754 /* 755 * Reverse check our software queue for entries that we could potentially 756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 757 * too much time checking for merges. 758 */ 759 static bool blk_mq_attempt_merge(struct request_queue *q, 760 struct blk_mq_ctx *ctx, struct bio *bio) 761 { 762 struct request *rq; 763 int checked = 8; 764 765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 766 bool merged = false; 767 768 if (!checked--) 769 break; 770 771 if (!blk_rq_merge_ok(rq, bio)) 772 continue; 773 774 switch (blk_try_merge(rq, bio)) { 775 case ELEVATOR_BACK_MERGE: 776 if (blk_mq_sched_allow_merge(q, rq, bio)) 777 merged = bio_attempt_back_merge(q, rq, bio); 778 break; 779 case ELEVATOR_FRONT_MERGE: 780 if (blk_mq_sched_allow_merge(q, rq, bio)) 781 merged = bio_attempt_front_merge(q, rq, bio); 782 break; 783 case ELEVATOR_DISCARD_MERGE: 784 merged = bio_attempt_discard_merge(q, rq, bio); 785 break; 786 default: 787 continue; 788 } 789 790 if (merged) 791 ctx->rq_merged++; 792 return merged; 793 } 794 795 return false; 796 } 797 798 struct flush_busy_ctx_data { 799 struct blk_mq_hw_ctx *hctx; 800 struct list_head *list; 801 }; 802 803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 804 { 805 struct flush_busy_ctx_data *flush_data = data; 806 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 808 809 sbitmap_clear_bit(sb, bitnr); 810 spin_lock(&ctx->lock); 811 list_splice_tail_init(&ctx->rq_list, flush_data->list); 812 spin_unlock(&ctx->lock); 813 return true; 814 } 815 816 /* 817 * Process software queues that have been marked busy, splicing them 818 * to the for-dispatch 819 */ 820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 821 { 822 struct flush_busy_ctx_data data = { 823 .hctx = hctx, 824 .list = list, 825 }; 826 827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 828 } 829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 830 831 static inline unsigned int queued_to_index(unsigned int queued) 832 { 833 if (!queued) 834 return 0; 835 836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 837 } 838 839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 840 bool wait) 841 { 842 struct blk_mq_alloc_data data = { 843 .q = rq->q, 844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 846 }; 847 848 if (rq->tag != -1) { 849 done: 850 if (hctx) 851 *hctx = data.hctx; 852 return true; 853 } 854 855 rq->tag = blk_mq_get_tag(&data); 856 if (rq->tag >= 0) { 857 if (blk_mq_tag_busy(data.hctx)) { 858 rq->rq_flags |= RQF_MQ_INFLIGHT; 859 atomic_inc(&data.hctx->nr_active); 860 } 861 data.hctx->tags->rqs[rq->tag] = rq; 862 goto done; 863 } 864 865 return false; 866 } 867 868 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 869 struct request *rq) 870 { 871 if (rq->tag == -1 || rq->internal_tag == -1) 872 return; 873 874 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 875 rq->tag = -1; 876 877 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 878 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 879 atomic_dec(&hctx->nr_active); 880 } 881 } 882 883 /* 884 * If we fail getting a driver tag because all the driver tags are already 885 * assigned and on the dispatch list, BUT the first entry does not have a 886 * tag, then we could deadlock. For that case, move entries with assigned 887 * driver tags to the front, leaving the set of tagged requests in the 888 * same order, and the untagged set in the same order. 889 */ 890 static bool reorder_tags_to_front(struct list_head *list) 891 { 892 struct request *rq, *tmp, *first = NULL; 893 894 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 895 if (rq == first) 896 break; 897 if (rq->tag != -1) { 898 list_move(&rq->queuelist, list); 899 if (!first) 900 first = rq; 901 } 902 } 903 904 return first != NULL; 905 } 906 907 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags, 908 void *key) 909 { 910 struct blk_mq_hw_ctx *hctx; 911 912 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 913 914 list_del(&wait->task_list); 915 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state); 916 blk_mq_run_hw_queue(hctx, true); 917 return 1; 918 } 919 920 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx) 921 { 922 struct sbq_wait_state *ws; 923 924 /* 925 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait. 926 * The thread which wins the race to grab this bit adds the hardware 927 * queue to the wait queue. 928 */ 929 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) || 930 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state)) 931 return false; 932 933 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 934 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx); 935 936 /* 937 * As soon as this returns, it's no longer safe to fiddle with 938 * hctx->dispatch_wait, since a completion can wake up the wait queue 939 * and unlock the bit. 940 */ 941 add_wait_queue(&ws->wait, &hctx->dispatch_wait); 942 return true; 943 } 944 945 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) 946 { 947 struct request_queue *q = hctx->queue; 948 struct request *rq; 949 LIST_HEAD(driver_list); 950 struct list_head *dptr; 951 int queued, ret = BLK_MQ_RQ_QUEUE_OK; 952 953 /* 954 * Start off with dptr being NULL, so we start the first request 955 * immediately, even if we have more pending. 956 */ 957 dptr = NULL; 958 959 /* 960 * Now process all the entries, sending them to the driver. 961 */ 962 queued = 0; 963 while (!list_empty(list)) { 964 struct blk_mq_queue_data bd; 965 966 rq = list_first_entry(list, struct request, queuelist); 967 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 968 if (!queued && reorder_tags_to_front(list)) 969 continue; 970 971 /* 972 * The initial allocation attempt failed, so we need to 973 * rerun the hardware queue when a tag is freed. 974 */ 975 if (blk_mq_dispatch_wait_add(hctx)) { 976 /* 977 * It's possible that a tag was freed in the 978 * window between the allocation failure and 979 * adding the hardware queue to the wait queue. 980 */ 981 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 982 break; 983 } else { 984 break; 985 } 986 } 987 988 list_del_init(&rq->queuelist); 989 990 bd.rq = rq; 991 bd.list = dptr; 992 bd.last = list_empty(list); 993 994 ret = q->mq_ops->queue_rq(hctx, &bd); 995 switch (ret) { 996 case BLK_MQ_RQ_QUEUE_OK: 997 queued++; 998 break; 999 case BLK_MQ_RQ_QUEUE_BUSY: 1000 blk_mq_put_driver_tag(hctx, rq); 1001 list_add(&rq->queuelist, list); 1002 __blk_mq_requeue_request(rq); 1003 break; 1004 default: 1005 pr_err("blk-mq: bad return on queue: %d\n", ret); 1006 case BLK_MQ_RQ_QUEUE_ERROR: 1007 rq->errors = -EIO; 1008 blk_mq_end_request(rq, rq->errors); 1009 break; 1010 } 1011 1012 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 1013 break; 1014 1015 /* 1016 * We've done the first request. If we have more than 1 1017 * left in the list, set dptr to defer issue. 1018 */ 1019 if (!dptr && list->next != list->prev) 1020 dptr = &driver_list; 1021 } 1022 1023 hctx->dispatched[queued_to_index(queued)]++; 1024 1025 /* 1026 * Any items that need requeuing? Stuff them into hctx->dispatch, 1027 * that is where we will continue on next queue run. 1028 */ 1029 if (!list_empty(list)) { 1030 spin_lock(&hctx->lock); 1031 list_splice_init(list, &hctx->dispatch); 1032 spin_unlock(&hctx->lock); 1033 1034 /* 1035 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 1036 * it's possible the queue is stopped and restarted again 1037 * before this. Queue restart will dispatch requests. And since 1038 * requests in rq_list aren't added into hctx->dispatch yet, 1039 * the requests in rq_list might get lost. 1040 * 1041 * blk_mq_run_hw_queue() already checks the STOPPED bit 1042 * 1043 * If RESTART or TAG_WAITING is set, then let completion restart 1044 * the queue instead of potentially looping here. 1045 */ 1046 if (!blk_mq_sched_needs_restart(hctx) && 1047 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) 1048 blk_mq_run_hw_queue(hctx, true); 1049 } 1050 1051 return queued != 0; 1052 } 1053 1054 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1055 { 1056 int srcu_idx; 1057 1058 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1059 cpu_online(hctx->next_cpu)); 1060 1061 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1062 rcu_read_lock(); 1063 blk_mq_sched_dispatch_requests(hctx); 1064 rcu_read_unlock(); 1065 } else { 1066 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 1067 blk_mq_sched_dispatch_requests(hctx); 1068 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 1069 } 1070 } 1071 1072 /* 1073 * It'd be great if the workqueue API had a way to pass 1074 * in a mask and had some smarts for more clever placement. 1075 * For now we just round-robin here, switching for every 1076 * BLK_MQ_CPU_WORK_BATCH queued items. 1077 */ 1078 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1079 { 1080 if (hctx->queue->nr_hw_queues == 1) 1081 return WORK_CPU_UNBOUND; 1082 1083 if (--hctx->next_cpu_batch <= 0) { 1084 int next_cpu; 1085 1086 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1087 if (next_cpu >= nr_cpu_ids) 1088 next_cpu = cpumask_first(hctx->cpumask); 1089 1090 hctx->next_cpu = next_cpu; 1091 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1092 } 1093 1094 return hctx->next_cpu; 1095 } 1096 1097 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1098 { 1099 if (unlikely(blk_mq_hctx_stopped(hctx) || 1100 !blk_mq_hw_queue_mapped(hctx))) 1101 return; 1102 1103 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1104 int cpu = get_cpu(); 1105 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1106 __blk_mq_run_hw_queue(hctx); 1107 put_cpu(); 1108 return; 1109 } 1110 1111 put_cpu(); 1112 } 1113 1114 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); 1115 } 1116 1117 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1118 { 1119 struct blk_mq_hw_ctx *hctx; 1120 int i; 1121 1122 queue_for_each_hw_ctx(q, hctx, i) { 1123 if (!blk_mq_hctx_has_pending(hctx) || 1124 blk_mq_hctx_stopped(hctx)) 1125 continue; 1126 1127 blk_mq_run_hw_queue(hctx, async); 1128 } 1129 } 1130 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1131 1132 /** 1133 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1134 * @q: request queue. 1135 * 1136 * The caller is responsible for serializing this function against 1137 * blk_mq_{start,stop}_hw_queue(). 1138 */ 1139 bool blk_mq_queue_stopped(struct request_queue *q) 1140 { 1141 struct blk_mq_hw_ctx *hctx; 1142 int i; 1143 1144 queue_for_each_hw_ctx(q, hctx, i) 1145 if (blk_mq_hctx_stopped(hctx)) 1146 return true; 1147 1148 return false; 1149 } 1150 EXPORT_SYMBOL(blk_mq_queue_stopped); 1151 1152 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1153 { 1154 cancel_work(&hctx->run_work); 1155 cancel_delayed_work(&hctx->delay_work); 1156 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1157 } 1158 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1159 1160 void blk_mq_stop_hw_queues(struct request_queue *q) 1161 { 1162 struct blk_mq_hw_ctx *hctx; 1163 int i; 1164 1165 queue_for_each_hw_ctx(q, hctx, i) 1166 blk_mq_stop_hw_queue(hctx); 1167 } 1168 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1169 1170 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1171 { 1172 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1173 1174 blk_mq_run_hw_queue(hctx, false); 1175 } 1176 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1177 1178 void blk_mq_start_hw_queues(struct request_queue *q) 1179 { 1180 struct blk_mq_hw_ctx *hctx; 1181 int i; 1182 1183 queue_for_each_hw_ctx(q, hctx, i) 1184 blk_mq_start_hw_queue(hctx); 1185 } 1186 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1187 1188 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1189 { 1190 if (!blk_mq_hctx_stopped(hctx)) 1191 return; 1192 1193 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1194 blk_mq_run_hw_queue(hctx, async); 1195 } 1196 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1197 1198 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1199 { 1200 struct blk_mq_hw_ctx *hctx; 1201 int i; 1202 1203 queue_for_each_hw_ctx(q, hctx, i) 1204 blk_mq_start_stopped_hw_queue(hctx, async); 1205 } 1206 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1207 1208 static void blk_mq_run_work_fn(struct work_struct *work) 1209 { 1210 struct blk_mq_hw_ctx *hctx; 1211 1212 hctx = container_of(work, struct blk_mq_hw_ctx, run_work); 1213 1214 __blk_mq_run_hw_queue(hctx); 1215 } 1216 1217 static void blk_mq_delay_work_fn(struct work_struct *work) 1218 { 1219 struct blk_mq_hw_ctx *hctx; 1220 1221 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1222 1223 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1224 __blk_mq_run_hw_queue(hctx); 1225 } 1226 1227 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1228 { 1229 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1230 return; 1231 1232 blk_mq_stop_hw_queue(hctx); 1233 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1234 &hctx->delay_work, msecs_to_jiffies(msecs)); 1235 } 1236 EXPORT_SYMBOL(blk_mq_delay_queue); 1237 1238 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1239 struct request *rq, 1240 bool at_head) 1241 { 1242 struct blk_mq_ctx *ctx = rq->mq_ctx; 1243 1244 trace_block_rq_insert(hctx->queue, rq); 1245 1246 if (at_head) 1247 list_add(&rq->queuelist, &ctx->rq_list); 1248 else 1249 list_add_tail(&rq->queuelist, &ctx->rq_list); 1250 } 1251 1252 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1253 bool at_head) 1254 { 1255 struct blk_mq_ctx *ctx = rq->mq_ctx; 1256 1257 __blk_mq_insert_req_list(hctx, rq, at_head); 1258 blk_mq_hctx_mark_pending(hctx, ctx); 1259 } 1260 1261 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1262 struct list_head *list) 1263 1264 { 1265 /* 1266 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1267 * offline now 1268 */ 1269 spin_lock(&ctx->lock); 1270 while (!list_empty(list)) { 1271 struct request *rq; 1272 1273 rq = list_first_entry(list, struct request, queuelist); 1274 BUG_ON(rq->mq_ctx != ctx); 1275 list_del_init(&rq->queuelist); 1276 __blk_mq_insert_req_list(hctx, rq, false); 1277 } 1278 blk_mq_hctx_mark_pending(hctx, ctx); 1279 spin_unlock(&ctx->lock); 1280 } 1281 1282 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1283 { 1284 struct request *rqa = container_of(a, struct request, queuelist); 1285 struct request *rqb = container_of(b, struct request, queuelist); 1286 1287 return !(rqa->mq_ctx < rqb->mq_ctx || 1288 (rqa->mq_ctx == rqb->mq_ctx && 1289 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1290 } 1291 1292 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1293 { 1294 struct blk_mq_ctx *this_ctx; 1295 struct request_queue *this_q; 1296 struct request *rq; 1297 LIST_HEAD(list); 1298 LIST_HEAD(ctx_list); 1299 unsigned int depth; 1300 1301 list_splice_init(&plug->mq_list, &list); 1302 1303 list_sort(NULL, &list, plug_ctx_cmp); 1304 1305 this_q = NULL; 1306 this_ctx = NULL; 1307 depth = 0; 1308 1309 while (!list_empty(&list)) { 1310 rq = list_entry_rq(list.next); 1311 list_del_init(&rq->queuelist); 1312 BUG_ON(!rq->q); 1313 if (rq->mq_ctx != this_ctx) { 1314 if (this_ctx) { 1315 trace_block_unplug(this_q, depth, from_schedule); 1316 blk_mq_sched_insert_requests(this_q, this_ctx, 1317 &ctx_list, 1318 from_schedule); 1319 } 1320 1321 this_ctx = rq->mq_ctx; 1322 this_q = rq->q; 1323 depth = 0; 1324 } 1325 1326 depth++; 1327 list_add_tail(&rq->queuelist, &ctx_list); 1328 } 1329 1330 /* 1331 * If 'this_ctx' is set, we know we have entries to complete 1332 * on 'ctx_list'. Do those. 1333 */ 1334 if (this_ctx) { 1335 trace_block_unplug(this_q, depth, from_schedule); 1336 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1337 from_schedule); 1338 } 1339 } 1340 1341 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1342 { 1343 init_request_from_bio(rq, bio); 1344 1345 blk_account_io_start(rq, true); 1346 } 1347 1348 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1349 { 1350 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1351 !blk_queue_nomerges(hctx->queue); 1352 } 1353 1354 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1355 struct blk_mq_ctx *ctx, 1356 struct request *rq, struct bio *bio) 1357 { 1358 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1359 blk_mq_bio_to_request(rq, bio); 1360 spin_lock(&ctx->lock); 1361 insert_rq: 1362 __blk_mq_insert_request(hctx, rq, false); 1363 spin_unlock(&ctx->lock); 1364 return false; 1365 } else { 1366 struct request_queue *q = hctx->queue; 1367 1368 spin_lock(&ctx->lock); 1369 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1370 blk_mq_bio_to_request(rq, bio); 1371 goto insert_rq; 1372 } 1373 1374 spin_unlock(&ctx->lock); 1375 __blk_mq_finish_request(hctx, ctx, rq); 1376 return true; 1377 } 1378 } 1379 1380 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1381 { 1382 if (rq->tag != -1) 1383 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1384 1385 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1386 } 1387 1388 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie) 1389 { 1390 struct request_queue *q = rq->q; 1391 struct blk_mq_queue_data bd = { 1392 .rq = rq, 1393 .list = NULL, 1394 .last = 1 1395 }; 1396 struct blk_mq_hw_ctx *hctx; 1397 blk_qc_t new_cookie; 1398 int ret; 1399 1400 if (q->elevator) 1401 goto insert; 1402 1403 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1404 goto insert; 1405 1406 new_cookie = request_to_qc_t(hctx, rq); 1407 1408 /* 1409 * For OK queue, we are done. For error, kill it. Any other 1410 * error (busy), just add it to our list as we previously 1411 * would have done 1412 */ 1413 ret = q->mq_ops->queue_rq(hctx, &bd); 1414 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1415 *cookie = new_cookie; 1416 return; 1417 } 1418 1419 __blk_mq_requeue_request(rq); 1420 1421 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1422 *cookie = BLK_QC_T_NONE; 1423 rq->errors = -EIO; 1424 blk_mq_end_request(rq, rq->errors); 1425 return; 1426 } 1427 1428 insert: 1429 blk_mq_sched_insert_request(rq, false, true, true, false); 1430 } 1431 1432 /* 1433 * Multiple hardware queue variant. This will not use per-process plugs, 1434 * but will attempt to bypass the hctx queueing if we can go straight to 1435 * hardware for SYNC IO. 1436 */ 1437 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1438 { 1439 const int is_sync = op_is_sync(bio->bi_opf); 1440 const int is_flush_fua = op_is_flush(bio->bi_opf); 1441 struct blk_mq_alloc_data data = { .flags = 0 }; 1442 struct request *rq; 1443 unsigned int request_count = 0, srcu_idx; 1444 struct blk_plug *plug; 1445 struct request *same_queue_rq = NULL; 1446 blk_qc_t cookie; 1447 unsigned int wb_acct; 1448 1449 blk_queue_bounce(q, &bio); 1450 1451 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1452 bio_io_error(bio); 1453 return BLK_QC_T_NONE; 1454 } 1455 1456 blk_queue_split(q, &bio, q->bio_split); 1457 1458 if (!is_flush_fua && !blk_queue_nomerges(q) && 1459 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1460 return BLK_QC_T_NONE; 1461 1462 if (blk_mq_sched_bio_merge(q, bio)) 1463 return BLK_QC_T_NONE; 1464 1465 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1466 1467 trace_block_getrq(q, bio, bio->bi_opf); 1468 1469 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1470 if (unlikely(!rq)) { 1471 __wbt_done(q->rq_wb, wb_acct); 1472 return BLK_QC_T_NONE; 1473 } 1474 1475 wbt_track(&rq->issue_stat, wb_acct); 1476 1477 cookie = request_to_qc_t(data.hctx, rq); 1478 1479 if (unlikely(is_flush_fua)) { 1480 if (q->elevator) 1481 goto elv_insert; 1482 blk_mq_bio_to_request(rq, bio); 1483 blk_insert_flush(rq); 1484 goto run_queue; 1485 } 1486 1487 plug = current->plug; 1488 /* 1489 * If the driver supports defer issued based on 'last', then 1490 * queue it up like normal since we can potentially save some 1491 * CPU this way. 1492 */ 1493 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1494 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1495 struct request *old_rq = NULL; 1496 1497 blk_mq_bio_to_request(rq, bio); 1498 1499 /* 1500 * We do limited plugging. If the bio can be merged, do that. 1501 * Otherwise the existing request in the plug list will be 1502 * issued. So the plug list will have one request at most 1503 */ 1504 if (plug) { 1505 /* 1506 * The plug list might get flushed before this. If that 1507 * happens, same_queue_rq is invalid and plug list is 1508 * empty 1509 */ 1510 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1511 old_rq = same_queue_rq; 1512 list_del_init(&old_rq->queuelist); 1513 } 1514 list_add_tail(&rq->queuelist, &plug->mq_list); 1515 } else /* is_sync */ 1516 old_rq = rq; 1517 blk_mq_put_ctx(data.ctx); 1518 if (!old_rq) 1519 goto done; 1520 1521 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { 1522 rcu_read_lock(); 1523 blk_mq_try_issue_directly(old_rq, &cookie); 1524 rcu_read_unlock(); 1525 } else { 1526 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); 1527 blk_mq_try_issue_directly(old_rq, &cookie); 1528 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); 1529 } 1530 goto done; 1531 } 1532 1533 if (q->elevator) { 1534 elv_insert: 1535 blk_mq_put_ctx(data.ctx); 1536 blk_mq_bio_to_request(rq, bio); 1537 blk_mq_sched_insert_request(rq, false, true, 1538 !is_sync || is_flush_fua, true); 1539 goto done; 1540 } 1541 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1542 /* 1543 * For a SYNC request, send it to the hardware immediately. For 1544 * an ASYNC request, just ensure that we run it later on. The 1545 * latter allows for merging opportunities and more efficient 1546 * dispatching. 1547 */ 1548 run_queue: 1549 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1550 } 1551 blk_mq_put_ctx(data.ctx); 1552 done: 1553 return cookie; 1554 } 1555 1556 /* 1557 * Single hardware queue variant. This will attempt to use any per-process 1558 * plug for merging and IO deferral. 1559 */ 1560 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1561 { 1562 const int is_sync = op_is_sync(bio->bi_opf); 1563 const int is_flush_fua = op_is_flush(bio->bi_opf); 1564 struct blk_plug *plug; 1565 unsigned int request_count = 0; 1566 struct blk_mq_alloc_data data = { .flags = 0 }; 1567 struct request *rq; 1568 blk_qc_t cookie; 1569 unsigned int wb_acct; 1570 1571 blk_queue_bounce(q, &bio); 1572 1573 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1574 bio_io_error(bio); 1575 return BLK_QC_T_NONE; 1576 } 1577 1578 blk_queue_split(q, &bio, q->bio_split); 1579 1580 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1581 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1582 return BLK_QC_T_NONE; 1583 } else 1584 request_count = blk_plug_queued_count(q); 1585 1586 if (blk_mq_sched_bio_merge(q, bio)) 1587 return BLK_QC_T_NONE; 1588 1589 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1590 1591 trace_block_getrq(q, bio, bio->bi_opf); 1592 1593 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1594 if (unlikely(!rq)) { 1595 __wbt_done(q->rq_wb, wb_acct); 1596 return BLK_QC_T_NONE; 1597 } 1598 1599 wbt_track(&rq->issue_stat, wb_acct); 1600 1601 cookie = request_to_qc_t(data.hctx, rq); 1602 1603 if (unlikely(is_flush_fua)) { 1604 if (q->elevator) 1605 goto elv_insert; 1606 blk_mq_bio_to_request(rq, bio); 1607 blk_insert_flush(rq); 1608 goto run_queue; 1609 } 1610 1611 /* 1612 * A task plug currently exists. Since this is completely lockless, 1613 * utilize that to temporarily store requests until the task is 1614 * either done or scheduled away. 1615 */ 1616 plug = current->plug; 1617 if (plug) { 1618 struct request *last = NULL; 1619 1620 blk_mq_bio_to_request(rq, bio); 1621 1622 /* 1623 * @request_count may become stale because of schedule 1624 * out, so check the list again. 1625 */ 1626 if (list_empty(&plug->mq_list)) 1627 request_count = 0; 1628 if (!request_count) 1629 trace_block_plug(q); 1630 else 1631 last = list_entry_rq(plug->mq_list.prev); 1632 1633 blk_mq_put_ctx(data.ctx); 1634 1635 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1636 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1637 blk_flush_plug_list(plug, false); 1638 trace_block_plug(q); 1639 } 1640 1641 list_add_tail(&rq->queuelist, &plug->mq_list); 1642 return cookie; 1643 } 1644 1645 if (q->elevator) { 1646 elv_insert: 1647 blk_mq_put_ctx(data.ctx); 1648 blk_mq_bio_to_request(rq, bio); 1649 blk_mq_sched_insert_request(rq, false, true, 1650 !is_sync || is_flush_fua, true); 1651 goto done; 1652 } 1653 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1654 /* 1655 * For a SYNC request, send it to the hardware immediately. For 1656 * an ASYNC request, just ensure that we run it later on. The 1657 * latter allows for merging opportunities and more efficient 1658 * dispatching. 1659 */ 1660 run_queue: 1661 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1662 } 1663 1664 blk_mq_put_ctx(data.ctx); 1665 done: 1666 return cookie; 1667 } 1668 1669 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1670 unsigned int hctx_idx) 1671 { 1672 struct page *page; 1673 1674 if (tags->rqs && set->ops->exit_request) { 1675 int i; 1676 1677 for (i = 0; i < tags->nr_tags; i++) { 1678 struct request *rq = tags->static_rqs[i]; 1679 1680 if (!rq) 1681 continue; 1682 set->ops->exit_request(set->driver_data, rq, 1683 hctx_idx, i); 1684 tags->static_rqs[i] = NULL; 1685 } 1686 } 1687 1688 while (!list_empty(&tags->page_list)) { 1689 page = list_first_entry(&tags->page_list, struct page, lru); 1690 list_del_init(&page->lru); 1691 /* 1692 * Remove kmemleak object previously allocated in 1693 * blk_mq_init_rq_map(). 1694 */ 1695 kmemleak_free(page_address(page)); 1696 __free_pages(page, page->private); 1697 } 1698 } 1699 1700 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1701 { 1702 kfree(tags->rqs); 1703 tags->rqs = NULL; 1704 kfree(tags->static_rqs); 1705 tags->static_rqs = NULL; 1706 1707 blk_mq_free_tags(tags); 1708 } 1709 1710 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1711 unsigned int hctx_idx, 1712 unsigned int nr_tags, 1713 unsigned int reserved_tags) 1714 { 1715 struct blk_mq_tags *tags; 1716 1717 tags = blk_mq_init_tags(nr_tags, reserved_tags, 1718 set->numa_node, 1719 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1720 if (!tags) 1721 return NULL; 1722 1723 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1724 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1725 set->numa_node); 1726 if (!tags->rqs) { 1727 blk_mq_free_tags(tags); 1728 return NULL; 1729 } 1730 1731 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1732 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1733 set->numa_node); 1734 if (!tags->static_rqs) { 1735 kfree(tags->rqs); 1736 blk_mq_free_tags(tags); 1737 return NULL; 1738 } 1739 1740 return tags; 1741 } 1742 1743 static size_t order_to_size(unsigned int order) 1744 { 1745 return (size_t)PAGE_SIZE << order; 1746 } 1747 1748 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1749 unsigned int hctx_idx, unsigned int depth) 1750 { 1751 unsigned int i, j, entries_per_page, max_order = 4; 1752 size_t rq_size, left; 1753 1754 INIT_LIST_HEAD(&tags->page_list); 1755 1756 /* 1757 * rq_size is the size of the request plus driver payload, rounded 1758 * to the cacheline size 1759 */ 1760 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1761 cache_line_size()); 1762 left = rq_size * depth; 1763 1764 for (i = 0; i < depth; ) { 1765 int this_order = max_order; 1766 struct page *page; 1767 int to_do; 1768 void *p; 1769 1770 while (this_order && left < order_to_size(this_order - 1)) 1771 this_order--; 1772 1773 do { 1774 page = alloc_pages_node(set->numa_node, 1775 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1776 this_order); 1777 if (page) 1778 break; 1779 if (!this_order--) 1780 break; 1781 if (order_to_size(this_order) < rq_size) 1782 break; 1783 } while (1); 1784 1785 if (!page) 1786 goto fail; 1787 1788 page->private = this_order; 1789 list_add_tail(&page->lru, &tags->page_list); 1790 1791 p = page_address(page); 1792 /* 1793 * Allow kmemleak to scan these pages as they contain pointers 1794 * to additional allocations like via ops->init_request(). 1795 */ 1796 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1797 entries_per_page = order_to_size(this_order) / rq_size; 1798 to_do = min(entries_per_page, depth - i); 1799 left -= to_do * rq_size; 1800 for (j = 0; j < to_do; j++) { 1801 struct request *rq = p; 1802 1803 tags->static_rqs[i] = rq; 1804 if (set->ops->init_request) { 1805 if (set->ops->init_request(set->driver_data, 1806 rq, hctx_idx, i, 1807 set->numa_node)) { 1808 tags->static_rqs[i] = NULL; 1809 goto fail; 1810 } 1811 } 1812 1813 p += rq_size; 1814 i++; 1815 } 1816 } 1817 return 0; 1818 1819 fail: 1820 blk_mq_free_rqs(set, tags, hctx_idx); 1821 return -ENOMEM; 1822 } 1823 1824 /* 1825 * 'cpu' is going away. splice any existing rq_list entries from this 1826 * software queue to the hw queue dispatch list, and ensure that it 1827 * gets run. 1828 */ 1829 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1830 { 1831 struct blk_mq_hw_ctx *hctx; 1832 struct blk_mq_ctx *ctx; 1833 LIST_HEAD(tmp); 1834 1835 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1836 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1837 1838 spin_lock(&ctx->lock); 1839 if (!list_empty(&ctx->rq_list)) { 1840 list_splice_init(&ctx->rq_list, &tmp); 1841 blk_mq_hctx_clear_pending(hctx, ctx); 1842 } 1843 spin_unlock(&ctx->lock); 1844 1845 if (list_empty(&tmp)) 1846 return 0; 1847 1848 spin_lock(&hctx->lock); 1849 list_splice_tail_init(&tmp, &hctx->dispatch); 1850 spin_unlock(&hctx->lock); 1851 1852 blk_mq_run_hw_queue(hctx, true); 1853 return 0; 1854 } 1855 1856 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1857 { 1858 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1859 &hctx->cpuhp_dead); 1860 } 1861 1862 /* hctx->ctxs will be freed in queue's release handler */ 1863 static void blk_mq_exit_hctx(struct request_queue *q, 1864 struct blk_mq_tag_set *set, 1865 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1866 { 1867 unsigned flush_start_tag = set->queue_depth; 1868 1869 blk_mq_tag_idle(hctx); 1870 1871 if (set->ops->exit_request) 1872 set->ops->exit_request(set->driver_data, 1873 hctx->fq->flush_rq, hctx_idx, 1874 flush_start_tag + hctx_idx); 1875 1876 if (set->ops->exit_hctx) 1877 set->ops->exit_hctx(hctx, hctx_idx); 1878 1879 if (hctx->flags & BLK_MQ_F_BLOCKING) 1880 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1881 1882 blk_mq_remove_cpuhp(hctx); 1883 blk_free_flush_queue(hctx->fq); 1884 sbitmap_free(&hctx->ctx_map); 1885 } 1886 1887 static void blk_mq_exit_hw_queues(struct request_queue *q, 1888 struct blk_mq_tag_set *set, int nr_queue) 1889 { 1890 struct blk_mq_hw_ctx *hctx; 1891 unsigned int i; 1892 1893 queue_for_each_hw_ctx(q, hctx, i) { 1894 if (i == nr_queue) 1895 break; 1896 blk_mq_exit_hctx(q, set, hctx, i); 1897 } 1898 } 1899 1900 static void blk_mq_free_hw_queues(struct request_queue *q, 1901 struct blk_mq_tag_set *set) 1902 { 1903 struct blk_mq_hw_ctx *hctx; 1904 unsigned int i; 1905 1906 queue_for_each_hw_ctx(q, hctx, i) 1907 free_cpumask_var(hctx->cpumask); 1908 } 1909 1910 static int blk_mq_init_hctx(struct request_queue *q, 1911 struct blk_mq_tag_set *set, 1912 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1913 { 1914 int node; 1915 unsigned flush_start_tag = set->queue_depth; 1916 1917 node = hctx->numa_node; 1918 if (node == NUMA_NO_NODE) 1919 node = hctx->numa_node = set->numa_node; 1920 1921 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); 1922 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1923 spin_lock_init(&hctx->lock); 1924 INIT_LIST_HEAD(&hctx->dispatch); 1925 hctx->queue = q; 1926 hctx->queue_num = hctx_idx; 1927 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1928 1929 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1930 1931 hctx->tags = set->tags[hctx_idx]; 1932 1933 /* 1934 * Allocate space for all possible cpus to avoid allocation at 1935 * runtime 1936 */ 1937 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1938 GFP_KERNEL, node); 1939 if (!hctx->ctxs) 1940 goto unregister_cpu_notifier; 1941 1942 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1943 node)) 1944 goto free_ctxs; 1945 1946 hctx->nr_ctx = 0; 1947 1948 if (set->ops->init_hctx && 1949 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1950 goto free_bitmap; 1951 1952 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1953 if (!hctx->fq) 1954 goto exit_hctx; 1955 1956 if (set->ops->init_request && 1957 set->ops->init_request(set->driver_data, 1958 hctx->fq->flush_rq, hctx_idx, 1959 flush_start_tag + hctx_idx, node)) 1960 goto free_fq; 1961 1962 if (hctx->flags & BLK_MQ_F_BLOCKING) 1963 init_srcu_struct(&hctx->queue_rq_srcu); 1964 1965 return 0; 1966 1967 free_fq: 1968 kfree(hctx->fq); 1969 exit_hctx: 1970 if (set->ops->exit_hctx) 1971 set->ops->exit_hctx(hctx, hctx_idx); 1972 free_bitmap: 1973 sbitmap_free(&hctx->ctx_map); 1974 free_ctxs: 1975 kfree(hctx->ctxs); 1976 unregister_cpu_notifier: 1977 blk_mq_remove_cpuhp(hctx); 1978 return -1; 1979 } 1980 1981 static void blk_mq_init_cpu_queues(struct request_queue *q, 1982 unsigned int nr_hw_queues) 1983 { 1984 unsigned int i; 1985 1986 for_each_possible_cpu(i) { 1987 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1988 struct blk_mq_hw_ctx *hctx; 1989 1990 memset(__ctx, 0, sizeof(*__ctx)); 1991 __ctx->cpu = i; 1992 spin_lock_init(&__ctx->lock); 1993 INIT_LIST_HEAD(&__ctx->rq_list); 1994 __ctx->queue = q; 1995 blk_stat_init(&__ctx->stat[BLK_STAT_READ]); 1996 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); 1997 1998 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1999 if (!cpu_online(i)) 2000 continue; 2001 2002 hctx = blk_mq_map_queue(q, i); 2003 2004 /* 2005 * Set local node, IFF we have more than one hw queue. If 2006 * not, we remain on the home node of the device 2007 */ 2008 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2009 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2010 } 2011 } 2012 2013 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2014 { 2015 int ret = 0; 2016 2017 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2018 set->queue_depth, set->reserved_tags); 2019 if (!set->tags[hctx_idx]) 2020 return false; 2021 2022 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2023 set->queue_depth); 2024 if (!ret) 2025 return true; 2026 2027 blk_mq_free_rq_map(set->tags[hctx_idx]); 2028 set->tags[hctx_idx] = NULL; 2029 return false; 2030 } 2031 2032 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2033 unsigned int hctx_idx) 2034 { 2035 if (set->tags[hctx_idx]) { 2036 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2037 blk_mq_free_rq_map(set->tags[hctx_idx]); 2038 set->tags[hctx_idx] = NULL; 2039 } 2040 } 2041 2042 static void blk_mq_map_swqueue(struct request_queue *q, 2043 const struct cpumask *online_mask) 2044 { 2045 unsigned int i, hctx_idx; 2046 struct blk_mq_hw_ctx *hctx; 2047 struct blk_mq_ctx *ctx; 2048 struct blk_mq_tag_set *set = q->tag_set; 2049 2050 /* 2051 * Avoid others reading imcomplete hctx->cpumask through sysfs 2052 */ 2053 mutex_lock(&q->sysfs_lock); 2054 2055 queue_for_each_hw_ctx(q, hctx, i) { 2056 cpumask_clear(hctx->cpumask); 2057 hctx->nr_ctx = 0; 2058 } 2059 2060 /* 2061 * Map software to hardware queues 2062 */ 2063 for_each_possible_cpu(i) { 2064 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2065 if (!cpumask_test_cpu(i, online_mask)) 2066 continue; 2067 2068 hctx_idx = q->mq_map[i]; 2069 /* unmapped hw queue can be remapped after CPU topo changed */ 2070 if (!set->tags[hctx_idx] && 2071 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2072 /* 2073 * If tags initialization fail for some hctx, 2074 * that hctx won't be brought online. In this 2075 * case, remap the current ctx to hctx[0] which 2076 * is guaranteed to always have tags allocated 2077 */ 2078 q->mq_map[i] = 0; 2079 } 2080 2081 ctx = per_cpu_ptr(q->queue_ctx, i); 2082 hctx = blk_mq_map_queue(q, i); 2083 2084 cpumask_set_cpu(i, hctx->cpumask); 2085 ctx->index_hw = hctx->nr_ctx; 2086 hctx->ctxs[hctx->nr_ctx++] = ctx; 2087 } 2088 2089 mutex_unlock(&q->sysfs_lock); 2090 2091 queue_for_each_hw_ctx(q, hctx, i) { 2092 /* 2093 * If no software queues are mapped to this hardware queue, 2094 * disable it and free the request entries. 2095 */ 2096 if (!hctx->nr_ctx) { 2097 /* Never unmap queue 0. We need it as a 2098 * fallback in case of a new remap fails 2099 * allocation 2100 */ 2101 if (i && set->tags[i]) 2102 blk_mq_free_map_and_requests(set, i); 2103 2104 hctx->tags = NULL; 2105 continue; 2106 } 2107 2108 hctx->tags = set->tags[i]; 2109 WARN_ON(!hctx->tags); 2110 2111 /* 2112 * Set the map size to the number of mapped software queues. 2113 * This is more accurate and more efficient than looping 2114 * over all possibly mapped software queues. 2115 */ 2116 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2117 2118 /* 2119 * Initialize batch roundrobin counts 2120 */ 2121 hctx->next_cpu = cpumask_first(hctx->cpumask); 2122 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2123 } 2124 } 2125 2126 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2127 { 2128 struct blk_mq_hw_ctx *hctx; 2129 int i; 2130 2131 queue_for_each_hw_ctx(q, hctx, i) { 2132 if (shared) 2133 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2134 else 2135 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2136 } 2137 } 2138 2139 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 2140 { 2141 struct request_queue *q; 2142 2143 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2144 blk_mq_freeze_queue(q); 2145 queue_set_hctx_shared(q, shared); 2146 blk_mq_unfreeze_queue(q); 2147 } 2148 } 2149 2150 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2151 { 2152 struct blk_mq_tag_set *set = q->tag_set; 2153 2154 mutex_lock(&set->tag_list_lock); 2155 list_del_init(&q->tag_set_list); 2156 if (list_is_singular(&set->tag_list)) { 2157 /* just transitioned to unshared */ 2158 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2159 /* update existing queue */ 2160 blk_mq_update_tag_set_depth(set, false); 2161 } 2162 mutex_unlock(&set->tag_list_lock); 2163 } 2164 2165 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2166 struct request_queue *q) 2167 { 2168 q->tag_set = set; 2169 2170 mutex_lock(&set->tag_list_lock); 2171 2172 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2173 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2174 set->flags |= BLK_MQ_F_TAG_SHARED; 2175 /* update existing queue */ 2176 blk_mq_update_tag_set_depth(set, true); 2177 } 2178 if (set->flags & BLK_MQ_F_TAG_SHARED) 2179 queue_set_hctx_shared(q, true); 2180 list_add_tail(&q->tag_set_list, &set->tag_list); 2181 2182 mutex_unlock(&set->tag_list_lock); 2183 } 2184 2185 /* 2186 * It is the actual release handler for mq, but we do it from 2187 * request queue's release handler for avoiding use-after-free 2188 * and headache because q->mq_kobj shouldn't have been introduced, 2189 * but we can't group ctx/kctx kobj without it. 2190 */ 2191 void blk_mq_release(struct request_queue *q) 2192 { 2193 struct blk_mq_hw_ctx *hctx; 2194 unsigned int i; 2195 2196 blk_mq_sched_teardown(q); 2197 2198 /* hctx kobj stays in hctx */ 2199 queue_for_each_hw_ctx(q, hctx, i) { 2200 if (!hctx) 2201 continue; 2202 kfree(hctx->ctxs); 2203 kfree(hctx); 2204 } 2205 2206 q->mq_map = NULL; 2207 2208 kfree(q->queue_hw_ctx); 2209 2210 /* ctx kobj stays in queue_ctx */ 2211 free_percpu(q->queue_ctx); 2212 } 2213 2214 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2215 { 2216 struct request_queue *uninit_q, *q; 2217 2218 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2219 if (!uninit_q) 2220 return ERR_PTR(-ENOMEM); 2221 2222 q = blk_mq_init_allocated_queue(set, uninit_q); 2223 if (IS_ERR(q)) 2224 blk_cleanup_queue(uninit_q); 2225 2226 return q; 2227 } 2228 EXPORT_SYMBOL(blk_mq_init_queue); 2229 2230 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2231 struct request_queue *q) 2232 { 2233 int i, j; 2234 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2235 2236 blk_mq_sysfs_unregister(q); 2237 for (i = 0; i < set->nr_hw_queues; i++) { 2238 int node; 2239 2240 if (hctxs[i]) 2241 continue; 2242 2243 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2244 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2245 GFP_KERNEL, node); 2246 if (!hctxs[i]) 2247 break; 2248 2249 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2250 node)) { 2251 kfree(hctxs[i]); 2252 hctxs[i] = NULL; 2253 break; 2254 } 2255 2256 atomic_set(&hctxs[i]->nr_active, 0); 2257 hctxs[i]->numa_node = node; 2258 hctxs[i]->queue_num = i; 2259 2260 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2261 free_cpumask_var(hctxs[i]->cpumask); 2262 kfree(hctxs[i]); 2263 hctxs[i] = NULL; 2264 break; 2265 } 2266 blk_mq_hctx_kobj_init(hctxs[i]); 2267 } 2268 for (j = i; j < q->nr_hw_queues; j++) { 2269 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2270 2271 if (hctx) { 2272 if (hctx->tags) 2273 blk_mq_free_map_and_requests(set, j); 2274 blk_mq_exit_hctx(q, set, hctx, j); 2275 free_cpumask_var(hctx->cpumask); 2276 kobject_put(&hctx->kobj); 2277 kfree(hctx->ctxs); 2278 kfree(hctx); 2279 hctxs[j] = NULL; 2280 2281 } 2282 } 2283 q->nr_hw_queues = i; 2284 blk_mq_sysfs_register(q); 2285 } 2286 2287 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2288 struct request_queue *q) 2289 { 2290 /* mark the queue as mq asap */ 2291 q->mq_ops = set->ops; 2292 2293 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2294 if (!q->queue_ctx) 2295 goto err_exit; 2296 2297 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2298 GFP_KERNEL, set->numa_node); 2299 if (!q->queue_hw_ctx) 2300 goto err_percpu; 2301 2302 q->mq_map = set->mq_map; 2303 2304 blk_mq_realloc_hw_ctxs(set, q); 2305 if (!q->nr_hw_queues) 2306 goto err_hctxs; 2307 2308 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2309 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2310 2311 q->nr_queues = nr_cpu_ids; 2312 2313 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2314 2315 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2316 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2317 2318 q->sg_reserved_size = INT_MAX; 2319 2320 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2321 INIT_LIST_HEAD(&q->requeue_list); 2322 spin_lock_init(&q->requeue_lock); 2323 2324 if (q->nr_hw_queues > 1) 2325 blk_queue_make_request(q, blk_mq_make_request); 2326 else 2327 blk_queue_make_request(q, blk_sq_make_request); 2328 2329 /* 2330 * Do this after blk_queue_make_request() overrides it... 2331 */ 2332 q->nr_requests = set->queue_depth; 2333 2334 /* 2335 * Default to classic polling 2336 */ 2337 q->poll_nsec = -1; 2338 2339 if (set->ops->complete) 2340 blk_queue_softirq_done(q, set->ops->complete); 2341 2342 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2343 2344 get_online_cpus(); 2345 mutex_lock(&all_q_mutex); 2346 2347 list_add_tail(&q->all_q_node, &all_q_list); 2348 blk_mq_add_queue_tag_set(set, q); 2349 blk_mq_map_swqueue(q, cpu_online_mask); 2350 2351 mutex_unlock(&all_q_mutex); 2352 put_online_cpus(); 2353 2354 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2355 int ret; 2356 2357 ret = blk_mq_sched_init(q); 2358 if (ret) 2359 return ERR_PTR(ret); 2360 } 2361 2362 return q; 2363 2364 err_hctxs: 2365 kfree(q->queue_hw_ctx); 2366 err_percpu: 2367 free_percpu(q->queue_ctx); 2368 err_exit: 2369 q->mq_ops = NULL; 2370 return ERR_PTR(-ENOMEM); 2371 } 2372 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2373 2374 void blk_mq_free_queue(struct request_queue *q) 2375 { 2376 struct blk_mq_tag_set *set = q->tag_set; 2377 2378 mutex_lock(&all_q_mutex); 2379 list_del_init(&q->all_q_node); 2380 mutex_unlock(&all_q_mutex); 2381 2382 wbt_exit(q); 2383 2384 blk_mq_del_queue_tag_set(q); 2385 2386 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2387 blk_mq_free_hw_queues(q, set); 2388 } 2389 2390 /* Basically redo blk_mq_init_queue with queue frozen */ 2391 static void blk_mq_queue_reinit(struct request_queue *q, 2392 const struct cpumask *online_mask) 2393 { 2394 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2395 2396 blk_mq_sysfs_unregister(q); 2397 2398 /* 2399 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2400 * we should change hctx numa_node according to new topology (this 2401 * involves free and re-allocate memory, worthy doing?) 2402 */ 2403 2404 blk_mq_map_swqueue(q, online_mask); 2405 2406 blk_mq_sysfs_register(q); 2407 } 2408 2409 /* 2410 * New online cpumask which is going to be set in this hotplug event. 2411 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2412 * one-by-one and dynamically allocating this could result in a failure. 2413 */ 2414 static struct cpumask cpuhp_online_new; 2415 2416 static void blk_mq_queue_reinit_work(void) 2417 { 2418 struct request_queue *q; 2419 2420 mutex_lock(&all_q_mutex); 2421 /* 2422 * We need to freeze and reinit all existing queues. Freezing 2423 * involves synchronous wait for an RCU grace period and doing it 2424 * one by one may take a long time. Start freezing all queues in 2425 * one swoop and then wait for the completions so that freezing can 2426 * take place in parallel. 2427 */ 2428 list_for_each_entry(q, &all_q_list, all_q_node) 2429 blk_mq_freeze_queue_start(q); 2430 list_for_each_entry(q, &all_q_list, all_q_node) 2431 blk_mq_freeze_queue_wait(q); 2432 2433 list_for_each_entry(q, &all_q_list, all_q_node) 2434 blk_mq_queue_reinit(q, &cpuhp_online_new); 2435 2436 list_for_each_entry(q, &all_q_list, all_q_node) 2437 blk_mq_unfreeze_queue(q); 2438 2439 mutex_unlock(&all_q_mutex); 2440 } 2441 2442 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2443 { 2444 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2445 blk_mq_queue_reinit_work(); 2446 return 0; 2447 } 2448 2449 /* 2450 * Before hotadded cpu starts handling requests, new mappings must be 2451 * established. Otherwise, these requests in hw queue might never be 2452 * dispatched. 2453 * 2454 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2455 * for CPU0, and ctx1 for CPU1). 2456 * 2457 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2458 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2459 * 2460 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set 2461 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2462 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is 2463 * ignored. 2464 */ 2465 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2466 { 2467 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2468 cpumask_set_cpu(cpu, &cpuhp_online_new); 2469 blk_mq_queue_reinit_work(); 2470 return 0; 2471 } 2472 2473 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2474 { 2475 int i; 2476 2477 for (i = 0; i < set->nr_hw_queues; i++) 2478 if (!__blk_mq_alloc_rq_map(set, i)) 2479 goto out_unwind; 2480 2481 return 0; 2482 2483 out_unwind: 2484 while (--i >= 0) 2485 blk_mq_free_rq_map(set->tags[i]); 2486 2487 return -ENOMEM; 2488 } 2489 2490 /* 2491 * Allocate the request maps associated with this tag_set. Note that this 2492 * may reduce the depth asked for, if memory is tight. set->queue_depth 2493 * will be updated to reflect the allocated depth. 2494 */ 2495 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2496 { 2497 unsigned int depth; 2498 int err; 2499 2500 depth = set->queue_depth; 2501 do { 2502 err = __blk_mq_alloc_rq_maps(set); 2503 if (!err) 2504 break; 2505 2506 set->queue_depth >>= 1; 2507 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2508 err = -ENOMEM; 2509 break; 2510 } 2511 } while (set->queue_depth); 2512 2513 if (!set->queue_depth || err) { 2514 pr_err("blk-mq: failed to allocate request map\n"); 2515 return -ENOMEM; 2516 } 2517 2518 if (depth != set->queue_depth) 2519 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2520 depth, set->queue_depth); 2521 2522 return 0; 2523 } 2524 2525 /* 2526 * Alloc a tag set to be associated with one or more request queues. 2527 * May fail with EINVAL for various error conditions. May adjust the 2528 * requested depth down, if if it too large. In that case, the set 2529 * value will be stored in set->queue_depth. 2530 */ 2531 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2532 { 2533 int ret; 2534 2535 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2536 2537 if (!set->nr_hw_queues) 2538 return -EINVAL; 2539 if (!set->queue_depth) 2540 return -EINVAL; 2541 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2542 return -EINVAL; 2543 2544 if (!set->ops->queue_rq) 2545 return -EINVAL; 2546 2547 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2548 pr_info("blk-mq: reduced tag depth to %u\n", 2549 BLK_MQ_MAX_DEPTH); 2550 set->queue_depth = BLK_MQ_MAX_DEPTH; 2551 } 2552 2553 /* 2554 * If a crashdump is active, then we are potentially in a very 2555 * memory constrained environment. Limit us to 1 queue and 2556 * 64 tags to prevent using too much memory. 2557 */ 2558 if (is_kdump_kernel()) { 2559 set->nr_hw_queues = 1; 2560 set->queue_depth = min(64U, set->queue_depth); 2561 } 2562 /* 2563 * There is no use for more h/w queues than cpus. 2564 */ 2565 if (set->nr_hw_queues > nr_cpu_ids) 2566 set->nr_hw_queues = nr_cpu_ids; 2567 2568 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2569 GFP_KERNEL, set->numa_node); 2570 if (!set->tags) 2571 return -ENOMEM; 2572 2573 ret = -ENOMEM; 2574 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2575 GFP_KERNEL, set->numa_node); 2576 if (!set->mq_map) 2577 goto out_free_tags; 2578 2579 if (set->ops->map_queues) 2580 ret = set->ops->map_queues(set); 2581 else 2582 ret = blk_mq_map_queues(set); 2583 if (ret) 2584 goto out_free_mq_map; 2585 2586 ret = blk_mq_alloc_rq_maps(set); 2587 if (ret) 2588 goto out_free_mq_map; 2589 2590 mutex_init(&set->tag_list_lock); 2591 INIT_LIST_HEAD(&set->tag_list); 2592 2593 return 0; 2594 2595 out_free_mq_map: 2596 kfree(set->mq_map); 2597 set->mq_map = NULL; 2598 out_free_tags: 2599 kfree(set->tags); 2600 set->tags = NULL; 2601 return ret; 2602 } 2603 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2604 2605 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2606 { 2607 int i; 2608 2609 for (i = 0; i < nr_cpu_ids; i++) 2610 blk_mq_free_map_and_requests(set, i); 2611 2612 kfree(set->mq_map); 2613 set->mq_map = NULL; 2614 2615 kfree(set->tags); 2616 set->tags = NULL; 2617 } 2618 EXPORT_SYMBOL(blk_mq_free_tag_set); 2619 2620 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2621 { 2622 struct blk_mq_tag_set *set = q->tag_set; 2623 struct blk_mq_hw_ctx *hctx; 2624 int i, ret; 2625 2626 if (!set) 2627 return -EINVAL; 2628 2629 blk_mq_freeze_queue(q); 2630 blk_mq_quiesce_queue(q); 2631 2632 ret = 0; 2633 queue_for_each_hw_ctx(q, hctx, i) { 2634 if (!hctx->tags) 2635 continue; 2636 /* 2637 * If we're using an MQ scheduler, just update the scheduler 2638 * queue depth. This is similar to what the old code would do. 2639 */ 2640 if (!hctx->sched_tags) { 2641 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, 2642 min(nr, set->queue_depth), 2643 false); 2644 } else { 2645 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2646 nr, true); 2647 } 2648 if (ret) 2649 break; 2650 } 2651 2652 if (!ret) 2653 q->nr_requests = nr; 2654 2655 blk_mq_unfreeze_queue(q); 2656 blk_mq_start_stopped_hw_queues(q, true); 2657 2658 return ret; 2659 } 2660 2661 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2662 { 2663 struct request_queue *q; 2664 2665 if (nr_hw_queues > nr_cpu_ids) 2666 nr_hw_queues = nr_cpu_ids; 2667 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2668 return; 2669 2670 list_for_each_entry(q, &set->tag_list, tag_set_list) 2671 blk_mq_freeze_queue(q); 2672 2673 set->nr_hw_queues = nr_hw_queues; 2674 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2675 blk_mq_realloc_hw_ctxs(set, q); 2676 2677 /* 2678 * Manually set the make_request_fn as blk_queue_make_request 2679 * resets a lot of the queue settings. 2680 */ 2681 if (q->nr_hw_queues > 1) 2682 q->make_request_fn = blk_mq_make_request; 2683 else 2684 q->make_request_fn = blk_sq_make_request; 2685 2686 blk_mq_queue_reinit(q, cpu_online_mask); 2687 } 2688 2689 list_for_each_entry(q, &set->tag_list, tag_set_list) 2690 blk_mq_unfreeze_queue(q); 2691 } 2692 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2693 2694 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2695 struct blk_mq_hw_ctx *hctx, 2696 struct request *rq) 2697 { 2698 struct blk_rq_stat stat[2]; 2699 unsigned long ret = 0; 2700 2701 /* 2702 * If stats collection isn't on, don't sleep but turn it on for 2703 * future users 2704 */ 2705 if (!blk_stat_enable(q)) 2706 return 0; 2707 2708 /* 2709 * We don't have to do this once per IO, should optimize this 2710 * to just use the current window of stats until it changes 2711 */ 2712 memset(&stat, 0, sizeof(stat)); 2713 blk_hctx_stat_get(hctx, stat); 2714 2715 /* 2716 * As an optimistic guess, use half of the mean service time 2717 * for this type of request. We can (and should) make this smarter. 2718 * For instance, if the completion latencies are tight, we can 2719 * get closer than just half the mean. This is especially 2720 * important on devices where the completion latencies are longer 2721 * than ~10 usec. 2722 */ 2723 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) 2724 ret = (stat[BLK_STAT_READ].mean + 1) / 2; 2725 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) 2726 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; 2727 2728 return ret; 2729 } 2730 2731 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2732 struct blk_mq_hw_ctx *hctx, 2733 struct request *rq) 2734 { 2735 struct hrtimer_sleeper hs; 2736 enum hrtimer_mode mode; 2737 unsigned int nsecs; 2738 ktime_t kt; 2739 2740 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2741 return false; 2742 2743 /* 2744 * poll_nsec can be: 2745 * 2746 * -1: don't ever hybrid sleep 2747 * 0: use half of prev avg 2748 * >0: use this specific value 2749 */ 2750 if (q->poll_nsec == -1) 2751 return false; 2752 else if (q->poll_nsec > 0) 2753 nsecs = q->poll_nsec; 2754 else 2755 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2756 2757 if (!nsecs) 2758 return false; 2759 2760 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2761 2762 /* 2763 * This will be replaced with the stats tracking code, using 2764 * 'avg_completion_time / 2' as the pre-sleep target. 2765 */ 2766 kt = nsecs; 2767 2768 mode = HRTIMER_MODE_REL; 2769 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2770 hrtimer_set_expires(&hs.timer, kt); 2771 2772 hrtimer_init_sleeper(&hs, current); 2773 do { 2774 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2775 break; 2776 set_current_state(TASK_UNINTERRUPTIBLE); 2777 hrtimer_start_expires(&hs.timer, mode); 2778 if (hs.task) 2779 io_schedule(); 2780 hrtimer_cancel(&hs.timer); 2781 mode = HRTIMER_MODE_ABS; 2782 } while (hs.task && !signal_pending(current)); 2783 2784 __set_current_state(TASK_RUNNING); 2785 destroy_hrtimer_on_stack(&hs.timer); 2786 return true; 2787 } 2788 2789 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2790 { 2791 struct request_queue *q = hctx->queue; 2792 long state; 2793 2794 /* 2795 * If we sleep, have the caller restart the poll loop to reset 2796 * the state. Like for the other success return cases, the 2797 * caller is responsible for checking if the IO completed. If 2798 * the IO isn't complete, we'll get called again and will go 2799 * straight to the busy poll loop. 2800 */ 2801 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2802 return true; 2803 2804 hctx->poll_considered++; 2805 2806 state = current->state; 2807 while (!need_resched()) { 2808 int ret; 2809 2810 hctx->poll_invoked++; 2811 2812 ret = q->mq_ops->poll(hctx, rq->tag); 2813 if (ret > 0) { 2814 hctx->poll_success++; 2815 set_current_state(TASK_RUNNING); 2816 return true; 2817 } 2818 2819 if (signal_pending_state(state, current)) 2820 set_current_state(TASK_RUNNING); 2821 2822 if (current->state == TASK_RUNNING) 2823 return true; 2824 if (ret < 0) 2825 break; 2826 cpu_relax(); 2827 } 2828 2829 return false; 2830 } 2831 2832 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2833 { 2834 struct blk_mq_hw_ctx *hctx; 2835 struct blk_plug *plug; 2836 struct request *rq; 2837 2838 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2839 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2840 return false; 2841 2842 plug = current->plug; 2843 if (plug) 2844 blk_flush_plug_list(plug, false); 2845 2846 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2847 if (!blk_qc_t_is_internal(cookie)) 2848 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2849 else 2850 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2851 2852 return __blk_mq_poll(hctx, rq); 2853 } 2854 EXPORT_SYMBOL_GPL(blk_mq_poll); 2855 2856 void blk_mq_disable_hotplug(void) 2857 { 2858 mutex_lock(&all_q_mutex); 2859 } 2860 2861 void blk_mq_enable_hotplug(void) 2862 { 2863 mutex_unlock(&all_q_mutex); 2864 } 2865 2866 static int __init blk_mq_init(void) 2867 { 2868 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2869 blk_mq_hctx_notify_dead); 2870 2871 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2872 blk_mq_queue_reinit_prepare, 2873 blk_mq_queue_reinit_dead); 2874 return 0; 2875 } 2876 subsys_initcall(blk_mq_init); 2877