xref: /openbmc/linux/block/blk-mq.c (revision 7b7dfdd2)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 
24 #include <trace/events/block.h>
25 
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30 
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33 
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35 
36 /*
37  * Check if any of the ctx's have pending work in this hardware queue
38  */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41 	unsigned int i;
42 
43 	for (i = 0; i < hctx->ctx_map.map_size; i++)
44 		if (hctx->ctx_map.map[i].word)
45 			return true;
46 
47 	return false;
48 }
49 
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 					      struct blk_mq_ctx *ctx)
52 {
53 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55 
56 #define CTX_TO_BIT(hctx, ctx)	\
57 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58 
59 /*
60  * Mark this ctx as having pending work in this hardware queue
61  */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 				     struct blk_mq_ctx *ctx)
64 {
65 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66 
67 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70 
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 				      struct blk_mq_ctx *ctx)
73 {
74 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75 
76 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78 
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81 	int ret;
82 
83 	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
84 	smp_wmb();
85 
86 	/* we have problems freezing the queue if it's initializing */
87 	if (!blk_queue_dying(q) &&
88 	    (!blk_queue_bypass(q) || !blk_queue_init_done(q)))
89 		return 0;
90 
91 	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
92 
93 	spin_lock_irq(q->queue_lock);
94 	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
95 		!blk_queue_bypass(q) || blk_queue_dying(q),
96 		*q->queue_lock);
97 	/* inc usage with lock hold to avoid freeze_queue runs here */
98 	if (!ret && !blk_queue_dying(q))
99 		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 	else if (blk_queue_dying(q))
101 		ret = -ENODEV;
102 	spin_unlock_irq(q->queue_lock);
103 
104 	return ret;
105 }
106 
107 static void blk_mq_queue_exit(struct request_queue *q)
108 {
109 	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
110 }
111 
112 static void __blk_mq_drain_queue(struct request_queue *q)
113 {
114 	while (true) {
115 		s64 count;
116 
117 		spin_lock_irq(q->queue_lock);
118 		count = percpu_counter_sum(&q->mq_usage_counter);
119 		spin_unlock_irq(q->queue_lock);
120 
121 		if (count == 0)
122 			break;
123 		blk_mq_run_queues(q, false);
124 		msleep(10);
125 	}
126 }
127 
128 /*
129  * Guarantee no request is in use, so we can change any data structure of
130  * the queue afterward.
131  */
132 static void blk_mq_freeze_queue(struct request_queue *q)
133 {
134 	bool drain;
135 
136 	spin_lock_irq(q->queue_lock);
137 	drain = !q->bypass_depth++;
138 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
139 	spin_unlock_irq(q->queue_lock);
140 
141 	if (drain)
142 		__blk_mq_drain_queue(q);
143 }
144 
145 void blk_mq_drain_queue(struct request_queue *q)
146 {
147 	__blk_mq_drain_queue(q);
148 }
149 
150 static void blk_mq_unfreeze_queue(struct request_queue *q)
151 {
152 	bool wake = false;
153 
154 	spin_lock_irq(q->queue_lock);
155 	if (!--q->bypass_depth) {
156 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
157 		wake = true;
158 	}
159 	WARN_ON_ONCE(q->bypass_depth < 0);
160 	spin_unlock_irq(q->queue_lock);
161 	if (wake)
162 		wake_up_all(&q->mq_freeze_wq);
163 }
164 
165 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
166 {
167 	return blk_mq_has_free_tags(hctx->tags);
168 }
169 EXPORT_SYMBOL(blk_mq_can_queue);
170 
171 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
172 			       struct request *rq, unsigned int rw_flags)
173 {
174 	if (blk_queue_io_stat(q))
175 		rw_flags |= REQ_IO_STAT;
176 
177 	INIT_LIST_HEAD(&rq->queuelist);
178 	/* csd/requeue_work/fifo_time is initialized before use */
179 	rq->q = q;
180 	rq->mq_ctx = ctx;
181 	rq->cmd_flags |= rw_flags;
182 	/* do not touch atomic flags, it needs atomic ops against the timer */
183 	rq->cpu = -1;
184 	INIT_HLIST_NODE(&rq->hash);
185 	RB_CLEAR_NODE(&rq->rb_node);
186 	rq->rq_disk = NULL;
187 	rq->part = NULL;
188 	rq->start_time = jiffies;
189 #ifdef CONFIG_BLK_CGROUP
190 	rq->rl = NULL;
191 	set_start_time_ns(rq);
192 	rq->io_start_time_ns = 0;
193 #endif
194 	rq->nr_phys_segments = 0;
195 #if defined(CONFIG_BLK_DEV_INTEGRITY)
196 	rq->nr_integrity_segments = 0;
197 #endif
198 	rq->special = NULL;
199 	/* tag was already set */
200 	rq->errors = 0;
201 
202 	rq->extra_len = 0;
203 	rq->sense_len = 0;
204 	rq->resid_len = 0;
205 	rq->sense = NULL;
206 
207 	INIT_LIST_HEAD(&rq->timeout_list);
208 	rq->timeout = 0;
209 
210 	rq->end_io = NULL;
211 	rq->end_io_data = NULL;
212 	rq->next_rq = NULL;
213 
214 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
215 }
216 
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
219 {
220 	struct request *rq;
221 	unsigned int tag;
222 
223 	tag = blk_mq_get_tag(data);
224 	if (tag != BLK_MQ_TAG_FAIL) {
225 		rq = data->hctx->tags->rqs[tag];
226 
227 		rq->cmd_flags = 0;
228 		if (blk_mq_tag_busy(data->hctx)) {
229 			rq->cmd_flags = REQ_MQ_INFLIGHT;
230 			atomic_inc(&data->hctx->nr_active);
231 		}
232 
233 		rq->tag = tag;
234 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
235 		return rq;
236 	}
237 
238 	return NULL;
239 }
240 
241 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
242 		bool reserved)
243 {
244 	struct blk_mq_ctx *ctx;
245 	struct blk_mq_hw_ctx *hctx;
246 	struct request *rq;
247 	struct blk_mq_alloc_data alloc_data;
248 
249 	if (blk_mq_queue_enter(q))
250 		return NULL;
251 
252 	ctx = blk_mq_get_ctx(q);
253 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
254 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
255 			reserved, ctx, hctx);
256 
257 	rq = __blk_mq_alloc_request(&alloc_data, rw);
258 	if (!rq && (gfp & __GFP_WAIT)) {
259 		__blk_mq_run_hw_queue(hctx);
260 		blk_mq_put_ctx(ctx);
261 
262 		ctx = blk_mq_get_ctx(q);
263 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
265 				hctx);
266 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
267 		ctx = alloc_data.ctx;
268 	}
269 	blk_mq_put_ctx(ctx);
270 	return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273 
274 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
275 				  struct blk_mq_ctx *ctx, struct request *rq)
276 {
277 	const int tag = rq->tag;
278 	struct request_queue *q = rq->q;
279 
280 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
281 		atomic_dec(&hctx->nr_active);
282 
283 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
284 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
285 	blk_mq_queue_exit(q);
286 }
287 
288 void blk_mq_free_request(struct request *rq)
289 {
290 	struct blk_mq_ctx *ctx = rq->mq_ctx;
291 	struct blk_mq_hw_ctx *hctx;
292 	struct request_queue *q = rq->q;
293 
294 	ctx->rq_completed[rq_is_sync(rq)]++;
295 
296 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
297 	__blk_mq_free_request(hctx, ctx, rq);
298 }
299 
300 /*
301  * Clone all relevant state from a request that has been put on hold in
302  * the flush state machine into the preallocated flush request that hangs
303  * off the request queue.
304  *
305  * For a driver the flush request should be invisible, that's why we are
306  * impersonating the original request here.
307  */
308 void blk_mq_clone_flush_request(struct request *flush_rq,
309 		struct request *orig_rq)
310 {
311 	struct blk_mq_hw_ctx *hctx =
312 		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
313 
314 	flush_rq->mq_ctx = orig_rq->mq_ctx;
315 	flush_rq->tag = orig_rq->tag;
316 	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
317 		hctx->cmd_size);
318 }
319 
320 inline void __blk_mq_end_io(struct request *rq, int error)
321 {
322 	blk_account_io_done(rq);
323 
324 	if (rq->end_io) {
325 		rq->end_io(rq, error);
326 	} else {
327 		if (unlikely(blk_bidi_rq(rq)))
328 			blk_mq_free_request(rq->next_rq);
329 		blk_mq_free_request(rq);
330 	}
331 }
332 EXPORT_SYMBOL(__blk_mq_end_io);
333 
334 void blk_mq_end_io(struct request *rq, int error)
335 {
336 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
337 		BUG();
338 	__blk_mq_end_io(rq, error);
339 }
340 EXPORT_SYMBOL(blk_mq_end_io);
341 
342 static void __blk_mq_complete_request_remote(void *data)
343 {
344 	struct request *rq = data;
345 
346 	rq->q->softirq_done_fn(rq);
347 }
348 
349 static void blk_mq_ipi_complete_request(struct request *rq)
350 {
351 	struct blk_mq_ctx *ctx = rq->mq_ctx;
352 	bool shared = false;
353 	int cpu;
354 
355 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
356 		rq->q->softirq_done_fn(rq);
357 		return;
358 	}
359 
360 	cpu = get_cpu();
361 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
362 		shared = cpus_share_cache(cpu, ctx->cpu);
363 
364 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
365 		rq->csd.func = __blk_mq_complete_request_remote;
366 		rq->csd.info = rq;
367 		rq->csd.flags = 0;
368 		smp_call_function_single_async(ctx->cpu, &rq->csd);
369 	} else {
370 		rq->q->softirq_done_fn(rq);
371 	}
372 	put_cpu();
373 }
374 
375 void __blk_mq_complete_request(struct request *rq)
376 {
377 	struct request_queue *q = rq->q;
378 
379 	if (!q->softirq_done_fn)
380 		blk_mq_end_io(rq, rq->errors);
381 	else
382 		blk_mq_ipi_complete_request(rq);
383 }
384 
385 /**
386  * blk_mq_complete_request - end I/O on a request
387  * @rq:		the request being processed
388  *
389  * Description:
390  *	Ends all I/O on a request. It does not handle partial completions.
391  *	The actual completion happens out-of-order, through a IPI handler.
392  **/
393 void blk_mq_complete_request(struct request *rq)
394 {
395 	struct request_queue *q = rq->q;
396 
397 	if (unlikely(blk_should_fake_timeout(q)))
398 		return;
399 	if (!blk_mark_rq_complete(rq))
400 		__blk_mq_complete_request(rq);
401 }
402 EXPORT_SYMBOL(blk_mq_complete_request);
403 
404 static void blk_mq_start_request(struct request *rq, bool last)
405 {
406 	struct request_queue *q = rq->q;
407 
408 	trace_block_rq_issue(q, rq);
409 
410 	rq->resid_len = blk_rq_bytes(rq);
411 	if (unlikely(blk_bidi_rq(rq)))
412 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
413 
414 	blk_add_timer(rq);
415 
416 	/*
417 	 * Mark us as started and clear complete. Complete might have been
418 	 * set if requeue raced with timeout, which then marked it as
419 	 * complete. So be sure to clear complete again when we start
420 	 * the request, otherwise we'll ignore the completion event.
421 	 */
422 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
423 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
424 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
425 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
426 
427 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
428 		/*
429 		 * Make sure space for the drain appears.  We know we can do
430 		 * this because max_hw_segments has been adjusted to be one
431 		 * fewer than the device can handle.
432 		 */
433 		rq->nr_phys_segments++;
434 	}
435 
436 	/*
437 	 * Flag the last request in the series so that drivers know when IO
438 	 * should be kicked off, if they don't do it on a per-request basis.
439 	 *
440 	 * Note: the flag isn't the only condition drivers should do kick off.
441 	 * If drive is busy, the last request might not have the bit set.
442 	 */
443 	if (last)
444 		rq->cmd_flags |= REQ_END;
445 }
446 
447 static void __blk_mq_requeue_request(struct request *rq)
448 {
449 	struct request_queue *q = rq->q;
450 
451 	trace_block_rq_requeue(q, rq);
452 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
453 
454 	rq->cmd_flags &= ~REQ_END;
455 
456 	if (q->dma_drain_size && blk_rq_bytes(rq))
457 		rq->nr_phys_segments--;
458 }
459 
460 void blk_mq_requeue_request(struct request *rq)
461 {
462 	__blk_mq_requeue_request(rq);
463 	blk_clear_rq_complete(rq);
464 
465 	BUG_ON(blk_queued_rq(rq));
466 	blk_mq_add_to_requeue_list(rq, true);
467 }
468 EXPORT_SYMBOL(blk_mq_requeue_request);
469 
470 static void blk_mq_requeue_work(struct work_struct *work)
471 {
472 	struct request_queue *q =
473 		container_of(work, struct request_queue, requeue_work);
474 	LIST_HEAD(rq_list);
475 	struct request *rq, *next;
476 	unsigned long flags;
477 
478 	spin_lock_irqsave(&q->requeue_lock, flags);
479 	list_splice_init(&q->requeue_list, &rq_list);
480 	spin_unlock_irqrestore(&q->requeue_lock, flags);
481 
482 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
483 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
484 			continue;
485 
486 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
487 		list_del_init(&rq->queuelist);
488 		blk_mq_insert_request(rq, true, false, false);
489 	}
490 
491 	while (!list_empty(&rq_list)) {
492 		rq = list_entry(rq_list.next, struct request, queuelist);
493 		list_del_init(&rq->queuelist);
494 		blk_mq_insert_request(rq, false, false, false);
495 	}
496 
497 	blk_mq_run_queues(q, false);
498 }
499 
500 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
501 {
502 	struct request_queue *q = rq->q;
503 	unsigned long flags;
504 
505 	/*
506 	 * We abuse this flag that is otherwise used by the I/O scheduler to
507 	 * request head insertation from the workqueue.
508 	 */
509 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
510 
511 	spin_lock_irqsave(&q->requeue_lock, flags);
512 	if (at_head) {
513 		rq->cmd_flags |= REQ_SOFTBARRIER;
514 		list_add(&rq->queuelist, &q->requeue_list);
515 	} else {
516 		list_add_tail(&rq->queuelist, &q->requeue_list);
517 	}
518 	spin_unlock_irqrestore(&q->requeue_lock, flags);
519 }
520 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
521 
522 void blk_mq_kick_requeue_list(struct request_queue *q)
523 {
524 	kblockd_schedule_work(&q->requeue_work);
525 }
526 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
527 
528 static inline bool is_flush_request(struct request *rq, unsigned int tag)
529 {
530 	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
531 			rq->q->flush_rq->tag == tag);
532 }
533 
534 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
535 {
536 	struct request *rq = tags->rqs[tag];
537 
538 	if (!is_flush_request(rq, tag))
539 		return rq;
540 
541 	return rq->q->flush_rq;
542 }
543 EXPORT_SYMBOL(blk_mq_tag_to_rq);
544 
545 struct blk_mq_timeout_data {
546 	struct blk_mq_hw_ctx *hctx;
547 	unsigned long *next;
548 	unsigned int *next_set;
549 };
550 
551 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
552 {
553 	struct blk_mq_timeout_data *data = __data;
554 	struct blk_mq_hw_ctx *hctx = data->hctx;
555 	unsigned int tag;
556 
557 	 /* It may not be in flight yet (this is where
558 	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
559 	 * statically allocated, so we know it's always safe to access the
560 	 * memory associated with a bit offset into ->rqs[].
561 	 */
562 	tag = 0;
563 	do {
564 		struct request *rq;
565 
566 		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
567 		if (tag >= hctx->tags->nr_tags)
568 			break;
569 
570 		rq = blk_mq_tag_to_rq(hctx->tags, tag++);
571 		if (rq->q != hctx->queue)
572 			continue;
573 		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
574 			continue;
575 
576 		blk_rq_check_expired(rq, data->next, data->next_set);
577 	} while (1);
578 }
579 
580 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
581 					unsigned long *next,
582 					unsigned int *next_set)
583 {
584 	struct blk_mq_timeout_data data = {
585 		.hctx		= hctx,
586 		.next		= next,
587 		.next_set	= next_set,
588 	};
589 
590 	/*
591 	 * Ask the tagging code to iterate busy requests, so we can
592 	 * check them for timeout.
593 	 */
594 	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
595 }
596 
597 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
598 {
599 	struct request_queue *q = rq->q;
600 
601 	/*
602 	 * We know that complete is set at this point. If STARTED isn't set
603 	 * anymore, then the request isn't active and the "timeout" should
604 	 * just be ignored. This can happen due to the bitflag ordering.
605 	 * Timeout first checks if STARTED is set, and if it is, assumes
606 	 * the request is active. But if we race with completion, then
607 	 * we both flags will get cleared. So check here again, and ignore
608 	 * a timeout event with a request that isn't active.
609 	 */
610 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
611 		return BLK_EH_NOT_HANDLED;
612 
613 	if (!q->mq_ops->timeout)
614 		return BLK_EH_RESET_TIMER;
615 
616 	return q->mq_ops->timeout(rq);
617 }
618 
619 static void blk_mq_rq_timer(unsigned long data)
620 {
621 	struct request_queue *q = (struct request_queue *) data;
622 	struct blk_mq_hw_ctx *hctx;
623 	unsigned long next = 0;
624 	int i, next_set = 0;
625 
626 	queue_for_each_hw_ctx(q, hctx, i) {
627 		/*
628 		 * If not software queues are currently mapped to this
629 		 * hardware queue, there's nothing to check
630 		 */
631 		if (!hctx->nr_ctx || !hctx->tags)
632 			continue;
633 
634 		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
635 	}
636 
637 	if (next_set) {
638 		next = blk_rq_timeout(round_jiffies_up(next));
639 		mod_timer(&q->timeout, next);
640 	} else {
641 		queue_for_each_hw_ctx(q, hctx, i)
642 			blk_mq_tag_idle(hctx);
643 	}
644 }
645 
646 /*
647  * Reverse check our software queue for entries that we could potentially
648  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
649  * too much time checking for merges.
650  */
651 static bool blk_mq_attempt_merge(struct request_queue *q,
652 				 struct blk_mq_ctx *ctx, struct bio *bio)
653 {
654 	struct request *rq;
655 	int checked = 8;
656 
657 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
658 		int el_ret;
659 
660 		if (!checked--)
661 			break;
662 
663 		if (!blk_rq_merge_ok(rq, bio))
664 			continue;
665 
666 		el_ret = blk_try_merge(rq, bio);
667 		if (el_ret == ELEVATOR_BACK_MERGE) {
668 			if (bio_attempt_back_merge(q, rq, bio)) {
669 				ctx->rq_merged++;
670 				return true;
671 			}
672 			break;
673 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
674 			if (bio_attempt_front_merge(q, rq, bio)) {
675 				ctx->rq_merged++;
676 				return true;
677 			}
678 			break;
679 		}
680 	}
681 
682 	return false;
683 }
684 
685 /*
686  * Process software queues that have been marked busy, splicing them
687  * to the for-dispatch
688  */
689 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
690 {
691 	struct blk_mq_ctx *ctx;
692 	int i;
693 
694 	for (i = 0; i < hctx->ctx_map.map_size; i++) {
695 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
696 		unsigned int off, bit;
697 
698 		if (!bm->word)
699 			continue;
700 
701 		bit = 0;
702 		off = i * hctx->ctx_map.bits_per_word;
703 		do {
704 			bit = find_next_bit(&bm->word, bm->depth, bit);
705 			if (bit >= bm->depth)
706 				break;
707 
708 			ctx = hctx->ctxs[bit + off];
709 			clear_bit(bit, &bm->word);
710 			spin_lock(&ctx->lock);
711 			list_splice_tail_init(&ctx->rq_list, list);
712 			spin_unlock(&ctx->lock);
713 
714 			bit++;
715 		} while (1);
716 	}
717 }
718 
719 /*
720  * Run this hardware queue, pulling any software queues mapped to it in.
721  * Note that this function currently has various problems around ordering
722  * of IO. In particular, we'd like FIFO behaviour on handling existing
723  * items on the hctx->dispatch list. Ignore that for now.
724  */
725 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
726 {
727 	struct request_queue *q = hctx->queue;
728 	struct request *rq;
729 	LIST_HEAD(rq_list);
730 	int queued;
731 
732 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
733 
734 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
735 		return;
736 
737 	hctx->run++;
738 
739 	/*
740 	 * Touch any software queue that has pending entries.
741 	 */
742 	flush_busy_ctxs(hctx, &rq_list);
743 
744 	/*
745 	 * If we have previous entries on our dispatch list, grab them
746 	 * and stuff them at the front for more fair dispatch.
747 	 */
748 	if (!list_empty_careful(&hctx->dispatch)) {
749 		spin_lock(&hctx->lock);
750 		if (!list_empty(&hctx->dispatch))
751 			list_splice_init(&hctx->dispatch, &rq_list);
752 		spin_unlock(&hctx->lock);
753 	}
754 
755 	/*
756 	 * Now process all the entries, sending them to the driver.
757 	 */
758 	queued = 0;
759 	while (!list_empty(&rq_list)) {
760 		int ret;
761 
762 		rq = list_first_entry(&rq_list, struct request, queuelist);
763 		list_del_init(&rq->queuelist);
764 
765 		blk_mq_start_request(rq, list_empty(&rq_list));
766 
767 		ret = q->mq_ops->queue_rq(hctx, rq);
768 		switch (ret) {
769 		case BLK_MQ_RQ_QUEUE_OK:
770 			queued++;
771 			continue;
772 		case BLK_MQ_RQ_QUEUE_BUSY:
773 			list_add(&rq->queuelist, &rq_list);
774 			__blk_mq_requeue_request(rq);
775 			break;
776 		default:
777 			pr_err("blk-mq: bad return on queue: %d\n", ret);
778 		case BLK_MQ_RQ_QUEUE_ERROR:
779 			rq->errors = -EIO;
780 			blk_mq_end_io(rq, rq->errors);
781 			break;
782 		}
783 
784 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
785 			break;
786 	}
787 
788 	if (!queued)
789 		hctx->dispatched[0]++;
790 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
791 		hctx->dispatched[ilog2(queued) + 1]++;
792 
793 	/*
794 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
795 	 * that is where we will continue on next queue run.
796 	 */
797 	if (!list_empty(&rq_list)) {
798 		spin_lock(&hctx->lock);
799 		list_splice(&rq_list, &hctx->dispatch);
800 		spin_unlock(&hctx->lock);
801 	}
802 }
803 
804 /*
805  * It'd be great if the workqueue API had a way to pass
806  * in a mask and had some smarts for more clever placement.
807  * For now we just round-robin here, switching for every
808  * BLK_MQ_CPU_WORK_BATCH queued items.
809  */
810 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
811 {
812 	int cpu = hctx->next_cpu;
813 
814 	if (--hctx->next_cpu_batch <= 0) {
815 		int next_cpu;
816 
817 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
818 		if (next_cpu >= nr_cpu_ids)
819 			next_cpu = cpumask_first(hctx->cpumask);
820 
821 		hctx->next_cpu = next_cpu;
822 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
823 	}
824 
825 	return cpu;
826 }
827 
828 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
829 {
830 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
831 		return;
832 
833 	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
834 		__blk_mq_run_hw_queue(hctx);
835 	else if (hctx->queue->nr_hw_queues == 1)
836 		kblockd_schedule_delayed_work(&hctx->run_work, 0);
837 	else {
838 		unsigned int cpu;
839 
840 		cpu = blk_mq_hctx_next_cpu(hctx);
841 		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
842 	}
843 }
844 
845 void blk_mq_run_queues(struct request_queue *q, bool async)
846 {
847 	struct blk_mq_hw_ctx *hctx;
848 	int i;
849 
850 	queue_for_each_hw_ctx(q, hctx, i) {
851 		if ((!blk_mq_hctx_has_pending(hctx) &&
852 		    list_empty_careful(&hctx->dispatch)) ||
853 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
854 			continue;
855 
856 		preempt_disable();
857 		blk_mq_run_hw_queue(hctx, async);
858 		preempt_enable();
859 	}
860 }
861 EXPORT_SYMBOL(blk_mq_run_queues);
862 
863 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
864 {
865 	cancel_delayed_work(&hctx->run_work);
866 	cancel_delayed_work(&hctx->delay_work);
867 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
868 }
869 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
870 
871 void blk_mq_stop_hw_queues(struct request_queue *q)
872 {
873 	struct blk_mq_hw_ctx *hctx;
874 	int i;
875 
876 	queue_for_each_hw_ctx(q, hctx, i)
877 		blk_mq_stop_hw_queue(hctx);
878 }
879 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
880 
881 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
882 {
883 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
884 
885 	preempt_disable();
886 	__blk_mq_run_hw_queue(hctx);
887 	preempt_enable();
888 }
889 EXPORT_SYMBOL(blk_mq_start_hw_queue);
890 
891 void blk_mq_start_hw_queues(struct request_queue *q)
892 {
893 	struct blk_mq_hw_ctx *hctx;
894 	int i;
895 
896 	queue_for_each_hw_ctx(q, hctx, i)
897 		blk_mq_start_hw_queue(hctx);
898 }
899 EXPORT_SYMBOL(blk_mq_start_hw_queues);
900 
901 
902 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
903 {
904 	struct blk_mq_hw_ctx *hctx;
905 	int i;
906 
907 	queue_for_each_hw_ctx(q, hctx, i) {
908 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
909 			continue;
910 
911 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
912 		preempt_disable();
913 		blk_mq_run_hw_queue(hctx, async);
914 		preempt_enable();
915 	}
916 }
917 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
918 
919 static void blk_mq_run_work_fn(struct work_struct *work)
920 {
921 	struct blk_mq_hw_ctx *hctx;
922 
923 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
924 
925 	__blk_mq_run_hw_queue(hctx);
926 }
927 
928 static void blk_mq_delay_work_fn(struct work_struct *work)
929 {
930 	struct blk_mq_hw_ctx *hctx;
931 
932 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
933 
934 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
935 		__blk_mq_run_hw_queue(hctx);
936 }
937 
938 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
939 {
940 	unsigned long tmo = msecs_to_jiffies(msecs);
941 
942 	if (hctx->queue->nr_hw_queues == 1)
943 		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
944 	else {
945 		unsigned int cpu;
946 
947 		cpu = blk_mq_hctx_next_cpu(hctx);
948 		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
949 	}
950 }
951 EXPORT_SYMBOL(blk_mq_delay_queue);
952 
953 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
954 				    struct request *rq, bool at_head)
955 {
956 	struct blk_mq_ctx *ctx = rq->mq_ctx;
957 
958 	trace_block_rq_insert(hctx->queue, rq);
959 
960 	if (at_head)
961 		list_add(&rq->queuelist, &ctx->rq_list);
962 	else
963 		list_add_tail(&rq->queuelist, &ctx->rq_list);
964 
965 	blk_mq_hctx_mark_pending(hctx, ctx);
966 }
967 
968 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
969 		bool async)
970 {
971 	struct request_queue *q = rq->q;
972 	struct blk_mq_hw_ctx *hctx;
973 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
974 
975 	current_ctx = blk_mq_get_ctx(q);
976 	if (!cpu_online(ctx->cpu))
977 		rq->mq_ctx = ctx = current_ctx;
978 
979 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
980 
981 	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
982 	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
983 		blk_insert_flush(rq);
984 	} else {
985 		spin_lock(&ctx->lock);
986 		__blk_mq_insert_request(hctx, rq, at_head);
987 		spin_unlock(&ctx->lock);
988 	}
989 
990 	if (run_queue)
991 		blk_mq_run_hw_queue(hctx, async);
992 
993 	blk_mq_put_ctx(current_ctx);
994 }
995 
996 static void blk_mq_insert_requests(struct request_queue *q,
997 				     struct blk_mq_ctx *ctx,
998 				     struct list_head *list,
999 				     int depth,
1000 				     bool from_schedule)
1001 
1002 {
1003 	struct blk_mq_hw_ctx *hctx;
1004 	struct blk_mq_ctx *current_ctx;
1005 
1006 	trace_block_unplug(q, depth, !from_schedule);
1007 
1008 	current_ctx = blk_mq_get_ctx(q);
1009 
1010 	if (!cpu_online(ctx->cpu))
1011 		ctx = current_ctx;
1012 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1013 
1014 	/*
1015 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1016 	 * offline now
1017 	 */
1018 	spin_lock(&ctx->lock);
1019 	while (!list_empty(list)) {
1020 		struct request *rq;
1021 
1022 		rq = list_first_entry(list, struct request, queuelist);
1023 		list_del_init(&rq->queuelist);
1024 		rq->mq_ctx = ctx;
1025 		__blk_mq_insert_request(hctx, rq, false);
1026 	}
1027 	spin_unlock(&ctx->lock);
1028 
1029 	blk_mq_run_hw_queue(hctx, from_schedule);
1030 	blk_mq_put_ctx(current_ctx);
1031 }
1032 
1033 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1034 {
1035 	struct request *rqa = container_of(a, struct request, queuelist);
1036 	struct request *rqb = container_of(b, struct request, queuelist);
1037 
1038 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1039 		 (rqa->mq_ctx == rqb->mq_ctx &&
1040 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1041 }
1042 
1043 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1044 {
1045 	struct blk_mq_ctx *this_ctx;
1046 	struct request_queue *this_q;
1047 	struct request *rq;
1048 	LIST_HEAD(list);
1049 	LIST_HEAD(ctx_list);
1050 	unsigned int depth;
1051 
1052 	list_splice_init(&plug->mq_list, &list);
1053 
1054 	list_sort(NULL, &list, plug_ctx_cmp);
1055 
1056 	this_q = NULL;
1057 	this_ctx = NULL;
1058 	depth = 0;
1059 
1060 	while (!list_empty(&list)) {
1061 		rq = list_entry_rq(list.next);
1062 		list_del_init(&rq->queuelist);
1063 		BUG_ON(!rq->q);
1064 		if (rq->mq_ctx != this_ctx) {
1065 			if (this_ctx) {
1066 				blk_mq_insert_requests(this_q, this_ctx,
1067 							&ctx_list, depth,
1068 							from_schedule);
1069 			}
1070 
1071 			this_ctx = rq->mq_ctx;
1072 			this_q = rq->q;
1073 			depth = 0;
1074 		}
1075 
1076 		depth++;
1077 		list_add_tail(&rq->queuelist, &ctx_list);
1078 	}
1079 
1080 	/*
1081 	 * If 'this_ctx' is set, we know we have entries to complete
1082 	 * on 'ctx_list'. Do those.
1083 	 */
1084 	if (this_ctx) {
1085 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1086 				       from_schedule);
1087 	}
1088 }
1089 
1090 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1091 {
1092 	init_request_from_bio(rq, bio);
1093 
1094 	if (blk_do_io_stat(rq))
1095 		blk_account_io_start(rq, 1);
1096 }
1097 
1098 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1099 					 struct blk_mq_ctx *ctx,
1100 					 struct request *rq, struct bio *bio)
1101 {
1102 	struct request_queue *q = hctx->queue;
1103 
1104 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1105 		blk_mq_bio_to_request(rq, bio);
1106 		spin_lock(&ctx->lock);
1107 insert_rq:
1108 		__blk_mq_insert_request(hctx, rq, false);
1109 		spin_unlock(&ctx->lock);
1110 		return false;
1111 	} else {
1112 		spin_lock(&ctx->lock);
1113 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1114 			blk_mq_bio_to_request(rq, bio);
1115 			goto insert_rq;
1116 		}
1117 
1118 		spin_unlock(&ctx->lock);
1119 		__blk_mq_free_request(hctx, ctx, rq);
1120 		return true;
1121 	}
1122 }
1123 
1124 struct blk_map_ctx {
1125 	struct blk_mq_hw_ctx *hctx;
1126 	struct blk_mq_ctx *ctx;
1127 };
1128 
1129 static struct request *blk_mq_map_request(struct request_queue *q,
1130 					  struct bio *bio,
1131 					  struct blk_map_ctx *data)
1132 {
1133 	struct blk_mq_hw_ctx *hctx;
1134 	struct blk_mq_ctx *ctx;
1135 	struct request *rq;
1136 	int rw = bio_data_dir(bio);
1137 	struct blk_mq_alloc_data alloc_data;
1138 
1139 	if (unlikely(blk_mq_queue_enter(q))) {
1140 		bio_endio(bio, -EIO);
1141 		return NULL;
1142 	}
1143 
1144 	ctx = blk_mq_get_ctx(q);
1145 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1146 
1147 	if (rw_is_sync(bio->bi_rw))
1148 		rw |= REQ_SYNC;
1149 
1150 	trace_block_getrq(q, bio, rw);
1151 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1152 			hctx);
1153 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1154 	if (unlikely(!rq)) {
1155 		__blk_mq_run_hw_queue(hctx);
1156 		blk_mq_put_ctx(ctx);
1157 		trace_block_sleeprq(q, bio, rw);
1158 
1159 		ctx = blk_mq_get_ctx(q);
1160 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1161 		blk_mq_set_alloc_data(&alloc_data, q,
1162 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1163 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1164 		ctx = alloc_data.ctx;
1165 		hctx = alloc_data.hctx;
1166 	}
1167 
1168 	hctx->queued++;
1169 	data->hctx = hctx;
1170 	data->ctx = ctx;
1171 	return rq;
1172 }
1173 
1174 /*
1175  * Multiple hardware queue variant. This will not use per-process plugs,
1176  * but will attempt to bypass the hctx queueing if we can go straight to
1177  * hardware for SYNC IO.
1178  */
1179 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1180 {
1181 	const int is_sync = rw_is_sync(bio->bi_rw);
1182 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1183 	struct blk_map_ctx data;
1184 	struct request *rq;
1185 
1186 	blk_queue_bounce(q, &bio);
1187 
1188 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1189 		bio_endio(bio, -EIO);
1190 		return;
1191 	}
1192 
1193 	rq = blk_mq_map_request(q, bio, &data);
1194 	if (unlikely(!rq))
1195 		return;
1196 
1197 	if (unlikely(is_flush_fua)) {
1198 		blk_mq_bio_to_request(rq, bio);
1199 		blk_insert_flush(rq);
1200 		goto run_queue;
1201 	}
1202 
1203 	if (is_sync) {
1204 		int ret;
1205 
1206 		blk_mq_bio_to_request(rq, bio);
1207 		blk_mq_start_request(rq, true);
1208 
1209 		/*
1210 		 * For OK queue, we are done. For error, kill it. Any other
1211 		 * error (busy), just add it to our list as we previously
1212 		 * would have done
1213 		 */
1214 		ret = q->mq_ops->queue_rq(data.hctx, rq);
1215 		if (ret == BLK_MQ_RQ_QUEUE_OK)
1216 			goto done;
1217 		else {
1218 			__blk_mq_requeue_request(rq);
1219 
1220 			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1221 				rq->errors = -EIO;
1222 				blk_mq_end_io(rq, rq->errors);
1223 				goto done;
1224 			}
1225 		}
1226 	}
1227 
1228 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1229 		/*
1230 		 * For a SYNC request, send it to the hardware immediately. For
1231 		 * an ASYNC request, just ensure that we run it later on. The
1232 		 * latter allows for merging opportunities and more efficient
1233 		 * dispatching.
1234 		 */
1235 run_queue:
1236 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1237 	}
1238 done:
1239 	blk_mq_put_ctx(data.ctx);
1240 }
1241 
1242 /*
1243  * Single hardware queue variant. This will attempt to use any per-process
1244  * plug for merging and IO deferral.
1245  */
1246 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1247 {
1248 	const int is_sync = rw_is_sync(bio->bi_rw);
1249 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1250 	unsigned int use_plug, request_count = 0;
1251 	struct blk_map_ctx data;
1252 	struct request *rq;
1253 
1254 	/*
1255 	 * If we have multiple hardware queues, just go directly to
1256 	 * one of those for sync IO.
1257 	 */
1258 	use_plug = !is_flush_fua && !is_sync;
1259 
1260 	blk_queue_bounce(q, &bio);
1261 
1262 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1263 		bio_endio(bio, -EIO);
1264 		return;
1265 	}
1266 
1267 	if (use_plug && !blk_queue_nomerges(q) &&
1268 	    blk_attempt_plug_merge(q, bio, &request_count))
1269 		return;
1270 
1271 	rq = blk_mq_map_request(q, bio, &data);
1272 	if (unlikely(!rq))
1273 		return;
1274 
1275 	if (unlikely(is_flush_fua)) {
1276 		blk_mq_bio_to_request(rq, bio);
1277 		blk_insert_flush(rq);
1278 		goto run_queue;
1279 	}
1280 
1281 	/*
1282 	 * A task plug currently exists. Since this is completely lockless,
1283 	 * utilize that to temporarily store requests until the task is
1284 	 * either done or scheduled away.
1285 	 */
1286 	if (use_plug) {
1287 		struct blk_plug *plug = current->plug;
1288 
1289 		if (plug) {
1290 			blk_mq_bio_to_request(rq, bio);
1291 			if (list_empty(&plug->mq_list))
1292 				trace_block_plug(q);
1293 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1294 				blk_flush_plug_list(plug, false);
1295 				trace_block_plug(q);
1296 			}
1297 			list_add_tail(&rq->queuelist, &plug->mq_list);
1298 			blk_mq_put_ctx(data.ctx);
1299 			return;
1300 		}
1301 	}
1302 
1303 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1304 		/*
1305 		 * For a SYNC request, send it to the hardware immediately. For
1306 		 * an ASYNC request, just ensure that we run it later on. The
1307 		 * latter allows for merging opportunities and more efficient
1308 		 * dispatching.
1309 		 */
1310 run_queue:
1311 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1312 	}
1313 
1314 	blk_mq_put_ctx(data.ctx);
1315 }
1316 
1317 /*
1318  * Default mapping to a software queue, since we use one per CPU.
1319  */
1320 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1321 {
1322 	return q->queue_hw_ctx[q->mq_map[cpu]];
1323 }
1324 EXPORT_SYMBOL(blk_mq_map_queue);
1325 
1326 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1327 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1328 {
1329 	struct page *page;
1330 
1331 	if (tags->rqs && set->ops->exit_request) {
1332 		int i;
1333 
1334 		for (i = 0; i < tags->nr_tags; i++) {
1335 			if (!tags->rqs[i])
1336 				continue;
1337 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1338 						hctx_idx, i);
1339 		}
1340 	}
1341 
1342 	while (!list_empty(&tags->page_list)) {
1343 		page = list_first_entry(&tags->page_list, struct page, lru);
1344 		list_del_init(&page->lru);
1345 		__free_pages(page, page->private);
1346 	}
1347 
1348 	kfree(tags->rqs);
1349 
1350 	blk_mq_free_tags(tags);
1351 }
1352 
1353 static size_t order_to_size(unsigned int order)
1354 {
1355 	return (size_t)PAGE_SIZE << order;
1356 }
1357 
1358 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1359 		unsigned int hctx_idx)
1360 {
1361 	struct blk_mq_tags *tags;
1362 	unsigned int i, j, entries_per_page, max_order = 4;
1363 	size_t rq_size, left;
1364 
1365 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1366 				set->numa_node);
1367 	if (!tags)
1368 		return NULL;
1369 
1370 	INIT_LIST_HEAD(&tags->page_list);
1371 
1372 	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1373 					GFP_KERNEL, set->numa_node);
1374 	if (!tags->rqs) {
1375 		blk_mq_free_tags(tags);
1376 		return NULL;
1377 	}
1378 
1379 	/*
1380 	 * rq_size is the size of the request plus driver payload, rounded
1381 	 * to the cacheline size
1382 	 */
1383 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1384 				cache_line_size());
1385 	left = rq_size * set->queue_depth;
1386 
1387 	for (i = 0; i < set->queue_depth; ) {
1388 		int this_order = max_order;
1389 		struct page *page;
1390 		int to_do;
1391 		void *p;
1392 
1393 		while (left < order_to_size(this_order - 1) && this_order)
1394 			this_order--;
1395 
1396 		do {
1397 			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1398 						this_order);
1399 			if (page)
1400 				break;
1401 			if (!this_order--)
1402 				break;
1403 			if (order_to_size(this_order) < rq_size)
1404 				break;
1405 		} while (1);
1406 
1407 		if (!page)
1408 			goto fail;
1409 
1410 		page->private = this_order;
1411 		list_add_tail(&page->lru, &tags->page_list);
1412 
1413 		p = page_address(page);
1414 		entries_per_page = order_to_size(this_order) / rq_size;
1415 		to_do = min(entries_per_page, set->queue_depth - i);
1416 		left -= to_do * rq_size;
1417 		for (j = 0; j < to_do; j++) {
1418 			tags->rqs[i] = p;
1419 			if (set->ops->init_request) {
1420 				if (set->ops->init_request(set->driver_data,
1421 						tags->rqs[i], hctx_idx, i,
1422 						set->numa_node))
1423 					goto fail;
1424 			}
1425 
1426 			p += rq_size;
1427 			i++;
1428 		}
1429 	}
1430 
1431 	return tags;
1432 
1433 fail:
1434 	pr_warn("%s: failed to allocate requests\n", __func__);
1435 	blk_mq_free_rq_map(set, tags, hctx_idx);
1436 	return NULL;
1437 }
1438 
1439 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1440 {
1441 	kfree(bitmap->map);
1442 }
1443 
1444 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1445 {
1446 	unsigned int bpw = 8, total, num_maps, i;
1447 
1448 	bitmap->bits_per_word = bpw;
1449 
1450 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1451 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1452 					GFP_KERNEL, node);
1453 	if (!bitmap->map)
1454 		return -ENOMEM;
1455 
1456 	bitmap->map_size = num_maps;
1457 
1458 	total = nr_cpu_ids;
1459 	for (i = 0; i < num_maps; i++) {
1460 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1461 		total -= bitmap->map[i].depth;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1468 {
1469 	struct request_queue *q = hctx->queue;
1470 	struct blk_mq_ctx *ctx;
1471 	LIST_HEAD(tmp);
1472 
1473 	/*
1474 	 * Move ctx entries to new CPU, if this one is going away.
1475 	 */
1476 	ctx = __blk_mq_get_ctx(q, cpu);
1477 
1478 	spin_lock(&ctx->lock);
1479 	if (!list_empty(&ctx->rq_list)) {
1480 		list_splice_init(&ctx->rq_list, &tmp);
1481 		blk_mq_hctx_clear_pending(hctx, ctx);
1482 	}
1483 	spin_unlock(&ctx->lock);
1484 
1485 	if (list_empty(&tmp))
1486 		return NOTIFY_OK;
1487 
1488 	ctx = blk_mq_get_ctx(q);
1489 	spin_lock(&ctx->lock);
1490 
1491 	while (!list_empty(&tmp)) {
1492 		struct request *rq;
1493 
1494 		rq = list_first_entry(&tmp, struct request, queuelist);
1495 		rq->mq_ctx = ctx;
1496 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1497 	}
1498 
1499 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1500 	blk_mq_hctx_mark_pending(hctx, ctx);
1501 
1502 	spin_unlock(&ctx->lock);
1503 
1504 	blk_mq_run_hw_queue(hctx, true);
1505 	blk_mq_put_ctx(ctx);
1506 	return NOTIFY_OK;
1507 }
1508 
1509 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1510 {
1511 	struct request_queue *q = hctx->queue;
1512 	struct blk_mq_tag_set *set = q->tag_set;
1513 
1514 	if (set->tags[hctx->queue_num])
1515 		return NOTIFY_OK;
1516 
1517 	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1518 	if (!set->tags[hctx->queue_num])
1519 		return NOTIFY_STOP;
1520 
1521 	hctx->tags = set->tags[hctx->queue_num];
1522 	return NOTIFY_OK;
1523 }
1524 
1525 static int blk_mq_hctx_notify(void *data, unsigned long action,
1526 			      unsigned int cpu)
1527 {
1528 	struct blk_mq_hw_ctx *hctx = data;
1529 
1530 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1531 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1532 	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1533 		return blk_mq_hctx_cpu_online(hctx, cpu);
1534 
1535 	return NOTIFY_OK;
1536 }
1537 
1538 static void blk_mq_exit_hw_queues(struct request_queue *q,
1539 		struct blk_mq_tag_set *set, int nr_queue)
1540 {
1541 	struct blk_mq_hw_ctx *hctx;
1542 	unsigned int i;
1543 
1544 	queue_for_each_hw_ctx(q, hctx, i) {
1545 		if (i == nr_queue)
1546 			break;
1547 
1548 		blk_mq_tag_idle(hctx);
1549 
1550 		if (set->ops->exit_hctx)
1551 			set->ops->exit_hctx(hctx, i);
1552 
1553 		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1554 		kfree(hctx->ctxs);
1555 		blk_mq_free_bitmap(&hctx->ctx_map);
1556 	}
1557 
1558 }
1559 
1560 static void blk_mq_free_hw_queues(struct request_queue *q,
1561 		struct blk_mq_tag_set *set)
1562 {
1563 	struct blk_mq_hw_ctx *hctx;
1564 	unsigned int i;
1565 
1566 	queue_for_each_hw_ctx(q, hctx, i) {
1567 		free_cpumask_var(hctx->cpumask);
1568 		kfree(hctx);
1569 	}
1570 }
1571 
1572 static int blk_mq_init_hw_queues(struct request_queue *q,
1573 		struct blk_mq_tag_set *set)
1574 {
1575 	struct blk_mq_hw_ctx *hctx;
1576 	unsigned int i;
1577 
1578 	/*
1579 	 * Initialize hardware queues
1580 	 */
1581 	queue_for_each_hw_ctx(q, hctx, i) {
1582 		int node;
1583 
1584 		node = hctx->numa_node;
1585 		if (node == NUMA_NO_NODE)
1586 			node = hctx->numa_node = set->numa_node;
1587 
1588 		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1589 		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1590 		spin_lock_init(&hctx->lock);
1591 		INIT_LIST_HEAD(&hctx->dispatch);
1592 		hctx->queue = q;
1593 		hctx->queue_num = i;
1594 		hctx->flags = set->flags;
1595 		hctx->cmd_size = set->cmd_size;
1596 
1597 		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1598 						blk_mq_hctx_notify, hctx);
1599 		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1600 
1601 		hctx->tags = set->tags[i];
1602 
1603 		/*
1604 		 * Allocate space for all possible cpus to avoid allocation in
1605 		 * runtime
1606 		 */
1607 		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1608 						GFP_KERNEL, node);
1609 		if (!hctx->ctxs)
1610 			break;
1611 
1612 		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1613 			break;
1614 
1615 		hctx->nr_ctx = 0;
1616 
1617 		if (set->ops->init_hctx &&
1618 		    set->ops->init_hctx(hctx, set->driver_data, i))
1619 			break;
1620 	}
1621 
1622 	if (i == q->nr_hw_queues)
1623 		return 0;
1624 
1625 	/*
1626 	 * Init failed
1627 	 */
1628 	blk_mq_exit_hw_queues(q, set, i);
1629 
1630 	return 1;
1631 }
1632 
1633 static void blk_mq_init_cpu_queues(struct request_queue *q,
1634 				   unsigned int nr_hw_queues)
1635 {
1636 	unsigned int i;
1637 
1638 	for_each_possible_cpu(i) {
1639 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1640 		struct blk_mq_hw_ctx *hctx;
1641 
1642 		memset(__ctx, 0, sizeof(*__ctx));
1643 		__ctx->cpu = i;
1644 		spin_lock_init(&__ctx->lock);
1645 		INIT_LIST_HEAD(&__ctx->rq_list);
1646 		__ctx->queue = q;
1647 
1648 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1649 		if (!cpu_online(i))
1650 			continue;
1651 
1652 		hctx = q->mq_ops->map_queue(q, i);
1653 		cpumask_set_cpu(i, hctx->cpumask);
1654 		hctx->nr_ctx++;
1655 
1656 		/*
1657 		 * Set local node, IFF we have more than one hw queue. If
1658 		 * not, we remain on the home node of the device
1659 		 */
1660 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1661 			hctx->numa_node = cpu_to_node(i);
1662 	}
1663 }
1664 
1665 static void blk_mq_map_swqueue(struct request_queue *q)
1666 {
1667 	unsigned int i;
1668 	struct blk_mq_hw_ctx *hctx;
1669 	struct blk_mq_ctx *ctx;
1670 
1671 	queue_for_each_hw_ctx(q, hctx, i) {
1672 		cpumask_clear(hctx->cpumask);
1673 		hctx->nr_ctx = 0;
1674 	}
1675 
1676 	/*
1677 	 * Map software to hardware queues
1678 	 */
1679 	queue_for_each_ctx(q, ctx, i) {
1680 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1681 		if (!cpu_online(i))
1682 			continue;
1683 
1684 		hctx = q->mq_ops->map_queue(q, i);
1685 		cpumask_set_cpu(i, hctx->cpumask);
1686 		ctx->index_hw = hctx->nr_ctx;
1687 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1688 	}
1689 
1690 	queue_for_each_hw_ctx(q, hctx, i) {
1691 		/*
1692 		 * If not software queues are mapped to this hardware queue,
1693 		 * disable it and free the request entries
1694 		 */
1695 		if (!hctx->nr_ctx) {
1696 			struct blk_mq_tag_set *set = q->tag_set;
1697 
1698 			if (set->tags[i]) {
1699 				blk_mq_free_rq_map(set, set->tags[i], i);
1700 				set->tags[i] = NULL;
1701 				hctx->tags = NULL;
1702 			}
1703 			continue;
1704 		}
1705 
1706 		/*
1707 		 * Initialize batch roundrobin counts
1708 		 */
1709 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1710 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1711 	}
1712 }
1713 
1714 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1715 {
1716 	struct blk_mq_hw_ctx *hctx;
1717 	struct request_queue *q;
1718 	bool shared;
1719 	int i;
1720 
1721 	if (set->tag_list.next == set->tag_list.prev)
1722 		shared = false;
1723 	else
1724 		shared = true;
1725 
1726 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1727 		blk_mq_freeze_queue(q);
1728 
1729 		queue_for_each_hw_ctx(q, hctx, i) {
1730 			if (shared)
1731 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1732 			else
1733 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1734 		}
1735 		blk_mq_unfreeze_queue(q);
1736 	}
1737 }
1738 
1739 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1740 {
1741 	struct blk_mq_tag_set *set = q->tag_set;
1742 
1743 	blk_mq_freeze_queue(q);
1744 
1745 	mutex_lock(&set->tag_list_lock);
1746 	list_del_init(&q->tag_set_list);
1747 	blk_mq_update_tag_set_depth(set);
1748 	mutex_unlock(&set->tag_list_lock);
1749 
1750 	blk_mq_unfreeze_queue(q);
1751 }
1752 
1753 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1754 				     struct request_queue *q)
1755 {
1756 	q->tag_set = set;
1757 
1758 	mutex_lock(&set->tag_list_lock);
1759 	list_add_tail(&q->tag_set_list, &set->tag_list);
1760 	blk_mq_update_tag_set_depth(set);
1761 	mutex_unlock(&set->tag_list_lock);
1762 }
1763 
1764 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1765 {
1766 	struct blk_mq_hw_ctx **hctxs;
1767 	struct blk_mq_ctx __percpu *ctx;
1768 	struct request_queue *q;
1769 	unsigned int *map;
1770 	int i;
1771 
1772 	ctx = alloc_percpu(struct blk_mq_ctx);
1773 	if (!ctx)
1774 		return ERR_PTR(-ENOMEM);
1775 
1776 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1777 			set->numa_node);
1778 
1779 	if (!hctxs)
1780 		goto err_percpu;
1781 
1782 	map = blk_mq_make_queue_map(set);
1783 	if (!map)
1784 		goto err_map;
1785 
1786 	for (i = 0; i < set->nr_hw_queues; i++) {
1787 		int node = blk_mq_hw_queue_to_node(map, i);
1788 
1789 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1790 					GFP_KERNEL, node);
1791 		if (!hctxs[i])
1792 			goto err_hctxs;
1793 
1794 		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1795 			goto err_hctxs;
1796 
1797 		atomic_set(&hctxs[i]->nr_active, 0);
1798 		hctxs[i]->numa_node = node;
1799 		hctxs[i]->queue_num = i;
1800 	}
1801 
1802 	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1803 	if (!q)
1804 		goto err_hctxs;
1805 
1806 	if (percpu_counter_init(&q->mq_usage_counter, 0))
1807 		goto err_map;
1808 
1809 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1810 	blk_queue_rq_timeout(q, 30000);
1811 
1812 	q->nr_queues = nr_cpu_ids;
1813 	q->nr_hw_queues = set->nr_hw_queues;
1814 	q->mq_map = map;
1815 
1816 	q->queue_ctx = ctx;
1817 	q->queue_hw_ctx = hctxs;
1818 
1819 	q->mq_ops = set->ops;
1820 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1821 
1822 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1823 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1824 
1825 	q->sg_reserved_size = INT_MAX;
1826 
1827 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1828 	INIT_LIST_HEAD(&q->requeue_list);
1829 	spin_lock_init(&q->requeue_lock);
1830 
1831 	if (q->nr_hw_queues > 1)
1832 		blk_queue_make_request(q, blk_mq_make_request);
1833 	else
1834 		blk_queue_make_request(q, blk_sq_make_request);
1835 
1836 	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1837 	if (set->timeout)
1838 		blk_queue_rq_timeout(q, set->timeout);
1839 
1840 	/*
1841 	 * Do this after blk_queue_make_request() overrides it...
1842 	 */
1843 	q->nr_requests = set->queue_depth;
1844 
1845 	if (set->ops->complete)
1846 		blk_queue_softirq_done(q, set->ops->complete);
1847 
1848 	blk_mq_init_flush(q);
1849 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1850 
1851 	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1852 				set->cmd_size, cache_line_size()),
1853 				GFP_KERNEL);
1854 	if (!q->flush_rq)
1855 		goto err_hw;
1856 
1857 	if (blk_mq_init_hw_queues(q, set))
1858 		goto err_flush_rq;
1859 
1860 	mutex_lock(&all_q_mutex);
1861 	list_add_tail(&q->all_q_node, &all_q_list);
1862 	mutex_unlock(&all_q_mutex);
1863 
1864 	blk_mq_add_queue_tag_set(set, q);
1865 
1866 	blk_mq_map_swqueue(q);
1867 
1868 	return q;
1869 
1870 err_flush_rq:
1871 	kfree(q->flush_rq);
1872 err_hw:
1873 	blk_cleanup_queue(q);
1874 err_hctxs:
1875 	kfree(map);
1876 	for (i = 0; i < set->nr_hw_queues; i++) {
1877 		if (!hctxs[i])
1878 			break;
1879 		free_cpumask_var(hctxs[i]->cpumask);
1880 		kfree(hctxs[i]);
1881 	}
1882 err_map:
1883 	kfree(hctxs);
1884 err_percpu:
1885 	free_percpu(ctx);
1886 	return ERR_PTR(-ENOMEM);
1887 }
1888 EXPORT_SYMBOL(blk_mq_init_queue);
1889 
1890 void blk_mq_free_queue(struct request_queue *q)
1891 {
1892 	struct blk_mq_tag_set	*set = q->tag_set;
1893 
1894 	blk_mq_del_queue_tag_set(q);
1895 
1896 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1897 	blk_mq_free_hw_queues(q, set);
1898 
1899 	percpu_counter_destroy(&q->mq_usage_counter);
1900 
1901 	free_percpu(q->queue_ctx);
1902 	kfree(q->queue_hw_ctx);
1903 	kfree(q->mq_map);
1904 
1905 	q->queue_ctx = NULL;
1906 	q->queue_hw_ctx = NULL;
1907 	q->mq_map = NULL;
1908 
1909 	mutex_lock(&all_q_mutex);
1910 	list_del_init(&q->all_q_node);
1911 	mutex_unlock(&all_q_mutex);
1912 }
1913 
1914 /* Basically redo blk_mq_init_queue with queue frozen */
1915 static void blk_mq_queue_reinit(struct request_queue *q)
1916 {
1917 	blk_mq_freeze_queue(q);
1918 
1919 	blk_mq_sysfs_unregister(q);
1920 
1921 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1922 
1923 	/*
1924 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1925 	 * we should change hctx numa_node according to new topology (this
1926 	 * involves free and re-allocate memory, worthy doing?)
1927 	 */
1928 
1929 	blk_mq_map_swqueue(q);
1930 
1931 	blk_mq_sysfs_register(q);
1932 
1933 	blk_mq_unfreeze_queue(q);
1934 }
1935 
1936 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1937 				      unsigned long action, void *hcpu)
1938 {
1939 	struct request_queue *q;
1940 
1941 	/*
1942 	 * Before new mappings are established, hotadded cpu might already
1943 	 * start handling requests. This doesn't break anything as we map
1944 	 * offline CPUs to first hardware queue. We will re-init the queue
1945 	 * below to get optimal settings.
1946 	 */
1947 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1948 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1949 		return NOTIFY_OK;
1950 
1951 	mutex_lock(&all_q_mutex);
1952 	list_for_each_entry(q, &all_q_list, all_q_node)
1953 		blk_mq_queue_reinit(q);
1954 	mutex_unlock(&all_q_mutex);
1955 	return NOTIFY_OK;
1956 }
1957 
1958 /*
1959  * Alloc a tag set to be associated with one or more request queues.
1960  * May fail with EINVAL for various error conditions. May adjust the
1961  * requested depth down, if if it too large. In that case, the set
1962  * value will be stored in set->queue_depth.
1963  */
1964 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1965 {
1966 	int i;
1967 
1968 	if (!set->nr_hw_queues)
1969 		return -EINVAL;
1970 	if (!set->queue_depth)
1971 		return -EINVAL;
1972 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1973 		return -EINVAL;
1974 
1975 	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1976 		return -EINVAL;
1977 
1978 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1979 		pr_info("blk-mq: reduced tag depth to %u\n",
1980 			BLK_MQ_MAX_DEPTH);
1981 		set->queue_depth = BLK_MQ_MAX_DEPTH;
1982 	}
1983 
1984 	set->tags = kmalloc_node(set->nr_hw_queues *
1985 				 sizeof(struct blk_mq_tags *),
1986 				 GFP_KERNEL, set->numa_node);
1987 	if (!set->tags)
1988 		goto out;
1989 
1990 	for (i = 0; i < set->nr_hw_queues; i++) {
1991 		set->tags[i] = blk_mq_init_rq_map(set, i);
1992 		if (!set->tags[i])
1993 			goto out_unwind;
1994 	}
1995 
1996 	mutex_init(&set->tag_list_lock);
1997 	INIT_LIST_HEAD(&set->tag_list);
1998 
1999 	return 0;
2000 
2001 out_unwind:
2002 	while (--i >= 0)
2003 		blk_mq_free_rq_map(set, set->tags[i], i);
2004 out:
2005 	return -ENOMEM;
2006 }
2007 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2008 
2009 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2010 {
2011 	int i;
2012 
2013 	for (i = 0; i < set->nr_hw_queues; i++) {
2014 		if (set->tags[i])
2015 			blk_mq_free_rq_map(set, set->tags[i], i);
2016 	}
2017 
2018 	kfree(set->tags);
2019 }
2020 EXPORT_SYMBOL(blk_mq_free_tag_set);
2021 
2022 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2023 {
2024 	struct blk_mq_tag_set *set = q->tag_set;
2025 	struct blk_mq_hw_ctx *hctx;
2026 	int i, ret;
2027 
2028 	if (!set || nr > set->queue_depth)
2029 		return -EINVAL;
2030 
2031 	ret = 0;
2032 	queue_for_each_hw_ctx(q, hctx, i) {
2033 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2034 		if (ret)
2035 			break;
2036 	}
2037 
2038 	if (!ret)
2039 		q->nr_requests = nr;
2040 
2041 	return ret;
2042 }
2043 
2044 void blk_mq_disable_hotplug(void)
2045 {
2046 	mutex_lock(&all_q_mutex);
2047 }
2048 
2049 void blk_mq_enable_hotplug(void)
2050 {
2051 	mutex_unlock(&all_q_mutex);
2052 }
2053 
2054 static int __init blk_mq_init(void)
2055 {
2056 	blk_mq_cpu_init();
2057 
2058 	/* Must be called after percpu_counter_hotcpu_callback() */
2059 	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2060 
2061 	return 0;
2062 }
2063 subsys_initcall(blk_mq_init);
2064