1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 26 #include <trace/events/block.h> 27 28 #include <linux/blk-mq.h> 29 #include "blk.h" 30 #include "blk-mq.h" 31 #include "blk-mq-tag.h" 32 33 static DEFINE_MUTEX(all_q_mutex); 34 static LIST_HEAD(all_q_list); 35 36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 37 38 /* 39 * Check if any of the ctx's have pending work in this hardware queue 40 */ 41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 42 { 43 unsigned int i; 44 45 for (i = 0; i < hctx->ctx_map.size; i++) 46 if (hctx->ctx_map.map[i].word) 47 return true; 48 49 return false; 50 } 51 52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 53 struct blk_mq_ctx *ctx) 54 { 55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 56 } 57 58 #define CTX_TO_BIT(hctx, ctx) \ 59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 60 61 /* 62 * Mark this ctx as having pending work in this hardware queue 63 */ 64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 65 struct blk_mq_ctx *ctx) 66 { 67 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 68 69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 71 } 72 73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 74 struct blk_mq_ctx *ctx) 75 { 76 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 77 78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 79 } 80 81 void blk_mq_freeze_queue_start(struct request_queue *q) 82 { 83 int freeze_depth; 84 85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 86 if (freeze_depth == 1) { 87 percpu_ref_kill(&q->q_usage_counter); 88 blk_mq_run_hw_queues(q, false); 89 } 90 } 91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 92 93 static void blk_mq_freeze_queue_wait(struct request_queue *q) 94 { 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 96 } 97 98 /* 99 * Guarantee no request is in use, so we can change any data structure of 100 * the queue afterward. 101 */ 102 void blk_freeze_queue(struct request_queue *q) 103 { 104 /* 105 * In the !blk_mq case we are only calling this to kill the 106 * q_usage_counter, otherwise this increases the freeze depth 107 * and waits for it to return to zero. For this reason there is 108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 109 * exported to drivers as the only user for unfreeze is blk_mq. 110 */ 111 blk_mq_freeze_queue_start(q); 112 blk_mq_freeze_queue_wait(q); 113 } 114 115 void blk_mq_freeze_queue(struct request_queue *q) 116 { 117 /* 118 * ...just an alias to keep freeze and unfreeze actions balanced 119 * in the blk_mq_* namespace 120 */ 121 blk_freeze_queue(q); 122 } 123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 124 125 void blk_mq_unfreeze_queue(struct request_queue *q) 126 { 127 int freeze_depth; 128 129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 130 WARN_ON_ONCE(freeze_depth < 0); 131 if (!freeze_depth) { 132 percpu_ref_reinit(&q->q_usage_counter); 133 wake_up_all(&q->mq_freeze_wq); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 137 138 void blk_mq_wake_waiters(struct request_queue *q) 139 { 140 struct blk_mq_hw_ctx *hctx; 141 unsigned int i; 142 143 queue_for_each_hw_ctx(q, hctx, i) 144 if (blk_mq_hw_queue_mapped(hctx)) 145 blk_mq_tag_wakeup_all(hctx->tags, true); 146 147 /* 148 * If we are called because the queue has now been marked as 149 * dying, we need to ensure that processes currently waiting on 150 * the queue are notified as well. 151 */ 152 wake_up_all(&q->mq_freeze_wq); 153 } 154 155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 156 { 157 return blk_mq_has_free_tags(hctx->tags); 158 } 159 EXPORT_SYMBOL(blk_mq_can_queue); 160 161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 162 struct request *rq, int op, 163 unsigned int op_flags) 164 { 165 if (blk_queue_io_stat(q)) 166 op_flags |= REQ_IO_STAT; 167 168 INIT_LIST_HEAD(&rq->queuelist); 169 /* csd/requeue_work/fifo_time is initialized before use */ 170 rq->q = q; 171 rq->mq_ctx = ctx; 172 req_set_op_attrs(rq, op, op_flags); 173 /* do not touch atomic flags, it needs atomic ops against the timer */ 174 rq->cpu = -1; 175 INIT_HLIST_NODE(&rq->hash); 176 RB_CLEAR_NODE(&rq->rb_node); 177 rq->rq_disk = NULL; 178 rq->part = NULL; 179 rq->start_time = jiffies; 180 #ifdef CONFIG_BLK_CGROUP 181 rq->rl = NULL; 182 set_start_time_ns(rq); 183 rq->io_start_time_ns = 0; 184 #endif 185 rq->nr_phys_segments = 0; 186 #if defined(CONFIG_BLK_DEV_INTEGRITY) 187 rq->nr_integrity_segments = 0; 188 #endif 189 rq->special = NULL; 190 /* tag was already set */ 191 rq->errors = 0; 192 193 rq->cmd = rq->__cmd; 194 195 rq->extra_len = 0; 196 rq->sense_len = 0; 197 rq->resid_len = 0; 198 rq->sense = NULL; 199 200 INIT_LIST_HEAD(&rq->timeout_list); 201 rq->timeout = 0; 202 203 rq->end_io = NULL; 204 rq->end_io_data = NULL; 205 rq->next_rq = NULL; 206 207 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++; 208 } 209 210 static struct request * 211 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags) 212 { 213 struct request *rq; 214 unsigned int tag; 215 216 tag = blk_mq_get_tag(data); 217 if (tag != BLK_MQ_TAG_FAIL) { 218 rq = data->hctx->tags->rqs[tag]; 219 220 if (blk_mq_tag_busy(data->hctx)) { 221 rq->cmd_flags = REQ_MQ_INFLIGHT; 222 atomic_inc(&data->hctx->nr_active); 223 } 224 225 rq->tag = tag; 226 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags); 227 return rq; 228 } 229 230 return NULL; 231 } 232 233 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 234 unsigned int flags) 235 { 236 struct blk_mq_ctx *ctx; 237 struct blk_mq_hw_ctx *hctx; 238 struct request *rq; 239 struct blk_mq_alloc_data alloc_data; 240 int ret; 241 242 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 243 if (ret) 244 return ERR_PTR(ret); 245 246 ctx = blk_mq_get_ctx(q); 247 hctx = q->mq_ops->map_queue(q, ctx->cpu); 248 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 249 250 rq = __blk_mq_alloc_request(&alloc_data, rw, 0); 251 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) { 252 __blk_mq_run_hw_queue(hctx); 253 blk_mq_put_ctx(ctx); 254 255 ctx = blk_mq_get_ctx(q); 256 hctx = q->mq_ops->map_queue(q, ctx->cpu); 257 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 258 rq = __blk_mq_alloc_request(&alloc_data, rw, 0); 259 ctx = alloc_data.ctx; 260 } 261 blk_mq_put_ctx(ctx); 262 if (!rq) { 263 blk_queue_exit(q); 264 return ERR_PTR(-EWOULDBLOCK); 265 } 266 267 rq->__data_len = 0; 268 rq->__sector = (sector_t) -1; 269 rq->bio = rq->biotail = NULL; 270 return rq; 271 } 272 EXPORT_SYMBOL(blk_mq_alloc_request); 273 274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 275 unsigned int flags, unsigned int hctx_idx) 276 { 277 struct blk_mq_hw_ctx *hctx; 278 struct blk_mq_ctx *ctx; 279 struct request *rq; 280 struct blk_mq_alloc_data alloc_data; 281 int ret; 282 283 /* 284 * If the tag allocator sleeps we could get an allocation for a 285 * different hardware context. No need to complicate the low level 286 * allocator for this for the rare use case of a command tied to 287 * a specific queue. 288 */ 289 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 290 return ERR_PTR(-EINVAL); 291 292 if (hctx_idx >= q->nr_hw_queues) 293 return ERR_PTR(-EIO); 294 295 ret = blk_queue_enter(q, true); 296 if (ret) 297 return ERR_PTR(ret); 298 299 hctx = q->queue_hw_ctx[hctx_idx]; 300 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); 301 302 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 303 rq = __blk_mq_alloc_request(&alloc_data, rw, 0); 304 if (!rq) { 305 blk_queue_exit(q); 306 return ERR_PTR(-EWOULDBLOCK); 307 } 308 309 return rq; 310 } 311 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 312 313 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 314 struct blk_mq_ctx *ctx, struct request *rq) 315 { 316 const int tag = rq->tag; 317 struct request_queue *q = rq->q; 318 319 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 320 atomic_dec(&hctx->nr_active); 321 rq->cmd_flags = 0; 322 323 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 324 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 325 blk_queue_exit(q); 326 } 327 328 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 329 { 330 struct blk_mq_ctx *ctx = rq->mq_ctx; 331 332 ctx->rq_completed[rq_is_sync(rq)]++; 333 __blk_mq_free_request(hctx, ctx, rq); 334 335 } 336 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 337 338 void blk_mq_free_request(struct request *rq) 339 { 340 struct blk_mq_hw_ctx *hctx; 341 struct request_queue *q = rq->q; 342 343 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 344 blk_mq_free_hctx_request(hctx, rq); 345 } 346 EXPORT_SYMBOL_GPL(blk_mq_free_request); 347 348 inline void __blk_mq_end_request(struct request *rq, int error) 349 { 350 blk_account_io_done(rq); 351 352 if (rq->end_io) { 353 rq->end_io(rq, error); 354 } else { 355 if (unlikely(blk_bidi_rq(rq))) 356 blk_mq_free_request(rq->next_rq); 357 blk_mq_free_request(rq); 358 } 359 } 360 EXPORT_SYMBOL(__blk_mq_end_request); 361 362 void blk_mq_end_request(struct request *rq, int error) 363 { 364 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 365 BUG(); 366 __blk_mq_end_request(rq, error); 367 } 368 EXPORT_SYMBOL(blk_mq_end_request); 369 370 static void __blk_mq_complete_request_remote(void *data) 371 { 372 struct request *rq = data; 373 374 rq->q->softirq_done_fn(rq); 375 } 376 377 static void blk_mq_ipi_complete_request(struct request *rq) 378 { 379 struct blk_mq_ctx *ctx = rq->mq_ctx; 380 bool shared = false; 381 int cpu; 382 383 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 384 rq->q->softirq_done_fn(rq); 385 return; 386 } 387 388 cpu = get_cpu(); 389 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 390 shared = cpus_share_cache(cpu, ctx->cpu); 391 392 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 393 rq->csd.func = __blk_mq_complete_request_remote; 394 rq->csd.info = rq; 395 rq->csd.flags = 0; 396 smp_call_function_single_async(ctx->cpu, &rq->csd); 397 } else { 398 rq->q->softirq_done_fn(rq); 399 } 400 put_cpu(); 401 } 402 403 static void __blk_mq_complete_request(struct request *rq) 404 { 405 struct request_queue *q = rq->q; 406 407 if (!q->softirq_done_fn) 408 blk_mq_end_request(rq, rq->errors); 409 else 410 blk_mq_ipi_complete_request(rq); 411 } 412 413 /** 414 * blk_mq_complete_request - end I/O on a request 415 * @rq: the request being processed 416 * 417 * Description: 418 * Ends all I/O on a request. It does not handle partial completions. 419 * The actual completion happens out-of-order, through a IPI handler. 420 **/ 421 void blk_mq_complete_request(struct request *rq, int error) 422 { 423 struct request_queue *q = rq->q; 424 425 if (unlikely(blk_should_fake_timeout(q))) 426 return; 427 if (!blk_mark_rq_complete(rq)) { 428 rq->errors = error; 429 __blk_mq_complete_request(rq); 430 } 431 } 432 EXPORT_SYMBOL(blk_mq_complete_request); 433 434 int blk_mq_request_started(struct request *rq) 435 { 436 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 437 } 438 EXPORT_SYMBOL_GPL(blk_mq_request_started); 439 440 void blk_mq_start_request(struct request *rq) 441 { 442 struct request_queue *q = rq->q; 443 444 trace_block_rq_issue(q, rq); 445 446 rq->resid_len = blk_rq_bytes(rq); 447 if (unlikely(blk_bidi_rq(rq))) 448 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 449 450 blk_add_timer(rq); 451 452 /* 453 * Ensure that ->deadline is visible before set the started 454 * flag and clear the completed flag. 455 */ 456 smp_mb__before_atomic(); 457 458 /* 459 * Mark us as started and clear complete. Complete might have been 460 * set if requeue raced with timeout, which then marked it as 461 * complete. So be sure to clear complete again when we start 462 * the request, otherwise we'll ignore the completion event. 463 */ 464 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 465 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 466 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 467 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 468 469 if (q->dma_drain_size && blk_rq_bytes(rq)) { 470 /* 471 * Make sure space for the drain appears. We know we can do 472 * this because max_hw_segments has been adjusted to be one 473 * fewer than the device can handle. 474 */ 475 rq->nr_phys_segments++; 476 } 477 } 478 EXPORT_SYMBOL(blk_mq_start_request); 479 480 static void __blk_mq_requeue_request(struct request *rq) 481 { 482 struct request_queue *q = rq->q; 483 484 trace_block_rq_requeue(q, rq); 485 486 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 487 if (q->dma_drain_size && blk_rq_bytes(rq)) 488 rq->nr_phys_segments--; 489 } 490 } 491 492 void blk_mq_requeue_request(struct request *rq) 493 { 494 __blk_mq_requeue_request(rq); 495 496 BUG_ON(blk_queued_rq(rq)); 497 blk_mq_add_to_requeue_list(rq, true); 498 } 499 EXPORT_SYMBOL(blk_mq_requeue_request); 500 501 static void blk_mq_requeue_work(struct work_struct *work) 502 { 503 struct request_queue *q = 504 container_of(work, struct request_queue, requeue_work); 505 LIST_HEAD(rq_list); 506 struct request *rq, *next; 507 unsigned long flags; 508 509 spin_lock_irqsave(&q->requeue_lock, flags); 510 list_splice_init(&q->requeue_list, &rq_list); 511 spin_unlock_irqrestore(&q->requeue_lock, flags); 512 513 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 514 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 515 continue; 516 517 rq->cmd_flags &= ~REQ_SOFTBARRIER; 518 list_del_init(&rq->queuelist); 519 blk_mq_insert_request(rq, true, false, false); 520 } 521 522 while (!list_empty(&rq_list)) { 523 rq = list_entry(rq_list.next, struct request, queuelist); 524 list_del_init(&rq->queuelist); 525 blk_mq_insert_request(rq, false, false, false); 526 } 527 528 /* 529 * Use the start variant of queue running here, so that running 530 * the requeue work will kick stopped queues. 531 */ 532 blk_mq_start_hw_queues(q); 533 } 534 535 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 536 { 537 struct request_queue *q = rq->q; 538 unsigned long flags; 539 540 /* 541 * We abuse this flag that is otherwise used by the I/O scheduler to 542 * request head insertation from the workqueue. 543 */ 544 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 545 546 spin_lock_irqsave(&q->requeue_lock, flags); 547 if (at_head) { 548 rq->cmd_flags |= REQ_SOFTBARRIER; 549 list_add(&rq->queuelist, &q->requeue_list); 550 } else { 551 list_add_tail(&rq->queuelist, &q->requeue_list); 552 } 553 spin_unlock_irqrestore(&q->requeue_lock, flags); 554 } 555 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 556 557 void blk_mq_cancel_requeue_work(struct request_queue *q) 558 { 559 cancel_work_sync(&q->requeue_work); 560 } 561 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 562 563 void blk_mq_kick_requeue_list(struct request_queue *q) 564 { 565 kblockd_schedule_work(&q->requeue_work); 566 } 567 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 568 569 void blk_mq_abort_requeue_list(struct request_queue *q) 570 { 571 unsigned long flags; 572 LIST_HEAD(rq_list); 573 574 spin_lock_irqsave(&q->requeue_lock, flags); 575 list_splice_init(&q->requeue_list, &rq_list); 576 spin_unlock_irqrestore(&q->requeue_lock, flags); 577 578 while (!list_empty(&rq_list)) { 579 struct request *rq; 580 581 rq = list_first_entry(&rq_list, struct request, queuelist); 582 list_del_init(&rq->queuelist); 583 rq->errors = -EIO; 584 blk_mq_end_request(rq, rq->errors); 585 } 586 } 587 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 588 589 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 590 { 591 if (tag < tags->nr_tags) 592 return tags->rqs[tag]; 593 594 return NULL; 595 } 596 EXPORT_SYMBOL(blk_mq_tag_to_rq); 597 598 struct blk_mq_timeout_data { 599 unsigned long next; 600 unsigned int next_set; 601 }; 602 603 void blk_mq_rq_timed_out(struct request *req, bool reserved) 604 { 605 struct blk_mq_ops *ops = req->q->mq_ops; 606 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 607 608 /* 609 * We know that complete is set at this point. If STARTED isn't set 610 * anymore, then the request isn't active and the "timeout" should 611 * just be ignored. This can happen due to the bitflag ordering. 612 * Timeout first checks if STARTED is set, and if it is, assumes 613 * the request is active. But if we race with completion, then 614 * we both flags will get cleared. So check here again, and ignore 615 * a timeout event with a request that isn't active. 616 */ 617 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 618 return; 619 620 if (ops->timeout) 621 ret = ops->timeout(req, reserved); 622 623 switch (ret) { 624 case BLK_EH_HANDLED: 625 __blk_mq_complete_request(req); 626 break; 627 case BLK_EH_RESET_TIMER: 628 blk_add_timer(req); 629 blk_clear_rq_complete(req); 630 break; 631 case BLK_EH_NOT_HANDLED: 632 break; 633 default: 634 printk(KERN_ERR "block: bad eh return: %d\n", ret); 635 break; 636 } 637 } 638 639 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 640 struct request *rq, void *priv, bool reserved) 641 { 642 struct blk_mq_timeout_data *data = priv; 643 644 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 645 /* 646 * If a request wasn't started before the queue was 647 * marked dying, kill it here or it'll go unnoticed. 648 */ 649 if (unlikely(blk_queue_dying(rq->q))) { 650 rq->errors = -EIO; 651 blk_mq_end_request(rq, rq->errors); 652 } 653 return; 654 } 655 656 if (time_after_eq(jiffies, rq->deadline)) { 657 if (!blk_mark_rq_complete(rq)) 658 blk_mq_rq_timed_out(rq, reserved); 659 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 660 data->next = rq->deadline; 661 data->next_set = 1; 662 } 663 } 664 665 static void blk_mq_timeout_work(struct work_struct *work) 666 { 667 struct request_queue *q = 668 container_of(work, struct request_queue, timeout_work); 669 struct blk_mq_timeout_data data = { 670 .next = 0, 671 .next_set = 0, 672 }; 673 int i; 674 675 if (blk_queue_enter(q, true)) 676 return; 677 678 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 679 680 if (data.next_set) { 681 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 682 mod_timer(&q->timeout, data.next); 683 } else { 684 struct blk_mq_hw_ctx *hctx; 685 686 queue_for_each_hw_ctx(q, hctx, i) { 687 /* the hctx may be unmapped, so check it here */ 688 if (blk_mq_hw_queue_mapped(hctx)) 689 blk_mq_tag_idle(hctx); 690 } 691 } 692 blk_queue_exit(q); 693 } 694 695 /* 696 * Reverse check our software queue for entries that we could potentially 697 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 698 * too much time checking for merges. 699 */ 700 static bool blk_mq_attempt_merge(struct request_queue *q, 701 struct blk_mq_ctx *ctx, struct bio *bio) 702 { 703 struct request *rq; 704 int checked = 8; 705 706 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 707 int el_ret; 708 709 if (!checked--) 710 break; 711 712 if (!blk_rq_merge_ok(rq, bio)) 713 continue; 714 715 el_ret = blk_try_merge(rq, bio); 716 if (el_ret == ELEVATOR_BACK_MERGE) { 717 if (bio_attempt_back_merge(q, rq, bio)) { 718 ctx->rq_merged++; 719 return true; 720 } 721 break; 722 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 723 if (bio_attempt_front_merge(q, rq, bio)) { 724 ctx->rq_merged++; 725 return true; 726 } 727 break; 728 } 729 } 730 731 return false; 732 } 733 734 /* 735 * Process software queues that have been marked busy, splicing them 736 * to the for-dispatch 737 */ 738 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 739 { 740 struct blk_mq_ctx *ctx; 741 int i; 742 743 for (i = 0; i < hctx->ctx_map.size; i++) { 744 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 745 unsigned int off, bit; 746 747 if (!bm->word) 748 continue; 749 750 bit = 0; 751 off = i * hctx->ctx_map.bits_per_word; 752 do { 753 bit = find_next_bit(&bm->word, bm->depth, bit); 754 if (bit >= bm->depth) 755 break; 756 757 ctx = hctx->ctxs[bit + off]; 758 clear_bit(bit, &bm->word); 759 spin_lock(&ctx->lock); 760 list_splice_tail_init(&ctx->rq_list, list); 761 spin_unlock(&ctx->lock); 762 763 bit++; 764 } while (1); 765 } 766 } 767 768 /* 769 * Run this hardware queue, pulling any software queues mapped to it in. 770 * Note that this function currently has various problems around ordering 771 * of IO. In particular, we'd like FIFO behaviour on handling existing 772 * items on the hctx->dispatch list. Ignore that for now. 773 */ 774 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 775 { 776 struct request_queue *q = hctx->queue; 777 struct request *rq; 778 LIST_HEAD(rq_list); 779 LIST_HEAD(driver_list); 780 struct list_head *dptr; 781 int queued; 782 783 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 784 785 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 786 return; 787 788 hctx->run++; 789 790 /* 791 * Touch any software queue that has pending entries. 792 */ 793 flush_busy_ctxs(hctx, &rq_list); 794 795 /* 796 * If we have previous entries on our dispatch list, grab them 797 * and stuff them at the front for more fair dispatch. 798 */ 799 if (!list_empty_careful(&hctx->dispatch)) { 800 spin_lock(&hctx->lock); 801 if (!list_empty(&hctx->dispatch)) 802 list_splice_init(&hctx->dispatch, &rq_list); 803 spin_unlock(&hctx->lock); 804 } 805 806 /* 807 * Start off with dptr being NULL, so we start the first request 808 * immediately, even if we have more pending. 809 */ 810 dptr = NULL; 811 812 /* 813 * Now process all the entries, sending them to the driver. 814 */ 815 queued = 0; 816 while (!list_empty(&rq_list)) { 817 struct blk_mq_queue_data bd; 818 int ret; 819 820 rq = list_first_entry(&rq_list, struct request, queuelist); 821 list_del_init(&rq->queuelist); 822 823 bd.rq = rq; 824 bd.list = dptr; 825 bd.last = list_empty(&rq_list); 826 827 ret = q->mq_ops->queue_rq(hctx, &bd); 828 switch (ret) { 829 case BLK_MQ_RQ_QUEUE_OK: 830 queued++; 831 break; 832 case BLK_MQ_RQ_QUEUE_BUSY: 833 list_add(&rq->queuelist, &rq_list); 834 __blk_mq_requeue_request(rq); 835 break; 836 default: 837 pr_err("blk-mq: bad return on queue: %d\n", ret); 838 case BLK_MQ_RQ_QUEUE_ERROR: 839 rq->errors = -EIO; 840 blk_mq_end_request(rq, rq->errors); 841 break; 842 } 843 844 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 845 break; 846 847 /* 848 * We've done the first request. If we have more than 1 849 * left in the list, set dptr to defer issue. 850 */ 851 if (!dptr && rq_list.next != rq_list.prev) 852 dptr = &driver_list; 853 } 854 855 if (!queued) 856 hctx->dispatched[0]++; 857 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 858 hctx->dispatched[ilog2(queued) + 1]++; 859 860 /* 861 * Any items that need requeuing? Stuff them into hctx->dispatch, 862 * that is where we will continue on next queue run. 863 */ 864 if (!list_empty(&rq_list)) { 865 spin_lock(&hctx->lock); 866 list_splice(&rq_list, &hctx->dispatch); 867 spin_unlock(&hctx->lock); 868 /* 869 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 870 * it's possible the queue is stopped and restarted again 871 * before this. Queue restart will dispatch requests. And since 872 * requests in rq_list aren't added into hctx->dispatch yet, 873 * the requests in rq_list might get lost. 874 * 875 * blk_mq_run_hw_queue() already checks the STOPPED bit 876 **/ 877 blk_mq_run_hw_queue(hctx, true); 878 } 879 } 880 881 /* 882 * It'd be great if the workqueue API had a way to pass 883 * in a mask and had some smarts for more clever placement. 884 * For now we just round-robin here, switching for every 885 * BLK_MQ_CPU_WORK_BATCH queued items. 886 */ 887 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 888 { 889 if (hctx->queue->nr_hw_queues == 1) 890 return WORK_CPU_UNBOUND; 891 892 if (--hctx->next_cpu_batch <= 0) { 893 int cpu = hctx->next_cpu, next_cpu; 894 895 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 896 if (next_cpu >= nr_cpu_ids) 897 next_cpu = cpumask_first(hctx->cpumask); 898 899 hctx->next_cpu = next_cpu; 900 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 901 902 return cpu; 903 } 904 905 return hctx->next_cpu; 906 } 907 908 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 909 { 910 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 911 !blk_mq_hw_queue_mapped(hctx))) 912 return; 913 914 if (!async) { 915 int cpu = get_cpu(); 916 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 917 __blk_mq_run_hw_queue(hctx); 918 put_cpu(); 919 return; 920 } 921 922 put_cpu(); 923 } 924 925 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 926 &hctx->run_work, 0); 927 } 928 929 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 930 { 931 struct blk_mq_hw_ctx *hctx; 932 int i; 933 934 queue_for_each_hw_ctx(q, hctx, i) { 935 if ((!blk_mq_hctx_has_pending(hctx) && 936 list_empty_careful(&hctx->dispatch)) || 937 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 938 continue; 939 940 blk_mq_run_hw_queue(hctx, async); 941 } 942 } 943 EXPORT_SYMBOL(blk_mq_run_hw_queues); 944 945 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 946 { 947 cancel_delayed_work(&hctx->run_work); 948 cancel_delayed_work(&hctx->delay_work); 949 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 950 } 951 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 952 953 void blk_mq_stop_hw_queues(struct request_queue *q) 954 { 955 struct blk_mq_hw_ctx *hctx; 956 int i; 957 958 queue_for_each_hw_ctx(q, hctx, i) 959 blk_mq_stop_hw_queue(hctx); 960 } 961 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 962 963 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 964 { 965 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 966 967 blk_mq_run_hw_queue(hctx, false); 968 } 969 EXPORT_SYMBOL(blk_mq_start_hw_queue); 970 971 void blk_mq_start_hw_queues(struct request_queue *q) 972 { 973 struct blk_mq_hw_ctx *hctx; 974 int i; 975 976 queue_for_each_hw_ctx(q, hctx, i) 977 blk_mq_start_hw_queue(hctx); 978 } 979 EXPORT_SYMBOL(blk_mq_start_hw_queues); 980 981 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 982 { 983 struct blk_mq_hw_ctx *hctx; 984 int i; 985 986 queue_for_each_hw_ctx(q, hctx, i) { 987 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 988 continue; 989 990 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 991 blk_mq_run_hw_queue(hctx, async); 992 } 993 } 994 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 995 996 static void blk_mq_run_work_fn(struct work_struct *work) 997 { 998 struct blk_mq_hw_ctx *hctx; 999 1000 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1001 1002 __blk_mq_run_hw_queue(hctx); 1003 } 1004 1005 static void blk_mq_delay_work_fn(struct work_struct *work) 1006 { 1007 struct blk_mq_hw_ctx *hctx; 1008 1009 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1010 1011 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1012 __blk_mq_run_hw_queue(hctx); 1013 } 1014 1015 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1016 { 1017 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1018 return; 1019 1020 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1021 &hctx->delay_work, msecs_to_jiffies(msecs)); 1022 } 1023 EXPORT_SYMBOL(blk_mq_delay_queue); 1024 1025 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1026 struct blk_mq_ctx *ctx, 1027 struct request *rq, 1028 bool at_head) 1029 { 1030 trace_block_rq_insert(hctx->queue, rq); 1031 1032 if (at_head) 1033 list_add(&rq->queuelist, &ctx->rq_list); 1034 else 1035 list_add_tail(&rq->queuelist, &ctx->rq_list); 1036 } 1037 1038 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 1039 struct request *rq, bool at_head) 1040 { 1041 struct blk_mq_ctx *ctx = rq->mq_ctx; 1042 1043 __blk_mq_insert_req_list(hctx, ctx, rq, at_head); 1044 blk_mq_hctx_mark_pending(hctx, ctx); 1045 } 1046 1047 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1048 bool async) 1049 { 1050 struct request_queue *q = rq->q; 1051 struct blk_mq_hw_ctx *hctx; 1052 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1053 1054 current_ctx = blk_mq_get_ctx(q); 1055 if (!cpu_online(ctx->cpu)) 1056 rq->mq_ctx = ctx = current_ctx; 1057 1058 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1059 1060 spin_lock(&ctx->lock); 1061 __blk_mq_insert_request(hctx, rq, at_head); 1062 spin_unlock(&ctx->lock); 1063 1064 if (run_queue) 1065 blk_mq_run_hw_queue(hctx, async); 1066 1067 blk_mq_put_ctx(current_ctx); 1068 } 1069 1070 static void blk_mq_insert_requests(struct request_queue *q, 1071 struct blk_mq_ctx *ctx, 1072 struct list_head *list, 1073 int depth, 1074 bool from_schedule) 1075 1076 { 1077 struct blk_mq_hw_ctx *hctx; 1078 struct blk_mq_ctx *current_ctx; 1079 1080 trace_block_unplug(q, depth, !from_schedule); 1081 1082 current_ctx = blk_mq_get_ctx(q); 1083 1084 if (!cpu_online(ctx->cpu)) 1085 ctx = current_ctx; 1086 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1087 1088 /* 1089 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1090 * offline now 1091 */ 1092 spin_lock(&ctx->lock); 1093 while (!list_empty(list)) { 1094 struct request *rq; 1095 1096 rq = list_first_entry(list, struct request, queuelist); 1097 list_del_init(&rq->queuelist); 1098 rq->mq_ctx = ctx; 1099 __blk_mq_insert_req_list(hctx, ctx, rq, false); 1100 } 1101 blk_mq_hctx_mark_pending(hctx, ctx); 1102 spin_unlock(&ctx->lock); 1103 1104 blk_mq_run_hw_queue(hctx, from_schedule); 1105 blk_mq_put_ctx(current_ctx); 1106 } 1107 1108 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1109 { 1110 struct request *rqa = container_of(a, struct request, queuelist); 1111 struct request *rqb = container_of(b, struct request, queuelist); 1112 1113 return !(rqa->mq_ctx < rqb->mq_ctx || 1114 (rqa->mq_ctx == rqb->mq_ctx && 1115 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1116 } 1117 1118 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1119 { 1120 struct blk_mq_ctx *this_ctx; 1121 struct request_queue *this_q; 1122 struct request *rq; 1123 LIST_HEAD(list); 1124 LIST_HEAD(ctx_list); 1125 unsigned int depth; 1126 1127 list_splice_init(&plug->mq_list, &list); 1128 1129 list_sort(NULL, &list, plug_ctx_cmp); 1130 1131 this_q = NULL; 1132 this_ctx = NULL; 1133 depth = 0; 1134 1135 while (!list_empty(&list)) { 1136 rq = list_entry_rq(list.next); 1137 list_del_init(&rq->queuelist); 1138 BUG_ON(!rq->q); 1139 if (rq->mq_ctx != this_ctx) { 1140 if (this_ctx) { 1141 blk_mq_insert_requests(this_q, this_ctx, 1142 &ctx_list, depth, 1143 from_schedule); 1144 } 1145 1146 this_ctx = rq->mq_ctx; 1147 this_q = rq->q; 1148 depth = 0; 1149 } 1150 1151 depth++; 1152 list_add_tail(&rq->queuelist, &ctx_list); 1153 } 1154 1155 /* 1156 * If 'this_ctx' is set, we know we have entries to complete 1157 * on 'ctx_list'. Do those. 1158 */ 1159 if (this_ctx) { 1160 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1161 from_schedule); 1162 } 1163 } 1164 1165 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1166 { 1167 init_request_from_bio(rq, bio); 1168 1169 blk_account_io_start(rq, 1); 1170 } 1171 1172 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1173 { 1174 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1175 !blk_queue_nomerges(hctx->queue); 1176 } 1177 1178 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1179 struct blk_mq_ctx *ctx, 1180 struct request *rq, struct bio *bio) 1181 { 1182 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1183 blk_mq_bio_to_request(rq, bio); 1184 spin_lock(&ctx->lock); 1185 insert_rq: 1186 __blk_mq_insert_request(hctx, rq, false); 1187 spin_unlock(&ctx->lock); 1188 return false; 1189 } else { 1190 struct request_queue *q = hctx->queue; 1191 1192 spin_lock(&ctx->lock); 1193 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1194 blk_mq_bio_to_request(rq, bio); 1195 goto insert_rq; 1196 } 1197 1198 spin_unlock(&ctx->lock); 1199 __blk_mq_free_request(hctx, ctx, rq); 1200 return true; 1201 } 1202 } 1203 1204 struct blk_map_ctx { 1205 struct blk_mq_hw_ctx *hctx; 1206 struct blk_mq_ctx *ctx; 1207 }; 1208 1209 static struct request *blk_mq_map_request(struct request_queue *q, 1210 struct bio *bio, 1211 struct blk_map_ctx *data) 1212 { 1213 struct blk_mq_hw_ctx *hctx; 1214 struct blk_mq_ctx *ctx; 1215 struct request *rq; 1216 int op = bio_data_dir(bio); 1217 int op_flags = 0; 1218 struct blk_mq_alloc_data alloc_data; 1219 1220 blk_queue_enter_live(q); 1221 ctx = blk_mq_get_ctx(q); 1222 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1223 1224 if (rw_is_sync(bio_op(bio), bio->bi_rw)) 1225 op_flags |= REQ_SYNC; 1226 1227 trace_block_getrq(q, bio, op); 1228 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx); 1229 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags); 1230 if (unlikely(!rq)) { 1231 __blk_mq_run_hw_queue(hctx); 1232 blk_mq_put_ctx(ctx); 1233 trace_block_sleeprq(q, bio, op); 1234 1235 ctx = blk_mq_get_ctx(q); 1236 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1237 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx); 1238 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags); 1239 ctx = alloc_data.ctx; 1240 hctx = alloc_data.hctx; 1241 } 1242 1243 hctx->queued++; 1244 data->hctx = hctx; 1245 data->ctx = ctx; 1246 return rq; 1247 } 1248 1249 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie) 1250 { 1251 int ret; 1252 struct request_queue *q = rq->q; 1253 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1254 rq->mq_ctx->cpu); 1255 struct blk_mq_queue_data bd = { 1256 .rq = rq, 1257 .list = NULL, 1258 .last = 1 1259 }; 1260 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); 1261 1262 /* 1263 * For OK queue, we are done. For error, kill it. Any other 1264 * error (busy), just add it to our list as we previously 1265 * would have done 1266 */ 1267 ret = q->mq_ops->queue_rq(hctx, &bd); 1268 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1269 *cookie = new_cookie; 1270 return 0; 1271 } 1272 1273 __blk_mq_requeue_request(rq); 1274 1275 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1276 *cookie = BLK_QC_T_NONE; 1277 rq->errors = -EIO; 1278 blk_mq_end_request(rq, rq->errors); 1279 return 0; 1280 } 1281 1282 return -1; 1283 } 1284 1285 /* 1286 * Multiple hardware queue variant. This will not use per-process plugs, 1287 * but will attempt to bypass the hctx queueing if we can go straight to 1288 * hardware for SYNC IO. 1289 */ 1290 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1291 { 1292 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_rw); 1293 const int is_flush_fua = bio->bi_rw & (REQ_PREFLUSH | REQ_FUA); 1294 struct blk_map_ctx data; 1295 struct request *rq; 1296 unsigned int request_count = 0; 1297 struct blk_plug *plug; 1298 struct request *same_queue_rq = NULL; 1299 blk_qc_t cookie; 1300 1301 blk_queue_bounce(q, &bio); 1302 1303 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1304 bio_io_error(bio); 1305 return BLK_QC_T_NONE; 1306 } 1307 1308 blk_queue_split(q, &bio, q->bio_split); 1309 1310 if (!is_flush_fua && !blk_queue_nomerges(q) && 1311 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1312 return BLK_QC_T_NONE; 1313 1314 rq = blk_mq_map_request(q, bio, &data); 1315 if (unlikely(!rq)) 1316 return BLK_QC_T_NONE; 1317 1318 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1319 1320 if (unlikely(is_flush_fua)) { 1321 blk_mq_bio_to_request(rq, bio); 1322 blk_insert_flush(rq); 1323 goto run_queue; 1324 } 1325 1326 plug = current->plug; 1327 /* 1328 * If the driver supports defer issued based on 'last', then 1329 * queue it up like normal since we can potentially save some 1330 * CPU this way. 1331 */ 1332 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1333 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1334 struct request *old_rq = NULL; 1335 1336 blk_mq_bio_to_request(rq, bio); 1337 1338 /* 1339 * We do limited pluging. If the bio can be merged, do that. 1340 * Otherwise the existing request in the plug list will be 1341 * issued. So the plug list will have one request at most 1342 */ 1343 if (plug) { 1344 /* 1345 * The plug list might get flushed before this. If that 1346 * happens, same_queue_rq is invalid and plug list is 1347 * empty 1348 */ 1349 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1350 old_rq = same_queue_rq; 1351 list_del_init(&old_rq->queuelist); 1352 } 1353 list_add_tail(&rq->queuelist, &plug->mq_list); 1354 } else /* is_sync */ 1355 old_rq = rq; 1356 blk_mq_put_ctx(data.ctx); 1357 if (!old_rq) 1358 goto done; 1359 if (!blk_mq_direct_issue_request(old_rq, &cookie)) 1360 goto done; 1361 blk_mq_insert_request(old_rq, false, true, true); 1362 goto done; 1363 } 1364 1365 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1366 /* 1367 * For a SYNC request, send it to the hardware immediately. For 1368 * an ASYNC request, just ensure that we run it later on. The 1369 * latter allows for merging opportunities and more efficient 1370 * dispatching. 1371 */ 1372 run_queue: 1373 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1374 } 1375 blk_mq_put_ctx(data.ctx); 1376 done: 1377 return cookie; 1378 } 1379 1380 /* 1381 * Single hardware queue variant. This will attempt to use any per-process 1382 * plug for merging and IO deferral. 1383 */ 1384 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1385 { 1386 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_rw); 1387 const int is_flush_fua = bio->bi_rw & (REQ_PREFLUSH | REQ_FUA); 1388 struct blk_plug *plug; 1389 unsigned int request_count = 0; 1390 struct blk_map_ctx data; 1391 struct request *rq; 1392 blk_qc_t cookie; 1393 1394 blk_queue_bounce(q, &bio); 1395 1396 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1397 bio_io_error(bio); 1398 return BLK_QC_T_NONE; 1399 } 1400 1401 blk_queue_split(q, &bio, q->bio_split); 1402 1403 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1404 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1405 return BLK_QC_T_NONE; 1406 } else 1407 request_count = blk_plug_queued_count(q); 1408 1409 rq = blk_mq_map_request(q, bio, &data); 1410 if (unlikely(!rq)) 1411 return BLK_QC_T_NONE; 1412 1413 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1414 1415 if (unlikely(is_flush_fua)) { 1416 blk_mq_bio_to_request(rq, bio); 1417 blk_insert_flush(rq); 1418 goto run_queue; 1419 } 1420 1421 /* 1422 * A task plug currently exists. Since this is completely lockless, 1423 * utilize that to temporarily store requests until the task is 1424 * either done or scheduled away. 1425 */ 1426 plug = current->plug; 1427 if (plug) { 1428 blk_mq_bio_to_request(rq, bio); 1429 if (!request_count) 1430 trace_block_plug(q); 1431 1432 blk_mq_put_ctx(data.ctx); 1433 1434 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1435 blk_flush_plug_list(plug, false); 1436 trace_block_plug(q); 1437 } 1438 1439 list_add_tail(&rq->queuelist, &plug->mq_list); 1440 return cookie; 1441 } 1442 1443 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1444 /* 1445 * For a SYNC request, send it to the hardware immediately. For 1446 * an ASYNC request, just ensure that we run it later on. The 1447 * latter allows for merging opportunities and more efficient 1448 * dispatching. 1449 */ 1450 run_queue: 1451 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1452 } 1453 1454 blk_mq_put_ctx(data.ctx); 1455 return cookie; 1456 } 1457 1458 /* 1459 * Default mapping to a software queue, since we use one per CPU. 1460 */ 1461 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1462 { 1463 return q->queue_hw_ctx[q->mq_map[cpu]]; 1464 } 1465 EXPORT_SYMBOL(blk_mq_map_queue); 1466 1467 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1468 struct blk_mq_tags *tags, unsigned int hctx_idx) 1469 { 1470 struct page *page; 1471 1472 if (tags->rqs && set->ops->exit_request) { 1473 int i; 1474 1475 for (i = 0; i < tags->nr_tags; i++) { 1476 if (!tags->rqs[i]) 1477 continue; 1478 set->ops->exit_request(set->driver_data, tags->rqs[i], 1479 hctx_idx, i); 1480 tags->rqs[i] = NULL; 1481 } 1482 } 1483 1484 while (!list_empty(&tags->page_list)) { 1485 page = list_first_entry(&tags->page_list, struct page, lru); 1486 list_del_init(&page->lru); 1487 /* 1488 * Remove kmemleak object previously allocated in 1489 * blk_mq_init_rq_map(). 1490 */ 1491 kmemleak_free(page_address(page)); 1492 __free_pages(page, page->private); 1493 } 1494 1495 kfree(tags->rqs); 1496 1497 blk_mq_free_tags(tags); 1498 } 1499 1500 static size_t order_to_size(unsigned int order) 1501 { 1502 return (size_t)PAGE_SIZE << order; 1503 } 1504 1505 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1506 unsigned int hctx_idx) 1507 { 1508 struct blk_mq_tags *tags; 1509 unsigned int i, j, entries_per_page, max_order = 4; 1510 size_t rq_size, left; 1511 1512 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1513 set->numa_node, 1514 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1515 if (!tags) 1516 return NULL; 1517 1518 INIT_LIST_HEAD(&tags->page_list); 1519 1520 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1521 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1522 set->numa_node); 1523 if (!tags->rqs) { 1524 blk_mq_free_tags(tags); 1525 return NULL; 1526 } 1527 1528 /* 1529 * rq_size is the size of the request plus driver payload, rounded 1530 * to the cacheline size 1531 */ 1532 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1533 cache_line_size()); 1534 left = rq_size * set->queue_depth; 1535 1536 for (i = 0; i < set->queue_depth; ) { 1537 int this_order = max_order; 1538 struct page *page; 1539 int to_do; 1540 void *p; 1541 1542 while (this_order && left < order_to_size(this_order - 1)) 1543 this_order--; 1544 1545 do { 1546 page = alloc_pages_node(set->numa_node, 1547 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1548 this_order); 1549 if (page) 1550 break; 1551 if (!this_order--) 1552 break; 1553 if (order_to_size(this_order) < rq_size) 1554 break; 1555 } while (1); 1556 1557 if (!page) 1558 goto fail; 1559 1560 page->private = this_order; 1561 list_add_tail(&page->lru, &tags->page_list); 1562 1563 p = page_address(page); 1564 /* 1565 * Allow kmemleak to scan these pages as they contain pointers 1566 * to additional allocations like via ops->init_request(). 1567 */ 1568 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL); 1569 entries_per_page = order_to_size(this_order) / rq_size; 1570 to_do = min(entries_per_page, set->queue_depth - i); 1571 left -= to_do * rq_size; 1572 for (j = 0; j < to_do; j++) { 1573 tags->rqs[i] = p; 1574 if (set->ops->init_request) { 1575 if (set->ops->init_request(set->driver_data, 1576 tags->rqs[i], hctx_idx, i, 1577 set->numa_node)) { 1578 tags->rqs[i] = NULL; 1579 goto fail; 1580 } 1581 } 1582 1583 p += rq_size; 1584 i++; 1585 } 1586 } 1587 return tags; 1588 1589 fail: 1590 blk_mq_free_rq_map(set, tags, hctx_idx); 1591 return NULL; 1592 } 1593 1594 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1595 { 1596 kfree(bitmap->map); 1597 } 1598 1599 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1600 { 1601 unsigned int bpw = 8, total, num_maps, i; 1602 1603 bitmap->bits_per_word = bpw; 1604 1605 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1606 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1607 GFP_KERNEL, node); 1608 if (!bitmap->map) 1609 return -ENOMEM; 1610 1611 total = nr_cpu_ids; 1612 for (i = 0; i < num_maps; i++) { 1613 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1614 total -= bitmap->map[i].depth; 1615 } 1616 1617 return 0; 1618 } 1619 1620 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1621 { 1622 struct request_queue *q = hctx->queue; 1623 struct blk_mq_ctx *ctx; 1624 LIST_HEAD(tmp); 1625 1626 /* 1627 * Move ctx entries to new CPU, if this one is going away. 1628 */ 1629 ctx = __blk_mq_get_ctx(q, cpu); 1630 1631 spin_lock(&ctx->lock); 1632 if (!list_empty(&ctx->rq_list)) { 1633 list_splice_init(&ctx->rq_list, &tmp); 1634 blk_mq_hctx_clear_pending(hctx, ctx); 1635 } 1636 spin_unlock(&ctx->lock); 1637 1638 if (list_empty(&tmp)) 1639 return NOTIFY_OK; 1640 1641 ctx = blk_mq_get_ctx(q); 1642 spin_lock(&ctx->lock); 1643 1644 while (!list_empty(&tmp)) { 1645 struct request *rq; 1646 1647 rq = list_first_entry(&tmp, struct request, queuelist); 1648 rq->mq_ctx = ctx; 1649 list_move_tail(&rq->queuelist, &ctx->rq_list); 1650 } 1651 1652 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1653 blk_mq_hctx_mark_pending(hctx, ctx); 1654 1655 spin_unlock(&ctx->lock); 1656 1657 blk_mq_run_hw_queue(hctx, true); 1658 blk_mq_put_ctx(ctx); 1659 return NOTIFY_OK; 1660 } 1661 1662 static int blk_mq_hctx_notify(void *data, unsigned long action, 1663 unsigned int cpu) 1664 { 1665 struct blk_mq_hw_ctx *hctx = data; 1666 1667 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1668 return blk_mq_hctx_cpu_offline(hctx, cpu); 1669 1670 /* 1671 * In case of CPU online, tags may be reallocated 1672 * in blk_mq_map_swqueue() after mapping is updated. 1673 */ 1674 1675 return NOTIFY_OK; 1676 } 1677 1678 /* hctx->ctxs will be freed in queue's release handler */ 1679 static void blk_mq_exit_hctx(struct request_queue *q, 1680 struct blk_mq_tag_set *set, 1681 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1682 { 1683 unsigned flush_start_tag = set->queue_depth; 1684 1685 blk_mq_tag_idle(hctx); 1686 1687 if (set->ops->exit_request) 1688 set->ops->exit_request(set->driver_data, 1689 hctx->fq->flush_rq, hctx_idx, 1690 flush_start_tag + hctx_idx); 1691 1692 if (set->ops->exit_hctx) 1693 set->ops->exit_hctx(hctx, hctx_idx); 1694 1695 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1696 blk_free_flush_queue(hctx->fq); 1697 blk_mq_free_bitmap(&hctx->ctx_map); 1698 } 1699 1700 static void blk_mq_exit_hw_queues(struct request_queue *q, 1701 struct blk_mq_tag_set *set, int nr_queue) 1702 { 1703 struct blk_mq_hw_ctx *hctx; 1704 unsigned int i; 1705 1706 queue_for_each_hw_ctx(q, hctx, i) { 1707 if (i == nr_queue) 1708 break; 1709 blk_mq_exit_hctx(q, set, hctx, i); 1710 } 1711 } 1712 1713 static void blk_mq_free_hw_queues(struct request_queue *q, 1714 struct blk_mq_tag_set *set) 1715 { 1716 struct blk_mq_hw_ctx *hctx; 1717 unsigned int i; 1718 1719 queue_for_each_hw_ctx(q, hctx, i) 1720 free_cpumask_var(hctx->cpumask); 1721 } 1722 1723 static int blk_mq_init_hctx(struct request_queue *q, 1724 struct blk_mq_tag_set *set, 1725 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1726 { 1727 int node; 1728 unsigned flush_start_tag = set->queue_depth; 1729 1730 node = hctx->numa_node; 1731 if (node == NUMA_NO_NODE) 1732 node = hctx->numa_node = set->numa_node; 1733 1734 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1735 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1736 spin_lock_init(&hctx->lock); 1737 INIT_LIST_HEAD(&hctx->dispatch); 1738 hctx->queue = q; 1739 hctx->queue_num = hctx_idx; 1740 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1741 1742 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1743 blk_mq_hctx_notify, hctx); 1744 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1745 1746 hctx->tags = set->tags[hctx_idx]; 1747 1748 /* 1749 * Allocate space for all possible cpus to avoid allocation at 1750 * runtime 1751 */ 1752 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1753 GFP_KERNEL, node); 1754 if (!hctx->ctxs) 1755 goto unregister_cpu_notifier; 1756 1757 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1758 goto free_ctxs; 1759 1760 hctx->nr_ctx = 0; 1761 1762 if (set->ops->init_hctx && 1763 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1764 goto free_bitmap; 1765 1766 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1767 if (!hctx->fq) 1768 goto exit_hctx; 1769 1770 if (set->ops->init_request && 1771 set->ops->init_request(set->driver_data, 1772 hctx->fq->flush_rq, hctx_idx, 1773 flush_start_tag + hctx_idx, node)) 1774 goto free_fq; 1775 1776 return 0; 1777 1778 free_fq: 1779 kfree(hctx->fq); 1780 exit_hctx: 1781 if (set->ops->exit_hctx) 1782 set->ops->exit_hctx(hctx, hctx_idx); 1783 free_bitmap: 1784 blk_mq_free_bitmap(&hctx->ctx_map); 1785 free_ctxs: 1786 kfree(hctx->ctxs); 1787 unregister_cpu_notifier: 1788 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1789 1790 return -1; 1791 } 1792 1793 static void blk_mq_init_cpu_queues(struct request_queue *q, 1794 unsigned int nr_hw_queues) 1795 { 1796 unsigned int i; 1797 1798 for_each_possible_cpu(i) { 1799 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1800 struct blk_mq_hw_ctx *hctx; 1801 1802 memset(__ctx, 0, sizeof(*__ctx)); 1803 __ctx->cpu = i; 1804 spin_lock_init(&__ctx->lock); 1805 INIT_LIST_HEAD(&__ctx->rq_list); 1806 __ctx->queue = q; 1807 1808 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1809 if (!cpu_online(i)) 1810 continue; 1811 1812 hctx = q->mq_ops->map_queue(q, i); 1813 1814 /* 1815 * Set local node, IFF we have more than one hw queue. If 1816 * not, we remain on the home node of the device 1817 */ 1818 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1819 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1820 } 1821 } 1822 1823 static void blk_mq_map_swqueue(struct request_queue *q, 1824 const struct cpumask *online_mask) 1825 { 1826 unsigned int i; 1827 struct blk_mq_hw_ctx *hctx; 1828 struct blk_mq_ctx *ctx; 1829 struct blk_mq_tag_set *set = q->tag_set; 1830 1831 /* 1832 * Avoid others reading imcomplete hctx->cpumask through sysfs 1833 */ 1834 mutex_lock(&q->sysfs_lock); 1835 1836 queue_for_each_hw_ctx(q, hctx, i) { 1837 cpumask_clear(hctx->cpumask); 1838 hctx->nr_ctx = 0; 1839 } 1840 1841 /* 1842 * Map software to hardware queues 1843 */ 1844 for_each_possible_cpu(i) { 1845 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1846 if (!cpumask_test_cpu(i, online_mask)) 1847 continue; 1848 1849 ctx = per_cpu_ptr(q->queue_ctx, i); 1850 hctx = q->mq_ops->map_queue(q, i); 1851 1852 cpumask_set_cpu(i, hctx->cpumask); 1853 ctx->index_hw = hctx->nr_ctx; 1854 hctx->ctxs[hctx->nr_ctx++] = ctx; 1855 } 1856 1857 mutex_unlock(&q->sysfs_lock); 1858 1859 queue_for_each_hw_ctx(q, hctx, i) { 1860 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1861 1862 /* 1863 * If no software queues are mapped to this hardware queue, 1864 * disable it and free the request entries. 1865 */ 1866 if (!hctx->nr_ctx) { 1867 if (set->tags[i]) { 1868 blk_mq_free_rq_map(set, set->tags[i], i); 1869 set->tags[i] = NULL; 1870 } 1871 hctx->tags = NULL; 1872 continue; 1873 } 1874 1875 /* unmapped hw queue can be remapped after CPU topo changed */ 1876 if (!set->tags[i]) 1877 set->tags[i] = blk_mq_init_rq_map(set, i); 1878 hctx->tags = set->tags[i]; 1879 WARN_ON(!hctx->tags); 1880 1881 cpumask_copy(hctx->tags->cpumask, hctx->cpumask); 1882 /* 1883 * Set the map size to the number of mapped software queues. 1884 * This is more accurate and more efficient than looping 1885 * over all possibly mapped software queues. 1886 */ 1887 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1888 1889 /* 1890 * Initialize batch roundrobin counts 1891 */ 1892 hctx->next_cpu = cpumask_first(hctx->cpumask); 1893 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1894 } 1895 } 1896 1897 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 1898 { 1899 struct blk_mq_hw_ctx *hctx; 1900 int i; 1901 1902 queue_for_each_hw_ctx(q, hctx, i) { 1903 if (shared) 1904 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1905 else 1906 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1907 } 1908 } 1909 1910 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 1911 { 1912 struct request_queue *q; 1913 1914 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1915 blk_mq_freeze_queue(q); 1916 queue_set_hctx_shared(q, shared); 1917 blk_mq_unfreeze_queue(q); 1918 } 1919 } 1920 1921 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1922 { 1923 struct blk_mq_tag_set *set = q->tag_set; 1924 1925 mutex_lock(&set->tag_list_lock); 1926 list_del_init(&q->tag_set_list); 1927 if (list_is_singular(&set->tag_list)) { 1928 /* just transitioned to unshared */ 1929 set->flags &= ~BLK_MQ_F_TAG_SHARED; 1930 /* update existing queue */ 1931 blk_mq_update_tag_set_depth(set, false); 1932 } 1933 mutex_unlock(&set->tag_list_lock); 1934 } 1935 1936 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1937 struct request_queue *q) 1938 { 1939 q->tag_set = set; 1940 1941 mutex_lock(&set->tag_list_lock); 1942 1943 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 1944 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 1945 set->flags |= BLK_MQ_F_TAG_SHARED; 1946 /* update existing queue */ 1947 blk_mq_update_tag_set_depth(set, true); 1948 } 1949 if (set->flags & BLK_MQ_F_TAG_SHARED) 1950 queue_set_hctx_shared(q, true); 1951 list_add_tail(&q->tag_set_list, &set->tag_list); 1952 1953 mutex_unlock(&set->tag_list_lock); 1954 } 1955 1956 /* 1957 * It is the actual release handler for mq, but we do it from 1958 * request queue's release handler for avoiding use-after-free 1959 * and headache because q->mq_kobj shouldn't have been introduced, 1960 * but we can't group ctx/kctx kobj without it. 1961 */ 1962 void blk_mq_release(struct request_queue *q) 1963 { 1964 struct blk_mq_hw_ctx *hctx; 1965 unsigned int i; 1966 1967 /* hctx kobj stays in hctx */ 1968 queue_for_each_hw_ctx(q, hctx, i) { 1969 if (!hctx) 1970 continue; 1971 kfree(hctx->ctxs); 1972 kfree(hctx); 1973 } 1974 1975 kfree(q->mq_map); 1976 q->mq_map = NULL; 1977 1978 kfree(q->queue_hw_ctx); 1979 1980 /* ctx kobj stays in queue_ctx */ 1981 free_percpu(q->queue_ctx); 1982 } 1983 1984 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1985 { 1986 struct request_queue *uninit_q, *q; 1987 1988 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1989 if (!uninit_q) 1990 return ERR_PTR(-ENOMEM); 1991 1992 q = blk_mq_init_allocated_queue(set, uninit_q); 1993 if (IS_ERR(q)) 1994 blk_cleanup_queue(uninit_q); 1995 1996 return q; 1997 } 1998 EXPORT_SYMBOL(blk_mq_init_queue); 1999 2000 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2001 struct request_queue *q) 2002 { 2003 int i, j; 2004 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2005 2006 blk_mq_sysfs_unregister(q); 2007 for (i = 0; i < set->nr_hw_queues; i++) { 2008 int node; 2009 2010 if (hctxs[i]) 2011 continue; 2012 2013 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2014 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2015 GFP_KERNEL, node); 2016 if (!hctxs[i]) 2017 break; 2018 2019 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2020 node)) { 2021 kfree(hctxs[i]); 2022 hctxs[i] = NULL; 2023 break; 2024 } 2025 2026 atomic_set(&hctxs[i]->nr_active, 0); 2027 hctxs[i]->numa_node = node; 2028 hctxs[i]->queue_num = i; 2029 2030 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2031 free_cpumask_var(hctxs[i]->cpumask); 2032 kfree(hctxs[i]); 2033 hctxs[i] = NULL; 2034 break; 2035 } 2036 blk_mq_hctx_kobj_init(hctxs[i]); 2037 } 2038 for (j = i; j < q->nr_hw_queues; j++) { 2039 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2040 2041 if (hctx) { 2042 if (hctx->tags) { 2043 blk_mq_free_rq_map(set, hctx->tags, j); 2044 set->tags[j] = NULL; 2045 } 2046 blk_mq_exit_hctx(q, set, hctx, j); 2047 free_cpumask_var(hctx->cpumask); 2048 kobject_put(&hctx->kobj); 2049 kfree(hctx->ctxs); 2050 kfree(hctx); 2051 hctxs[j] = NULL; 2052 2053 } 2054 } 2055 q->nr_hw_queues = i; 2056 blk_mq_sysfs_register(q); 2057 } 2058 2059 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2060 struct request_queue *q) 2061 { 2062 /* mark the queue as mq asap */ 2063 q->mq_ops = set->ops; 2064 2065 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2066 if (!q->queue_ctx) 2067 goto err_exit; 2068 2069 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2070 GFP_KERNEL, set->numa_node); 2071 if (!q->queue_hw_ctx) 2072 goto err_percpu; 2073 2074 q->mq_map = blk_mq_make_queue_map(set); 2075 if (!q->mq_map) 2076 goto err_map; 2077 2078 blk_mq_realloc_hw_ctxs(set, q); 2079 if (!q->nr_hw_queues) 2080 goto err_hctxs; 2081 2082 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2083 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2084 2085 q->nr_queues = nr_cpu_ids; 2086 2087 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2088 2089 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2090 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2091 2092 q->sg_reserved_size = INT_MAX; 2093 2094 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2095 INIT_LIST_HEAD(&q->requeue_list); 2096 spin_lock_init(&q->requeue_lock); 2097 2098 if (q->nr_hw_queues > 1) 2099 blk_queue_make_request(q, blk_mq_make_request); 2100 else 2101 blk_queue_make_request(q, blk_sq_make_request); 2102 2103 /* 2104 * Do this after blk_queue_make_request() overrides it... 2105 */ 2106 q->nr_requests = set->queue_depth; 2107 2108 if (set->ops->complete) 2109 blk_queue_softirq_done(q, set->ops->complete); 2110 2111 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2112 2113 get_online_cpus(); 2114 mutex_lock(&all_q_mutex); 2115 2116 list_add_tail(&q->all_q_node, &all_q_list); 2117 blk_mq_add_queue_tag_set(set, q); 2118 blk_mq_map_swqueue(q, cpu_online_mask); 2119 2120 mutex_unlock(&all_q_mutex); 2121 put_online_cpus(); 2122 2123 return q; 2124 2125 err_hctxs: 2126 kfree(q->mq_map); 2127 err_map: 2128 kfree(q->queue_hw_ctx); 2129 err_percpu: 2130 free_percpu(q->queue_ctx); 2131 err_exit: 2132 q->mq_ops = NULL; 2133 return ERR_PTR(-ENOMEM); 2134 } 2135 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2136 2137 void blk_mq_free_queue(struct request_queue *q) 2138 { 2139 struct blk_mq_tag_set *set = q->tag_set; 2140 2141 mutex_lock(&all_q_mutex); 2142 list_del_init(&q->all_q_node); 2143 mutex_unlock(&all_q_mutex); 2144 2145 blk_mq_del_queue_tag_set(q); 2146 2147 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2148 blk_mq_free_hw_queues(q, set); 2149 } 2150 2151 /* Basically redo blk_mq_init_queue with queue frozen */ 2152 static void blk_mq_queue_reinit(struct request_queue *q, 2153 const struct cpumask *online_mask) 2154 { 2155 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2156 2157 blk_mq_sysfs_unregister(q); 2158 2159 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask); 2160 2161 /* 2162 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2163 * we should change hctx numa_node according to new topology (this 2164 * involves free and re-allocate memory, worthy doing?) 2165 */ 2166 2167 blk_mq_map_swqueue(q, online_mask); 2168 2169 blk_mq_sysfs_register(q); 2170 } 2171 2172 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2173 unsigned long action, void *hcpu) 2174 { 2175 struct request_queue *q; 2176 int cpu = (unsigned long)hcpu; 2177 /* 2178 * New online cpumask which is going to be set in this hotplug event. 2179 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2180 * one-by-one and dynamically allocating this could result in a failure. 2181 */ 2182 static struct cpumask online_new; 2183 2184 /* 2185 * Before hotadded cpu starts handling requests, new mappings must 2186 * be established. Otherwise, these requests in hw queue might 2187 * never be dispatched. 2188 * 2189 * For example, there is a single hw queue (hctx) and two CPU queues 2190 * (ctx0 for CPU0, and ctx1 for CPU1). 2191 * 2192 * Now CPU1 is just onlined and a request is inserted into 2193 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is 2194 * still zero. 2195 * 2196 * And then while running hw queue, flush_busy_ctxs() finds bit0 is 2197 * set in pending bitmap and tries to retrieve requests in 2198 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0, 2199 * so the request in ctx1->rq_list is ignored. 2200 */ 2201 switch (action & ~CPU_TASKS_FROZEN) { 2202 case CPU_DEAD: 2203 case CPU_UP_CANCELED: 2204 cpumask_copy(&online_new, cpu_online_mask); 2205 break; 2206 case CPU_UP_PREPARE: 2207 cpumask_copy(&online_new, cpu_online_mask); 2208 cpumask_set_cpu(cpu, &online_new); 2209 break; 2210 default: 2211 return NOTIFY_OK; 2212 } 2213 2214 mutex_lock(&all_q_mutex); 2215 2216 /* 2217 * We need to freeze and reinit all existing queues. Freezing 2218 * involves synchronous wait for an RCU grace period and doing it 2219 * one by one may take a long time. Start freezing all queues in 2220 * one swoop and then wait for the completions so that freezing can 2221 * take place in parallel. 2222 */ 2223 list_for_each_entry(q, &all_q_list, all_q_node) 2224 blk_mq_freeze_queue_start(q); 2225 list_for_each_entry(q, &all_q_list, all_q_node) { 2226 blk_mq_freeze_queue_wait(q); 2227 2228 /* 2229 * timeout handler can't touch hw queue during the 2230 * reinitialization 2231 */ 2232 del_timer_sync(&q->timeout); 2233 } 2234 2235 list_for_each_entry(q, &all_q_list, all_q_node) 2236 blk_mq_queue_reinit(q, &online_new); 2237 2238 list_for_each_entry(q, &all_q_list, all_q_node) 2239 blk_mq_unfreeze_queue(q); 2240 2241 mutex_unlock(&all_q_mutex); 2242 return NOTIFY_OK; 2243 } 2244 2245 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2246 { 2247 int i; 2248 2249 for (i = 0; i < set->nr_hw_queues; i++) { 2250 set->tags[i] = blk_mq_init_rq_map(set, i); 2251 if (!set->tags[i]) 2252 goto out_unwind; 2253 } 2254 2255 return 0; 2256 2257 out_unwind: 2258 while (--i >= 0) 2259 blk_mq_free_rq_map(set, set->tags[i], i); 2260 2261 return -ENOMEM; 2262 } 2263 2264 /* 2265 * Allocate the request maps associated with this tag_set. Note that this 2266 * may reduce the depth asked for, if memory is tight. set->queue_depth 2267 * will be updated to reflect the allocated depth. 2268 */ 2269 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2270 { 2271 unsigned int depth; 2272 int err; 2273 2274 depth = set->queue_depth; 2275 do { 2276 err = __blk_mq_alloc_rq_maps(set); 2277 if (!err) 2278 break; 2279 2280 set->queue_depth >>= 1; 2281 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2282 err = -ENOMEM; 2283 break; 2284 } 2285 } while (set->queue_depth); 2286 2287 if (!set->queue_depth || err) { 2288 pr_err("blk-mq: failed to allocate request map\n"); 2289 return -ENOMEM; 2290 } 2291 2292 if (depth != set->queue_depth) 2293 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2294 depth, set->queue_depth); 2295 2296 return 0; 2297 } 2298 2299 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2300 { 2301 return tags->cpumask; 2302 } 2303 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2304 2305 /* 2306 * Alloc a tag set to be associated with one or more request queues. 2307 * May fail with EINVAL for various error conditions. May adjust the 2308 * requested depth down, if if it too large. In that case, the set 2309 * value will be stored in set->queue_depth. 2310 */ 2311 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2312 { 2313 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2314 2315 if (!set->nr_hw_queues) 2316 return -EINVAL; 2317 if (!set->queue_depth) 2318 return -EINVAL; 2319 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2320 return -EINVAL; 2321 2322 if (!set->ops->queue_rq || !set->ops->map_queue) 2323 return -EINVAL; 2324 2325 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2326 pr_info("blk-mq: reduced tag depth to %u\n", 2327 BLK_MQ_MAX_DEPTH); 2328 set->queue_depth = BLK_MQ_MAX_DEPTH; 2329 } 2330 2331 /* 2332 * If a crashdump is active, then we are potentially in a very 2333 * memory constrained environment. Limit us to 1 queue and 2334 * 64 tags to prevent using too much memory. 2335 */ 2336 if (is_kdump_kernel()) { 2337 set->nr_hw_queues = 1; 2338 set->queue_depth = min(64U, set->queue_depth); 2339 } 2340 /* 2341 * There is no use for more h/w queues than cpus. 2342 */ 2343 if (set->nr_hw_queues > nr_cpu_ids) 2344 set->nr_hw_queues = nr_cpu_ids; 2345 2346 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2347 GFP_KERNEL, set->numa_node); 2348 if (!set->tags) 2349 return -ENOMEM; 2350 2351 if (blk_mq_alloc_rq_maps(set)) 2352 goto enomem; 2353 2354 mutex_init(&set->tag_list_lock); 2355 INIT_LIST_HEAD(&set->tag_list); 2356 2357 return 0; 2358 enomem: 2359 kfree(set->tags); 2360 set->tags = NULL; 2361 return -ENOMEM; 2362 } 2363 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2364 2365 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2366 { 2367 int i; 2368 2369 for (i = 0; i < nr_cpu_ids; i++) { 2370 if (set->tags[i]) 2371 blk_mq_free_rq_map(set, set->tags[i], i); 2372 } 2373 2374 kfree(set->tags); 2375 set->tags = NULL; 2376 } 2377 EXPORT_SYMBOL(blk_mq_free_tag_set); 2378 2379 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2380 { 2381 struct blk_mq_tag_set *set = q->tag_set; 2382 struct blk_mq_hw_ctx *hctx; 2383 int i, ret; 2384 2385 if (!set || nr > set->queue_depth) 2386 return -EINVAL; 2387 2388 ret = 0; 2389 queue_for_each_hw_ctx(q, hctx, i) { 2390 if (!hctx->tags) 2391 continue; 2392 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2393 if (ret) 2394 break; 2395 } 2396 2397 if (!ret) 2398 q->nr_requests = nr; 2399 2400 return ret; 2401 } 2402 2403 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2404 { 2405 struct request_queue *q; 2406 2407 if (nr_hw_queues > nr_cpu_ids) 2408 nr_hw_queues = nr_cpu_ids; 2409 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2410 return; 2411 2412 list_for_each_entry(q, &set->tag_list, tag_set_list) 2413 blk_mq_freeze_queue(q); 2414 2415 set->nr_hw_queues = nr_hw_queues; 2416 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2417 blk_mq_realloc_hw_ctxs(set, q); 2418 2419 if (q->nr_hw_queues > 1) 2420 blk_queue_make_request(q, blk_mq_make_request); 2421 else 2422 blk_queue_make_request(q, blk_sq_make_request); 2423 2424 blk_mq_queue_reinit(q, cpu_online_mask); 2425 } 2426 2427 list_for_each_entry(q, &set->tag_list, tag_set_list) 2428 blk_mq_unfreeze_queue(q); 2429 } 2430 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2431 2432 void blk_mq_disable_hotplug(void) 2433 { 2434 mutex_lock(&all_q_mutex); 2435 } 2436 2437 void blk_mq_enable_hotplug(void) 2438 { 2439 mutex_unlock(&all_q_mutex); 2440 } 2441 2442 static int __init blk_mq_init(void) 2443 { 2444 blk_mq_cpu_init(); 2445 2446 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2447 2448 return 0; 2449 } 2450 subsys_initcall(blk_mq_init); 2451