xref: /openbmc/linux/block/blk-mq.c (revision 77a87824)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, int op,
163 			       unsigned int op_flags)
164 {
165 	if (blk_queue_io_stat(q))
166 		op_flags |= REQ_IO_STAT;
167 
168 	INIT_LIST_HEAD(&rq->queuelist);
169 	/* csd/requeue_work/fifo_time is initialized before use */
170 	rq->q = q;
171 	rq->mq_ctx = ctx;
172 	req_set_op_attrs(rq, op, op_flags);
173 	/* do not touch atomic flags, it needs atomic ops against the timer */
174 	rq->cpu = -1;
175 	INIT_HLIST_NODE(&rq->hash);
176 	RB_CLEAR_NODE(&rq->rb_node);
177 	rq->rq_disk = NULL;
178 	rq->part = NULL;
179 	rq->start_time = jiffies;
180 #ifdef CONFIG_BLK_CGROUP
181 	rq->rl = NULL;
182 	set_start_time_ns(rq);
183 	rq->io_start_time_ns = 0;
184 #endif
185 	rq->nr_phys_segments = 0;
186 #if defined(CONFIG_BLK_DEV_INTEGRITY)
187 	rq->nr_integrity_segments = 0;
188 #endif
189 	rq->special = NULL;
190 	/* tag was already set */
191 	rq->errors = 0;
192 
193 	rq->cmd = rq->__cmd;
194 
195 	rq->extra_len = 0;
196 	rq->sense_len = 0;
197 	rq->resid_len = 0;
198 	rq->sense = NULL;
199 
200 	INIT_LIST_HEAD(&rq->timeout_list);
201 	rq->timeout = 0;
202 
203 	rq->end_io = NULL;
204 	rq->end_io_data = NULL;
205 	rq->next_rq = NULL;
206 
207 	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
208 }
209 
210 static struct request *
211 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 {
213 	struct request *rq;
214 	unsigned int tag;
215 
216 	tag = blk_mq_get_tag(data);
217 	if (tag != BLK_MQ_TAG_FAIL) {
218 		rq = data->hctx->tags->rqs[tag];
219 
220 		if (blk_mq_tag_busy(data->hctx)) {
221 			rq->cmd_flags = REQ_MQ_INFLIGHT;
222 			atomic_inc(&data->hctx->nr_active);
223 		}
224 
225 		rq->tag = tag;
226 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 		return rq;
228 	}
229 
230 	return NULL;
231 }
232 
233 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
234 		unsigned int flags)
235 {
236 	struct blk_mq_ctx *ctx;
237 	struct blk_mq_hw_ctx *hctx;
238 	struct request *rq;
239 	struct blk_mq_alloc_data alloc_data;
240 	int ret;
241 
242 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 	if (ret)
244 		return ERR_PTR(ret);
245 
246 	ctx = blk_mq_get_ctx(q);
247 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
248 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249 
250 	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251 	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 		__blk_mq_run_hw_queue(hctx);
253 		blk_mq_put_ctx(ctx);
254 
255 		ctx = blk_mq_get_ctx(q);
256 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258 		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
259 		ctx = alloc_data.ctx;
260 	}
261 	blk_mq_put_ctx(ctx);
262 	if (!rq) {
263 		blk_queue_exit(q);
264 		return ERR_PTR(-EWOULDBLOCK);
265 	}
266 
267 	rq->__data_len = 0;
268 	rq->__sector = (sector_t) -1;
269 	rq->bio = rq->biotail = NULL;
270 	return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273 
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 		unsigned int flags, unsigned int hctx_idx)
276 {
277 	struct blk_mq_hw_ctx *hctx;
278 	struct blk_mq_ctx *ctx;
279 	struct request *rq;
280 	struct blk_mq_alloc_data alloc_data;
281 	int ret;
282 
283 	/*
284 	 * If the tag allocator sleeps we could get an allocation for a
285 	 * different hardware context.  No need to complicate the low level
286 	 * allocator for this for the rare use case of a command tied to
287 	 * a specific queue.
288 	 */
289 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 		return ERR_PTR(-EINVAL);
291 
292 	if (hctx_idx >= q->nr_hw_queues)
293 		return ERR_PTR(-EIO);
294 
295 	ret = blk_queue_enter(q, true);
296 	if (ret)
297 		return ERR_PTR(ret);
298 
299 	hctx = q->queue_hw_ctx[hctx_idx];
300 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
301 
302 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
303 	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
304 	if (!rq) {
305 		blk_queue_exit(q);
306 		return ERR_PTR(-EWOULDBLOCK);
307 	}
308 
309 	return rq;
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
312 
313 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
314 				  struct blk_mq_ctx *ctx, struct request *rq)
315 {
316 	const int tag = rq->tag;
317 	struct request_queue *q = rq->q;
318 
319 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
320 		atomic_dec(&hctx->nr_active);
321 	rq->cmd_flags = 0;
322 
323 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
324 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
325 	blk_queue_exit(q);
326 }
327 
328 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
329 {
330 	struct blk_mq_ctx *ctx = rq->mq_ctx;
331 
332 	ctx->rq_completed[rq_is_sync(rq)]++;
333 	__blk_mq_free_request(hctx, ctx, rq);
334 
335 }
336 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
337 
338 void blk_mq_free_request(struct request *rq)
339 {
340 	struct blk_mq_hw_ctx *hctx;
341 	struct request_queue *q = rq->q;
342 
343 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
344 	blk_mq_free_hctx_request(hctx, rq);
345 }
346 EXPORT_SYMBOL_GPL(blk_mq_free_request);
347 
348 inline void __blk_mq_end_request(struct request *rq, int error)
349 {
350 	blk_account_io_done(rq);
351 
352 	if (rq->end_io) {
353 		rq->end_io(rq, error);
354 	} else {
355 		if (unlikely(blk_bidi_rq(rq)))
356 			blk_mq_free_request(rq->next_rq);
357 		blk_mq_free_request(rq);
358 	}
359 }
360 EXPORT_SYMBOL(__blk_mq_end_request);
361 
362 void blk_mq_end_request(struct request *rq, int error)
363 {
364 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
365 		BUG();
366 	__blk_mq_end_request(rq, error);
367 }
368 EXPORT_SYMBOL(blk_mq_end_request);
369 
370 static void __blk_mq_complete_request_remote(void *data)
371 {
372 	struct request *rq = data;
373 
374 	rq->q->softirq_done_fn(rq);
375 }
376 
377 static void blk_mq_ipi_complete_request(struct request *rq)
378 {
379 	struct blk_mq_ctx *ctx = rq->mq_ctx;
380 	bool shared = false;
381 	int cpu;
382 
383 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
384 		rq->q->softirq_done_fn(rq);
385 		return;
386 	}
387 
388 	cpu = get_cpu();
389 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
390 		shared = cpus_share_cache(cpu, ctx->cpu);
391 
392 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
393 		rq->csd.func = __blk_mq_complete_request_remote;
394 		rq->csd.info = rq;
395 		rq->csd.flags = 0;
396 		smp_call_function_single_async(ctx->cpu, &rq->csd);
397 	} else {
398 		rq->q->softirq_done_fn(rq);
399 	}
400 	put_cpu();
401 }
402 
403 static void __blk_mq_complete_request(struct request *rq)
404 {
405 	struct request_queue *q = rq->q;
406 
407 	if (!q->softirq_done_fn)
408 		blk_mq_end_request(rq, rq->errors);
409 	else
410 		blk_mq_ipi_complete_request(rq);
411 }
412 
413 /**
414  * blk_mq_complete_request - end I/O on a request
415  * @rq:		the request being processed
416  *
417  * Description:
418  *	Ends all I/O on a request. It does not handle partial completions.
419  *	The actual completion happens out-of-order, through a IPI handler.
420  **/
421 void blk_mq_complete_request(struct request *rq, int error)
422 {
423 	struct request_queue *q = rq->q;
424 
425 	if (unlikely(blk_should_fake_timeout(q)))
426 		return;
427 	if (!blk_mark_rq_complete(rq)) {
428 		rq->errors = error;
429 		__blk_mq_complete_request(rq);
430 	}
431 }
432 EXPORT_SYMBOL(blk_mq_complete_request);
433 
434 int blk_mq_request_started(struct request *rq)
435 {
436 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
437 }
438 EXPORT_SYMBOL_GPL(blk_mq_request_started);
439 
440 void blk_mq_start_request(struct request *rq)
441 {
442 	struct request_queue *q = rq->q;
443 
444 	trace_block_rq_issue(q, rq);
445 
446 	rq->resid_len = blk_rq_bytes(rq);
447 	if (unlikely(blk_bidi_rq(rq)))
448 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
449 
450 	blk_add_timer(rq);
451 
452 	/*
453 	 * Ensure that ->deadline is visible before set the started
454 	 * flag and clear the completed flag.
455 	 */
456 	smp_mb__before_atomic();
457 
458 	/*
459 	 * Mark us as started and clear complete. Complete might have been
460 	 * set if requeue raced with timeout, which then marked it as
461 	 * complete. So be sure to clear complete again when we start
462 	 * the request, otherwise we'll ignore the completion event.
463 	 */
464 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
465 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
466 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
467 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
468 
469 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
470 		/*
471 		 * Make sure space for the drain appears.  We know we can do
472 		 * this because max_hw_segments has been adjusted to be one
473 		 * fewer than the device can handle.
474 		 */
475 		rq->nr_phys_segments++;
476 	}
477 }
478 EXPORT_SYMBOL(blk_mq_start_request);
479 
480 static void __blk_mq_requeue_request(struct request *rq)
481 {
482 	struct request_queue *q = rq->q;
483 
484 	trace_block_rq_requeue(q, rq);
485 
486 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
487 		if (q->dma_drain_size && blk_rq_bytes(rq))
488 			rq->nr_phys_segments--;
489 	}
490 }
491 
492 void blk_mq_requeue_request(struct request *rq)
493 {
494 	__blk_mq_requeue_request(rq);
495 
496 	BUG_ON(blk_queued_rq(rq));
497 	blk_mq_add_to_requeue_list(rq, true);
498 }
499 EXPORT_SYMBOL(blk_mq_requeue_request);
500 
501 static void blk_mq_requeue_work(struct work_struct *work)
502 {
503 	struct request_queue *q =
504 		container_of(work, struct request_queue, requeue_work);
505 	LIST_HEAD(rq_list);
506 	struct request *rq, *next;
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&q->requeue_lock, flags);
510 	list_splice_init(&q->requeue_list, &rq_list);
511 	spin_unlock_irqrestore(&q->requeue_lock, flags);
512 
513 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
514 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
515 			continue;
516 
517 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
518 		list_del_init(&rq->queuelist);
519 		blk_mq_insert_request(rq, true, false, false);
520 	}
521 
522 	while (!list_empty(&rq_list)) {
523 		rq = list_entry(rq_list.next, struct request, queuelist);
524 		list_del_init(&rq->queuelist);
525 		blk_mq_insert_request(rq, false, false, false);
526 	}
527 
528 	/*
529 	 * Use the start variant of queue running here, so that running
530 	 * the requeue work will kick stopped queues.
531 	 */
532 	blk_mq_start_hw_queues(q);
533 }
534 
535 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
536 {
537 	struct request_queue *q = rq->q;
538 	unsigned long flags;
539 
540 	/*
541 	 * We abuse this flag that is otherwise used by the I/O scheduler to
542 	 * request head insertation from the workqueue.
543 	 */
544 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
545 
546 	spin_lock_irqsave(&q->requeue_lock, flags);
547 	if (at_head) {
548 		rq->cmd_flags |= REQ_SOFTBARRIER;
549 		list_add(&rq->queuelist, &q->requeue_list);
550 	} else {
551 		list_add_tail(&rq->queuelist, &q->requeue_list);
552 	}
553 	spin_unlock_irqrestore(&q->requeue_lock, flags);
554 }
555 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
556 
557 void blk_mq_cancel_requeue_work(struct request_queue *q)
558 {
559 	cancel_work_sync(&q->requeue_work);
560 }
561 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
562 
563 void blk_mq_kick_requeue_list(struct request_queue *q)
564 {
565 	kblockd_schedule_work(&q->requeue_work);
566 }
567 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
568 
569 void blk_mq_abort_requeue_list(struct request_queue *q)
570 {
571 	unsigned long flags;
572 	LIST_HEAD(rq_list);
573 
574 	spin_lock_irqsave(&q->requeue_lock, flags);
575 	list_splice_init(&q->requeue_list, &rq_list);
576 	spin_unlock_irqrestore(&q->requeue_lock, flags);
577 
578 	while (!list_empty(&rq_list)) {
579 		struct request *rq;
580 
581 		rq = list_first_entry(&rq_list, struct request, queuelist);
582 		list_del_init(&rq->queuelist);
583 		rq->errors = -EIO;
584 		blk_mq_end_request(rq, rq->errors);
585 	}
586 }
587 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
588 
589 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
590 {
591 	if (tag < tags->nr_tags)
592 		return tags->rqs[tag];
593 
594 	return NULL;
595 }
596 EXPORT_SYMBOL(blk_mq_tag_to_rq);
597 
598 struct blk_mq_timeout_data {
599 	unsigned long next;
600 	unsigned int next_set;
601 };
602 
603 void blk_mq_rq_timed_out(struct request *req, bool reserved)
604 {
605 	struct blk_mq_ops *ops = req->q->mq_ops;
606 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
607 
608 	/*
609 	 * We know that complete is set at this point. If STARTED isn't set
610 	 * anymore, then the request isn't active and the "timeout" should
611 	 * just be ignored. This can happen due to the bitflag ordering.
612 	 * Timeout first checks if STARTED is set, and if it is, assumes
613 	 * the request is active. But if we race with completion, then
614 	 * we both flags will get cleared. So check here again, and ignore
615 	 * a timeout event with a request that isn't active.
616 	 */
617 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
618 		return;
619 
620 	if (ops->timeout)
621 		ret = ops->timeout(req, reserved);
622 
623 	switch (ret) {
624 	case BLK_EH_HANDLED:
625 		__blk_mq_complete_request(req);
626 		break;
627 	case BLK_EH_RESET_TIMER:
628 		blk_add_timer(req);
629 		blk_clear_rq_complete(req);
630 		break;
631 	case BLK_EH_NOT_HANDLED:
632 		break;
633 	default:
634 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
635 		break;
636 	}
637 }
638 
639 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
640 		struct request *rq, void *priv, bool reserved)
641 {
642 	struct blk_mq_timeout_data *data = priv;
643 
644 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
645 		/*
646 		 * If a request wasn't started before the queue was
647 		 * marked dying, kill it here or it'll go unnoticed.
648 		 */
649 		if (unlikely(blk_queue_dying(rq->q))) {
650 			rq->errors = -EIO;
651 			blk_mq_end_request(rq, rq->errors);
652 		}
653 		return;
654 	}
655 
656 	if (time_after_eq(jiffies, rq->deadline)) {
657 		if (!blk_mark_rq_complete(rq))
658 			blk_mq_rq_timed_out(rq, reserved);
659 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
660 		data->next = rq->deadline;
661 		data->next_set = 1;
662 	}
663 }
664 
665 static void blk_mq_timeout_work(struct work_struct *work)
666 {
667 	struct request_queue *q =
668 		container_of(work, struct request_queue, timeout_work);
669 	struct blk_mq_timeout_data data = {
670 		.next		= 0,
671 		.next_set	= 0,
672 	};
673 	int i;
674 
675 	if (blk_queue_enter(q, true))
676 		return;
677 
678 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
679 
680 	if (data.next_set) {
681 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
682 		mod_timer(&q->timeout, data.next);
683 	} else {
684 		struct blk_mq_hw_ctx *hctx;
685 
686 		queue_for_each_hw_ctx(q, hctx, i) {
687 			/* the hctx may be unmapped, so check it here */
688 			if (blk_mq_hw_queue_mapped(hctx))
689 				blk_mq_tag_idle(hctx);
690 		}
691 	}
692 	blk_queue_exit(q);
693 }
694 
695 /*
696  * Reverse check our software queue for entries that we could potentially
697  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
698  * too much time checking for merges.
699  */
700 static bool blk_mq_attempt_merge(struct request_queue *q,
701 				 struct blk_mq_ctx *ctx, struct bio *bio)
702 {
703 	struct request *rq;
704 	int checked = 8;
705 
706 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
707 		int el_ret;
708 
709 		if (!checked--)
710 			break;
711 
712 		if (!blk_rq_merge_ok(rq, bio))
713 			continue;
714 
715 		el_ret = blk_try_merge(rq, bio);
716 		if (el_ret == ELEVATOR_BACK_MERGE) {
717 			if (bio_attempt_back_merge(q, rq, bio)) {
718 				ctx->rq_merged++;
719 				return true;
720 			}
721 			break;
722 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
723 			if (bio_attempt_front_merge(q, rq, bio)) {
724 				ctx->rq_merged++;
725 				return true;
726 			}
727 			break;
728 		}
729 	}
730 
731 	return false;
732 }
733 
734 /*
735  * Process software queues that have been marked busy, splicing them
736  * to the for-dispatch
737  */
738 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
739 {
740 	struct blk_mq_ctx *ctx;
741 	int i;
742 
743 	for (i = 0; i < hctx->ctx_map.size; i++) {
744 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
745 		unsigned int off, bit;
746 
747 		if (!bm->word)
748 			continue;
749 
750 		bit = 0;
751 		off = i * hctx->ctx_map.bits_per_word;
752 		do {
753 			bit = find_next_bit(&bm->word, bm->depth, bit);
754 			if (bit >= bm->depth)
755 				break;
756 
757 			ctx = hctx->ctxs[bit + off];
758 			clear_bit(bit, &bm->word);
759 			spin_lock(&ctx->lock);
760 			list_splice_tail_init(&ctx->rq_list, list);
761 			spin_unlock(&ctx->lock);
762 
763 			bit++;
764 		} while (1);
765 	}
766 }
767 
768 /*
769  * Run this hardware queue, pulling any software queues mapped to it in.
770  * Note that this function currently has various problems around ordering
771  * of IO. In particular, we'd like FIFO behaviour on handling existing
772  * items on the hctx->dispatch list. Ignore that for now.
773  */
774 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
775 {
776 	struct request_queue *q = hctx->queue;
777 	struct request *rq;
778 	LIST_HEAD(rq_list);
779 	LIST_HEAD(driver_list);
780 	struct list_head *dptr;
781 	int queued;
782 
783 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
784 
785 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
786 		return;
787 
788 	hctx->run++;
789 
790 	/*
791 	 * Touch any software queue that has pending entries.
792 	 */
793 	flush_busy_ctxs(hctx, &rq_list);
794 
795 	/*
796 	 * If we have previous entries on our dispatch list, grab them
797 	 * and stuff them at the front for more fair dispatch.
798 	 */
799 	if (!list_empty_careful(&hctx->dispatch)) {
800 		spin_lock(&hctx->lock);
801 		if (!list_empty(&hctx->dispatch))
802 			list_splice_init(&hctx->dispatch, &rq_list);
803 		spin_unlock(&hctx->lock);
804 	}
805 
806 	/*
807 	 * Start off with dptr being NULL, so we start the first request
808 	 * immediately, even if we have more pending.
809 	 */
810 	dptr = NULL;
811 
812 	/*
813 	 * Now process all the entries, sending them to the driver.
814 	 */
815 	queued = 0;
816 	while (!list_empty(&rq_list)) {
817 		struct blk_mq_queue_data bd;
818 		int ret;
819 
820 		rq = list_first_entry(&rq_list, struct request, queuelist);
821 		list_del_init(&rq->queuelist);
822 
823 		bd.rq = rq;
824 		bd.list = dptr;
825 		bd.last = list_empty(&rq_list);
826 
827 		ret = q->mq_ops->queue_rq(hctx, &bd);
828 		switch (ret) {
829 		case BLK_MQ_RQ_QUEUE_OK:
830 			queued++;
831 			break;
832 		case BLK_MQ_RQ_QUEUE_BUSY:
833 			list_add(&rq->queuelist, &rq_list);
834 			__blk_mq_requeue_request(rq);
835 			break;
836 		default:
837 			pr_err("blk-mq: bad return on queue: %d\n", ret);
838 		case BLK_MQ_RQ_QUEUE_ERROR:
839 			rq->errors = -EIO;
840 			blk_mq_end_request(rq, rq->errors);
841 			break;
842 		}
843 
844 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
845 			break;
846 
847 		/*
848 		 * We've done the first request. If we have more than 1
849 		 * left in the list, set dptr to defer issue.
850 		 */
851 		if (!dptr && rq_list.next != rq_list.prev)
852 			dptr = &driver_list;
853 	}
854 
855 	if (!queued)
856 		hctx->dispatched[0]++;
857 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
858 		hctx->dispatched[ilog2(queued) + 1]++;
859 
860 	/*
861 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
862 	 * that is where we will continue on next queue run.
863 	 */
864 	if (!list_empty(&rq_list)) {
865 		spin_lock(&hctx->lock);
866 		list_splice(&rq_list, &hctx->dispatch);
867 		spin_unlock(&hctx->lock);
868 		/*
869 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
870 		 * it's possible the queue is stopped and restarted again
871 		 * before this. Queue restart will dispatch requests. And since
872 		 * requests in rq_list aren't added into hctx->dispatch yet,
873 		 * the requests in rq_list might get lost.
874 		 *
875 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
876 		 **/
877 		blk_mq_run_hw_queue(hctx, true);
878 	}
879 }
880 
881 /*
882  * It'd be great if the workqueue API had a way to pass
883  * in a mask and had some smarts for more clever placement.
884  * For now we just round-robin here, switching for every
885  * BLK_MQ_CPU_WORK_BATCH queued items.
886  */
887 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
888 {
889 	if (hctx->queue->nr_hw_queues == 1)
890 		return WORK_CPU_UNBOUND;
891 
892 	if (--hctx->next_cpu_batch <= 0) {
893 		int cpu = hctx->next_cpu, next_cpu;
894 
895 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
896 		if (next_cpu >= nr_cpu_ids)
897 			next_cpu = cpumask_first(hctx->cpumask);
898 
899 		hctx->next_cpu = next_cpu;
900 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
901 
902 		return cpu;
903 	}
904 
905 	return hctx->next_cpu;
906 }
907 
908 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
909 {
910 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
911 	    !blk_mq_hw_queue_mapped(hctx)))
912 		return;
913 
914 	if (!async) {
915 		int cpu = get_cpu();
916 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
917 			__blk_mq_run_hw_queue(hctx);
918 			put_cpu();
919 			return;
920 		}
921 
922 		put_cpu();
923 	}
924 
925 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
926 			&hctx->run_work, 0);
927 }
928 
929 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
930 {
931 	struct blk_mq_hw_ctx *hctx;
932 	int i;
933 
934 	queue_for_each_hw_ctx(q, hctx, i) {
935 		if ((!blk_mq_hctx_has_pending(hctx) &&
936 		    list_empty_careful(&hctx->dispatch)) ||
937 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
938 			continue;
939 
940 		blk_mq_run_hw_queue(hctx, async);
941 	}
942 }
943 EXPORT_SYMBOL(blk_mq_run_hw_queues);
944 
945 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
946 {
947 	cancel_delayed_work(&hctx->run_work);
948 	cancel_delayed_work(&hctx->delay_work);
949 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
950 }
951 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
952 
953 void blk_mq_stop_hw_queues(struct request_queue *q)
954 {
955 	struct blk_mq_hw_ctx *hctx;
956 	int i;
957 
958 	queue_for_each_hw_ctx(q, hctx, i)
959 		blk_mq_stop_hw_queue(hctx);
960 }
961 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
962 
963 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
964 {
965 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
966 
967 	blk_mq_run_hw_queue(hctx, false);
968 }
969 EXPORT_SYMBOL(blk_mq_start_hw_queue);
970 
971 void blk_mq_start_hw_queues(struct request_queue *q)
972 {
973 	struct blk_mq_hw_ctx *hctx;
974 	int i;
975 
976 	queue_for_each_hw_ctx(q, hctx, i)
977 		blk_mq_start_hw_queue(hctx);
978 }
979 EXPORT_SYMBOL(blk_mq_start_hw_queues);
980 
981 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
982 {
983 	struct blk_mq_hw_ctx *hctx;
984 	int i;
985 
986 	queue_for_each_hw_ctx(q, hctx, i) {
987 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
988 			continue;
989 
990 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
991 		blk_mq_run_hw_queue(hctx, async);
992 	}
993 }
994 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
995 
996 static void blk_mq_run_work_fn(struct work_struct *work)
997 {
998 	struct blk_mq_hw_ctx *hctx;
999 
1000 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1001 
1002 	__blk_mq_run_hw_queue(hctx);
1003 }
1004 
1005 static void blk_mq_delay_work_fn(struct work_struct *work)
1006 {
1007 	struct blk_mq_hw_ctx *hctx;
1008 
1009 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1010 
1011 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1012 		__blk_mq_run_hw_queue(hctx);
1013 }
1014 
1015 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1016 {
1017 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1018 		return;
1019 
1020 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1021 			&hctx->delay_work, msecs_to_jiffies(msecs));
1022 }
1023 EXPORT_SYMBOL(blk_mq_delay_queue);
1024 
1025 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1026 					    struct blk_mq_ctx *ctx,
1027 					    struct request *rq,
1028 					    bool at_head)
1029 {
1030 	trace_block_rq_insert(hctx->queue, rq);
1031 
1032 	if (at_head)
1033 		list_add(&rq->queuelist, &ctx->rq_list);
1034 	else
1035 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1036 }
1037 
1038 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1039 				    struct request *rq, bool at_head)
1040 {
1041 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1042 
1043 	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1044 	blk_mq_hctx_mark_pending(hctx, ctx);
1045 }
1046 
1047 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1048 		bool async)
1049 {
1050 	struct request_queue *q = rq->q;
1051 	struct blk_mq_hw_ctx *hctx;
1052 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1053 
1054 	current_ctx = blk_mq_get_ctx(q);
1055 	if (!cpu_online(ctx->cpu))
1056 		rq->mq_ctx = ctx = current_ctx;
1057 
1058 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1059 
1060 	spin_lock(&ctx->lock);
1061 	__blk_mq_insert_request(hctx, rq, at_head);
1062 	spin_unlock(&ctx->lock);
1063 
1064 	if (run_queue)
1065 		blk_mq_run_hw_queue(hctx, async);
1066 
1067 	blk_mq_put_ctx(current_ctx);
1068 }
1069 
1070 static void blk_mq_insert_requests(struct request_queue *q,
1071 				     struct blk_mq_ctx *ctx,
1072 				     struct list_head *list,
1073 				     int depth,
1074 				     bool from_schedule)
1075 
1076 {
1077 	struct blk_mq_hw_ctx *hctx;
1078 	struct blk_mq_ctx *current_ctx;
1079 
1080 	trace_block_unplug(q, depth, !from_schedule);
1081 
1082 	current_ctx = blk_mq_get_ctx(q);
1083 
1084 	if (!cpu_online(ctx->cpu))
1085 		ctx = current_ctx;
1086 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1087 
1088 	/*
1089 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1090 	 * offline now
1091 	 */
1092 	spin_lock(&ctx->lock);
1093 	while (!list_empty(list)) {
1094 		struct request *rq;
1095 
1096 		rq = list_first_entry(list, struct request, queuelist);
1097 		list_del_init(&rq->queuelist);
1098 		rq->mq_ctx = ctx;
1099 		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1100 	}
1101 	blk_mq_hctx_mark_pending(hctx, ctx);
1102 	spin_unlock(&ctx->lock);
1103 
1104 	blk_mq_run_hw_queue(hctx, from_schedule);
1105 	blk_mq_put_ctx(current_ctx);
1106 }
1107 
1108 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1109 {
1110 	struct request *rqa = container_of(a, struct request, queuelist);
1111 	struct request *rqb = container_of(b, struct request, queuelist);
1112 
1113 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1114 		 (rqa->mq_ctx == rqb->mq_ctx &&
1115 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1116 }
1117 
1118 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1119 {
1120 	struct blk_mq_ctx *this_ctx;
1121 	struct request_queue *this_q;
1122 	struct request *rq;
1123 	LIST_HEAD(list);
1124 	LIST_HEAD(ctx_list);
1125 	unsigned int depth;
1126 
1127 	list_splice_init(&plug->mq_list, &list);
1128 
1129 	list_sort(NULL, &list, plug_ctx_cmp);
1130 
1131 	this_q = NULL;
1132 	this_ctx = NULL;
1133 	depth = 0;
1134 
1135 	while (!list_empty(&list)) {
1136 		rq = list_entry_rq(list.next);
1137 		list_del_init(&rq->queuelist);
1138 		BUG_ON(!rq->q);
1139 		if (rq->mq_ctx != this_ctx) {
1140 			if (this_ctx) {
1141 				blk_mq_insert_requests(this_q, this_ctx,
1142 							&ctx_list, depth,
1143 							from_schedule);
1144 			}
1145 
1146 			this_ctx = rq->mq_ctx;
1147 			this_q = rq->q;
1148 			depth = 0;
1149 		}
1150 
1151 		depth++;
1152 		list_add_tail(&rq->queuelist, &ctx_list);
1153 	}
1154 
1155 	/*
1156 	 * If 'this_ctx' is set, we know we have entries to complete
1157 	 * on 'ctx_list'. Do those.
1158 	 */
1159 	if (this_ctx) {
1160 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1161 				       from_schedule);
1162 	}
1163 }
1164 
1165 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1166 {
1167 	init_request_from_bio(rq, bio);
1168 
1169 	blk_account_io_start(rq, 1);
1170 }
1171 
1172 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1173 {
1174 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1175 		!blk_queue_nomerges(hctx->queue);
1176 }
1177 
1178 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1179 					 struct blk_mq_ctx *ctx,
1180 					 struct request *rq, struct bio *bio)
1181 {
1182 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1183 		blk_mq_bio_to_request(rq, bio);
1184 		spin_lock(&ctx->lock);
1185 insert_rq:
1186 		__blk_mq_insert_request(hctx, rq, false);
1187 		spin_unlock(&ctx->lock);
1188 		return false;
1189 	} else {
1190 		struct request_queue *q = hctx->queue;
1191 
1192 		spin_lock(&ctx->lock);
1193 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1194 			blk_mq_bio_to_request(rq, bio);
1195 			goto insert_rq;
1196 		}
1197 
1198 		spin_unlock(&ctx->lock);
1199 		__blk_mq_free_request(hctx, ctx, rq);
1200 		return true;
1201 	}
1202 }
1203 
1204 struct blk_map_ctx {
1205 	struct blk_mq_hw_ctx *hctx;
1206 	struct blk_mq_ctx *ctx;
1207 };
1208 
1209 static struct request *blk_mq_map_request(struct request_queue *q,
1210 					  struct bio *bio,
1211 					  struct blk_map_ctx *data)
1212 {
1213 	struct blk_mq_hw_ctx *hctx;
1214 	struct blk_mq_ctx *ctx;
1215 	struct request *rq;
1216 	int op = bio_data_dir(bio);
1217 	int op_flags = 0;
1218 	struct blk_mq_alloc_data alloc_data;
1219 
1220 	blk_queue_enter_live(q);
1221 	ctx = blk_mq_get_ctx(q);
1222 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1223 
1224 	if (rw_is_sync(bio_op(bio), bio->bi_rw))
1225 		op_flags |= REQ_SYNC;
1226 
1227 	trace_block_getrq(q, bio, op);
1228 	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1229 	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1230 	if (unlikely(!rq)) {
1231 		__blk_mq_run_hw_queue(hctx);
1232 		blk_mq_put_ctx(ctx);
1233 		trace_block_sleeprq(q, bio, op);
1234 
1235 		ctx = blk_mq_get_ctx(q);
1236 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1237 		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1238 		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1239 		ctx = alloc_data.ctx;
1240 		hctx = alloc_data.hctx;
1241 	}
1242 
1243 	hctx->queued++;
1244 	data->hctx = hctx;
1245 	data->ctx = ctx;
1246 	return rq;
1247 }
1248 
1249 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1250 {
1251 	int ret;
1252 	struct request_queue *q = rq->q;
1253 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1254 			rq->mq_ctx->cpu);
1255 	struct blk_mq_queue_data bd = {
1256 		.rq = rq,
1257 		.list = NULL,
1258 		.last = 1
1259 	};
1260 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1261 
1262 	/*
1263 	 * For OK queue, we are done. For error, kill it. Any other
1264 	 * error (busy), just add it to our list as we previously
1265 	 * would have done
1266 	 */
1267 	ret = q->mq_ops->queue_rq(hctx, &bd);
1268 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1269 		*cookie = new_cookie;
1270 		return 0;
1271 	}
1272 
1273 	__blk_mq_requeue_request(rq);
1274 
1275 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1276 		*cookie = BLK_QC_T_NONE;
1277 		rq->errors = -EIO;
1278 		blk_mq_end_request(rq, rq->errors);
1279 		return 0;
1280 	}
1281 
1282 	return -1;
1283 }
1284 
1285 /*
1286  * Multiple hardware queue variant. This will not use per-process plugs,
1287  * but will attempt to bypass the hctx queueing if we can go straight to
1288  * hardware for SYNC IO.
1289  */
1290 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1291 {
1292 	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_rw);
1293 	const int is_flush_fua = bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
1294 	struct blk_map_ctx data;
1295 	struct request *rq;
1296 	unsigned int request_count = 0;
1297 	struct blk_plug *plug;
1298 	struct request *same_queue_rq = NULL;
1299 	blk_qc_t cookie;
1300 
1301 	blk_queue_bounce(q, &bio);
1302 
1303 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1304 		bio_io_error(bio);
1305 		return BLK_QC_T_NONE;
1306 	}
1307 
1308 	blk_queue_split(q, &bio, q->bio_split);
1309 
1310 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1311 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1312 		return BLK_QC_T_NONE;
1313 
1314 	rq = blk_mq_map_request(q, bio, &data);
1315 	if (unlikely(!rq))
1316 		return BLK_QC_T_NONE;
1317 
1318 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1319 
1320 	if (unlikely(is_flush_fua)) {
1321 		blk_mq_bio_to_request(rq, bio);
1322 		blk_insert_flush(rq);
1323 		goto run_queue;
1324 	}
1325 
1326 	plug = current->plug;
1327 	/*
1328 	 * If the driver supports defer issued based on 'last', then
1329 	 * queue it up like normal since we can potentially save some
1330 	 * CPU this way.
1331 	 */
1332 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1333 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1334 		struct request *old_rq = NULL;
1335 
1336 		blk_mq_bio_to_request(rq, bio);
1337 
1338 		/*
1339 		 * We do limited pluging. If the bio can be merged, do that.
1340 		 * Otherwise the existing request in the plug list will be
1341 		 * issued. So the plug list will have one request at most
1342 		 */
1343 		if (plug) {
1344 			/*
1345 			 * The plug list might get flushed before this. If that
1346 			 * happens, same_queue_rq is invalid and plug list is
1347 			 * empty
1348 			 */
1349 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1350 				old_rq = same_queue_rq;
1351 				list_del_init(&old_rq->queuelist);
1352 			}
1353 			list_add_tail(&rq->queuelist, &plug->mq_list);
1354 		} else /* is_sync */
1355 			old_rq = rq;
1356 		blk_mq_put_ctx(data.ctx);
1357 		if (!old_rq)
1358 			goto done;
1359 		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1360 			goto done;
1361 		blk_mq_insert_request(old_rq, false, true, true);
1362 		goto done;
1363 	}
1364 
1365 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1366 		/*
1367 		 * For a SYNC request, send it to the hardware immediately. For
1368 		 * an ASYNC request, just ensure that we run it later on. The
1369 		 * latter allows for merging opportunities and more efficient
1370 		 * dispatching.
1371 		 */
1372 run_queue:
1373 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1374 	}
1375 	blk_mq_put_ctx(data.ctx);
1376 done:
1377 	return cookie;
1378 }
1379 
1380 /*
1381  * Single hardware queue variant. This will attempt to use any per-process
1382  * plug for merging and IO deferral.
1383  */
1384 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1385 {
1386 	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_rw);
1387 	const int is_flush_fua = bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
1388 	struct blk_plug *plug;
1389 	unsigned int request_count = 0;
1390 	struct blk_map_ctx data;
1391 	struct request *rq;
1392 	blk_qc_t cookie;
1393 
1394 	blk_queue_bounce(q, &bio);
1395 
1396 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1397 		bio_io_error(bio);
1398 		return BLK_QC_T_NONE;
1399 	}
1400 
1401 	blk_queue_split(q, &bio, q->bio_split);
1402 
1403 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1404 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1405 			return BLK_QC_T_NONE;
1406 	} else
1407 		request_count = blk_plug_queued_count(q);
1408 
1409 	rq = blk_mq_map_request(q, bio, &data);
1410 	if (unlikely(!rq))
1411 		return BLK_QC_T_NONE;
1412 
1413 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1414 
1415 	if (unlikely(is_flush_fua)) {
1416 		blk_mq_bio_to_request(rq, bio);
1417 		blk_insert_flush(rq);
1418 		goto run_queue;
1419 	}
1420 
1421 	/*
1422 	 * A task plug currently exists. Since this is completely lockless,
1423 	 * utilize that to temporarily store requests until the task is
1424 	 * either done or scheduled away.
1425 	 */
1426 	plug = current->plug;
1427 	if (plug) {
1428 		blk_mq_bio_to_request(rq, bio);
1429 		if (!request_count)
1430 			trace_block_plug(q);
1431 
1432 		blk_mq_put_ctx(data.ctx);
1433 
1434 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1435 			blk_flush_plug_list(plug, false);
1436 			trace_block_plug(q);
1437 		}
1438 
1439 		list_add_tail(&rq->queuelist, &plug->mq_list);
1440 		return cookie;
1441 	}
1442 
1443 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1444 		/*
1445 		 * For a SYNC request, send it to the hardware immediately. For
1446 		 * an ASYNC request, just ensure that we run it later on. The
1447 		 * latter allows for merging opportunities and more efficient
1448 		 * dispatching.
1449 		 */
1450 run_queue:
1451 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1452 	}
1453 
1454 	blk_mq_put_ctx(data.ctx);
1455 	return cookie;
1456 }
1457 
1458 /*
1459  * Default mapping to a software queue, since we use one per CPU.
1460  */
1461 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1462 {
1463 	return q->queue_hw_ctx[q->mq_map[cpu]];
1464 }
1465 EXPORT_SYMBOL(blk_mq_map_queue);
1466 
1467 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1468 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1469 {
1470 	struct page *page;
1471 
1472 	if (tags->rqs && set->ops->exit_request) {
1473 		int i;
1474 
1475 		for (i = 0; i < tags->nr_tags; i++) {
1476 			if (!tags->rqs[i])
1477 				continue;
1478 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1479 						hctx_idx, i);
1480 			tags->rqs[i] = NULL;
1481 		}
1482 	}
1483 
1484 	while (!list_empty(&tags->page_list)) {
1485 		page = list_first_entry(&tags->page_list, struct page, lru);
1486 		list_del_init(&page->lru);
1487 		/*
1488 		 * Remove kmemleak object previously allocated in
1489 		 * blk_mq_init_rq_map().
1490 		 */
1491 		kmemleak_free(page_address(page));
1492 		__free_pages(page, page->private);
1493 	}
1494 
1495 	kfree(tags->rqs);
1496 
1497 	blk_mq_free_tags(tags);
1498 }
1499 
1500 static size_t order_to_size(unsigned int order)
1501 {
1502 	return (size_t)PAGE_SIZE << order;
1503 }
1504 
1505 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1506 		unsigned int hctx_idx)
1507 {
1508 	struct blk_mq_tags *tags;
1509 	unsigned int i, j, entries_per_page, max_order = 4;
1510 	size_t rq_size, left;
1511 
1512 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1513 				set->numa_node,
1514 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1515 	if (!tags)
1516 		return NULL;
1517 
1518 	INIT_LIST_HEAD(&tags->page_list);
1519 
1520 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1521 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1522 				 set->numa_node);
1523 	if (!tags->rqs) {
1524 		blk_mq_free_tags(tags);
1525 		return NULL;
1526 	}
1527 
1528 	/*
1529 	 * rq_size is the size of the request plus driver payload, rounded
1530 	 * to the cacheline size
1531 	 */
1532 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1533 				cache_line_size());
1534 	left = rq_size * set->queue_depth;
1535 
1536 	for (i = 0; i < set->queue_depth; ) {
1537 		int this_order = max_order;
1538 		struct page *page;
1539 		int to_do;
1540 		void *p;
1541 
1542 		while (this_order && left < order_to_size(this_order - 1))
1543 			this_order--;
1544 
1545 		do {
1546 			page = alloc_pages_node(set->numa_node,
1547 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1548 				this_order);
1549 			if (page)
1550 				break;
1551 			if (!this_order--)
1552 				break;
1553 			if (order_to_size(this_order) < rq_size)
1554 				break;
1555 		} while (1);
1556 
1557 		if (!page)
1558 			goto fail;
1559 
1560 		page->private = this_order;
1561 		list_add_tail(&page->lru, &tags->page_list);
1562 
1563 		p = page_address(page);
1564 		/*
1565 		 * Allow kmemleak to scan these pages as they contain pointers
1566 		 * to additional allocations like via ops->init_request().
1567 		 */
1568 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1569 		entries_per_page = order_to_size(this_order) / rq_size;
1570 		to_do = min(entries_per_page, set->queue_depth - i);
1571 		left -= to_do * rq_size;
1572 		for (j = 0; j < to_do; j++) {
1573 			tags->rqs[i] = p;
1574 			if (set->ops->init_request) {
1575 				if (set->ops->init_request(set->driver_data,
1576 						tags->rqs[i], hctx_idx, i,
1577 						set->numa_node)) {
1578 					tags->rqs[i] = NULL;
1579 					goto fail;
1580 				}
1581 			}
1582 
1583 			p += rq_size;
1584 			i++;
1585 		}
1586 	}
1587 	return tags;
1588 
1589 fail:
1590 	blk_mq_free_rq_map(set, tags, hctx_idx);
1591 	return NULL;
1592 }
1593 
1594 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1595 {
1596 	kfree(bitmap->map);
1597 }
1598 
1599 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1600 {
1601 	unsigned int bpw = 8, total, num_maps, i;
1602 
1603 	bitmap->bits_per_word = bpw;
1604 
1605 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1606 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1607 					GFP_KERNEL, node);
1608 	if (!bitmap->map)
1609 		return -ENOMEM;
1610 
1611 	total = nr_cpu_ids;
1612 	for (i = 0; i < num_maps; i++) {
1613 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1614 		total -= bitmap->map[i].depth;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1621 {
1622 	struct request_queue *q = hctx->queue;
1623 	struct blk_mq_ctx *ctx;
1624 	LIST_HEAD(tmp);
1625 
1626 	/*
1627 	 * Move ctx entries to new CPU, if this one is going away.
1628 	 */
1629 	ctx = __blk_mq_get_ctx(q, cpu);
1630 
1631 	spin_lock(&ctx->lock);
1632 	if (!list_empty(&ctx->rq_list)) {
1633 		list_splice_init(&ctx->rq_list, &tmp);
1634 		blk_mq_hctx_clear_pending(hctx, ctx);
1635 	}
1636 	spin_unlock(&ctx->lock);
1637 
1638 	if (list_empty(&tmp))
1639 		return NOTIFY_OK;
1640 
1641 	ctx = blk_mq_get_ctx(q);
1642 	spin_lock(&ctx->lock);
1643 
1644 	while (!list_empty(&tmp)) {
1645 		struct request *rq;
1646 
1647 		rq = list_first_entry(&tmp, struct request, queuelist);
1648 		rq->mq_ctx = ctx;
1649 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1650 	}
1651 
1652 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1653 	blk_mq_hctx_mark_pending(hctx, ctx);
1654 
1655 	spin_unlock(&ctx->lock);
1656 
1657 	blk_mq_run_hw_queue(hctx, true);
1658 	blk_mq_put_ctx(ctx);
1659 	return NOTIFY_OK;
1660 }
1661 
1662 static int blk_mq_hctx_notify(void *data, unsigned long action,
1663 			      unsigned int cpu)
1664 {
1665 	struct blk_mq_hw_ctx *hctx = data;
1666 
1667 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1668 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1669 
1670 	/*
1671 	 * In case of CPU online, tags may be reallocated
1672 	 * in blk_mq_map_swqueue() after mapping is updated.
1673 	 */
1674 
1675 	return NOTIFY_OK;
1676 }
1677 
1678 /* hctx->ctxs will be freed in queue's release handler */
1679 static void blk_mq_exit_hctx(struct request_queue *q,
1680 		struct blk_mq_tag_set *set,
1681 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1682 {
1683 	unsigned flush_start_tag = set->queue_depth;
1684 
1685 	blk_mq_tag_idle(hctx);
1686 
1687 	if (set->ops->exit_request)
1688 		set->ops->exit_request(set->driver_data,
1689 				       hctx->fq->flush_rq, hctx_idx,
1690 				       flush_start_tag + hctx_idx);
1691 
1692 	if (set->ops->exit_hctx)
1693 		set->ops->exit_hctx(hctx, hctx_idx);
1694 
1695 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1696 	blk_free_flush_queue(hctx->fq);
1697 	blk_mq_free_bitmap(&hctx->ctx_map);
1698 }
1699 
1700 static void blk_mq_exit_hw_queues(struct request_queue *q,
1701 		struct blk_mq_tag_set *set, int nr_queue)
1702 {
1703 	struct blk_mq_hw_ctx *hctx;
1704 	unsigned int i;
1705 
1706 	queue_for_each_hw_ctx(q, hctx, i) {
1707 		if (i == nr_queue)
1708 			break;
1709 		blk_mq_exit_hctx(q, set, hctx, i);
1710 	}
1711 }
1712 
1713 static void blk_mq_free_hw_queues(struct request_queue *q,
1714 		struct blk_mq_tag_set *set)
1715 {
1716 	struct blk_mq_hw_ctx *hctx;
1717 	unsigned int i;
1718 
1719 	queue_for_each_hw_ctx(q, hctx, i)
1720 		free_cpumask_var(hctx->cpumask);
1721 }
1722 
1723 static int blk_mq_init_hctx(struct request_queue *q,
1724 		struct blk_mq_tag_set *set,
1725 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1726 {
1727 	int node;
1728 	unsigned flush_start_tag = set->queue_depth;
1729 
1730 	node = hctx->numa_node;
1731 	if (node == NUMA_NO_NODE)
1732 		node = hctx->numa_node = set->numa_node;
1733 
1734 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1735 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1736 	spin_lock_init(&hctx->lock);
1737 	INIT_LIST_HEAD(&hctx->dispatch);
1738 	hctx->queue = q;
1739 	hctx->queue_num = hctx_idx;
1740 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1741 
1742 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1743 					blk_mq_hctx_notify, hctx);
1744 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1745 
1746 	hctx->tags = set->tags[hctx_idx];
1747 
1748 	/*
1749 	 * Allocate space for all possible cpus to avoid allocation at
1750 	 * runtime
1751 	 */
1752 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1753 					GFP_KERNEL, node);
1754 	if (!hctx->ctxs)
1755 		goto unregister_cpu_notifier;
1756 
1757 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1758 		goto free_ctxs;
1759 
1760 	hctx->nr_ctx = 0;
1761 
1762 	if (set->ops->init_hctx &&
1763 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1764 		goto free_bitmap;
1765 
1766 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1767 	if (!hctx->fq)
1768 		goto exit_hctx;
1769 
1770 	if (set->ops->init_request &&
1771 	    set->ops->init_request(set->driver_data,
1772 				   hctx->fq->flush_rq, hctx_idx,
1773 				   flush_start_tag + hctx_idx, node))
1774 		goto free_fq;
1775 
1776 	return 0;
1777 
1778  free_fq:
1779 	kfree(hctx->fq);
1780  exit_hctx:
1781 	if (set->ops->exit_hctx)
1782 		set->ops->exit_hctx(hctx, hctx_idx);
1783  free_bitmap:
1784 	blk_mq_free_bitmap(&hctx->ctx_map);
1785  free_ctxs:
1786 	kfree(hctx->ctxs);
1787  unregister_cpu_notifier:
1788 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1789 
1790 	return -1;
1791 }
1792 
1793 static void blk_mq_init_cpu_queues(struct request_queue *q,
1794 				   unsigned int nr_hw_queues)
1795 {
1796 	unsigned int i;
1797 
1798 	for_each_possible_cpu(i) {
1799 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1800 		struct blk_mq_hw_ctx *hctx;
1801 
1802 		memset(__ctx, 0, sizeof(*__ctx));
1803 		__ctx->cpu = i;
1804 		spin_lock_init(&__ctx->lock);
1805 		INIT_LIST_HEAD(&__ctx->rq_list);
1806 		__ctx->queue = q;
1807 
1808 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1809 		if (!cpu_online(i))
1810 			continue;
1811 
1812 		hctx = q->mq_ops->map_queue(q, i);
1813 
1814 		/*
1815 		 * Set local node, IFF we have more than one hw queue. If
1816 		 * not, we remain on the home node of the device
1817 		 */
1818 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1819 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1820 	}
1821 }
1822 
1823 static void blk_mq_map_swqueue(struct request_queue *q,
1824 			       const struct cpumask *online_mask)
1825 {
1826 	unsigned int i;
1827 	struct blk_mq_hw_ctx *hctx;
1828 	struct blk_mq_ctx *ctx;
1829 	struct blk_mq_tag_set *set = q->tag_set;
1830 
1831 	/*
1832 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1833 	 */
1834 	mutex_lock(&q->sysfs_lock);
1835 
1836 	queue_for_each_hw_ctx(q, hctx, i) {
1837 		cpumask_clear(hctx->cpumask);
1838 		hctx->nr_ctx = 0;
1839 	}
1840 
1841 	/*
1842 	 * Map software to hardware queues
1843 	 */
1844 	for_each_possible_cpu(i) {
1845 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1846 		if (!cpumask_test_cpu(i, online_mask))
1847 			continue;
1848 
1849 		ctx = per_cpu_ptr(q->queue_ctx, i);
1850 		hctx = q->mq_ops->map_queue(q, i);
1851 
1852 		cpumask_set_cpu(i, hctx->cpumask);
1853 		ctx->index_hw = hctx->nr_ctx;
1854 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1855 	}
1856 
1857 	mutex_unlock(&q->sysfs_lock);
1858 
1859 	queue_for_each_hw_ctx(q, hctx, i) {
1860 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1861 
1862 		/*
1863 		 * If no software queues are mapped to this hardware queue,
1864 		 * disable it and free the request entries.
1865 		 */
1866 		if (!hctx->nr_ctx) {
1867 			if (set->tags[i]) {
1868 				blk_mq_free_rq_map(set, set->tags[i], i);
1869 				set->tags[i] = NULL;
1870 			}
1871 			hctx->tags = NULL;
1872 			continue;
1873 		}
1874 
1875 		/* unmapped hw queue can be remapped after CPU topo changed */
1876 		if (!set->tags[i])
1877 			set->tags[i] = blk_mq_init_rq_map(set, i);
1878 		hctx->tags = set->tags[i];
1879 		WARN_ON(!hctx->tags);
1880 
1881 		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1882 		/*
1883 		 * Set the map size to the number of mapped software queues.
1884 		 * This is more accurate and more efficient than looping
1885 		 * over all possibly mapped software queues.
1886 		 */
1887 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1888 
1889 		/*
1890 		 * Initialize batch roundrobin counts
1891 		 */
1892 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1893 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1894 	}
1895 }
1896 
1897 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1898 {
1899 	struct blk_mq_hw_ctx *hctx;
1900 	int i;
1901 
1902 	queue_for_each_hw_ctx(q, hctx, i) {
1903 		if (shared)
1904 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1905 		else
1906 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1907 	}
1908 }
1909 
1910 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1911 {
1912 	struct request_queue *q;
1913 
1914 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1915 		blk_mq_freeze_queue(q);
1916 		queue_set_hctx_shared(q, shared);
1917 		blk_mq_unfreeze_queue(q);
1918 	}
1919 }
1920 
1921 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1922 {
1923 	struct blk_mq_tag_set *set = q->tag_set;
1924 
1925 	mutex_lock(&set->tag_list_lock);
1926 	list_del_init(&q->tag_set_list);
1927 	if (list_is_singular(&set->tag_list)) {
1928 		/* just transitioned to unshared */
1929 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1930 		/* update existing queue */
1931 		blk_mq_update_tag_set_depth(set, false);
1932 	}
1933 	mutex_unlock(&set->tag_list_lock);
1934 }
1935 
1936 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1937 				     struct request_queue *q)
1938 {
1939 	q->tag_set = set;
1940 
1941 	mutex_lock(&set->tag_list_lock);
1942 
1943 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1944 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1945 		set->flags |= BLK_MQ_F_TAG_SHARED;
1946 		/* update existing queue */
1947 		blk_mq_update_tag_set_depth(set, true);
1948 	}
1949 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1950 		queue_set_hctx_shared(q, true);
1951 	list_add_tail(&q->tag_set_list, &set->tag_list);
1952 
1953 	mutex_unlock(&set->tag_list_lock);
1954 }
1955 
1956 /*
1957  * It is the actual release handler for mq, but we do it from
1958  * request queue's release handler for avoiding use-after-free
1959  * and headache because q->mq_kobj shouldn't have been introduced,
1960  * but we can't group ctx/kctx kobj without it.
1961  */
1962 void blk_mq_release(struct request_queue *q)
1963 {
1964 	struct blk_mq_hw_ctx *hctx;
1965 	unsigned int i;
1966 
1967 	/* hctx kobj stays in hctx */
1968 	queue_for_each_hw_ctx(q, hctx, i) {
1969 		if (!hctx)
1970 			continue;
1971 		kfree(hctx->ctxs);
1972 		kfree(hctx);
1973 	}
1974 
1975 	kfree(q->mq_map);
1976 	q->mq_map = NULL;
1977 
1978 	kfree(q->queue_hw_ctx);
1979 
1980 	/* ctx kobj stays in queue_ctx */
1981 	free_percpu(q->queue_ctx);
1982 }
1983 
1984 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1985 {
1986 	struct request_queue *uninit_q, *q;
1987 
1988 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1989 	if (!uninit_q)
1990 		return ERR_PTR(-ENOMEM);
1991 
1992 	q = blk_mq_init_allocated_queue(set, uninit_q);
1993 	if (IS_ERR(q))
1994 		blk_cleanup_queue(uninit_q);
1995 
1996 	return q;
1997 }
1998 EXPORT_SYMBOL(blk_mq_init_queue);
1999 
2000 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2001 						struct request_queue *q)
2002 {
2003 	int i, j;
2004 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2005 
2006 	blk_mq_sysfs_unregister(q);
2007 	for (i = 0; i < set->nr_hw_queues; i++) {
2008 		int node;
2009 
2010 		if (hctxs[i])
2011 			continue;
2012 
2013 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2014 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2015 					GFP_KERNEL, node);
2016 		if (!hctxs[i])
2017 			break;
2018 
2019 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2020 						node)) {
2021 			kfree(hctxs[i]);
2022 			hctxs[i] = NULL;
2023 			break;
2024 		}
2025 
2026 		atomic_set(&hctxs[i]->nr_active, 0);
2027 		hctxs[i]->numa_node = node;
2028 		hctxs[i]->queue_num = i;
2029 
2030 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2031 			free_cpumask_var(hctxs[i]->cpumask);
2032 			kfree(hctxs[i]);
2033 			hctxs[i] = NULL;
2034 			break;
2035 		}
2036 		blk_mq_hctx_kobj_init(hctxs[i]);
2037 	}
2038 	for (j = i; j < q->nr_hw_queues; j++) {
2039 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2040 
2041 		if (hctx) {
2042 			if (hctx->tags) {
2043 				blk_mq_free_rq_map(set, hctx->tags, j);
2044 				set->tags[j] = NULL;
2045 			}
2046 			blk_mq_exit_hctx(q, set, hctx, j);
2047 			free_cpumask_var(hctx->cpumask);
2048 			kobject_put(&hctx->kobj);
2049 			kfree(hctx->ctxs);
2050 			kfree(hctx);
2051 			hctxs[j] = NULL;
2052 
2053 		}
2054 	}
2055 	q->nr_hw_queues = i;
2056 	blk_mq_sysfs_register(q);
2057 }
2058 
2059 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2060 						  struct request_queue *q)
2061 {
2062 	/* mark the queue as mq asap */
2063 	q->mq_ops = set->ops;
2064 
2065 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2066 	if (!q->queue_ctx)
2067 		goto err_exit;
2068 
2069 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2070 						GFP_KERNEL, set->numa_node);
2071 	if (!q->queue_hw_ctx)
2072 		goto err_percpu;
2073 
2074 	q->mq_map = blk_mq_make_queue_map(set);
2075 	if (!q->mq_map)
2076 		goto err_map;
2077 
2078 	blk_mq_realloc_hw_ctxs(set, q);
2079 	if (!q->nr_hw_queues)
2080 		goto err_hctxs;
2081 
2082 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2083 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2084 
2085 	q->nr_queues = nr_cpu_ids;
2086 
2087 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2088 
2089 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2090 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2091 
2092 	q->sg_reserved_size = INT_MAX;
2093 
2094 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2095 	INIT_LIST_HEAD(&q->requeue_list);
2096 	spin_lock_init(&q->requeue_lock);
2097 
2098 	if (q->nr_hw_queues > 1)
2099 		blk_queue_make_request(q, blk_mq_make_request);
2100 	else
2101 		blk_queue_make_request(q, blk_sq_make_request);
2102 
2103 	/*
2104 	 * Do this after blk_queue_make_request() overrides it...
2105 	 */
2106 	q->nr_requests = set->queue_depth;
2107 
2108 	if (set->ops->complete)
2109 		blk_queue_softirq_done(q, set->ops->complete);
2110 
2111 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2112 
2113 	get_online_cpus();
2114 	mutex_lock(&all_q_mutex);
2115 
2116 	list_add_tail(&q->all_q_node, &all_q_list);
2117 	blk_mq_add_queue_tag_set(set, q);
2118 	blk_mq_map_swqueue(q, cpu_online_mask);
2119 
2120 	mutex_unlock(&all_q_mutex);
2121 	put_online_cpus();
2122 
2123 	return q;
2124 
2125 err_hctxs:
2126 	kfree(q->mq_map);
2127 err_map:
2128 	kfree(q->queue_hw_ctx);
2129 err_percpu:
2130 	free_percpu(q->queue_ctx);
2131 err_exit:
2132 	q->mq_ops = NULL;
2133 	return ERR_PTR(-ENOMEM);
2134 }
2135 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2136 
2137 void blk_mq_free_queue(struct request_queue *q)
2138 {
2139 	struct blk_mq_tag_set	*set = q->tag_set;
2140 
2141 	mutex_lock(&all_q_mutex);
2142 	list_del_init(&q->all_q_node);
2143 	mutex_unlock(&all_q_mutex);
2144 
2145 	blk_mq_del_queue_tag_set(q);
2146 
2147 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2148 	blk_mq_free_hw_queues(q, set);
2149 }
2150 
2151 /* Basically redo blk_mq_init_queue with queue frozen */
2152 static void blk_mq_queue_reinit(struct request_queue *q,
2153 				const struct cpumask *online_mask)
2154 {
2155 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2156 
2157 	blk_mq_sysfs_unregister(q);
2158 
2159 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2160 
2161 	/*
2162 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2163 	 * we should change hctx numa_node according to new topology (this
2164 	 * involves free and re-allocate memory, worthy doing?)
2165 	 */
2166 
2167 	blk_mq_map_swqueue(q, online_mask);
2168 
2169 	blk_mq_sysfs_register(q);
2170 }
2171 
2172 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2173 				      unsigned long action, void *hcpu)
2174 {
2175 	struct request_queue *q;
2176 	int cpu = (unsigned long)hcpu;
2177 	/*
2178 	 * New online cpumask which is going to be set in this hotplug event.
2179 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2180 	 * one-by-one and dynamically allocating this could result in a failure.
2181 	 */
2182 	static struct cpumask online_new;
2183 
2184 	/*
2185 	 * Before hotadded cpu starts handling requests, new mappings must
2186 	 * be established.  Otherwise, these requests in hw queue might
2187 	 * never be dispatched.
2188 	 *
2189 	 * For example, there is a single hw queue (hctx) and two CPU queues
2190 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2191 	 *
2192 	 * Now CPU1 is just onlined and a request is inserted into
2193 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2194 	 * still zero.
2195 	 *
2196 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2197 	 * set in pending bitmap and tries to retrieve requests in
2198 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2199 	 * so the request in ctx1->rq_list is ignored.
2200 	 */
2201 	switch (action & ~CPU_TASKS_FROZEN) {
2202 	case CPU_DEAD:
2203 	case CPU_UP_CANCELED:
2204 		cpumask_copy(&online_new, cpu_online_mask);
2205 		break;
2206 	case CPU_UP_PREPARE:
2207 		cpumask_copy(&online_new, cpu_online_mask);
2208 		cpumask_set_cpu(cpu, &online_new);
2209 		break;
2210 	default:
2211 		return NOTIFY_OK;
2212 	}
2213 
2214 	mutex_lock(&all_q_mutex);
2215 
2216 	/*
2217 	 * We need to freeze and reinit all existing queues.  Freezing
2218 	 * involves synchronous wait for an RCU grace period and doing it
2219 	 * one by one may take a long time.  Start freezing all queues in
2220 	 * one swoop and then wait for the completions so that freezing can
2221 	 * take place in parallel.
2222 	 */
2223 	list_for_each_entry(q, &all_q_list, all_q_node)
2224 		blk_mq_freeze_queue_start(q);
2225 	list_for_each_entry(q, &all_q_list, all_q_node) {
2226 		blk_mq_freeze_queue_wait(q);
2227 
2228 		/*
2229 		 * timeout handler can't touch hw queue during the
2230 		 * reinitialization
2231 		 */
2232 		del_timer_sync(&q->timeout);
2233 	}
2234 
2235 	list_for_each_entry(q, &all_q_list, all_q_node)
2236 		blk_mq_queue_reinit(q, &online_new);
2237 
2238 	list_for_each_entry(q, &all_q_list, all_q_node)
2239 		blk_mq_unfreeze_queue(q);
2240 
2241 	mutex_unlock(&all_q_mutex);
2242 	return NOTIFY_OK;
2243 }
2244 
2245 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2246 {
2247 	int i;
2248 
2249 	for (i = 0; i < set->nr_hw_queues; i++) {
2250 		set->tags[i] = blk_mq_init_rq_map(set, i);
2251 		if (!set->tags[i])
2252 			goto out_unwind;
2253 	}
2254 
2255 	return 0;
2256 
2257 out_unwind:
2258 	while (--i >= 0)
2259 		blk_mq_free_rq_map(set, set->tags[i], i);
2260 
2261 	return -ENOMEM;
2262 }
2263 
2264 /*
2265  * Allocate the request maps associated with this tag_set. Note that this
2266  * may reduce the depth asked for, if memory is tight. set->queue_depth
2267  * will be updated to reflect the allocated depth.
2268  */
2269 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2270 {
2271 	unsigned int depth;
2272 	int err;
2273 
2274 	depth = set->queue_depth;
2275 	do {
2276 		err = __blk_mq_alloc_rq_maps(set);
2277 		if (!err)
2278 			break;
2279 
2280 		set->queue_depth >>= 1;
2281 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2282 			err = -ENOMEM;
2283 			break;
2284 		}
2285 	} while (set->queue_depth);
2286 
2287 	if (!set->queue_depth || err) {
2288 		pr_err("blk-mq: failed to allocate request map\n");
2289 		return -ENOMEM;
2290 	}
2291 
2292 	if (depth != set->queue_depth)
2293 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2294 						depth, set->queue_depth);
2295 
2296 	return 0;
2297 }
2298 
2299 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2300 {
2301 	return tags->cpumask;
2302 }
2303 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2304 
2305 /*
2306  * Alloc a tag set to be associated with one or more request queues.
2307  * May fail with EINVAL for various error conditions. May adjust the
2308  * requested depth down, if if it too large. In that case, the set
2309  * value will be stored in set->queue_depth.
2310  */
2311 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2312 {
2313 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2314 
2315 	if (!set->nr_hw_queues)
2316 		return -EINVAL;
2317 	if (!set->queue_depth)
2318 		return -EINVAL;
2319 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2320 		return -EINVAL;
2321 
2322 	if (!set->ops->queue_rq || !set->ops->map_queue)
2323 		return -EINVAL;
2324 
2325 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2326 		pr_info("blk-mq: reduced tag depth to %u\n",
2327 			BLK_MQ_MAX_DEPTH);
2328 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2329 	}
2330 
2331 	/*
2332 	 * If a crashdump is active, then we are potentially in a very
2333 	 * memory constrained environment. Limit us to 1 queue and
2334 	 * 64 tags to prevent using too much memory.
2335 	 */
2336 	if (is_kdump_kernel()) {
2337 		set->nr_hw_queues = 1;
2338 		set->queue_depth = min(64U, set->queue_depth);
2339 	}
2340 	/*
2341 	 * There is no use for more h/w queues than cpus.
2342 	 */
2343 	if (set->nr_hw_queues > nr_cpu_ids)
2344 		set->nr_hw_queues = nr_cpu_ids;
2345 
2346 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2347 				 GFP_KERNEL, set->numa_node);
2348 	if (!set->tags)
2349 		return -ENOMEM;
2350 
2351 	if (blk_mq_alloc_rq_maps(set))
2352 		goto enomem;
2353 
2354 	mutex_init(&set->tag_list_lock);
2355 	INIT_LIST_HEAD(&set->tag_list);
2356 
2357 	return 0;
2358 enomem:
2359 	kfree(set->tags);
2360 	set->tags = NULL;
2361 	return -ENOMEM;
2362 }
2363 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2364 
2365 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2366 {
2367 	int i;
2368 
2369 	for (i = 0; i < nr_cpu_ids; i++) {
2370 		if (set->tags[i])
2371 			blk_mq_free_rq_map(set, set->tags[i], i);
2372 	}
2373 
2374 	kfree(set->tags);
2375 	set->tags = NULL;
2376 }
2377 EXPORT_SYMBOL(blk_mq_free_tag_set);
2378 
2379 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2380 {
2381 	struct blk_mq_tag_set *set = q->tag_set;
2382 	struct blk_mq_hw_ctx *hctx;
2383 	int i, ret;
2384 
2385 	if (!set || nr > set->queue_depth)
2386 		return -EINVAL;
2387 
2388 	ret = 0;
2389 	queue_for_each_hw_ctx(q, hctx, i) {
2390 		if (!hctx->tags)
2391 			continue;
2392 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2393 		if (ret)
2394 			break;
2395 	}
2396 
2397 	if (!ret)
2398 		q->nr_requests = nr;
2399 
2400 	return ret;
2401 }
2402 
2403 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2404 {
2405 	struct request_queue *q;
2406 
2407 	if (nr_hw_queues > nr_cpu_ids)
2408 		nr_hw_queues = nr_cpu_ids;
2409 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2410 		return;
2411 
2412 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2413 		blk_mq_freeze_queue(q);
2414 
2415 	set->nr_hw_queues = nr_hw_queues;
2416 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2417 		blk_mq_realloc_hw_ctxs(set, q);
2418 
2419 		if (q->nr_hw_queues > 1)
2420 			blk_queue_make_request(q, blk_mq_make_request);
2421 		else
2422 			blk_queue_make_request(q, blk_sq_make_request);
2423 
2424 		blk_mq_queue_reinit(q, cpu_online_mask);
2425 	}
2426 
2427 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2428 		blk_mq_unfreeze_queue(q);
2429 }
2430 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2431 
2432 void blk_mq_disable_hotplug(void)
2433 {
2434 	mutex_lock(&all_q_mutex);
2435 }
2436 
2437 void blk_mq_enable_hotplug(void)
2438 {
2439 	mutex_unlock(&all_q_mutex);
2440 }
2441 
2442 static int __init blk_mq_init(void)
2443 {
2444 	blk_mq_cpu_init();
2445 
2446 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2447 
2448 	return 0;
2449 }
2450 subsys_initcall(blk_mq_init);
2451