xref: /openbmc/linux/block/blk-mq.c (revision 6d41bb4d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if (rq->part == mi->part)
109 		mi->inflight[rq_data_dir(rq)]++;
110 
111 	return true;
112 }
113 
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 
120 	return mi.inflight[0] + mi.inflight[1];
121 }
122 
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 			 unsigned int inflight[2])
125 {
126 	struct mq_inflight mi = { .part = part };
127 
128 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 	inflight[0] = mi.inflight[0];
130 	inflight[1] = mi.inflight[1];
131 }
132 
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135 	mutex_lock(&q->mq_freeze_lock);
136 	if (++q->mq_freeze_depth == 1) {
137 		percpu_ref_kill(&q->q_usage_counter);
138 		mutex_unlock(&q->mq_freeze_lock);
139 		if (queue_is_mq(q))
140 			blk_mq_run_hw_queues(q, false);
141 	} else {
142 		mutex_unlock(&q->mq_freeze_lock);
143 	}
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146 
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152 
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 				     unsigned long timeout)
155 {
156 	return wait_event_timeout(q->mq_freeze_wq,
157 					percpu_ref_is_zero(&q->q_usage_counter),
158 					timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161 
162 /*
163  * Guarantee no request is in use, so we can change any data structure of
164  * the queue afterward.
165  */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168 	/*
169 	 * In the !blk_mq case we are only calling this to kill the
170 	 * q_usage_counter, otherwise this increases the freeze depth
171 	 * and waits for it to return to zero.  For this reason there is
172 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 	 * exported to drivers as the only user for unfreeze is blk_mq.
174 	 */
175 	blk_freeze_queue_start(q);
176 	blk_mq_freeze_queue_wait(q);
177 }
178 
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181 	/*
182 	 * ...just an alias to keep freeze and unfreeze actions balanced
183 	 * in the blk_mq_* namespace
184 	 */
185 	blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188 
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191 	mutex_lock(&q->mq_freeze_lock);
192 	q->mq_freeze_depth--;
193 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 	if (!q->mq_freeze_depth) {
195 		percpu_ref_resurrect(&q->q_usage_counter);
196 		wake_up_all(&q->mq_freeze_wq);
197 	}
198 	mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201 
202 /*
203  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204  * mpt3sas driver such that this function can be removed.
205  */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211 
212 /**
213  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214  * @q: request queue.
215  *
216  * Note: this function does not prevent that the struct request end_io()
217  * callback function is invoked. Once this function is returned, we make
218  * sure no dispatch can happen until the queue is unquiesced via
219  * blk_mq_unquiesce_queue().
220  */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223 	struct blk_mq_hw_ctx *hctx;
224 	unsigned int i;
225 	bool rcu = false;
226 
227 	blk_mq_quiesce_queue_nowait(q);
228 
229 	queue_for_each_hw_ctx(q, hctx, i) {
230 		if (hctx->flags & BLK_MQ_F_BLOCKING)
231 			synchronize_srcu(hctx->srcu);
232 		else
233 			rcu = true;
234 	}
235 	if (rcu)
236 		synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239 
240 /*
241  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242  * @q: request queue.
243  *
244  * This function recovers queue into the state before quiescing
245  * which is done by blk_mq_quiesce_queue.
246  */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250 
251 	/* dispatch requests which are inserted during quiescing */
252 	blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255 
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258 	struct blk_mq_hw_ctx *hctx;
259 	unsigned int i;
260 
261 	queue_for_each_hw_ctx(q, hctx, i)
262 		if (blk_mq_hw_queue_mapped(hctx))
263 			blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265 
266 /*
267  * Only need start/end time stamping if we have iostat or
268  * blk stats enabled, or using an IO scheduler.
269  */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274 
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 		unsigned int tag, u64 alloc_time_ns)
277 {
278 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 	struct request *rq = tags->static_rqs[tag];
280 
281 	if (data->q->elevator) {
282 		rq->tag = BLK_MQ_NO_TAG;
283 		rq->internal_tag = tag;
284 	} else {
285 		rq->tag = tag;
286 		rq->internal_tag = BLK_MQ_NO_TAG;
287 	}
288 
289 	/* csd/requeue_work/fifo_time is initialized before use */
290 	rq->q = data->q;
291 	rq->mq_ctx = data->ctx;
292 	rq->mq_hctx = data->hctx;
293 	rq->rq_flags = 0;
294 	rq->cmd_flags = data->cmd_flags;
295 	if (data->flags & BLK_MQ_REQ_PREEMPT)
296 		rq->rq_flags |= RQF_PREEMPT;
297 	if (blk_queue_io_stat(data->q))
298 		rq->rq_flags |= RQF_IO_STAT;
299 	INIT_LIST_HEAD(&rq->queuelist);
300 	INIT_HLIST_NODE(&rq->hash);
301 	RB_CLEAR_NODE(&rq->rb_node);
302 	rq->rq_disk = NULL;
303 	rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305 	rq->alloc_time_ns = alloc_time_ns;
306 #endif
307 	if (blk_mq_need_time_stamp(rq))
308 		rq->start_time_ns = ktime_get_ns();
309 	else
310 		rq->start_time_ns = 0;
311 	rq->io_start_time_ns = 0;
312 	rq->stats_sectors = 0;
313 	rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 	rq->nr_integrity_segments = 0;
316 #endif
317 	blk_crypto_rq_set_defaults(rq);
318 	/* tag was already set */
319 	WRITE_ONCE(rq->deadline, 0);
320 
321 	rq->timeout = 0;
322 
323 	rq->end_io = NULL;
324 	rq->end_io_data = NULL;
325 
326 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327 	refcount_set(&rq->ref, 1);
328 
329 	if (!op_is_flush(data->cmd_flags)) {
330 		struct elevator_queue *e = data->q->elevator;
331 
332 		rq->elv.icq = NULL;
333 		if (e && e->type->ops.prepare_request) {
334 			if (e->type->icq_cache)
335 				blk_mq_sched_assign_ioc(rq);
336 
337 			e->type->ops.prepare_request(rq);
338 			rq->rq_flags |= RQF_ELVPRIV;
339 		}
340 	}
341 
342 	data->hctx->queued++;
343 	return rq;
344 }
345 
346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348 	struct request_queue *q = data->q;
349 	struct elevator_queue *e = q->elevator;
350 	u64 alloc_time_ns = 0;
351 	unsigned int tag;
352 
353 	/* alloc_time includes depth and tag waits */
354 	if (blk_queue_rq_alloc_time(q))
355 		alloc_time_ns = ktime_get_ns();
356 
357 	if (data->cmd_flags & REQ_NOWAIT)
358 		data->flags |= BLK_MQ_REQ_NOWAIT;
359 
360 	if (e) {
361 		/*
362 		 * Flush requests are special and go directly to the
363 		 * dispatch list. Don't include reserved tags in the
364 		 * limiting, as it isn't useful.
365 		 */
366 		if (!op_is_flush(data->cmd_flags) &&
367 		    e->type->ops.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.limit_depth(data->cmd_flags, data);
370 	}
371 
372 retry:
373 	data->ctx = blk_mq_get_ctx(q);
374 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375 	if (!e)
376 		blk_mq_tag_busy(data->hctx);
377 
378 	/*
379 	 * Waiting allocations only fail because of an inactive hctx.  In that
380 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
381 	 * should have migrated us to an online CPU by now.
382 	 */
383 	tag = blk_mq_get_tag(data);
384 	if (tag == BLK_MQ_NO_TAG) {
385 		if (data->flags & BLK_MQ_REQ_NOWAIT)
386 			return NULL;
387 
388 		/*
389 		 * Give up the CPU and sleep for a random short time to ensure
390 		 * that thread using a realtime scheduling class are migrated
391 		 * off the the CPU, and thus off the hctx that is going away.
392 		 */
393 		msleep(3);
394 		goto retry;
395 	}
396 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398 
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 		blk_mq_req_flags_t flags)
401 {
402 	struct blk_mq_alloc_data data = {
403 		.q		= q,
404 		.flags		= flags,
405 		.cmd_flags	= op,
406 	};
407 	struct request *rq;
408 	int ret;
409 
410 	ret = blk_queue_enter(q, flags);
411 	if (ret)
412 		return ERR_PTR(ret);
413 
414 	rq = __blk_mq_alloc_request(&data);
415 	if (!rq)
416 		goto out_queue_exit;
417 	rq->__data_len = 0;
418 	rq->__sector = (sector_t) -1;
419 	rq->bio = rq->biotail = NULL;
420 	return rq;
421 out_queue_exit:
422 	blk_queue_exit(q);
423 	return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426 
427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430 	struct blk_mq_alloc_data data = {
431 		.q		= q,
432 		.flags		= flags,
433 		.cmd_flags	= op,
434 	};
435 	u64 alloc_time_ns = 0;
436 	unsigned int cpu;
437 	unsigned int tag;
438 	int ret;
439 
440 	/* alloc_time includes depth and tag waits */
441 	if (blk_queue_rq_alloc_time(q))
442 		alloc_time_ns = ktime_get_ns();
443 
444 	/*
445 	 * If the tag allocator sleeps we could get an allocation for a
446 	 * different hardware context.  No need to complicate the low level
447 	 * allocator for this for the rare use case of a command tied to
448 	 * a specific queue.
449 	 */
450 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451 		return ERR_PTR(-EINVAL);
452 
453 	if (hctx_idx >= q->nr_hw_queues)
454 		return ERR_PTR(-EIO);
455 
456 	ret = blk_queue_enter(q, flags);
457 	if (ret)
458 		return ERR_PTR(ret);
459 
460 	/*
461 	 * Check if the hardware context is actually mapped to anything.
462 	 * If not tell the caller that it should skip this queue.
463 	 */
464 	ret = -EXDEV;
465 	data.hctx = q->queue_hw_ctx[hctx_idx];
466 	if (!blk_mq_hw_queue_mapped(data.hctx))
467 		goto out_queue_exit;
468 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469 	data.ctx = __blk_mq_get_ctx(q, cpu);
470 
471 	if (!q->elevator)
472 		blk_mq_tag_busy(data.hctx);
473 
474 	ret = -EWOULDBLOCK;
475 	tag = blk_mq_get_tag(&data);
476 	if (tag == BLK_MQ_NO_TAG)
477 		goto out_queue_exit;
478 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479 
480 out_queue_exit:
481 	blk_queue_exit(q);
482 	return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485 
486 static void __blk_mq_free_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 	struct blk_mq_ctx *ctx = rq->mq_ctx;
490 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 	const int sched_tag = rq->internal_tag;
492 
493 	blk_crypto_free_request(rq);
494 	blk_pm_mark_last_busy(rq);
495 	rq->mq_hctx = NULL;
496 	if (rq->tag != BLK_MQ_NO_TAG)
497 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498 	if (sched_tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500 	blk_mq_sched_restart(hctx);
501 	blk_queue_exit(q);
502 }
503 
504 void blk_mq_free_request(struct request *rq)
505 {
506 	struct request_queue *q = rq->q;
507 	struct elevator_queue *e = q->elevator;
508 	struct blk_mq_ctx *ctx = rq->mq_ctx;
509 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510 
511 	if (rq->rq_flags & RQF_ELVPRIV) {
512 		if (e && e->type->ops.finish_request)
513 			e->type->ops.finish_request(rq);
514 		if (rq->elv.icq) {
515 			put_io_context(rq->elv.icq->ioc);
516 			rq->elv.icq = NULL;
517 		}
518 	}
519 
520 	ctx->rq_completed[rq_is_sync(rq)]++;
521 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
522 		atomic_dec(&hctx->nr_active);
523 
524 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525 		laptop_io_completion(q->backing_dev_info);
526 
527 	rq_qos_done(q, rq);
528 
529 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530 	if (refcount_dec_and_test(&rq->ref))
531 		__blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534 
535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 	u64 now = 0;
538 
539 	if (blk_mq_need_time_stamp(rq))
540 		now = ktime_get_ns();
541 
542 	if (rq->rq_flags & RQF_STATS) {
543 		blk_mq_poll_stats_start(rq->q);
544 		blk_stat_add(rq, now);
545 	}
546 
547 	if (rq->internal_tag != BLK_MQ_NO_TAG)
548 		blk_mq_sched_completed_request(rq, now);
549 
550 	blk_account_io_done(rq, now);
551 
552 	if (rq->end_io) {
553 		rq_qos_done(rq->q, rq);
554 		rq->end_io(rq, error);
555 	} else {
556 		blk_mq_free_request(rq);
557 	}
558 }
559 EXPORT_SYMBOL(__blk_mq_end_request);
560 
561 void blk_mq_end_request(struct request *rq, blk_status_t error)
562 {
563 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
564 		BUG();
565 	__blk_mq_end_request(rq, error);
566 }
567 EXPORT_SYMBOL(blk_mq_end_request);
568 
569 /*
570  * Softirq action handler - move entries to local list and loop over them
571  * while passing them to the queue registered handler.
572  */
573 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
574 {
575 	struct list_head *cpu_list, local_list;
576 
577 	local_irq_disable();
578 	cpu_list = this_cpu_ptr(&blk_cpu_done);
579 	list_replace_init(cpu_list, &local_list);
580 	local_irq_enable();
581 
582 	while (!list_empty(&local_list)) {
583 		struct request *rq;
584 
585 		rq = list_entry(local_list.next, struct request, ipi_list);
586 		list_del_init(&rq->ipi_list);
587 		rq->q->mq_ops->complete(rq);
588 	}
589 }
590 
591 static void blk_mq_trigger_softirq(struct request *rq)
592 {
593 	struct list_head *list;
594 	unsigned long flags;
595 
596 	local_irq_save(flags);
597 	list = this_cpu_ptr(&blk_cpu_done);
598 	list_add_tail(&rq->ipi_list, list);
599 
600 	/*
601 	 * If the list only contains our just added request, signal a raise of
602 	 * the softirq.  If there are already entries there, someone already
603 	 * raised the irq but it hasn't run yet.
604 	 */
605 	if (list->next == &rq->ipi_list)
606 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
607 	local_irq_restore(flags);
608 }
609 
610 static int blk_softirq_cpu_dead(unsigned int cpu)
611 {
612 	/*
613 	 * If a CPU goes away, splice its entries to the current CPU
614 	 * and trigger a run of the softirq
615 	 */
616 	local_irq_disable();
617 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
618 			 this_cpu_ptr(&blk_cpu_done));
619 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
620 	local_irq_enable();
621 
622 	return 0;
623 }
624 
625 
626 static void __blk_mq_complete_request_remote(void *data)
627 {
628 	struct request *rq = data;
629 
630 	/*
631 	 * For most of single queue controllers, there is only one irq vector
632 	 * for handling I/O completion, and the only irq's affinity is set
633 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
634 	 * is handled on one specific CPU.
635 	 *
636 	 * So complete I/O requests in softirq context in case of single queue
637 	 * devices to avoid degrading I/O performance due to irqsoff latency.
638 	 */
639 	if (rq->q->nr_hw_queues == 1)
640 		blk_mq_trigger_softirq(rq);
641 	else
642 		rq->q->mq_ops->complete(rq);
643 }
644 
645 static inline bool blk_mq_complete_need_ipi(struct request *rq)
646 {
647 	int cpu = raw_smp_processor_id();
648 
649 	if (!IS_ENABLED(CONFIG_SMP) ||
650 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
651 		return false;
652 
653 	/* same CPU or cache domain?  Complete locally */
654 	if (cpu == rq->mq_ctx->cpu ||
655 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
656 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
657 		return false;
658 
659 	/* don't try to IPI to an offline CPU */
660 	return cpu_online(rq->mq_ctx->cpu);
661 }
662 
663 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
664 		struct request *rq)
665 {
666 	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
667 	rq->tag = BLK_MQ_NO_TAG;
668 
669 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
670 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
671 		atomic_dec(&hctx->nr_active);
672 	}
673 }
674 
675 static inline void blk_mq_put_driver_tag(struct request *rq)
676 {
677 	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
678 		return;
679 
680 	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
681 }
682 
683 bool blk_mq_complete_request_remote(struct request *rq)
684 {
685 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
686 
687 	blk_mq_put_driver_tag(rq);
688 
689 	/*
690 	 * For a polled request, always complete locallly, it's pointless
691 	 * to redirect the completion.
692 	 */
693 	if (rq->cmd_flags & REQ_HIPRI)
694 		return false;
695 
696 	if (blk_mq_complete_need_ipi(rq)) {
697 		rq->csd.func = __blk_mq_complete_request_remote;
698 		rq->csd.info = rq;
699 		rq->csd.flags = 0;
700 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
701 	} else {
702 		if (rq->q->nr_hw_queues > 1)
703 			return false;
704 		blk_mq_trigger_softirq(rq);
705 	}
706 
707 	return true;
708 }
709 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
710 
711 /**
712  * blk_mq_complete_request - end I/O on a request
713  * @rq:		the request being processed
714  *
715  * Description:
716  *	Complete a request by scheduling the ->complete_rq operation.
717  **/
718 void blk_mq_complete_request(struct request *rq)
719 {
720 	if (!blk_mq_complete_request_remote(rq))
721 		rq->q->mq_ops->complete(rq);
722 }
723 EXPORT_SYMBOL(blk_mq_complete_request);
724 
725 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
726 	__releases(hctx->srcu)
727 {
728 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
729 		rcu_read_unlock();
730 	else
731 		srcu_read_unlock(hctx->srcu, srcu_idx);
732 }
733 
734 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
735 	__acquires(hctx->srcu)
736 {
737 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
738 		/* shut up gcc false positive */
739 		*srcu_idx = 0;
740 		rcu_read_lock();
741 	} else
742 		*srcu_idx = srcu_read_lock(hctx->srcu);
743 }
744 
745 /**
746  * blk_mq_start_request - Start processing a request
747  * @rq: Pointer to request to be started
748  *
749  * Function used by device drivers to notify the block layer that a request
750  * is going to be processed now, so blk layer can do proper initializations
751  * such as starting the timeout timer.
752  */
753 void blk_mq_start_request(struct request *rq)
754 {
755 	struct request_queue *q = rq->q;
756 
757 	trace_block_rq_issue(q, rq);
758 
759 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
760 		rq->io_start_time_ns = ktime_get_ns();
761 		rq->stats_sectors = blk_rq_sectors(rq);
762 		rq->rq_flags |= RQF_STATS;
763 		rq_qos_issue(q, rq);
764 	}
765 
766 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
767 
768 	blk_add_timer(rq);
769 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
770 
771 #ifdef CONFIG_BLK_DEV_INTEGRITY
772 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
773 		q->integrity.profile->prepare_fn(rq);
774 #endif
775 }
776 EXPORT_SYMBOL(blk_mq_start_request);
777 
778 static void __blk_mq_requeue_request(struct request *rq)
779 {
780 	struct request_queue *q = rq->q;
781 
782 	blk_mq_put_driver_tag(rq);
783 
784 	trace_block_rq_requeue(q, rq);
785 	rq_qos_requeue(q, rq);
786 
787 	if (blk_mq_request_started(rq)) {
788 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
789 		rq->rq_flags &= ~RQF_TIMED_OUT;
790 	}
791 }
792 
793 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
794 {
795 	__blk_mq_requeue_request(rq);
796 
797 	/* this request will be re-inserted to io scheduler queue */
798 	blk_mq_sched_requeue_request(rq);
799 
800 	BUG_ON(!list_empty(&rq->queuelist));
801 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
802 }
803 EXPORT_SYMBOL(blk_mq_requeue_request);
804 
805 static void blk_mq_requeue_work(struct work_struct *work)
806 {
807 	struct request_queue *q =
808 		container_of(work, struct request_queue, requeue_work.work);
809 	LIST_HEAD(rq_list);
810 	struct request *rq, *next;
811 
812 	spin_lock_irq(&q->requeue_lock);
813 	list_splice_init(&q->requeue_list, &rq_list);
814 	spin_unlock_irq(&q->requeue_lock);
815 
816 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
817 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
818 			continue;
819 
820 		rq->rq_flags &= ~RQF_SOFTBARRIER;
821 		list_del_init(&rq->queuelist);
822 		/*
823 		 * If RQF_DONTPREP, rq has contained some driver specific
824 		 * data, so insert it to hctx dispatch list to avoid any
825 		 * merge.
826 		 */
827 		if (rq->rq_flags & RQF_DONTPREP)
828 			blk_mq_request_bypass_insert(rq, false, false);
829 		else
830 			blk_mq_sched_insert_request(rq, true, false, false);
831 	}
832 
833 	while (!list_empty(&rq_list)) {
834 		rq = list_entry(rq_list.next, struct request, queuelist);
835 		list_del_init(&rq->queuelist);
836 		blk_mq_sched_insert_request(rq, false, false, false);
837 	}
838 
839 	blk_mq_run_hw_queues(q, false);
840 }
841 
842 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
843 				bool kick_requeue_list)
844 {
845 	struct request_queue *q = rq->q;
846 	unsigned long flags;
847 
848 	/*
849 	 * We abuse this flag that is otherwise used by the I/O scheduler to
850 	 * request head insertion from the workqueue.
851 	 */
852 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
853 
854 	spin_lock_irqsave(&q->requeue_lock, flags);
855 	if (at_head) {
856 		rq->rq_flags |= RQF_SOFTBARRIER;
857 		list_add(&rq->queuelist, &q->requeue_list);
858 	} else {
859 		list_add_tail(&rq->queuelist, &q->requeue_list);
860 	}
861 	spin_unlock_irqrestore(&q->requeue_lock, flags);
862 
863 	if (kick_requeue_list)
864 		blk_mq_kick_requeue_list(q);
865 }
866 
867 void blk_mq_kick_requeue_list(struct request_queue *q)
868 {
869 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
870 }
871 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
872 
873 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
874 				    unsigned long msecs)
875 {
876 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
877 				    msecs_to_jiffies(msecs));
878 }
879 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
880 
881 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
882 {
883 	if (tag < tags->nr_tags) {
884 		prefetch(tags->rqs[tag]);
885 		return tags->rqs[tag];
886 	}
887 
888 	return NULL;
889 }
890 EXPORT_SYMBOL(blk_mq_tag_to_rq);
891 
892 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
893 			       void *priv, bool reserved)
894 {
895 	/*
896 	 * If we find a request that is inflight and the queue matches,
897 	 * we know the queue is busy. Return false to stop the iteration.
898 	 */
899 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
900 		bool *busy = priv;
901 
902 		*busy = true;
903 		return false;
904 	}
905 
906 	return true;
907 }
908 
909 bool blk_mq_queue_inflight(struct request_queue *q)
910 {
911 	bool busy = false;
912 
913 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
914 	return busy;
915 }
916 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
917 
918 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
919 {
920 	req->rq_flags |= RQF_TIMED_OUT;
921 	if (req->q->mq_ops->timeout) {
922 		enum blk_eh_timer_return ret;
923 
924 		ret = req->q->mq_ops->timeout(req, reserved);
925 		if (ret == BLK_EH_DONE)
926 			return;
927 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
928 	}
929 
930 	blk_add_timer(req);
931 }
932 
933 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
934 {
935 	unsigned long deadline;
936 
937 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
938 		return false;
939 	if (rq->rq_flags & RQF_TIMED_OUT)
940 		return false;
941 
942 	deadline = READ_ONCE(rq->deadline);
943 	if (time_after_eq(jiffies, deadline))
944 		return true;
945 
946 	if (*next == 0)
947 		*next = deadline;
948 	else if (time_after(*next, deadline))
949 		*next = deadline;
950 	return false;
951 }
952 
953 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
954 		struct request *rq, void *priv, bool reserved)
955 {
956 	unsigned long *next = priv;
957 
958 	/*
959 	 * Just do a quick check if it is expired before locking the request in
960 	 * so we're not unnecessarilly synchronizing across CPUs.
961 	 */
962 	if (!blk_mq_req_expired(rq, next))
963 		return true;
964 
965 	/*
966 	 * We have reason to believe the request may be expired. Take a
967 	 * reference on the request to lock this request lifetime into its
968 	 * currently allocated context to prevent it from being reallocated in
969 	 * the event the completion by-passes this timeout handler.
970 	 *
971 	 * If the reference was already released, then the driver beat the
972 	 * timeout handler to posting a natural completion.
973 	 */
974 	if (!refcount_inc_not_zero(&rq->ref))
975 		return true;
976 
977 	/*
978 	 * The request is now locked and cannot be reallocated underneath the
979 	 * timeout handler's processing. Re-verify this exact request is truly
980 	 * expired; if it is not expired, then the request was completed and
981 	 * reallocated as a new request.
982 	 */
983 	if (blk_mq_req_expired(rq, next))
984 		blk_mq_rq_timed_out(rq, reserved);
985 
986 	if (is_flush_rq(rq, hctx))
987 		rq->end_io(rq, 0);
988 	else if (refcount_dec_and_test(&rq->ref))
989 		__blk_mq_free_request(rq);
990 
991 	return true;
992 }
993 
994 static void blk_mq_timeout_work(struct work_struct *work)
995 {
996 	struct request_queue *q =
997 		container_of(work, struct request_queue, timeout_work);
998 	unsigned long next = 0;
999 	struct blk_mq_hw_ctx *hctx;
1000 	int i;
1001 
1002 	/* A deadlock might occur if a request is stuck requiring a
1003 	 * timeout at the same time a queue freeze is waiting
1004 	 * completion, since the timeout code would not be able to
1005 	 * acquire the queue reference here.
1006 	 *
1007 	 * That's why we don't use blk_queue_enter here; instead, we use
1008 	 * percpu_ref_tryget directly, because we need to be able to
1009 	 * obtain a reference even in the short window between the queue
1010 	 * starting to freeze, by dropping the first reference in
1011 	 * blk_freeze_queue_start, and the moment the last request is
1012 	 * consumed, marked by the instant q_usage_counter reaches
1013 	 * zero.
1014 	 */
1015 	if (!percpu_ref_tryget(&q->q_usage_counter))
1016 		return;
1017 
1018 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1019 
1020 	if (next != 0) {
1021 		mod_timer(&q->timeout, next);
1022 	} else {
1023 		/*
1024 		 * Request timeouts are handled as a forward rolling timer. If
1025 		 * we end up here it means that no requests are pending and
1026 		 * also that no request has been pending for a while. Mark
1027 		 * each hctx as idle.
1028 		 */
1029 		queue_for_each_hw_ctx(q, hctx, i) {
1030 			/* the hctx may be unmapped, so check it here */
1031 			if (blk_mq_hw_queue_mapped(hctx))
1032 				blk_mq_tag_idle(hctx);
1033 		}
1034 	}
1035 	blk_queue_exit(q);
1036 }
1037 
1038 struct flush_busy_ctx_data {
1039 	struct blk_mq_hw_ctx *hctx;
1040 	struct list_head *list;
1041 };
1042 
1043 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1044 {
1045 	struct flush_busy_ctx_data *flush_data = data;
1046 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1047 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1048 	enum hctx_type type = hctx->type;
1049 
1050 	spin_lock(&ctx->lock);
1051 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1052 	sbitmap_clear_bit(sb, bitnr);
1053 	spin_unlock(&ctx->lock);
1054 	return true;
1055 }
1056 
1057 /*
1058  * Process software queues that have been marked busy, splicing them
1059  * to the for-dispatch
1060  */
1061 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1062 {
1063 	struct flush_busy_ctx_data data = {
1064 		.hctx = hctx,
1065 		.list = list,
1066 	};
1067 
1068 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1069 }
1070 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1071 
1072 struct dispatch_rq_data {
1073 	struct blk_mq_hw_ctx *hctx;
1074 	struct request *rq;
1075 };
1076 
1077 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1078 		void *data)
1079 {
1080 	struct dispatch_rq_data *dispatch_data = data;
1081 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1082 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1083 	enum hctx_type type = hctx->type;
1084 
1085 	spin_lock(&ctx->lock);
1086 	if (!list_empty(&ctx->rq_lists[type])) {
1087 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1088 		list_del_init(&dispatch_data->rq->queuelist);
1089 		if (list_empty(&ctx->rq_lists[type]))
1090 			sbitmap_clear_bit(sb, bitnr);
1091 	}
1092 	spin_unlock(&ctx->lock);
1093 
1094 	return !dispatch_data->rq;
1095 }
1096 
1097 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1098 					struct blk_mq_ctx *start)
1099 {
1100 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1101 	struct dispatch_rq_data data = {
1102 		.hctx = hctx,
1103 		.rq   = NULL,
1104 	};
1105 
1106 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1107 			       dispatch_rq_from_ctx, &data);
1108 
1109 	return data.rq;
1110 }
1111 
1112 static inline unsigned int queued_to_index(unsigned int queued)
1113 {
1114 	if (!queued)
1115 		return 0;
1116 
1117 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1118 }
1119 
1120 static bool __blk_mq_get_driver_tag(struct request *rq)
1121 {
1122 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1123 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1124 	int tag;
1125 
1126 	blk_mq_tag_busy(rq->mq_hctx);
1127 
1128 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1129 		bt = &rq->mq_hctx->tags->breserved_tags;
1130 		tag_offset = 0;
1131 	}
1132 
1133 	if (!hctx_may_queue(rq->mq_hctx, bt))
1134 		return false;
1135 	tag = __sbitmap_queue_get(bt);
1136 	if (tag == BLK_MQ_NO_TAG)
1137 		return false;
1138 
1139 	rq->tag = tag + tag_offset;
1140 	return true;
1141 }
1142 
1143 static bool blk_mq_get_driver_tag(struct request *rq)
1144 {
1145 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1146 
1147 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1148 		return false;
1149 
1150 	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
1151 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1152 		atomic_inc(&hctx->nr_active);
1153 	}
1154 	hctx->tags->rqs[rq->tag] = rq;
1155 	return true;
1156 }
1157 
1158 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1159 				int flags, void *key)
1160 {
1161 	struct blk_mq_hw_ctx *hctx;
1162 
1163 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1164 
1165 	spin_lock(&hctx->dispatch_wait_lock);
1166 	if (!list_empty(&wait->entry)) {
1167 		struct sbitmap_queue *sbq;
1168 
1169 		list_del_init(&wait->entry);
1170 		sbq = &hctx->tags->bitmap_tags;
1171 		atomic_dec(&sbq->ws_active);
1172 	}
1173 	spin_unlock(&hctx->dispatch_wait_lock);
1174 
1175 	blk_mq_run_hw_queue(hctx, true);
1176 	return 1;
1177 }
1178 
1179 /*
1180  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1181  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1182  * restart. For both cases, take care to check the condition again after
1183  * marking us as waiting.
1184  */
1185 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1186 				 struct request *rq)
1187 {
1188 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1189 	struct wait_queue_head *wq;
1190 	wait_queue_entry_t *wait;
1191 	bool ret;
1192 
1193 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1194 		blk_mq_sched_mark_restart_hctx(hctx);
1195 
1196 		/*
1197 		 * It's possible that a tag was freed in the window between the
1198 		 * allocation failure and adding the hardware queue to the wait
1199 		 * queue.
1200 		 *
1201 		 * Don't clear RESTART here, someone else could have set it.
1202 		 * At most this will cost an extra queue run.
1203 		 */
1204 		return blk_mq_get_driver_tag(rq);
1205 	}
1206 
1207 	wait = &hctx->dispatch_wait;
1208 	if (!list_empty_careful(&wait->entry))
1209 		return false;
1210 
1211 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1212 
1213 	spin_lock_irq(&wq->lock);
1214 	spin_lock(&hctx->dispatch_wait_lock);
1215 	if (!list_empty(&wait->entry)) {
1216 		spin_unlock(&hctx->dispatch_wait_lock);
1217 		spin_unlock_irq(&wq->lock);
1218 		return false;
1219 	}
1220 
1221 	atomic_inc(&sbq->ws_active);
1222 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1223 	__add_wait_queue(wq, wait);
1224 
1225 	/*
1226 	 * It's possible that a tag was freed in the window between the
1227 	 * allocation failure and adding the hardware queue to the wait
1228 	 * queue.
1229 	 */
1230 	ret = blk_mq_get_driver_tag(rq);
1231 	if (!ret) {
1232 		spin_unlock(&hctx->dispatch_wait_lock);
1233 		spin_unlock_irq(&wq->lock);
1234 		return false;
1235 	}
1236 
1237 	/*
1238 	 * We got a tag, remove ourselves from the wait queue to ensure
1239 	 * someone else gets the wakeup.
1240 	 */
1241 	list_del_init(&wait->entry);
1242 	atomic_dec(&sbq->ws_active);
1243 	spin_unlock(&hctx->dispatch_wait_lock);
1244 	spin_unlock_irq(&wq->lock);
1245 
1246 	return true;
1247 }
1248 
1249 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1250 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1251 /*
1252  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1253  * - EWMA is one simple way to compute running average value
1254  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1255  * - take 4 as factor for avoiding to get too small(0) result, and this
1256  *   factor doesn't matter because EWMA decreases exponentially
1257  */
1258 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1259 {
1260 	unsigned int ewma;
1261 
1262 	if (hctx->queue->elevator)
1263 		return;
1264 
1265 	ewma = hctx->dispatch_busy;
1266 
1267 	if (!ewma && !busy)
1268 		return;
1269 
1270 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1271 	if (busy)
1272 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1273 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1274 
1275 	hctx->dispatch_busy = ewma;
1276 }
1277 
1278 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1279 
1280 static void blk_mq_handle_dev_resource(struct request *rq,
1281 				       struct list_head *list)
1282 {
1283 	struct request *next =
1284 		list_first_entry_or_null(list, struct request, queuelist);
1285 
1286 	/*
1287 	 * If an I/O scheduler has been configured and we got a driver tag for
1288 	 * the next request already, free it.
1289 	 */
1290 	if (next)
1291 		blk_mq_put_driver_tag(next);
1292 
1293 	list_add(&rq->queuelist, list);
1294 	__blk_mq_requeue_request(rq);
1295 }
1296 
1297 static void blk_mq_handle_zone_resource(struct request *rq,
1298 					struct list_head *zone_list)
1299 {
1300 	/*
1301 	 * If we end up here it is because we cannot dispatch a request to a
1302 	 * specific zone due to LLD level zone-write locking or other zone
1303 	 * related resource not being available. In this case, set the request
1304 	 * aside in zone_list for retrying it later.
1305 	 */
1306 	list_add(&rq->queuelist, zone_list);
1307 	__blk_mq_requeue_request(rq);
1308 }
1309 
1310 enum prep_dispatch {
1311 	PREP_DISPATCH_OK,
1312 	PREP_DISPATCH_NO_TAG,
1313 	PREP_DISPATCH_NO_BUDGET,
1314 };
1315 
1316 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1317 						  bool need_budget)
1318 {
1319 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1320 
1321 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1322 		blk_mq_put_driver_tag(rq);
1323 		return PREP_DISPATCH_NO_BUDGET;
1324 	}
1325 
1326 	if (!blk_mq_get_driver_tag(rq)) {
1327 		/*
1328 		 * The initial allocation attempt failed, so we need to
1329 		 * rerun the hardware queue when a tag is freed. The
1330 		 * waitqueue takes care of that. If the queue is run
1331 		 * before we add this entry back on the dispatch list,
1332 		 * we'll re-run it below.
1333 		 */
1334 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1335 			/*
1336 			 * All budgets not got from this function will be put
1337 			 * together during handling partial dispatch
1338 			 */
1339 			if (need_budget)
1340 				blk_mq_put_dispatch_budget(rq->q);
1341 			return PREP_DISPATCH_NO_TAG;
1342 		}
1343 	}
1344 
1345 	return PREP_DISPATCH_OK;
1346 }
1347 
1348 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1349 static void blk_mq_release_budgets(struct request_queue *q,
1350 		unsigned int nr_budgets)
1351 {
1352 	int i;
1353 
1354 	for (i = 0; i < nr_budgets; i++)
1355 		blk_mq_put_dispatch_budget(q);
1356 }
1357 
1358 /*
1359  * Returns true if we did some work AND can potentially do more.
1360  */
1361 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1362 			     unsigned int nr_budgets)
1363 {
1364 	enum prep_dispatch prep;
1365 	struct request_queue *q = hctx->queue;
1366 	struct request *rq, *nxt;
1367 	int errors, queued;
1368 	blk_status_t ret = BLK_STS_OK;
1369 	LIST_HEAD(zone_list);
1370 
1371 	if (list_empty(list))
1372 		return false;
1373 
1374 	/*
1375 	 * Now process all the entries, sending them to the driver.
1376 	 */
1377 	errors = queued = 0;
1378 	do {
1379 		struct blk_mq_queue_data bd;
1380 
1381 		rq = list_first_entry(list, struct request, queuelist);
1382 
1383 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1384 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1385 		if (prep != PREP_DISPATCH_OK)
1386 			break;
1387 
1388 		list_del_init(&rq->queuelist);
1389 
1390 		bd.rq = rq;
1391 
1392 		/*
1393 		 * Flag last if we have no more requests, or if we have more
1394 		 * but can't assign a driver tag to it.
1395 		 */
1396 		if (list_empty(list))
1397 			bd.last = true;
1398 		else {
1399 			nxt = list_first_entry(list, struct request, queuelist);
1400 			bd.last = !blk_mq_get_driver_tag(nxt);
1401 		}
1402 
1403 		/*
1404 		 * once the request is queued to lld, no need to cover the
1405 		 * budget any more
1406 		 */
1407 		if (nr_budgets)
1408 			nr_budgets--;
1409 		ret = q->mq_ops->queue_rq(hctx, &bd);
1410 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1411 			blk_mq_handle_dev_resource(rq, list);
1412 			break;
1413 		} else if (ret == BLK_STS_ZONE_RESOURCE) {
1414 			/*
1415 			 * Move the request to zone_list and keep going through
1416 			 * the dispatch list to find more requests the drive can
1417 			 * accept.
1418 			 */
1419 			blk_mq_handle_zone_resource(rq, &zone_list);
1420 			if (list_empty(list))
1421 				break;
1422 			continue;
1423 		}
1424 
1425 		if (unlikely(ret != BLK_STS_OK)) {
1426 			errors++;
1427 			blk_mq_end_request(rq, BLK_STS_IOERR);
1428 			continue;
1429 		}
1430 
1431 		queued++;
1432 	} while (!list_empty(list));
1433 
1434 	if (!list_empty(&zone_list))
1435 		list_splice_tail_init(&zone_list, list);
1436 
1437 	hctx->dispatched[queued_to_index(queued)]++;
1438 
1439 	/*
1440 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1441 	 * that is where we will continue on next queue run.
1442 	 */
1443 	if (!list_empty(list)) {
1444 		bool needs_restart;
1445 		/* For non-shared tags, the RESTART check will suffice */
1446 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1447                         (hctx->flags & BLK_MQ_F_TAG_SHARED);
1448 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1449 
1450 		blk_mq_release_budgets(q, nr_budgets);
1451 
1452 		/*
1453 		 * If we didn't flush the entire list, we could have told
1454 		 * the driver there was more coming, but that turned out to
1455 		 * be a lie.
1456 		 */
1457 		if (q->mq_ops->commit_rqs && queued)
1458 			q->mq_ops->commit_rqs(hctx);
1459 
1460 		spin_lock(&hctx->lock);
1461 		list_splice_tail_init(list, &hctx->dispatch);
1462 		spin_unlock(&hctx->lock);
1463 
1464 		/*
1465 		 * If SCHED_RESTART was set by the caller of this function and
1466 		 * it is no longer set that means that it was cleared by another
1467 		 * thread and hence that a queue rerun is needed.
1468 		 *
1469 		 * If 'no_tag' is set, that means that we failed getting
1470 		 * a driver tag with an I/O scheduler attached. If our dispatch
1471 		 * waitqueue is no longer active, ensure that we run the queue
1472 		 * AFTER adding our entries back to the list.
1473 		 *
1474 		 * If no I/O scheduler has been configured it is possible that
1475 		 * the hardware queue got stopped and restarted before requests
1476 		 * were pushed back onto the dispatch list. Rerun the queue to
1477 		 * avoid starvation. Notes:
1478 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1479 		 *   been stopped before rerunning a queue.
1480 		 * - Some but not all block drivers stop a queue before
1481 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1482 		 *   and dm-rq.
1483 		 *
1484 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1485 		 * bit is set, run queue after a delay to avoid IO stalls
1486 		 * that could otherwise occur if the queue is idle.  We'll do
1487 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1488 		 */
1489 		needs_restart = blk_mq_sched_needs_restart(hctx);
1490 		if (!needs_restart ||
1491 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1492 			blk_mq_run_hw_queue(hctx, true);
1493 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1494 					   no_budget_avail))
1495 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1496 
1497 		blk_mq_update_dispatch_busy(hctx, true);
1498 		return false;
1499 	} else
1500 		blk_mq_update_dispatch_busy(hctx, false);
1501 
1502 	return (queued + errors) != 0;
1503 }
1504 
1505 /**
1506  * __blk_mq_run_hw_queue - Run a hardware queue.
1507  * @hctx: Pointer to the hardware queue to run.
1508  *
1509  * Send pending requests to the hardware.
1510  */
1511 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1512 {
1513 	int srcu_idx;
1514 
1515 	/*
1516 	 * We should be running this queue from one of the CPUs that
1517 	 * are mapped to it.
1518 	 *
1519 	 * There are at least two related races now between setting
1520 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1521 	 * __blk_mq_run_hw_queue():
1522 	 *
1523 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1524 	 *   but later it becomes online, then this warning is harmless
1525 	 *   at all
1526 	 *
1527 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1528 	 *   but later it becomes offline, then the warning can't be
1529 	 *   triggered, and we depend on blk-mq timeout handler to
1530 	 *   handle dispatched requests to this hctx
1531 	 */
1532 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1533 		cpu_online(hctx->next_cpu)) {
1534 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1535 			raw_smp_processor_id(),
1536 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1537 		dump_stack();
1538 	}
1539 
1540 	/*
1541 	 * We can't run the queue inline with ints disabled. Ensure that
1542 	 * we catch bad users of this early.
1543 	 */
1544 	WARN_ON_ONCE(in_interrupt());
1545 
1546 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1547 
1548 	hctx_lock(hctx, &srcu_idx);
1549 	blk_mq_sched_dispatch_requests(hctx);
1550 	hctx_unlock(hctx, srcu_idx);
1551 }
1552 
1553 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1554 {
1555 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1556 
1557 	if (cpu >= nr_cpu_ids)
1558 		cpu = cpumask_first(hctx->cpumask);
1559 	return cpu;
1560 }
1561 
1562 /*
1563  * It'd be great if the workqueue API had a way to pass
1564  * in a mask and had some smarts for more clever placement.
1565  * For now we just round-robin here, switching for every
1566  * BLK_MQ_CPU_WORK_BATCH queued items.
1567  */
1568 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1569 {
1570 	bool tried = false;
1571 	int next_cpu = hctx->next_cpu;
1572 
1573 	if (hctx->queue->nr_hw_queues == 1)
1574 		return WORK_CPU_UNBOUND;
1575 
1576 	if (--hctx->next_cpu_batch <= 0) {
1577 select_cpu:
1578 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1579 				cpu_online_mask);
1580 		if (next_cpu >= nr_cpu_ids)
1581 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1582 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1583 	}
1584 
1585 	/*
1586 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1587 	 * and it should only happen in the path of handling CPU DEAD.
1588 	 */
1589 	if (!cpu_online(next_cpu)) {
1590 		if (!tried) {
1591 			tried = true;
1592 			goto select_cpu;
1593 		}
1594 
1595 		/*
1596 		 * Make sure to re-select CPU next time once after CPUs
1597 		 * in hctx->cpumask become online again.
1598 		 */
1599 		hctx->next_cpu = next_cpu;
1600 		hctx->next_cpu_batch = 1;
1601 		return WORK_CPU_UNBOUND;
1602 	}
1603 
1604 	hctx->next_cpu = next_cpu;
1605 	return next_cpu;
1606 }
1607 
1608 /**
1609  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1610  * @hctx: Pointer to the hardware queue to run.
1611  * @async: If we want to run the queue asynchronously.
1612  * @msecs: Microseconds of delay to wait before running the queue.
1613  *
1614  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1615  * with a delay of @msecs.
1616  */
1617 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1618 					unsigned long msecs)
1619 {
1620 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1621 		return;
1622 
1623 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1624 		int cpu = get_cpu();
1625 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1626 			__blk_mq_run_hw_queue(hctx);
1627 			put_cpu();
1628 			return;
1629 		}
1630 
1631 		put_cpu();
1632 	}
1633 
1634 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1635 				    msecs_to_jiffies(msecs));
1636 }
1637 
1638 /**
1639  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1640  * @hctx: Pointer to the hardware queue to run.
1641  * @msecs: Microseconds of delay to wait before running the queue.
1642  *
1643  * Run a hardware queue asynchronously with a delay of @msecs.
1644  */
1645 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1646 {
1647 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1648 }
1649 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1650 
1651 /**
1652  * blk_mq_run_hw_queue - Start to run a hardware queue.
1653  * @hctx: Pointer to the hardware queue to run.
1654  * @async: If we want to run the queue asynchronously.
1655  *
1656  * Check if the request queue is not in a quiesced state and if there are
1657  * pending requests to be sent. If this is true, run the queue to send requests
1658  * to hardware.
1659  */
1660 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1661 {
1662 	int srcu_idx;
1663 	bool need_run;
1664 
1665 	/*
1666 	 * When queue is quiesced, we may be switching io scheduler, or
1667 	 * updating nr_hw_queues, or other things, and we can't run queue
1668 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1669 	 *
1670 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1671 	 * quiesced.
1672 	 */
1673 	hctx_lock(hctx, &srcu_idx);
1674 	need_run = !blk_queue_quiesced(hctx->queue) &&
1675 		blk_mq_hctx_has_pending(hctx);
1676 	hctx_unlock(hctx, srcu_idx);
1677 
1678 	if (need_run)
1679 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1680 }
1681 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1682 
1683 /**
1684  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1685  * @q: Pointer to the request queue to run.
1686  * @async: If we want to run the queue asynchronously.
1687  */
1688 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1689 {
1690 	struct blk_mq_hw_ctx *hctx;
1691 	int i;
1692 
1693 	queue_for_each_hw_ctx(q, hctx, i) {
1694 		if (blk_mq_hctx_stopped(hctx))
1695 			continue;
1696 
1697 		blk_mq_run_hw_queue(hctx, async);
1698 	}
1699 }
1700 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1701 
1702 /**
1703  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1704  * @q: Pointer to the request queue to run.
1705  * @msecs: Microseconds of delay to wait before running the queues.
1706  */
1707 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1708 {
1709 	struct blk_mq_hw_ctx *hctx;
1710 	int i;
1711 
1712 	queue_for_each_hw_ctx(q, hctx, i) {
1713 		if (blk_mq_hctx_stopped(hctx))
1714 			continue;
1715 
1716 		blk_mq_delay_run_hw_queue(hctx, msecs);
1717 	}
1718 }
1719 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1720 
1721 /**
1722  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1723  * @q: request queue.
1724  *
1725  * The caller is responsible for serializing this function against
1726  * blk_mq_{start,stop}_hw_queue().
1727  */
1728 bool blk_mq_queue_stopped(struct request_queue *q)
1729 {
1730 	struct blk_mq_hw_ctx *hctx;
1731 	int i;
1732 
1733 	queue_for_each_hw_ctx(q, hctx, i)
1734 		if (blk_mq_hctx_stopped(hctx))
1735 			return true;
1736 
1737 	return false;
1738 }
1739 EXPORT_SYMBOL(blk_mq_queue_stopped);
1740 
1741 /*
1742  * This function is often used for pausing .queue_rq() by driver when
1743  * there isn't enough resource or some conditions aren't satisfied, and
1744  * BLK_STS_RESOURCE is usually returned.
1745  *
1746  * We do not guarantee that dispatch can be drained or blocked
1747  * after blk_mq_stop_hw_queue() returns. Please use
1748  * blk_mq_quiesce_queue() for that requirement.
1749  */
1750 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1751 {
1752 	cancel_delayed_work(&hctx->run_work);
1753 
1754 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1755 }
1756 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1757 
1758 /*
1759  * This function is often used for pausing .queue_rq() by driver when
1760  * there isn't enough resource or some conditions aren't satisfied, and
1761  * BLK_STS_RESOURCE is usually returned.
1762  *
1763  * We do not guarantee that dispatch can be drained or blocked
1764  * after blk_mq_stop_hw_queues() returns. Please use
1765  * blk_mq_quiesce_queue() for that requirement.
1766  */
1767 void blk_mq_stop_hw_queues(struct request_queue *q)
1768 {
1769 	struct blk_mq_hw_ctx *hctx;
1770 	int i;
1771 
1772 	queue_for_each_hw_ctx(q, hctx, i)
1773 		blk_mq_stop_hw_queue(hctx);
1774 }
1775 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1776 
1777 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1778 {
1779 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1780 
1781 	blk_mq_run_hw_queue(hctx, false);
1782 }
1783 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1784 
1785 void blk_mq_start_hw_queues(struct request_queue *q)
1786 {
1787 	struct blk_mq_hw_ctx *hctx;
1788 	int i;
1789 
1790 	queue_for_each_hw_ctx(q, hctx, i)
1791 		blk_mq_start_hw_queue(hctx);
1792 }
1793 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1794 
1795 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1796 {
1797 	if (!blk_mq_hctx_stopped(hctx))
1798 		return;
1799 
1800 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1801 	blk_mq_run_hw_queue(hctx, async);
1802 }
1803 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1804 
1805 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1806 {
1807 	struct blk_mq_hw_ctx *hctx;
1808 	int i;
1809 
1810 	queue_for_each_hw_ctx(q, hctx, i)
1811 		blk_mq_start_stopped_hw_queue(hctx, async);
1812 }
1813 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1814 
1815 static void blk_mq_run_work_fn(struct work_struct *work)
1816 {
1817 	struct blk_mq_hw_ctx *hctx;
1818 
1819 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1820 
1821 	/*
1822 	 * If we are stopped, don't run the queue.
1823 	 */
1824 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1825 		return;
1826 
1827 	__blk_mq_run_hw_queue(hctx);
1828 }
1829 
1830 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1831 					    struct request *rq,
1832 					    bool at_head)
1833 {
1834 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1835 	enum hctx_type type = hctx->type;
1836 
1837 	lockdep_assert_held(&ctx->lock);
1838 
1839 	trace_block_rq_insert(hctx->queue, rq);
1840 
1841 	if (at_head)
1842 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1843 	else
1844 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1845 }
1846 
1847 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1848 			     bool at_head)
1849 {
1850 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1851 
1852 	lockdep_assert_held(&ctx->lock);
1853 
1854 	__blk_mq_insert_req_list(hctx, rq, at_head);
1855 	blk_mq_hctx_mark_pending(hctx, ctx);
1856 }
1857 
1858 /**
1859  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1860  * @rq: Pointer to request to be inserted.
1861  * @run_queue: If we should run the hardware queue after inserting the request.
1862  *
1863  * Should only be used carefully, when the caller knows we want to
1864  * bypass a potential IO scheduler on the target device.
1865  */
1866 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1867 				  bool run_queue)
1868 {
1869 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1870 
1871 	spin_lock(&hctx->lock);
1872 	if (at_head)
1873 		list_add(&rq->queuelist, &hctx->dispatch);
1874 	else
1875 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1876 	spin_unlock(&hctx->lock);
1877 
1878 	if (run_queue)
1879 		blk_mq_run_hw_queue(hctx, false);
1880 }
1881 
1882 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1883 			    struct list_head *list)
1884 
1885 {
1886 	struct request *rq;
1887 	enum hctx_type type = hctx->type;
1888 
1889 	/*
1890 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1891 	 * offline now
1892 	 */
1893 	list_for_each_entry(rq, list, queuelist) {
1894 		BUG_ON(rq->mq_ctx != ctx);
1895 		trace_block_rq_insert(hctx->queue, rq);
1896 	}
1897 
1898 	spin_lock(&ctx->lock);
1899 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1900 	blk_mq_hctx_mark_pending(hctx, ctx);
1901 	spin_unlock(&ctx->lock);
1902 }
1903 
1904 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1905 {
1906 	struct request *rqa = container_of(a, struct request, queuelist);
1907 	struct request *rqb = container_of(b, struct request, queuelist);
1908 
1909 	if (rqa->mq_ctx != rqb->mq_ctx)
1910 		return rqa->mq_ctx > rqb->mq_ctx;
1911 	if (rqa->mq_hctx != rqb->mq_hctx)
1912 		return rqa->mq_hctx > rqb->mq_hctx;
1913 
1914 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1915 }
1916 
1917 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1918 {
1919 	LIST_HEAD(list);
1920 
1921 	if (list_empty(&plug->mq_list))
1922 		return;
1923 	list_splice_init(&plug->mq_list, &list);
1924 
1925 	if (plug->rq_count > 2 && plug->multiple_queues)
1926 		list_sort(NULL, &list, plug_rq_cmp);
1927 
1928 	plug->rq_count = 0;
1929 
1930 	do {
1931 		struct list_head rq_list;
1932 		struct request *rq, *head_rq = list_entry_rq(list.next);
1933 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1934 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1935 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1936 		unsigned int depth = 1;
1937 
1938 		list_for_each_continue(pos, &list) {
1939 			rq = list_entry_rq(pos);
1940 			BUG_ON(!rq->q);
1941 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1942 				break;
1943 			depth++;
1944 		}
1945 
1946 		list_cut_before(&rq_list, &list, pos);
1947 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1948 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1949 						from_schedule);
1950 	} while(!list_empty(&list));
1951 }
1952 
1953 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1954 		unsigned int nr_segs)
1955 {
1956 	if (bio->bi_opf & REQ_RAHEAD)
1957 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1958 
1959 	rq->__sector = bio->bi_iter.bi_sector;
1960 	rq->write_hint = bio->bi_write_hint;
1961 	blk_rq_bio_prep(rq, bio, nr_segs);
1962 	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1963 
1964 	blk_account_io_start(rq);
1965 }
1966 
1967 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1968 					    struct request *rq,
1969 					    blk_qc_t *cookie, bool last)
1970 {
1971 	struct request_queue *q = rq->q;
1972 	struct blk_mq_queue_data bd = {
1973 		.rq = rq,
1974 		.last = last,
1975 	};
1976 	blk_qc_t new_cookie;
1977 	blk_status_t ret;
1978 
1979 	new_cookie = request_to_qc_t(hctx, rq);
1980 
1981 	/*
1982 	 * For OK queue, we are done. For error, caller may kill it.
1983 	 * Any other error (busy), just add it to our list as we
1984 	 * previously would have done.
1985 	 */
1986 	ret = q->mq_ops->queue_rq(hctx, &bd);
1987 	switch (ret) {
1988 	case BLK_STS_OK:
1989 		blk_mq_update_dispatch_busy(hctx, false);
1990 		*cookie = new_cookie;
1991 		break;
1992 	case BLK_STS_RESOURCE:
1993 	case BLK_STS_DEV_RESOURCE:
1994 		blk_mq_update_dispatch_busy(hctx, true);
1995 		__blk_mq_requeue_request(rq);
1996 		break;
1997 	default:
1998 		blk_mq_update_dispatch_busy(hctx, false);
1999 		*cookie = BLK_QC_T_NONE;
2000 		break;
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2007 						struct request *rq,
2008 						blk_qc_t *cookie,
2009 						bool bypass_insert, bool last)
2010 {
2011 	struct request_queue *q = rq->q;
2012 	bool run_queue = true;
2013 
2014 	/*
2015 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2016 	 *
2017 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2018 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2019 	 * and avoid driver to try to dispatch again.
2020 	 */
2021 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2022 		run_queue = false;
2023 		bypass_insert = false;
2024 		goto insert;
2025 	}
2026 
2027 	if (q->elevator && !bypass_insert)
2028 		goto insert;
2029 
2030 	if (!blk_mq_get_dispatch_budget(q))
2031 		goto insert;
2032 
2033 	if (!blk_mq_get_driver_tag(rq)) {
2034 		blk_mq_put_dispatch_budget(q);
2035 		goto insert;
2036 	}
2037 
2038 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2039 insert:
2040 	if (bypass_insert)
2041 		return BLK_STS_RESOURCE;
2042 
2043 	blk_mq_request_bypass_insert(rq, false, run_queue);
2044 	return BLK_STS_OK;
2045 }
2046 
2047 /**
2048  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2049  * @hctx: Pointer of the associated hardware queue.
2050  * @rq: Pointer to request to be sent.
2051  * @cookie: Request queue cookie.
2052  *
2053  * If the device has enough resources to accept a new request now, send the
2054  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2055  * we can try send it another time in the future. Requests inserted at this
2056  * queue have higher priority.
2057  */
2058 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2059 		struct request *rq, blk_qc_t *cookie)
2060 {
2061 	blk_status_t ret;
2062 	int srcu_idx;
2063 
2064 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2065 
2066 	hctx_lock(hctx, &srcu_idx);
2067 
2068 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2069 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2070 		blk_mq_request_bypass_insert(rq, false, true);
2071 	else if (ret != BLK_STS_OK)
2072 		blk_mq_end_request(rq, ret);
2073 
2074 	hctx_unlock(hctx, srcu_idx);
2075 }
2076 
2077 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2078 {
2079 	blk_status_t ret;
2080 	int srcu_idx;
2081 	blk_qc_t unused_cookie;
2082 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2083 
2084 	hctx_lock(hctx, &srcu_idx);
2085 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2086 	hctx_unlock(hctx, srcu_idx);
2087 
2088 	return ret;
2089 }
2090 
2091 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2092 		struct list_head *list)
2093 {
2094 	int queued = 0;
2095 
2096 	while (!list_empty(list)) {
2097 		blk_status_t ret;
2098 		struct request *rq = list_first_entry(list, struct request,
2099 				queuelist);
2100 
2101 		list_del_init(&rq->queuelist);
2102 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2103 		if (ret != BLK_STS_OK) {
2104 			if (ret == BLK_STS_RESOURCE ||
2105 					ret == BLK_STS_DEV_RESOURCE) {
2106 				blk_mq_request_bypass_insert(rq, false,
2107 							list_empty(list));
2108 				break;
2109 			}
2110 			blk_mq_end_request(rq, ret);
2111 		} else
2112 			queued++;
2113 	}
2114 
2115 	/*
2116 	 * If we didn't flush the entire list, we could have told
2117 	 * the driver there was more coming, but that turned out to
2118 	 * be a lie.
2119 	 */
2120 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
2121 		hctx->queue->mq_ops->commit_rqs(hctx);
2122 }
2123 
2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125 {
2126 	list_add_tail(&rq->queuelist, &plug->mq_list);
2127 	plug->rq_count++;
2128 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129 		struct request *tmp;
2130 
2131 		tmp = list_first_entry(&plug->mq_list, struct request,
2132 						queuelist);
2133 		if (tmp->q != rq->q)
2134 			plug->multiple_queues = true;
2135 	}
2136 }
2137 
2138 /**
2139  * blk_mq_make_request - Create and send a request to block device.
2140  * @q: Request queue pointer.
2141  * @bio: Bio pointer.
2142  *
2143  * Builds up a request structure from @q and @bio and send to the device. The
2144  * request may not be queued directly to hardware if:
2145  * * This request can be merged with another one
2146  * * We want to place request at plug queue for possible future merging
2147  * * There is an IO scheduler active at this queue
2148  *
2149  * It will not queue the request if there is an error with the bio, or at the
2150  * request creation.
2151  *
2152  * Returns: Request queue cookie.
2153  */
2154 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2155 {
2156 	const int is_sync = op_is_sync(bio->bi_opf);
2157 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2158 	struct blk_mq_alloc_data data = {
2159 		.q		= q,
2160 	};
2161 	struct request *rq;
2162 	struct blk_plug *plug;
2163 	struct request *same_queue_rq = NULL;
2164 	unsigned int nr_segs;
2165 	blk_qc_t cookie;
2166 	blk_status_t ret;
2167 
2168 	blk_queue_bounce(q, &bio);
2169 	__blk_queue_split(q, &bio, &nr_segs);
2170 
2171 	if (!bio_integrity_prep(bio))
2172 		goto queue_exit;
2173 
2174 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2175 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2176 		goto queue_exit;
2177 
2178 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2179 		goto queue_exit;
2180 
2181 	rq_qos_throttle(q, bio);
2182 
2183 	data.cmd_flags = bio->bi_opf;
2184 	rq = __blk_mq_alloc_request(&data);
2185 	if (unlikely(!rq)) {
2186 		rq_qos_cleanup(q, bio);
2187 		if (bio->bi_opf & REQ_NOWAIT)
2188 			bio_wouldblock_error(bio);
2189 		goto queue_exit;
2190 	}
2191 
2192 	trace_block_getrq(q, bio, bio->bi_opf);
2193 
2194 	rq_qos_track(q, rq, bio);
2195 
2196 	cookie = request_to_qc_t(data.hctx, rq);
2197 
2198 	blk_mq_bio_to_request(rq, bio, nr_segs);
2199 
2200 	ret = blk_crypto_init_request(rq);
2201 	if (ret != BLK_STS_OK) {
2202 		bio->bi_status = ret;
2203 		bio_endio(bio);
2204 		blk_mq_free_request(rq);
2205 		return BLK_QC_T_NONE;
2206 	}
2207 
2208 	plug = blk_mq_plug(q, bio);
2209 	if (unlikely(is_flush_fua)) {
2210 		/* Bypass scheduler for flush requests */
2211 		blk_insert_flush(rq);
2212 		blk_mq_run_hw_queue(data.hctx, true);
2213 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2214 				!blk_queue_nonrot(q))) {
2215 		/*
2216 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2217 		 * we know the driver uses bd->last in a smart fashion.
2218 		 *
2219 		 * Use normal plugging if this disk is slow HDD, as sequential
2220 		 * IO may benefit a lot from plug merging.
2221 		 */
2222 		unsigned int request_count = plug->rq_count;
2223 		struct request *last = NULL;
2224 
2225 		if (!request_count)
2226 			trace_block_plug(q);
2227 		else
2228 			last = list_entry_rq(plug->mq_list.prev);
2229 
2230 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2231 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2232 			blk_flush_plug_list(plug, false);
2233 			trace_block_plug(q);
2234 		}
2235 
2236 		blk_add_rq_to_plug(plug, rq);
2237 	} else if (q->elevator) {
2238 		/* Insert the request at the IO scheduler queue */
2239 		blk_mq_sched_insert_request(rq, false, true, true);
2240 	} else if (plug && !blk_queue_nomerges(q)) {
2241 		/*
2242 		 * We do limited plugging. If the bio can be merged, do that.
2243 		 * Otherwise the existing request in the plug list will be
2244 		 * issued. So the plug list will have one request at most
2245 		 * The plug list might get flushed before this. If that happens,
2246 		 * the plug list is empty, and same_queue_rq is invalid.
2247 		 */
2248 		if (list_empty(&plug->mq_list))
2249 			same_queue_rq = NULL;
2250 		if (same_queue_rq) {
2251 			list_del_init(&same_queue_rq->queuelist);
2252 			plug->rq_count--;
2253 		}
2254 		blk_add_rq_to_plug(plug, rq);
2255 		trace_block_plug(q);
2256 
2257 		if (same_queue_rq) {
2258 			data.hctx = same_queue_rq->mq_hctx;
2259 			trace_block_unplug(q, 1, true);
2260 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2261 					&cookie);
2262 		}
2263 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2264 			!data.hctx->dispatch_busy) {
2265 		/*
2266 		 * There is no scheduler and we can try to send directly
2267 		 * to the hardware.
2268 		 */
2269 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2270 	} else {
2271 		/* Default case. */
2272 		blk_mq_sched_insert_request(rq, false, true, true);
2273 	}
2274 
2275 	return cookie;
2276 queue_exit:
2277 	blk_queue_exit(q);
2278 	return BLK_QC_T_NONE;
2279 }
2280 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2281 
2282 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2283 		     unsigned int hctx_idx)
2284 {
2285 	struct page *page;
2286 
2287 	if (tags->rqs && set->ops->exit_request) {
2288 		int i;
2289 
2290 		for (i = 0; i < tags->nr_tags; i++) {
2291 			struct request *rq = tags->static_rqs[i];
2292 
2293 			if (!rq)
2294 				continue;
2295 			set->ops->exit_request(set, rq, hctx_idx);
2296 			tags->static_rqs[i] = NULL;
2297 		}
2298 	}
2299 
2300 	while (!list_empty(&tags->page_list)) {
2301 		page = list_first_entry(&tags->page_list, struct page, lru);
2302 		list_del_init(&page->lru);
2303 		/*
2304 		 * Remove kmemleak object previously allocated in
2305 		 * blk_mq_alloc_rqs().
2306 		 */
2307 		kmemleak_free(page_address(page));
2308 		__free_pages(page, page->private);
2309 	}
2310 }
2311 
2312 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2313 {
2314 	kfree(tags->rqs);
2315 	tags->rqs = NULL;
2316 	kfree(tags->static_rqs);
2317 	tags->static_rqs = NULL;
2318 
2319 	blk_mq_free_tags(tags);
2320 }
2321 
2322 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2323 					unsigned int hctx_idx,
2324 					unsigned int nr_tags,
2325 					unsigned int reserved_tags)
2326 {
2327 	struct blk_mq_tags *tags;
2328 	int node;
2329 
2330 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2331 	if (node == NUMA_NO_NODE)
2332 		node = set->numa_node;
2333 
2334 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2335 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2336 	if (!tags)
2337 		return NULL;
2338 
2339 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2340 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2341 				 node);
2342 	if (!tags->rqs) {
2343 		blk_mq_free_tags(tags);
2344 		return NULL;
2345 	}
2346 
2347 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2348 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2349 					node);
2350 	if (!tags->static_rqs) {
2351 		kfree(tags->rqs);
2352 		blk_mq_free_tags(tags);
2353 		return NULL;
2354 	}
2355 
2356 	return tags;
2357 }
2358 
2359 static size_t order_to_size(unsigned int order)
2360 {
2361 	return (size_t)PAGE_SIZE << order;
2362 }
2363 
2364 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2365 			       unsigned int hctx_idx, int node)
2366 {
2367 	int ret;
2368 
2369 	if (set->ops->init_request) {
2370 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2371 		if (ret)
2372 			return ret;
2373 	}
2374 
2375 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2376 	return 0;
2377 }
2378 
2379 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2380 		     unsigned int hctx_idx, unsigned int depth)
2381 {
2382 	unsigned int i, j, entries_per_page, max_order = 4;
2383 	size_t rq_size, left;
2384 	int node;
2385 
2386 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2387 	if (node == NUMA_NO_NODE)
2388 		node = set->numa_node;
2389 
2390 	INIT_LIST_HEAD(&tags->page_list);
2391 
2392 	/*
2393 	 * rq_size is the size of the request plus driver payload, rounded
2394 	 * to the cacheline size
2395 	 */
2396 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2397 				cache_line_size());
2398 	left = rq_size * depth;
2399 
2400 	for (i = 0; i < depth; ) {
2401 		int this_order = max_order;
2402 		struct page *page;
2403 		int to_do;
2404 		void *p;
2405 
2406 		while (this_order && left < order_to_size(this_order - 1))
2407 			this_order--;
2408 
2409 		do {
2410 			page = alloc_pages_node(node,
2411 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2412 				this_order);
2413 			if (page)
2414 				break;
2415 			if (!this_order--)
2416 				break;
2417 			if (order_to_size(this_order) < rq_size)
2418 				break;
2419 		} while (1);
2420 
2421 		if (!page)
2422 			goto fail;
2423 
2424 		page->private = this_order;
2425 		list_add_tail(&page->lru, &tags->page_list);
2426 
2427 		p = page_address(page);
2428 		/*
2429 		 * Allow kmemleak to scan these pages as they contain pointers
2430 		 * to additional allocations like via ops->init_request().
2431 		 */
2432 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2433 		entries_per_page = order_to_size(this_order) / rq_size;
2434 		to_do = min(entries_per_page, depth - i);
2435 		left -= to_do * rq_size;
2436 		for (j = 0; j < to_do; j++) {
2437 			struct request *rq = p;
2438 
2439 			tags->static_rqs[i] = rq;
2440 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2441 				tags->static_rqs[i] = NULL;
2442 				goto fail;
2443 			}
2444 
2445 			p += rq_size;
2446 			i++;
2447 		}
2448 	}
2449 	return 0;
2450 
2451 fail:
2452 	blk_mq_free_rqs(set, tags, hctx_idx);
2453 	return -ENOMEM;
2454 }
2455 
2456 struct rq_iter_data {
2457 	struct blk_mq_hw_ctx *hctx;
2458 	bool has_rq;
2459 };
2460 
2461 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2462 {
2463 	struct rq_iter_data *iter_data = data;
2464 
2465 	if (rq->mq_hctx != iter_data->hctx)
2466 		return true;
2467 	iter_data->has_rq = true;
2468 	return false;
2469 }
2470 
2471 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2472 {
2473 	struct blk_mq_tags *tags = hctx->sched_tags ?
2474 			hctx->sched_tags : hctx->tags;
2475 	struct rq_iter_data data = {
2476 		.hctx	= hctx,
2477 	};
2478 
2479 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2480 	return data.has_rq;
2481 }
2482 
2483 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2484 		struct blk_mq_hw_ctx *hctx)
2485 {
2486 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2487 		return false;
2488 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2489 		return false;
2490 	return true;
2491 }
2492 
2493 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2494 {
2495 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2496 			struct blk_mq_hw_ctx, cpuhp_online);
2497 
2498 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2499 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2500 		return 0;
2501 
2502 	/*
2503 	 * Prevent new request from being allocated on the current hctx.
2504 	 *
2505 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2506 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2507 	 * seen once we return from the tag allocator.
2508 	 */
2509 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2510 	smp_mb__after_atomic();
2511 
2512 	/*
2513 	 * Try to grab a reference to the queue and wait for any outstanding
2514 	 * requests.  If we could not grab a reference the queue has been
2515 	 * frozen and there are no requests.
2516 	 */
2517 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2518 		while (blk_mq_hctx_has_requests(hctx))
2519 			msleep(5);
2520 		percpu_ref_put(&hctx->queue->q_usage_counter);
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2527 {
2528 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2529 			struct blk_mq_hw_ctx, cpuhp_online);
2530 
2531 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2532 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2533 	return 0;
2534 }
2535 
2536 /*
2537  * 'cpu' is going away. splice any existing rq_list entries from this
2538  * software queue to the hw queue dispatch list, and ensure that it
2539  * gets run.
2540  */
2541 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2542 {
2543 	struct blk_mq_hw_ctx *hctx;
2544 	struct blk_mq_ctx *ctx;
2545 	LIST_HEAD(tmp);
2546 	enum hctx_type type;
2547 
2548 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2549 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2550 		return 0;
2551 
2552 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2553 	type = hctx->type;
2554 
2555 	spin_lock(&ctx->lock);
2556 	if (!list_empty(&ctx->rq_lists[type])) {
2557 		list_splice_init(&ctx->rq_lists[type], &tmp);
2558 		blk_mq_hctx_clear_pending(hctx, ctx);
2559 	}
2560 	spin_unlock(&ctx->lock);
2561 
2562 	if (list_empty(&tmp))
2563 		return 0;
2564 
2565 	spin_lock(&hctx->lock);
2566 	list_splice_tail_init(&tmp, &hctx->dispatch);
2567 	spin_unlock(&hctx->lock);
2568 
2569 	blk_mq_run_hw_queue(hctx, true);
2570 	return 0;
2571 }
2572 
2573 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2574 {
2575 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2576 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2577 						    &hctx->cpuhp_online);
2578 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2579 					    &hctx->cpuhp_dead);
2580 }
2581 
2582 /* hctx->ctxs will be freed in queue's release handler */
2583 static void blk_mq_exit_hctx(struct request_queue *q,
2584 		struct blk_mq_tag_set *set,
2585 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2586 {
2587 	if (blk_mq_hw_queue_mapped(hctx))
2588 		blk_mq_tag_idle(hctx);
2589 
2590 	if (set->ops->exit_request)
2591 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2592 
2593 	if (set->ops->exit_hctx)
2594 		set->ops->exit_hctx(hctx, hctx_idx);
2595 
2596 	blk_mq_remove_cpuhp(hctx);
2597 
2598 	spin_lock(&q->unused_hctx_lock);
2599 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2600 	spin_unlock(&q->unused_hctx_lock);
2601 }
2602 
2603 static void blk_mq_exit_hw_queues(struct request_queue *q,
2604 		struct blk_mq_tag_set *set, int nr_queue)
2605 {
2606 	struct blk_mq_hw_ctx *hctx;
2607 	unsigned int i;
2608 
2609 	queue_for_each_hw_ctx(q, hctx, i) {
2610 		if (i == nr_queue)
2611 			break;
2612 		blk_mq_debugfs_unregister_hctx(hctx);
2613 		blk_mq_exit_hctx(q, set, hctx, i);
2614 	}
2615 }
2616 
2617 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2618 {
2619 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2620 
2621 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2622 			   __alignof__(struct blk_mq_hw_ctx)) !=
2623 		     sizeof(struct blk_mq_hw_ctx));
2624 
2625 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2626 		hw_ctx_size += sizeof(struct srcu_struct);
2627 
2628 	return hw_ctx_size;
2629 }
2630 
2631 static int blk_mq_init_hctx(struct request_queue *q,
2632 		struct blk_mq_tag_set *set,
2633 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2634 {
2635 	hctx->queue_num = hctx_idx;
2636 
2637 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2638 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2639 				&hctx->cpuhp_online);
2640 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2641 
2642 	hctx->tags = set->tags[hctx_idx];
2643 
2644 	if (set->ops->init_hctx &&
2645 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2646 		goto unregister_cpu_notifier;
2647 
2648 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2649 				hctx->numa_node))
2650 		goto exit_hctx;
2651 	return 0;
2652 
2653  exit_hctx:
2654 	if (set->ops->exit_hctx)
2655 		set->ops->exit_hctx(hctx, hctx_idx);
2656  unregister_cpu_notifier:
2657 	blk_mq_remove_cpuhp(hctx);
2658 	return -1;
2659 }
2660 
2661 static struct blk_mq_hw_ctx *
2662 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2663 		int node)
2664 {
2665 	struct blk_mq_hw_ctx *hctx;
2666 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2667 
2668 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2669 	if (!hctx)
2670 		goto fail_alloc_hctx;
2671 
2672 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2673 		goto free_hctx;
2674 
2675 	atomic_set(&hctx->nr_active, 0);
2676 	if (node == NUMA_NO_NODE)
2677 		node = set->numa_node;
2678 	hctx->numa_node = node;
2679 
2680 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2681 	spin_lock_init(&hctx->lock);
2682 	INIT_LIST_HEAD(&hctx->dispatch);
2683 	hctx->queue = q;
2684 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2685 
2686 	INIT_LIST_HEAD(&hctx->hctx_list);
2687 
2688 	/*
2689 	 * Allocate space for all possible cpus to avoid allocation at
2690 	 * runtime
2691 	 */
2692 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2693 			gfp, node);
2694 	if (!hctx->ctxs)
2695 		goto free_cpumask;
2696 
2697 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2698 				gfp, node))
2699 		goto free_ctxs;
2700 	hctx->nr_ctx = 0;
2701 
2702 	spin_lock_init(&hctx->dispatch_wait_lock);
2703 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2704 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2705 
2706 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2707 	if (!hctx->fq)
2708 		goto free_bitmap;
2709 
2710 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2711 		init_srcu_struct(hctx->srcu);
2712 	blk_mq_hctx_kobj_init(hctx);
2713 
2714 	return hctx;
2715 
2716  free_bitmap:
2717 	sbitmap_free(&hctx->ctx_map);
2718  free_ctxs:
2719 	kfree(hctx->ctxs);
2720  free_cpumask:
2721 	free_cpumask_var(hctx->cpumask);
2722  free_hctx:
2723 	kfree(hctx);
2724  fail_alloc_hctx:
2725 	return NULL;
2726 }
2727 
2728 static void blk_mq_init_cpu_queues(struct request_queue *q,
2729 				   unsigned int nr_hw_queues)
2730 {
2731 	struct blk_mq_tag_set *set = q->tag_set;
2732 	unsigned int i, j;
2733 
2734 	for_each_possible_cpu(i) {
2735 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2736 		struct blk_mq_hw_ctx *hctx;
2737 		int k;
2738 
2739 		__ctx->cpu = i;
2740 		spin_lock_init(&__ctx->lock);
2741 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2742 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2743 
2744 		__ctx->queue = q;
2745 
2746 		/*
2747 		 * Set local node, IFF we have more than one hw queue. If
2748 		 * not, we remain on the home node of the device
2749 		 */
2750 		for (j = 0; j < set->nr_maps; j++) {
2751 			hctx = blk_mq_map_queue_type(q, j, i);
2752 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2753 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2754 		}
2755 	}
2756 }
2757 
2758 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2759 					int hctx_idx)
2760 {
2761 	int ret = 0;
2762 
2763 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2764 					set->queue_depth, set->reserved_tags);
2765 	if (!set->tags[hctx_idx])
2766 		return false;
2767 
2768 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2769 				set->queue_depth);
2770 	if (!ret)
2771 		return true;
2772 
2773 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2774 	set->tags[hctx_idx] = NULL;
2775 	return false;
2776 }
2777 
2778 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2779 					 unsigned int hctx_idx)
2780 {
2781 	if (set->tags && set->tags[hctx_idx]) {
2782 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2783 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2784 		set->tags[hctx_idx] = NULL;
2785 	}
2786 }
2787 
2788 static void blk_mq_map_swqueue(struct request_queue *q)
2789 {
2790 	unsigned int i, j, hctx_idx;
2791 	struct blk_mq_hw_ctx *hctx;
2792 	struct blk_mq_ctx *ctx;
2793 	struct blk_mq_tag_set *set = q->tag_set;
2794 
2795 	queue_for_each_hw_ctx(q, hctx, i) {
2796 		cpumask_clear(hctx->cpumask);
2797 		hctx->nr_ctx = 0;
2798 		hctx->dispatch_from = NULL;
2799 	}
2800 
2801 	/*
2802 	 * Map software to hardware queues.
2803 	 *
2804 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2805 	 */
2806 	for_each_possible_cpu(i) {
2807 
2808 		ctx = per_cpu_ptr(q->queue_ctx, i);
2809 		for (j = 0; j < set->nr_maps; j++) {
2810 			if (!set->map[j].nr_queues) {
2811 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2812 						HCTX_TYPE_DEFAULT, i);
2813 				continue;
2814 			}
2815 			hctx_idx = set->map[j].mq_map[i];
2816 			/* unmapped hw queue can be remapped after CPU topo changed */
2817 			if (!set->tags[hctx_idx] &&
2818 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2819 				/*
2820 				 * If tags initialization fail for some hctx,
2821 				 * that hctx won't be brought online.  In this
2822 				 * case, remap the current ctx to hctx[0] which
2823 				 * is guaranteed to always have tags allocated
2824 				 */
2825 				set->map[j].mq_map[i] = 0;
2826 			}
2827 
2828 			hctx = blk_mq_map_queue_type(q, j, i);
2829 			ctx->hctxs[j] = hctx;
2830 			/*
2831 			 * If the CPU is already set in the mask, then we've
2832 			 * mapped this one already. This can happen if
2833 			 * devices share queues across queue maps.
2834 			 */
2835 			if (cpumask_test_cpu(i, hctx->cpumask))
2836 				continue;
2837 
2838 			cpumask_set_cpu(i, hctx->cpumask);
2839 			hctx->type = j;
2840 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2841 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2842 
2843 			/*
2844 			 * If the nr_ctx type overflows, we have exceeded the
2845 			 * amount of sw queues we can support.
2846 			 */
2847 			BUG_ON(!hctx->nr_ctx);
2848 		}
2849 
2850 		for (; j < HCTX_MAX_TYPES; j++)
2851 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2852 					HCTX_TYPE_DEFAULT, i);
2853 	}
2854 
2855 	queue_for_each_hw_ctx(q, hctx, i) {
2856 		/*
2857 		 * If no software queues are mapped to this hardware queue,
2858 		 * disable it and free the request entries.
2859 		 */
2860 		if (!hctx->nr_ctx) {
2861 			/* Never unmap queue 0.  We need it as a
2862 			 * fallback in case of a new remap fails
2863 			 * allocation
2864 			 */
2865 			if (i && set->tags[i])
2866 				blk_mq_free_map_and_requests(set, i);
2867 
2868 			hctx->tags = NULL;
2869 			continue;
2870 		}
2871 
2872 		hctx->tags = set->tags[i];
2873 		WARN_ON(!hctx->tags);
2874 
2875 		/*
2876 		 * Set the map size to the number of mapped software queues.
2877 		 * This is more accurate and more efficient than looping
2878 		 * over all possibly mapped software queues.
2879 		 */
2880 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2881 
2882 		/*
2883 		 * Initialize batch roundrobin counts
2884 		 */
2885 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2886 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2887 	}
2888 }
2889 
2890 /*
2891  * Caller needs to ensure that we're either frozen/quiesced, or that
2892  * the queue isn't live yet.
2893  */
2894 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2895 {
2896 	struct blk_mq_hw_ctx *hctx;
2897 	int i;
2898 
2899 	queue_for_each_hw_ctx(q, hctx, i) {
2900 		if (shared)
2901 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2902 		else
2903 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2904 	}
2905 }
2906 
2907 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2908 					bool shared)
2909 {
2910 	struct request_queue *q;
2911 
2912 	lockdep_assert_held(&set->tag_list_lock);
2913 
2914 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2915 		blk_mq_freeze_queue(q);
2916 		queue_set_hctx_shared(q, shared);
2917 		blk_mq_unfreeze_queue(q);
2918 	}
2919 }
2920 
2921 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2922 {
2923 	struct blk_mq_tag_set *set = q->tag_set;
2924 
2925 	mutex_lock(&set->tag_list_lock);
2926 	list_del_rcu(&q->tag_set_list);
2927 	if (list_is_singular(&set->tag_list)) {
2928 		/* just transitioned to unshared */
2929 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2930 		/* update existing queue */
2931 		blk_mq_update_tag_set_depth(set, false);
2932 	}
2933 	mutex_unlock(&set->tag_list_lock);
2934 	INIT_LIST_HEAD(&q->tag_set_list);
2935 }
2936 
2937 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2938 				     struct request_queue *q)
2939 {
2940 	mutex_lock(&set->tag_list_lock);
2941 
2942 	/*
2943 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2944 	 */
2945 	if (!list_empty(&set->tag_list) &&
2946 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2947 		set->flags |= BLK_MQ_F_TAG_SHARED;
2948 		/* update existing queue */
2949 		blk_mq_update_tag_set_depth(set, true);
2950 	}
2951 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2952 		queue_set_hctx_shared(q, true);
2953 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2954 
2955 	mutex_unlock(&set->tag_list_lock);
2956 }
2957 
2958 /* All allocations will be freed in release handler of q->mq_kobj */
2959 static int blk_mq_alloc_ctxs(struct request_queue *q)
2960 {
2961 	struct blk_mq_ctxs *ctxs;
2962 	int cpu;
2963 
2964 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2965 	if (!ctxs)
2966 		return -ENOMEM;
2967 
2968 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2969 	if (!ctxs->queue_ctx)
2970 		goto fail;
2971 
2972 	for_each_possible_cpu(cpu) {
2973 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2974 		ctx->ctxs = ctxs;
2975 	}
2976 
2977 	q->mq_kobj = &ctxs->kobj;
2978 	q->queue_ctx = ctxs->queue_ctx;
2979 
2980 	return 0;
2981  fail:
2982 	kfree(ctxs);
2983 	return -ENOMEM;
2984 }
2985 
2986 /*
2987  * It is the actual release handler for mq, but we do it from
2988  * request queue's release handler for avoiding use-after-free
2989  * and headache because q->mq_kobj shouldn't have been introduced,
2990  * but we can't group ctx/kctx kobj without it.
2991  */
2992 void blk_mq_release(struct request_queue *q)
2993 {
2994 	struct blk_mq_hw_ctx *hctx, *next;
2995 	int i;
2996 
2997 	queue_for_each_hw_ctx(q, hctx, i)
2998 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2999 
3000 	/* all hctx are in .unused_hctx_list now */
3001 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3002 		list_del_init(&hctx->hctx_list);
3003 		kobject_put(&hctx->kobj);
3004 	}
3005 
3006 	kfree(q->queue_hw_ctx);
3007 
3008 	/*
3009 	 * release .mq_kobj and sw queue's kobject now because
3010 	 * both share lifetime with request queue.
3011 	 */
3012 	blk_mq_sysfs_deinit(q);
3013 }
3014 
3015 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3016 		void *queuedata)
3017 {
3018 	struct request_queue *uninit_q, *q;
3019 
3020 	uninit_q = __blk_alloc_queue(set->numa_node);
3021 	if (!uninit_q)
3022 		return ERR_PTR(-ENOMEM);
3023 	uninit_q->queuedata = queuedata;
3024 
3025 	/*
3026 	 * Initialize the queue without an elevator. device_add_disk() will do
3027 	 * the initialization.
3028 	 */
3029 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3030 	if (IS_ERR(q))
3031 		blk_cleanup_queue(uninit_q);
3032 
3033 	return q;
3034 }
3035 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3036 
3037 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3038 {
3039 	return blk_mq_init_queue_data(set, NULL);
3040 }
3041 EXPORT_SYMBOL(blk_mq_init_queue);
3042 
3043 /*
3044  * Helper for setting up a queue with mq ops, given queue depth, and
3045  * the passed in mq ops flags.
3046  */
3047 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3048 					   const struct blk_mq_ops *ops,
3049 					   unsigned int queue_depth,
3050 					   unsigned int set_flags)
3051 {
3052 	struct request_queue *q;
3053 	int ret;
3054 
3055 	memset(set, 0, sizeof(*set));
3056 	set->ops = ops;
3057 	set->nr_hw_queues = 1;
3058 	set->nr_maps = 1;
3059 	set->queue_depth = queue_depth;
3060 	set->numa_node = NUMA_NO_NODE;
3061 	set->flags = set_flags;
3062 
3063 	ret = blk_mq_alloc_tag_set(set);
3064 	if (ret)
3065 		return ERR_PTR(ret);
3066 
3067 	q = blk_mq_init_queue(set);
3068 	if (IS_ERR(q)) {
3069 		blk_mq_free_tag_set(set);
3070 		return q;
3071 	}
3072 
3073 	return q;
3074 }
3075 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3076 
3077 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3078 		struct blk_mq_tag_set *set, struct request_queue *q,
3079 		int hctx_idx, int node)
3080 {
3081 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3082 
3083 	/* reuse dead hctx first */
3084 	spin_lock(&q->unused_hctx_lock);
3085 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3086 		if (tmp->numa_node == node) {
3087 			hctx = tmp;
3088 			break;
3089 		}
3090 	}
3091 	if (hctx)
3092 		list_del_init(&hctx->hctx_list);
3093 	spin_unlock(&q->unused_hctx_lock);
3094 
3095 	if (!hctx)
3096 		hctx = blk_mq_alloc_hctx(q, set, node);
3097 	if (!hctx)
3098 		goto fail;
3099 
3100 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3101 		goto free_hctx;
3102 
3103 	return hctx;
3104 
3105  free_hctx:
3106 	kobject_put(&hctx->kobj);
3107  fail:
3108 	return NULL;
3109 }
3110 
3111 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3112 						struct request_queue *q)
3113 {
3114 	int i, j, end;
3115 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3116 
3117 	if (q->nr_hw_queues < set->nr_hw_queues) {
3118 		struct blk_mq_hw_ctx **new_hctxs;
3119 
3120 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3121 				       sizeof(*new_hctxs), GFP_KERNEL,
3122 				       set->numa_node);
3123 		if (!new_hctxs)
3124 			return;
3125 		if (hctxs)
3126 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3127 			       sizeof(*hctxs));
3128 		q->queue_hw_ctx = new_hctxs;
3129 		kfree(hctxs);
3130 		hctxs = new_hctxs;
3131 	}
3132 
3133 	/* protect against switching io scheduler  */
3134 	mutex_lock(&q->sysfs_lock);
3135 	for (i = 0; i < set->nr_hw_queues; i++) {
3136 		int node;
3137 		struct blk_mq_hw_ctx *hctx;
3138 
3139 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3140 		/*
3141 		 * If the hw queue has been mapped to another numa node,
3142 		 * we need to realloc the hctx. If allocation fails, fallback
3143 		 * to use the previous one.
3144 		 */
3145 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3146 			continue;
3147 
3148 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3149 		if (hctx) {
3150 			if (hctxs[i])
3151 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3152 			hctxs[i] = hctx;
3153 		} else {
3154 			if (hctxs[i])
3155 				pr_warn("Allocate new hctx on node %d fails,\
3156 						fallback to previous one on node %d\n",
3157 						node, hctxs[i]->numa_node);
3158 			else
3159 				break;
3160 		}
3161 	}
3162 	/*
3163 	 * Increasing nr_hw_queues fails. Free the newly allocated
3164 	 * hctxs and keep the previous q->nr_hw_queues.
3165 	 */
3166 	if (i != set->nr_hw_queues) {
3167 		j = q->nr_hw_queues;
3168 		end = i;
3169 	} else {
3170 		j = i;
3171 		end = q->nr_hw_queues;
3172 		q->nr_hw_queues = set->nr_hw_queues;
3173 	}
3174 
3175 	for (; j < end; j++) {
3176 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3177 
3178 		if (hctx) {
3179 			if (hctx->tags)
3180 				blk_mq_free_map_and_requests(set, j);
3181 			blk_mq_exit_hctx(q, set, hctx, j);
3182 			hctxs[j] = NULL;
3183 		}
3184 	}
3185 	mutex_unlock(&q->sysfs_lock);
3186 }
3187 
3188 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3189 						  struct request_queue *q,
3190 						  bool elevator_init)
3191 {
3192 	/* mark the queue as mq asap */
3193 	q->mq_ops = set->ops;
3194 
3195 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3196 					     blk_mq_poll_stats_bkt,
3197 					     BLK_MQ_POLL_STATS_BKTS, q);
3198 	if (!q->poll_cb)
3199 		goto err_exit;
3200 
3201 	if (blk_mq_alloc_ctxs(q))
3202 		goto err_poll;
3203 
3204 	/* init q->mq_kobj and sw queues' kobjects */
3205 	blk_mq_sysfs_init(q);
3206 
3207 	INIT_LIST_HEAD(&q->unused_hctx_list);
3208 	spin_lock_init(&q->unused_hctx_lock);
3209 
3210 	blk_mq_realloc_hw_ctxs(set, q);
3211 	if (!q->nr_hw_queues)
3212 		goto err_hctxs;
3213 
3214 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3215 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3216 
3217 	q->tag_set = set;
3218 
3219 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3220 	if (set->nr_maps > HCTX_TYPE_POLL &&
3221 	    set->map[HCTX_TYPE_POLL].nr_queues)
3222 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3223 
3224 	q->sg_reserved_size = INT_MAX;
3225 
3226 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3227 	INIT_LIST_HEAD(&q->requeue_list);
3228 	spin_lock_init(&q->requeue_lock);
3229 
3230 	q->nr_requests = set->queue_depth;
3231 
3232 	/*
3233 	 * Default to classic polling
3234 	 */
3235 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3236 
3237 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3238 	blk_mq_add_queue_tag_set(set, q);
3239 	blk_mq_map_swqueue(q);
3240 
3241 	if (elevator_init)
3242 		elevator_init_mq(q);
3243 
3244 	return q;
3245 
3246 err_hctxs:
3247 	kfree(q->queue_hw_ctx);
3248 	q->nr_hw_queues = 0;
3249 	blk_mq_sysfs_deinit(q);
3250 err_poll:
3251 	blk_stat_free_callback(q->poll_cb);
3252 	q->poll_cb = NULL;
3253 err_exit:
3254 	q->mq_ops = NULL;
3255 	return ERR_PTR(-ENOMEM);
3256 }
3257 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3258 
3259 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3260 void blk_mq_exit_queue(struct request_queue *q)
3261 {
3262 	struct blk_mq_tag_set	*set = q->tag_set;
3263 
3264 	blk_mq_del_queue_tag_set(q);
3265 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3266 }
3267 
3268 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3269 {
3270 	int i;
3271 
3272 	for (i = 0; i < set->nr_hw_queues; i++)
3273 		if (!__blk_mq_alloc_map_and_request(set, i))
3274 			goto out_unwind;
3275 
3276 	return 0;
3277 
3278 out_unwind:
3279 	while (--i >= 0)
3280 		blk_mq_free_map_and_requests(set, i);
3281 
3282 	return -ENOMEM;
3283 }
3284 
3285 /*
3286  * Allocate the request maps associated with this tag_set. Note that this
3287  * may reduce the depth asked for, if memory is tight. set->queue_depth
3288  * will be updated to reflect the allocated depth.
3289  */
3290 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3291 {
3292 	unsigned int depth;
3293 	int err;
3294 
3295 	depth = set->queue_depth;
3296 	do {
3297 		err = __blk_mq_alloc_rq_maps(set);
3298 		if (!err)
3299 			break;
3300 
3301 		set->queue_depth >>= 1;
3302 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3303 			err = -ENOMEM;
3304 			break;
3305 		}
3306 	} while (set->queue_depth);
3307 
3308 	if (!set->queue_depth || err) {
3309 		pr_err("blk-mq: failed to allocate request map\n");
3310 		return -ENOMEM;
3311 	}
3312 
3313 	if (depth != set->queue_depth)
3314 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3315 						depth, set->queue_depth);
3316 
3317 	return 0;
3318 }
3319 
3320 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3321 {
3322 	/*
3323 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3324 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3325 	 * number of hardware queues.
3326 	 */
3327 	if (set->nr_maps == 1)
3328 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3329 
3330 	if (set->ops->map_queues && !is_kdump_kernel()) {
3331 		int i;
3332 
3333 		/*
3334 		 * transport .map_queues is usually done in the following
3335 		 * way:
3336 		 *
3337 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3338 		 * 	mask = get_cpu_mask(queue)
3339 		 * 	for_each_cpu(cpu, mask)
3340 		 * 		set->map[x].mq_map[cpu] = queue;
3341 		 * }
3342 		 *
3343 		 * When we need to remap, the table has to be cleared for
3344 		 * killing stale mapping since one CPU may not be mapped
3345 		 * to any hw queue.
3346 		 */
3347 		for (i = 0; i < set->nr_maps; i++)
3348 			blk_mq_clear_mq_map(&set->map[i]);
3349 
3350 		return set->ops->map_queues(set);
3351 	} else {
3352 		BUG_ON(set->nr_maps > 1);
3353 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3354 	}
3355 }
3356 
3357 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3358 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3359 {
3360 	struct blk_mq_tags **new_tags;
3361 
3362 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3363 		return 0;
3364 
3365 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3366 				GFP_KERNEL, set->numa_node);
3367 	if (!new_tags)
3368 		return -ENOMEM;
3369 
3370 	if (set->tags)
3371 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3372 		       sizeof(*set->tags));
3373 	kfree(set->tags);
3374 	set->tags = new_tags;
3375 	set->nr_hw_queues = new_nr_hw_queues;
3376 
3377 	return 0;
3378 }
3379 
3380 /*
3381  * Alloc a tag set to be associated with one or more request queues.
3382  * May fail with EINVAL for various error conditions. May adjust the
3383  * requested depth down, if it's too large. In that case, the set
3384  * value will be stored in set->queue_depth.
3385  */
3386 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3387 {
3388 	int i, ret;
3389 
3390 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3391 
3392 	if (!set->nr_hw_queues)
3393 		return -EINVAL;
3394 	if (!set->queue_depth)
3395 		return -EINVAL;
3396 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3397 		return -EINVAL;
3398 
3399 	if (!set->ops->queue_rq)
3400 		return -EINVAL;
3401 
3402 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3403 		return -EINVAL;
3404 
3405 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3406 		pr_info("blk-mq: reduced tag depth to %u\n",
3407 			BLK_MQ_MAX_DEPTH);
3408 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3409 	}
3410 
3411 	if (!set->nr_maps)
3412 		set->nr_maps = 1;
3413 	else if (set->nr_maps > HCTX_MAX_TYPES)
3414 		return -EINVAL;
3415 
3416 	/*
3417 	 * If a crashdump is active, then we are potentially in a very
3418 	 * memory constrained environment. Limit us to 1 queue and
3419 	 * 64 tags to prevent using too much memory.
3420 	 */
3421 	if (is_kdump_kernel()) {
3422 		set->nr_hw_queues = 1;
3423 		set->nr_maps = 1;
3424 		set->queue_depth = min(64U, set->queue_depth);
3425 	}
3426 	/*
3427 	 * There is no use for more h/w queues than cpus if we just have
3428 	 * a single map
3429 	 */
3430 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3431 		set->nr_hw_queues = nr_cpu_ids;
3432 
3433 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3434 		return -ENOMEM;
3435 
3436 	ret = -ENOMEM;
3437 	for (i = 0; i < set->nr_maps; i++) {
3438 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3439 						  sizeof(set->map[i].mq_map[0]),
3440 						  GFP_KERNEL, set->numa_node);
3441 		if (!set->map[i].mq_map)
3442 			goto out_free_mq_map;
3443 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3444 	}
3445 
3446 	ret = blk_mq_update_queue_map(set);
3447 	if (ret)
3448 		goto out_free_mq_map;
3449 
3450 	ret = blk_mq_alloc_map_and_requests(set);
3451 	if (ret)
3452 		goto out_free_mq_map;
3453 
3454 	mutex_init(&set->tag_list_lock);
3455 	INIT_LIST_HEAD(&set->tag_list);
3456 
3457 	return 0;
3458 
3459 out_free_mq_map:
3460 	for (i = 0; i < set->nr_maps; i++) {
3461 		kfree(set->map[i].mq_map);
3462 		set->map[i].mq_map = NULL;
3463 	}
3464 	kfree(set->tags);
3465 	set->tags = NULL;
3466 	return ret;
3467 }
3468 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3469 
3470 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3471 {
3472 	int i, j;
3473 
3474 	for (i = 0; i < set->nr_hw_queues; i++)
3475 		blk_mq_free_map_and_requests(set, i);
3476 
3477 	for (j = 0; j < set->nr_maps; j++) {
3478 		kfree(set->map[j].mq_map);
3479 		set->map[j].mq_map = NULL;
3480 	}
3481 
3482 	kfree(set->tags);
3483 	set->tags = NULL;
3484 }
3485 EXPORT_SYMBOL(blk_mq_free_tag_set);
3486 
3487 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3488 {
3489 	struct blk_mq_tag_set *set = q->tag_set;
3490 	struct blk_mq_hw_ctx *hctx;
3491 	int i, ret;
3492 
3493 	if (!set)
3494 		return -EINVAL;
3495 
3496 	if (q->nr_requests == nr)
3497 		return 0;
3498 
3499 	blk_mq_freeze_queue(q);
3500 	blk_mq_quiesce_queue(q);
3501 
3502 	ret = 0;
3503 	queue_for_each_hw_ctx(q, hctx, i) {
3504 		if (!hctx->tags)
3505 			continue;
3506 		/*
3507 		 * If we're using an MQ scheduler, just update the scheduler
3508 		 * queue depth. This is similar to what the old code would do.
3509 		 */
3510 		if (!hctx->sched_tags) {
3511 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3512 							false);
3513 		} else {
3514 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3515 							nr, true);
3516 		}
3517 		if (ret)
3518 			break;
3519 		if (q->elevator && q->elevator->type->ops.depth_updated)
3520 			q->elevator->type->ops.depth_updated(hctx);
3521 	}
3522 
3523 	if (!ret)
3524 		q->nr_requests = nr;
3525 
3526 	blk_mq_unquiesce_queue(q);
3527 	blk_mq_unfreeze_queue(q);
3528 
3529 	return ret;
3530 }
3531 
3532 /*
3533  * request_queue and elevator_type pair.
3534  * It is just used by __blk_mq_update_nr_hw_queues to cache
3535  * the elevator_type associated with a request_queue.
3536  */
3537 struct blk_mq_qe_pair {
3538 	struct list_head node;
3539 	struct request_queue *q;
3540 	struct elevator_type *type;
3541 };
3542 
3543 /*
3544  * Cache the elevator_type in qe pair list and switch the
3545  * io scheduler to 'none'
3546  */
3547 static bool blk_mq_elv_switch_none(struct list_head *head,
3548 		struct request_queue *q)
3549 {
3550 	struct blk_mq_qe_pair *qe;
3551 
3552 	if (!q->elevator)
3553 		return true;
3554 
3555 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3556 	if (!qe)
3557 		return false;
3558 
3559 	INIT_LIST_HEAD(&qe->node);
3560 	qe->q = q;
3561 	qe->type = q->elevator->type;
3562 	list_add(&qe->node, head);
3563 
3564 	mutex_lock(&q->sysfs_lock);
3565 	/*
3566 	 * After elevator_switch_mq, the previous elevator_queue will be
3567 	 * released by elevator_release. The reference of the io scheduler
3568 	 * module get by elevator_get will also be put. So we need to get
3569 	 * a reference of the io scheduler module here to prevent it to be
3570 	 * removed.
3571 	 */
3572 	__module_get(qe->type->elevator_owner);
3573 	elevator_switch_mq(q, NULL);
3574 	mutex_unlock(&q->sysfs_lock);
3575 
3576 	return true;
3577 }
3578 
3579 static void blk_mq_elv_switch_back(struct list_head *head,
3580 		struct request_queue *q)
3581 {
3582 	struct blk_mq_qe_pair *qe;
3583 	struct elevator_type *t = NULL;
3584 
3585 	list_for_each_entry(qe, head, node)
3586 		if (qe->q == q) {
3587 			t = qe->type;
3588 			break;
3589 		}
3590 
3591 	if (!t)
3592 		return;
3593 
3594 	list_del(&qe->node);
3595 	kfree(qe);
3596 
3597 	mutex_lock(&q->sysfs_lock);
3598 	elevator_switch_mq(q, t);
3599 	mutex_unlock(&q->sysfs_lock);
3600 }
3601 
3602 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3603 							int nr_hw_queues)
3604 {
3605 	struct request_queue *q;
3606 	LIST_HEAD(head);
3607 	int prev_nr_hw_queues;
3608 
3609 	lockdep_assert_held(&set->tag_list_lock);
3610 
3611 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3612 		nr_hw_queues = nr_cpu_ids;
3613 	if (nr_hw_queues < 1)
3614 		return;
3615 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3616 		return;
3617 
3618 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3619 		blk_mq_freeze_queue(q);
3620 	/*
3621 	 * Switch IO scheduler to 'none', cleaning up the data associated
3622 	 * with the previous scheduler. We will switch back once we are done
3623 	 * updating the new sw to hw queue mappings.
3624 	 */
3625 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3626 		if (!blk_mq_elv_switch_none(&head, q))
3627 			goto switch_back;
3628 
3629 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3630 		blk_mq_debugfs_unregister_hctxs(q);
3631 		blk_mq_sysfs_unregister(q);
3632 	}
3633 
3634 	prev_nr_hw_queues = set->nr_hw_queues;
3635 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3636 	    0)
3637 		goto reregister;
3638 
3639 	set->nr_hw_queues = nr_hw_queues;
3640 fallback:
3641 	blk_mq_update_queue_map(set);
3642 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3643 		blk_mq_realloc_hw_ctxs(set, q);
3644 		if (q->nr_hw_queues != set->nr_hw_queues) {
3645 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3646 					nr_hw_queues, prev_nr_hw_queues);
3647 			set->nr_hw_queues = prev_nr_hw_queues;
3648 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3649 			goto fallback;
3650 		}
3651 		blk_mq_map_swqueue(q);
3652 	}
3653 
3654 reregister:
3655 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3656 		blk_mq_sysfs_register(q);
3657 		blk_mq_debugfs_register_hctxs(q);
3658 	}
3659 
3660 switch_back:
3661 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3662 		blk_mq_elv_switch_back(&head, q);
3663 
3664 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3665 		blk_mq_unfreeze_queue(q);
3666 }
3667 
3668 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3669 {
3670 	mutex_lock(&set->tag_list_lock);
3671 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3672 	mutex_unlock(&set->tag_list_lock);
3673 }
3674 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3675 
3676 /* Enable polling stats and return whether they were already enabled. */
3677 static bool blk_poll_stats_enable(struct request_queue *q)
3678 {
3679 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3680 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3681 		return true;
3682 	blk_stat_add_callback(q, q->poll_cb);
3683 	return false;
3684 }
3685 
3686 static void blk_mq_poll_stats_start(struct request_queue *q)
3687 {
3688 	/*
3689 	 * We don't arm the callback if polling stats are not enabled or the
3690 	 * callback is already active.
3691 	 */
3692 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3693 	    blk_stat_is_active(q->poll_cb))
3694 		return;
3695 
3696 	blk_stat_activate_msecs(q->poll_cb, 100);
3697 }
3698 
3699 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3700 {
3701 	struct request_queue *q = cb->data;
3702 	int bucket;
3703 
3704 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3705 		if (cb->stat[bucket].nr_samples)
3706 			q->poll_stat[bucket] = cb->stat[bucket];
3707 	}
3708 }
3709 
3710 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3711 				       struct request *rq)
3712 {
3713 	unsigned long ret = 0;
3714 	int bucket;
3715 
3716 	/*
3717 	 * If stats collection isn't on, don't sleep but turn it on for
3718 	 * future users
3719 	 */
3720 	if (!blk_poll_stats_enable(q))
3721 		return 0;
3722 
3723 	/*
3724 	 * As an optimistic guess, use half of the mean service time
3725 	 * for this type of request. We can (and should) make this smarter.
3726 	 * For instance, if the completion latencies are tight, we can
3727 	 * get closer than just half the mean. This is especially
3728 	 * important on devices where the completion latencies are longer
3729 	 * than ~10 usec. We do use the stats for the relevant IO size
3730 	 * if available which does lead to better estimates.
3731 	 */
3732 	bucket = blk_mq_poll_stats_bkt(rq);
3733 	if (bucket < 0)
3734 		return ret;
3735 
3736 	if (q->poll_stat[bucket].nr_samples)
3737 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3738 
3739 	return ret;
3740 }
3741 
3742 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3743 				     struct request *rq)
3744 {
3745 	struct hrtimer_sleeper hs;
3746 	enum hrtimer_mode mode;
3747 	unsigned int nsecs;
3748 	ktime_t kt;
3749 
3750 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3751 		return false;
3752 
3753 	/*
3754 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3755 	 *
3756 	 *  0:	use half of prev avg
3757 	 * >0:	use this specific value
3758 	 */
3759 	if (q->poll_nsec > 0)
3760 		nsecs = q->poll_nsec;
3761 	else
3762 		nsecs = blk_mq_poll_nsecs(q, rq);
3763 
3764 	if (!nsecs)
3765 		return false;
3766 
3767 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3768 
3769 	/*
3770 	 * This will be replaced with the stats tracking code, using
3771 	 * 'avg_completion_time / 2' as the pre-sleep target.
3772 	 */
3773 	kt = nsecs;
3774 
3775 	mode = HRTIMER_MODE_REL;
3776 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3777 	hrtimer_set_expires(&hs.timer, kt);
3778 
3779 	do {
3780 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3781 			break;
3782 		set_current_state(TASK_UNINTERRUPTIBLE);
3783 		hrtimer_sleeper_start_expires(&hs, mode);
3784 		if (hs.task)
3785 			io_schedule();
3786 		hrtimer_cancel(&hs.timer);
3787 		mode = HRTIMER_MODE_ABS;
3788 	} while (hs.task && !signal_pending(current));
3789 
3790 	__set_current_state(TASK_RUNNING);
3791 	destroy_hrtimer_on_stack(&hs.timer);
3792 	return true;
3793 }
3794 
3795 static bool blk_mq_poll_hybrid(struct request_queue *q,
3796 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3797 {
3798 	struct request *rq;
3799 
3800 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3801 		return false;
3802 
3803 	if (!blk_qc_t_is_internal(cookie))
3804 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3805 	else {
3806 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3807 		/*
3808 		 * With scheduling, if the request has completed, we'll
3809 		 * get a NULL return here, as we clear the sched tag when
3810 		 * that happens. The request still remains valid, like always,
3811 		 * so we should be safe with just the NULL check.
3812 		 */
3813 		if (!rq)
3814 			return false;
3815 	}
3816 
3817 	return blk_mq_poll_hybrid_sleep(q, rq);
3818 }
3819 
3820 /**
3821  * blk_poll - poll for IO completions
3822  * @q:  the queue
3823  * @cookie: cookie passed back at IO submission time
3824  * @spin: whether to spin for completions
3825  *
3826  * Description:
3827  *    Poll for completions on the passed in queue. Returns number of
3828  *    completed entries found. If @spin is true, then blk_poll will continue
3829  *    looping until at least one completion is found, unless the task is
3830  *    otherwise marked running (or we need to reschedule).
3831  */
3832 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3833 {
3834 	struct blk_mq_hw_ctx *hctx;
3835 	long state;
3836 
3837 	if (!blk_qc_t_valid(cookie) ||
3838 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3839 		return 0;
3840 
3841 	if (current->plug)
3842 		blk_flush_plug_list(current->plug, false);
3843 
3844 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3845 
3846 	/*
3847 	 * If we sleep, have the caller restart the poll loop to reset
3848 	 * the state. Like for the other success return cases, the
3849 	 * caller is responsible for checking if the IO completed. If
3850 	 * the IO isn't complete, we'll get called again and will go
3851 	 * straight to the busy poll loop.
3852 	 */
3853 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3854 		return 1;
3855 
3856 	hctx->poll_considered++;
3857 
3858 	state = current->state;
3859 	do {
3860 		int ret;
3861 
3862 		hctx->poll_invoked++;
3863 
3864 		ret = q->mq_ops->poll(hctx);
3865 		if (ret > 0) {
3866 			hctx->poll_success++;
3867 			__set_current_state(TASK_RUNNING);
3868 			return ret;
3869 		}
3870 
3871 		if (signal_pending_state(state, current))
3872 			__set_current_state(TASK_RUNNING);
3873 
3874 		if (current->state == TASK_RUNNING)
3875 			return 1;
3876 		if (ret < 0 || !spin)
3877 			break;
3878 		cpu_relax();
3879 	} while (!need_resched());
3880 
3881 	__set_current_state(TASK_RUNNING);
3882 	return 0;
3883 }
3884 EXPORT_SYMBOL_GPL(blk_poll);
3885 
3886 unsigned int blk_mq_rq_cpu(struct request *rq)
3887 {
3888 	return rq->mq_ctx->cpu;
3889 }
3890 EXPORT_SYMBOL(blk_mq_rq_cpu);
3891 
3892 static int __init blk_mq_init(void)
3893 {
3894 	int i;
3895 
3896 	for_each_possible_cpu(i)
3897 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3898 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3899 
3900 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3901 				  "block/softirq:dead", NULL,
3902 				  blk_softirq_cpu_dead);
3903 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3904 				blk_mq_hctx_notify_dead);
3905 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3906 				blk_mq_hctx_notify_online,
3907 				blk_mq_hctx_notify_offline);
3908 	return 0;
3909 }
3910 subsys_initcall(blk_mq_init);
3911