xref: /openbmc/linux/block/blk-mq.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 
53 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
54 		blk_qc_t qc)
55 {
56 	return xa_load(&q->hctx_table, qc);
57 }
58 
59 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
60 {
61 	return rq->mq_hctx->queue_num;
62 }
63 
64 /*
65  * Check if any of the ctx, dispatch list or elevator
66  * have pending work in this hardware queue.
67  */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70 	return !list_empty_careful(&hctx->dispatch) ||
71 		sbitmap_any_bit_set(&hctx->ctx_map) ||
72 			blk_mq_sched_has_work(hctx);
73 }
74 
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 				     struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84 		sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86 
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 				      struct blk_mq_ctx *ctx)
89 {
90 	const int bit = ctx->index_hw[hctx->type];
91 
92 	sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94 
95 struct mq_inflight {
96 	struct block_device *part;
97 	unsigned int inflight[2];
98 };
99 
100 static bool blk_mq_check_inflight(struct request *rq, void *priv)
101 {
102 	struct mq_inflight *mi = priv;
103 
104 	if (rq->part && blk_do_io_stat(rq) &&
105 	    (!mi->part->bd_partno || rq->part == mi->part) &&
106 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
107 		mi->inflight[rq_data_dir(rq)]++;
108 
109 	return true;
110 }
111 
112 unsigned int blk_mq_in_flight(struct request_queue *q,
113 		struct block_device *part)
114 {
115 	struct mq_inflight mi = { .part = part };
116 
117 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 
119 	return mi.inflight[0] + mi.inflight[1];
120 }
121 
122 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
123 		unsigned int inflight[2])
124 {
125 	struct mq_inflight mi = { .part = part };
126 
127 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
128 	inflight[0] = mi.inflight[0];
129 	inflight[1] = mi.inflight[1];
130 }
131 
132 void blk_freeze_queue_start(struct request_queue *q)
133 {
134 	mutex_lock(&q->mq_freeze_lock);
135 	if (++q->mq_freeze_depth == 1) {
136 		percpu_ref_kill(&q->q_usage_counter);
137 		mutex_unlock(&q->mq_freeze_lock);
138 		if (queue_is_mq(q))
139 			blk_mq_run_hw_queues(q, false);
140 	} else {
141 		mutex_unlock(&q->mq_freeze_lock);
142 	}
143 }
144 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
145 
146 void blk_mq_freeze_queue_wait(struct request_queue *q)
147 {
148 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
151 
152 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
153 				     unsigned long timeout)
154 {
155 	return wait_event_timeout(q->mq_freeze_wq,
156 					percpu_ref_is_zero(&q->q_usage_counter),
157 					timeout);
158 }
159 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
160 
161 /*
162  * Guarantee no request is in use, so we can change any data structure of
163  * the queue afterward.
164  */
165 void blk_freeze_queue(struct request_queue *q)
166 {
167 	/*
168 	 * In the !blk_mq case we are only calling this to kill the
169 	 * q_usage_counter, otherwise this increases the freeze depth
170 	 * and waits for it to return to zero.  For this reason there is
171 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
172 	 * exported to drivers as the only user for unfreeze is blk_mq.
173 	 */
174 	blk_freeze_queue_start(q);
175 	blk_mq_freeze_queue_wait(q);
176 }
177 
178 void blk_mq_freeze_queue(struct request_queue *q)
179 {
180 	/*
181 	 * ...just an alias to keep freeze and unfreeze actions balanced
182 	 * in the blk_mq_* namespace
183 	 */
184 	blk_freeze_queue(q);
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
187 
188 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
189 {
190 	mutex_lock(&q->mq_freeze_lock);
191 	if (force_atomic)
192 		q->q_usage_counter.data->force_atomic = true;
193 	q->mq_freeze_depth--;
194 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
195 	if (!q->mq_freeze_depth) {
196 		percpu_ref_resurrect(&q->q_usage_counter);
197 		wake_up_all(&q->mq_freeze_wq);
198 	}
199 	mutex_unlock(&q->mq_freeze_lock);
200 }
201 
202 void blk_mq_unfreeze_queue(struct request_queue *q)
203 {
204 	__blk_mq_unfreeze_queue(q, false);
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207 
208 /*
209  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210  * mpt3sas driver such that this function can be removed.
211  */
212 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 {
214 	unsigned long flags;
215 
216 	spin_lock_irqsave(&q->queue_lock, flags);
217 	if (!q->quiesce_depth++)
218 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219 	spin_unlock_irqrestore(&q->queue_lock, flags);
220 }
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222 
223 /**
224  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
225  * @set: tag_set to wait on
226  *
227  * Note: it is driver's responsibility for making sure that quiesce has
228  * been started on or more of the request_queues of the tag_set.  This
229  * function only waits for the quiesce on those request_queues that had
230  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
231  */
232 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
233 {
234 	if (set->flags & BLK_MQ_F_BLOCKING)
235 		synchronize_srcu(set->srcu);
236 	else
237 		synchronize_rcu();
238 }
239 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
240 
241 /**
242  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
243  * @q: request queue.
244  *
245  * Note: this function does not prevent that the struct request end_io()
246  * callback function is invoked. Once this function is returned, we make
247  * sure no dispatch can happen until the queue is unquiesced via
248  * blk_mq_unquiesce_queue().
249  */
250 void blk_mq_quiesce_queue(struct request_queue *q)
251 {
252 	blk_mq_quiesce_queue_nowait(q);
253 	/* nothing to wait for non-mq queues */
254 	if (queue_is_mq(q))
255 		blk_mq_wait_quiesce_done(q->tag_set);
256 }
257 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
258 
259 /*
260  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
261  * @q: request queue.
262  *
263  * This function recovers queue into the state before quiescing
264  * which is done by blk_mq_quiesce_queue.
265  */
266 void blk_mq_unquiesce_queue(struct request_queue *q)
267 {
268 	unsigned long flags;
269 	bool run_queue = false;
270 
271 	spin_lock_irqsave(&q->queue_lock, flags);
272 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
273 		;
274 	} else if (!--q->quiesce_depth) {
275 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
276 		run_queue = true;
277 	}
278 	spin_unlock_irqrestore(&q->queue_lock, flags);
279 
280 	/* dispatch requests which are inserted during quiescing */
281 	if (run_queue)
282 		blk_mq_run_hw_queues(q, true);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
285 
286 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
287 {
288 	struct request_queue *q;
289 
290 	mutex_lock(&set->tag_list_lock);
291 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
292 		if (!blk_queue_skip_tagset_quiesce(q))
293 			blk_mq_quiesce_queue_nowait(q);
294 	}
295 	blk_mq_wait_quiesce_done(set);
296 	mutex_unlock(&set->tag_list_lock);
297 }
298 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
299 
300 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
301 {
302 	struct request_queue *q;
303 
304 	mutex_lock(&set->tag_list_lock);
305 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
306 		if (!blk_queue_skip_tagset_quiesce(q))
307 			blk_mq_unquiesce_queue(q);
308 	}
309 	mutex_unlock(&set->tag_list_lock);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
312 
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	unsigned long i;
317 
318 	queue_for_each_hw_ctx(q, hctx, i)
319 		if (blk_mq_hw_queue_mapped(hctx))
320 			blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322 
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325 	memset(rq, 0, sizeof(*rq));
326 
327 	INIT_LIST_HEAD(&rq->queuelist);
328 	rq->q = q;
329 	rq->__sector = (sector_t) -1;
330 	INIT_HLIST_NODE(&rq->hash);
331 	RB_CLEAR_NODE(&rq->rb_node);
332 	rq->tag = BLK_MQ_NO_TAG;
333 	rq->internal_tag = BLK_MQ_NO_TAG;
334 	rq->start_time_ns = ktime_get_ns();
335 	rq->part = NULL;
336 	blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339 
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343 	struct blk_mq_ctx *ctx = data->ctx;
344 	struct blk_mq_hw_ctx *hctx = data->hctx;
345 	struct request_queue *q = data->q;
346 	struct request *rq = tags->static_rqs[tag];
347 
348 	rq->q = q;
349 	rq->mq_ctx = ctx;
350 	rq->mq_hctx = hctx;
351 	rq->cmd_flags = data->cmd_flags;
352 
353 	if (data->flags & BLK_MQ_REQ_PM)
354 		data->rq_flags |= RQF_PM;
355 	if (blk_queue_io_stat(q))
356 		data->rq_flags |= RQF_IO_STAT;
357 	rq->rq_flags = data->rq_flags;
358 
359 	if (data->rq_flags & RQF_SCHED_TAGS) {
360 		rq->tag = BLK_MQ_NO_TAG;
361 		rq->internal_tag = tag;
362 	} else {
363 		rq->tag = tag;
364 		rq->internal_tag = BLK_MQ_NO_TAG;
365 	}
366 	rq->timeout = 0;
367 
368 	if (blk_mq_need_time_stamp(rq))
369 		rq->start_time_ns = ktime_get_ns();
370 	else
371 		rq->start_time_ns = 0;
372 	rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374 	rq->alloc_time_ns = alloc_time_ns;
375 #endif
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_USE_SCHED) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (e->type->ops.prepare_request)
398 			e->type->ops.prepare_request(rq);
399 	}
400 
401 	return rq;
402 }
403 
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
406 		u64 alloc_time_ns)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	/* caller already holds a reference, add for remainder */
430 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 	data->nr_tags -= nr;
432 
433 	return rq_list_pop(data->cached_rq);
434 }
435 
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 	struct request_queue *q = data->q;
439 	u64 alloc_time_ns = 0;
440 	struct request *rq;
441 	unsigned int tag;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	if (data->cmd_flags & REQ_NOWAIT)
448 		data->flags |= BLK_MQ_REQ_NOWAIT;
449 
450 	if (q->elevator) {
451 		/*
452 		 * All requests use scheduler tags when an I/O scheduler is
453 		 * enabled for the queue.
454 		 */
455 		data->rq_flags |= RQF_SCHED_TAGS;
456 
457 		/*
458 		 * Flush/passthrough requests are special and go directly to the
459 		 * dispatch list.
460 		 */
461 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462 		    !blk_op_is_passthrough(data->cmd_flags)) {
463 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
464 
465 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466 
467 			data->rq_flags |= RQF_USE_SCHED;
468 			if (ops->limit_depth)
469 				ops->limit_depth(data->cmd_flags, data);
470 		}
471 	}
472 
473 retry:
474 	data->ctx = blk_mq_get_ctx(q);
475 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476 	if (!(data->rq_flags & RQF_SCHED_TAGS))
477 		blk_mq_tag_busy(data->hctx);
478 
479 	if (data->flags & BLK_MQ_REQ_RESERVED)
480 		data->rq_flags |= RQF_RESV;
481 
482 	/*
483 	 * Try batched alloc if we want more than 1 tag.
484 	 */
485 	if (data->nr_tags > 1) {
486 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
487 		if (rq)
488 			return rq;
489 		data->nr_tags = 1;
490 	}
491 
492 	/*
493 	 * Waiting allocations only fail because of an inactive hctx.  In that
494 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
495 	 * should have migrated us to an online CPU by now.
496 	 */
497 	tag = blk_mq_get_tag(data);
498 	if (tag == BLK_MQ_NO_TAG) {
499 		if (data->flags & BLK_MQ_REQ_NOWAIT)
500 			return NULL;
501 		/*
502 		 * Give up the CPU and sleep for a random short time to
503 		 * ensure that thread using a realtime scheduling class
504 		 * are migrated off the CPU, and thus off the hctx that
505 		 * is going away.
506 		 */
507 		msleep(3);
508 		goto retry;
509 	}
510 
511 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
512 					alloc_time_ns);
513 }
514 
515 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
516 					    struct blk_plug *plug,
517 					    blk_opf_t opf,
518 					    blk_mq_req_flags_t flags)
519 {
520 	struct blk_mq_alloc_data data = {
521 		.q		= q,
522 		.flags		= flags,
523 		.cmd_flags	= opf,
524 		.nr_tags	= plug->nr_ios,
525 		.cached_rq	= &plug->cached_rq,
526 	};
527 	struct request *rq;
528 
529 	if (blk_queue_enter(q, flags))
530 		return NULL;
531 
532 	plug->nr_ios = 1;
533 
534 	rq = __blk_mq_alloc_requests(&data);
535 	if (unlikely(!rq))
536 		blk_queue_exit(q);
537 	return rq;
538 }
539 
540 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
541 						   blk_opf_t opf,
542 						   blk_mq_req_flags_t flags)
543 {
544 	struct blk_plug *plug = current->plug;
545 	struct request *rq;
546 
547 	if (!plug)
548 		return NULL;
549 
550 	if (rq_list_empty(plug->cached_rq)) {
551 		if (plug->nr_ios == 1)
552 			return NULL;
553 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
554 		if (!rq)
555 			return NULL;
556 	} else {
557 		rq = rq_list_peek(&plug->cached_rq);
558 		if (!rq || rq->q != q)
559 			return NULL;
560 
561 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
562 			return NULL;
563 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
564 			return NULL;
565 
566 		plug->cached_rq = rq_list_next(rq);
567 	}
568 
569 	rq->cmd_flags = opf;
570 	INIT_LIST_HEAD(&rq->queuelist);
571 	return rq;
572 }
573 
574 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
575 		blk_mq_req_flags_t flags)
576 {
577 	struct request *rq;
578 
579 	rq = blk_mq_alloc_cached_request(q, opf, flags);
580 	if (!rq) {
581 		struct blk_mq_alloc_data data = {
582 			.q		= q,
583 			.flags		= flags,
584 			.cmd_flags	= opf,
585 			.nr_tags	= 1,
586 		};
587 		int ret;
588 
589 		ret = blk_queue_enter(q, flags);
590 		if (ret)
591 			return ERR_PTR(ret);
592 
593 		rq = __blk_mq_alloc_requests(&data);
594 		if (!rq)
595 			goto out_queue_exit;
596 	}
597 	rq->__data_len = 0;
598 	rq->__sector = (sector_t) -1;
599 	rq->bio = rq->biotail = NULL;
600 	return rq;
601 out_queue_exit:
602 	blk_queue_exit(q);
603 	return ERR_PTR(-EWOULDBLOCK);
604 }
605 EXPORT_SYMBOL(blk_mq_alloc_request);
606 
607 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
608 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
609 {
610 	struct blk_mq_alloc_data data = {
611 		.q		= q,
612 		.flags		= flags,
613 		.cmd_flags	= opf,
614 		.nr_tags	= 1,
615 	};
616 	u64 alloc_time_ns = 0;
617 	struct request *rq;
618 	unsigned int cpu;
619 	unsigned int tag;
620 	int ret;
621 
622 	/* alloc_time includes depth and tag waits */
623 	if (blk_queue_rq_alloc_time(q))
624 		alloc_time_ns = ktime_get_ns();
625 
626 	/*
627 	 * If the tag allocator sleeps we could get an allocation for a
628 	 * different hardware context.  No need to complicate the low level
629 	 * allocator for this for the rare use case of a command tied to
630 	 * a specific queue.
631 	 */
632 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
633 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
634 		return ERR_PTR(-EINVAL);
635 
636 	if (hctx_idx >= q->nr_hw_queues)
637 		return ERR_PTR(-EIO);
638 
639 	ret = blk_queue_enter(q, flags);
640 	if (ret)
641 		return ERR_PTR(ret);
642 
643 	/*
644 	 * Check if the hardware context is actually mapped to anything.
645 	 * If not tell the caller that it should skip this queue.
646 	 */
647 	ret = -EXDEV;
648 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
649 	if (!blk_mq_hw_queue_mapped(data.hctx))
650 		goto out_queue_exit;
651 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
652 	if (cpu >= nr_cpu_ids)
653 		goto out_queue_exit;
654 	data.ctx = __blk_mq_get_ctx(q, cpu);
655 
656 	if (q->elevator)
657 		data.rq_flags |= RQF_SCHED_TAGS;
658 	else
659 		blk_mq_tag_busy(data.hctx);
660 
661 	if (flags & BLK_MQ_REQ_RESERVED)
662 		data.rq_flags |= RQF_RESV;
663 
664 	ret = -EWOULDBLOCK;
665 	tag = blk_mq_get_tag(&data);
666 	if (tag == BLK_MQ_NO_TAG)
667 		goto out_queue_exit;
668 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
669 					alloc_time_ns);
670 	rq->__data_len = 0;
671 	rq->__sector = (sector_t) -1;
672 	rq->bio = rq->biotail = NULL;
673 	return rq;
674 
675 out_queue_exit:
676 	blk_queue_exit(q);
677 	return ERR_PTR(ret);
678 }
679 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
680 
681 static void __blk_mq_free_request(struct request *rq)
682 {
683 	struct request_queue *q = rq->q;
684 	struct blk_mq_ctx *ctx = rq->mq_ctx;
685 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
686 	const int sched_tag = rq->internal_tag;
687 
688 	blk_crypto_free_request(rq);
689 	blk_pm_mark_last_busy(rq);
690 	rq->mq_hctx = NULL;
691 
692 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
693 		__blk_mq_dec_active_requests(hctx);
694 
695 	if (rq->tag != BLK_MQ_NO_TAG)
696 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
697 	if (sched_tag != BLK_MQ_NO_TAG)
698 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
699 	blk_mq_sched_restart(hctx);
700 	blk_queue_exit(q);
701 }
702 
703 void blk_mq_free_request(struct request *rq)
704 {
705 	struct request_queue *q = rq->q;
706 
707 	if ((rq->rq_flags & RQF_USE_SCHED) &&
708 	    q->elevator->type->ops.finish_request)
709 		q->elevator->type->ops.finish_request(rq);
710 
711 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
712 		laptop_io_completion(q->disk->bdi);
713 
714 	rq_qos_done(q, rq);
715 
716 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
717 	if (req_ref_put_and_test(rq))
718 		__blk_mq_free_request(rq);
719 }
720 EXPORT_SYMBOL_GPL(blk_mq_free_request);
721 
722 void blk_mq_free_plug_rqs(struct blk_plug *plug)
723 {
724 	struct request *rq;
725 
726 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
727 		blk_mq_free_request(rq);
728 }
729 
730 void blk_dump_rq_flags(struct request *rq, char *msg)
731 {
732 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
733 		rq->q->disk ? rq->q->disk->disk_name : "?",
734 		(__force unsigned long long) rq->cmd_flags);
735 
736 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
737 	       (unsigned long long)blk_rq_pos(rq),
738 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
739 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
740 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
741 }
742 EXPORT_SYMBOL(blk_dump_rq_flags);
743 
744 static void req_bio_endio(struct request *rq, struct bio *bio,
745 			  unsigned int nbytes, blk_status_t error)
746 {
747 	if (unlikely(error)) {
748 		bio->bi_status = error;
749 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
750 		/*
751 		 * Partial zone append completions cannot be supported as the
752 		 * BIO fragments may end up not being written sequentially.
753 		 */
754 		if (bio->bi_iter.bi_size != nbytes)
755 			bio->bi_status = BLK_STS_IOERR;
756 		else
757 			bio->bi_iter.bi_sector = rq->__sector;
758 	}
759 
760 	bio_advance(bio, nbytes);
761 
762 	if (unlikely(rq->rq_flags & RQF_QUIET))
763 		bio_set_flag(bio, BIO_QUIET);
764 	/* don't actually finish bio if it's part of flush sequence */
765 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
766 		bio_endio(bio);
767 }
768 
769 static void blk_account_io_completion(struct request *req, unsigned int bytes)
770 {
771 	if (req->part && blk_do_io_stat(req)) {
772 		const int sgrp = op_stat_group(req_op(req));
773 
774 		part_stat_lock();
775 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
776 		part_stat_unlock();
777 	}
778 }
779 
780 static void blk_print_req_error(struct request *req, blk_status_t status)
781 {
782 	printk_ratelimited(KERN_ERR
783 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
784 		"phys_seg %u prio class %u\n",
785 		blk_status_to_str(status),
786 		req->q->disk ? req->q->disk->disk_name : "?",
787 		blk_rq_pos(req), (__force u32)req_op(req),
788 		blk_op_str(req_op(req)),
789 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
790 		req->nr_phys_segments,
791 		IOPRIO_PRIO_CLASS(req->ioprio));
792 }
793 
794 /*
795  * Fully end IO on a request. Does not support partial completions, or
796  * errors.
797  */
798 static void blk_complete_request(struct request *req)
799 {
800 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
801 	int total_bytes = blk_rq_bytes(req);
802 	struct bio *bio = req->bio;
803 
804 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
805 
806 	if (!bio)
807 		return;
808 
809 #ifdef CONFIG_BLK_DEV_INTEGRITY
810 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
811 		req->q->integrity.profile->complete_fn(req, total_bytes);
812 #endif
813 
814 	/*
815 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
816 	 * bio_endio().  Therefore, the keyslot must be released before that.
817 	 */
818 	blk_crypto_rq_put_keyslot(req);
819 
820 	blk_account_io_completion(req, total_bytes);
821 
822 	do {
823 		struct bio *next = bio->bi_next;
824 
825 		/* Completion has already been traced */
826 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
827 
828 		if (req_op(req) == REQ_OP_ZONE_APPEND)
829 			bio->bi_iter.bi_sector = req->__sector;
830 
831 		if (!is_flush)
832 			bio_endio(bio);
833 		bio = next;
834 	} while (bio);
835 
836 	/*
837 	 * Reset counters so that the request stacking driver
838 	 * can find how many bytes remain in the request
839 	 * later.
840 	 */
841 	if (!req->end_io) {
842 		req->bio = NULL;
843 		req->__data_len = 0;
844 	}
845 }
846 
847 /**
848  * blk_update_request - Complete multiple bytes without completing the request
849  * @req:      the request being processed
850  * @error:    block status code
851  * @nr_bytes: number of bytes to complete for @req
852  *
853  * Description:
854  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
855  *     the request structure even if @req doesn't have leftover.
856  *     If @req has leftover, sets it up for the next range of segments.
857  *
858  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
859  *     %false return from this function.
860  *
861  * Note:
862  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
863  *      except in the consistency check at the end of this function.
864  *
865  * Return:
866  *     %false - this request doesn't have any more data
867  *     %true  - this request has more data
868  **/
869 bool blk_update_request(struct request *req, blk_status_t error,
870 		unsigned int nr_bytes)
871 {
872 	int total_bytes;
873 
874 	trace_block_rq_complete(req, error, nr_bytes);
875 
876 	if (!req->bio)
877 		return false;
878 
879 #ifdef CONFIG_BLK_DEV_INTEGRITY
880 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
881 	    error == BLK_STS_OK)
882 		req->q->integrity.profile->complete_fn(req, nr_bytes);
883 #endif
884 
885 	/*
886 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
887 	 * bio_endio().  Therefore, the keyslot must be released before that.
888 	 */
889 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
890 		__blk_crypto_rq_put_keyslot(req);
891 
892 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
893 		     !(req->rq_flags & RQF_QUIET)) &&
894 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
895 		blk_print_req_error(req, error);
896 		trace_block_rq_error(req, error, nr_bytes);
897 	}
898 
899 	blk_account_io_completion(req, nr_bytes);
900 
901 	total_bytes = 0;
902 	while (req->bio) {
903 		struct bio *bio = req->bio;
904 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
905 
906 		if (bio_bytes == bio->bi_iter.bi_size)
907 			req->bio = bio->bi_next;
908 
909 		/* Completion has already been traced */
910 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
911 		req_bio_endio(req, bio, bio_bytes, error);
912 
913 		total_bytes += bio_bytes;
914 		nr_bytes -= bio_bytes;
915 
916 		if (!nr_bytes)
917 			break;
918 	}
919 
920 	/*
921 	 * completely done
922 	 */
923 	if (!req->bio) {
924 		/*
925 		 * Reset counters so that the request stacking driver
926 		 * can find how many bytes remain in the request
927 		 * later.
928 		 */
929 		req->__data_len = 0;
930 		return false;
931 	}
932 
933 	req->__data_len -= total_bytes;
934 
935 	/* update sector only for requests with clear definition of sector */
936 	if (!blk_rq_is_passthrough(req))
937 		req->__sector += total_bytes >> 9;
938 
939 	/* mixed attributes always follow the first bio */
940 	if (req->rq_flags & RQF_MIXED_MERGE) {
941 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
942 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
943 	}
944 
945 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
946 		/*
947 		 * If total number of sectors is less than the first segment
948 		 * size, something has gone terribly wrong.
949 		 */
950 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
951 			blk_dump_rq_flags(req, "request botched");
952 			req->__data_len = blk_rq_cur_bytes(req);
953 		}
954 
955 		/* recalculate the number of segments */
956 		req->nr_phys_segments = blk_recalc_rq_segments(req);
957 	}
958 
959 	return true;
960 }
961 EXPORT_SYMBOL_GPL(blk_update_request);
962 
963 static inline void blk_account_io_done(struct request *req, u64 now)
964 {
965 	trace_block_io_done(req);
966 
967 	/*
968 	 * Account IO completion.  flush_rq isn't accounted as a
969 	 * normal IO on queueing nor completion.  Accounting the
970 	 * containing request is enough.
971 	 */
972 	if (blk_do_io_stat(req) && req->part &&
973 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
974 		const int sgrp = op_stat_group(req_op(req));
975 
976 		part_stat_lock();
977 		update_io_ticks(req->part, jiffies, true);
978 		part_stat_inc(req->part, ios[sgrp]);
979 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
980 		part_stat_unlock();
981 	}
982 }
983 
984 static inline void blk_account_io_start(struct request *req)
985 {
986 	trace_block_io_start(req);
987 
988 	if (blk_do_io_stat(req)) {
989 		/*
990 		 * All non-passthrough requests are created from a bio with one
991 		 * exception: when a flush command that is part of a flush sequence
992 		 * generated by the state machine in blk-flush.c is cloned onto the
993 		 * lower device by dm-multipath we can get here without a bio.
994 		 */
995 		if (req->bio)
996 			req->part = req->bio->bi_bdev;
997 		else
998 			req->part = req->q->disk->part0;
999 
1000 		part_stat_lock();
1001 		update_io_ticks(req->part, jiffies, false);
1002 		part_stat_unlock();
1003 	}
1004 }
1005 
1006 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1007 {
1008 	if (rq->rq_flags & RQF_STATS)
1009 		blk_stat_add(rq, now);
1010 
1011 	blk_mq_sched_completed_request(rq, now);
1012 	blk_account_io_done(rq, now);
1013 }
1014 
1015 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1016 {
1017 	if (blk_mq_need_time_stamp(rq))
1018 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1019 
1020 	if (rq->end_io) {
1021 		rq_qos_done(rq->q, rq);
1022 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1023 			blk_mq_free_request(rq);
1024 	} else {
1025 		blk_mq_free_request(rq);
1026 	}
1027 }
1028 EXPORT_SYMBOL(__blk_mq_end_request);
1029 
1030 void blk_mq_end_request(struct request *rq, blk_status_t error)
1031 {
1032 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1033 		BUG();
1034 	__blk_mq_end_request(rq, error);
1035 }
1036 EXPORT_SYMBOL(blk_mq_end_request);
1037 
1038 #define TAG_COMP_BATCH		32
1039 
1040 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1041 					  int *tag_array, int nr_tags)
1042 {
1043 	struct request_queue *q = hctx->queue;
1044 
1045 	/*
1046 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1047 	 * update hctx->nr_active in batch
1048 	 */
1049 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1050 		__blk_mq_sub_active_requests(hctx, nr_tags);
1051 
1052 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1053 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1054 }
1055 
1056 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1057 {
1058 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1059 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1060 	struct request *rq;
1061 	u64 now = 0;
1062 
1063 	if (iob->need_ts)
1064 		now = ktime_get_ns();
1065 
1066 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1067 		prefetch(rq->bio);
1068 		prefetch(rq->rq_next);
1069 
1070 		blk_complete_request(rq);
1071 		if (iob->need_ts)
1072 			__blk_mq_end_request_acct(rq, now);
1073 
1074 		rq_qos_done(rq->q, rq);
1075 
1076 		/*
1077 		 * If end_io handler returns NONE, then it still has
1078 		 * ownership of the request.
1079 		 */
1080 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1081 			continue;
1082 
1083 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1084 		if (!req_ref_put_and_test(rq))
1085 			continue;
1086 
1087 		blk_crypto_free_request(rq);
1088 		blk_pm_mark_last_busy(rq);
1089 
1090 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1091 			if (cur_hctx)
1092 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1093 			nr_tags = 0;
1094 			cur_hctx = rq->mq_hctx;
1095 		}
1096 		tags[nr_tags++] = rq->tag;
1097 	}
1098 
1099 	if (nr_tags)
1100 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1101 }
1102 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1103 
1104 static void blk_complete_reqs(struct llist_head *list)
1105 {
1106 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1107 	struct request *rq, *next;
1108 
1109 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1110 		rq->q->mq_ops->complete(rq);
1111 }
1112 
1113 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1114 {
1115 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1116 }
1117 
1118 static int blk_softirq_cpu_dead(unsigned int cpu)
1119 {
1120 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1121 	return 0;
1122 }
1123 
1124 static void __blk_mq_complete_request_remote(void *data)
1125 {
1126 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1127 }
1128 
1129 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1130 {
1131 	int cpu = raw_smp_processor_id();
1132 
1133 	if (!IS_ENABLED(CONFIG_SMP) ||
1134 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1135 		return false;
1136 	/*
1137 	 * With force threaded interrupts enabled, raising softirq from an SMP
1138 	 * function call will always result in waking the ksoftirqd thread.
1139 	 * This is probably worse than completing the request on a different
1140 	 * cache domain.
1141 	 */
1142 	if (force_irqthreads())
1143 		return false;
1144 
1145 	/* same CPU or cache domain?  Complete locally */
1146 	if (cpu == rq->mq_ctx->cpu ||
1147 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1148 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1149 		return false;
1150 
1151 	/* don't try to IPI to an offline CPU */
1152 	return cpu_online(rq->mq_ctx->cpu);
1153 }
1154 
1155 static void blk_mq_complete_send_ipi(struct request *rq)
1156 {
1157 	struct llist_head *list;
1158 	unsigned int cpu;
1159 
1160 	cpu = rq->mq_ctx->cpu;
1161 	list = &per_cpu(blk_cpu_done, cpu);
1162 	if (llist_add(&rq->ipi_list, list)) {
1163 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1164 		smp_call_function_single_async(cpu, &rq->csd);
1165 	}
1166 }
1167 
1168 static void blk_mq_raise_softirq(struct request *rq)
1169 {
1170 	struct llist_head *list;
1171 
1172 	preempt_disable();
1173 	list = this_cpu_ptr(&blk_cpu_done);
1174 	if (llist_add(&rq->ipi_list, list))
1175 		raise_softirq(BLOCK_SOFTIRQ);
1176 	preempt_enable();
1177 }
1178 
1179 bool blk_mq_complete_request_remote(struct request *rq)
1180 {
1181 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1182 
1183 	/*
1184 	 * For request which hctx has only one ctx mapping,
1185 	 * or a polled request, always complete locally,
1186 	 * it's pointless to redirect the completion.
1187 	 */
1188 	if ((rq->mq_hctx->nr_ctx == 1 &&
1189 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1190 	     rq->cmd_flags & REQ_POLLED)
1191 		return false;
1192 
1193 	if (blk_mq_complete_need_ipi(rq)) {
1194 		blk_mq_complete_send_ipi(rq);
1195 		return true;
1196 	}
1197 
1198 	if (rq->q->nr_hw_queues == 1) {
1199 		blk_mq_raise_softirq(rq);
1200 		return true;
1201 	}
1202 	return false;
1203 }
1204 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1205 
1206 /**
1207  * blk_mq_complete_request - end I/O on a request
1208  * @rq:		the request being processed
1209  *
1210  * Description:
1211  *	Complete a request by scheduling the ->complete_rq operation.
1212  **/
1213 void blk_mq_complete_request(struct request *rq)
1214 {
1215 	if (!blk_mq_complete_request_remote(rq))
1216 		rq->q->mq_ops->complete(rq);
1217 }
1218 EXPORT_SYMBOL(blk_mq_complete_request);
1219 
1220 /**
1221  * blk_mq_start_request - Start processing a request
1222  * @rq: Pointer to request to be started
1223  *
1224  * Function used by device drivers to notify the block layer that a request
1225  * is going to be processed now, so blk layer can do proper initializations
1226  * such as starting the timeout timer.
1227  */
1228 void blk_mq_start_request(struct request *rq)
1229 {
1230 	struct request_queue *q = rq->q;
1231 
1232 	trace_block_rq_issue(rq);
1233 
1234 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1235 		rq->io_start_time_ns = ktime_get_ns();
1236 		rq->stats_sectors = blk_rq_sectors(rq);
1237 		rq->rq_flags |= RQF_STATS;
1238 		rq_qos_issue(q, rq);
1239 	}
1240 
1241 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1242 
1243 	blk_add_timer(rq);
1244 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1245 
1246 #ifdef CONFIG_BLK_DEV_INTEGRITY
1247 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1248 		q->integrity.profile->prepare_fn(rq);
1249 #endif
1250 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1251 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1252 }
1253 EXPORT_SYMBOL(blk_mq_start_request);
1254 
1255 /*
1256  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1257  * queues. This is important for md arrays to benefit from merging
1258  * requests.
1259  */
1260 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1261 {
1262 	if (plug->multiple_queues)
1263 		return BLK_MAX_REQUEST_COUNT * 2;
1264 	return BLK_MAX_REQUEST_COUNT;
1265 }
1266 
1267 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1268 {
1269 	struct request *last = rq_list_peek(&plug->mq_list);
1270 
1271 	if (!plug->rq_count) {
1272 		trace_block_plug(rq->q);
1273 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1274 		   (!blk_queue_nomerges(rq->q) &&
1275 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1276 		blk_mq_flush_plug_list(plug, false);
1277 		last = NULL;
1278 		trace_block_plug(rq->q);
1279 	}
1280 
1281 	if (!plug->multiple_queues && last && last->q != rq->q)
1282 		plug->multiple_queues = true;
1283 	if (!plug->has_elevator && (rq->rq_flags & RQF_USE_SCHED))
1284 		plug->has_elevator = true;
1285 	rq->rq_next = NULL;
1286 	rq_list_add(&plug->mq_list, rq);
1287 	plug->rq_count++;
1288 }
1289 
1290 /**
1291  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1292  * @rq:		request to insert
1293  * @at_head:    insert request at head or tail of queue
1294  *
1295  * Description:
1296  *    Insert a fully prepared request at the back of the I/O scheduler queue
1297  *    for execution.  Don't wait for completion.
1298  *
1299  * Note:
1300  *    This function will invoke @done directly if the queue is dead.
1301  */
1302 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1303 {
1304 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1305 
1306 	WARN_ON(irqs_disabled());
1307 	WARN_ON(!blk_rq_is_passthrough(rq));
1308 
1309 	blk_account_io_start(rq);
1310 
1311 	/*
1312 	 * As plugging can be enabled for passthrough requests on a zoned
1313 	 * device, directly accessing the plug instead of using blk_mq_plug()
1314 	 * should not have any consequences.
1315 	 */
1316 	if (current->plug && !at_head) {
1317 		blk_add_rq_to_plug(current->plug, rq);
1318 		return;
1319 	}
1320 
1321 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1322 	blk_mq_run_hw_queue(hctx, false);
1323 }
1324 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1325 
1326 struct blk_rq_wait {
1327 	struct completion done;
1328 	blk_status_t ret;
1329 };
1330 
1331 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1332 {
1333 	struct blk_rq_wait *wait = rq->end_io_data;
1334 
1335 	wait->ret = ret;
1336 	complete(&wait->done);
1337 	return RQ_END_IO_NONE;
1338 }
1339 
1340 bool blk_rq_is_poll(struct request *rq)
1341 {
1342 	if (!rq->mq_hctx)
1343 		return false;
1344 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1345 		return false;
1346 	return true;
1347 }
1348 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1349 
1350 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1351 {
1352 	do {
1353 		blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1354 		cond_resched();
1355 	} while (!completion_done(wait));
1356 }
1357 
1358 /**
1359  * blk_execute_rq - insert a request into queue for execution
1360  * @rq:		request to insert
1361  * @at_head:    insert request at head or tail of queue
1362  *
1363  * Description:
1364  *    Insert a fully prepared request at the back of the I/O scheduler queue
1365  *    for execution and wait for completion.
1366  * Return: The blk_status_t result provided to blk_mq_end_request().
1367  */
1368 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1369 {
1370 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1371 	struct blk_rq_wait wait = {
1372 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1373 	};
1374 
1375 	WARN_ON(irqs_disabled());
1376 	WARN_ON(!blk_rq_is_passthrough(rq));
1377 
1378 	rq->end_io_data = &wait;
1379 	rq->end_io = blk_end_sync_rq;
1380 
1381 	blk_account_io_start(rq);
1382 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1383 	blk_mq_run_hw_queue(hctx, false);
1384 
1385 	if (blk_rq_is_poll(rq)) {
1386 		blk_rq_poll_completion(rq, &wait.done);
1387 	} else {
1388 		/*
1389 		 * Prevent hang_check timer from firing at us during very long
1390 		 * I/O
1391 		 */
1392 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1393 
1394 		if (hang_check)
1395 			while (!wait_for_completion_io_timeout(&wait.done,
1396 					hang_check * (HZ/2)))
1397 				;
1398 		else
1399 			wait_for_completion_io(&wait.done);
1400 	}
1401 
1402 	return wait.ret;
1403 }
1404 EXPORT_SYMBOL(blk_execute_rq);
1405 
1406 static void __blk_mq_requeue_request(struct request *rq)
1407 {
1408 	struct request_queue *q = rq->q;
1409 
1410 	blk_mq_put_driver_tag(rq);
1411 
1412 	trace_block_rq_requeue(rq);
1413 	rq_qos_requeue(q, rq);
1414 
1415 	if (blk_mq_request_started(rq)) {
1416 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1417 		rq->rq_flags &= ~RQF_TIMED_OUT;
1418 	}
1419 }
1420 
1421 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1422 {
1423 	struct request_queue *q = rq->q;
1424 	unsigned long flags;
1425 
1426 	__blk_mq_requeue_request(rq);
1427 
1428 	/* this request will be re-inserted to io scheduler queue */
1429 	blk_mq_sched_requeue_request(rq);
1430 
1431 	spin_lock_irqsave(&q->requeue_lock, flags);
1432 	list_add_tail(&rq->queuelist, &q->requeue_list);
1433 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1434 
1435 	if (kick_requeue_list)
1436 		blk_mq_kick_requeue_list(q);
1437 }
1438 EXPORT_SYMBOL(blk_mq_requeue_request);
1439 
1440 static void blk_mq_requeue_work(struct work_struct *work)
1441 {
1442 	struct request_queue *q =
1443 		container_of(work, struct request_queue, requeue_work.work);
1444 	LIST_HEAD(rq_list);
1445 	LIST_HEAD(flush_list);
1446 	struct request *rq;
1447 
1448 	spin_lock_irq(&q->requeue_lock);
1449 	list_splice_init(&q->requeue_list, &rq_list);
1450 	list_splice_init(&q->flush_list, &flush_list);
1451 	spin_unlock_irq(&q->requeue_lock);
1452 
1453 	while (!list_empty(&rq_list)) {
1454 		rq = list_entry(rq_list.next, struct request, queuelist);
1455 		/*
1456 		 * If RQF_DONTPREP ist set, the request has been started by the
1457 		 * driver already and might have driver-specific data allocated
1458 		 * already.  Insert it into the hctx dispatch list to avoid
1459 		 * block layer merges for the request.
1460 		 */
1461 		if (rq->rq_flags & RQF_DONTPREP) {
1462 			list_del_init(&rq->queuelist);
1463 			blk_mq_request_bypass_insert(rq, 0);
1464 		} else {
1465 			list_del_init(&rq->queuelist);
1466 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1467 		}
1468 	}
1469 
1470 	while (!list_empty(&flush_list)) {
1471 		rq = list_entry(flush_list.next, struct request, queuelist);
1472 		list_del_init(&rq->queuelist);
1473 		blk_mq_insert_request(rq, 0);
1474 	}
1475 
1476 	blk_mq_run_hw_queues(q, false);
1477 }
1478 
1479 void blk_mq_kick_requeue_list(struct request_queue *q)
1480 {
1481 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1482 }
1483 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1484 
1485 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1486 				    unsigned long msecs)
1487 {
1488 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1489 				    msecs_to_jiffies(msecs));
1490 }
1491 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1492 
1493 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1494 {
1495 	/*
1496 	 * If we find a request that isn't idle we know the queue is busy
1497 	 * as it's checked in the iter.
1498 	 * Return false to stop the iteration.
1499 	 */
1500 	if (blk_mq_request_started(rq)) {
1501 		bool *busy = priv;
1502 
1503 		*busy = true;
1504 		return false;
1505 	}
1506 
1507 	return true;
1508 }
1509 
1510 bool blk_mq_queue_inflight(struct request_queue *q)
1511 {
1512 	bool busy = false;
1513 
1514 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1515 	return busy;
1516 }
1517 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1518 
1519 static void blk_mq_rq_timed_out(struct request *req)
1520 {
1521 	req->rq_flags |= RQF_TIMED_OUT;
1522 	if (req->q->mq_ops->timeout) {
1523 		enum blk_eh_timer_return ret;
1524 
1525 		ret = req->q->mq_ops->timeout(req);
1526 		if (ret == BLK_EH_DONE)
1527 			return;
1528 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1529 	}
1530 
1531 	blk_add_timer(req);
1532 }
1533 
1534 struct blk_expired_data {
1535 	bool has_timedout_rq;
1536 	unsigned long next;
1537 	unsigned long timeout_start;
1538 };
1539 
1540 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1541 {
1542 	unsigned long deadline;
1543 
1544 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1545 		return false;
1546 	if (rq->rq_flags & RQF_TIMED_OUT)
1547 		return false;
1548 
1549 	deadline = READ_ONCE(rq->deadline);
1550 	if (time_after_eq(expired->timeout_start, deadline))
1551 		return true;
1552 
1553 	if (expired->next == 0)
1554 		expired->next = deadline;
1555 	else if (time_after(expired->next, deadline))
1556 		expired->next = deadline;
1557 	return false;
1558 }
1559 
1560 void blk_mq_put_rq_ref(struct request *rq)
1561 {
1562 	if (is_flush_rq(rq)) {
1563 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1564 			blk_mq_free_request(rq);
1565 	} else if (req_ref_put_and_test(rq)) {
1566 		__blk_mq_free_request(rq);
1567 	}
1568 }
1569 
1570 static bool blk_mq_check_expired(struct request *rq, void *priv)
1571 {
1572 	struct blk_expired_data *expired = priv;
1573 
1574 	/*
1575 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1576 	 * be reallocated underneath the timeout handler's processing, then
1577 	 * the expire check is reliable. If the request is not expired, then
1578 	 * it was completed and reallocated as a new request after returning
1579 	 * from blk_mq_check_expired().
1580 	 */
1581 	if (blk_mq_req_expired(rq, expired)) {
1582 		expired->has_timedout_rq = true;
1583 		return false;
1584 	}
1585 	return true;
1586 }
1587 
1588 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1589 {
1590 	struct blk_expired_data *expired = priv;
1591 
1592 	if (blk_mq_req_expired(rq, expired))
1593 		blk_mq_rq_timed_out(rq);
1594 	return true;
1595 }
1596 
1597 static void blk_mq_timeout_work(struct work_struct *work)
1598 {
1599 	struct request_queue *q =
1600 		container_of(work, struct request_queue, timeout_work);
1601 	struct blk_expired_data expired = {
1602 		.timeout_start = jiffies,
1603 	};
1604 	struct blk_mq_hw_ctx *hctx;
1605 	unsigned long i;
1606 
1607 	/* A deadlock might occur if a request is stuck requiring a
1608 	 * timeout at the same time a queue freeze is waiting
1609 	 * completion, since the timeout code would not be able to
1610 	 * acquire the queue reference here.
1611 	 *
1612 	 * That's why we don't use blk_queue_enter here; instead, we use
1613 	 * percpu_ref_tryget directly, because we need to be able to
1614 	 * obtain a reference even in the short window between the queue
1615 	 * starting to freeze, by dropping the first reference in
1616 	 * blk_freeze_queue_start, and the moment the last request is
1617 	 * consumed, marked by the instant q_usage_counter reaches
1618 	 * zero.
1619 	 */
1620 	if (!percpu_ref_tryget(&q->q_usage_counter))
1621 		return;
1622 
1623 	/* check if there is any timed-out request */
1624 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1625 	if (expired.has_timedout_rq) {
1626 		/*
1627 		 * Before walking tags, we must ensure any submit started
1628 		 * before the current time has finished. Since the submit
1629 		 * uses srcu or rcu, wait for a synchronization point to
1630 		 * ensure all running submits have finished
1631 		 */
1632 		blk_mq_wait_quiesce_done(q->tag_set);
1633 
1634 		expired.next = 0;
1635 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1636 	}
1637 
1638 	if (expired.next != 0) {
1639 		mod_timer(&q->timeout, expired.next);
1640 	} else {
1641 		/*
1642 		 * Request timeouts are handled as a forward rolling timer. If
1643 		 * we end up here it means that no requests are pending and
1644 		 * also that no request has been pending for a while. Mark
1645 		 * each hctx as idle.
1646 		 */
1647 		queue_for_each_hw_ctx(q, hctx, i) {
1648 			/* the hctx may be unmapped, so check it here */
1649 			if (blk_mq_hw_queue_mapped(hctx))
1650 				blk_mq_tag_idle(hctx);
1651 		}
1652 	}
1653 	blk_queue_exit(q);
1654 }
1655 
1656 struct flush_busy_ctx_data {
1657 	struct blk_mq_hw_ctx *hctx;
1658 	struct list_head *list;
1659 };
1660 
1661 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1662 {
1663 	struct flush_busy_ctx_data *flush_data = data;
1664 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1665 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1666 	enum hctx_type type = hctx->type;
1667 
1668 	spin_lock(&ctx->lock);
1669 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1670 	sbitmap_clear_bit(sb, bitnr);
1671 	spin_unlock(&ctx->lock);
1672 	return true;
1673 }
1674 
1675 /*
1676  * Process software queues that have been marked busy, splicing them
1677  * to the for-dispatch
1678  */
1679 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1680 {
1681 	struct flush_busy_ctx_data data = {
1682 		.hctx = hctx,
1683 		.list = list,
1684 	};
1685 
1686 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1687 }
1688 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1689 
1690 struct dispatch_rq_data {
1691 	struct blk_mq_hw_ctx *hctx;
1692 	struct request *rq;
1693 };
1694 
1695 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1696 		void *data)
1697 {
1698 	struct dispatch_rq_data *dispatch_data = data;
1699 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1700 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1701 	enum hctx_type type = hctx->type;
1702 
1703 	spin_lock(&ctx->lock);
1704 	if (!list_empty(&ctx->rq_lists[type])) {
1705 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1706 		list_del_init(&dispatch_data->rq->queuelist);
1707 		if (list_empty(&ctx->rq_lists[type]))
1708 			sbitmap_clear_bit(sb, bitnr);
1709 	}
1710 	spin_unlock(&ctx->lock);
1711 
1712 	return !dispatch_data->rq;
1713 }
1714 
1715 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1716 					struct blk_mq_ctx *start)
1717 {
1718 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1719 	struct dispatch_rq_data data = {
1720 		.hctx = hctx,
1721 		.rq   = NULL,
1722 	};
1723 
1724 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1725 			       dispatch_rq_from_ctx, &data);
1726 
1727 	return data.rq;
1728 }
1729 
1730 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1731 {
1732 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1733 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1734 	int tag;
1735 
1736 	blk_mq_tag_busy(rq->mq_hctx);
1737 
1738 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1739 		bt = &rq->mq_hctx->tags->breserved_tags;
1740 		tag_offset = 0;
1741 	} else {
1742 		if (!hctx_may_queue(rq->mq_hctx, bt))
1743 			return false;
1744 	}
1745 
1746 	tag = __sbitmap_queue_get(bt);
1747 	if (tag == BLK_MQ_NO_TAG)
1748 		return false;
1749 
1750 	rq->tag = tag + tag_offset;
1751 	return true;
1752 }
1753 
1754 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1755 {
1756 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1757 		return false;
1758 
1759 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1760 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1761 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1762 		__blk_mq_inc_active_requests(hctx);
1763 	}
1764 	hctx->tags->rqs[rq->tag] = rq;
1765 	return true;
1766 }
1767 
1768 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1769 				int flags, void *key)
1770 {
1771 	struct blk_mq_hw_ctx *hctx;
1772 
1773 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1774 
1775 	spin_lock(&hctx->dispatch_wait_lock);
1776 	if (!list_empty(&wait->entry)) {
1777 		struct sbitmap_queue *sbq;
1778 
1779 		list_del_init(&wait->entry);
1780 		sbq = &hctx->tags->bitmap_tags;
1781 		atomic_dec(&sbq->ws_active);
1782 	}
1783 	spin_unlock(&hctx->dispatch_wait_lock);
1784 
1785 	blk_mq_run_hw_queue(hctx, true);
1786 	return 1;
1787 }
1788 
1789 /*
1790  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1791  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1792  * restart. For both cases, take care to check the condition again after
1793  * marking us as waiting.
1794  */
1795 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1796 				 struct request *rq)
1797 {
1798 	struct sbitmap_queue *sbq;
1799 	struct wait_queue_head *wq;
1800 	wait_queue_entry_t *wait;
1801 	bool ret;
1802 
1803 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1804 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1805 		blk_mq_sched_mark_restart_hctx(hctx);
1806 
1807 		/*
1808 		 * It's possible that a tag was freed in the window between the
1809 		 * allocation failure and adding the hardware queue to the wait
1810 		 * queue.
1811 		 *
1812 		 * Don't clear RESTART here, someone else could have set it.
1813 		 * At most this will cost an extra queue run.
1814 		 */
1815 		return blk_mq_get_driver_tag(rq);
1816 	}
1817 
1818 	wait = &hctx->dispatch_wait;
1819 	if (!list_empty_careful(&wait->entry))
1820 		return false;
1821 
1822 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1823 		sbq = &hctx->tags->breserved_tags;
1824 	else
1825 		sbq = &hctx->tags->bitmap_tags;
1826 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1827 
1828 	spin_lock_irq(&wq->lock);
1829 	spin_lock(&hctx->dispatch_wait_lock);
1830 	if (!list_empty(&wait->entry)) {
1831 		spin_unlock(&hctx->dispatch_wait_lock);
1832 		spin_unlock_irq(&wq->lock);
1833 		return false;
1834 	}
1835 
1836 	atomic_inc(&sbq->ws_active);
1837 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1838 	__add_wait_queue(wq, wait);
1839 
1840 	/*
1841 	 * It's possible that a tag was freed in the window between the
1842 	 * allocation failure and adding the hardware queue to the wait
1843 	 * queue.
1844 	 */
1845 	ret = blk_mq_get_driver_tag(rq);
1846 	if (!ret) {
1847 		spin_unlock(&hctx->dispatch_wait_lock);
1848 		spin_unlock_irq(&wq->lock);
1849 		return false;
1850 	}
1851 
1852 	/*
1853 	 * We got a tag, remove ourselves from the wait queue to ensure
1854 	 * someone else gets the wakeup.
1855 	 */
1856 	list_del_init(&wait->entry);
1857 	atomic_dec(&sbq->ws_active);
1858 	spin_unlock(&hctx->dispatch_wait_lock);
1859 	spin_unlock_irq(&wq->lock);
1860 
1861 	return true;
1862 }
1863 
1864 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1865 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1866 /*
1867  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1868  * - EWMA is one simple way to compute running average value
1869  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1870  * - take 4 as factor for avoiding to get too small(0) result, and this
1871  *   factor doesn't matter because EWMA decreases exponentially
1872  */
1873 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1874 {
1875 	unsigned int ewma;
1876 
1877 	ewma = hctx->dispatch_busy;
1878 
1879 	if (!ewma && !busy)
1880 		return;
1881 
1882 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1883 	if (busy)
1884 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1885 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1886 
1887 	hctx->dispatch_busy = ewma;
1888 }
1889 
1890 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1891 
1892 static void blk_mq_handle_dev_resource(struct request *rq,
1893 				       struct list_head *list)
1894 {
1895 	list_add(&rq->queuelist, list);
1896 	__blk_mq_requeue_request(rq);
1897 }
1898 
1899 static void blk_mq_handle_zone_resource(struct request *rq,
1900 					struct list_head *zone_list)
1901 {
1902 	/*
1903 	 * If we end up here it is because we cannot dispatch a request to a
1904 	 * specific zone due to LLD level zone-write locking or other zone
1905 	 * related resource not being available. In this case, set the request
1906 	 * aside in zone_list for retrying it later.
1907 	 */
1908 	list_add(&rq->queuelist, zone_list);
1909 	__blk_mq_requeue_request(rq);
1910 }
1911 
1912 enum prep_dispatch {
1913 	PREP_DISPATCH_OK,
1914 	PREP_DISPATCH_NO_TAG,
1915 	PREP_DISPATCH_NO_BUDGET,
1916 };
1917 
1918 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1919 						  bool need_budget)
1920 {
1921 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1922 	int budget_token = -1;
1923 
1924 	if (need_budget) {
1925 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1926 		if (budget_token < 0) {
1927 			blk_mq_put_driver_tag(rq);
1928 			return PREP_DISPATCH_NO_BUDGET;
1929 		}
1930 		blk_mq_set_rq_budget_token(rq, budget_token);
1931 	}
1932 
1933 	if (!blk_mq_get_driver_tag(rq)) {
1934 		/*
1935 		 * The initial allocation attempt failed, so we need to
1936 		 * rerun the hardware queue when a tag is freed. The
1937 		 * waitqueue takes care of that. If the queue is run
1938 		 * before we add this entry back on the dispatch list,
1939 		 * we'll re-run it below.
1940 		 */
1941 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1942 			/*
1943 			 * All budgets not got from this function will be put
1944 			 * together during handling partial dispatch
1945 			 */
1946 			if (need_budget)
1947 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1948 			return PREP_DISPATCH_NO_TAG;
1949 		}
1950 	}
1951 
1952 	return PREP_DISPATCH_OK;
1953 }
1954 
1955 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1956 static void blk_mq_release_budgets(struct request_queue *q,
1957 		struct list_head *list)
1958 {
1959 	struct request *rq;
1960 
1961 	list_for_each_entry(rq, list, queuelist) {
1962 		int budget_token = blk_mq_get_rq_budget_token(rq);
1963 
1964 		if (budget_token >= 0)
1965 			blk_mq_put_dispatch_budget(q, budget_token);
1966 	}
1967 }
1968 
1969 /*
1970  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1971  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1972  * details)
1973  * Attention, we should explicitly call this in unusual cases:
1974  *  1) did not queue everything initially scheduled to queue
1975  *  2) the last attempt to queue a request failed
1976  */
1977 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1978 			      bool from_schedule)
1979 {
1980 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1981 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1982 		hctx->queue->mq_ops->commit_rqs(hctx);
1983 	}
1984 }
1985 
1986 /*
1987  * Returns true if we did some work AND can potentially do more.
1988  */
1989 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1990 			     unsigned int nr_budgets)
1991 {
1992 	enum prep_dispatch prep;
1993 	struct request_queue *q = hctx->queue;
1994 	struct request *rq;
1995 	int queued;
1996 	blk_status_t ret = BLK_STS_OK;
1997 	LIST_HEAD(zone_list);
1998 	bool needs_resource = false;
1999 
2000 	if (list_empty(list))
2001 		return false;
2002 
2003 	/*
2004 	 * Now process all the entries, sending them to the driver.
2005 	 */
2006 	queued = 0;
2007 	do {
2008 		struct blk_mq_queue_data bd;
2009 
2010 		rq = list_first_entry(list, struct request, queuelist);
2011 
2012 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2013 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2014 		if (prep != PREP_DISPATCH_OK)
2015 			break;
2016 
2017 		list_del_init(&rq->queuelist);
2018 
2019 		bd.rq = rq;
2020 		bd.last = list_empty(list);
2021 
2022 		/*
2023 		 * once the request is queued to lld, no need to cover the
2024 		 * budget any more
2025 		 */
2026 		if (nr_budgets)
2027 			nr_budgets--;
2028 		ret = q->mq_ops->queue_rq(hctx, &bd);
2029 		switch (ret) {
2030 		case BLK_STS_OK:
2031 			queued++;
2032 			break;
2033 		case BLK_STS_RESOURCE:
2034 			needs_resource = true;
2035 			fallthrough;
2036 		case BLK_STS_DEV_RESOURCE:
2037 			blk_mq_handle_dev_resource(rq, list);
2038 			goto out;
2039 		case BLK_STS_ZONE_RESOURCE:
2040 			/*
2041 			 * Move the request to zone_list and keep going through
2042 			 * the dispatch list to find more requests the drive can
2043 			 * accept.
2044 			 */
2045 			blk_mq_handle_zone_resource(rq, &zone_list);
2046 			needs_resource = true;
2047 			break;
2048 		default:
2049 			blk_mq_end_request(rq, ret);
2050 		}
2051 	} while (!list_empty(list));
2052 out:
2053 	if (!list_empty(&zone_list))
2054 		list_splice_tail_init(&zone_list, list);
2055 
2056 	/* If we didn't flush the entire list, we could have told the driver
2057 	 * there was more coming, but that turned out to be a lie.
2058 	 */
2059 	if (!list_empty(list) || ret != BLK_STS_OK)
2060 		blk_mq_commit_rqs(hctx, queued, false);
2061 
2062 	/*
2063 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2064 	 * that is where we will continue on next queue run.
2065 	 */
2066 	if (!list_empty(list)) {
2067 		bool needs_restart;
2068 		/* For non-shared tags, the RESTART check will suffice */
2069 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2070 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2071 			blk_mq_is_shared_tags(hctx->flags));
2072 
2073 		if (nr_budgets)
2074 			blk_mq_release_budgets(q, list);
2075 
2076 		spin_lock(&hctx->lock);
2077 		list_splice_tail_init(list, &hctx->dispatch);
2078 		spin_unlock(&hctx->lock);
2079 
2080 		/*
2081 		 * Order adding requests to hctx->dispatch and checking
2082 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2083 		 * in blk_mq_sched_restart(). Avoid restart code path to
2084 		 * miss the new added requests to hctx->dispatch, meantime
2085 		 * SCHED_RESTART is observed here.
2086 		 */
2087 		smp_mb();
2088 
2089 		/*
2090 		 * If SCHED_RESTART was set by the caller of this function and
2091 		 * it is no longer set that means that it was cleared by another
2092 		 * thread and hence that a queue rerun is needed.
2093 		 *
2094 		 * If 'no_tag' is set, that means that we failed getting
2095 		 * a driver tag with an I/O scheduler attached. If our dispatch
2096 		 * waitqueue is no longer active, ensure that we run the queue
2097 		 * AFTER adding our entries back to the list.
2098 		 *
2099 		 * If no I/O scheduler has been configured it is possible that
2100 		 * the hardware queue got stopped and restarted before requests
2101 		 * were pushed back onto the dispatch list. Rerun the queue to
2102 		 * avoid starvation. Notes:
2103 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2104 		 *   been stopped before rerunning a queue.
2105 		 * - Some but not all block drivers stop a queue before
2106 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2107 		 *   and dm-rq.
2108 		 *
2109 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2110 		 * bit is set, run queue after a delay to avoid IO stalls
2111 		 * that could otherwise occur if the queue is idle.  We'll do
2112 		 * similar if we couldn't get budget or couldn't lock a zone
2113 		 * and SCHED_RESTART is set.
2114 		 */
2115 		needs_restart = blk_mq_sched_needs_restart(hctx);
2116 		if (prep == PREP_DISPATCH_NO_BUDGET)
2117 			needs_resource = true;
2118 		if (!needs_restart ||
2119 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2120 			blk_mq_run_hw_queue(hctx, true);
2121 		else if (needs_resource)
2122 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2123 
2124 		blk_mq_update_dispatch_busy(hctx, true);
2125 		return false;
2126 	}
2127 
2128 	blk_mq_update_dispatch_busy(hctx, false);
2129 	return true;
2130 }
2131 
2132 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2133 {
2134 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2135 
2136 	if (cpu >= nr_cpu_ids)
2137 		cpu = cpumask_first(hctx->cpumask);
2138 	return cpu;
2139 }
2140 
2141 /*
2142  * It'd be great if the workqueue API had a way to pass
2143  * in a mask and had some smarts for more clever placement.
2144  * For now we just round-robin here, switching for every
2145  * BLK_MQ_CPU_WORK_BATCH queued items.
2146  */
2147 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2148 {
2149 	bool tried = false;
2150 	int next_cpu = hctx->next_cpu;
2151 
2152 	if (hctx->queue->nr_hw_queues == 1)
2153 		return WORK_CPU_UNBOUND;
2154 
2155 	if (--hctx->next_cpu_batch <= 0) {
2156 select_cpu:
2157 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2158 				cpu_online_mask);
2159 		if (next_cpu >= nr_cpu_ids)
2160 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2161 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2162 	}
2163 
2164 	/*
2165 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2166 	 * and it should only happen in the path of handling CPU DEAD.
2167 	 */
2168 	if (!cpu_online(next_cpu)) {
2169 		if (!tried) {
2170 			tried = true;
2171 			goto select_cpu;
2172 		}
2173 
2174 		/*
2175 		 * Make sure to re-select CPU next time once after CPUs
2176 		 * in hctx->cpumask become online again.
2177 		 */
2178 		hctx->next_cpu = next_cpu;
2179 		hctx->next_cpu_batch = 1;
2180 		return WORK_CPU_UNBOUND;
2181 	}
2182 
2183 	hctx->next_cpu = next_cpu;
2184 	return next_cpu;
2185 }
2186 
2187 /**
2188  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2189  * @hctx: Pointer to the hardware queue to run.
2190  * @msecs: Milliseconds of delay to wait before running the queue.
2191  *
2192  * Run a hardware queue asynchronously with a delay of @msecs.
2193  */
2194 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2195 {
2196 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2197 		return;
2198 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2199 				    msecs_to_jiffies(msecs));
2200 }
2201 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2202 
2203 /**
2204  * blk_mq_run_hw_queue - Start to run a hardware queue.
2205  * @hctx: Pointer to the hardware queue to run.
2206  * @async: If we want to run the queue asynchronously.
2207  *
2208  * Check if the request queue is not in a quiesced state and if there are
2209  * pending requests to be sent. If this is true, run the queue to send requests
2210  * to hardware.
2211  */
2212 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2213 {
2214 	bool need_run;
2215 
2216 	/*
2217 	 * We can't run the queue inline with interrupts disabled.
2218 	 */
2219 	WARN_ON_ONCE(!async && in_interrupt());
2220 
2221 	/*
2222 	 * When queue is quiesced, we may be switching io scheduler, or
2223 	 * updating nr_hw_queues, or other things, and we can't run queue
2224 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2225 	 *
2226 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2227 	 * quiesced.
2228 	 */
2229 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2230 		need_run = !blk_queue_quiesced(hctx->queue) &&
2231 		blk_mq_hctx_has_pending(hctx));
2232 
2233 	if (!need_run)
2234 		return;
2235 
2236 	if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2237 	    !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2238 		blk_mq_delay_run_hw_queue(hctx, 0);
2239 		return;
2240 	}
2241 
2242 	blk_mq_run_dispatch_ops(hctx->queue,
2243 				blk_mq_sched_dispatch_requests(hctx));
2244 }
2245 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2246 
2247 /*
2248  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2249  * scheduler.
2250  */
2251 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2252 {
2253 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2254 	/*
2255 	 * If the IO scheduler does not respect hardware queues when
2256 	 * dispatching, we just don't bother with multiple HW queues and
2257 	 * dispatch from hctx for the current CPU since running multiple queues
2258 	 * just causes lock contention inside the scheduler and pointless cache
2259 	 * bouncing.
2260 	 */
2261 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2262 
2263 	if (!blk_mq_hctx_stopped(hctx))
2264 		return hctx;
2265 	return NULL;
2266 }
2267 
2268 /**
2269  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2270  * @q: Pointer to the request queue to run.
2271  * @async: If we want to run the queue asynchronously.
2272  */
2273 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2274 {
2275 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2276 	unsigned long i;
2277 
2278 	sq_hctx = NULL;
2279 	if (blk_queue_sq_sched(q))
2280 		sq_hctx = blk_mq_get_sq_hctx(q);
2281 	queue_for_each_hw_ctx(q, hctx, i) {
2282 		if (blk_mq_hctx_stopped(hctx))
2283 			continue;
2284 		/*
2285 		 * Dispatch from this hctx either if there's no hctx preferred
2286 		 * by IO scheduler or if it has requests that bypass the
2287 		 * scheduler.
2288 		 */
2289 		if (!sq_hctx || sq_hctx == hctx ||
2290 		    !list_empty_careful(&hctx->dispatch))
2291 			blk_mq_run_hw_queue(hctx, async);
2292 	}
2293 }
2294 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2295 
2296 /**
2297  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2298  * @q: Pointer to the request queue to run.
2299  * @msecs: Milliseconds of delay to wait before running the queues.
2300  */
2301 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2302 {
2303 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2304 	unsigned long i;
2305 
2306 	sq_hctx = NULL;
2307 	if (blk_queue_sq_sched(q))
2308 		sq_hctx = blk_mq_get_sq_hctx(q);
2309 	queue_for_each_hw_ctx(q, hctx, i) {
2310 		if (blk_mq_hctx_stopped(hctx))
2311 			continue;
2312 		/*
2313 		 * If there is already a run_work pending, leave the
2314 		 * pending delay untouched. Otherwise, a hctx can stall
2315 		 * if another hctx is re-delaying the other's work
2316 		 * before the work executes.
2317 		 */
2318 		if (delayed_work_pending(&hctx->run_work))
2319 			continue;
2320 		/*
2321 		 * Dispatch from this hctx either if there's no hctx preferred
2322 		 * by IO scheduler or if it has requests that bypass the
2323 		 * scheduler.
2324 		 */
2325 		if (!sq_hctx || sq_hctx == hctx ||
2326 		    !list_empty_careful(&hctx->dispatch))
2327 			blk_mq_delay_run_hw_queue(hctx, msecs);
2328 	}
2329 }
2330 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2331 
2332 /*
2333  * This function is often used for pausing .queue_rq() by driver when
2334  * there isn't enough resource or some conditions aren't satisfied, and
2335  * BLK_STS_RESOURCE is usually returned.
2336  *
2337  * We do not guarantee that dispatch can be drained or blocked
2338  * after blk_mq_stop_hw_queue() returns. Please use
2339  * blk_mq_quiesce_queue() for that requirement.
2340  */
2341 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2342 {
2343 	cancel_delayed_work(&hctx->run_work);
2344 
2345 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2346 }
2347 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2348 
2349 /*
2350  * This function is often used for pausing .queue_rq() by driver when
2351  * there isn't enough resource or some conditions aren't satisfied, and
2352  * BLK_STS_RESOURCE is usually returned.
2353  *
2354  * We do not guarantee that dispatch can be drained or blocked
2355  * after blk_mq_stop_hw_queues() returns. Please use
2356  * blk_mq_quiesce_queue() for that requirement.
2357  */
2358 void blk_mq_stop_hw_queues(struct request_queue *q)
2359 {
2360 	struct blk_mq_hw_ctx *hctx;
2361 	unsigned long i;
2362 
2363 	queue_for_each_hw_ctx(q, hctx, i)
2364 		blk_mq_stop_hw_queue(hctx);
2365 }
2366 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2367 
2368 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2369 {
2370 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2371 
2372 	blk_mq_run_hw_queue(hctx, false);
2373 }
2374 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2375 
2376 void blk_mq_start_hw_queues(struct request_queue *q)
2377 {
2378 	struct blk_mq_hw_ctx *hctx;
2379 	unsigned long i;
2380 
2381 	queue_for_each_hw_ctx(q, hctx, i)
2382 		blk_mq_start_hw_queue(hctx);
2383 }
2384 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2385 
2386 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2387 {
2388 	if (!blk_mq_hctx_stopped(hctx))
2389 		return;
2390 
2391 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2392 	blk_mq_run_hw_queue(hctx, async);
2393 }
2394 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2395 
2396 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2397 {
2398 	struct blk_mq_hw_ctx *hctx;
2399 	unsigned long i;
2400 
2401 	queue_for_each_hw_ctx(q, hctx, i)
2402 		blk_mq_start_stopped_hw_queue(hctx, async);
2403 }
2404 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2405 
2406 static void blk_mq_run_work_fn(struct work_struct *work)
2407 {
2408 	struct blk_mq_hw_ctx *hctx =
2409 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2410 
2411 	blk_mq_run_dispatch_ops(hctx->queue,
2412 				blk_mq_sched_dispatch_requests(hctx));
2413 }
2414 
2415 /**
2416  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2417  * @rq: Pointer to request to be inserted.
2418  * @flags: BLK_MQ_INSERT_*
2419  *
2420  * Should only be used carefully, when the caller knows we want to
2421  * bypass a potential IO scheduler on the target device.
2422  */
2423 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2424 {
2425 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2426 
2427 	spin_lock(&hctx->lock);
2428 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2429 		list_add(&rq->queuelist, &hctx->dispatch);
2430 	else
2431 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2432 	spin_unlock(&hctx->lock);
2433 }
2434 
2435 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2436 		struct blk_mq_ctx *ctx, struct list_head *list,
2437 		bool run_queue_async)
2438 {
2439 	struct request *rq;
2440 	enum hctx_type type = hctx->type;
2441 
2442 	/*
2443 	 * Try to issue requests directly if the hw queue isn't busy to save an
2444 	 * extra enqueue & dequeue to the sw queue.
2445 	 */
2446 	if (!hctx->dispatch_busy && !run_queue_async) {
2447 		blk_mq_run_dispatch_ops(hctx->queue,
2448 			blk_mq_try_issue_list_directly(hctx, list));
2449 		if (list_empty(list))
2450 			goto out;
2451 	}
2452 
2453 	/*
2454 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2455 	 * offline now
2456 	 */
2457 	list_for_each_entry(rq, list, queuelist) {
2458 		BUG_ON(rq->mq_ctx != ctx);
2459 		trace_block_rq_insert(rq);
2460 	}
2461 
2462 	spin_lock(&ctx->lock);
2463 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2464 	blk_mq_hctx_mark_pending(hctx, ctx);
2465 	spin_unlock(&ctx->lock);
2466 out:
2467 	blk_mq_run_hw_queue(hctx, run_queue_async);
2468 }
2469 
2470 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2471 {
2472 	struct request_queue *q = rq->q;
2473 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2474 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2475 
2476 	if (blk_rq_is_passthrough(rq)) {
2477 		/*
2478 		 * Passthrough request have to be added to hctx->dispatch
2479 		 * directly.  The device may be in a situation where it can't
2480 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2481 		 * them, which gets them added to hctx->dispatch.
2482 		 *
2483 		 * If a passthrough request is required to unblock the queues,
2484 		 * and it is added to the scheduler queue, there is no chance to
2485 		 * dispatch it given we prioritize requests in hctx->dispatch.
2486 		 */
2487 		blk_mq_request_bypass_insert(rq, flags);
2488 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2489 		/*
2490 		 * Firstly normal IO request is inserted to scheduler queue or
2491 		 * sw queue, meantime we add flush request to dispatch queue(
2492 		 * hctx->dispatch) directly and there is at most one in-flight
2493 		 * flush request for each hw queue, so it doesn't matter to add
2494 		 * flush request to tail or front of the dispatch queue.
2495 		 *
2496 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2497 		 * command, and queueing it will fail when there is any
2498 		 * in-flight normal IO request(NCQ command). When adding flush
2499 		 * rq to the front of hctx->dispatch, it is easier to introduce
2500 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2501 		 * compared with adding to the tail of dispatch queue, then
2502 		 * chance of flush merge is increased, and less flush requests
2503 		 * will be issued to controller. It is observed that ~10% time
2504 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2505 		 * drive when adding flush rq to the front of hctx->dispatch.
2506 		 *
2507 		 * Simply queue flush rq to the front of hctx->dispatch so that
2508 		 * intensive flush workloads can benefit in case of NCQ HW.
2509 		 */
2510 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2511 	} else if (q->elevator) {
2512 		LIST_HEAD(list);
2513 
2514 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2515 
2516 		list_add(&rq->queuelist, &list);
2517 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2518 	} else {
2519 		trace_block_rq_insert(rq);
2520 
2521 		spin_lock(&ctx->lock);
2522 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2523 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2524 		else
2525 			list_add_tail(&rq->queuelist,
2526 				      &ctx->rq_lists[hctx->type]);
2527 		blk_mq_hctx_mark_pending(hctx, ctx);
2528 		spin_unlock(&ctx->lock);
2529 	}
2530 }
2531 
2532 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2533 		unsigned int nr_segs)
2534 {
2535 	int err;
2536 
2537 	if (bio->bi_opf & REQ_RAHEAD)
2538 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2539 
2540 	rq->__sector = bio->bi_iter.bi_sector;
2541 	blk_rq_bio_prep(rq, bio, nr_segs);
2542 
2543 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2544 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2545 	WARN_ON_ONCE(err);
2546 
2547 	blk_account_io_start(rq);
2548 }
2549 
2550 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2551 					    struct request *rq, bool last)
2552 {
2553 	struct request_queue *q = rq->q;
2554 	struct blk_mq_queue_data bd = {
2555 		.rq = rq,
2556 		.last = last,
2557 	};
2558 	blk_status_t ret;
2559 
2560 	/*
2561 	 * For OK queue, we are done. For error, caller may kill it.
2562 	 * Any other error (busy), just add it to our list as we
2563 	 * previously would have done.
2564 	 */
2565 	ret = q->mq_ops->queue_rq(hctx, &bd);
2566 	switch (ret) {
2567 	case BLK_STS_OK:
2568 		blk_mq_update_dispatch_busy(hctx, false);
2569 		break;
2570 	case BLK_STS_RESOURCE:
2571 	case BLK_STS_DEV_RESOURCE:
2572 		blk_mq_update_dispatch_busy(hctx, true);
2573 		__blk_mq_requeue_request(rq);
2574 		break;
2575 	default:
2576 		blk_mq_update_dispatch_busy(hctx, false);
2577 		break;
2578 	}
2579 
2580 	return ret;
2581 }
2582 
2583 static bool blk_mq_get_budget_and_tag(struct request *rq)
2584 {
2585 	int budget_token;
2586 
2587 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2588 	if (budget_token < 0)
2589 		return false;
2590 	blk_mq_set_rq_budget_token(rq, budget_token);
2591 	if (!blk_mq_get_driver_tag(rq)) {
2592 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2593 		return false;
2594 	}
2595 	return true;
2596 }
2597 
2598 /**
2599  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2600  * @hctx: Pointer of the associated hardware queue.
2601  * @rq: Pointer to request to be sent.
2602  *
2603  * If the device has enough resources to accept a new request now, send the
2604  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2605  * we can try send it another time in the future. Requests inserted at this
2606  * queue have higher priority.
2607  */
2608 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2609 		struct request *rq)
2610 {
2611 	blk_status_t ret;
2612 
2613 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2614 		blk_mq_insert_request(rq, 0);
2615 		return;
2616 	}
2617 
2618 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2619 		blk_mq_insert_request(rq, 0);
2620 		blk_mq_run_hw_queue(hctx, false);
2621 		return;
2622 	}
2623 
2624 	ret = __blk_mq_issue_directly(hctx, rq, true);
2625 	switch (ret) {
2626 	case BLK_STS_OK:
2627 		break;
2628 	case BLK_STS_RESOURCE:
2629 	case BLK_STS_DEV_RESOURCE:
2630 		blk_mq_request_bypass_insert(rq, 0);
2631 		blk_mq_run_hw_queue(hctx, false);
2632 		break;
2633 	default:
2634 		blk_mq_end_request(rq, ret);
2635 		break;
2636 	}
2637 }
2638 
2639 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2640 {
2641 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2642 
2643 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2644 		blk_mq_insert_request(rq, 0);
2645 		return BLK_STS_OK;
2646 	}
2647 
2648 	if (!blk_mq_get_budget_and_tag(rq))
2649 		return BLK_STS_RESOURCE;
2650 	return __blk_mq_issue_directly(hctx, rq, last);
2651 }
2652 
2653 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2654 {
2655 	struct blk_mq_hw_ctx *hctx = NULL;
2656 	struct request *rq;
2657 	int queued = 0;
2658 	blk_status_t ret = BLK_STS_OK;
2659 
2660 	while ((rq = rq_list_pop(&plug->mq_list))) {
2661 		bool last = rq_list_empty(plug->mq_list);
2662 
2663 		if (hctx != rq->mq_hctx) {
2664 			if (hctx) {
2665 				blk_mq_commit_rqs(hctx, queued, false);
2666 				queued = 0;
2667 			}
2668 			hctx = rq->mq_hctx;
2669 		}
2670 
2671 		ret = blk_mq_request_issue_directly(rq, last);
2672 		switch (ret) {
2673 		case BLK_STS_OK:
2674 			queued++;
2675 			break;
2676 		case BLK_STS_RESOURCE:
2677 		case BLK_STS_DEV_RESOURCE:
2678 			blk_mq_request_bypass_insert(rq, 0);
2679 			blk_mq_run_hw_queue(hctx, false);
2680 			goto out;
2681 		default:
2682 			blk_mq_end_request(rq, ret);
2683 			break;
2684 		}
2685 	}
2686 
2687 out:
2688 	if (ret != BLK_STS_OK)
2689 		blk_mq_commit_rqs(hctx, queued, false);
2690 }
2691 
2692 static void __blk_mq_flush_plug_list(struct request_queue *q,
2693 				     struct blk_plug *plug)
2694 {
2695 	if (blk_queue_quiesced(q))
2696 		return;
2697 	q->mq_ops->queue_rqs(&plug->mq_list);
2698 }
2699 
2700 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2701 {
2702 	struct blk_mq_hw_ctx *this_hctx = NULL;
2703 	struct blk_mq_ctx *this_ctx = NULL;
2704 	struct request *requeue_list = NULL;
2705 	struct request **requeue_lastp = &requeue_list;
2706 	unsigned int depth = 0;
2707 	bool is_passthrough = false;
2708 	LIST_HEAD(list);
2709 
2710 	do {
2711 		struct request *rq = rq_list_pop(&plug->mq_list);
2712 
2713 		if (!this_hctx) {
2714 			this_hctx = rq->mq_hctx;
2715 			this_ctx = rq->mq_ctx;
2716 			is_passthrough = blk_rq_is_passthrough(rq);
2717 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2718 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2719 			rq_list_add_tail(&requeue_lastp, rq);
2720 			continue;
2721 		}
2722 		list_add(&rq->queuelist, &list);
2723 		depth++;
2724 	} while (!rq_list_empty(plug->mq_list));
2725 
2726 	plug->mq_list = requeue_list;
2727 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2728 
2729 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2730 	/* passthrough requests should never be issued to the I/O scheduler */
2731 	if (is_passthrough) {
2732 		spin_lock(&this_hctx->lock);
2733 		list_splice_tail_init(&list, &this_hctx->dispatch);
2734 		spin_unlock(&this_hctx->lock);
2735 		blk_mq_run_hw_queue(this_hctx, from_sched);
2736 	} else if (this_hctx->queue->elevator) {
2737 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2738 				&list, 0);
2739 		blk_mq_run_hw_queue(this_hctx, from_sched);
2740 	} else {
2741 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2742 	}
2743 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2744 }
2745 
2746 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2747 {
2748 	struct request *rq;
2749 
2750 	if (rq_list_empty(plug->mq_list))
2751 		return;
2752 	plug->rq_count = 0;
2753 
2754 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2755 		struct request_queue *q;
2756 
2757 		rq = rq_list_peek(&plug->mq_list);
2758 		q = rq->q;
2759 
2760 		/*
2761 		 * Peek first request and see if we have a ->queue_rqs() hook.
2762 		 * If we do, we can dispatch the whole plug list in one go. We
2763 		 * already know at this point that all requests belong to the
2764 		 * same queue, caller must ensure that's the case.
2765 		 *
2766 		 * Since we pass off the full list to the driver at this point,
2767 		 * we do not increment the active request count for the queue.
2768 		 * Bypass shared tags for now because of that.
2769 		 */
2770 		if (q->mq_ops->queue_rqs &&
2771 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2772 			blk_mq_run_dispatch_ops(q,
2773 				__blk_mq_flush_plug_list(q, plug));
2774 			if (rq_list_empty(plug->mq_list))
2775 				return;
2776 		}
2777 
2778 		blk_mq_run_dispatch_ops(q,
2779 				blk_mq_plug_issue_direct(plug));
2780 		if (rq_list_empty(plug->mq_list))
2781 			return;
2782 	}
2783 
2784 	do {
2785 		blk_mq_dispatch_plug_list(plug, from_schedule);
2786 	} while (!rq_list_empty(plug->mq_list));
2787 }
2788 
2789 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2790 		struct list_head *list)
2791 {
2792 	int queued = 0;
2793 	blk_status_t ret = BLK_STS_OK;
2794 
2795 	while (!list_empty(list)) {
2796 		struct request *rq = list_first_entry(list, struct request,
2797 				queuelist);
2798 
2799 		list_del_init(&rq->queuelist);
2800 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2801 		switch (ret) {
2802 		case BLK_STS_OK:
2803 			queued++;
2804 			break;
2805 		case BLK_STS_RESOURCE:
2806 		case BLK_STS_DEV_RESOURCE:
2807 			blk_mq_request_bypass_insert(rq, 0);
2808 			if (list_empty(list))
2809 				blk_mq_run_hw_queue(hctx, false);
2810 			goto out;
2811 		default:
2812 			blk_mq_end_request(rq, ret);
2813 			break;
2814 		}
2815 	}
2816 
2817 out:
2818 	if (ret != BLK_STS_OK)
2819 		blk_mq_commit_rqs(hctx, queued, false);
2820 }
2821 
2822 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2823 				     struct bio *bio, unsigned int nr_segs)
2824 {
2825 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2826 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2827 			return true;
2828 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2829 			return true;
2830 	}
2831 	return false;
2832 }
2833 
2834 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2835 					       struct blk_plug *plug,
2836 					       struct bio *bio,
2837 					       unsigned int nsegs)
2838 {
2839 	struct blk_mq_alloc_data data = {
2840 		.q		= q,
2841 		.nr_tags	= 1,
2842 		.cmd_flags	= bio->bi_opf,
2843 	};
2844 	struct request *rq;
2845 
2846 	if (unlikely(bio_queue_enter(bio)))
2847 		return NULL;
2848 
2849 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2850 		goto queue_exit;
2851 
2852 	rq_qos_throttle(q, bio);
2853 
2854 	if (plug) {
2855 		data.nr_tags = plug->nr_ios;
2856 		plug->nr_ios = 1;
2857 		data.cached_rq = &plug->cached_rq;
2858 	}
2859 
2860 	rq = __blk_mq_alloc_requests(&data);
2861 	if (rq)
2862 		return rq;
2863 	rq_qos_cleanup(q, bio);
2864 	if (bio->bi_opf & REQ_NOWAIT)
2865 		bio_wouldblock_error(bio);
2866 queue_exit:
2867 	blk_queue_exit(q);
2868 	return NULL;
2869 }
2870 
2871 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2872 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2873 {
2874 	struct request *rq;
2875 	enum hctx_type type, hctx_type;
2876 
2877 	if (!plug)
2878 		return NULL;
2879 	rq = rq_list_peek(&plug->cached_rq);
2880 	if (!rq || rq->q != q)
2881 		return NULL;
2882 
2883 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2884 		*bio = NULL;
2885 		return NULL;
2886 	}
2887 
2888 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2889 	hctx_type = rq->mq_hctx->type;
2890 	if (type != hctx_type &&
2891 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2892 		return NULL;
2893 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2894 		return NULL;
2895 
2896 	/*
2897 	 * If any qos ->throttle() end up blocking, we will have flushed the
2898 	 * plug and hence killed the cached_rq list as well. Pop this entry
2899 	 * before we throttle.
2900 	 */
2901 	plug->cached_rq = rq_list_next(rq);
2902 	rq_qos_throttle(q, *bio);
2903 
2904 	rq->cmd_flags = (*bio)->bi_opf;
2905 	INIT_LIST_HEAD(&rq->queuelist);
2906 	return rq;
2907 }
2908 
2909 static void bio_set_ioprio(struct bio *bio)
2910 {
2911 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2912 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2913 		bio->bi_ioprio = get_current_ioprio();
2914 	blkcg_set_ioprio(bio);
2915 }
2916 
2917 /**
2918  * blk_mq_submit_bio - Create and send a request to block device.
2919  * @bio: Bio pointer.
2920  *
2921  * Builds up a request structure from @q and @bio and send to the device. The
2922  * request may not be queued directly to hardware if:
2923  * * This request can be merged with another one
2924  * * We want to place request at plug queue for possible future merging
2925  * * There is an IO scheduler active at this queue
2926  *
2927  * It will not queue the request if there is an error with the bio, or at the
2928  * request creation.
2929  */
2930 void blk_mq_submit_bio(struct bio *bio)
2931 {
2932 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2933 	struct blk_plug *plug = blk_mq_plug(bio);
2934 	const int is_sync = op_is_sync(bio->bi_opf);
2935 	struct blk_mq_hw_ctx *hctx;
2936 	struct request *rq;
2937 	unsigned int nr_segs = 1;
2938 	blk_status_t ret;
2939 
2940 	bio = blk_queue_bounce(bio, q);
2941 	if (bio_may_exceed_limits(bio, &q->limits)) {
2942 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2943 		if (!bio)
2944 			return;
2945 	}
2946 
2947 	if (!bio_integrity_prep(bio))
2948 		return;
2949 
2950 	bio_set_ioprio(bio);
2951 
2952 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2953 	if (!rq) {
2954 		if (!bio)
2955 			return;
2956 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2957 		if (unlikely(!rq))
2958 			return;
2959 	}
2960 
2961 	trace_block_getrq(bio);
2962 
2963 	rq_qos_track(q, rq, bio);
2964 
2965 	blk_mq_bio_to_request(rq, bio, nr_segs);
2966 
2967 	ret = blk_crypto_rq_get_keyslot(rq);
2968 	if (ret != BLK_STS_OK) {
2969 		bio->bi_status = ret;
2970 		bio_endio(bio);
2971 		blk_mq_free_request(rq);
2972 		return;
2973 	}
2974 
2975 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2976 		return;
2977 
2978 	if (plug) {
2979 		blk_add_rq_to_plug(plug, rq);
2980 		return;
2981 	}
2982 
2983 	hctx = rq->mq_hctx;
2984 	if ((rq->rq_flags & RQF_USE_SCHED) ||
2985 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2986 		blk_mq_insert_request(rq, 0);
2987 		blk_mq_run_hw_queue(hctx, true);
2988 	} else {
2989 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2990 	}
2991 }
2992 
2993 #ifdef CONFIG_BLK_MQ_STACKING
2994 /**
2995  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2996  * @rq: the request being queued
2997  */
2998 blk_status_t blk_insert_cloned_request(struct request *rq)
2999 {
3000 	struct request_queue *q = rq->q;
3001 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3002 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3003 	blk_status_t ret;
3004 
3005 	if (blk_rq_sectors(rq) > max_sectors) {
3006 		/*
3007 		 * SCSI device does not have a good way to return if
3008 		 * Write Same/Zero is actually supported. If a device rejects
3009 		 * a non-read/write command (discard, write same,etc.) the
3010 		 * low-level device driver will set the relevant queue limit to
3011 		 * 0 to prevent blk-lib from issuing more of the offending
3012 		 * operations. Commands queued prior to the queue limit being
3013 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3014 		 * errors being propagated to upper layers.
3015 		 */
3016 		if (max_sectors == 0)
3017 			return BLK_STS_NOTSUPP;
3018 
3019 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3020 			__func__, blk_rq_sectors(rq), max_sectors);
3021 		return BLK_STS_IOERR;
3022 	}
3023 
3024 	/*
3025 	 * The queue settings related to segment counting may differ from the
3026 	 * original queue.
3027 	 */
3028 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3029 	if (rq->nr_phys_segments > max_segments) {
3030 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3031 			__func__, rq->nr_phys_segments, max_segments);
3032 		return BLK_STS_IOERR;
3033 	}
3034 
3035 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3036 		return BLK_STS_IOERR;
3037 
3038 	ret = blk_crypto_rq_get_keyslot(rq);
3039 	if (ret != BLK_STS_OK)
3040 		return ret;
3041 
3042 	blk_account_io_start(rq);
3043 
3044 	/*
3045 	 * Since we have a scheduler attached on the top device,
3046 	 * bypass a potential scheduler on the bottom device for
3047 	 * insert.
3048 	 */
3049 	blk_mq_run_dispatch_ops(q,
3050 			ret = blk_mq_request_issue_directly(rq, true));
3051 	if (ret)
3052 		blk_account_io_done(rq, ktime_get_ns());
3053 	return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3056 
3057 /**
3058  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3059  * @rq: the clone request to be cleaned up
3060  *
3061  * Description:
3062  *     Free all bios in @rq for a cloned request.
3063  */
3064 void blk_rq_unprep_clone(struct request *rq)
3065 {
3066 	struct bio *bio;
3067 
3068 	while ((bio = rq->bio) != NULL) {
3069 		rq->bio = bio->bi_next;
3070 
3071 		bio_put(bio);
3072 	}
3073 }
3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3075 
3076 /**
3077  * blk_rq_prep_clone - Helper function to setup clone request
3078  * @rq: the request to be setup
3079  * @rq_src: original request to be cloned
3080  * @bs: bio_set that bios for clone are allocated from
3081  * @gfp_mask: memory allocation mask for bio
3082  * @bio_ctr: setup function to be called for each clone bio.
3083  *           Returns %0 for success, non %0 for failure.
3084  * @data: private data to be passed to @bio_ctr
3085  *
3086  * Description:
3087  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3088  *     Also, pages which the original bios are pointing to are not copied
3089  *     and the cloned bios just point same pages.
3090  *     So cloned bios must be completed before original bios, which means
3091  *     the caller must complete @rq before @rq_src.
3092  */
3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3094 		      struct bio_set *bs, gfp_t gfp_mask,
3095 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3096 		      void *data)
3097 {
3098 	struct bio *bio, *bio_src;
3099 
3100 	if (!bs)
3101 		bs = &fs_bio_set;
3102 
3103 	__rq_for_each_bio(bio_src, rq_src) {
3104 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3105 				      bs);
3106 		if (!bio)
3107 			goto free_and_out;
3108 
3109 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3110 			goto free_and_out;
3111 
3112 		if (rq->bio) {
3113 			rq->biotail->bi_next = bio;
3114 			rq->biotail = bio;
3115 		} else {
3116 			rq->bio = rq->biotail = bio;
3117 		}
3118 		bio = NULL;
3119 	}
3120 
3121 	/* Copy attributes of the original request to the clone request. */
3122 	rq->__sector = blk_rq_pos(rq_src);
3123 	rq->__data_len = blk_rq_bytes(rq_src);
3124 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3125 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3126 		rq->special_vec = rq_src->special_vec;
3127 	}
3128 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3129 	rq->ioprio = rq_src->ioprio;
3130 
3131 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3132 		goto free_and_out;
3133 
3134 	return 0;
3135 
3136 free_and_out:
3137 	if (bio)
3138 		bio_put(bio);
3139 	blk_rq_unprep_clone(rq);
3140 
3141 	return -ENOMEM;
3142 }
3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3144 #endif /* CONFIG_BLK_MQ_STACKING */
3145 
3146 /*
3147  * Steal bios from a request and add them to a bio list.
3148  * The request must not have been partially completed before.
3149  */
3150 void blk_steal_bios(struct bio_list *list, struct request *rq)
3151 {
3152 	if (rq->bio) {
3153 		if (list->tail)
3154 			list->tail->bi_next = rq->bio;
3155 		else
3156 			list->head = rq->bio;
3157 		list->tail = rq->biotail;
3158 
3159 		rq->bio = NULL;
3160 		rq->biotail = NULL;
3161 	}
3162 
3163 	rq->__data_len = 0;
3164 }
3165 EXPORT_SYMBOL_GPL(blk_steal_bios);
3166 
3167 static size_t order_to_size(unsigned int order)
3168 {
3169 	return (size_t)PAGE_SIZE << order;
3170 }
3171 
3172 /* called before freeing request pool in @tags */
3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3174 				    struct blk_mq_tags *tags)
3175 {
3176 	struct page *page;
3177 	unsigned long flags;
3178 
3179 	/*
3180 	 * There is no need to clear mapping if driver tags is not initialized
3181 	 * or the mapping belongs to the driver tags.
3182 	 */
3183 	if (!drv_tags || drv_tags == tags)
3184 		return;
3185 
3186 	list_for_each_entry(page, &tags->page_list, lru) {
3187 		unsigned long start = (unsigned long)page_address(page);
3188 		unsigned long end = start + order_to_size(page->private);
3189 		int i;
3190 
3191 		for (i = 0; i < drv_tags->nr_tags; i++) {
3192 			struct request *rq = drv_tags->rqs[i];
3193 			unsigned long rq_addr = (unsigned long)rq;
3194 
3195 			if (rq_addr >= start && rq_addr < end) {
3196 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3197 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3198 			}
3199 		}
3200 	}
3201 
3202 	/*
3203 	 * Wait until all pending iteration is done.
3204 	 *
3205 	 * Request reference is cleared and it is guaranteed to be observed
3206 	 * after the ->lock is released.
3207 	 */
3208 	spin_lock_irqsave(&drv_tags->lock, flags);
3209 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3210 }
3211 
3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3213 		     unsigned int hctx_idx)
3214 {
3215 	struct blk_mq_tags *drv_tags;
3216 	struct page *page;
3217 
3218 	if (list_empty(&tags->page_list))
3219 		return;
3220 
3221 	if (blk_mq_is_shared_tags(set->flags))
3222 		drv_tags = set->shared_tags;
3223 	else
3224 		drv_tags = set->tags[hctx_idx];
3225 
3226 	if (tags->static_rqs && set->ops->exit_request) {
3227 		int i;
3228 
3229 		for (i = 0; i < tags->nr_tags; i++) {
3230 			struct request *rq = tags->static_rqs[i];
3231 
3232 			if (!rq)
3233 				continue;
3234 			set->ops->exit_request(set, rq, hctx_idx);
3235 			tags->static_rqs[i] = NULL;
3236 		}
3237 	}
3238 
3239 	blk_mq_clear_rq_mapping(drv_tags, tags);
3240 
3241 	while (!list_empty(&tags->page_list)) {
3242 		page = list_first_entry(&tags->page_list, struct page, lru);
3243 		list_del_init(&page->lru);
3244 		/*
3245 		 * Remove kmemleak object previously allocated in
3246 		 * blk_mq_alloc_rqs().
3247 		 */
3248 		kmemleak_free(page_address(page));
3249 		__free_pages(page, page->private);
3250 	}
3251 }
3252 
3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3254 {
3255 	kfree(tags->rqs);
3256 	tags->rqs = NULL;
3257 	kfree(tags->static_rqs);
3258 	tags->static_rqs = NULL;
3259 
3260 	blk_mq_free_tags(tags);
3261 }
3262 
3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3264 		unsigned int hctx_idx)
3265 {
3266 	int i;
3267 
3268 	for (i = 0; i < set->nr_maps; i++) {
3269 		unsigned int start = set->map[i].queue_offset;
3270 		unsigned int end = start + set->map[i].nr_queues;
3271 
3272 		if (hctx_idx >= start && hctx_idx < end)
3273 			break;
3274 	}
3275 
3276 	if (i >= set->nr_maps)
3277 		i = HCTX_TYPE_DEFAULT;
3278 
3279 	return i;
3280 }
3281 
3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3283 		unsigned int hctx_idx)
3284 {
3285 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3286 
3287 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3288 }
3289 
3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3291 					       unsigned int hctx_idx,
3292 					       unsigned int nr_tags,
3293 					       unsigned int reserved_tags)
3294 {
3295 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3296 	struct blk_mq_tags *tags;
3297 
3298 	if (node == NUMA_NO_NODE)
3299 		node = set->numa_node;
3300 
3301 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3302 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3303 	if (!tags)
3304 		return NULL;
3305 
3306 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3307 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3308 				 node);
3309 	if (!tags->rqs)
3310 		goto err_free_tags;
3311 
3312 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3313 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3314 					node);
3315 	if (!tags->static_rqs)
3316 		goto err_free_rqs;
3317 
3318 	return tags;
3319 
3320 err_free_rqs:
3321 	kfree(tags->rqs);
3322 err_free_tags:
3323 	blk_mq_free_tags(tags);
3324 	return NULL;
3325 }
3326 
3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3328 			       unsigned int hctx_idx, int node)
3329 {
3330 	int ret;
3331 
3332 	if (set->ops->init_request) {
3333 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3334 		if (ret)
3335 			return ret;
3336 	}
3337 
3338 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3339 	return 0;
3340 }
3341 
3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3343 			    struct blk_mq_tags *tags,
3344 			    unsigned int hctx_idx, unsigned int depth)
3345 {
3346 	unsigned int i, j, entries_per_page, max_order = 4;
3347 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3348 	size_t rq_size, left;
3349 
3350 	if (node == NUMA_NO_NODE)
3351 		node = set->numa_node;
3352 
3353 	INIT_LIST_HEAD(&tags->page_list);
3354 
3355 	/*
3356 	 * rq_size is the size of the request plus driver payload, rounded
3357 	 * to the cacheline size
3358 	 */
3359 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3360 				cache_line_size());
3361 	left = rq_size * depth;
3362 
3363 	for (i = 0; i < depth; ) {
3364 		int this_order = max_order;
3365 		struct page *page;
3366 		int to_do;
3367 		void *p;
3368 
3369 		while (this_order && left < order_to_size(this_order - 1))
3370 			this_order--;
3371 
3372 		do {
3373 			page = alloc_pages_node(node,
3374 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3375 				this_order);
3376 			if (page)
3377 				break;
3378 			if (!this_order--)
3379 				break;
3380 			if (order_to_size(this_order) < rq_size)
3381 				break;
3382 		} while (1);
3383 
3384 		if (!page)
3385 			goto fail;
3386 
3387 		page->private = this_order;
3388 		list_add_tail(&page->lru, &tags->page_list);
3389 
3390 		p = page_address(page);
3391 		/*
3392 		 * Allow kmemleak to scan these pages as they contain pointers
3393 		 * to additional allocations like via ops->init_request().
3394 		 */
3395 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3396 		entries_per_page = order_to_size(this_order) / rq_size;
3397 		to_do = min(entries_per_page, depth - i);
3398 		left -= to_do * rq_size;
3399 		for (j = 0; j < to_do; j++) {
3400 			struct request *rq = p;
3401 
3402 			tags->static_rqs[i] = rq;
3403 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3404 				tags->static_rqs[i] = NULL;
3405 				goto fail;
3406 			}
3407 
3408 			p += rq_size;
3409 			i++;
3410 		}
3411 	}
3412 	return 0;
3413 
3414 fail:
3415 	blk_mq_free_rqs(set, tags, hctx_idx);
3416 	return -ENOMEM;
3417 }
3418 
3419 struct rq_iter_data {
3420 	struct blk_mq_hw_ctx *hctx;
3421 	bool has_rq;
3422 };
3423 
3424 static bool blk_mq_has_request(struct request *rq, void *data)
3425 {
3426 	struct rq_iter_data *iter_data = data;
3427 
3428 	if (rq->mq_hctx != iter_data->hctx)
3429 		return true;
3430 	iter_data->has_rq = true;
3431 	return false;
3432 }
3433 
3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3435 {
3436 	struct blk_mq_tags *tags = hctx->sched_tags ?
3437 			hctx->sched_tags : hctx->tags;
3438 	struct rq_iter_data data = {
3439 		.hctx	= hctx,
3440 	};
3441 
3442 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3443 	return data.has_rq;
3444 }
3445 
3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3447 		struct blk_mq_hw_ctx *hctx)
3448 {
3449 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3450 		return false;
3451 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3452 		return false;
3453 	return true;
3454 }
3455 
3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3457 {
3458 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3459 			struct blk_mq_hw_ctx, cpuhp_online);
3460 
3461 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3462 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3463 		return 0;
3464 
3465 	/*
3466 	 * Prevent new request from being allocated on the current hctx.
3467 	 *
3468 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3469 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3470 	 * seen once we return from the tag allocator.
3471 	 */
3472 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3473 	smp_mb__after_atomic();
3474 
3475 	/*
3476 	 * Try to grab a reference to the queue and wait for any outstanding
3477 	 * requests.  If we could not grab a reference the queue has been
3478 	 * frozen and there are no requests.
3479 	 */
3480 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3481 		while (blk_mq_hctx_has_requests(hctx))
3482 			msleep(5);
3483 		percpu_ref_put(&hctx->queue->q_usage_counter);
3484 	}
3485 
3486 	return 0;
3487 }
3488 
3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3490 {
3491 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3492 			struct blk_mq_hw_ctx, cpuhp_online);
3493 
3494 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3495 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3496 	return 0;
3497 }
3498 
3499 /*
3500  * 'cpu' is going away. splice any existing rq_list entries from this
3501  * software queue to the hw queue dispatch list, and ensure that it
3502  * gets run.
3503  */
3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3505 {
3506 	struct blk_mq_hw_ctx *hctx;
3507 	struct blk_mq_ctx *ctx;
3508 	LIST_HEAD(tmp);
3509 	enum hctx_type type;
3510 
3511 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3512 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3513 		return 0;
3514 
3515 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3516 	type = hctx->type;
3517 
3518 	spin_lock(&ctx->lock);
3519 	if (!list_empty(&ctx->rq_lists[type])) {
3520 		list_splice_init(&ctx->rq_lists[type], &tmp);
3521 		blk_mq_hctx_clear_pending(hctx, ctx);
3522 	}
3523 	spin_unlock(&ctx->lock);
3524 
3525 	if (list_empty(&tmp))
3526 		return 0;
3527 
3528 	spin_lock(&hctx->lock);
3529 	list_splice_tail_init(&tmp, &hctx->dispatch);
3530 	spin_unlock(&hctx->lock);
3531 
3532 	blk_mq_run_hw_queue(hctx, true);
3533 	return 0;
3534 }
3535 
3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3537 {
3538 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3539 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3540 						    &hctx->cpuhp_online);
3541 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3542 					    &hctx->cpuhp_dead);
3543 }
3544 
3545 /*
3546  * Before freeing hw queue, clearing the flush request reference in
3547  * tags->rqs[] for avoiding potential UAF.
3548  */
3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3550 		unsigned int queue_depth, struct request *flush_rq)
3551 {
3552 	int i;
3553 	unsigned long flags;
3554 
3555 	/* The hw queue may not be mapped yet */
3556 	if (!tags)
3557 		return;
3558 
3559 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3560 
3561 	for (i = 0; i < queue_depth; i++)
3562 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3563 
3564 	/*
3565 	 * Wait until all pending iteration is done.
3566 	 *
3567 	 * Request reference is cleared and it is guaranteed to be observed
3568 	 * after the ->lock is released.
3569 	 */
3570 	spin_lock_irqsave(&tags->lock, flags);
3571 	spin_unlock_irqrestore(&tags->lock, flags);
3572 }
3573 
3574 /* hctx->ctxs will be freed in queue's release handler */
3575 static void blk_mq_exit_hctx(struct request_queue *q,
3576 		struct blk_mq_tag_set *set,
3577 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3578 {
3579 	struct request *flush_rq = hctx->fq->flush_rq;
3580 
3581 	if (blk_mq_hw_queue_mapped(hctx))
3582 		blk_mq_tag_idle(hctx);
3583 
3584 	if (blk_queue_init_done(q))
3585 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3586 				set->queue_depth, flush_rq);
3587 	if (set->ops->exit_request)
3588 		set->ops->exit_request(set, flush_rq, hctx_idx);
3589 
3590 	if (set->ops->exit_hctx)
3591 		set->ops->exit_hctx(hctx, hctx_idx);
3592 
3593 	blk_mq_remove_cpuhp(hctx);
3594 
3595 	xa_erase(&q->hctx_table, hctx_idx);
3596 
3597 	spin_lock(&q->unused_hctx_lock);
3598 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3599 	spin_unlock(&q->unused_hctx_lock);
3600 }
3601 
3602 static void blk_mq_exit_hw_queues(struct request_queue *q,
3603 		struct blk_mq_tag_set *set, int nr_queue)
3604 {
3605 	struct blk_mq_hw_ctx *hctx;
3606 	unsigned long i;
3607 
3608 	queue_for_each_hw_ctx(q, hctx, i) {
3609 		if (i == nr_queue)
3610 			break;
3611 		blk_mq_exit_hctx(q, set, hctx, i);
3612 	}
3613 }
3614 
3615 static int blk_mq_init_hctx(struct request_queue *q,
3616 		struct blk_mq_tag_set *set,
3617 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3618 {
3619 	hctx->queue_num = hctx_idx;
3620 
3621 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3622 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3623 				&hctx->cpuhp_online);
3624 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3625 
3626 	hctx->tags = set->tags[hctx_idx];
3627 
3628 	if (set->ops->init_hctx &&
3629 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3630 		goto unregister_cpu_notifier;
3631 
3632 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3633 				hctx->numa_node))
3634 		goto exit_hctx;
3635 
3636 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3637 		goto exit_flush_rq;
3638 
3639 	return 0;
3640 
3641  exit_flush_rq:
3642 	if (set->ops->exit_request)
3643 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3644  exit_hctx:
3645 	if (set->ops->exit_hctx)
3646 		set->ops->exit_hctx(hctx, hctx_idx);
3647  unregister_cpu_notifier:
3648 	blk_mq_remove_cpuhp(hctx);
3649 	return -1;
3650 }
3651 
3652 static struct blk_mq_hw_ctx *
3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3654 		int node)
3655 {
3656 	struct blk_mq_hw_ctx *hctx;
3657 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3658 
3659 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3660 	if (!hctx)
3661 		goto fail_alloc_hctx;
3662 
3663 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3664 		goto free_hctx;
3665 
3666 	atomic_set(&hctx->nr_active, 0);
3667 	if (node == NUMA_NO_NODE)
3668 		node = set->numa_node;
3669 	hctx->numa_node = node;
3670 
3671 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3672 	spin_lock_init(&hctx->lock);
3673 	INIT_LIST_HEAD(&hctx->dispatch);
3674 	hctx->queue = q;
3675 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3676 
3677 	INIT_LIST_HEAD(&hctx->hctx_list);
3678 
3679 	/*
3680 	 * Allocate space for all possible cpus to avoid allocation at
3681 	 * runtime
3682 	 */
3683 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3684 			gfp, node);
3685 	if (!hctx->ctxs)
3686 		goto free_cpumask;
3687 
3688 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3689 				gfp, node, false, false))
3690 		goto free_ctxs;
3691 	hctx->nr_ctx = 0;
3692 
3693 	spin_lock_init(&hctx->dispatch_wait_lock);
3694 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3695 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3696 
3697 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3698 	if (!hctx->fq)
3699 		goto free_bitmap;
3700 
3701 	blk_mq_hctx_kobj_init(hctx);
3702 
3703 	return hctx;
3704 
3705  free_bitmap:
3706 	sbitmap_free(&hctx->ctx_map);
3707  free_ctxs:
3708 	kfree(hctx->ctxs);
3709  free_cpumask:
3710 	free_cpumask_var(hctx->cpumask);
3711  free_hctx:
3712 	kfree(hctx);
3713  fail_alloc_hctx:
3714 	return NULL;
3715 }
3716 
3717 static void blk_mq_init_cpu_queues(struct request_queue *q,
3718 				   unsigned int nr_hw_queues)
3719 {
3720 	struct blk_mq_tag_set *set = q->tag_set;
3721 	unsigned int i, j;
3722 
3723 	for_each_possible_cpu(i) {
3724 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3725 		struct blk_mq_hw_ctx *hctx;
3726 		int k;
3727 
3728 		__ctx->cpu = i;
3729 		spin_lock_init(&__ctx->lock);
3730 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3731 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3732 
3733 		__ctx->queue = q;
3734 
3735 		/*
3736 		 * Set local node, IFF we have more than one hw queue. If
3737 		 * not, we remain on the home node of the device
3738 		 */
3739 		for (j = 0; j < set->nr_maps; j++) {
3740 			hctx = blk_mq_map_queue_type(q, j, i);
3741 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3742 				hctx->numa_node = cpu_to_node(i);
3743 		}
3744 	}
3745 }
3746 
3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3748 					     unsigned int hctx_idx,
3749 					     unsigned int depth)
3750 {
3751 	struct blk_mq_tags *tags;
3752 	int ret;
3753 
3754 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3755 	if (!tags)
3756 		return NULL;
3757 
3758 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3759 	if (ret) {
3760 		blk_mq_free_rq_map(tags);
3761 		return NULL;
3762 	}
3763 
3764 	return tags;
3765 }
3766 
3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3768 				       int hctx_idx)
3769 {
3770 	if (blk_mq_is_shared_tags(set->flags)) {
3771 		set->tags[hctx_idx] = set->shared_tags;
3772 
3773 		return true;
3774 	}
3775 
3776 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3777 						       set->queue_depth);
3778 
3779 	return set->tags[hctx_idx];
3780 }
3781 
3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3783 			     struct blk_mq_tags *tags,
3784 			     unsigned int hctx_idx)
3785 {
3786 	if (tags) {
3787 		blk_mq_free_rqs(set, tags, hctx_idx);
3788 		blk_mq_free_rq_map(tags);
3789 	}
3790 }
3791 
3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3793 				      unsigned int hctx_idx)
3794 {
3795 	if (!blk_mq_is_shared_tags(set->flags))
3796 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3797 
3798 	set->tags[hctx_idx] = NULL;
3799 }
3800 
3801 static void blk_mq_map_swqueue(struct request_queue *q)
3802 {
3803 	unsigned int j, hctx_idx;
3804 	unsigned long i;
3805 	struct blk_mq_hw_ctx *hctx;
3806 	struct blk_mq_ctx *ctx;
3807 	struct blk_mq_tag_set *set = q->tag_set;
3808 
3809 	queue_for_each_hw_ctx(q, hctx, i) {
3810 		cpumask_clear(hctx->cpumask);
3811 		hctx->nr_ctx = 0;
3812 		hctx->dispatch_from = NULL;
3813 	}
3814 
3815 	/*
3816 	 * Map software to hardware queues.
3817 	 *
3818 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3819 	 */
3820 	for_each_possible_cpu(i) {
3821 
3822 		ctx = per_cpu_ptr(q->queue_ctx, i);
3823 		for (j = 0; j < set->nr_maps; j++) {
3824 			if (!set->map[j].nr_queues) {
3825 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3826 						HCTX_TYPE_DEFAULT, i);
3827 				continue;
3828 			}
3829 			hctx_idx = set->map[j].mq_map[i];
3830 			/* unmapped hw queue can be remapped after CPU topo changed */
3831 			if (!set->tags[hctx_idx] &&
3832 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3833 				/*
3834 				 * If tags initialization fail for some hctx,
3835 				 * that hctx won't be brought online.  In this
3836 				 * case, remap the current ctx to hctx[0] which
3837 				 * is guaranteed to always have tags allocated
3838 				 */
3839 				set->map[j].mq_map[i] = 0;
3840 			}
3841 
3842 			hctx = blk_mq_map_queue_type(q, j, i);
3843 			ctx->hctxs[j] = hctx;
3844 			/*
3845 			 * If the CPU is already set in the mask, then we've
3846 			 * mapped this one already. This can happen if
3847 			 * devices share queues across queue maps.
3848 			 */
3849 			if (cpumask_test_cpu(i, hctx->cpumask))
3850 				continue;
3851 
3852 			cpumask_set_cpu(i, hctx->cpumask);
3853 			hctx->type = j;
3854 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3855 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3856 
3857 			/*
3858 			 * If the nr_ctx type overflows, we have exceeded the
3859 			 * amount of sw queues we can support.
3860 			 */
3861 			BUG_ON(!hctx->nr_ctx);
3862 		}
3863 
3864 		for (; j < HCTX_MAX_TYPES; j++)
3865 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866 					HCTX_TYPE_DEFAULT, i);
3867 	}
3868 
3869 	queue_for_each_hw_ctx(q, hctx, i) {
3870 		/*
3871 		 * If no software queues are mapped to this hardware queue,
3872 		 * disable it and free the request entries.
3873 		 */
3874 		if (!hctx->nr_ctx) {
3875 			/* Never unmap queue 0.  We need it as a
3876 			 * fallback in case of a new remap fails
3877 			 * allocation
3878 			 */
3879 			if (i)
3880 				__blk_mq_free_map_and_rqs(set, i);
3881 
3882 			hctx->tags = NULL;
3883 			continue;
3884 		}
3885 
3886 		hctx->tags = set->tags[i];
3887 		WARN_ON(!hctx->tags);
3888 
3889 		/*
3890 		 * Set the map size to the number of mapped software queues.
3891 		 * This is more accurate and more efficient than looping
3892 		 * over all possibly mapped software queues.
3893 		 */
3894 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3895 
3896 		/*
3897 		 * Initialize batch roundrobin counts
3898 		 */
3899 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3900 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3901 	}
3902 }
3903 
3904 /*
3905  * Caller needs to ensure that we're either frozen/quiesced, or that
3906  * the queue isn't live yet.
3907  */
3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3909 {
3910 	struct blk_mq_hw_ctx *hctx;
3911 	unsigned long i;
3912 
3913 	queue_for_each_hw_ctx(q, hctx, i) {
3914 		if (shared) {
3915 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3916 		} else {
3917 			blk_mq_tag_idle(hctx);
3918 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3919 		}
3920 	}
3921 }
3922 
3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3924 					 bool shared)
3925 {
3926 	struct request_queue *q;
3927 
3928 	lockdep_assert_held(&set->tag_list_lock);
3929 
3930 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3931 		blk_mq_freeze_queue(q);
3932 		queue_set_hctx_shared(q, shared);
3933 		blk_mq_unfreeze_queue(q);
3934 	}
3935 }
3936 
3937 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3938 {
3939 	struct blk_mq_tag_set *set = q->tag_set;
3940 
3941 	mutex_lock(&set->tag_list_lock);
3942 	list_del(&q->tag_set_list);
3943 	if (list_is_singular(&set->tag_list)) {
3944 		/* just transitioned to unshared */
3945 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3946 		/* update existing queue */
3947 		blk_mq_update_tag_set_shared(set, false);
3948 	}
3949 	mutex_unlock(&set->tag_list_lock);
3950 	INIT_LIST_HEAD(&q->tag_set_list);
3951 }
3952 
3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3954 				     struct request_queue *q)
3955 {
3956 	mutex_lock(&set->tag_list_lock);
3957 
3958 	/*
3959 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3960 	 */
3961 	if (!list_empty(&set->tag_list) &&
3962 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3963 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3964 		/* update existing queue */
3965 		blk_mq_update_tag_set_shared(set, true);
3966 	}
3967 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3968 		queue_set_hctx_shared(q, true);
3969 	list_add_tail(&q->tag_set_list, &set->tag_list);
3970 
3971 	mutex_unlock(&set->tag_list_lock);
3972 }
3973 
3974 /* All allocations will be freed in release handler of q->mq_kobj */
3975 static int blk_mq_alloc_ctxs(struct request_queue *q)
3976 {
3977 	struct blk_mq_ctxs *ctxs;
3978 	int cpu;
3979 
3980 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3981 	if (!ctxs)
3982 		return -ENOMEM;
3983 
3984 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3985 	if (!ctxs->queue_ctx)
3986 		goto fail;
3987 
3988 	for_each_possible_cpu(cpu) {
3989 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3990 		ctx->ctxs = ctxs;
3991 	}
3992 
3993 	q->mq_kobj = &ctxs->kobj;
3994 	q->queue_ctx = ctxs->queue_ctx;
3995 
3996 	return 0;
3997  fail:
3998 	kfree(ctxs);
3999 	return -ENOMEM;
4000 }
4001 
4002 /*
4003  * It is the actual release handler for mq, but we do it from
4004  * request queue's release handler for avoiding use-after-free
4005  * and headache because q->mq_kobj shouldn't have been introduced,
4006  * but we can't group ctx/kctx kobj without it.
4007  */
4008 void blk_mq_release(struct request_queue *q)
4009 {
4010 	struct blk_mq_hw_ctx *hctx, *next;
4011 	unsigned long i;
4012 
4013 	queue_for_each_hw_ctx(q, hctx, i)
4014 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4015 
4016 	/* all hctx are in .unused_hctx_list now */
4017 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4018 		list_del_init(&hctx->hctx_list);
4019 		kobject_put(&hctx->kobj);
4020 	}
4021 
4022 	xa_destroy(&q->hctx_table);
4023 
4024 	/*
4025 	 * release .mq_kobj and sw queue's kobject now because
4026 	 * both share lifetime with request queue.
4027 	 */
4028 	blk_mq_sysfs_deinit(q);
4029 }
4030 
4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4032 		void *queuedata)
4033 {
4034 	struct request_queue *q;
4035 	int ret;
4036 
4037 	q = blk_alloc_queue(set->numa_node);
4038 	if (!q)
4039 		return ERR_PTR(-ENOMEM);
4040 	q->queuedata = queuedata;
4041 	ret = blk_mq_init_allocated_queue(set, q);
4042 	if (ret) {
4043 		blk_put_queue(q);
4044 		return ERR_PTR(ret);
4045 	}
4046 	return q;
4047 }
4048 
4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4050 {
4051 	return blk_mq_init_queue_data(set, NULL);
4052 }
4053 EXPORT_SYMBOL(blk_mq_init_queue);
4054 
4055 /**
4056  * blk_mq_destroy_queue - shutdown a request queue
4057  * @q: request queue to shutdown
4058  *
4059  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4060  * requests will be failed with -ENODEV. The caller is responsible for dropping
4061  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4062  *
4063  * Context: can sleep
4064  */
4065 void blk_mq_destroy_queue(struct request_queue *q)
4066 {
4067 	WARN_ON_ONCE(!queue_is_mq(q));
4068 	WARN_ON_ONCE(blk_queue_registered(q));
4069 
4070 	might_sleep();
4071 
4072 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4073 	blk_queue_start_drain(q);
4074 	blk_mq_freeze_queue_wait(q);
4075 
4076 	blk_sync_queue(q);
4077 	blk_mq_cancel_work_sync(q);
4078 	blk_mq_exit_queue(q);
4079 }
4080 EXPORT_SYMBOL(blk_mq_destroy_queue);
4081 
4082 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4083 		struct lock_class_key *lkclass)
4084 {
4085 	struct request_queue *q;
4086 	struct gendisk *disk;
4087 
4088 	q = blk_mq_init_queue_data(set, queuedata);
4089 	if (IS_ERR(q))
4090 		return ERR_CAST(q);
4091 
4092 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4093 	if (!disk) {
4094 		blk_mq_destroy_queue(q);
4095 		blk_put_queue(q);
4096 		return ERR_PTR(-ENOMEM);
4097 	}
4098 	set_bit(GD_OWNS_QUEUE, &disk->state);
4099 	return disk;
4100 }
4101 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4102 
4103 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4104 		struct lock_class_key *lkclass)
4105 {
4106 	struct gendisk *disk;
4107 
4108 	if (!blk_get_queue(q))
4109 		return NULL;
4110 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4111 	if (!disk)
4112 		blk_put_queue(q);
4113 	return disk;
4114 }
4115 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4116 
4117 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4118 		struct blk_mq_tag_set *set, struct request_queue *q,
4119 		int hctx_idx, int node)
4120 {
4121 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4122 
4123 	/* reuse dead hctx first */
4124 	spin_lock(&q->unused_hctx_lock);
4125 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4126 		if (tmp->numa_node == node) {
4127 			hctx = tmp;
4128 			break;
4129 		}
4130 	}
4131 	if (hctx)
4132 		list_del_init(&hctx->hctx_list);
4133 	spin_unlock(&q->unused_hctx_lock);
4134 
4135 	if (!hctx)
4136 		hctx = blk_mq_alloc_hctx(q, set, node);
4137 	if (!hctx)
4138 		goto fail;
4139 
4140 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4141 		goto free_hctx;
4142 
4143 	return hctx;
4144 
4145  free_hctx:
4146 	kobject_put(&hctx->kobj);
4147  fail:
4148 	return NULL;
4149 }
4150 
4151 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4152 						struct request_queue *q)
4153 {
4154 	struct blk_mq_hw_ctx *hctx;
4155 	unsigned long i, j;
4156 
4157 	/* protect against switching io scheduler  */
4158 	mutex_lock(&q->sysfs_lock);
4159 	for (i = 0; i < set->nr_hw_queues; i++) {
4160 		int old_node;
4161 		int node = blk_mq_get_hctx_node(set, i);
4162 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4163 
4164 		if (old_hctx) {
4165 			old_node = old_hctx->numa_node;
4166 			blk_mq_exit_hctx(q, set, old_hctx, i);
4167 		}
4168 
4169 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4170 			if (!old_hctx)
4171 				break;
4172 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4173 					node, old_node);
4174 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4175 			WARN_ON_ONCE(!hctx);
4176 		}
4177 	}
4178 	/*
4179 	 * Increasing nr_hw_queues fails. Free the newly allocated
4180 	 * hctxs and keep the previous q->nr_hw_queues.
4181 	 */
4182 	if (i != set->nr_hw_queues) {
4183 		j = q->nr_hw_queues;
4184 	} else {
4185 		j = i;
4186 		q->nr_hw_queues = set->nr_hw_queues;
4187 	}
4188 
4189 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4190 		blk_mq_exit_hctx(q, set, hctx, j);
4191 	mutex_unlock(&q->sysfs_lock);
4192 }
4193 
4194 static void blk_mq_update_poll_flag(struct request_queue *q)
4195 {
4196 	struct blk_mq_tag_set *set = q->tag_set;
4197 
4198 	if (set->nr_maps > HCTX_TYPE_POLL &&
4199 	    set->map[HCTX_TYPE_POLL].nr_queues)
4200 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4201 	else
4202 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4203 }
4204 
4205 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4206 		struct request_queue *q)
4207 {
4208 	/* mark the queue as mq asap */
4209 	q->mq_ops = set->ops;
4210 
4211 	if (blk_mq_alloc_ctxs(q))
4212 		goto err_exit;
4213 
4214 	/* init q->mq_kobj and sw queues' kobjects */
4215 	blk_mq_sysfs_init(q);
4216 
4217 	INIT_LIST_HEAD(&q->unused_hctx_list);
4218 	spin_lock_init(&q->unused_hctx_lock);
4219 
4220 	xa_init(&q->hctx_table);
4221 
4222 	blk_mq_realloc_hw_ctxs(set, q);
4223 	if (!q->nr_hw_queues)
4224 		goto err_hctxs;
4225 
4226 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4227 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4228 
4229 	q->tag_set = set;
4230 
4231 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4232 	blk_mq_update_poll_flag(q);
4233 
4234 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4235 	INIT_LIST_HEAD(&q->flush_list);
4236 	INIT_LIST_HEAD(&q->requeue_list);
4237 	spin_lock_init(&q->requeue_lock);
4238 
4239 	q->nr_requests = set->queue_depth;
4240 
4241 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4242 	blk_mq_add_queue_tag_set(set, q);
4243 	blk_mq_map_swqueue(q);
4244 	return 0;
4245 
4246 err_hctxs:
4247 	blk_mq_release(q);
4248 err_exit:
4249 	q->mq_ops = NULL;
4250 	return -ENOMEM;
4251 }
4252 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4253 
4254 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4255 void blk_mq_exit_queue(struct request_queue *q)
4256 {
4257 	struct blk_mq_tag_set *set = q->tag_set;
4258 
4259 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4260 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4261 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4262 	blk_mq_del_queue_tag_set(q);
4263 }
4264 
4265 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4266 {
4267 	int i;
4268 
4269 	if (blk_mq_is_shared_tags(set->flags)) {
4270 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4271 						BLK_MQ_NO_HCTX_IDX,
4272 						set->queue_depth);
4273 		if (!set->shared_tags)
4274 			return -ENOMEM;
4275 	}
4276 
4277 	for (i = 0; i < set->nr_hw_queues; i++) {
4278 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4279 			goto out_unwind;
4280 		cond_resched();
4281 	}
4282 
4283 	return 0;
4284 
4285 out_unwind:
4286 	while (--i >= 0)
4287 		__blk_mq_free_map_and_rqs(set, i);
4288 
4289 	if (blk_mq_is_shared_tags(set->flags)) {
4290 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4291 					BLK_MQ_NO_HCTX_IDX);
4292 	}
4293 
4294 	return -ENOMEM;
4295 }
4296 
4297 /*
4298  * Allocate the request maps associated with this tag_set. Note that this
4299  * may reduce the depth asked for, if memory is tight. set->queue_depth
4300  * will be updated to reflect the allocated depth.
4301  */
4302 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4303 {
4304 	unsigned int depth;
4305 	int err;
4306 
4307 	depth = set->queue_depth;
4308 	do {
4309 		err = __blk_mq_alloc_rq_maps(set);
4310 		if (!err)
4311 			break;
4312 
4313 		set->queue_depth >>= 1;
4314 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4315 			err = -ENOMEM;
4316 			break;
4317 		}
4318 	} while (set->queue_depth);
4319 
4320 	if (!set->queue_depth || err) {
4321 		pr_err("blk-mq: failed to allocate request map\n");
4322 		return -ENOMEM;
4323 	}
4324 
4325 	if (depth != set->queue_depth)
4326 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4327 						depth, set->queue_depth);
4328 
4329 	return 0;
4330 }
4331 
4332 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4333 {
4334 	/*
4335 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4336 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4337 	 * number of hardware queues.
4338 	 */
4339 	if (set->nr_maps == 1)
4340 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4341 
4342 	if (set->ops->map_queues && !is_kdump_kernel()) {
4343 		int i;
4344 
4345 		/*
4346 		 * transport .map_queues is usually done in the following
4347 		 * way:
4348 		 *
4349 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4350 		 * 	mask = get_cpu_mask(queue)
4351 		 * 	for_each_cpu(cpu, mask)
4352 		 * 		set->map[x].mq_map[cpu] = queue;
4353 		 * }
4354 		 *
4355 		 * When we need to remap, the table has to be cleared for
4356 		 * killing stale mapping since one CPU may not be mapped
4357 		 * to any hw queue.
4358 		 */
4359 		for (i = 0; i < set->nr_maps; i++)
4360 			blk_mq_clear_mq_map(&set->map[i]);
4361 
4362 		set->ops->map_queues(set);
4363 	} else {
4364 		BUG_ON(set->nr_maps > 1);
4365 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4366 	}
4367 }
4368 
4369 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4370 				       int new_nr_hw_queues)
4371 {
4372 	struct blk_mq_tags **new_tags;
4373 
4374 	if (set->nr_hw_queues >= new_nr_hw_queues)
4375 		goto done;
4376 
4377 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4378 				GFP_KERNEL, set->numa_node);
4379 	if (!new_tags)
4380 		return -ENOMEM;
4381 
4382 	if (set->tags)
4383 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4384 		       sizeof(*set->tags));
4385 	kfree(set->tags);
4386 	set->tags = new_tags;
4387 done:
4388 	set->nr_hw_queues = new_nr_hw_queues;
4389 	return 0;
4390 }
4391 
4392 /*
4393  * Alloc a tag set to be associated with one or more request queues.
4394  * May fail with EINVAL for various error conditions. May adjust the
4395  * requested depth down, if it's too large. In that case, the set
4396  * value will be stored in set->queue_depth.
4397  */
4398 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4399 {
4400 	int i, ret;
4401 
4402 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4403 
4404 	if (!set->nr_hw_queues)
4405 		return -EINVAL;
4406 	if (!set->queue_depth)
4407 		return -EINVAL;
4408 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4409 		return -EINVAL;
4410 
4411 	if (!set->ops->queue_rq)
4412 		return -EINVAL;
4413 
4414 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4415 		return -EINVAL;
4416 
4417 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4418 		pr_info("blk-mq: reduced tag depth to %u\n",
4419 			BLK_MQ_MAX_DEPTH);
4420 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4421 	}
4422 
4423 	if (!set->nr_maps)
4424 		set->nr_maps = 1;
4425 	else if (set->nr_maps > HCTX_MAX_TYPES)
4426 		return -EINVAL;
4427 
4428 	/*
4429 	 * If a crashdump is active, then we are potentially in a very
4430 	 * memory constrained environment. Limit us to 1 queue and
4431 	 * 64 tags to prevent using too much memory.
4432 	 */
4433 	if (is_kdump_kernel()) {
4434 		set->nr_hw_queues = 1;
4435 		set->nr_maps = 1;
4436 		set->queue_depth = min(64U, set->queue_depth);
4437 	}
4438 	/*
4439 	 * There is no use for more h/w queues than cpus if we just have
4440 	 * a single map
4441 	 */
4442 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4443 		set->nr_hw_queues = nr_cpu_ids;
4444 
4445 	if (set->flags & BLK_MQ_F_BLOCKING) {
4446 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4447 		if (!set->srcu)
4448 			return -ENOMEM;
4449 		ret = init_srcu_struct(set->srcu);
4450 		if (ret)
4451 			goto out_free_srcu;
4452 	}
4453 
4454 	ret = -ENOMEM;
4455 	set->tags = kcalloc_node(set->nr_hw_queues,
4456 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4457 				 set->numa_node);
4458 	if (!set->tags)
4459 		goto out_cleanup_srcu;
4460 
4461 	for (i = 0; i < set->nr_maps; i++) {
4462 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4463 						  sizeof(set->map[i].mq_map[0]),
4464 						  GFP_KERNEL, set->numa_node);
4465 		if (!set->map[i].mq_map)
4466 			goto out_free_mq_map;
4467 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4468 	}
4469 
4470 	blk_mq_update_queue_map(set);
4471 
4472 	ret = blk_mq_alloc_set_map_and_rqs(set);
4473 	if (ret)
4474 		goto out_free_mq_map;
4475 
4476 	mutex_init(&set->tag_list_lock);
4477 	INIT_LIST_HEAD(&set->tag_list);
4478 
4479 	return 0;
4480 
4481 out_free_mq_map:
4482 	for (i = 0; i < set->nr_maps; i++) {
4483 		kfree(set->map[i].mq_map);
4484 		set->map[i].mq_map = NULL;
4485 	}
4486 	kfree(set->tags);
4487 	set->tags = NULL;
4488 out_cleanup_srcu:
4489 	if (set->flags & BLK_MQ_F_BLOCKING)
4490 		cleanup_srcu_struct(set->srcu);
4491 out_free_srcu:
4492 	if (set->flags & BLK_MQ_F_BLOCKING)
4493 		kfree(set->srcu);
4494 	return ret;
4495 }
4496 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4497 
4498 /* allocate and initialize a tagset for a simple single-queue device */
4499 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4500 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4501 		unsigned int set_flags)
4502 {
4503 	memset(set, 0, sizeof(*set));
4504 	set->ops = ops;
4505 	set->nr_hw_queues = 1;
4506 	set->nr_maps = 1;
4507 	set->queue_depth = queue_depth;
4508 	set->numa_node = NUMA_NO_NODE;
4509 	set->flags = set_flags;
4510 	return blk_mq_alloc_tag_set(set);
4511 }
4512 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4513 
4514 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4515 {
4516 	int i, j;
4517 
4518 	for (i = 0; i < set->nr_hw_queues; i++)
4519 		__blk_mq_free_map_and_rqs(set, i);
4520 
4521 	if (blk_mq_is_shared_tags(set->flags)) {
4522 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4523 					BLK_MQ_NO_HCTX_IDX);
4524 	}
4525 
4526 	for (j = 0; j < set->nr_maps; j++) {
4527 		kfree(set->map[j].mq_map);
4528 		set->map[j].mq_map = NULL;
4529 	}
4530 
4531 	kfree(set->tags);
4532 	set->tags = NULL;
4533 	if (set->flags & BLK_MQ_F_BLOCKING) {
4534 		cleanup_srcu_struct(set->srcu);
4535 		kfree(set->srcu);
4536 	}
4537 }
4538 EXPORT_SYMBOL(blk_mq_free_tag_set);
4539 
4540 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4541 {
4542 	struct blk_mq_tag_set *set = q->tag_set;
4543 	struct blk_mq_hw_ctx *hctx;
4544 	int ret;
4545 	unsigned long i;
4546 
4547 	if (!set)
4548 		return -EINVAL;
4549 
4550 	if (q->nr_requests == nr)
4551 		return 0;
4552 
4553 	blk_mq_freeze_queue(q);
4554 	blk_mq_quiesce_queue(q);
4555 
4556 	ret = 0;
4557 	queue_for_each_hw_ctx(q, hctx, i) {
4558 		if (!hctx->tags)
4559 			continue;
4560 		/*
4561 		 * If we're using an MQ scheduler, just update the scheduler
4562 		 * queue depth. This is similar to what the old code would do.
4563 		 */
4564 		if (hctx->sched_tags) {
4565 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4566 						      nr, true);
4567 		} else {
4568 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4569 						      false);
4570 		}
4571 		if (ret)
4572 			break;
4573 		if (q->elevator && q->elevator->type->ops.depth_updated)
4574 			q->elevator->type->ops.depth_updated(hctx);
4575 	}
4576 	if (!ret) {
4577 		q->nr_requests = nr;
4578 		if (blk_mq_is_shared_tags(set->flags)) {
4579 			if (q->elevator)
4580 				blk_mq_tag_update_sched_shared_tags(q);
4581 			else
4582 				blk_mq_tag_resize_shared_tags(set, nr);
4583 		}
4584 	}
4585 
4586 	blk_mq_unquiesce_queue(q);
4587 	blk_mq_unfreeze_queue(q);
4588 
4589 	return ret;
4590 }
4591 
4592 /*
4593  * request_queue and elevator_type pair.
4594  * It is just used by __blk_mq_update_nr_hw_queues to cache
4595  * the elevator_type associated with a request_queue.
4596  */
4597 struct blk_mq_qe_pair {
4598 	struct list_head node;
4599 	struct request_queue *q;
4600 	struct elevator_type *type;
4601 };
4602 
4603 /*
4604  * Cache the elevator_type in qe pair list and switch the
4605  * io scheduler to 'none'
4606  */
4607 static bool blk_mq_elv_switch_none(struct list_head *head,
4608 		struct request_queue *q)
4609 {
4610 	struct blk_mq_qe_pair *qe;
4611 
4612 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4613 	if (!qe)
4614 		return false;
4615 
4616 	/* q->elevator needs protection from ->sysfs_lock */
4617 	mutex_lock(&q->sysfs_lock);
4618 
4619 	/* the check has to be done with holding sysfs_lock */
4620 	if (!q->elevator) {
4621 		kfree(qe);
4622 		goto unlock;
4623 	}
4624 
4625 	INIT_LIST_HEAD(&qe->node);
4626 	qe->q = q;
4627 	qe->type = q->elevator->type;
4628 	/* keep a reference to the elevator module as we'll switch back */
4629 	__elevator_get(qe->type);
4630 	list_add(&qe->node, head);
4631 	elevator_disable(q);
4632 unlock:
4633 	mutex_unlock(&q->sysfs_lock);
4634 
4635 	return true;
4636 }
4637 
4638 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4639 						struct request_queue *q)
4640 {
4641 	struct blk_mq_qe_pair *qe;
4642 
4643 	list_for_each_entry(qe, head, node)
4644 		if (qe->q == q)
4645 			return qe;
4646 
4647 	return NULL;
4648 }
4649 
4650 static void blk_mq_elv_switch_back(struct list_head *head,
4651 				  struct request_queue *q)
4652 {
4653 	struct blk_mq_qe_pair *qe;
4654 	struct elevator_type *t;
4655 
4656 	qe = blk_lookup_qe_pair(head, q);
4657 	if (!qe)
4658 		return;
4659 	t = qe->type;
4660 	list_del(&qe->node);
4661 	kfree(qe);
4662 
4663 	mutex_lock(&q->sysfs_lock);
4664 	elevator_switch(q, t);
4665 	/* drop the reference acquired in blk_mq_elv_switch_none */
4666 	elevator_put(t);
4667 	mutex_unlock(&q->sysfs_lock);
4668 }
4669 
4670 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4671 							int nr_hw_queues)
4672 {
4673 	struct request_queue *q;
4674 	LIST_HEAD(head);
4675 	int prev_nr_hw_queues;
4676 
4677 	lockdep_assert_held(&set->tag_list_lock);
4678 
4679 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4680 		nr_hw_queues = nr_cpu_ids;
4681 	if (nr_hw_queues < 1)
4682 		return;
4683 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4684 		return;
4685 
4686 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4687 		blk_mq_freeze_queue(q);
4688 	/*
4689 	 * Switch IO scheduler to 'none', cleaning up the data associated
4690 	 * with the previous scheduler. We will switch back once we are done
4691 	 * updating the new sw to hw queue mappings.
4692 	 */
4693 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4694 		if (!blk_mq_elv_switch_none(&head, q))
4695 			goto switch_back;
4696 
4697 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4698 		blk_mq_debugfs_unregister_hctxs(q);
4699 		blk_mq_sysfs_unregister_hctxs(q);
4700 	}
4701 
4702 	prev_nr_hw_queues = set->nr_hw_queues;
4703 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4704 		goto reregister;
4705 
4706 fallback:
4707 	blk_mq_update_queue_map(set);
4708 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4709 		blk_mq_realloc_hw_ctxs(set, q);
4710 		blk_mq_update_poll_flag(q);
4711 		if (q->nr_hw_queues != set->nr_hw_queues) {
4712 			int i = prev_nr_hw_queues;
4713 
4714 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4715 					nr_hw_queues, prev_nr_hw_queues);
4716 			for (; i < set->nr_hw_queues; i++)
4717 				__blk_mq_free_map_and_rqs(set, i);
4718 
4719 			set->nr_hw_queues = prev_nr_hw_queues;
4720 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4721 			goto fallback;
4722 		}
4723 		blk_mq_map_swqueue(q);
4724 	}
4725 
4726 reregister:
4727 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4728 		blk_mq_sysfs_register_hctxs(q);
4729 		blk_mq_debugfs_register_hctxs(q);
4730 	}
4731 
4732 switch_back:
4733 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4734 		blk_mq_elv_switch_back(&head, q);
4735 
4736 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4737 		blk_mq_unfreeze_queue(q);
4738 }
4739 
4740 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4741 {
4742 	mutex_lock(&set->tag_list_lock);
4743 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4744 	mutex_unlock(&set->tag_list_lock);
4745 }
4746 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4747 
4748 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4749 		unsigned int flags)
4750 {
4751 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4752 	long state = get_current_state();
4753 	int ret;
4754 
4755 	do {
4756 		ret = q->mq_ops->poll(hctx, iob);
4757 		if (ret > 0) {
4758 			__set_current_state(TASK_RUNNING);
4759 			return ret;
4760 		}
4761 
4762 		if (signal_pending_state(state, current))
4763 			__set_current_state(TASK_RUNNING);
4764 		if (task_is_running(current))
4765 			return 1;
4766 
4767 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4768 			break;
4769 		cpu_relax();
4770 	} while (!need_resched());
4771 
4772 	__set_current_state(TASK_RUNNING);
4773 	return 0;
4774 }
4775 
4776 unsigned int blk_mq_rq_cpu(struct request *rq)
4777 {
4778 	return rq->mq_ctx->cpu;
4779 }
4780 EXPORT_SYMBOL(blk_mq_rq_cpu);
4781 
4782 void blk_mq_cancel_work_sync(struct request_queue *q)
4783 {
4784 	struct blk_mq_hw_ctx *hctx;
4785 	unsigned long i;
4786 
4787 	cancel_delayed_work_sync(&q->requeue_work);
4788 
4789 	queue_for_each_hw_ctx(q, hctx, i)
4790 		cancel_delayed_work_sync(&hctx->run_work);
4791 }
4792 
4793 static int __init blk_mq_init(void)
4794 {
4795 	int i;
4796 
4797 	for_each_possible_cpu(i)
4798 		init_llist_head(&per_cpu(blk_cpu_done, i));
4799 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4800 
4801 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4802 				  "block/softirq:dead", NULL,
4803 				  blk_softirq_cpu_dead);
4804 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4805 				blk_mq_hctx_notify_dead);
4806 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4807 				blk_mq_hctx_notify_online,
4808 				blk_mq_hctx_notify_offline);
4809 	return 0;
4810 }
4811 subsys_initcall(blk_mq_init);
4812