1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 53 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 54 blk_qc_t qc) 55 { 56 return xa_load(&q->hctx_table, qc); 57 } 58 59 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 60 { 61 return rq->mq_hctx->queue_num; 62 } 63 64 /* 65 * Check if any of the ctx, dispatch list or elevator 66 * have pending work in this hardware queue. 67 */ 68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 69 { 70 return !list_empty_careful(&hctx->dispatch) || 71 sbitmap_any_bit_set(&hctx->ctx_map) || 72 blk_mq_sched_has_work(hctx); 73 } 74 75 /* 76 * Mark this ctx as having pending work in this hardware queue 77 */ 78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 84 sbitmap_set_bit(&hctx->ctx_map, bit); 85 } 86 87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 88 struct blk_mq_ctx *ctx) 89 { 90 const int bit = ctx->index_hw[hctx->type]; 91 92 sbitmap_clear_bit(&hctx->ctx_map, bit); 93 } 94 95 struct mq_inflight { 96 struct block_device *part; 97 unsigned int inflight[2]; 98 }; 99 100 static bool blk_mq_check_inflight(struct request *rq, void *priv) 101 { 102 struct mq_inflight *mi = priv; 103 104 if (rq->part && blk_do_io_stat(rq) && 105 (!mi->part->bd_partno || rq->part == mi->part) && 106 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 107 mi->inflight[rq_data_dir(rq)]++; 108 109 return true; 110 } 111 112 unsigned int blk_mq_in_flight(struct request_queue *q, 113 struct block_device *part) 114 { 115 struct mq_inflight mi = { .part = part }; 116 117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 118 119 return mi.inflight[0] + mi.inflight[1]; 120 } 121 122 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 123 unsigned int inflight[2]) 124 { 125 struct mq_inflight mi = { .part = part }; 126 127 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 128 inflight[0] = mi.inflight[0]; 129 inflight[1] = mi.inflight[1]; 130 } 131 132 void blk_freeze_queue_start(struct request_queue *q) 133 { 134 mutex_lock(&q->mq_freeze_lock); 135 if (++q->mq_freeze_depth == 1) { 136 percpu_ref_kill(&q->q_usage_counter); 137 mutex_unlock(&q->mq_freeze_lock); 138 if (queue_is_mq(q)) 139 blk_mq_run_hw_queues(q, false); 140 } else { 141 mutex_unlock(&q->mq_freeze_lock); 142 } 143 } 144 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 145 146 void blk_mq_freeze_queue_wait(struct request_queue *q) 147 { 148 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 149 } 150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 151 152 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 153 unsigned long timeout) 154 { 155 return wait_event_timeout(q->mq_freeze_wq, 156 percpu_ref_is_zero(&q->q_usage_counter), 157 timeout); 158 } 159 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 160 161 /* 162 * Guarantee no request is in use, so we can change any data structure of 163 * the queue afterward. 164 */ 165 void blk_freeze_queue(struct request_queue *q) 166 { 167 /* 168 * In the !blk_mq case we are only calling this to kill the 169 * q_usage_counter, otherwise this increases the freeze depth 170 * and waits for it to return to zero. For this reason there is 171 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 172 * exported to drivers as the only user for unfreeze is blk_mq. 173 */ 174 blk_freeze_queue_start(q); 175 blk_mq_freeze_queue_wait(q); 176 } 177 178 void blk_mq_freeze_queue(struct request_queue *q) 179 { 180 /* 181 * ...just an alias to keep freeze and unfreeze actions balanced 182 * in the blk_mq_* namespace 183 */ 184 blk_freeze_queue(q); 185 } 186 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 187 188 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 189 { 190 mutex_lock(&q->mq_freeze_lock); 191 if (force_atomic) 192 q->q_usage_counter.data->force_atomic = true; 193 q->mq_freeze_depth--; 194 WARN_ON_ONCE(q->mq_freeze_depth < 0); 195 if (!q->mq_freeze_depth) { 196 percpu_ref_resurrect(&q->q_usage_counter); 197 wake_up_all(&q->mq_freeze_wq); 198 } 199 mutex_unlock(&q->mq_freeze_lock); 200 } 201 202 void blk_mq_unfreeze_queue(struct request_queue *q) 203 { 204 __blk_mq_unfreeze_queue(q, false); 205 } 206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 207 208 /* 209 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 210 * mpt3sas driver such that this function can be removed. 211 */ 212 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 213 { 214 unsigned long flags; 215 216 spin_lock_irqsave(&q->queue_lock, flags); 217 if (!q->quiesce_depth++) 218 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 219 spin_unlock_irqrestore(&q->queue_lock, flags); 220 } 221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 222 223 /** 224 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 225 * @set: tag_set to wait on 226 * 227 * Note: it is driver's responsibility for making sure that quiesce has 228 * been started on or more of the request_queues of the tag_set. This 229 * function only waits for the quiesce on those request_queues that had 230 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 231 */ 232 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 233 { 234 if (set->flags & BLK_MQ_F_BLOCKING) 235 synchronize_srcu(set->srcu); 236 else 237 synchronize_rcu(); 238 } 239 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 240 241 /** 242 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 243 * @q: request queue. 244 * 245 * Note: this function does not prevent that the struct request end_io() 246 * callback function is invoked. Once this function is returned, we make 247 * sure no dispatch can happen until the queue is unquiesced via 248 * blk_mq_unquiesce_queue(). 249 */ 250 void blk_mq_quiesce_queue(struct request_queue *q) 251 { 252 blk_mq_quiesce_queue_nowait(q); 253 /* nothing to wait for non-mq queues */ 254 if (queue_is_mq(q)) 255 blk_mq_wait_quiesce_done(q->tag_set); 256 } 257 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 258 259 /* 260 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 261 * @q: request queue. 262 * 263 * This function recovers queue into the state before quiescing 264 * which is done by blk_mq_quiesce_queue. 265 */ 266 void blk_mq_unquiesce_queue(struct request_queue *q) 267 { 268 unsigned long flags; 269 bool run_queue = false; 270 271 spin_lock_irqsave(&q->queue_lock, flags); 272 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 273 ; 274 } else if (!--q->quiesce_depth) { 275 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 276 run_queue = true; 277 } 278 spin_unlock_irqrestore(&q->queue_lock, flags); 279 280 /* dispatch requests which are inserted during quiescing */ 281 if (run_queue) 282 blk_mq_run_hw_queues(q, true); 283 } 284 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 285 286 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 287 { 288 struct request_queue *q; 289 290 mutex_lock(&set->tag_list_lock); 291 list_for_each_entry(q, &set->tag_list, tag_set_list) { 292 if (!blk_queue_skip_tagset_quiesce(q)) 293 blk_mq_quiesce_queue_nowait(q); 294 } 295 blk_mq_wait_quiesce_done(set); 296 mutex_unlock(&set->tag_list_lock); 297 } 298 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 299 300 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 301 { 302 struct request_queue *q; 303 304 mutex_lock(&set->tag_list_lock); 305 list_for_each_entry(q, &set->tag_list, tag_set_list) { 306 if (!blk_queue_skip_tagset_quiesce(q)) 307 blk_mq_unquiesce_queue(q); 308 } 309 mutex_unlock(&set->tag_list_lock); 310 } 311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 312 313 void blk_mq_wake_waiters(struct request_queue *q) 314 { 315 struct blk_mq_hw_ctx *hctx; 316 unsigned long i; 317 318 queue_for_each_hw_ctx(q, hctx, i) 319 if (blk_mq_hw_queue_mapped(hctx)) 320 blk_mq_tag_wakeup_all(hctx->tags, true); 321 } 322 323 void blk_rq_init(struct request_queue *q, struct request *rq) 324 { 325 memset(rq, 0, sizeof(*rq)); 326 327 INIT_LIST_HEAD(&rq->queuelist); 328 rq->q = q; 329 rq->__sector = (sector_t) -1; 330 INIT_HLIST_NODE(&rq->hash); 331 RB_CLEAR_NODE(&rq->rb_node); 332 rq->tag = BLK_MQ_NO_TAG; 333 rq->internal_tag = BLK_MQ_NO_TAG; 334 rq->start_time_ns = ktime_get_ns(); 335 rq->part = NULL; 336 blk_crypto_rq_set_defaults(rq); 337 } 338 EXPORT_SYMBOL(blk_rq_init); 339 340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 341 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 342 { 343 struct blk_mq_ctx *ctx = data->ctx; 344 struct blk_mq_hw_ctx *hctx = data->hctx; 345 struct request_queue *q = data->q; 346 struct request *rq = tags->static_rqs[tag]; 347 348 rq->q = q; 349 rq->mq_ctx = ctx; 350 rq->mq_hctx = hctx; 351 rq->cmd_flags = data->cmd_flags; 352 353 if (data->flags & BLK_MQ_REQ_PM) 354 data->rq_flags |= RQF_PM; 355 if (blk_queue_io_stat(q)) 356 data->rq_flags |= RQF_IO_STAT; 357 rq->rq_flags = data->rq_flags; 358 359 if (data->rq_flags & RQF_SCHED_TAGS) { 360 rq->tag = BLK_MQ_NO_TAG; 361 rq->internal_tag = tag; 362 } else { 363 rq->tag = tag; 364 rq->internal_tag = BLK_MQ_NO_TAG; 365 } 366 rq->timeout = 0; 367 368 if (blk_mq_need_time_stamp(rq)) 369 rq->start_time_ns = ktime_get_ns(); 370 else 371 rq->start_time_ns = 0; 372 rq->part = NULL; 373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 374 rq->alloc_time_ns = alloc_time_ns; 375 #endif 376 rq->io_start_time_ns = 0; 377 rq->stats_sectors = 0; 378 rq->nr_phys_segments = 0; 379 #if defined(CONFIG_BLK_DEV_INTEGRITY) 380 rq->nr_integrity_segments = 0; 381 #endif 382 rq->end_io = NULL; 383 rq->end_io_data = NULL; 384 385 blk_crypto_rq_set_defaults(rq); 386 INIT_LIST_HEAD(&rq->queuelist); 387 /* tag was already set */ 388 WRITE_ONCE(rq->deadline, 0); 389 req_ref_set(rq, 1); 390 391 if (rq->rq_flags & RQF_USE_SCHED) { 392 struct elevator_queue *e = data->q->elevator; 393 394 INIT_HLIST_NODE(&rq->hash); 395 RB_CLEAR_NODE(&rq->rb_node); 396 397 if (e->type->ops.prepare_request) 398 e->type->ops.prepare_request(rq); 399 } 400 401 return rq; 402 } 403 404 static inline struct request * 405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 406 u64 alloc_time_ns) 407 { 408 unsigned int tag, tag_offset; 409 struct blk_mq_tags *tags; 410 struct request *rq; 411 unsigned long tag_mask; 412 int i, nr = 0; 413 414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 415 if (unlikely(!tag_mask)) 416 return NULL; 417 418 tags = blk_mq_tags_from_data(data); 419 for (i = 0; tag_mask; i++) { 420 if (!(tag_mask & (1UL << i))) 421 continue; 422 tag = tag_offset + i; 423 prefetch(tags->static_rqs[tag]); 424 tag_mask &= ~(1UL << i); 425 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 426 rq_list_add(data->cached_rq, rq); 427 nr++; 428 } 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 if (q->elevator) { 451 /* 452 * All requests use scheduler tags when an I/O scheduler is 453 * enabled for the queue. 454 */ 455 data->rq_flags |= RQF_SCHED_TAGS; 456 457 /* 458 * Flush/passthrough requests are special and go directly to the 459 * dispatch list. 460 */ 461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 462 !blk_op_is_passthrough(data->cmd_flags)) { 463 struct elevator_mq_ops *ops = &q->elevator->type->ops; 464 465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 466 467 data->rq_flags |= RQF_USE_SCHED; 468 if (ops->limit_depth) 469 ops->limit_depth(data->cmd_flags, data); 470 } 471 } 472 473 retry: 474 data->ctx = blk_mq_get_ctx(q); 475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 476 if (!(data->rq_flags & RQF_SCHED_TAGS)) 477 blk_mq_tag_busy(data->hctx); 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 487 if (rq) 488 return rq; 489 data->nr_tags = 1; 490 } 491 492 /* 493 * Waiting allocations only fail because of an inactive hctx. In that 494 * case just retry the hctx assignment and tag allocation as CPU hotplug 495 * should have migrated us to an online CPU by now. 496 */ 497 tag = blk_mq_get_tag(data); 498 if (tag == BLK_MQ_NO_TAG) { 499 if (data->flags & BLK_MQ_REQ_NOWAIT) 500 return NULL; 501 /* 502 * Give up the CPU and sleep for a random short time to 503 * ensure that thread using a realtime scheduling class 504 * are migrated off the CPU, and thus off the hctx that 505 * is going away. 506 */ 507 msleep(3); 508 goto retry; 509 } 510 511 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 512 alloc_time_ns); 513 } 514 515 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 516 struct blk_plug *plug, 517 blk_opf_t opf, 518 blk_mq_req_flags_t flags) 519 { 520 struct blk_mq_alloc_data data = { 521 .q = q, 522 .flags = flags, 523 .cmd_flags = opf, 524 .nr_tags = plug->nr_ios, 525 .cached_rq = &plug->cached_rq, 526 }; 527 struct request *rq; 528 529 if (blk_queue_enter(q, flags)) 530 return NULL; 531 532 plug->nr_ios = 1; 533 534 rq = __blk_mq_alloc_requests(&data); 535 if (unlikely(!rq)) 536 blk_queue_exit(q); 537 return rq; 538 } 539 540 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 541 blk_opf_t opf, 542 blk_mq_req_flags_t flags) 543 { 544 struct blk_plug *plug = current->plug; 545 struct request *rq; 546 547 if (!plug) 548 return NULL; 549 550 if (rq_list_empty(plug->cached_rq)) { 551 if (plug->nr_ios == 1) 552 return NULL; 553 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 554 if (!rq) 555 return NULL; 556 } else { 557 rq = rq_list_peek(&plug->cached_rq); 558 if (!rq || rq->q != q) 559 return NULL; 560 561 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 562 return NULL; 563 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 564 return NULL; 565 566 plug->cached_rq = rq_list_next(rq); 567 } 568 569 rq->cmd_flags = opf; 570 INIT_LIST_HEAD(&rq->queuelist); 571 return rq; 572 } 573 574 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 575 blk_mq_req_flags_t flags) 576 { 577 struct request *rq; 578 579 rq = blk_mq_alloc_cached_request(q, opf, flags); 580 if (!rq) { 581 struct blk_mq_alloc_data data = { 582 .q = q, 583 .flags = flags, 584 .cmd_flags = opf, 585 .nr_tags = 1, 586 }; 587 int ret; 588 589 ret = blk_queue_enter(q, flags); 590 if (ret) 591 return ERR_PTR(ret); 592 593 rq = __blk_mq_alloc_requests(&data); 594 if (!rq) 595 goto out_queue_exit; 596 } 597 rq->__data_len = 0; 598 rq->__sector = (sector_t) -1; 599 rq->bio = rq->biotail = NULL; 600 return rq; 601 out_queue_exit: 602 blk_queue_exit(q); 603 return ERR_PTR(-EWOULDBLOCK); 604 } 605 EXPORT_SYMBOL(blk_mq_alloc_request); 606 607 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 608 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 609 { 610 struct blk_mq_alloc_data data = { 611 .q = q, 612 .flags = flags, 613 .cmd_flags = opf, 614 .nr_tags = 1, 615 }; 616 u64 alloc_time_ns = 0; 617 struct request *rq; 618 unsigned int cpu; 619 unsigned int tag; 620 int ret; 621 622 /* alloc_time includes depth and tag waits */ 623 if (blk_queue_rq_alloc_time(q)) 624 alloc_time_ns = ktime_get_ns(); 625 626 /* 627 * If the tag allocator sleeps we could get an allocation for a 628 * different hardware context. No need to complicate the low level 629 * allocator for this for the rare use case of a command tied to 630 * a specific queue. 631 */ 632 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 633 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 634 return ERR_PTR(-EINVAL); 635 636 if (hctx_idx >= q->nr_hw_queues) 637 return ERR_PTR(-EIO); 638 639 ret = blk_queue_enter(q, flags); 640 if (ret) 641 return ERR_PTR(ret); 642 643 /* 644 * Check if the hardware context is actually mapped to anything. 645 * If not tell the caller that it should skip this queue. 646 */ 647 ret = -EXDEV; 648 data.hctx = xa_load(&q->hctx_table, hctx_idx); 649 if (!blk_mq_hw_queue_mapped(data.hctx)) 650 goto out_queue_exit; 651 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 652 if (cpu >= nr_cpu_ids) 653 goto out_queue_exit; 654 data.ctx = __blk_mq_get_ctx(q, cpu); 655 656 if (q->elevator) 657 data.rq_flags |= RQF_SCHED_TAGS; 658 else 659 blk_mq_tag_busy(data.hctx); 660 661 if (flags & BLK_MQ_REQ_RESERVED) 662 data.rq_flags |= RQF_RESV; 663 664 ret = -EWOULDBLOCK; 665 tag = blk_mq_get_tag(&data); 666 if (tag == BLK_MQ_NO_TAG) 667 goto out_queue_exit; 668 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 669 alloc_time_ns); 670 rq->__data_len = 0; 671 rq->__sector = (sector_t) -1; 672 rq->bio = rq->biotail = NULL; 673 return rq; 674 675 out_queue_exit: 676 blk_queue_exit(q); 677 return ERR_PTR(ret); 678 } 679 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 680 681 static void __blk_mq_free_request(struct request *rq) 682 { 683 struct request_queue *q = rq->q; 684 struct blk_mq_ctx *ctx = rq->mq_ctx; 685 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 686 const int sched_tag = rq->internal_tag; 687 688 blk_crypto_free_request(rq); 689 blk_pm_mark_last_busy(rq); 690 rq->mq_hctx = NULL; 691 692 if (rq->rq_flags & RQF_MQ_INFLIGHT) 693 __blk_mq_dec_active_requests(hctx); 694 695 if (rq->tag != BLK_MQ_NO_TAG) 696 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 697 if (sched_tag != BLK_MQ_NO_TAG) 698 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 699 blk_mq_sched_restart(hctx); 700 blk_queue_exit(q); 701 } 702 703 void blk_mq_free_request(struct request *rq) 704 { 705 struct request_queue *q = rq->q; 706 707 if ((rq->rq_flags & RQF_USE_SCHED) && 708 q->elevator->type->ops.finish_request) 709 q->elevator->type->ops.finish_request(rq); 710 711 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 712 laptop_io_completion(q->disk->bdi); 713 714 rq_qos_done(q, rq); 715 716 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 717 if (req_ref_put_and_test(rq)) 718 __blk_mq_free_request(rq); 719 } 720 EXPORT_SYMBOL_GPL(blk_mq_free_request); 721 722 void blk_mq_free_plug_rqs(struct blk_plug *plug) 723 { 724 struct request *rq; 725 726 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 727 blk_mq_free_request(rq); 728 } 729 730 void blk_dump_rq_flags(struct request *rq, char *msg) 731 { 732 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 733 rq->q->disk ? rq->q->disk->disk_name : "?", 734 (__force unsigned long long) rq->cmd_flags); 735 736 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 737 (unsigned long long)blk_rq_pos(rq), 738 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 739 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 740 rq->bio, rq->biotail, blk_rq_bytes(rq)); 741 } 742 EXPORT_SYMBOL(blk_dump_rq_flags); 743 744 static void req_bio_endio(struct request *rq, struct bio *bio, 745 unsigned int nbytes, blk_status_t error) 746 { 747 if (unlikely(error)) { 748 bio->bi_status = error; 749 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 750 /* 751 * Partial zone append completions cannot be supported as the 752 * BIO fragments may end up not being written sequentially. 753 */ 754 if (bio->bi_iter.bi_size != nbytes) 755 bio->bi_status = BLK_STS_IOERR; 756 else 757 bio->bi_iter.bi_sector = rq->__sector; 758 } 759 760 bio_advance(bio, nbytes); 761 762 if (unlikely(rq->rq_flags & RQF_QUIET)) 763 bio_set_flag(bio, BIO_QUIET); 764 /* don't actually finish bio if it's part of flush sequence */ 765 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 766 bio_endio(bio); 767 } 768 769 static void blk_account_io_completion(struct request *req, unsigned int bytes) 770 { 771 if (req->part && blk_do_io_stat(req)) { 772 const int sgrp = op_stat_group(req_op(req)); 773 774 part_stat_lock(); 775 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 776 part_stat_unlock(); 777 } 778 } 779 780 static void blk_print_req_error(struct request *req, blk_status_t status) 781 { 782 printk_ratelimited(KERN_ERR 783 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 784 "phys_seg %u prio class %u\n", 785 blk_status_to_str(status), 786 req->q->disk ? req->q->disk->disk_name : "?", 787 blk_rq_pos(req), (__force u32)req_op(req), 788 blk_op_str(req_op(req)), 789 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 790 req->nr_phys_segments, 791 IOPRIO_PRIO_CLASS(req->ioprio)); 792 } 793 794 /* 795 * Fully end IO on a request. Does not support partial completions, or 796 * errors. 797 */ 798 static void blk_complete_request(struct request *req) 799 { 800 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 801 int total_bytes = blk_rq_bytes(req); 802 struct bio *bio = req->bio; 803 804 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 805 806 if (!bio) 807 return; 808 809 #ifdef CONFIG_BLK_DEV_INTEGRITY 810 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 811 req->q->integrity.profile->complete_fn(req, total_bytes); 812 #endif 813 814 /* 815 * Upper layers may call blk_crypto_evict_key() anytime after the last 816 * bio_endio(). Therefore, the keyslot must be released before that. 817 */ 818 blk_crypto_rq_put_keyslot(req); 819 820 blk_account_io_completion(req, total_bytes); 821 822 do { 823 struct bio *next = bio->bi_next; 824 825 /* Completion has already been traced */ 826 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 827 828 if (req_op(req) == REQ_OP_ZONE_APPEND) 829 bio->bi_iter.bi_sector = req->__sector; 830 831 if (!is_flush) 832 bio_endio(bio); 833 bio = next; 834 } while (bio); 835 836 /* 837 * Reset counters so that the request stacking driver 838 * can find how many bytes remain in the request 839 * later. 840 */ 841 if (!req->end_io) { 842 req->bio = NULL; 843 req->__data_len = 0; 844 } 845 } 846 847 /** 848 * blk_update_request - Complete multiple bytes without completing the request 849 * @req: the request being processed 850 * @error: block status code 851 * @nr_bytes: number of bytes to complete for @req 852 * 853 * Description: 854 * Ends I/O on a number of bytes attached to @req, but doesn't complete 855 * the request structure even if @req doesn't have leftover. 856 * If @req has leftover, sets it up for the next range of segments. 857 * 858 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 859 * %false return from this function. 860 * 861 * Note: 862 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 863 * except in the consistency check at the end of this function. 864 * 865 * Return: 866 * %false - this request doesn't have any more data 867 * %true - this request has more data 868 **/ 869 bool blk_update_request(struct request *req, blk_status_t error, 870 unsigned int nr_bytes) 871 { 872 int total_bytes; 873 874 trace_block_rq_complete(req, error, nr_bytes); 875 876 if (!req->bio) 877 return false; 878 879 #ifdef CONFIG_BLK_DEV_INTEGRITY 880 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 881 error == BLK_STS_OK) 882 req->q->integrity.profile->complete_fn(req, nr_bytes); 883 #endif 884 885 /* 886 * Upper layers may call blk_crypto_evict_key() anytime after the last 887 * bio_endio(). Therefore, the keyslot must be released before that. 888 */ 889 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 890 __blk_crypto_rq_put_keyslot(req); 891 892 if (unlikely(error && !blk_rq_is_passthrough(req) && 893 !(req->rq_flags & RQF_QUIET)) && 894 !test_bit(GD_DEAD, &req->q->disk->state)) { 895 blk_print_req_error(req, error); 896 trace_block_rq_error(req, error, nr_bytes); 897 } 898 899 blk_account_io_completion(req, nr_bytes); 900 901 total_bytes = 0; 902 while (req->bio) { 903 struct bio *bio = req->bio; 904 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 905 906 if (bio_bytes == bio->bi_iter.bi_size) 907 req->bio = bio->bi_next; 908 909 /* Completion has already been traced */ 910 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 911 req_bio_endio(req, bio, bio_bytes, error); 912 913 total_bytes += bio_bytes; 914 nr_bytes -= bio_bytes; 915 916 if (!nr_bytes) 917 break; 918 } 919 920 /* 921 * completely done 922 */ 923 if (!req->bio) { 924 /* 925 * Reset counters so that the request stacking driver 926 * can find how many bytes remain in the request 927 * later. 928 */ 929 req->__data_len = 0; 930 return false; 931 } 932 933 req->__data_len -= total_bytes; 934 935 /* update sector only for requests with clear definition of sector */ 936 if (!blk_rq_is_passthrough(req)) 937 req->__sector += total_bytes >> 9; 938 939 /* mixed attributes always follow the first bio */ 940 if (req->rq_flags & RQF_MIXED_MERGE) { 941 req->cmd_flags &= ~REQ_FAILFAST_MASK; 942 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 943 } 944 945 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 946 /* 947 * If total number of sectors is less than the first segment 948 * size, something has gone terribly wrong. 949 */ 950 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 951 blk_dump_rq_flags(req, "request botched"); 952 req->__data_len = blk_rq_cur_bytes(req); 953 } 954 955 /* recalculate the number of segments */ 956 req->nr_phys_segments = blk_recalc_rq_segments(req); 957 } 958 959 return true; 960 } 961 EXPORT_SYMBOL_GPL(blk_update_request); 962 963 static inline void blk_account_io_done(struct request *req, u64 now) 964 { 965 trace_block_io_done(req); 966 967 /* 968 * Account IO completion. flush_rq isn't accounted as a 969 * normal IO on queueing nor completion. Accounting the 970 * containing request is enough. 971 */ 972 if (blk_do_io_stat(req) && req->part && 973 !(req->rq_flags & RQF_FLUSH_SEQ)) { 974 const int sgrp = op_stat_group(req_op(req)); 975 976 part_stat_lock(); 977 update_io_ticks(req->part, jiffies, true); 978 part_stat_inc(req->part, ios[sgrp]); 979 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 980 part_stat_unlock(); 981 } 982 } 983 984 static inline void blk_account_io_start(struct request *req) 985 { 986 trace_block_io_start(req); 987 988 if (blk_do_io_stat(req)) { 989 /* 990 * All non-passthrough requests are created from a bio with one 991 * exception: when a flush command that is part of a flush sequence 992 * generated by the state machine in blk-flush.c is cloned onto the 993 * lower device by dm-multipath we can get here without a bio. 994 */ 995 if (req->bio) 996 req->part = req->bio->bi_bdev; 997 else 998 req->part = req->q->disk->part0; 999 1000 part_stat_lock(); 1001 update_io_ticks(req->part, jiffies, false); 1002 part_stat_unlock(); 1003 } 1004 } 1005 1006 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1007 { 1008 if (rq->rq_flags & RQF_STATS) 1009 blk_stat_add(rq, now); 1010 1011 blk_mq_sched_completed_request(rq, now); 1012 blk_account_io_done(rq, now); 1013 } 1014 1015 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1016 { 1017 if (blk_mq_need_time_stamp(rq)) 1018 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1019 1020 if (rq->end_io) { 1021 rq_qos_done(rq->q, rq); 1022 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1023 blk_mq_free_request(rq); 1024 } else { 1025 blk_mq_free_request(rq); 1026 } 1027 } 1028 EXPORT_SYMBOL(__blk_mq_end_request); 1029 1030 void blk_mq_end_request(struct request *rq, blk_status_t error) 1031 { 1032 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1033 BUG(); 1034 __blk_mq_end_request(rq, error); 1035 } 1036 EXPORT_SYMBOL(blk_mq_end_request); 1037 1038 #define TAG_COMP_BATCH 32 1039 1040 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1041 int *tag_array, int nr_tags) 1042 { 1043 struct request_queue *q = hctx->queue; 1044 1045 /* 1046 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1047 * update hctx->nr_active in batch 1048 */ 1049 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1050 __blk_mq_sub_active_requests(hctx, nr_tags); 1051 1052 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1053 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1054 } 1055 1056 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1057 { 1058 int tags[TAG_COMP_BATCH], nr_tags = 0; 1059 struct blk_mq_hw_ctx *cur_hctx = NULL; 1060 struct request *rq; 1061 u64 now = 0; 1062 1063 if (iob->need_ts) 1064 now = ktime_get_ns(); 1065 1066 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1067 prefetch(rq->bio); 1068 prefetch(rq->rq_next); 1069 1070 blk_complete_request(rq); 1071 if (iob->need_ts) 1072 __blk_mq_end_request_acct(rq, now); 1073 1074 rq_qos_done(rq->q, rq); 1075 1076 /* 1077 * If end_io handler returns NONE, then it still has 1078 * ownership of the request. 1079 */ 1080 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1081 continue; 1082 1083 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1084 if (!req_ref_put_and_test(rq)) 1085 continue; 1086 1087 blk_crypto_free_request(rq); 1088 blk_pm_mark_last_busy(rq); 1089 1090 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1091 if (cur_hctx) 1092 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1093 nr_tags = 0; 1094 cur_hctx = rq->mq_hctx; 1095 } 1096 tags[nr_tags++] = rq->tag; 1097 } 1098 1099 if (nr_tags) 1100 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1101 } 1102 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1103 1104 static void blk_complete_reqs(struct llist_head *list) 1105 { 1106 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1107 struct request *rq, *next; 1108 1109 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1110 rq->q->mq_ops->complete(rq); 1111 } 1112 1113 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1114 { 1115 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1116 } 1117 1118 static int blk_softirq_cpu_dead(unsigned int cpu) 1119 { 1120 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1121 return 0; 1122 } 1123 1124 static void __blk_mq_complete_request_remote(void *data) 1125 { 1126 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1127 } 1128 1129 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1130 { 1131 int cpu = raw_smp_processor_id(); 1132 1133 if (!IS_ENABLED(CONFIG_SMP) || 1134 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1135 return false; 1136 /* 1137 * With force threaded interrupts enabled, raising softirq from an SMP 1138 * function call will always result in waking the ksoftirqd thread. 1139 * This is probably worse than completing the request on a different 1140 * cache domain. 1141 */ 1142 if (force_irqthreads()) 1143 return false; 1144 1145 /* same CPU or cache domain? Complete locally */ 1146 if (cpu == rq->mq_ctx->cpu || 1147 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1148 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1149 return false; 1150 1151 /* don't try to IPI to an offline CPU */ 1152 return cpu_online(rq->mq_ctx->cpu); 1153 } 1154 1155 static void blk_mq_complete_send_ipi(struct request *rq) 1156 { 1157 struct llist_head *list; 1158 unsigned int cpu; 1159 1160 cpu = rq->mq_ctx->cpu; 1161 list = &per_cpu(blk_cpu_done, cpu); 1162 if (llist_add(&rq->ipi_list, list)) { 1163 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1164 smp_call_function_single_async(cpu, &rq->csd); 1165 } 1166 } 1167 1168 static void blk_mq_raise_softirq(struct request *rq) 1169 { 1170 struct llist_head *list; 1171 1172 preempt_disable(); 1173 list = this_cpu_ptr(&blk_cpu_done); 1174 if (llist_add(&rq->ipi_list, list)) 1175 raise_softirq(BLOCK_SOFTIRQ); 1176 preempt_enable(); 1177 } 1178 1179 bool blk_mq_complete_request_remote(struct request *rq) 1180 { 1181 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1182 1183 /* 1184 * For request which hctx has only one ctx mapping, 1185 * or a polled request, always complete locally, 1186 * it's pointless to redirect the completion. 1187 */ 1188 if ((rq->mq_hctx->nr_ctx == 1 && 1189 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1190 rq->cmd_flags & REQ_POLLED) 1191 return false; 1192 1193 if (blk_mq_complete_need_ipi(rq)) { 1194 blk_mq_complete_send_ipi(rq); 1195 return true; 1196 } 1197 1198 if (rq->q->nr_hw_queues == 1) { 1199 blk_mq_raise_softirq(rq); 1200 return true; 1201 } 1202 return false; 1203 } 1204 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1205 1206 /** 1207 * blk_mq_complete_request - end I/O on a request 1208 * @rq: the request being processed 1209 * 1210 * Description: 1211 * Complete a request by scheduling the ->complete_rq operation. 1212 **/ 1213 void blk_mq_complete_request(struct request *rq) 1214 { 1215 if (!blk_mq_complete_request_remote(rq)) 1216 rq->q->mq_ops->complete(rq); 1217 } 1218 EXPORT_SYMBOL(blk_mq_complete_request); 1219 1220 /** 1221 * blk_mq_start_request - Start processing a request 1222 * @rq: Pointer to request to be started 1223 * 1224 * Function used by device drivers to notify the block layer that a request 1225 * is going to be processed now, so blk layer can do proper initializations 1226 * such as starting the timeout timer. 1227 */ 1228 void blk_mq_start_request(struct request *rq) 1229 { 1230 struct request_queue *q = rq->q; 1231 1232 trace_block_rq_issue(rq); 1233 1234 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1235 rq->io_start_time_ns = ktime_get_ns(); 1236 rq->stats_sectors = blk_rq_sectors(rq); 1237 rq->rq_flags |= RQF_STATS; 1238 rq_qos_issue(q, rq); 1239 } 1240 1241 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1242 1243 blk_add_timer(rq); 1244 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1245 1246 #ifdef CONFIG_BLK_DEV_INTEGRITY 1247 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1248 q->integrity.profile->prepare_fn(rq); 1249 #endif 1250 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1251 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1252 } 1253 EXPORT_SYMBOL(blk_mq_start_request); 1254 1255 /* 1256 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1257 * queues. This is important for md arrays to benefit from merging 1258 * requests. 1259 */ 1260 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1261 { 1262 if (plug->multiple_queues) 1263 return BLK_MAX_REQUEST_COUNT * 2; 1264 return BLK_MAX_REQUEST_COUNT; 1265 } 1266 1267 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1268 { 1269 struct request *last = rq_list_peek(&plug->mq_list); 1270 1271 if (!plug->rq_count) { 1272 trace_block_plug(rq->q); 1273 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1274 (!blk_queue_nomerges(rq->q) && 1275 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1276 blk_mq_flush_plug_list(plug, false); 1277 last = NULL; 1278 trace_block_plug(rq->q); 1279 } 1280 1281 if (!plug->multiple_queues && last && last->q != rq->q) 1282 plug->multiple_queues = true; 1283 if (!plug->has_elevator && (rq->rq_flags & RQF_USE_SCHED)) 1284 plug->has_elevator = true; 1285 rq->rq_next = NULL; 1286 rq_list_add(&plug->mq_list, rq); 1287 plug->rq_count++; 1288 } 1289 1290 /** 1291 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1292 * @rq: request to insert 1293 * @at_head: insert request at head or tail of queue 1294 * 1295 * Description: 1296 * Insert a fully prepared request at the back of the I/O scheduler queue 1297 * for execution. Don't wait for completion. 1298 * 1299 * Note: 1300 * This function will invoke @done directly if the queue is dead. 1301 */ 1302 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1303 { 1304 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1305 1306 WARN_ON(irqs_disabled()); 1307 WARN_ON(!blk_rq_is_passthrough(rq)); 1308 1309 blk_account_io_start(rq); 1310 1311 /* 1312 * As plugging can be enabled for passthrough requests on a zoned 1313 * device, directly accessing the plug instead of using blk_mq_plug() 1314 * should not have any consequences. 1315 */ 1316 if (current->plug && !at_head) { 1317 blk_add_rq_to_plug(current->plug, rq); 1318 return; 1319 } 1320 1321 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1322 blk_mq_run_hw_queue(hctx, false); 1323 } 1324 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1325 1326 struct blk_rq_wait { 1327 struct completion done; 1328 blk_status_t ret; 1329 }; 1330 1331 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1332 { 1333 struct blk_rq_wait *wait = rq->end_io_data; 1334 1335 wait->ret = ret; 1336 complete(&wait->done); 1337 return RQ_END_IO_NONE; 1338 } 1339 1340 bool blk_rq_is_poll(struct request *rq) 1341 { 1342 if (!rq->mq_hctx) 1343 return false; 1344 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1345 return false; 1346 return true; 1347 } 1348 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1349 1350 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1351 { 1352 do { 1353 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0); 1354 cond_resched(); 1355 } while (!completion_done(wait)); 1356 } 1357 1358 /** 1359 * blk_execute_rq - insert a request into queue for execution 1360 * @rq: request to insert 1361 * @at_head: insert request at head or tail of queue 1362 * 1363 * Description: 1364 * Insert a fully prepared request at the back of the I/O scheduler queue 1365 * for execution and wait for completion. 1366 * Return: The blk_status_t result provided to blk_mq_end_request(). 1367 */ 1368 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1369 { 1370 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1371 struct blk_rq_wait wait = { 1372 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1373 }; 1374 1375 WARN_ON(irqs_disabled()); 1376 WARN_ON(!blk_rq_is_passthrough(rq)); 1377 1378 rq->end_io_data = &wait; 1379 rq->end_io = blk_end_sync_rq; 1380 1381 blk_account_io_start(rq); 1382 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1383 blk_mq_run_hw_queue(hctx, false); 1384 1385 if (blk_rq_is_poll(rq)) { 1386 blk_rq_poll_completion(rq, &wait.done); 1387 } else { 1388 /* 1389 * Prevent hang_check timer from firing at us during very long 1390 * I/O 1391 */ 1392 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1393 1394 if (hang_check) 1395 while (!wait_for_completion_io_timeout(&wait.done, 1396 hang_check * (HZ/2))) 1397 ; 1398 else 1399 wait_for_completion_io(&wait.done); 1400 } 1401 1402 return wait.ret; 1403 } 1404 EXPORT_SYMBOL(blk_execute_rq); 1405 1406 static void __blk_mq_requeue_request(struct request *rq) 1407 { 1408 struct request_queue *q = rq->q; 1409 1410 blk_mq_put_driver_tag(rq); 1411 1412 trace_block_rq_requeue(rq); 1413 rq_qos_requeue(q, rq); 1414 1415 if (blk_mq_request_started(rq)) { 1416 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1417 rq->rq_flags &= ~RQF_TIMED_OUT; 1418 } 1419 } 1420 1421 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1422 { 1423 struct request_queue *q = rq->q; 1424 unsigned long flags; 1425 1426 __blk_mq_requeue_request(rq); 1427 1428 /* this request will be re-inserted to io scheduler queue */ 1429 blk_mq_sched_requeue_request(rq); 1430 1431 spin_lock_irqsave(&q->requeue_lock, flags); 1432 list_add_tail(&rq->queuelist, &q->requeue_list); 1433 spin_unlock_irqrestore(&q->requeue_lock, flags); 1434 1435 if (kick_requeue_list) 1436 blk_mq_kick_requeue_list(q); 1437 } 1438 EXPORT_SYMBOL(blk_mq_requeue_request); 1439 1440 static void blk_mq_requeue_work(struct work_struct *work) 1441 { 1442 struct request_queue *q = 1443 container_of(work, struct request_queue, requeue_work.work); 1444 LIST_HEAD(rq_list); 1445 LIST_HEAD(flush_list); 1446 struct request *rq; 1447 1448 spin_lock_irq(&q->requeue_lock); 1449 list_splice_init(&q->requeue_list, &rq_list); 1450 list_splice_init(&q->flush_list, &flush_list); 1451 spin_unlock_irq(&q->requeue_lock); 1452 1453 while (!list_empty(&rq_list)) { 1454 rq = list_entry(rq_list.next, struct request, queuelist); 1455 /* 1456 * If RQF_DONTPREP ist set, the request has been started by the 1457 * driver already and might have driver-specific data allocated 1458 * already. Insert it into the hctx dispatch list to avoid 1459 * block layer merges for the request. 1460 */ 1461 if (rq->rq_flags & RQF_DONTPREP) { 1462 list_del_init(&rq->queuelist); 1463 blk_mq_request_bypass_insert(rq, 0); 1464 } else { 1465 list_del_init(&rq->queuelist); 1466 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1467 } 1468 } 1469 1470 while (!list_empty(&flush_list)) { 1471 rq = list_entry(flush_list.next, struct request, queuelist); 1472 list_del_init(&rq->queuelist); 1473 blk_mq_insert_request(rq, 0); 1474 } 1475 1476 blk_mq_run_hw_queues(q, false); 1477 } 1478 1479 void blk_mq_kick_requeue_list(struct request_queue *q) 1480 { 1481 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1482 } 1483 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1484 1485 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1486 unsigned long msecs) 1487 { 1488 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1489 msecs_to_jiffies(msecs)); 1490 } 1491 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1492 1493 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1494 { 1495 /* 1496 * If we find a request that isn't idle we know the queue is busy 1497 * as it's checked in the iter. 1498 * Return false to stop the iteration. 1499 */ 1500 if (blk_mq_request_started(rq)) { 1501 bool *busy = priv; 1502 1503 *busy = true; 1504 return false; 1505 } 1506 1507 return true; 1508 } 1509 1510 bool blk_mq_queue_inflight(struct request_queue *q) 1511 { 1512 bool busy = false; 1513 1514 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1515 return busy; 1516 } 1517 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1518 1519 static void blk_mq_rq_timed_out(struct request *req) 1520 { 1521 req->rq_flags |= RQF_TIMED_OUT; 1522 if (req->q->mq_ops->timeout) { 1523 enum blk_eh_timer_return ret; 1524 1525 ret = req->q->mq_ops->timeout(req); 1526 if (ret == BLK_EH_DONE) 1527 return; 1528 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1529 } 1530 1531 blk_add_timer(req); 1532 } 1533 1534 struct blk_expired_data { 1535 bool has_timedout_rq; 1536 unsigned long next; 1537 unsigned long timeout_start; 1538 }; 1539 1540 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1541 { 1542 unsigned long deadline; 1543 1544 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1545 return false; 1546 if (rq->rq_flags & RQF_TIMED_OUT) 1547 return false; 1548 1549 deadline = READ_ONCE(rq->deadline); 1550 if (time_after_eq(expired->timeout_start, deadline)) 1551 return true; 1552 1553 if (expired->next == 0) 1554 expired->next = deadline; 1555 else if (time_after(expired->next, deadline)) 1556 expired->next = deadline; 1557 return false; 1558 } 1559 1560 void blk_mq_put_rq_ref(struct request *rq) 1561 { 1562 if (is_flush_rq(rq)) { 1563 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1564 blk_mq_free_request(rq); 1565 } else if (req_ref_put_and_test(rq)) { 1566 __blk_mq_free_request(rq); 1567 } 1568 } 1569 1570 static bool blk_mq_check_expired(struct request *rq, void *priv) 1571 { 1572 struct blk_expired_data *expired = priv; 1573 1574 /* 1575 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1576 * be reallocated underneath the timeout handler's processing, then 1577 * the expire check is reliable. If the request is not expired, then 1578 * it was completed and reallocated as a new request after returning 1579 * from blk_mq_check_expired(). 1580 */ 1581 if (blk_mq_req_expired(rq, expired)) { 1582 expired->has_timedout_rq = true; 1583 return false; 1584 } 1585 return true; 1586 } 1587 1588 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1589 { 1590 struct blk_expired_data *expired = priv; 1591 1592 if (blk_mq_req_expired(rq, expired)) 1593 blk_mq_rq_timed_out(rq); 1594 return true; 1595 } 1596 1597 static void blk_mq_timeout_work(struct work_struct *work) 1598 { 1599 struct request_queue *q = 1600 container_of(work, struct request_queue, timeout_work); 1601 struct blk_expired_data expired = { 1602 .timeout_start = jiffies, 1603 }; 1604 struct blk_mq_hw_ctx *hctx; 1605 unsigned long i; 1606 1607 /* A deadlock might occur if a request is stuck requiring a 1608 * timeout at the same time a queue freeze is waiting 1609 * completion, since the timeout code would not be able to 1610 * acquire the queue reference here. 1611 * 1612 * That's why we don't use blk_queue_enter here; instead, we use 1613 * percpu_ref_tryget directly, because we need to be able to 1614 * obtain a reference even in the short window between the queue 1615 * starting to freeze, by dropping the first reference in 1616 * blk_freeze_queue_start, and the moment the last request is 1617 * consumed, marked by the instant q_usage_counter reaches 1618 * zero. 1619 */ 1620 if (!percpu_ref_tryget(&q->q_usage_counter)) 1621 return; 1622 1623 /* check if there is any timed-out request */ 1624 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1625 if (expired.has_timedout_rq) { 1626 /* 1627 * Before walking tags, we must ensure any submit started 1628 * before the current time has finished. Since the submit 1629 * uses srcu or rcu, wait for a synchronization point to 1630 * ensure all running submits have finished 1631 */ 1632 blk_mq_wait_quiesce_done(q->tag_set); 1633 1634 expired.next = 0; 1635 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1636 } 1637 1638 if (expired.next != 0) { 1639 mod_timer(&q->timeout, expired.next); 1640 } else { 1641 /* 1642 * Request timeouts are handled as a forward rolling timer. If 1643 * we end up here it means that no requests are pending and 1644 * also that no request has been pending for a while. Mark 1645 * each hctx as idle. 1646 */ 1647 queue_for_each_hw_ctx(q, hctx, i) { 1648 /* the hctx may be unmapped, so check it here */ 1649 if (blk_mq_hw_queue_mapped(hctx)) 1650 blk_mq_tag_idle(hctx); 1651 } 1652 } 1653 blk_queue_exit(q); 1654 } 1655 1656 struct flush_busy_ctx_data { 1657 struct blk_mq_hw_ctx *hctx; 1658 struct list_head *list; 1659 }; 1660 1661 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1662 { 1663 struct flush_busy_ctx_data *flush_data = data; 1664 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1665 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1666 enum hctx_type type = hctx->type; 1667 1668 spin_lock(&ctx->lock); 1669 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1670 sbitmap_clear_bit(sb, bitnr); 1671 spin_unlock(&ctx->lock); 1672 return true; 1673 } 1674 1675 /* 1676 * Process software queues that have been marked busy, splicing them 1677 * to the for-dispatch 1678 */ 1679 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1680 { 1681 struct flush_busy_ctx_data data = { 1682 .hctx = hctx, 1683 .list = list, 1684 }; 1685 1686 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1687 } 1688 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1689 1690 struct dispatch_rq_data { 1691 struct blk_mq_hw_ctx *hctx; 1692 struct request *rq; 1693 }; 1694 1695 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1696 void *data) 1697 { 1698 struct dispatch_rq_data *dispatch_data = data; 1699 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1700 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1701 enum hctx_type type = hctx->type; 1702 1703 spin_lock(&ctx->lock); 1704 if (!list_empty(&ctx->rq_lists[type])) { 1705 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1706 list_del_init(&dispatch_data->rq->queuelist); 1707 if (list_empty(&ctx->rq_lists[type])) 1708 sbitmap_clear_bit(sb, bitnr); 1709 } 1710 spin_unlock(&ctx->lock); 1711 1712 return !dispatch_data->rq; 1713 } 1714 1715 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1716 struct blk_mq_ctx *start) 1717 { 1718 unsigned off = start ? start->index_hw[hctx->type] : 0; 1719 struct dispatch_rq_data data = { 1720 .hctx = hctx, 1721 .rq = NULL, 1722 }; 1723 1724 __sbitmap_for_each_set(&hctx->ctx_map, off, 1725 dispatch_rq_from_ctx, &data); 1726 1727 return data.rq; 1728 } 1729 1730 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1731 { 1732 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1733 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1734 int tag; 1735 1736 blk_mq_tag_busy(rq->mq_hctx); 1737 1738 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1739 bt = &rq->mq_hctx->tags->breserved_tags; 1740 tag_offset = 0; 1741 } else { 1742 if (!hctx_may_queue(rq->mq_hctx, bt)) 1743 return false; 1744 } 1745 1746 tag = __sbitmap_queue_get(bt); 1747 if (tag == BLK_MQ_NO_TAG) 1748 return false; 1749 1750 rq->tag = tag + tag_offset; 1751 return true; 1752 } 1753 1754 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1755 { 1756 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1757 return false; 1758 1759 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1760 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1761 rq->rq_flags |= RQF_MQ_INFLIGHT; 1762 __blk_mq_inc_active_requests(hctx); 1763 } 1764 hctx->tags->rqs[rq->tag] = rq; 1765 return true; 1766 } 1767 1768 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1769 int flags, void *key) 1770 { 1771 struct blk_mq_hw_ctx *hctx; 1772 1773 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1774 1775 spin_lock(&hctx->dispatch_wait_lock); 1776 if (!list_empty(&wait->entry)) { 1777 struct sbitmap_queue *sbq; 1778 1779 list_del_init(&wait->entry); 1780 sbq = &hctx->tags->bitmap_tags; 1781 atomic_dec(&sbq->ws_active); 1782 } 1783 spin_unlock(&hctx->dispatch_wait_lock); 1784 1785 blk_mq_run_hw_queue(hctx, true); 1786 return 1; 1787 } 1788 1789 /* 1790 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1791 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1792 * restart. For both cases, take care to check the condition again after 1793 * marking us as waiting. 1794 */ 1795 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1796 struct request *rq) 1797 { 1798 struct sbitmap_queue *sbq; 1799 struct wait_queue_head *wq; 1800 wait_queue_entry_t *wait; 1801 bool ret; 1802 1803 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1804 !(blk_mq_is_shared_tags(hctx->flags))) { 1805 blk_mq_sched_mark_restart_hctx(hctx); 1806 1807 /* 1808 * It's possible that a tag was freed in the window between the 1809 * allocation failure and adding the hardware queue to the wait 1810 * queue. 1811 * 1812 * Don't clear RESTART here, someone else could have set it. 1813 * At most this will cost an extra queue run. 1814 */ 1815 return blk_mq_get_driver_tag(rq); 1816 } 1817 1818 wait = &hctx->dispatch_wait; 1819 if (!list_empty_careful(&wait->entry)) 1820 return false; 1821 1822 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1823 sbq = &hctx->tags->breserved_tags; 1824 else 1825 sbq = &hctx->tags->bitmap_tags; 1826 wq = &bt_wait_ptr(sbq, hctx)->wait; 1827 1828 spin_lock_irq(&wq->lock); 1829 spin_lock(&hctx->dispatch_wait_lock); 1830 if (!list_empty(&wait->entry)) { 1831 spin_unlock(&hctx->dispatch_wait_lock); 1832 spin_unlock_irq(&wq->lock); 1833 return false; 1834 } 1835 1836 atomic_inc(&sbq->ws_active); 1837 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1838 __add_wait_queue(wq, wait); 1839 1840 /* 1841 * It's possible that a tag was freed in the window between the 1842 * allocation failure and adding the hardware queue to the wait 1843 * queue. 1844 */ 1845 ret = blk_mq_get_driver_tag(rq); 1846 if (!ret) { 1847 spin_unlock(&hctx->dispatch_wait_lock); 1848 spin_unlock_irq(&wq->lock); 1849 return false; 1850 } 1851 1852 /* 1853 * We got a tag, remove ourselves from the wait queue to ensure 1854 * someone else gets the wakeup. 1855 */ 1856 list_del_init(&wait->entry); 1857 atomic_dec(&sbq->ws_active); 1858 spin_unlock(&hctx->dispatch_wait_lock); 1859 spin_unlock_irq(&wq->lock); 1860 1861 return true; 1862 } 1863 1864 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1865 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1866 /* 1867 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1868 * - EWMA is one simple way to compute running average value 1869 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1870 * - take 4 as factor for avoiding to get too small(0) result, and this 1871 * factor doesn't matter because EWMA decreases exponentially 1872 */ 1873 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1874 { 1875 unsigned int ewma; 1876 1877 ewma = hctx->dispatch_busy; 1878 1879 if (!ewma && !busy) 1880 return; 1881 1882 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1883 if (busy) 1884 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1885 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1886 1887 hctx->dispatch_busy = ewma; 1888 } 1889 1890 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1891 1892 static void blk_mq_handle_dev_resource(struct request *rq, 1893 struct list_head *list) 1894 { 1895 list_add(&rq->queuelist, list); 1896 __blk_mq_requeue_request(rq); 1897 } 1898 1899 static void blk_mq_handle_zone_resource(struct request *rq, 1900 struct list_head *zone_list) 1901 { 1902 /* 1903 * If we end up here it is because we cannot dispatch a request to a 1904 * specific zone due to LLD level zone-write locking or other zone 1905 * related resource not being available. In this case, set the request 1906 * aside in zone_list for retrying it later. 1907 */ 1908 list_add(&rq->queuelist, zone_list); 1909 __blk_mq_requeue_request(rq); 1910 } 1911 1912 enum prep_dispatch { 1913 PREP_DISPATCH_OK, 1914 PREP_DISPATCH_NO_TAG, 1915 PREP_DISPATCH_NO_BUDGET, 1916 }; 1917 1918 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1919 bool need_budget) 1920 { 1921 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1922 int budget_token = -1; 1923 1924 if (need_budget) { 1925 budget_token = blk_mq_get_dispatch_budget(rq->q); 1926 if (budget_token < 0) { 1927 blk_mq_put_driver_tag(rq); 1928 return PREP_DISPATCH_NO_BUDGET; 1929 } 1930 blk_mq_set_rq_budget_token(rq, budget_token); 1931 } 1932 1933 if (!blk_mq_get_driver_tag(rq)) { 1934 /* 1935 * The initial allocation attempt failed, so we need to 1936 * rerun the hardware queue when a tag is freed. The 1937 * waitqueue takes care of that. If the queue is run 1938 * before we add this entry back on the dispatch list, 1939 * we'll re-run it below. 1940 */ 1941 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1942 /* 1943 * All budgets not got from this function will be put 1944 * together during handling partial dispatch 1945 */ 1946 if (need_budget) 1947 blk_mq_put_dispatch_budget(rq->q, budget_token); 1948 return PREP_DISPATCH_NO_TAG; 1949 } 1950 } 1951 1952 return PREP_DISPATCH_OK; 1953 } 1954 1955 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1956 static void blk_mq_release_budgets(struct request_queue *q, 1957 struct list_head *list) 1958 { 1959 struct request *rq; 1960 1961 list_for_each_entry(rq, list, queuelist) { 1962 int budget_token = blk_mq_get_rq_budget_token(rq); 1963 1964 if (budget_token >= 0) 1965 blk_mq_put_dispatch_budget(q, budget_token); 1966 } 1967 } 1968 1969 /* 1970 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1971 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1972 * details) 1973 * Attention, we should explicitly call this in unusual cases: 1974 * 1) did not queue everything initially scheduled to queue 1975 * 2) the last attempt to queue a request failed 1976 */ 1977 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 1978 bool from_schedule) 1979 { 1980 if (hctx->queue->mq_ops->commit_rqs && queued) { 1981 trace_block_unplug(hctx->queue, queued, !from_schedule); 1982 hctx->queue->mq_ops->commit_rqs(hctx); 1983 } 1984 } 1985 1986 /* 1987 * Returns true if we did some work AND can potentially do more. 1988 */ 1989 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1990 unsigned int nr_budgets) 1991 { 1992 enum prep_dispatch prep; 1993 struct request_queue *q = hctx->queue; 1994 struct request *rq; 1995 int queued; 1996 blk_status_t ret = BLK_STS_OK; 1997 LIST_HEAD(zone_list); 1998 bool needs_resource = false; 1999 2000 if (list_empty(list)) 2001 return false; 2002 2003 /* 2004 * Now process all the entries, sending them to the driver. 2005 */ 2006 queued = 0; 2007 do { 2008 struct blk_mq_queue_data bd; 2009 2010 rq = list_first_entry(list, struct request, queuelist); 2011 2012 WARN_ON_ONCE(hctx != rq->mq_hctx); 2013 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2014 if (prep != PREP_DISPATCH_OK) 2015 break; 2016 2017 list_del_init(&rq->queuelist); 2018 2019 bd.rq = rq; 2020 bd.last = list_empty(list); 2021 2022 /* 2023 * once the request is queued to lld, no need to cover the 2024 * budget any more 2025 */ 2026 if (nr_budgets) 2027 nr_budgets--; 2028 ret = q->mq_ops->queue_rq(hctx, &bd); 2029 switch (ret) { 2030 case BLK_STS_OK: 2031 queued++; 2032 break; 2033 case BLK_STS_RESOURCE: 2034 needs_resource = true; 2035 fallthrough; 2036 case BLK_STS_DEV_RESOURCE: 2037 blk_mq_handle_dev_resource(rq, list); 2038 goto out; 2039 case BLK_STS_ZONE_RESOURCE: 2040 /* 2041 * Move the request to zone_list and keep going through 2042 * the dispatch list to find more requests the drive can 2043 * accept. 2044 */ 2045 blk_mq_handle_zone_resource(rq, &zone_list); 2046 needs_resource = true; 2047 break; 2048 default: 2049 blk_mq_end_request(rq, ret); 2050 } 2051 } while (!list_empty(list)); 2052 out: 2053 if (!list_empty(&zone_list)) 2054 list_splice_tail_init(&zone_list, list); 2055 2056 /* If we didn't flush the entire list, we could have told the driver 2057 * there was more coming, but that turned out to be a lie. 2058 */ 2059 if (!list_empty(list) || ret != BLK_STS_OK) 2060 blk_mq_commit_rqs(hctx, queued, false); 2061 2062 /* 2063 * Any items that need requeuing? Stuff them into hctx->dispatch, 2064 * that is where we will continue on next queue run. 2065 */ 2066 if (!list_empty(list)) { 2067 bool needs_restart; 2068 /* For non-shared tags, the RESTART check will suffice */ 2069 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2070 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2071 blk_mq_is_shared_tags(hctx->flags)); 2072 2073 if (nr_budgets) 2074 blk_mq_release_budgets(q, list); 2075 2076 spin_lock(&hctx->lock); 2077 list_splice_tail_init(list, &hctx->dispatch); 2078 spin_unlock(&hctx->lock); 2079 2080 /* 2081 * Order adding requests to hctx->dispatch and checking 2082 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2083 * in blk_mq_sched_restart(). Avoid restart code path to 2084 * miss the new added requests to hctx->dispatch, meantime 2085 * SCHED_RESTART is observed here. 2086 */ 2087 smp_mb(); 2088 2089 /* 2090 * If SCHED_RESTART was set by the caller of this function and 2091 * it is no longer set that means that it was cleared by another 2092 * thread and hence that a queue rerun is needed. 2093 * 2094 * If 'no_tag' is set, that means that we failed getting 2095 * a driver tag with an I/O scheduler attached. If our dispatch 2096 * waitqueue is no longer active, ensure that we run the queue 2097 * AFTER adding our entries back to the list. 2098 * 2099 * If no I/O scheduler has been configured it is possible that 2100 * the hardware queue got stopped and restarted before requests 2101 * were pushed back onto the dispatch list. Rerun the queue to 2102 * avoid starvation. Notes: 2103 * - blk_mq_run_hw_queue() checks whether or not a queue has 2104 * been stopped before rerunning a queue. 2105 * - Some but not all block drivers stop a queue before 2106 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2107 * and dm-rq. 2108 * 2109 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2110 * bit is set, run queue after a delay to avoid IO stalls 2111 * that could otherwise occur if the queue is idle. We'll do 2112 * similar if we couldn't get budget or couldn't lock a zone 2113 * and SCHED_RESTART is set. 2114 */ 2115 needs_restart = blk_mq_sched_needs_restart(hctx); 2116 if (prep == PREP_DISPATCH_NO_BUDGET) 2117 needs_resource = true; 2118 if (!needs_restart || 2119 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2120 blk_mq_run_hw_queue(hctx, true); 2121 else if (needs_resource) 2122 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2123 2124 blk_mq_update_dispatch_busy(hctx, true); 2125 return false; 2126 } 2127 2128 blk_mq_update_dispatch_busy(hctx, false); 2129 return true; 2130 } 2131 2132 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2133 { 2134 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2135 2136 if (cpu >= nr_cpu_ids) 2137 cpu = cpumask_first(hctx->cpumask); 2138 return cpu; 2139 } 2140 2141 /* 2142 * It'd be great if the workqueue API had a way to pass 2143 * in a mask and had some smarts for more clever placement. 2144 * For now we just round-robin here, switching for every 2145 * BLK_MQ_CPU_WORK_BATCH queued items. 2146 */ 2147 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2148 { 2149 bool tried = false; 2150 int next_cpu = hctx->next_cpu; 2151 2152 if (hctx->queue->nr_hw_queues == 1) 2153 return WORK_CPU_UNBOUND; 2154 2155 if (--hctx->next_cpu_batch <= 0) { 2156 select_cpu: 2157 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2158 cpu_online_mask); 2159 if (next_cpu >= nr_cpu_ids) 2160 next_cpu = blk_mq_first_mapped_cpu(hctx); 2161 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2162 } 2163 2164 /* 2165 * Do unbound schedule if we can't find a online CPU for this hctx, 2166 * and it should only happen in the path of handling CPU DEAD. 2167 */ 2168 if (!cpu_online(next_cpu)) { 2169 if (!tried) { 2170 tried = true; 2171 goto select_cpu; 2172 } 2173 2174 /* 2175 * Make sure to re-select CPU next time once after CPUs 2176 * in hctx->cpumask become online again. 2177 */ 2178 hctx->next_cpu = next_cpu; 2179 hctx->next_cpu_batch = 1; 2180 return WORK_CPU_UNBOUND; 2181 } 2182 2183 hctx->next_cpu = next_cpu; 2184 return next_cpu; 2185 } 2186 2187 /** 2188 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2189 * @hctx: Pointer to the hardware queue to run. 2190 * @msecs: Milliseconds of delay to wait before running the queue. 2191 * 2192 * Run a hardware queue asynchronously with a delay of @msecs. 2193 */ 2194 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2195 { 2196 if (unlikely(blk_mq_hctx_stopped(hctx))) 2197 return; 2198 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2199 msecs_to_jiffies(msecs)); 2200 } 2201 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2202 2203 /** 2204 * blk_mq_run_hw_queue - Start to run a hardware queue. 2205 * @hctx: Pointer to the hardware queue to run. 2206 * @async: If we want to run the queue asynchronously. 2207 * 2208 * Check if the request queue is not in a quiesced state and if there are 2209 * pending requests to be sent. If this is true, run the queue to send requests 2210 * to hardware. 2211 */ 2212 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2213 { 2214 bool need_run; 2215 2216 /* 2217 * We can't run the queue inline with interrupts disabled. 2218 */ 2219 WARN_ON_ONCE(!async && in_interrupt()); 2220 2221 /* 2222 * When queue is quiesced, we may be switching io scheduler, or 2223 * updating nr_hw_queues, or other things, and we can't run queue 2224 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2225 * 2226 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2227 * quiesced. 2228 */ 2229 __blk_mq_run_dispatch_ops(hctx->queue, false, 2230 need_run = !blk_queue_quiesced(hctx->queue) && 2231 blk_mq_hctx_has_pending(hctx)); 2232 2233 if (!need_run) 2234 return; 2235 2236 if (async || (hctx->flags & BLK_MQ_F_BLOCKING) || 2237 !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2238 blk_mq_delay_run_hw_queue(hctx, 0); 2239 return; 2240 } 2241 2242 blk_mq_run_dispatch_ops(hctx->queue, 2243 blk_mq_sched_dispatch_requests(hctx)); 2244 } 2245 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2246 2247 /* 2248 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2249 * scheduler. 2250 */ 2251 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2252 { 2253 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2254 /* 2255 * If the IO scheduler does not respect hardware queues when 2256 * dispatching, we just don't bother with multiple HW queues and 2257 * dispatch from hctx for the current CPU since running multiple queues 2258 * just causes lock contention inside the scheduler and pointless cache 2259 * bouncing. 2260 */ 2261 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2262 2263 if (!blk_mq_hctx_stopped(hctx)) 2264 return hctx; 2265 return NULL; 2266 } 2267 2268 /** 2269 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2270 * @q: Pointer to the request queue to run. 2271 * @async: If we want to run the queue asynchronously. 2272 */ 2273 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2274 { 2275 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2276 unsigned long i; 2277 2278 sq_hctx = NULL; 2279 if (blk_queue_sq_sched(q)) 2280 sq_hctx = blk_mq_get_sq_hctx(q); 2281 queue_for_each_hw_ctx(q, hctx, i) { 2282 if (blk_mq_hctx_stopped(hctx)) 2283 continue; 2284 /* 2285 * Dispatch from this hctx either if there's no hctx preferred 2286 * by IO scheduler or if it has requests that bypass the 2287 * scheduler. 2288 */ 2289 if (!sq_hctx || sq_hctx == hctx || 2290 !list_empty_careful(&hctx->dispatch)) 2291 blk_mq_run_hw_queue(hctx, async); 2292 } 2293 } 2294 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2295 2296 /** 2297 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2298 * @q: Pointer to the request queue to run. 2299 * @msecs: Milliseconds of delay to wait before running the queues. 2300 */ 2301 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2302 { 2303 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2304 unsigned long i; 2305 2306 sq_hctx = NULL; 2307 if (blk_queue_sq_sched(q)) 2308 sq_hctx = blk_mq_get_sq_hctx(q); 2309 queue_for_each_hw_ctx(q, hctx, i) { 2310 if (blk_mq_hctx_stopped(hctx)) 2311 continue; 2312 /* 2313 * If there is already a run_work pending, leave the 2314 * pending delay untouched. Otherwise, a hctx can stall 2315 * if another hctx is re-delaying the other's work 2316 * before the work executes. 2317 */ 2318 if (delayed_work_pending(&hctx->run_work)) 2319 continue; 2320 /* 2321 * Dispatch from this hctx either if there's no hctx preferred 2322 * by IO scheduler or if it has requests that bypass the 2323 * scheduler. 2324 */ 2325 if (!sq_hctx || sq_hctx == hctx || 2326 !list_empty_careful(&hctx->dispatch)) 2327 blk_mq_delay_run_hw_queue(hctx, msecs); 2328 } 2329 } 2330 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2331 2332 /* 2333 * This function is often used for pausing .queue_rq() by driver when 2334 * there isn't enough resource or some conditions aren't satisfied, and 2335 * BLK_STS_RESOURCE is usually returned. 2336 * 2337 * We do not guarantee that dispatch can be drained or blocked 2338 * after blk_mq_stop_hw_queue() returns. Please use 2339 * blk_mq_quiesce_queue() for that requirement. 2340 */ 2341 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2342 { 2343 cancel_delayed_work(&hctx->run_work); 2344 2345 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2346 } 2347 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2348 2349 /* 2350 * This function is often used for pausing .queue_rq() by driver when 2351 * there isn't enough resource or some conditions aren't satisfied, and 2352 * BLK_STS_RESOURCE is usually returned. 2353 * 2354 * We do not guarantee that dispatch can be drained or blocked 2355 * after blk_mq_stop_hw_queues() returns. Please use 2356 * blk_mq_quiesce_queue() for that requirement. 2357 */ 2358 void blk_mq_stop_hw_queues(struct request_queue *q) 2359 { 2360 struct blk_mq_hw_ctx *hctx; 2361 unsigned long i; 2362 2363 queue_for_each_hw_ctx(q, hctx, i) 2364 blk_mq_stop_hw_queue(hctx); 2365 } 2366 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2367 2368 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2369 { 2370 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2371 2372 blk_mq_run_hw_queue(hctx, false); 2373 } 2374 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2375 2376 void blk_mq_start_hw_queues(struct request_queue *q) 2377 { 2378 struct blk_mq_hw_ctx *hctx; 2379 unsigned long i; 2380 2381 queue_for_each_hw_ctx(q, hctx, i) 2382 blk_mq_start_hw_queue(hctx); 2383 } 2384 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2385 2386 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2387 { 2388 if (!blk_mq_hctx_stopped(hctx)) 2389 return; 2390 2391 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2392 blk_mq_run_hw_queue(hctx, async); 2393 } 2394 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2395 2396 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2397 { 2398 struct blk_mq_hw_ctx *hctx; 2399 unsigned long i; 2400 2401 queue_for_each_hw_ctx(q, hctx, i) 2402 blk_mq_start_stopped_hw_queue(hctx, async); 2403 } 2404 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2405 2406 static void blk_mq_run_work_fn(struct work_struct *work) 2407 { 2408 struct blk_mq_hw_ctx *hctx = 2409 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2410 2411 blk_mq_run_dispatch_ops(hctx->queue, 2412 blk_mq_sched_dispatch_requests(hctx)); 2413 } 2414 2415 /** 2416 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2417 * @rq: Pointer to request to be inserted. 2418 * @flags: BLK_MQ_INSERT_* 2419 * 2420 * Should only be used carefully, when the caller knows we want to 2421 * bypass a potential IO scheduler on the target device. 2422 */ 2423 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2424 { 2425 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2426 2427 spin_lock(&hctx->lock); 2428 if (flags & BLK_MQ_INSERT_AT_HEAD) 2429 list_add(&rq->queuelist, &hctx->dispatch); 2430 else 2431 list_add_tail(&rq->queuelist, &hctx->dispatch); 2432 spin_unlock(&hctx->lock); 2433 } 2434 2435 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2436 struct blk_mq_ctx *ctx, struct list_head *list, 2437 bool run_queue_async) 2438 { 2439 struct request *rq; 2440 enum hctx_type type = hctx->type; 2441 2442 /* 2443 * Try to issue requests directly if the hw queue isn't busy to save an 2444 * extra enqueue & dequeue to the sw queue. 2445 */ 2446 if (!hctx->dispatch_busy && !run_queue_async) { 2447 blk_mq_run_dispatch_ops(hctx->queue, 2448 blk_mq_try_issue_list_directly(hctx, list)); 2449 if (list_empty(list)) 2450 goto out; 2451 } 2452 2453 /* 2454 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2455 * offline now 2456 */ 2457 list_for_each_entry(rq, list, queuelist) { 2458 BUG_ON(rq->mq_ctx != ctx); 2459 trace_block_rq_insert(rq); 2460 } 2461 2462 spin_lock(&ctx->lock); 2463 list_splice_tail_init(list, &ctx->rq_lists[type]); 2464 blk_mq_hctx_mark_pending(hctx, ctx); 2465 spin_unlock(&ctx->lock); 2466 out: 2467 blk_mq_run_hw_queue(hctx, run_queue_async); 2468 } 2469 2470 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2471 { 2472 struct request_queue *q = rq->q; 2473 struct blk_mq_ctx *ctx = rq->mq_ctx; 2474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2475 2476 if (blk_rq_is_passthrough(rq)) { 2477 /* 2478 * Passthrough request have to be added to hctx->dispatch 2479 * directly. The device may be in a situation where it can't 2480 * handle FS request, and always returns BLK_STS_RESOURCE for 2481 * them, which gets them added to hctx->dispatch. 2482 * 2483 * If a passthrough request is required to unblock the queues, 2484 * and it is added to the scheduler queue, there is no chance to 2485 * dispatch it given we prioritize requests in hctx->dispatch. 2486 */ 2487 blk_mq_request_bypass_insert(rq, flags); 2488 } else if (req_op(rq) == REQ_OP_FLUSH) { 2489 /* 2490 * Firstly normal IO request is inserted to scheduler queue or 2491 * sw queue, meantime we add flush request to dispatch queue( 2492 * hctx->dispatch) directly and there is at most one in-flight 2493 * flush request for each hw queue, so it doesn't matter to add 2494 * flush request to tail or front of the dispatch queue. 2495 * 2496 * Secondly in case of NCQ, flush request belongs to non-NCQ 2497 * command, and queueing it will fail when there is any 2498 * in-flight normal IO request(NCQ command). When adding flush 2499 * rq to the front of hctx->dispatch, it is easier to introduce 2500 * extra time to flush rq's latency because of S_SCHED_RESTART 2501 * compared with adding to the tail of dispatch queue, then 2502 * chance of flush merge is increased, and less flush requests 2503 * will be issued to controller. It is observed that ~10% time 2504 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2505 * drive when adding flush rq to the front of hctx->dispatch. 2506 * 2507 * Simply queue flush rq to the front of hctx->dispatch so that 2508 * intensive flush workloads can benefit in case of NCQ HW. 2509 */ 2510 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2511 } else if (q->elevator) { 2512 LIST_HEAD(list); 2513 2514 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2515 2516 list_add(&rq->queuelist, &list); 2517 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2518 } else { 2519 trace_block_rq_insert(rq); 2520 2521 spin_lock(&ctx->lock); 2522 if (flags & BLK_MQ_INSERT_AT_HEAD) 2523 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2524 else 2525 list_add_tail(&rq->queuelist, 2526 &ctx->rq_lists[hctx->type]); 2527 blk_mq_hctx_mark_pending(hctx, ctx); 2528 spin_unlock(&ctx->lock); 2529 } 2530 } 2531 2532 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2533 unsigned int nr_segs) 2534 { 2535 int err; 2536 2537 if (bio->bi_opf & REQ_RAHEAD) 2538 rq->cmd_flags |= REQ_FAILFAST_MASK; 2539 2540 rq->__sector = bio->bi_iter.bi_sector; 2541 blk_rq_bio_prep(rq, bio, nr_segs); 2542 2543 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2544 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2545 WARN_ON_ONCE(err); 2546 2547 blk_account_io_start(rq); 2548 } 2549 2550 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2551 struct request *rq, bool last) 2552 { 2553 struct request_queue *q = rq->q; 2554 struct blk_mq_queue_data bd = { 2555 .rq = rq, 2556 .last = last, 2557 }; 2558 blk_status_t ret; 2559 2560 /* 2561 * For OK queue, we are done. For error, caller may kill it. 2562 * Any other error (busy), just add it to our list as we 2563 * previously would have done. 2564 */ 2565 ret = q->mq_ops->queue_rq(hctx, &bd); 2566 switch (ret) { 2567 case BLK_STS_OK: 2568 blk_mq_update_dispatch_busy(hctx, false); 2569 break; 2570 case BLK_STS_RESOURCE: 2571 case BLK_STS_DEV_RESOURCE: 2572 blk_mq_update_dispatch_busy(hctx, true); 2573 __blk_mq_requeue_request(rq); 2574 break; 2575 default: 2576 blk_mq_update_dispatch_busy(hctx, false); 2577 break; 2578 } 2579 2580 return ret; 2581 } 2582 2583 static bool blk_mq_get_budget_and_tag(struct request *rq) 2584 { 2585 int budget_token; 2586 2587 budget_token = blk_mq_get_dispatch_budget(rq->q); 2588 if (budget_token < 0) 2589 return false; 2590 blk_mq_set_rq_budget_token(rq, budget_token); 2591 if (!blk_mq_get_driver_tag(rq)) { 2592 blk_mq_put_dispatch_budget(rq->q, budget_token); 2593 return false; 2594 } 2595 return true; 2596 } 2597 2598 /** 2599 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2600 * @hctx: Pointer of the associated hardware queue. 2601 * @rq: Pointer to request to be sent. 2602 * 2603 * If the device has enough resources to accept a new request now, send the 2604 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2605 * we can try send it another time in the future. Requests inserted at this 2606 * queue have higher priority. 2607 */ 2608 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2609 struct request *rq) 2610 { 2611 blk_status_t ret; 2612 2613 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2614 blk_mq_insert_request(rq, 0); 2615 return; 2616 } 2617 2618 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2619 blk_mq_insert_request(rq, 0); 2620 blk_mq_run_hw_queue(hctx, false); 2621 return; 2622 } 2623 2624 ret = __blk_mq_issue_directly(hctx, rq, true); 2625 switch (ret) { 2626 case BLK_STS_OK: 2627 break; 2628 case BLK_STS_RESOURCE: 2629 case BLK_STS_DEV_RESOURCE: 2630 blk_mq_request_bypass_insert(rq, 0); 2631 blk_mq_run_hw_queue(hctx, false); 2632 break; 2633 default: 2634 blk_mq_end_request(rq, ret); 2635 break; 2636 } 2637 } 2638 2639 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2640 { 2641 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2642 2643 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2644 blk_mq_insert_request(rq, 0); 2645 return BLK_STS_OK; 2646 } 2647 2648 if (!blk_mq_get_budget_and_tag(rq)) 2649 return BLK_STS_RESOURCE; 2650 return __blk_mq_issue_directly(hctx, rq, last); 2651 } 2652 2653 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2654 { 2655 struct blk_mq_hw_ctx *hctx = NULL; 2656 struct request *rq; 2657 int queued = 0; 2658 blk_status_t ret = BLK_STS_OK; 2659 2660 while ((rq = rq_list_pop(&plug->mq_list))) { 2661 bool last = rq_list_empty(plug->mq_list); 2662 2663 if (hctx != rq->mq_hctx) { 2664 if (hctx) { 2665 blk_mq_commit_rqs(hctx, queued, false); 2666 queued = 0; 2667 } 2668 hctx = rq->mq_hctx; 2669 } 2670 2671 ret = blk_mq_request_issue_directly(rq, last); 2672 switch (ret) { 2673 case BLK_STS_OK: 2674 queued++; 2675 break; 2676 case BLK_STS_RESOURCE: 2677 case BLK_STS_DEV_RESOURCE: 2678 blk_mq_request_bypass_insert(rq, 0); 2679 blk_mq_run_hw_queue(hctx, false); 2680 goto out; 2681 default: 2682 blk_mq_end_request(rq, ret); 2683 break; 2684 } 2685 } 2686 2687 out: 2688 if (ret != BLK_STS_OK) 2689 blk_mq_commit_rqs(hctx, queued, false); 2690 } 2691 2692 static void __blk_mq_flush_plug_list(struct request_queue *q, 2693 struct blk_plug *plug) 2694 { 2695 if (blk_queue_quiesced(q)) 2696 return; 2697 q->mq_ops->queue_rqs(&plug->mq_list); 2698 } 2699 2700 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2701 { 2702 struct blk_mq_hw_ctx *this_hctx = NULL; 2703 struct blk_mq_ctx *this_ctx = NULL; 2704 struct request *requeue_list = NULL; 2705 struct request **requeue_lastp = &requeue_list; 2706 unsigned int depth = 0; 2707 bool is_passthrough = false; 2708 LIST_HEAD(list); 2709 2710 do { 2711 struct request *rq = rq_list_pop(&plug->mq_list); 2712 2713 if (!this_hctx) { 2714 this_hctx = rq->mq_hctx; 2715 this_ctx = rq->mq_ctx; 2716 is_passthrough = blk_rq_is_passthrough(rq); 2717 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2718 is_passthrough != blk_rq_is_passthrough(rq)) { 2719 rq_list_add_tail(&requeue_lastp, rq); 2720 continue; 2721 } 2722 list_add(&rq->queuelist, &list); 2723 depth++; 2724 } while (!rq_list_empty(plug->mq_list)); 2725 2726 plug->mq_list = requeue_list; 2727 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2728 2729 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2730 /* passthrough requests should never be issued to the I/O scheduler */ 2731 if (is_passthrough) { 2732 spin_lock(&this_hctx->lock); 2733 list_splice_tail_init(&list, &this_hctx->dispatch); 2734 spin_unlock(&this_hctx->lock); 2735 blk_mq_run_hw_queue(this_hctx, from_sched); 2736 } else if (this_hctx->queue->elevator) { 2737 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2738 &list, 0); 2739 blk_mq_run_hw_queue(this_hctx, from_sched); 2740 } else { 2741 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2742 } 2743 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2744 } 2745 2746 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2747 { 2748 struct request *rq; 2749 2750 if (rq_list_empty(plug->mq_list)) 2751 return; 2752 plug->rq_count = 0; 2753 2754 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2755 struct request_queue *q; 2756 2757 rq = rq_list_peek(&plug->mq_list); 2758 q = rq->q; 2759 2760 /* 2761 * Peek first request and see if we have a ->queue_rqs() hook. 2762 * If we do, we can dispatch the whole plug list in one go. We 2763 * already know at this point that all requests belong to the 2764 * same queue, caller must ensure that's the case. 2765 * 2766 * Since we pass off the full list to the driver at this point, 2767 * we do not increment the active request count for the queue. 2768 * Bypass shared tags for now because of that. 2769 */ 2770 if (q->mq_ops->queue_rqs && 2771 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2772 blk_mq_run_dispatch_ops(q, 2773 __blk_mq_flush_plug_list(q, plug)); 2774 if (rq_list_empty(plug->mq_list)) 2775 return; 2776 } 2777 2778 blk_mq_run_dispatch_ops(q, 2779 blk_mq_plug_issue_direct(plug)); 2780 if (rq_list_empty(plug->mq_list)) 2781 return; 2782 } 2783 2784 do { 2785 blk_mq_dispatch_plug_list(plug, from_schedule); 2786 } while (!rq_list_empty(plug->mq_list)); 2787 } 2788 2789 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2790 struct list_head *list) 2791 { 2792 int queued = 0; 2793 blk_status_t ret = BLK_STS_OK; 2794 2795 while (!list_empty(list)) { 2796 struct request *rq = list_first_entry(list, struct request, 2797 queuelist); 2798 2799 list_del_init(&rq->queuelist); 2800 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2801 switch (ret) { 2802 case BLK_STS_OK: 2803 queued++; 2804 break; 2805 case BLK_STS_RESOURCE: 2806 case BLK_STS_DEV_RESOURCE: 2807 blk_mq_request_bypass_insert(rq, 0); 2808 if (list_empty(list)) 2809 blk_mq_run_hw_queue(hctx, false); 2810 goto out; 2811 default: 2812 blk_mq_end_request(rq, ret); 2813 break; 2814 } 2815 } 2816 2817 out: 2818 if (ret != BLK_STS_OK) 2819 blk_mq_commit_rqs(hctx, queued, false); 2820 } 2821 2822 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2823 struct bio *bio, unsigned int nr_segs) 2824 { 2825 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2826 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2827 return true; 2828 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2829 return true; 2830 } 2831 return false; 2832 } 2833 2834 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2835 struct blk_plug *plug, 2836 struct bio *bio, 2837 unsigned int nsegs) 2838 { 2839 struct blk_mq_alloc_data data = { 2840 .q = q, 2841 .nr_tags = 1, 2842 .cmd_flags = bio->bi_opf, 2843 }; 2844 struct request *rq; 2845 2846 if (unlikely(bio_queue_enter(bio))) 2847 return NULL; 2848 2849 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2850 goto queue_exit; 2851 2852 rq_qos_throttle(q, bio); 2853 2854 if (plug) { 2855 data.nr_tags = plug->nr_ios; 2856 plug->nr_ios = 1; 2857 data.cached_rq = &plug->cached_rq; 2858 } 2859 2860 rq = __blk_mq_alloc_requests(&data); 2861 if (rq) 2862 return rq; 2863 rq_qos_cleanup(q, bio); 2864 if (bio->bi_opf & REQ_NOWAIT) 2865 bio_wouldblock_error(bio); 2866 queue_exit: 2867 blk_queue_exit(q); 2868 return NULL; 2869 } 2870 2871 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2872 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2873 { 2874 struct request *rq; 2875 enum hctx_type type, hctx_type; 2876 2877 if (!plug) 2878 return NULL; 2879 rq = rq_list_peek(&plug->cached_rq); 2880 if (!rq || rq->q != q) 2881 return NULL; 2882 2883 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2884 *bio = NULL; 2885 return NULL; 2886 } 2887 2888 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2889 hctx_type = rq->mq_hctx->type; 2890 if (type != hctx_type && 2891 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2892 return NULL; 2893 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2894 return NULL; 2895 2896 /* 2897 * If any qos ->throttle() end up blocking, we will have flushed the 2898 * plug and hence killed the cached_rq list as well. Pop this entry 2899 * before we throttle. 2900 */ 2901 plug->cached_rq = rq_list_next(rq); 2902 rq_qos_throttle(q, *bio); 2903 2904 rq->cmd_flags = (*bio)->bi_opf; 2905 INIT_LIST_HEAD(&rq->queuelist); 2906 return rq; 2907 } 2908 2909 static void bio_set_ioprio(struct bio *bio) 2910 { 2911 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2912 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2913 bio->bi_ioprio = get_current_ioprio(); 2914 blkcg_set_ioprio(bio); 2915 } 2916 2917 /** 2918 * blk_mq_submit_bio - Create and send a request to block device. 2919 * @bio: Bio pointer. 2920 * 2921 * Builds up a request structure from @q and @bio and send to the device. The 2922 * request may not be queued directly to hardware if: 2923 * * This request can be merged with another one 2924 * * We want to place request at plug queue for possible future merging 2925 * * There is an IO scheduler active at this queue 2926 * 2927 * It will not queue the request if there is an error with the bio, or at the 2928 * request creation. 2929 */ 2930 void blk_mq_submit_bio(struct bio *bio) 2931 { 2932 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2933 struct blk_plug *plug = blk_mq_plug(bio); 2934 const int is_sync = op_is_sync(bio->bi_opf); 2935 struct blk_mq_hw_ctx *hctx; 2936 struct request *rq; 2937 unsigned int nr_segs = 1; 2938 blk_status_t ret; 2939 2940 bio = blk_queue_bounce(bio, q); 2941 if (bio_may_exceed_limits(bio, &q->limits)) { 2942 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2943 if (!bio) 2944 return; 2945 } 2946 2947 if (!bio_integrity_prep(bio)) 2948 return; 2949 2950 bio_set_ioprio(bio); 2951 2952 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2953 if (!rq) { 2954 if (!bio) 2955 return; 2956 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2957 if (unlikely(!rq)) 2958 return; 2959 } 2960 2961 trace_block_getrq(bio); 2962 2963 rq_qos_track(q, rq, bio); 2964 2965 blk_mq_bio_to_request(rq, bio, nr_segs); 2966 2967 ret = blk_crypto_rq_get_keyslot(rq); 2968 if (ret != BLK_STS_OK) { 2969 bio->bi_status = ret; 2970 bio_endio(bio); 2971 blk_mq_free_request(rq); 2972 return; 2973 } 2974 2975 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 2976 return; 2977 2978 if (plug) { 2979 blk_add_rq_to_plug(plug, rq); 2980 return; 2981 } 2982 2983 hctx = rq->mq_hctx; 2984 if ((rq->rq_flags & RQF_USE_SCHED) || 2985 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 2986 blk_mq_insert_request(rq, 0); 2987 blk_mq_run_hw_queue(hctx, true); 2988 } else { 2989 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 2990 } 2991 } 2992 2993 #ifdef CONFIG_BLK_MQ_STACKING 2994 /** 2995 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2996 * @rq: the request being queued 2997 */ 2998 blk_status_t blk_insert_cloned_request(struct request *rq) 2999 { 3000 struct request_queue *q = rq->q; 3001 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3002 unsigned int max_segments = blk_rq_get_max_segments(rq); 3003 blk_status_t ret; 3004 3005 if (blk_rq_sectors(rq) > max_sectors) { 3006 /* 3007 * SCSI device does not have a good way to return if 3008 * Write Same/Zero is actually supported. If a device rejects 3009 * a non-read/write command (discard, write same,etc.) the 3010 * low-level device driver will set the relevant queue limit to 3011 * 0 to prevent blk-lib from issuing more of the offending 3012 * operations. Commands queued prior to the queue limit being 3013 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3014 * errors being propagated to upper layers. 3015 */ 3016 if (max_sectors == 0) 3017 return BLK_STS_NOTSUPP; 3018 3019 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3020 __func__, blk_rq_sectors(rq), max_sectors); 3021 return BLK_STS_IOERR; 3022 } 3023 3024 /* 3025 * The queue settings related to segment counting may differ from the 3026 * original queue. 3027 */ 3028 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3029 if (rq->nr_phys_segments > max_segments) { 3030 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3031 __func__, rq->nr_phys_segments, max_segments); 3032 return BLK_STS_IOERR; 3033 } 3034 3035 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3036 return BLK_STS_IOERR; 3037 3038 ret = blk_crypto_rq_get_keyslot(rq); 3039 if (ret != BLK_STS_OK) 3040 return ret; 3041 3042 blk_account_io_start(rq); 3043 3044 /* 3045 * Since we have a scheduler attached on the top device, 3046 * bypass a potential scheduler on the bottom device for 3047 * insert. 3048 */ 3049 blk_mq_run_dispatch_ops(q, 3050 ret = blk_mq_request_issue_directly(rq, true)); 3051 if (ret) 3052 blk_account_io_done(rq, ktime_get_ns()); 3053 return ret; 3054 } 3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3056 3057 /** 3058 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3059 * @rq: the clone request to be cleaned up 3060 * 3061 * Description: 3062 * Free all bios in @rq for a cloned request. 3063 */ 3064 void blk_rq_unprep_clone(struct request *rq) 3065 { 3066 struct bio *bio; 3067 3068 while ((bio = rq->bio) != NULL) { 3069 rq->bio = bio->bi_next; 3070 3071 bio_put(bio); 3072 } 3073 } 3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3075 3076 /** 3077 * blk_rq_prep_clone - Helper function to setup clone request 3078 * @rq: the request to be setup 3079 * @rq_src: original request to be cloned 3080 * @bs: bio_set that bios for clone are allocated from 3081 * @gfp_mask: memory allocation mask for bio 3082 * @bio_ctr: setup function to be called for each clone bio. 3083 * Returns %0 for success, non %0 for failure. 3084 * @data: private data to be passed to @bio_ctr 3085 * 3086 * Description: 3087 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3088 * Also, pages which the original bios are pointing to are not copied 3089 * and the cloned bios just point same pages. 3090 * So cloned bios must be completed before original bios, which means 3091 * the caller must complete @rq before @rq_src. 3092 */ 3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3094 struct bio_set *bs, gfp_t gfp_mask, 3095 int (*bio_ctr)(struct bio *, struct bio *, void *), 3096 void *data) 3097 { 3098 struct bio *bio, *bio_src; 3099 3100 if (!bs) 3101 bs = &fs_bio_set; 3102 3103 __rq_for_each_bio(bio_src, rq_src) { 3104 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3105 bs); 3106 if (!bio) 3107 goto free_and_out; 3108 3109 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3110 goto free_and_out; 3111 3112 if (rq->bio) { 3113 rq->biotail->bi_next = bio; 3114 rq->biotail = bio; 3115 } else { 3116 rq->bio = rq->biotail = bio; 3117 } 3118 bio = NULL; 3119 } 3120 3121 /* Copy attributes of the original request to the clone request. */ 3122 rq->__sector = blk_rq_pos(rq_src); 3123 rq->__data_len = blk_rq_bytes(rq_src); 3124 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3125 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3126 rq->special_vec = rq_src->special_vec; 3127 } 3128 rq->nr_phys_segments = rq_src->nr_phys_segments; 3129 rq->ioprio = rq_src->ioprio; 3130 3131 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3132 goto free_and_out; 3133 3134 return 0; 3135 3136 free_and_out: 3137 if (bio) 3138 bio_put(bio); 3139 blk_rq_unprep_clone(rq); 3140 3141 return -ENOMEM; 3142 } 3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3144 #endif /* CONFIG_BLK_MQ_STACKING */ 3145 3146 /* 3147 * Steal bios from a request and add them to a bio list. 3148 * The request must not have been partially completed before. 3149 */ 3150 void blk_steal_bios(struct bio_list *list, struct request *rq) 3151 { 3152 if (rq->bio) { 3153 if (list->tail) 3154 list->tail->bi_next = rq->bio; 3155 else 3156 list->head = rq->bio; 3157 list->tail = rq->biotail; 3158 3159 rq->bio = NULL; 3160 rq->biotail = NULL; 3161 } 3162 3163 rq->__data_len = 0; 3164 } 3165 EXPORT_SYMBOL_GPL(blk_steal_bios); 3166 3167 static size_t order_to_size(unsigned int order) 3168 { 3169 return (size_t)PAGE_SIZE << order; 3170 } 3171 3172 /* called before freeing request pool in @tags */ 3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3174 struct blk_mq_tags *tags) 3175 { 3176 struct page *page; 3177 unsigned long flags; 3178 3179 /* 3180 * There is no need to clear mapping if driver tags is not initialized 3181 * or the mapping belongs to the driver tags. 3182 */ 3183 if (!drv_tags || drv_tags == tags) 3184 return; 3185 3186 list_for_each_entry(page, &tags->page_list, lru) { 3187 unsigned long start = (unsigned long)page_address(page); 3188 unsigned long end = start + order_to_size(page->private); 3189 int i; 3190 3191 for (i = 0; i < drv_tags->nr_tags; i++) { 3192 struct request *rq = drv_tags->rqs[i]; 3193 unsigned long rq_addr = (unsigned long)rq; 3194 3195 if (rq_addr >= start && rq_addr < end) { 3196 WARN_ON_ONCE(req_ref_read(rq) != 0); 3197 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3198 } 3199 } 3200 } 3201 3202 /* 3203 * Wait until all pending iteration is done. 3204 * 3205 * Request reference is cleared and it is guaranteed to be observed 3206 * after the ->lock is released. 3207 */ 3208 spin_lock_irqsave(&drv_tags->lock, flags); 3209 spin_unlock_irqrestore(&drv_tags->lock, flags); 3210 } 3211 3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3213 unsigned int hctx_idx) 3214 { 3215 struct blk_mq_tags *drv_tags; 3216 struct page *page; 3217 3218 if (list_empty(&tags->page_list)) 3219 return; 3220 3221 if (blk_mq_is_shared_tags(set->flags)) 3222 drv_tags = set->shared_tags; 3223 else 3224 drv_tags = set->tags[hctx_idx]; 3225 3226 if (tags->static_rqs && set->ops->exit_request) { 3227 int i; 3228 3229 for (i = 0; i < tags->nr_tags; i++) { 3230 struct request *rq = tags->static_rqs[i]; 3231 3232 if (!rq) 3233 continue; 3234 set->ops->exit_request(set, rq, hctx_idx); 3235 tags->static_rqs[i] = NULL; 3236 } 3237 } 3238 3239 blk_mq_clear_rq_mapping(drv_tags, tags); 3240 3241 while (!list_empty(&tags->page_list)) { 3242 page = list_first_entry(&tags->page_list, struct page, lru); 3243 list_del_init(&page->lru); 3244 /* 3245 * Remove kmemleak object previously allocated in 3246 * blk_mq_alloc_rqs(). 3247 */ 3248 kmemleak_free(page_address(page)); 3249 __free_pages(page, page->private); 3250 } 3251 } 3252 3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3254 { 3255 kfree(tags->rqs); 3256 tags->rqs = NULL; 3257 kfree(tags->static_rqs); 3258 tags->static_rqs = NULL; 3259 3260 blk_mq_free_tags(tags); 3261 } 3262 3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3264 unsigned int hctx_idx) 3265 { 3266 int i; 3267 3268 for (i = 0; i < set->nr_maps; i++) { 3269 unsigned int start = set->map[i].queue_offset; 3270 unsigned int end = start + set->map[i].nr_queues; 3271 3272 if (hctx_idx >= start && hctx_idx < end) 3273 break; 3274 } 3275 3276 if (i >= set->nr_maps) 3277 i = HCTX_TYPE_DEFAULT; 3278 3279 return i; 3280 } 3281 3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3283 unsigned int hctx_idx) 3284 { 3285 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3286 3287 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3288 } 3289 3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3291 unsigned int hctx_idx, 3292 unsigned int nr_tags, 3293 unsigned int reserved_tags) 3294 { 3295 int node = blk_mq_get_hctx_node(set, hctx_idx); 3296 struct blk_mq_tags *tags; 3297 3298 if (node == NUMA_NO_NODE) 3299 node = set->numa_node; 3300 3301 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3302 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3303 if (!tags) 3304 return NULL; 3305 3306 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3307 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3308 node); 3309 if (!tags->rqs) 3310 goto err_free_tags; 3311 3312 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3313 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3314 node); 3315 if (!tags->static_rqs) 3316 goto err_free_rqs; 3317 3318 return tags; 3319 3320 err_free_rqs: 3321 kfree(tags->rqs); 3322 err_free_tags: 3323 blk_mq_free_tags(tags); 3324 return NULL; 3325 } 3326 3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3328 unsigned int hctx_idx, int node) 3329 { 3330 int ret; 3331 3332 if (set->ops->init_request) { 3333 ret = set->ops->init_request(set, rq, hctx_idx, node); 3334 if (ret) 3335 return ret; 3336 } 3337 3338 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3339 return 0; 3340 } 3341 3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3343 struct blk_mq_tags *tags, 3344 unsigned int hctx_idx, unsigned int depth) 3345 { 3346 unsigned int i, j, entries_per_page, max_order = 4; 3347 int node = blk_mq_get_hctx_node(set, hctx_idx); 3348 size_t rq_size, left; 3349 3350 if (node == NUMA_NO_NODE) 3351 node = set->numa_node; 3352 3353 INIT_LIST_HEAD(&tags->page_list); 3354 3355 /* 3356 * rq_size is the size of the request plus driver payload, rounded 3357 * to the cacheline size 3358 */ 3359 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3360 cache_line_size()); 3361 left = rq_size * depth; 3362 3363 for (i = 0; i < depth; ) { 3364 int this_order = max_order; 3365 struct page *page; 3366 int to_do; 3367 void *p; 3368 3369 while (this_order && left < order_to_size(this_order - 1)) 3370 this_order--; 3371 3372 do { 3373 page = alloc_pages_node(node, 3374 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3375 this_order); 3376 if (page) 3377 break; 3378 if (!this_order--) 3379 break; 3380 if (order_to_size(this_order) < rq_size) 3381 break; 3382 } while (1); 3383 3384 if (!page) 3385 goto fail; 3386 3387 page->private = this_order; 3388 list_add_tail(&page->lru, &tags->page_list); 3389 3390 p = page_address(page); 3391 /* 3392 * Allow kmemleak to scan these pages as they contain pointers 3393 * to additional allocations like via ops->init_request(). 3394 */ 3395 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3396 entries_per_page = order_to_size(this_order) / rq_size; 3397 to_do = min(entries_per_page, depth - i); 3398 left -= to_do * rq_size; 3399 for (j = 0; j < to_do; j++) { 3400 struct request *rq = p; 3401 3402 tags->static_rqs[i] = rq; 3403 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3404 tags->static_rqs[i] = NULL; 3405 goto fail; 3406 } 3407 3408 p += rq_size; 3409 i++; 3410 } 3411 } 3412 return 0; 3413 3414 fail: 3415 blk_mq_free_rqs(set, tags, hctx_idx); 3416 return -ENOMEM; 3417 } 3418 3419 struct rq_iter_data { 3420 struct blk_mq_hw_ctx *hctx; 3421 bool has_rq; 3422 }; 3423 3424 static bool blk_mq_has_request(struct request *rq, void *data) 3425 { 3426 struct rq_iter_data *iter_data = data; 3427 3428 if (rq->mq_hctx != iter_data->hctx) 3429 return true; 3430 iter_data->has_rq = true; 3431 return false; 3432 } 3433 3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3435 { 3436 struct blk_mq_tags *tags = hctx->sched_tags ? 3437 hctx->sched_tags : hctx->tags; 3438 struct rq_iter_data data = { 3439 .hctx = hctx, 3440 }; 3441 3442 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3443 return data.has_rq; 3444 } 3445 3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3447 struct blk_mq_hw_ctx *hctx) 3448 { 3449 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3450 return false; 3451 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3452 return false; 3453 return true; 3454 } 3455 3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3457 { 3458 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3459 struct blk_mq_hw_ctx, cpuhp_online); 3460 3461 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3462 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3463 return 0; 3464 3465 /* 3466 * Prevent new request from being allocated on the current hctx. 3467 * 3468 * The smp_mb__after_atomic() Pairs with the implied barrier in 3469 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3470 * seen once we return from the tag allocator. 3471 */ 3472 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3473 smp_mb__after_atomic(); 3474 3475 /* 3476 * Try to grab a reference to the queue and wait for any outstanding 3477 * requests. If we could not grab a reference the queue has been 3478 * frozen and there are no requests. 3479 */ 3480 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3481 while (blk_mq_hctx_has_requests(hctx)) 3482 msleep(5); 3483 percpu_ref_put(&hctx->queue->q_usage_counter); 3484 } 3485 3486 return 0; 3487 } 3488 3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3490 { 3491 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3492 struct blk_mq_hw_ctx, cpuhp_online); 3493 3494 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3495 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3496 return 0; 3497 } 3498 3499 /* 3500 * 'cpu' is going away. splice any existing rq_list entries from this 3501 * software queue to the hw queue dispatch list, and ensure that it 3502 * gets run. 3503 */ 3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3505 { 3506 struct blk_mq_hw_ctx *hctx; 3507 struct blk_mq_ctx *ctx; 3508 LIST_HEAD(tmp); 3509 enum hctx_type type; 3510 3511 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3512 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3513 return 0; 3514 3515 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3516 type = hctx->type; 3517 3518 spin_lock(&ctx->lock); 3519 if (!list_empty(&ctx->rq_lists[type])) { 3520 list_splice_init(&ctx->rq_lists[type], &tmp); 3521 blk_mq_hctx_clear_pending(hctx, ctx); 3522 } 3523 spin_unlock(&ctx->lock); 3524 3525 if (list_empty(&tmp)) 3526 return 0; 3527 3528 spin_lock(&hctx->lock); 3529 list_splice_tail_init(&tmp, &hctx->dispatch); 3530 spin_unlock(&hctx->lock); 3531 3532 blk_mq_run_hw_queue(hctx, true); 3533 return 0; 3534 } 3535 3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3537 { 3538 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3539 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3540 &hctx->cpuhp_online); 3541 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3542 &hctx->cpuhp_dead); 3543 } 3544 3545 /* 3546 * Before freeing hw queue, clearing the flush request reference in 3547 * tags->rqs[] for avoiding potential UAF. 3548 */ 3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3550 unsigned int queue_depth, struct request *flush_rq) 3551 { 3552 int i; 3553 unsigned long flags; 3554 3555 /* The hw queue may not be mapped yet */ 3556 if (!tags) 3557 return; 3558 3559 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3560 3561 for (i = 0; i < queue_depth; i++) 3562 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3563 3564 /* 3565 * Wait until all pending iteration is done. 3566 * 3567 * Request reference is cleared and it is guaranteed to be observed 3568 * after the ->lock is released. 3569 */ 3570 spin_lock_irqsave(&tags->lock, flags); 3571 spin_unlock_irqrestore(&tags->lock, flags); 3572 } 3573 3574 /* hctx->ctxs will be freed in queue's release handler */ 3575 static void blk_mq_exit_hctx(struct request_queue *q, 3576 struct blk_mq_tag_set *set, 3577 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3578 { 3579 struct request *flush_rq = hctx->fq->flush_rq; 3580 3581 if (blk_mq_hw_queue_mapped(hctx)) 3582 blk_mq_tag_idle(hctx); 3583 3584 if (blk_queue_init_done(q)) 3585 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3586 set->queue_depth, flush_rq); 3587 if (set->ops->exit_request) 3588 set->ops->exit_request(set, flush_rq, hctx_idx); 3589 3590 if (set->ops->exit_hctx) 3591 set->ops->exit_hctx(hctx, hctx_idx); 3592 3593 blk_mq_remove_cpuhp(hctx); 3594 3595 xa_erase(&q->hctx_table, hctx_idx); 3596 3597 spin_lock(&q->unused_hctx_lock); 3598 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3599 spin_unlock(&q->unused_hctx_lock); 3600 } 3601 3602 static void blk_mq_exit_hw_queues(struct request_queue *q, 3603 struct blk_mq_tag_set *set, int nr_queue) 3604 { 3605 struct blk_mq_hw_ctx *hctx; 3606 unsigned long i; 3607 3608 queue_for_each_hw_ctx(q, hctx, i) { 3609 if (i == nr_queue) 3610 break; 3611 blk_mq_exit_hctx(q, set, hctx, i); 3612 } 3613 } 3614 3615 static int blk_mq_init_hctx(struct request_queue *q, 3616 struct blk_mq_tag_set *set, 3617 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3618 { 3619 hctx->queue_num = hctx_idx; 3620 3621 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3622 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3623 &hctx->cpuhp_online); 3624 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3625 3626 hctx->tags = set->tags[hctx_idx]; 3627 3628 if (set->ops->init_hctx && 3629 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3630 goto unregister_cpu_notifier; 3631 3632 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3633 hctx->numa_node)) 3634 goto exit_hctx; 3635 3636 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3637 goto exit_flush_rq; 3638 3639 return 0; 3640 3641 exit_flush_rq: 3642 if (set->ops->exit_request) 3643 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3644 exit_hctx: 3645 if (set->ops->exit_hctx) 3646 set->ops->exit_hctx(hctx, hctx_idx); 3647 unregister_cpu_notifier: 3648 blk_mq_remove_cpuhp(hctx); 3649 return -1; 3650 } 3651 3652 static struct blk_mq_hw_ctx * 3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3654 int node) 3655 { 3656 struct blk_mq_hw_ctx *hctx; 3657 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3658 3659 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3660 if (!hctx) 3661 goto fail_alloc_hctx; 3662 3663 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3664 goto free_hctx; 3665 3666 atomic_set(&hctx->nr_active, 0); 3667 if (node == NUMA_NO_NODE) 3668 node = set->numa_node; 3669 hctx->numa_node = node; 3670 3671 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3672 spin_lock_init(&hctx->lock); 3673 INIT_LIST_HEAD(&hctx->dispatch); 3674 hctx->queue = q; 3675 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3676 3677 INIT_LIST_HEAD(&hctx->hctx_list); 3678 3679 /* 3680 * Allocate space for all possible cpus to avoid allocation at 3681 * runtime 3682 */ 3683 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3684 gfp, node); 3685 if (!hctx->ctxs) 3686 goto free_cpumask; 3687 3688 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3689 gfp, node, false, false)) 3690 goto free_ctxs; 3691 hctx->nr_ctx = 0; 3692 3693 spin_lock_init(&hctx->dispatch_wait_lock); 3694 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3695 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3696 3697 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3698 if (!hctx->fq) 3699 goto free_bitmap; 3700 3701 blk_mq_hctx_kobj_init(hctx); 3702 3703 return hctx; 3704 3705 free_bitmap: 3706 sbitmap_free(&hctx->ctx_map); 3707 free_ctxs: 3708 kfree(hctx->ctxs); 3709 free_cpumask: 3710 free_cpumask_var(hctx->cpumask); 3711 free_hctx: 3712 kfree(hctx); 3713 fail_alloc_hctx: 3714 return NULL; 3715 } 3716 3717 static void blk_mq_init_cpu_queues(struct request_queue *q, 3718 unsigned int nr_hw_queues) 3719 { 3720 struct blk_mq_tag_set *set = q->tag_set; 3721 unsigned int i, j; 3722 3723 for_each_possible_cpu(i) { 3724 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3725 struct blk_mq_hw_ctx *hctx; 3726 int k; 3727 3728 __ctx->cpu = i; 3729 spin_lock_init(&__ctx->lock); 3730 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3731 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3732 3733 __ctx->queue = q; 3734 3735 /* 3736 * Set local node, IFF we have more than one hw queue. If 3737 * not, we remain on the home node of the device 3738 */ 3739 for (j = 0; j < set->nr_maps; j++) { 3740 hctx = blk_mq_map_queue_type(q, j, i); 3741 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3742 hctx->numa_node = cpu_to_node(i); 3743 } 3744 } 3745 } 3746 3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3748 unsigned int hctx_idx, 3749 unsigned int depth) 3750 { 3751 struct blk_mq_tags *tags; 3752 int ret; 3753 3754 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3755 if (!tags) 3756 return NULL; 3757 3758 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3759 if (ret) { 3760 blk_mq_free_rq_map(tags); 3761 return NULL; 3762 } 3763 3764 return tags; 3765 } 3766 3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3768 int hctx_idx) 3769 { 3770 if (blk_mq_is_shared_tags(set->flags)) { 3771 set->tags[hctx_idx] = set->shared_tags; 3772 3773 return true; 3774 } 3775 3776 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3777 set->queue_depth); 3778 3779 return set->tags[hctx_idx]; 3780 } 3781 3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3783 struct blk_mq_tags *tags, 3784 unsigned int hctx_idx) 3785 { 3786 if (tags) { 3787 blk_mq_free_rqs(set, tags, hctx_idx); 3788 blk_mq_free_rq_map(tags); 3789 } 3790 } 3791 3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3793 unsigned int hctx_idx) 3794 { 3795 if (!blk_mq_is_shared_tags(set->flags)) 3796 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3797 3798 set->tags[hctx_idx] = NULL; 3799 } 3800 3801 static void blk_mq_map_swqueue(struct request_queue *q) 3802 { 3803 unsigned int j, hctx_idx; 3804 unsigned long i; 3805 struct blk_mq_hw_ctx *hctx; 3806 struct blk_mq_ctx *ctx; 3807 struct blk_mq_tag_set *set = q->tag_set; 3808 3809 queue_for_each_hw_ctx(q, hctx, i) { 3810 cpumask_clear(hctx->cpumask); 3811 hctx->nr_ctx = 0; 3812 hctx->dispatch_from = NULL; 3813 } 3814 3815 /* 3816 * Map software to hardware queues. 3817 * 3818 * If the cpu isn't present, the cpu is mapped to first hctx. 3819 */ 3820 for_each_possible_cpu(i) { 3821 3822 ctx = per_cpu_ptr(q->queue_ctx, i); 3823 for (j = 0; j < set->nr_maps; j++) { 3824 if (!set->map[j].nr_queues) { 3825 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3826 HCTX_TYPE_DEFAULT, i); 3827 continue; 3828 } 3829 hctx_idx = set->map[j].mq_map[i]; 3830 /* unmapped hw queue can be remapped after CPU topo changed */ 3831 if (!set->tags[hctx_idx] && 3832 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3833 /* 3834 * If tags initialization fail for some hctx, 3835 * that hctx won't be brought online. In this 3836 * case, remap the current ctx to hctx[0] which 3837 * is guaranteed to always have tags allocated 3838 */ 3839 set->map[j].mq_map[i] = 0; 3840 } 3841 3842 hctx = blk_mq_map_queue_type(q, j, i); 3843 ctx->hctxs[j] = hctx; 3844 /* 3845 * If the CPU is already set in the mask, then we've 3846 * mapped this one already. This can happen if 3847 * devices share queues across queue maps. 3848 */ 3849 if (cpumask_test_cpu(i, hctx->cpumask)) 3850 continue; 3851 3852 cpumask_set_cpu(i, hctx->cpumask); 3853 hctx->type = j; 3854 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3855 hctx->ctxs[hctx->nr_ctx++] = ctx; 3856 3857 /* 3858 * If the nr_ctx type overflows, we have exceeded the 3859 * amount of sw queues we can support. 3860 */ 3861 BUG_ON(!hctx->nr_ctx); 3862 } 3863 3864 for (; j < HCTX_MAX_TYPES; j++) 3865 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3866 HCTX_TYPE_DEFAULT, i); 3867 } 3868 3869 queue_for_each_hw_ctx(q, hctx, i) { 3870 /* 3871 * If no software queues are mapped to this hardware queue, 3872 * disable it and free the request entries. 3873 */ 3874 if (!hctx->nr_ctx) { 3875 /* Never unmap queue 0. We need it as a 3876 * fallback in case of a new remap fails 3877 * allocation 3878 */ 3879 if (i) 3880 __blk_mq_free_map_and_rqs(set, i); 3881 3882 hctx->tags = NULL; 3883 continue; 3884 } 3885 3886 hctx->tags = set->tags[i]; 3887 WARN_ON(!hctx->tags); 3888 3889 /* 3890 * Set the map size to the number of mapped software queues. 3891 * This is more accurate and more efficient than looping 3892 * over all possibly mapped software queues. 3893 */ 3894 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3895 3896 /* 3897 * Initialize batch roundrobin counts 3898 */ 3899 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3900 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3901 } 3902 } 3903 3904 /* 3905 * Caller needs to ensure that we're either frozen/quiesced, or that 3906 * the queue isn't live yet. 3907 */ 3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3909 { 3910 struct blk_mq_hw_ctx *hctx; 3911 unsigned long i; 3912 3913 queue_for_each_hw_ctx(q, hctx, i) { 3914 if (shared) { 3915 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3916 } else { 3917 blk_mq_tag_idle(hctx); 3918 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3919 } 3920 } 3921 } 3922 3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3924 bool shared) 3925 { 3926 struct request_queue *q; 3927 3928 lockdep_assert_held(&set->tag_list_lock); 3929 3930 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3931 blk_mq_freeze_queue(q); 3932 queue_set_hctx_shared(q, shared); 3933 blk_mq_unfreeze_queue(q); 3934 } 3935 } 3936 3937 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3938 { 3939 struct blk_mq_tag_set *set = q->tag_set; 3940 3941 mutex_lock(&set->tag_list_lock); 3942 list_del(&q->tag_set_list); 3943 if (list_is_singular(&set->tag_list)) { 3944 /* just transitioned to unshared */ 3945 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3946 /* update existing queue */ 3947 blk_mq_update_tag_set_shared(set, false); 3948 } 3949 mutex_unlock(&set->tag_list_lock); 3950 INIT_LIST_HEAD(&q->tag_set_list); 3951 } 3952 3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3954 struct request_queue *q) 3955 { 3956 mutex_lock(&set->tag_list_lock); 3957 3958 /* 3959 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3960 */ 3961 if (!list_empty(&set->tag_list) && 3962 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3963 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3964 /* update existing queue */ 3965 blk_mq_update_tag_set_shared(set, true); 3966 } 3967 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3968 queue_set_hctx_shared(q, true); 3969 list_add_tail(&q->tag_set_list, &set->tag_list); 3970 3971 mutex_unlock(&set->tag_list_lock); 3972 } 3973 3974 /* All allocations will be freed in release handler of q->mq_kobj */ 3975 static int blk_mq_alloc_ctxs(struct request_queue *q) 3976 { 3977 struct blk_mq_ctxs *ctxs; 3978 int cpu; 3979 3980 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3981 if (!ctxs) 3982 return -ENOMEM; 3983 3984 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3985 if (!ctxs->queue_ctx) 3986 goto fail; 3987 3988 for_each_possible_cpu(cpu) { 3989 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3990 ctx->ctxs = ctxs; 3991 } 3992 3993 q->mq_kobj = &ctxs->kobj; 3994 q->queue_ctx = ctxs->queue_ctx; 3995 3996 return 0; 3997 fail: 3998 kfree(ctxs); 3999 return -ENOMEM; 4000 } 4001 4002 /* 4003 * It is the actual release handler for mq, but we do it from 4004 * request queue's release handler for avoiding use-after-free 4005 * and headache because q->mq_kobj shouldn't have been introduced, 4006 * but we can't group ctx/kctx kobj without it. 4007 */ 4008 void blk_mq_release(struct request_queue *q) 4009 { 4010 struct blk_mq_hw_ctx *hctx, *next; 4011 unsigned long i; 4012 4013 queue_for_each_hw_ctx(q, hctx, i) 4014 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4015 4016 /* all hctx are in .unused_hctx_list now */ 4017 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4018 list_del_init(&hctx->hctx_list); 4019 kobject_put(&hctx->kobj); 4020 } 4021 4022 xa_destroy(&q->hctx_table); 4023 4024 /* 4025 * release .mq_kobj and sw queue's kobject now because 4026 * both share lifetime with request queue. 4027 */ 4028 blk_mq_sysfs_deinit(q); 4029 } 4030 4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4032 void *queuedata) 4033 { 4034 struct request_queue *q; 4035 int ret; 4036 4037 q = blk_alloc_queue(set->numa_node); 4038 if (!q) 4039 return ERR_PTR(-ENOMEM); 4040 q->queuedata = queuedata; 4041 ret = blk_mq_init_allocated_queue(set, q); 4042 if (ret) { 4043 blk_put_queue(q); 4044 return ERR_PTR(ret); 4045 } 4046 return q; 4047 } 4048 4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4050 { 4051 return blk_mq_init_queue_data(set, NULL); 4052 } 4053 EXPORT_SYMBOL(blk_mq_init_queue); 4054 4055 /** 4056 * blk_mq_destroy_queue - shutdown a request queue 4057 * @q: request queue to shutdown 4058 * 4059 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4060 * requests will be failed with -ENODEV. The caller is responsible for dropping 4061 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4062 * 4063 * Context: can sleep 4064 */ 4065 void blk_mq_destroy_queue(struct request_queue *q) 4066 { 4067 WARN_ON_ONCE(!queue_is_mq(q)); 4068 WARN_ON_ONCE(blk_queue_registered(q)); 4069 4070 might_sleep(); 4071 4072 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4073 blk_queue_start_drain(q); 4074 blk_mq_freeze_queue_wait(q); 4075 4076 blk_sync_queue(q); 4077 blk_mq_cancel_work_sync(q); 4078 blk_mq_exit_queue(q); 4079 } 4080 EXPORT_SYMBOL(blk_mq_destroy_queue); 4081 4082 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4083 struct lock_class_key *lkclass) 4084 { 4085 struct request_queue *q; 4086 struct gendisk *disk; 4087 4088 q = blk_mq_init_queue_data(set, queuedata); 4089 if (IS_ERR(q)) 4090 return ERR_CAST(q); 4091 4092 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4093 if (!disk) { 4094 blk_mq_destroy_queue(q); 4095 blk_put_queue(q); 4096 return ERR_PTR(-ENOMEM); 4097 } 4098 set_bit(GD_OWNS_QUEUE, &disk->state); 4099 return disk; 4100 } 4101 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4102 4103 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4104 struct lock_class_key *lkclass) 4105 { 4106 struct gendisk *disk; 4107 4108 if (!blk_get_queue(q)) 4109 return NULL; 4110 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4111 if (!disk) 4112 blk_put_queue(q); 4113 return disk; 4114 } 4115 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4116 4117 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4118 struct blk_mq_tag_set *set, struct request_queue *q, 4119 int hctx_idx, int node) 4120 { 4121 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4122 4123 /* reuse dead hctx first */ 4124 spin_lock(&q->unused_hctx_lock); 4125 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4126 if (tmp->numa_node == node) { 4127 hctx = tmp; 4128 break; 4129 } 4130 } 4131 if (hctx) 4132 list_del_init(&hctx->hctx_list); 4133 spin_unlock(&q->unused_hctx_lock); 4134 4135 if (!hctx) 4136 hctx = blk_mq_alloc_hctx(q, set, node); 4137 if (!hctx) 4138 goto fail; 4139 4140 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4141 goto free_hctx; 4142 4143 return hctx; 4144 4145 free_hctx: 4146 kobject_put(&hctx->kobj); 4147 fail: 4148 return NULL; 4149 } 4150 4151 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4152 struct request_queue *q) 4153 { 4154 struct blk_mq_hw_ctx *hctx; 4155 unsigned long i, j; 4156 4157 /* protect against switching io scheduler */ 4158 mutex_lock(&q->sysfs_lock); 4159 for (i = 0; i < set->nr_hw_queues; i++) { 4160 int old_node; 4161 int node = blk_mq_get_hctx_node(set, i); 4162 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4163 4164 if (old_hctx) { 4165 old_node = old_hctx->numa_node; 4166 blk_mq_exit_hctx(q, set, old_hctx, i); 4167 } 4168 4169 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4170 if (!old_hctx) 4171 break; 4172 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4173 node, old_node); 4174 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4175 WARN_ON_ONCE(!hctx); 4176 } 4177 } 4178 /* 4179 * Increasing nr_hw_queues fails. Free the newly allocated 4180 * hctxs and keep the previous q->nr_hw_queues. 4181 */ 4182 if (i != set->nr_hw_queues) { 4183 j = q->nr_hw_queues; 4184 } else { 4185 j = i; 4186 q->nr_hw_queues = set->nr_hw_queues; 4187 } 4188 4189 xa_for_each_start(&q->hctx_table, j, hctx, j) 4190 blk_mq_exit_hctx(q, set, hctx, j); 4191 mutex_unlock(&q->sysfs_lock); 4192 } 4193 4194 static void blk_mq_update_poll_flag(struct request_queue *q) 4195 { 4196 struct blk_mq_tag_set *set = q->tag_set; 4197 4198 if (set->nr_maps > HCTX_TYPE_POLL && 4199 set->map[HCTX_TYPE_POLL].nr_queues) 4200 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4201 else 4202 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4203 } 4204 4205 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4206 struct request_queue *q) 4207 { 4208 /* mark the queue as mq asap */ 4209 q->mq_ops = set->ops; 4210 4211 if (blk_mq_alloc_ctxs(q)) 4212 goto err_exit; 4213 4214 /* init q->mq_kobj and sw queues' kobjects */ 4215 blk_mq_sysfs_init(q); 4216 4217 INIT_LIST_HEAD(&q->unused_hctx_list); 4218 spin_lock_init(&q->unused_hctx_lock); 4219 4220 xa_init(&q->hctx_table); 4221 4222 blk_mq_realloc_hw_ctxs(set, q); 4223 if (!q->nr_hw_queues) 4224 goto err_hctxs; 4225 4226 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4227 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4228 4229 q->tag_set = set; 4230 4231 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4232 blk_mq_update_poll_flag(q); 4233 4234 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4235 INIT_LIST_HEAD(&q->flush_list); 4236 INIT_LIST_HEAD(&q->requeue_list); 4237 spin_lock_init(&q->requeue_lock); 4238 4239 q->nr_requests = set->queue_depth; 4240 4241 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4242 blk_mq_add_queue_tag_set(set, q); 4243 blk_mq_map_swqueue(q); 4244 return 0; 4245 4246 err_hctxs: 4247 blk_mq_release(q); 4248 err_exit: 4249 q->mq_ops = NULL; 4250 return -ENOMEM; 4251 } 4252 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4253 4254 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4255 void blk_mq_exit_queue(struct request_queue *q) 4256 { 4257 struct blk_mq_tag_set *set = q->tag_set; 4258 4259 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4260 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4261 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4262 blk_mq_del_queue_tag_set(q); 4263 } 4264 4265 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4266 { 4267 int i; 4268 4269 if (blk_mq_is_shared_tags(set->flags)) { 4270 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4271 BLK_MQ_NO_HCTX_IDX, 4272 set->queue_depth); 4273 if (!set->shared_tags) 4274 return -ENOMEM; 4275 } 4276 4277 for (i = 0; i < set->nr_hw_queues; i++) { 4278 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4279 goto out_unwind; 4280 cond_resched(); 4281 } 4282 4283 return 0; 4284 4285 out_unwind: 4286 while (--i >= 0) 4287 __blk_mq_free_map_and_rqs(set, i); 4288 4289 if (blk_mq_is_shared_tags(set->flags)) { 4290 blk_mq_free_map_and_rqs(set, set->shared_tags, 4291 BLK_MQ_NO_HCTX_IDX); 4292 } 4293 4294 return -ENOMEM; 4295 } 4296 4297 /* 4298 * Allocate the request maps associated with this tag_set. Note that this 4299 * may reduce the depth asked for, if memory is tight. set->queue_depth 4300 * will be updated to reflect the allocated depth. 4301 */ 4302 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4303 { 4304 unsigned int depth; 4305 int err; 4306 4307 depth = set->queue_depth; 4308 do { 4309 err = __blk_mq_alloc_rq_maps(set); 4310 if (!err) 4311 break; 4312 4313 set->queue_depth >>= 1; 4314 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4315 err = -ENOMEM; 4316 break; 4317 } 4318 } while (set->queue_depth); 4319 4320 if (!set->queue_depth || err) { 4321 pr_err("blk-mq: failed to allocate request map\n"); 4322 return -ENOMEM; 4323 } 4324 4325 if (depth != set->queue_depth) 4326 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4327 depth, set->queue_depth); 4328 4329 return 0; 4330 } 4331 4332 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4333 { 4334 /* 4335 * blk_mq_map_queues() and multiple .map_queues() implementations 4336 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4337 * number of hardware queues. 4338 */ 4339 if (set->nr_maps == 1) 4340 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4341 4342 if (set->ops->map_queues && !is_kdump_kernel()) { 4343 int i; 4344 4345 /* 4346 * transport .map_queues is usually done in the following 4347 * way: 4348 * 4349 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4350 * mask = get_cpu_mask(queue) 4351 * for_each_cpu(cpu, mask) 4352 * set->map[x].mq_map[cpu] = queue; 4353 * } 4354 * 4355 * When we need to remap, the table has to be cleared for 4356 * killing stale mapping since one CPU may not be mapped 4357 * to any hw queue. 4358 */ 4359 for (i = 0; i < set->nr_maps; i++) 4360 blk_mq_clear_mq_map(&set->map[i]); 4361 4362 set->ops->map_queues(set); 4363 } else { 4364 BUG_ON(set->nr_maps > 1); 4365 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4366 } 4367 } 4368 4369 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4370 int new_nr_hw_queues) 4371 { 4372 struct blk_mq_tags **new_tags; 4373 4374 if (set->nr_hw_queues >= new_nr_hw_queues) 4375 goto done; 4376 4377 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4378 GFP_KERNEL, set->numa_node); 4379 if (!new_tags) 4380 return -ENOMEM; 4381 4382 if (set->tags) 4383 memcpy(new_tags, set->tags, set->nr_hw_queues * 4384 sizeof(*set->tags)); 4385 kfree(set->tags); 4386 set->tags = new_tags; 4387 done: 4388 set->nr_hw_queues = new_nr_hw_queues; 4389 return 0; 4390 } 4391 4392 /* 4393 * Alloc a tag set to be associated with one or more request queues. 4394 * May fail with EINVAL for various error conditions. May adjust the 4395 * requested depth down, if it's too large. In that case, the set 4396 * value will be stored in set->queue_depth. 4397 */ 4398 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4399 { 4400 int i, ret; 4401 4402 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4403 4404 if (!set->nr_hw_queues) 4405 return -EINVAL; 4406 if (!set->queue_depth) 4407 return -EINVAL; 4408 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4409 return -EINVAL; 4410 4411 if (!set->ops->queue_rq) 4412 return -EINVAL; 4413 4414 if (!set->ops->get_budget ^ !set->ops->put_budget) 4415 return -EINVAL; 4416 4417 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4418 pr_info("blk-mq: reduced tag depth to %u\n", 4419 BLK_MQ_MAX_DEPTH); 4420 set->queue_depth = BLK_MQ_MAX_DEPTH; 4421 } 4422 4423 if (!set->nr_maps) 4424 set->nr_maps = 1; 4425 else if (set->nr_maps > HCTX_MAX_TYPES) 4426 return -EINVAL; 4427 4428 /* 4429 * If a crashdump is active, then we are potentially in a very 4430 * memory constrained environment. Limit us to 1 queue and 4431 * 64 tags to prevent using too much memory. 4432 */ 4433 if (is_kdump_kernel()) { 4434 set->nr_hw_queues = 1; 4435 set->nr_maps = 1; 4436 set->queue_depth = min(64U, set->queue_depth); 4437 } 4438 /* 4439 * There is no use for more h/w queues than cpus if we just have 4440 * a single map 4441 */ 4442 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4443 set->nr_hw_queues = nr_cpu_ids; 4444 4445 if (set->flags & BLK_MQ_F_BLOCKING) { 4446 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4447 if (!set->srcu) 4448 return -ENOMEM; 4449 ret = init_srcu_struct(set->srcu); 4450 if (ret) 4451 goto out_free_srcu; 4452 } 4453 4454 ret = -ENOMEM; 4455 set->tags = kcalloc_node(set->nr_hw_queues, 4456 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4457 set->numa_node); 4458 if (!set->tags) 4459 goto out_cleanup_srcu; 4460 4461 for (i = 0; i < set->nr_maps; i++) { 4462 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4463 sizeof(set->map[i].mq_map[0]), 4464 GFP_KERNEL, set->numa_node); 4465 if (!set->map[i].mq_map) 4466 goto out_free_mq_map; 4467 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4468 } 4469 4470 blk_mq_update_queue_map(set); 4471 4472 ret = blk_mq_alloc_set_map_and_rqs(set); 4473 if (ret) 4474 goto out_free_mq_map; 4475 4476 mutex_init(&set->tag_list_lock); 4477 INIT_LIST_HEAD(&set->tag_list); 4478 4479 return 0; 4480 4481 out_free_mq_map: 4482 for (i = 0; i < set->nr_maps; i++) { 4483 kfree(set->map[i].mq_map); 4484 set->map[i].mq_map = NULL; 4485 } 4486 kfree(set->tags); 4487 set->tags = NULL; 4488 out_cleanup_srcu: 4489 if (set->flags & BLK_MQ_F_BLOCKING) 4490 cleanup_srcu_struct(set->srcu); 4491 out_free_srcu: 4492 if (set->flags & BLK_MQ_F_BLOCKING) 4493 kfree(set->srcu); 4494 return ret; 4495 } 4496 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4497 4498 /* allocate and initialize a tagset for a simple single-queue device */ 4499 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4500 const struct blk_mq_ops *ops, unsigned int queue_depth, 4501 unsigned int set_flags) 4502 { 4503 memset(set, 0, sizeof(*set)); 4504 set->ops = ops; 4505 set->nr_hw_queues = 1; 4506 set->nr_maps = 1; 4507 set->queue_depth = queue_depth; 4508 set->numa_node = NUMA_NO_NODE; 4509 set->flags = set_flags; 4510 return blk_mq_alloc_tag_set(set); 4511 } 4512 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4513 4514 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4515 { 4516 int i, j; 4517 4518 for (i = 0; i < set->nr_hw_queues; i++) 4519 __blk_mq_free_map_and_rqs(set, i); 4520 4521 if (blk_mq_is_shared_tags(set->flags)) { 4522 blk_mq_free_map_and_rqs(set, set->shared_tags, 4523 BLK_MQ_NO_HCTX_IDX); 4524 } 4525 4526 for (j = 0; j < set->nr_maps; j++) { 4527 kfree(set->map[j].mq_map); 4528 set->map[j].mq_map = NULL; 4529 } 4530 4531 kfree(set->tags); 4532 set->tags = NULL; 4533 if (set->flags & BLK_MQ_F_BLOCKING) { 4534 cleanup_srcu_struct(set->srcu); 4535 kfree(set->srcu); 4536 } 4537 } 4538 EXPORT_SYMBOL(blk_mq_free_tag_set); 4539 4540 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4541 { 4542 struct blk_mq_tag_set *set = q->tag_set; 4543 struct blk_mq_hw_ctx *hctx; 4544 int ret; 4545 unsigned long i; 4546 4547 if (!set) 4548 return -EINVAL; 4549 4550 if (q->nr_requests == nr) 4551 return 0; 4552 4553 blk_mq_freeze_queue(q); 4554 blk_mq_quiesce_queue(q); 4555 4556 ret = 0; 4557 queue_for_each_hw_ctx(q, hctx, i) { 4558 if (!hctx->tags) 4559 continue; 4560 /* 4561 * If we're using an MQ scheduler, just update the scheduler 4562 * queue depth. This is similar to what the old code would do. 4563 */ 4564 if (hctx->sched_tags) { 4565 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4566 nr, true); 4567 } else { 4568 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4569 false); 4570 } 4571 if (ret) 4572 break; 4573 if (q->elevator && q->elevator->type->ops.depth_updated) 4574 q->elevator->type->ops.depth_updated(hctx); 4575 } 4576 if (!ret) { 4577 q->nr_requests = nr; 4578 if (blk_mq_is_shared_tags(set->flags)) { 4579 if (q->elevator) 4580 blk_mq_tag_update_sched_shared_tags(q); 4581 else 4582 blk_mq_tag_resize_shared_tags(set, nr); 4583 } 4584 } 4585 4586 blk_mq_unquiesce_queue(q); 4587 blk_mq_unfreeze_queue(q); 4588 4589 return ret; 4590 } 4591 4592 /* 4593 * request_queue and elevator_type pair. 4594 * It is just used by __blk_mq_update_nr_hw_queues to cache 4595 * the elevator_type associated with a request_queue. 4596 */ 4597 struct blk_mq_qe_pair { 4598 struct list_head node; 4599 struct request_queue *q; 4600 struct elevator_type *type; 4601 }; 4602 4603 /* 4604 * Cache the elevator_type in qe pair list and switch the 4605 * io scheduler to 'none' 4606 */ 4607 static bool blk_mq_elv_switch_none(struct list_head *head, 4608 struct request_queue *q) 4609 { 4610 struct blk_mq_qe_pair *qe; 4611 4612 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4613 if (!qe) 4614 return false; 4615 4616 /* q->elevator needs protection from ->sysfs_lock */ 4617 mutex_lock(&q->sysfs_lock); 4618 4619 /* the check has to be done with holding sysfs_lock */ 4620 if (!q->elevator) { 4621 kfree(qe); 4622 goto unlock; 4623 } 4624 4625 INIT_LIST_HEAD(&qe->node); 4626 qe->q = q; 4627 qe->type = q->elevator->type; 4628 /* keep a reference to the elevator module as we'll switch back */ 4629 __elevator_get(qe->type); 4630 list_add(&qe->node, head); 4631 elevator_disable(q); 4632 unlock: 4633 mutex_unlock(&q->sysfs_lock); 4634 4635 return true; 4636 } 4637 4638 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4639 struct request_queue *q) 4640 { 4641 struct blk_mq_qe_pair *qe; 4642 4643 list_for_each_entry(qe, head, node) 4644 if (qe->q == q) 4645 return qe; 4646 4647 return NULL; 4648 } 4649 4650 static void blk_mq_elv_switch_back(struct list_head *head, 4651 struct request_queue *q) 4652 { 4653 struct blk_mq_qe_pair *qe; 4654 struct elevator_type *t; 4655 4656 qe = blk_lookup_qe_pair(head, q); 4657 if (!qe) 4658 return; 4659 t = qe->type; 4660 list_del(&qe->node); 4661 kfree(qe); 4662 4663 mutex_lock(&q->sysfs_lock); 4664 elevator_switch(q, t); 4665 /* drop the reference acquired in blk_mq_elv_switch_none */ 4666 elevator_put(t); 4667 mutex_unlock(&q->sysfs_lock); 4668 } 4669 4670 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4671 int nr_hw_queues) 4672 { 4673 struct request_queue *q; 4674 LIST_HEAD(head); 4675 int prev_nr_hw_queues; 4676 4677 lockdep_assert_held(&set->tag_list_lock); 4678 4679 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4680 nr_hw_queues = nr_cpu_ids; 4681 if (nr_hw_queues < 1) 4682 return; 4683 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4684 return; 4685 4686 list_for_each_entry(q, &set->tag_list, tag_set_list) 4687 blk_mq_freeze_queue(q); 4688 /* 4689 * Switch IO scheduler to 'none', cleaning up the data associated 4690 * with the previous scheduler. We will switch back once we are done 4691 * updating the new sw to hw queue mappings. 4692 */ 4693 list_for_each_entry(q, &set->tag_list, tag_set_list) 4694 if (!blk_mq_elv_switch_none(&head, q)) 4695 goto switch_back; 4696 4697 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4698 blk_mq_debugfs_unregister_hctxs(q); 4699 blk_mq_sysfs_unregister_hctxs(q); 4700 } 4701 4702 prev_nr_hw_queues = set->nr_hw_queues; 4703 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4704 goto reregister; 4705 4706 fallback: 4707 blk_mq_update_queue_map(set); 4708 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4709 blk_mq_realloc_hw_ctxs(set, q); 4710 blk_mq_update_poll_flag(q); 4711 if (q->nr_hw_queues != set->nr_hw_queues) { 4712 int i = prev_nr_hw_queues; 4713 4714 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4715 nr_hw_queues, prev_nr_hw_queues); 4716 for (; i < set->nr_hw_queues; i++) 4717 __blk_mq_free_map_and_rqs(set, i); 4718 4719 set->nr_hw_queues = prev_nr_hw_queues; 4720 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4721 goto fallback; 4722 } 4723 blk_mq_map_swqueue(q); 4724 } 4725 4726 reregister: 4727 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4728 blk_mq_sysfs_register_hctxs(q); 4729 blk_mq_debugfs_register_hctxs(q); 4730 } 4731 4732 switch_back: 4733 list_for_each_entry(q, &set->tag_list, tag_set_list) 4734 blk_mq_elv_switch_back(&head, q); 4735 4736 list_for_each_entry(q, &set->tag_list, tag_set_list) 4737 blk_mq_unfreeze_queue(q); 4738 } 4739 4740 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4741 { 4742 mutex_lock(&set->tag_list_lock); 4743 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4744 mutex_unlock(&set->tag_list_lock); 4745 } 4746 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4747 4748 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4749 unsigned int flags) 4750 { 4751 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4752 long state = get_current_state(); 4753 int ret; 4754 4755 do { 4756 ret = q->mq_ops->poll(hctx, iob); 4757 if (ret > 0) { 4758 __set_current_state(TASK_RUNNING); 4759 return ret; 4760 } 4761 4762 if (signal_pending_state(state, current)) 4763 __set_current_state(TASK_RUNNING); 4764 if (task_is_running(current)) 4765 return 1; 4766 4767 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4768 break; 4769 cpu_relax(); 4770 } while (!need_resched()); 4771 4772 __set_current_state(TASK_RUNNING); 4773 return 0; 4774 } 4775 4776 unsigned int blk_mq_rq_cpu(struct request *rq) 4777 { 4778 return rq->mq_ctx->cpu; 4779 } 4780 EXPORT_SYMBOL(blk_mq_rq_cpu); 4781 4782 void blk_mq_cancel_work_sync(struct request_queue *q) 4783 { 4784 struct blk_mq_hw_ctx *hctx; 4785 unsigned long i; 4786 4787 cancel_delayed_work_sync(&q->requeue_work); 4788 4789 queue_for_each_hw_ctx(q, hctx, i) 4790 cancel_delayed_work_sync(&hctx->run_work); 4791 } 4792 4793 static int __init blk_mq_init(void) 4794 { 4795 int i; 4796 4797 for_each_possible_cpu(i) 4798 init_llist_head(&per_cpu(blk_cpu_done, i)); 4799 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4800 4801 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4802 "block/softirq:dead", NULL, 4803 blk_softirq_cpu_dead); 4804 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4805 blk_mq_hctx_notify_dead); 4806 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4807 blk_mq_hctx_notify_online, 4808 blk_mq_hctx_notify_offline); 4809 return 0; 4810 } 4811 subsys_initcall(blk_mq_init); 4812