1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 #include <linux/crash_dump.h> 24 25 #include <trace/events/block.h> 26 27 #include <linux/blk-mq.h> 28 #include "blk.h" 29 #include "blk-mq.h" 30 #include "blk-mq-tag.h" 31 32 static DEFINE_MUTEX(all_q_mutex); 33 static LIST_HEAD(all_q_list); 34 35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 36 37 /* 38 * Check if any of the ctx's have pending work in this hardware queue 39 */ 40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int i; 43 44 for (i = 0; i < hctx->ctx_map.map_size; i++) 45 if (hctx->ctx_map.map[i].word) 46 return true; 47 48 return false; 49 } 50 51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 52 struct blk_mq_ctx *ctx) 53 { 54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 55 } 56 57 #define CTX_TO_BIT(hctx, ctx) \ 58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 59 60 /* 61 * Mark this ctx as having pending work in this hardware queue 62 */ 63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 64 struct blk_mq_ctx *ctx) 65 { 66 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 67 68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 70 } 71 72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 76 77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 78 } 79 80 static int blk_mq_queue_enter(struct request_queue *q) 81 { 82 while (true) { 83 int ret; 84 85 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 86 return 0; 87 88 ret = wait_event_interruptible(q->mq_freeze_wq, 89 !q->mq_freeze_depth || blk_queue_dying(q)); 90 if (blk_queue_dying(q)) 91 return -ENODEV; 92 if (ret) 93 return ret; 94 } 95 } 96 97 static void blk_mq_queue_exit(struct request_queue *q) 98 { 99 percpu_ref_put(&q->mq_usage_counter); 100 } 101 102 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 103 { 104 struct request_queue *q = 105 container_of(ref, struct request_queue, mq_usage_counter); 106 107 wake_up_all(&q->mq_freeze_wq); 108 } 109 110 static void blk_mq_freeze_queue_start(struct request_queue *q) 111 { 112 bool freeze; 113 114 spin_lock_irq(q->queue_lock); 115 freeze = !q->mq_freeze_depth++; 116 spin_unlock_irq(q->queue_lock); 117 118 if (freeze) { 119 percpu_ref_kill(&q->mq_usage_counter); 120 blk_mq_run_queues(q, false); 121 } 122 } 123 124 static void blk_mq_freeze_queue_wait(struct request_queue *q) 125 { 126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 127 } 128 129 /* 130 * Guarantee no request is in use, so we can change any data structure of 131 * the queue afterward. 132 */ 133 void blk_mq_freeze_queue(struct request_queue *q) 134 { 135 blk_mq_freeze_queue_start(q); 136 blk_mq_freeze_queue_wait(q); 137 } 138 139 static void blk_mq_unfreeze_queue(struct request_queue *q) 140 { 141 bool wake; 142 143 spin_lock_irq(q->queue_lock); 144 wake = !--q->mq_freeze_depth; 145 WARN_ON_ONCE(q->mq_freeze_depth < 0); 146 spin_unlock_irq(q->queue_lock); 147 if (wake) { 148 percpu_ref_reinit(&q->mq_usage_counter); 149 wake_up_all(&q->mq_freeze_wq); 150 } 151 } 152 153 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 154 { 155 return blk_mq_has_free_tags(hctx->tags); 156 } 157 EXPORT_SYMBOL(blk_mq_can_queue); 158 159 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 160 struct request *rq, unsigned int rw_flags) 161 { 162 if (blk_queue_io_stat(q)) 163 rw_flags |= REQ_IO_STAT; 164 165 INIT_LIST_HEAD(&rq->queuelist); 166 /* csd/requeue_work/fifo_time is initialized before use */ 167 rq->q = q; 168 rq->mq_ctx = ctx; 169 rq->cmd_flags |= rw_flags; 170 /* do not touch atomic flags, it needs atomic ops against the timer */ 171 rq->cpu = -1; 172 INIT_HLIST_NODE(&rq->hash); 173 RB_CLEAR_NODE(&rq->rb_node); 174 rq->rq_disk = NULL; 175 rq->part = NULL; 176 rq->start_time = jiffies; 177 #ifdef CONFIG_BLK_CGROUP 178 rq->rl = NULL; 179 set_start_time_ns(rq); 180 rq->io_start_time_ns = 0; 181 #endif 182 rq->nr_phys_segments = 0; 183 #if defined(CONFIG_BLK_DEV_INTEGRITY) 184 rq->nr_integrity_segments = 0; 185 #endif 186 rq->special = NULL; 187 /* tag was already set */ 188 rq->errors = 0; 189 190 rq->cmd = rq->__cmd; 191 192 rq->extra_len = 0; 193 rq->sense_len = 0; 194 rq->resid_len = 0; 195 rq->sense = NULL; 196 197 INIT_LIST_HEAD(&rq->timeout_list); 198 rq->timeout = 0; 199 200 rq->end_io = NULL; 201 rq->end_io_data = NULL; 202 rq->next_rq = NULL; 203 204 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 205 } 206 207 static struct request * 208 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 209 { 210 struct request *rq; 211 unsigned int tag; 212 213 tag = blk_mq_get_tag(data); 214 if (tag != BLK_MQ_TAG_FAIL) { 215 rq = data->hctx->tags->rqs[tag]; 216 217 if (blk_mq_tag_busy(data->hctx)) { 218 rq->cmd_flags = REQ_MQ_INFLIGHT; 219 atomic_inc(&data->hctx->nr_active); 220 } 221 222 rq->tag = tag; 223 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 224 return rq; 225 } 226 227 return NULL; 228 } 229 230 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 231 bool reserved) 232 { 233 struct blk_mq_ctx *ctx; 234 struct blk_mq_hw_ctx *hctx; 235 struct request *rq; 236 struct blk_mq_alloc_data alloc_data; 237 int ret; 238 239 ret = blk_mq_queue_enter(q); 240 if (ret) 241 return ERR_PTR(ret); 242 243 ctx = blk_mq_get_ctx(q); 244 hctx = q->mq_ops->map_queue(q, ctx->cpu); 245 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 246 reserved, ctx, hctx); 247 248 rq = __blk_mq_alloc_request(&alloc_data, rw); 249 if (!rq && (gfp & __GFP_WAIT)) { 250 __blk_mq_run_hw_queue(hctx); 251 blk_mq_put_ctx(ctx); 252 253 ctx = blk_mq_get_ctx(q); 254 hctx = q->mq_ops->map_queue(q, ctx->cpu); 255 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 256 hctx); 257 rq = __blk_mq_alloc_request(&alloc_data, rw); 258 ctx = alloc_data.ctx; 259 } 260 blk_mq_put_ctx(ctx); 261 if (!rq) 262 return ERR_PTR(-EWOULDBLOCK); 263 return rq; 264 } 265 EXPORT_SYMBOL(blk_mq_alloc_request); 266 267 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 268 struct blk_mq_ctx *ctx, struct request *rq) 269 { 270 const int tag = rq->tag; 271 struct request_queue *q = rq->q; 272 273 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 274 atomic_dec(&hctx->nr_active); 275 rq->cmd_flags = 0; 276 277 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 278 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 279 blk_mq_queue_exit(q); 280 } 281 282 void blk_mq_free_request(struct request *rq) 283 { 284 struct blk_mq_ctx *ctx = rq->mq_ctx; 285 struct blk_mq_hw_ctx *hctx; 286 struct request_queue *q = rq->q; 287 288 ctx->rq_completed[rq_is_sync(rq)]++; 289 290 hctx = q->mq_ops->map_queue(q, ctx->cpu); 291 __blk_mq_free_request(hctx, ctx, rq); 292 } 293 294 inline void __blk_mq_end_request(struct request *rq, int error) 295 { 296 blk_account_io_done(rq); 297 298 if (rq->end_io) { 299 rq->end_io(rq, error); 300 } else { 301 if (unlikely(blk_bidi_rq(rq))) 302 blk_mq_free_request(rq->next_rq); 303 blk_mq_free_request(rq); 304 } 305 } 306 EXPORT_SYMBOL(__blk_mq_end_request); 307 308 void blk_mq_end_request(struct request *rq, int error) 309 { 310 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 311 BUG(); 312 __blk_mq_end_request(rq, error); 313 } 314 EXPORT_SYMBOL(blk_mq_end_request); 315 316 static void __blk_mq_complete_request_remote(void *data) 317 { 318 struct request *rq = data; 319 320 rq->q->softirq_done_fn(rq); 321 } 322 323 static void blk_mq_ipi_complete_request(struct request *rq) 324 { 325 struct blk_mq_ctx *ctx = rq->mq_ctx; 326 bool shared = false; 327 int cpu; 328 329 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 330 rq->q->softirq_done_fn(rq); 331 return; 332 } 333 334 cpu = get_cpu(); 335 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 336 shared = cpus_share_cache(cpu, ctx->cpu); 337 338 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 339 rq->csd.func = __blk_mq_complete_request_remote; 340 rq->csd.info = rq; 341 rq->csd.flags = 0; 342 smp_call_function_single_async(ctx->cpu, &rq->csd); 343 } else { 344 rq->q->softirq_done_fn(rq); 345 } 346 put_cpu(); 347 } 348 349 void __blk_mq_complete_request(struct request *rq) 350 { 351 struct request_queue *q = rq->q; 352 353 if (!q->softirq_done_fn) 354 blk_mq_end_request(rq, rq->errors); 355 else 356 blk_mq_ipi_complete_request(rq); 357 } 358 359 /** 360 * blk_mq_complete_request - end I/O on a request 361 * @rq: the request being processed 362 * 363 * Description: 364 * Ends all I/O on a request. It does not handle partial completions. 365 * The actual completion happens out-of-order, through a IPI handler. 366 **/ 367 void blk_mq_complete_request(struct request *rq) 368 { 369 struct request_queue *q = rq->q; 370 371 if (unlikely(blk_should_fake_timeout(q))) 372 return; 373 if (!blk_mark_rq_complete(rq)) 374 __blk_mq_complete_request(rq); 375 } 376 EXPORT_SYMBOL(blk_mq_complete_request); 377 378 void blk_mq_start_request(struct request *rq) 379 { 380 struct request_queue *q = rq->q; 381 382 trace_block_rq_issue(q, rq); 383 384 rq->resid_len = blk_rq_bytes(rq); 385 if (unlikely(blk_bidi_rq(rq))) 386 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 387 388 blk_add_timer(rq); 389 390 /* 391 * Ensure that ->deadline is visible before set the started 392 * flag and clear the completed flag. 393 */ 394 smp_mb__before_atomic(); 395 396 /* 397 * Mark us as started and clear complete. Complete might have been 398 * set if requeue raced with timeout, which then marked it as 399 * complete. So be sure to clear complete again when we start 400 * the request, otherwise we'll ignore the completion event. 401 */ 402 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 403 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 404 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 405 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 406 407 if (q->dma_drain_size && blk_rq_bytes(rq)) { 408 /* 409 * Make sure space for the drain appears. We know we can do 410 * this because max_hw_segments has been adjusted to be one 411 * fewer than the device can handle. 412 */ 413 rq->nr_phys_segments++; 414 } 415 } 416 EXPORT_SYMBOL(blk_mq_start_request); 417 418 static void __blk_mq_requeue_request(struct request *rq) 419 { 420 struct request_queue *q = rq->q; 421 422 trace_block_rq_requeue(q, rq); 423 424 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 425 if (q->dma_drain_size && blk_rq_bytes(rq)) 426 rq->nr_phys_segments--; 427 } 428 } 429 430 void blk_mq_requeue_request(struct request *rq) 431 { 432 __blk_mq_requeue_request(rq); 433 434 BUG_ON(blk_queued_rq(rq)); 435 blk_mq_add_to_requeue_list(rq, true); 436 } 437 EXPORT_SYMBOL(blk_mq_requeue_request); 438 439 static void blk_mq_requeue_work(struct work_struct *work) 440 { 441 struct request_queue *q = 442 container_of(work, struct request_queue, requeue_work); 443 LIST_HEAD(rq_list); 444 struct request *rq, *next; 445 unsigned long flags; 446 447 spin_lock_irqsave(&q->requeue_lock, flags); 448 list_splice_init(&q->requeue_list, &rq_list); 449 spin_unlock_irqrestore(&q->requeue_lock, flags); 450 451 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 452 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 453 continue; 454 455 rq->cmd_flags &= ~REQ_SOFTBARRIER; 456 list_del_init(&rq->queuelist); 457 blk_mq_insert_request(rq, true, false, false); 458 } 459 460 while (!list_empty(&rq_list)) { 461 rq = list_entry(rq_list.next, struct request, queuelist); 462 list_del_init(&rq->queuelist); 463 blk_mq_insert_request(rq, false, false, false); 464 } 465 466 /* 467 * Use the start variant of queue running here, so that running 468 * the requeue work will kick stopped queues. 469 */ 470 blk_mq_start_hw_queues(q); 471 } 472 473 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 474 { 475 struct request_queue *q = rq->q; 476 unsigned long flags; 477 478 /* 479 * We abuse this flag that is otherwise used by the I/O scheduler to 480 * request head insertation from the workqueue. 481 */ 482 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 483 484 spin_lock_irqsave(&q->requeue_lock, flags); 485 if (at_head) { 486 rq->cmd_flags |= REQ_SOFTBARRIER; 487 list_add(&rq->queuelist, &q->requeue_list); 488 } else { 489 list_add_tail(&rq->queuelist, &q->requeue_list); 490 } 491 spin_unlock_irqrestore(&q->requeue_lock, flags); 492 } 493 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 494 495 void blk_mq_kick_requeue_list(struct request_queue *q) 496 { 497 kblockd_schedule_work(&q->requeue_work); 498 } 499 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 500 501 static inline bool is_flush_request(struct request *rq, 502 struct blk_flush_queue *fq, unsigned int tag) 503 { 504 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 505 fq->flush_rq->tag == tag); 506 } 507 508 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 509 { 510 struct request *rq = tags->rqs[tag]; 511 /* mq_ctx of flush rq is always cloned from the corresponding req */ 512 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx); 513 514 if (!is_flush_request(rq, fq, tag)) 515 return rq; 516 517 return fq->flush_rq; 518 } 519 EXPORT_SYMBOL(blk_mq_tag_to_rq); 520 521 struct blk_mq_timeout_data { 522 unsigned long next; 523 unsigned int next_set; 524 }; 525 526 void blk_mq_rq_timed_out(struct request *req, bool reserved) 527 { 528 struct blk_mq_ops *ops = req->q->mq_ops; 529 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 530 531 /* 532 * We know that complete is set at this point. If STARTED isn't set 533 * anymore, then the request isn't active and the "timeout" should 534 * just be ignored. This can happen due to the bitflag ordering. 535 * Timeout first checks if STARTED is set, and if it is, assumes 536 * the request is active. But if we race with completion, then 537 * we both flags will get cleared. So check here again, and ignore 538 * a timeout event with a request that isn't active. 539 */ 540 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 541 return; 542 543 if (ops->timeout) 544 ret = ops->timeout(req, reserved); 545 546 switch (ret) { 547 case BLK_EH_HANDLED: 548 __blk_mq_complete_request(req); 549 break; 550 case BLK_EH_RESET_TIMER: 551 blk_add_timer(req); 552 blk_clear_rq_complete(req); 553 break; 554 case BLK_EH_NOT_HANDLED: 555 break; 556 default: 557 printk(KERN_ERR "block: bad eh return: %d\n", ret); 558 break; 559 } 560 } 561 562 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 563 struct request *rq, void *priv, bool reserved) 564 { 565 struct blk_mq_timeout_data *data = priv; 566 567 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 568 return; 569 570 if (time_after_eq(jiffies, rq->deadline)) { 571 if (!blk_mark_rq_complete(rq)) 572 blk_mq_rq_timed_out(rq, reserved); 573 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 574 data->next = rq->deadline; 575 data->next_set = 1; 576 } 577 } 578 579 static void blk_mq_rq_timer(unsigned long priv) 580 { 581 struct request_queue *q = (struct request_queue *)priv; 582 struct blk_mq_timeout_data data = { 583 .next = 0, 584 .next_set = 0, 585 }; 586 struct blk_mq_hw_ctx *hctx; 587 int i; 588 589 queue_for_each_hw_ctx(q, hctx, i) { 590 /* 591 * If not software queues are currently mapped to this 592 * hardware queue, there's nothing to check 593 */ 594 if (!hctx->nr_ctx || !hctx->tags) 595 continue; 596 597 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data); 598 } 599 600 if (data.next_set) { 601 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 602 mod_timer(&q->timeout, data.next); 603 } else { 604 queue_for_each_hw_ctx(q, hctx, i) 605 blk_mq_tag_idle(hctx); 606 } 607 } 608 609 /* 610 * Reverse check our software queue for entries that we could potentially 611 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 612 * too much time checking for merges. 613 */ 614 static bool blk_mq_attempt_merge(struct request_queue *q, 615 struct blk_mq_ctx *ctx, struct bio *bio) 616 { 617 struct request *rq; 618 int checked = 8; 619 620 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 621 int el_ret; 622 623 if (!checked--) 624 break; 625 626 if (!blk_rq_merge_ok(rq, bio)) 627 continue; 628 629 el_ret = blk_try_merge(rq, bio); 630 if (el_ret == ELEVATOR_BACK_MERGE) { 631 if (bio_attempt_back_merge(q, rq, bio)) { 632 ctx->rq_merged++; 633 return true; 634 } 635 break; 636 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 637 if (bio_attempt_front_merge(q, rq, bio)) { 638 ctx->rq_merged++; 639 return true; 640 } 641 break; 642 } 643 } 644 645 return false; 646 } 647 648 /* 649 * Process software queues that have been marked busy, splicing them 650 * to the for-dispatch 651 */ 652 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 653 { 654 struct blk_mq_ctx *ctx; 655 int i; 656 657 for (i = 0; i < hctx->ctx_map.map_size; i++) { 658 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 659 unsigned int off, bit; 660 661 if (!bm->word) 662 continue; 663 664 bit = 0; 665 off = i * hctx->ctx_map.bits_per_word; 666 do { 667 bit = find_next_bit(&bm->word, bm->depth, bit); 668 if (bit >= bm->depth) 669 break; 670 671 ctx = hctx->ctxs[bit + off]; 672 clear_bit(bit, &bm->word); 673 spin_lock(&ctx->lock); 674 list_splice_tail_init(&ctx->rq_list, list); 675 spin_unlock(&ctx->lock); 676 677 bit++; 678 } while (1); 679 } 680 } 681 682 /* 683 * Run this hardware queue, pulling any software queues mapped to it in. 684 * Note that this function currently has various problems around ordering 685 * of IO. In particular, we'd like FIFO behaviour on handling existing 686 * items on the hctx->dispatch list. Ignore that for now. 687 */ 688 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 689 { 690 struct request_queue *q = hctx->queue; 691 struct request *rq; 692 LIST_HEAD(rq_list); 693 int queued; 694 695 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 696 697 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 698 return; 699 700 hctx->run++; 701 702 /* 703 * Touch any software queue that has pending entries. 704 */ 705 flush_busy_ctxs(hctx, &rq_list); 706 707 /* 708 * If we have previous entries on our dispatch list, grab them 709 * and stuff them at the front for more fair dispatch. 710 */ 711 if (!list_empty_careful(&hctx->dispatch)) { 712 spin_lock(&hctx->lock); 713 if (!list_empty(&hctx->dispatch)) 714 list_splice_init(&hctx->dispatch, &rq_list); 715 spin_unlock(&hctx->lock); 716 } 717 718 /* 719 * Now process all the entries, sending them to the driver. 720 */ 721 queued = 0; 722 while (!list_empty(&rq_list)) { 723 int ret; 724 725 rq = list_first_entry(&rq_list, struct request, queuelist); 726 list_del_init(&rq->queuelist); 727 728 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list)); 729 switch (ret) { 730 case BLK_MQ_RQ_QUEUE_OK: 731 queued++; 732 continue; 733 case BLK_MQ_RQ_QUEUE_BUSY: 734 list_add(&rq->queuelist, &rq_list); 735 __blk_mq_requeue_request(rq); 736 break; 737 default: 738 pr_err("blk-mq: bad return on queue: %d\n", ret); 739 case BLK_MQ_RQ_QUEUE_ERROR: 740 rq->errors = -EIO; 741 blk_mq_end_request(rq, rq->errors); 742 break; 743 } 744 745 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 746 break; 747 } 748 749 if (!queued) 750 hctx->dispatched[0]++; 751 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 752 hctx->dispatched[ilog2(queued) + 1]++; 753 754 /* 755 * Any items that need requeuing? Stuff them into hctx->dispatch, 756 * that is where we will continue on next queue run. 757 */ 758 if (!list_empty(&rq_list)) { 759 spin_lock(&hctx->lock); 760 list_splice(&rq_list, &hctx->dispatch); 761 spin_unlock(&hctx->lock); 762 } 763 } 764 765 /* 766 * It'd be great if the workqueue API had a way to pass 767 * in a mask and had some smarts for more clever placement. 768 * For now we just round-robin here, switching for every 769 * BLK_MQ_CPU_WORK_BATCH queued items. 770 */ 771 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 772 { 773 int cpu = hctx->next_cpu; 774 775 if (--hctx->next_cpu_batch <= 0) { 776 int next_cpu; 777 778 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 779 if (next_cpu >= nr_cpu_ids) 780 next_cpu = cpumask_first(hctx->cpumask); 781 782 hctx->next_cpu = next_cpu; 783 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 784 } 785 786 return cpu; 787 } 788 789 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 790 { 791 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 792 return; 793 794 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask)) 795 __blk_mq_run_hw_queue(hctx); 796 else if (hctx->queue->nr_hw_queues == 1) 797 kblockd_schedule_delayed_work(&hctx->run_work, 0); 798 else { 799 unsigned int cpu; 800 801 cpu = blk_mq_hctx_next_cpu(hctx); 802 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); 803 } 804 } 805 806 void blk_mq_run_queues(struct request_queue *q, bool async) 807 { 808 struct blk_mq_hw_ctx *hctx; 809 int i; 810 811 queue_for_each_hw_ctx(q, hctx, i) { 812 if ((!blk_mq_hctx_has_pending(hctx) && 813 list_empty_careful(&hctx->dispatch)) || 814 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 815 continue; 816 817 preempt_disable(); 818 blk_mq_run_hw_queue(hctx, async); 819 preempt_enable(); 820 } 821 } 822 EXPORT_SYMBOL(blk_mq_run_queues); 823 824 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 825 { 826 cancel_delayed_work(&hctx->run_work); 827 cancel_delayed_work(&hctx->delay_work); 828 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 829 } 830 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 831 832 void blk_mq_stop_hw_queues(struct request_queue *q) 833 { 834 struct blk_mq_hw_ctx *hctx; 835 int i; 836 837 queue_for_each_hw_ctx(q, hctx, i) 838 blk_mq_stop_hw_queue(hctx); 839 } 840 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 841 842 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 843 { 844 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 845 846 preempt_disable(); 847 blk_mq_run_hw_queue(hctx, false); 848 preempt_enable(); 849 } 850 EXPORT_SYMBOL(blk_mq_start_hw_queue); 851 852 void blk_mq_start_hw_queues(struct request_queue *q) 853 { 854 struct blk_mq_hw_ctx *hctx; 855 int i; 856 857 queue_for_each_hw_ctx(q, hctx, i) 858 blk_mq_start_hw_queue(hctx); 859 } 860 EXPORT_SYMBOL(blk_mq_start_hw_queues); 861 862 863 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 864 { 865 struct blk_mq_hw_ctx *hctx; 866 int i; 867 868 queue_for_each_hw_ctx(q, hctx, i) { 869 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 870 continue; 871 872 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 873 preempt_disable(); 874 blk_mq_run_hw_queue(hctx, async); 875 preempt_enable(); 876 } 877 } 878 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 879 880 static void blk_mq_run_work_fn(struct work_struct *work) 881 { 882 struct blk_mq_hw_ctx *hctx; 883 884 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 885 886 __blk_mq_run_hw_queue(hctx); 887 } 888 889 static void blk_mq_delay_work_fn(struct work_struct *work) 890 { 891 struct blk_mq_hw_ctx *hctx; 892 893 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 894 895 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 896 __blk_mq_run_hw_queue(hctx); 897 } 898 899 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 900 { 901 unsigned long tmo = msecs_to_jiffies(msecs); 902 903 if (hctx->queue->nr_hw_queues == 1) 904 kblockd_schedule_delayed_work(&hctx->delay_work, tmo); 905 else { 906 unsigned int cpu; 907 908 cpu = blk_mq_hctx_next_cpu(hctx); 909 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); 910 } 911 } 912 EXPORT_SYMBOL(blk_mq_delay_queue); 913 914 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 915 struct request *rq, bool at_head) 916 { 917 struct blk_mq_ctx *ctx = rq->mq_ctx; 918 919 trace_block_rq_insert(hctx->queue, rq); 920 921 if (at_head) 922 list_add(&rq->queuelist, &ctx->rq_list); 923 else 924 list_add_tail(&rq->queuelist, &ctx->rq_list); 925 926 blk_mq_hctx_mark_pending(hctx, ctx); 927 } 928 929 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 930 bool async) 931 { 932 struct request_queue *q = rq->q; 933 struct blk_mq_hw_ctx *hctx; 934 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 935 936 current_ctx = blk_mq_get_ctx(q); 937 if (!cpu_online(ctx->cpu)) 938 rq->mq_ctx = ctx = current_ctx; 939 940 hctx = q->mq_ops->map_queue(q, ctx->cpu); 941 942 spin_lock(&ctx->lock); 943 __blk_mq_insert_request(hctx, rq, at_head); 944 spin_unlock(&ctx->lock); 945 946 if (run_queue) 947 blk_mq_run_hw_queue(hctx, async); 948 949 blk_mq_put_ctx(current_ctx); 950 } 951 952 static void blk_mq_insert_requests(struct request_queue *q, 953 struct blk_mq_ctx *ctx, 954 struct list_head *list, 955 int depth, 956 bool from_schedule) 957 958 { 959 struct blk_mq_hw_ctx *hctx; 960 struct blk_mq_ctx *current_ctx; 961 962 trace_block_unplug(q, depth, !from_schedule); 963 964 current_ctx = blk_mq_get_ctx(q); 965 966 if (!cpu_online(ctx->cpu)) 967 ctx = current_ctx; 968 hctx = q->mq_ops->map_queue(q, ctx->cpu); 969 970 /* 971 * preemption doesn't flush plug list, so it's possible ctx->cpu is 972 * offline now 973 */ 974 spin_lock(&ctx->lock); 975 while (!list_empty(list)) { 976 struct request *rq; 977 978 rq = list_first_entry(list, struct request, queuelist); 979 list_del_init(&rq->queuelist); 980 rq->mq_ctx = ctx; 981 __blk_mq_insert_request(hctx, rq, false); 982 } 983 spin_unlock(&ctx->lock); 984 985 blk_mq_run_hw_queue(hctx, from_schedule); 986 blk_mq_put_ctx(current_ctx); 987 } 988 989 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 990 { 991 struct request *rqa = container_of(a, struct request, queuelist); 992 struct request *rqb = container_of(b, struct request, queuelist); 993 994 return !(rqa->mq_ctx < rqb->mq_ctx || 995 (rqa->mq_ctx == rqb->mq_ctx && 996 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 997 } 998 999 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1000 { 1001 struct blk_mq_ctx *this_ctx; 1002 struct request_queue *this_q; 1003 struct request *rq; 1004 LIST_HEAD(list); 1005 LIST_HEAD(ctx_list); 1006 unsigned int depth; 1007 1008 list_splice_init(&plug->mq_list, &list); 1009 1010 list_sort(NULL, &list, plug_ctx_cmp); 1011 1012 this_q = NULL; 1013 this_ctx = NULL; 1014 depth = 0; 1015 1016 while (!list_empty(&list)) { 1017 rq = list_entry_rq(list.next); 1018 list_del_init(&rq->queuelist); 1019 BUG_ON(!rq->q); 1020 if (rq->mq_ctx != this_ctx) { 1021 if (this_ctx) { 1022 blk_mq_insert_requests(this_q, this_ctx, 1023 &ctx_list, depth, 1024 from_schedule); 1025 } 1026 1027 this_ctx = rq->mq_ctx; 1028 this_q = rq->q; 1029 depth = 0; 1030 } 1031 1032 depth++; 1033 list_add_tail(&rq->queuelist, &ctx_list); 1034 } 1035 1036 /* 1037 * If 'this_ctx' is set, we know we have entries to complete 1038 * on 'ctx_list'. Do those. 1039 */ 1040 if (this_ctx) { 1041 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1042 from_schedule); 1043 } 1044 } 1045 1046 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1047 { 1048 init_request_from_bio(rq, bio); 1049 1050 if (blk_do_io_stat(rq)) 1051 blk_account_io_start(rq, 1); 1052 } 1053 1054 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1055 { 1056 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1057 !blk_queue_nomerges(hctx->queue); 1058 } 1059 1060 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1061 struct blk_mq_ctx *ctx, 1062 struct request *rq, struct bio *bio) 1063 { 1064 if (!hctx_allow_merges(hctx)) { 1065 blk_mq_bio_to_request(rq, bio); 1066 spin_lock(&ctx->lock); 1067 insert_rq: 1068 __blk_mq_insert_request(hctx, rq, false); 1069 spin_unlock(&ctx->lock); 1070 return false; 1071 } else { 1072 struct request_queue *q = hctx->queue; 1073 1074 spin_lock(&ctx->lock); 1075 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1076 blk_mq_bio_to_request(rq, bio); 1077 goto insert_rq; 1078 } 1079 1080 spin_unlock(&ctx->lock); 1081 __blk_mq_free_request(hctx, ctx, rq); 1082 return true; 1083 } 1084 } 1085 1086 struct blk_map_ctx { 1087 struct blk_mq_hw_ctx *hctx; 1088 struct blk_mq_ctx *ctx; 1089 }; 1090 1091 static struct request *blk_mq_map_request(struct request_queue *q, 1092 struct bio *bio, 1093 struct blk_map_ctx *data) 1094 { 1095 struct blk_mq_hw_ctx *hctx; 1096 struct blk_mq_ctx *ctx; 1097 struct request *rq; 1098 int rw = bio_data_dir(bio); 1099 struct blk_mq_alloc_data alloc_data; 1100 1101 if (unlikely(blk_mq_queue_enter(q))) { 1102 bio_endio(bio, -EIO); 1103 return NULL; 1104 } 1105 1106 ctx = blk_mq_get_ctx(q); 1107 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1108 1109 if (rw_is_sync(bio->bi_rw)) 1110 rw |= REQ_SYNC; 1111 1112 trace_block_getrq(q, bio, rw); 1113 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1114 hctx); 1115 rq = __blk_mq_alloc_request(&alloc_data, rw); 1116 if (unlikely(!rq)) { 1117 __blk_mq_run_hw_queue(hctx); 1118 blk_mq_put_ctx(ctx); 1119 trace_block_sleeprq(q, bio, rw); 1120 1121 ctx = blk_mq_get_ctx(q); 1122 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1123 blk_mq_set_alloc_data(&alloc_data, q, 1124 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1125 rq = __blk_mq_alloc_request(&alloc_data, rw); 1126 ctx = alloc_data.ctx; 1127 hctx = alloc_data.hctx; 1128 } 1129 1130 hctx->queued++; 1131 data->hctx = hctx; 1132 data->ctx = ctx; 1133 return rq; 1134 } 1135 1136 /* 1137 * Multiple hardware queue variant. This will not use per-process plugs, 1138 * but will attempt to bypass the hctx queueing if we can go straight to 1139 * hardware for SYNC IO. 1140 */ 1141 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1142 { 1143 const int is_sync = rw_is_sync(bio->bi_rw); 1144 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1145 struct blk_map_ctx data; 1146 struct request *rq; 1147 1148 blk_queue_bounce(q, &bio); 1149 1150 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1151 bio_endio(bio, -EIO); 1152 return; 1153 } 1154 1155 rq = blk_mq_map_request(q, bio, &data); 1156 if (unlikely(!rq)) 1157 return; 1158 1159 if (unlikely(is_flush_fua)) { 1160 blk_mq_bio_to_request(rq, bio); 1161 blk_insert_flush(rq); 1162 goto run_queue; 1163 } 1164 1165 if (is_sync) { 1166 int ret; 1167 1168 blk_mq_bio_to_request(rq, bio); 1169 1170 /* 1171 * For OK queue, we are done. For error, kill it. Any other 1172 * error (busy), just add it to our list as we previously 1173 * would have done 1174 */ 1175 ret = q->mq_ops->queue_rq(data.hctx, rq, true); 1176 if (ret == BLK_MQ_RQ_QUEUE_OK) 1177 goto done; 1178 else { 1179 __blk_mq_requeue_request(rq); 1180 1181 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1182 rq->errors = -EIO; 1183 blk_mq_end_request(rq, rq->errors); 1184 goto done; 1185 } 1186 } 1187 } 1188 1189 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1190 /* 1191 * For a SYNC request, send it to the hardware immediately. For 1192 * an ASYNC request, just ensure that we run it later on. The 1193 * latter allows for merging opportunities and more efficient 1194 * dispatching. 1195 */ 1196 run_queue: 1197 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1198 } 1199 done: 1200 blk_mq_put_ctx(data.ctx); 1201 } 1202 1203 /* 1204 * Single hardware queue variant. This will attempt to use any per-process 1205 * plug for merging and IO deferral. 1206 */ 1207 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1208 { 1209 const int is_sync = rw_is_sync(bio->bi_rw); 1210 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1211 unsigned int use_plug, request_count = 0; 1212 struct blk_map_ctx data; 1213 struct request *rq; 1214 1215 /* 1216 * If we have multiple hardware queues, just go directly to 1217 * one of those for sync IO. 1218 */ 1219 use_plug = !is_flush_fua && !is_sync; 1220 1221 blk_queue_bounce(q, &bio); 1222 1223 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1224 bio_endio(bio, -EIO); 1225 return; 1226 } 1227 1228 if (use_plug && !blk_queue_nomerges(q) && 1229 blk_attempt_plug_merge(q, bio, &request_count)) 1230 return; 1231 1232 rq = blk_mq_map_request(q, bio, &data); 1233 if (unlikely(!rq)) 1234 return; 1235 1236 if (unlikely(is_flush_fua)) { 1237 blk_mq_bio_to_request(rq, bio); 1238 blk_insert_flush(rq); 1239 goto run_queue; 1240 } 1241 1242 /* 1243 * A task plug currently exists. Since this is completely lockless, 1244 * utilize that to temporarily store requests until the task is 1245 * either done or scheduled away. 1246 */ 1247 if (use_plug) { 1248 struct blk_plug *plug = current->plug; 1249 1250 if (plug) { 1251 blk_mq_bio_to_request(rq, bio); 1252 if (list_empty(&plug->mq_list)) 1253 trace_block_plug(q); 1254 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1255 blk_flush_plug_list(plug, false); 1256 trace_block_plug(q); 1257 } 1258 list_add_tail(&rq->queuelist, &plug->mq_list); 1259 blk_mq_put_ctx(data.ctx); 1260 return; 1261 } 1262 } 1263 1264 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1265 /* 1266 * For a SYNC request, send it to the hardware immediately. For 1267 * an ASYNC request, just ensure that we run it later on. The 1268 * latter allows for merging opportunities and more efficient 1269 * dispatching. 1270 */ 1271 run_queue: 1272 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1273 } 1274 1275 blk_mq_put_ctx(data.ctx); 1276 } 1277 1278 /* 1279 * Default mapping to a software queue, since we use one per CPU. 1280 */ 1281 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1282 { 1283 return q->queue_hw_ctx[q->mq_map[cpu]]; 1284 } 1285 EXPORT_SYMBOL(blk_mq_map_queue); 1286 1287 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1288 struct blk_mq_tags *tags, unsigned int hctx_idx) 1289 { 1290 struct page *page; 1291 1292 if (tags->rqs && set->ops->exit_request) { 1293 int i; 1294 1295 for (i = 0; i < tags->nr_tags; i++) { 1296 if (!tags->rqs[i]) 1297 continue; 1298 set->ops->exit_request(set->driver_data, tags->rqs[i], 1299 hctx_idx, i); 1300 tags->rqs[i] = NULL; 1301 } 1302 } 1303 1304 while (!list_empty(&tags->page_list)) { 1305 page = list_first_entry(&tags->page_list, struct page, lru); 1306 list_del_init(&page->lru); 1307 __free_pages(page, page->private); 1308 } 1309 1310 kfree(tags->rqs); 1311 1312 blk_mq_free_tags(tags); 1313 } 1314 1315 static size_t order_to_size(unsigned int order) 1316 { 1317 return (size_t)PAGE_SIZE << order; 1318 } 1319 1320 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1321 unsigned int hctx_idx) 1322 { 1323 struct blk_mq_tags *tags; 1324 unsigned int i, j, entries_per_page, max_order = 4; 1325 size_t rq_size, left; 1326 1327 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1328 set->numa_node); 1329 if (!tags) 1330 return NULL; 1331 1332 INIT_LIST_HEAD(&tags->page_list); 1333 1334 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1335 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1336 set->numa_node); 1337 if (!tags->rqs) { 1338 blk_mq_free_tags(tags); 1339 return NULL; 1340 } 1341 1342 /* 1343 * rq_size is the size of the request plus driver payload, rounded 1344 * to the cacheline size 1345 */ 1346 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1347 cache_line_size()); 1348 left = rq_size * set->queue_depth; 1349 1350 for (i = 0; i < set->queue_depth; ) { 1351 int this_order = max_order; 1352 struct page *page; 1353 int to_do; 1354 void *p; 1355 1356 while (left < order_to_size(this_order - 1) && this_order) 1357 this_order--; 1358 1359 do { 1360 page = alloc_pages_node(set->numa_node, 1361 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1362 this_order); 1363 if (page) 1364 break; 1365 if (!this_order--) 1366 break; 1367 if (order_to_size(this_order) < rq_size) 1368 break; 1369 } while (1); 1370 1371 if (!page) 1372 goto fail; 1373 1374 page->private = this_order; 1375 list_add_tail(&page->lru, &tags->page_list); 1376 1377 p = page_address(page); 1378 entries_per_page = order_to_size(this_order) / rq_size; 1379 to_do = min(entries_per_page, set->queue_depth - i); 1380 left -= to_do * rq_size; 1381 for (j = 0; j < to_do; j++) { 1382 tags->rqs[i] = p; 1383 tags->rqs[i]->atomic_flags = 0; 1384 tags->rqs[i]->cmd_flags = 0; 1385 if (set->ops->init_request) { 1386 if (set->ops->init_request(set->driver_data, 1387 tags->rqs[i], hctx_idx, i, 1388 set->numa_node)) { 1389 tags->rqs[i] = NULL; 1390 goto fail; 1391 } 1392 } 1393 1394 p += rq_size; 1395 i++; 1396 } 1397 } 1398 1399 return tags; 1400 1401 fail: 1402 blk_mq_free_rq_map(set, tags, hctx_idx); 1403 return NULL; 1404 } 1405 1406 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1407 { 1408 kfree(bitmap->map); 1409 } 1410 1411 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1412 { 1413 unsigned int bpw = 8, total, num_maps, i; 1414 1415 bitmap->bits_per_word = bpw; 1416 1417 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1418 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1419 GFP_KERNEL, node); 1420 if (!bitmap->map) 1421 return -ENOMEM; 1422 1423 bitmap->map_size = num_maps; 1424 1425 total = nr_cpu_ids; 1426 for (i = 0; i < num_maps; i++) { 1427 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1428 total -= bitmap->map[i].depth; 1429 } 1430 1431 return 0; 1432 } 1433 1434 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1435 { 1436 struct request_queue *q = hctx->queue; 1437 struct blk_mq_ctx *ctx; 1438 LIST_HEAD(tmp); 1439 1440 /* 1441 * Move ctx entries to new CPU, if this one is going away. 1442 */ 1443 ctx = __blk_mq_get_ctx(q, cpu); 1444 1445 spin_lock(&ctx->lock); 1446 if (!list_empty(&ctx->rq_list)) { 1447 list_splice_init(&ctx->rq_list, &tmp); 1448 blk_mq_hctx_clear_pending(hctx, ctx); 1449 } 1450 spin_unlock(&ctx->lock); 1451 1452 if (list_empty(&tmp)) 1453 return NOTIFY_OK; 1454 1455 ctx = blk_mq_get_ctx(q); 1456 spin_lock(&ctx->lock); 1457 1458 while (!list_empty(&tmp)) { 1459 struct request *rq; 1460 1461 rq = list_first_entry(&tmp, struct request, queuelist); 1462 rq->mq_ctx = ctx; 1463 list_move_tail(&rq->queuelist, &ctx->rq_list); 1464 } 1465 1466 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1467 blk_mq_hctx_mark_pending(hctx, ctx); 1468 1469 spin_unlock(&ctx->lock); 1470 1471 blk_mq_run_hw_queue(hctx, true); 1472 blk_mq_put_ctx(ctx); 1473 return NOTIFY_OK; 1474 } 1475 1476 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1477 { 1478 struct request_queue *q = hctx->queue; 1479 struct blk_mq_tag_set *set = q->tag_set; 1480 1481 if (set->tags[hctx->queue_num]) 1482 return NOTIFY_OK; 1483 1484 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1485 if (!set->tags[hctx->queue_num]) 1486 return NOTIFY_STOP; 1487 1488 hctx->tags = set->tags[hctx->queue_num]; 1489 return NOTIFY_OK; 1490 } 1491 1492 static int blk_mq_hctx_notify(void *data, unsigned long action, 1493 unsigned int cpu) 1494 { 1495 struct blk_mq_hw_ctx *hctx = data; 1496 1497 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1498 return blk_mq_hctx_cpu_offline(hctx, cpu); 1499 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1500 return blk_mq_hctx_cpu_online(hctx, cpu); 1501 1502 return NOTIFY_OK; 1503 } 1504 1505 static void blk_mq_exit_hctx(struct request_queue *q, 1506 struct blk_mq_tag_set *set, 1507 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1508 { 1509 unsigned flush_start_tag = set->queue_depth; 1510 1511 blk_mq_tag_idle(hctx); 1512 1513 if (set->ops->exit_request) 1514 set->ops->exit_request(set->driver_data, 1515 hctx->fq->flush_rq, hctx_idx, 1516 flush_start_tag + hctx_idx); 1517 1518 if (set->ops->exit_hctx) 1519 set->ops->exit_hctx(hctx, hctx_idx); 1520 1521 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1522 blk_free_flush_queue(hctx->fq); 1523 kfree(hctx->ctxs); 1524 blk_mq_free_bitmap(&hctx->ctx_map); 1525 } 1526 1527 static void blk_mq_exit_hw_queues(struct request_queue *q, 1528 struct blk_mq_tag_set *set, int nr_queue) 1529 { 1530 struct blk_mq_hw_ctx *hctx; 1531 unsigned int i; 1532 1533 queue_for_each_hw_ctx(q, hctx, i) { 1534 if (i == nr_queue) 1535 break; 1536 blk_mq_exit_hctx(q, set, hctx, i); 1537 } 1538 } 1539 1540 static void blk_mq_free_hw_queues(struct request_queue *q, 1541 struct blk_mq_tag_set *set) 1542 { 1543 struct blk_mq_hw_ctx *hctx; 1544 unsigned int i; 1545 1546 queue_for_each_hw_ctx(q, hctx, i) { 1547 free_cpumask_var(hctx->cpumask); 1548 kfree(hctx); 1549 } 1550 } 1551 1552 static int blk_mq_init_hctx(struct request_queue *q, 1553 struct blk_mq_tag_set *set, 1554 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1555 { 1556 int node; 1557 unsigned flush_start_tag = set->queue_depth; 1558 1559 node = hctx->numa_node; 1560 if (node == NUMA_NO_NODE) 1561 node = hctx->numa_node = set->numa_node; 1562 1563 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1564 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1565 spin_lock_init(&hctx->lock); 1566 INIT_LIST_HEAD(&hctx->dispatch); 1567 hctx->queue = q; 1568 hctx->queue_num = hctx_idx; 1569 hctx->flags = set->flags; 1570 hctx->cmd_size = set->cmd_size; 1571 1572 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1573 blk_mq_hctx_notify, hctx); 1574 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1575 1576 hctx->tags = set->tags[hctx_idx]; 1577 1578 /* 1579 * Allocate space for all possible cpus to avoid allocation at 1580 * runtime 1581 */ 1582 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1583 GFP_KERNEL, node); 1584 if (!hctx->ctxs) 1585 goto unregister_cpu_notifier; 1586 1587 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1588 goto free_ctxs; 1589 1590 hctx->nr_ctx = 0; 1591 1592 if (set->ops->init_hctx && 1593 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1594 goto free_bitmap; 1595 1596 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1597 if (!hctx->fq) 1598 goto exit_hctx; 1599 1600 if (set->ops->init_request && 1601 set->ops->init_request(set->driver_data, 1602 hctx->fq->flush_rq, hctx_idx, 1603 flush_start_tag + hctx_idx, node)) 1604 goto free_fq; 1605 1606 return 0; 1607 1608 free_fq: 1609 kfree(hctx->fq); 1610 exit_hctx: 1611 if (set->ops->exit_hctx) 1612 set->ops->exit_hctx(hctx, hctx_idx); 1613 free_bitmap: 1614 blk_mq_free_bitmap(&hctx->ctx_map); 1615 free_ctxs: 1616 kfree(hctx->ctxs); 1617 unregister_cpu_notifier: 1618 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1619 1620 return -1; 1621 } 1622 1623 static int blk_mq_init_hw_queues(struct request_queue *q, 1624 struct blk_mq_tag_set *set) 1625 { 1626 struct blk_mq_hw_ctx *hctx; 1627 unsigned int i; 1628 1629 /* 1630 * Initialize hardware queues 1631 */ 1632 queue_for_each_hw_ctx(q, hctx, i) { 1633 if (blk_mq_init_hctx(q, set, hctx, i)) 1634 break; 1635 } 1636 1637 if (i == q->nr_hw_queues) 1638 return 0; 1639 1640 /* 1641 * Init failed 1642 */ 1643 blk_mq_exit_hw_queues(q, set, i); 1644 1645 return 1; 1646 } 1647 1648 static void blk_mq_init_cpu_queues(struct request_queue *q, 1649 unsigned int nr_hw_queues) 1650 { 1651 unsigned int i; 1652 1653 for_each_possible_cpu(i) { 1654 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1655 struct blk_mq_hw_ctx *hctx; 1656 1657 memset(__ctx, 0, sizeof(*__ctx)); 1658 __ctx->cpu = i; 1659 spin_lock_init(&__ctx->lock); 1660 INIT_LIST_HEAD(&__ctx->rq_list); 1661 __ctx->queue = q; 1662 1663 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1664 if (!cpu_online(i)) 1665 continue; 1666 1667 hctx = q->mq_ops->map_queue(q, i); 1668 cpumask_set_cpu(i, hctx->cpumask); 1669 hctx->nr_ctx++; 1670 1671 /* 1672 * Set local node, IFF we have more than one hw queue. If 1673 * not, we remain on the home node of the device 1674 */ 1675 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1676 hctx->numa_node = cpu_to_node(i); 1677 } 1678 } 1679 1680 static void blk_mq_map_swqueue(struct request_queue *q) 1681 { 1682 unsigned int i; 1683 struct blk_mq_hw_ctx *hctx; 1684 struct blk_mq_ctx *ctx; 1685 1686 queue_for_each_hw_ctx(q, hctx, i) { 1687 cpumask_clear(hctx->cpumask); 1688 hctx->nr_ctx = 0; 1689 } 1690 1691 /* 1692 * Map software to hardware queues 1693 */ 1694 queue_for_each_ctx(q, ctx, i) { 1695 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1696 if (!cpu_online(i)) 1697 continue; 1698 1699 hctx = q->mq_ops->map_queue(q, i); 1700 cpumask_set_cpu(i, hctx->cpumask); 1701 ctx->index_hw = hctx->nr_ctx; 1702 hctx->ctxs[hctx->nr_ctx++] = ctx; 1703 } 1704 1705 queue_for_each_hw_ctx(q, hctx, i) { 1706 /* 1707 * If no software queues are mapped to this hardware queue, 1708 * disable it and free the request entries. 1709 */ 1710 if (!hctx->nr_ctx) { 1711 struct blk_mq_tag_set *set = q->tag_set; 1712 1713 if (set->tags[i]) { 1714 blk_mq_free_rq_map(set, set->tags[i], i); 1715 set->tags[i] = NULL; 1716 hctx->tags = NULL; 1717 } 1718 continue; 1719 } 1720 1721 /* 1722 * Initialize batch roundrobin counts 1723 */ 1724 hctx->next_cpu = cpumask_first(hctx->cpumask); 1725 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1726 } 1727 } 1728 1729 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1730 { 1731 struct blk_mq_hw_ctx *hctx; 1732 struct request_queue *q; 1733 bool shared; 1734 int i; 1735 1736 if (set->tag_list.next == set->tag_list.prev) 1737 shared = false; 1738 else 1739 shared = true; 1740 1741 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1742 blk_mq_freeze_queue(q); 1743 1744 queue_for_each_hw_ctx(q, hctx, i) { 1745 if (shared) 1746 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1747 else 1748 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1749 } 1750 blk_mq_unfreeze_queue(q); 1751 } 1752 } 1753 1754 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1755 { 1756 struct blk_mq_tag_set *set = q->tag_set; 1757 1758 mutex_lock(&set->tag_list_lock); 1759 list_del_init(&q->tag_set_list); 1760 blk_mq_update_tag_set_depth(set); 1761 mutex_unlock(&set->tag_list_lock); 1762 } 1763 1764 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1765 struct request_queue *q) 1766 { 1767 q->tag_set = set; 1768 1769 mutex_lock(&set->tag_list_lock); 1770 list_add_tail(&q->tag_set_list, &set->tag_list); 1771 blk_mq_update_tag_set_depth(set); 1772 mutex_unlock(&set->tag_list_lock); 1773 } 1774 1775 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1776 { 1777 struct blk_mq_hw_ctx **hctxs; 1778 struct blk_mq_ctx __percpu *ctx; 1779 struct request_queue *q; 1780 unsigned int *map; 1781 int i; 1782 1783 ctx = alloc_percpu(struct blk_mq_ctx); 1784 if (!ctx) 1785 return ERR_PTR(-ENOMEM); 1786 1787 /* 1788 * If a crashdump is active, then we are potentially in a very 1789 * memory constrained environment. Limit us to 1 queue and 1790 * 64 tags to prevent using too much memory. 1791 */ 1792 if (is_kdump_kernel()) { 1793 set->nr_hw_queues = 1; 1794 set->queue_depth = min(64U, set->queue_depth); 1795 } 1796 1797 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1798 set->numa_node); 1799 1800 if (!hctxs) 1801 goto err_percpu; 1802 1803 map = blk_mq_make_queue_map(set); 1804 if (!map) 1805 goto err_map; 1806 1807 for (i = 0; i < set->nr_hw_queues; i++) { 1808 int node = blk_mq_hw_queue_to_node(map, i); 1809 1810 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1811 GFP_KERNEL, node); 1812 if (!hctxs[i]) 1813 goto err_hctxs; 1814 1815 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1816 node)) 1817 goto err_hctxs; 1818 1819 atomic_set(&hctxs[i]->nr_active, 0); 1820 hctxs[i]->numa_node = node; 1821 hctxs[i]->queue_num = i; 1822 } 1823 1824 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1825 if (!q) 1826 goto err_hctxs; 1827 1828 /* 1829 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1830 * See blk_register_queue() for details. 1831 */ 1832 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release, 1833 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1834 goto err_map; 1835 1836 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1837 blk_queue_rq_timeout(q, 30000); 1838 1839 q->nr_queues = nr_cpu_ids; 1840 q->nr_hw_queues = set->nr_hw_queues; 1841 q->mq_map = map; 1842 1843 q->queue_ctx = ctx; 1844 q->queue_hw_ctx = hctxs; 1845 1846 q->mq_ops = set->ops; 1847 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1848 1849 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1850 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1851 1852 q->sg_reserved_size = INT_MAX; 1853 1854 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1855 INIT_LIST_HEAD(&q->requeue_list); 1856 spin_lock_init(&q->requeue_lock); 1857 1858 if (q->nr_hw_queues > 1) 1859 blk_queue_make_request(q, blk_mq_make_request); 1860 else 1861 blk_queue_make_request(q, blk_sq_make_request); 1862 1863 if (set->timeout) 1864 blk_queue_rq_timeout(q, set->timeout); 1865 1866 /* 1867 * Do this after blk_queue_make_request() overrides it... 1868 */ 1869 q->nr_requests = set->queue_depth; 1870 1871 if (set->ops->complete) 1872 blk_queue_softirq_done(q, set->ops->complete); 1873 1874 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1875 1876 if (blk_mq_init_hw_queues(q, set)) 1877 goto err_hw; 1878 1879 mutex_lock(&all_q_mutex); 1880 list_add_tail(&q->all_q_node, &all_q_list); 1881 mutex_unlock(&all_q_mutex); 1882 1883 blk_mq_add_queue_tag_set(set, q); 1884 1885 blk_mq_map_swqueue(q); 1886 1887 return q; 1888 1889 err_hw: 1890 blk_cleanup_queue(q); 1891 err_hctxs: 1892 kfree(map); 1893 for (i = 0; i < set->nr_hw_queues; i++) { 1894 if (!hctxs[i]) 1895 break; 1896 free_cpumask_var(hctxs[i]->cpumask); 1897 kfree(hctxs[i]); 1898 } 1899 err_map: 1900 kfree(hctxs); 1901 err_percpu: 1902 free_percpu(ctx); 1903 return ERR_PTR(-ENOMEM); 1904 } 1905 EXPORT_SYMBOL(blk_mq_init_queue); 1906 1907 void blk_mq_free_queue(struct request_queue *q) 1908 { 1909 struct blk_mq_tag_set *set = q->tag_set; 1910 1911 blk_mq_del_queue_tag_set(q); 1912 1913 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 1914 blk_mq_free_hw_queues(q, set); 1915 1916 percpu_ref_exit(&q->mq_usage_counter); 1917 1918 free_percpu(q->queue_ctx); 1919 kfree(q->queue_hw_ctx); 1920 kfree(q->mq_map); 1921 1922 q->queue_ctx = NULL; 1923 q->queue_hw_ctx = NULL; 1924 q->mq_map = NULL; 1925 1926 mutex_lock(&all_q_mutex); 1927 list_del_init(&q->all_q_node); 1928 mutex_unlock(&all_q_mutex); 1929 } 1930 1931 /* Basically redo blk_mq_init_queue with queue frozen */ 1932 static void blk_mq_queue_reinit(struct request_queue *q) 1933 { 1934 WARN_ON_ONCE(!q->mq_freeze_depth); 1935 1936 blk_mq_sysfs_unregister(q); 1937 1938 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 1939 1940 /* 1941 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 1942 * we should change hctx numa_node according to new topology (this 1943 * involves free and re-allocate memory, worthy doing?) 1944 */ 1945 1946 blk_mq_map_swqueue(q); 1947 1948 blk_mq_sysfs_register(q); 1949 } 1950 1951 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 1952 unsigned long action, void *hcpu) 1953 { 1954 struct request_queue *q; 1955 1956 /* 1957 * Before new mappings are established, hotadded cpu might already 1958 * start handling requests. This doesn't break anything as we map 1959 * offline CPUs to first hardware queue. We will re-init the queue 1960 * below to get optimal settings. 1961 */ 1962 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 1963 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 1964 return NOTIFY_OK; 1965 1966 mutex_lock(&all_q_mutex); 1967 1968 /* 1969 * We need to freeze and reinit all existing queues. Freezing 1970 * involves synchronous wait for an RCU grace period and doing it 1971 * one by one may take a long time. Start freezing all queues in 1972 * one swoop and then wait for the completions so that freezing can 1973 * take place in parallel. 1974 */ 1975 list_for_each_entry(q, &all_q_list, all_q_node) 1976 blk_mq_freeze_queue_start(q); 1977 list_for_each_entry(q, &all_q_list, all_q_node) 1978 blk_mq_freeze_queue_wait(q); 1979 1980 list_for_each_entry(q, &all_q_list, all_q_node) 1981 blk_mq_queue_reinit(q); 1982 1983 list_for_each_entry(q, &all_q_list, all_q_node) 1984 blk_mq_unfreeze_queue(q); 1985 1986 mutex_unlock(&all_q_mutex); 1987 return NOTIFY_OK; 1988 } 1989 1990 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 1991 { 1992 int i; 1993 1994 for (i = 0; i < set->nr_hw_queues; i++) { 1995 set->tags[i] = blk_mq_init_rq_map(set, i); 1996 if (!set->tags[i]) 1997 goto out_unwind; 1998 } 1999 2000 return 0; 2001 2002 out_unwind: 2003 while (--i >= 0) 2004 blk_mq_free_rq_map(set, set->tags[i], i); 2005 2006 return -ENOMEM; 2007 } 2008 2009 /* 2010 * Allocate the request maps associated with this tag_set. Note that this 2011 * may reduce the depth asked for, if memory is tight. set->queue_depth 2012 * will be updated to reflect the allocated depth. 2013 */ 2014 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2015 { 2016 unsigned int depth; 2017 int err; 2018 2019 depth = set->queue_depth; 2020 do { 2021 err = __blk_mq_alloc_rq_maps(set); 2022 if (!err) 2023 break; 2024 2025 set->queue_depth >>= 1; 2026 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2027 err = -ENOMEM; 2028 break; 2029 } 2030 } while (set->queue_depth); 2031 2032 if (!set->queue_depth || err) { 2033 pr_err("blk-mq: failed to allocate request map\n"); 2034 return -ENOMEM; 2035 } 2036 2037 if (depth != set->queue_depth) 2038 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2039 depth, set->queue_depth); 2040 2041 return 0; 2042 } 2043 2044 /* 2045 * Alloc a tag set to be associated with one or more request queues. 2046 * May fail with EINVAL for various error conditions. May adjust the 2047 * requested depth down, if if it too large. In that case, the set 2048 * value will be stored in set->queue_depth. 2049 */ 2050 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2051 { 2052 if (!set->nr_hw_queues) 2053 return -EINVAL; 2054 if (!set->queue_depth) 2055 return -EINVAL; 2056 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2057 return -EINVAL; 2058 2059 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 2060 return -EINVAL; 2061 2062 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2063 pr_info("blk-mq: reduced tag depth to %u\n", 2064 BLK_MQ_MAX_DEPTH); 2065 set->queue_depth = BLK_MQ_MAX_DEPTH; 2066 } 2067 2068 set->tags = kmalloc_node(set->nr_hw_queues * 2069 sizeof(struct blk_mq_tags *), 2070 GFP_KERNEL, set->numa_node); 2071 if (!set->tags) 2072 return -ENOMEM; 2073 2074 if (blk_mq_alloc_rq_maps(set)) 2075 goto enomem; 2076 2077 mutex_init(&set->tag_list_lock); 2078 INIT_LIST_HEAD(&set->tag_list); 2079 2080 return 0; 2081 enomem: 2082 kfree(set->tags); 2083 set->tags = NULL; 2084 return -ENOMEM; 2085 } 2086 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2087 2088 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2089 { 2090 int i; 2091 2092 for (i = 0; i < set->nr_hw_queues; i++) { 2093 if (set->tags[i]) 2094 blk_mq_free_rq_map(set, set->tags[i], i); 2095 } 2096 2097 kfree(set->tags); 2098 set->tags = NULL; 2099 } 2100 EXPORT_SYMBOL(blk_mq_free_tag_set); 2101 2102 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2103 { 2104 struct blk_mq_tag_set *set = q->tag_set; 2105 struct blk_mq_hw_ctx *hctx; 2106 int i, ret; 2107 2108 if (!set || nr > set->queue_depth) 2109 return -EINVAL; 2110 2111 ret = 0; 2112 queue_for_each_hw_ctx(q, hctx, i) { 2113 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2114 if (ret) 2115 break; 2116 } 2117 2118 if (!ret) 2119 q->nr_requests = nr; 2120 2121 return ret; 2122 } 2123 2124 void blk_mq_disable_hotplug(void) 2125 { 2126 mutex_lock(&all_q_mutex); 2127 } 2128 2129 void blk_mq_enable_hotplug(void) 2130 { 2131 mutex_unlock(&all_q_mutex); 2132 } 2133 2134 static int __init blk_mq_init(void) 2135 { 2136 blk_mq_cpu_init(); 2137 2138 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2139 2140 return 0; 2141 } 2142 subsys_initcall(blk_mq_init); 2143