xref: /openbmc/linux/block/blk-mq.c (revision 66127f0d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!mi->part->bd_partno || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	mutex_unlock(&set->tag_list_lock);
287 
288 	blk_mq_wait_quiesce_done(set);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 	struct request_queue *q;
295 
296 	mutex_lock(&set->tag_list_lock);
297 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 		if (!blk_queue_skip_tagset_quiesce(q))
299 			blk_mq_unquiesce_queue(q);
300 	}
301 	mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 	struct blk_mq_hw_ctx *hctx;
308 	unsigned long i;
309 
310 	queue_for_each_hw_ctx(q, hctx, i)
311 		if (blk_mq_hw_queue_mapped(hctx))
312 			blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314 
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 	memset(rq, 0, sizeof(*rq));
318 
319 	INIT_LIST_HEAD(&rq->queuelist);
320 	rq->q = q;
321 	rq->__sector = (sector_t) -1;
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->tag = BLK_MQ_NO_TAG;
325 	rq->internal_tag = BLK_MQ_NO_TAG;
326 	rq->start_time_ns = ktime_get_ns();
327 	rq->part = NULL;
328 	blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331 
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 	if (blk_mq_need_time_stamp(rq))
336 		rq->start_time_ns = ktime_get_ns();
337 	else
338 		rq->start_time_ns = 0;
339 
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 	if (blk_queue_rq_alloc_time(rq->q))
342 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 	else
344 		rq->alloc_time_ns = 0;
345 #endif
346 }
347 
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 		struct blk_mq_tags *tags, unsigned int tag)
350 {
351 	struct blk_mq_ctx *ctx = data->ctx;
352 	struct blk_mq_hw_ctx *hctx = data->hctx;
353 	struct request_queue *q = data->q;
354 	struct request *rq = tags->static_rqs[tag];
355 
356 	rq->q = q;
357 	rq->mq_ctx = ctx;
358 	rq->mq_hctx = hctx;
359 	rq->cmd_flags = data->cmd_flags;
360 
361 	if (data->flags & BLK_MQ_REQ_PM)
362 		data->rq_flags |= RQF_PM;
363 	if (blk_queue_io_stat(q))
364 		data->rq_flags |= RQF_IO_STAT;
365 	rq->rq_flags = data->rq_flags;
366 
367 	if (data->rq_flags & RQF_SCHED_TAGS) {
368 		rq->tag = BLK_MQ_NO_TAG;
369 		rq->internal_tag = tag;
370 	} else {
371 		rq->tag = tag;
372 		rq->internal_tag = BLK_MQ_NO_TAG;
373 	}
374 	rq->timeout = 0;
375 
376 	rq->part = NULL;
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_USE_SCHED) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (e->type->ops.prepare_request)
399 			e->type->ops.prepare_request(rq);
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	/* caller already holds a reference, add for remainder */
430 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 	data->nr_tags -= nr;
432 
433 	return rq_list_pop(data->cached_rq);
434 }
435 
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 	struct request_queue *q = data->q;
439 	u64 alloc_time_ns = 0;
440 	struct request *rq;
441 	unsigned int tag;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	if (data->cmd_flags & REQ_NOWAIT)
448 		data->flags |= BLK_MQ_REQ_NOWAIT;
449 
450 retry:
451 	data->ctx = blk_mq_get_ctx(q);
452 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
453 
454 	if (q->elevator) {
455 		/*
456 		 * All requests use scheduler tags when an I/O scheduler is
457 		 * enabled for the queue.
458 		 */
459 		data->rq_flags |= RQF_SCHED_TAGS;
460 
461 		/*
462 		 * Flush/passthrough requests are special and go directly to the
463 		 * dispatch list.
464 		 */
465 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
466 		    !blk_op_is_passthrough(data->cmd_flags)) {
467 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
468 
469 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
470 
471 			data->rq_flags |= RQF_USE_SCHED;
472 			if (ops->limit_depth)
473 				ops->limit_depth(data->cmd_flags, data);
474 		}
475 	} else {
476 		blk_mq_tag_busy(data->hctx);
477 	}
478 
479 	if (data->flags & BLK_MQ_REQ_RESERVED)
480 		data->rq_flags |= RQF_RESV;
481 
482 	/*
483 	 * Try batched alloc if we want more than 1 tag.
484 	 */
485 	if (data->nr_tags > 1) {
486 		rq = __blk_mq_alloc_requests_batch(data);
487 		if (rq) {
488 			blk_mq_rq_time_init(rq, alloc_time_ns);
489 			return rq;
490 		}
491 		data->nr_tags = 1;
492 	}
493 
494 	/*
495 	 * Waiting allocations only fail because of an inactive hctx.  In that
496 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 	 * should have migrated us to an online CPU by now.
498 	 */
499 	tag = blk_mq_get_tag(data);
500 	if (tag == BLK_MQ_NO_TAG) {
501 		if (data->flags & BLK_MQ_REQ_NOWAIT)
502 			return NULL;
503 		/*
504 		 * Give up the CPU and sleep for a random short time to
505 		 * ensure that thread using a realtime scheduling class
506 		 * are migrated off the CPU, and thus off the hctx that
507 		 * is going away.
508 		 */
509 		msleep(3);
510 		goto retry;
511 	}
512 
513 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514 	blk_mq_rq_time_init(rq, alloc_time_ns);
515 	return rq;
516 }
517 
518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519 					    struct blk_plug *plug,
520 					    blk_opf_t opf,
521 					    blk_mq_req_flags_t flags)
522 {
523 	struct blk_mq_alloc_data data = {
524 		.q		= q,
525 		.flags		= flags,
526 		.cmd_flags	= opf,
527 		.nr_tags	= plug->nr_ios,
528 		.cached_rq	= &plug->cached_rq,
529 	};
530 	struct request *rq;
531 
532 	if (blk_queue_enter(q, flags))
533 		return NULL;
534 
535 	plug->nr_ios = 1;
536 
537 	rq = __blk_mq_alloc_requests(&data);
538 	if (unlikely(!rq))
539 		blk_queue_exit(q);
540 	return rq;
541 }
542 
543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544 						   blk_opf_t opf,
545 						   blk_mq_req_flags_t flags)
546 {
547 	struct blk_plug *plug = current->plug;
548 	struct request *rq;
549 
550 	if (!plug)
551 		return NULL;
552 
553 	if (rq_list_empty(plug->cached_rq)) {
554 		if (plug->nr_ios == 1)
555 			return NULL;
556 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557 		if (!rq)
558 			return NULL;
559 	} else {
560 		rq = rq_list_peek(&plug->cached_rq);
561 		if (!rq || rq->q != q)
562 			return NULL;
563 
564 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565 			return NULL;
566 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567 			return NULL;
568 
569 		plug->cached_rq = rq_list_next(rq);
570 		blk_mq_rq_time_init(rq, 0);
571 	}
572 
573 	rq->cmd_flags = opf;
574 	INIT_LIST_HEAD(&rq->queuelist);
575 	return rq;
576 }
577 
578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579 		blk_mq_req_flags_t flags)
580 {
581 	struct request *rq;
582 
583 	rq = blk_mq_alloc_cached_request(q, opf, flags);
584 	if (!rq) {
585 		struct blk_mq_alloc_data data = {
586 			.q		= q,
587 			.flags		= flags,
588 			.cmd_flags	= opf,
589 			.nr_tags	= 1,
590 		};
591 		int ret;
592 
593 		ret = blk_queue_enter(q, flags);
594 		if (ret)
595 			return ERR_PTR(ret);
596 
597 		rq = __blk_mq_alloc_requests(&data);
598 		if (!rq)
599 			goto out_queue_exit;
600 	}
601 	rq->__data_len = 0;
602 	rq->__sector = (sector_t) -1;
603 	rq->bio = rq->biotail = NULL;
604 	return rq;
605 out_queue_exit:
606 	blk_queue_exit(q);
607 	return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610 
611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614 	struct blk_mq_alloc_data data = {
615 		.q		= q,
616 		.flags		= flags,
617 		.cmd_flags	= opf,
618 		.nr_tags	= 1,
619 	};
620 	u64 alloc_time_ns = 0;
621 	struct request *rq;
622 	unsigned int cpu;
623 	unsigned int tag;
624 	int ret;
625 
626 	/* alloc_time includes depth and tag waits */
627 	if (blk_queue_rq_alloc_time(q))
628 		alloc_time_ns = ktime_get_ns();
629 
630 	/*
631 	 * If the tag allocator sleeps we could get an allocation for a
632 	 * different hardware context.  No need to complicate the low level
633 	 * allocator for this for the rare use case of a command tied to
634 	 * a specific queue.
635 	 */
636 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638 		return ERR_PTR(-EINVAL);
639 
640 	if (hctx_idx >= q->nr_hw_queues)
641 		return ERR_PTR(-EIO);
642 
643 	ret = blk_queue_enter(q, flags);
644 	if (ret)
645 		return ERR_PTR(ret);
646 
647 	/*
648 	 * Check if the hardware context is actually mapped to anything.
649 	 * If not tell the caller that it should skip this queue.
650 	 */
651 	ret = -EXDEV;
652 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
653 	if (!blk_mq_hw_queue_mapped(data.hctx))
654 		goto out_queue_exit;
655 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656 	if (cpu >= nr_cpu_ids)
657 		goto out_queue_exit;
658 	data.ctx = __blk_mq_get_ctx(q, cpu);
659 
660 	if (q->elevator)
661 		data.rq_flags |= RQF_SCHED_TAGS;
662 	else
663 		blk_mq_tag_busy(data.hctx);
664 
665 	if (flags & BLK_MQ_REQ_RESERVED)
666 		data.rq_flags |= RQF_RESV;
667 
668 	ret = -EWOULDBLOCK;
669 	tag = blk_mq_get_tag(&data);
670 	if (tag == BLK_MQ_NO_TAG)
671 		goto out_queue_exit;
672 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673 	blk_mq_rq_time_init(rq, alloc_time_ns);
674 	rq->__data_len = 0;
675 	rq->__sector = (sector_t) -1;
676 	rq->bio = rq->biotail = NULL;
677 	return rq;
678 
679 out_queue_exit:
680 	blk_queue_exit(q);
681 	return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684 
685 static void blk_mq_finish_request(struct request *rq)
686 {
687 	struct request_queue *q = rq->q;
688 
689 	if (rq->rq_flags & RQF_USE_SCHED) {
690 		q->elevator->type->ops.finish_request(rq);
691 		/*
692 		 * For postflush request that may need to be
693 		 * completed twice, we should clear this flag
694 		 * to avoid double finish_request() on the rq.
695 		 */
696 		rq->rq_flags &= ~RQF_USE_SCHED;
697 	}
698 }
699 
700 static void __blk_mq_free_request(struct request *rq)
701 {
702 	struct request_queue *q = rq->q;
703 	struct blk_mq_ctx *ctx = rq->mq_ctx;
704 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705 	const int sched_tag = rq->internal_tag;
706 
707 	blk_crypto_free_request(rq);
708 	blk_pm_mark_last_busy(rq);
709 	rq->mq_hctx = NULL;
710 
711 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
712 		__blk_mq_dec_active_requests(hctx);
713 
714 	if (rq->tag != BLK_MQ_NO_TAG)
715 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716 	if (sched_tag != BLK_MQ_NO_TAG)
717 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718 	blk_mq_sched_restart(hctx);
719 	blk_queue_exit(q);
720 }
721 
722 void blk_mq_free_request(struct request *rq)
723 {
724 	struct request_queue *q = rq->q;
725 
726 	blk_mq_finish_request(rq);
727 
728 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729 		laptop_io_completion(q->disk->bdi);
730 
731 	rq_qos_done(q, rq);
732 
733 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734 	if (req_ref_put_and_test(rq))
735 		__blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738 
739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741 	struct request *rq;
742 
743 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744 		blk_mq_free_request(rq);
745 }
746 
747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750 		rq->q->disk ? rq->q->disk->disk_name : "?",
751 		(__force unsigned long long) rq->cmd_flags);
752 
753 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
754 	       (unsigned long long)blk_rq_pos(rq),
755 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
757 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760 
761 static void req_bio_endio(struct request *rq, struct bio *bio,
762 			  unsigned int nbytes, blk_status_t error)
763 {
764 	if (unlikely(error)) {
765 		bio->bi_status = error;
766 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767 		/*
768 		 * Partial zone append completions cannot be supported as the
769 		 * BIO fragments may end up not being written sequentially.
770 		 */
771 		if (bio->bi_iter.bi_size != nbytes)
772 			bio->bi_status = BLK_STS_IOERR;
773 		else
774 			bio->bi_iter.bi_sector = rq->__sector;
775 	}
776 
777 	bio_advance(bio, nbytes);
778 
779 	if (unlikely(rq->rq_flags & RQF_QUIET))
780 		bio_set_flag(bio, BIO_QUIET);
781 	/* don't actually finish bio if it's part of flush sequence */
782 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
783 		bio_endio(bio);
784 }
785 
786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
787 {
788 	if (req->part && blk_do_io_stat(req)) {
789 		const int sgrp = op_stat_group(req_op(req));
790 
791 		part_stat_lock();
792 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
793 		part_stat_unlock();
794 	}
795 }
796 
797 static void blk_print_req_error(struct request *req, blk_status_t status)
798 {
799 	printk_ratelimited(KERN_ERR
800 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
801 		"phys_seg %u prio class %u\n",
802 		blk_status_to_str(status),
803 		req->q->disk ? req->q->disk->disk_name : "?",
804 		blk_rq_pos(req), (__force u32)req_op(req),
805 		blk_op_str(req_op(req)),
806 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
807 		req->nr_phys_segments,
808 		IOPRIO_PRIO_CLASS(req->ioprio));
809 }
810 
811 /*
812  * Fully end IO on a request. Does not support partial completions, or
813  * errors.
814  */
815 static void blk_complete_request(struct request *req)
816 {
817 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
818 	int total_bytes = blk_rq_bytes(req);
819 	struct bio *bio = req->bio;
820 
821 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
822 
823 	if (!bio)
824 		return;
825 
826 #ifdef CONFIG_BLK_DEV_INTEGRITY
827 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
828 		req->q->integrity.profile->complete_fn(req, total_bytes);
829 #endif
830 
831 	/*
832 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
833 	 * bio_endio().  Therefore, the keyslot must be released before that.
834 	 */
835 	blk_crypto_rq_put_keyslot(req);
836 
837 	blk_account_io_completion(req, total_bytes);
838 
839 	do {
840 		struct bio *next = bio->bi_next;
841 
842 		/* Completion has already been traced */
843 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844 
845 		if (req_op(req) == REQ_OP_ZONE_APPEND)
846 			bio->bi_iter.bi_sector = req->__sector;
847 
848 		if (!is_flush)
849 			bio_endio(bio);
850 		bio = next;
851 	} while (bio);
852 
853 	/*
854 	 * Reset counters so that the request stacking driver
855 	 * can find how many bytes remain in the request
856 	 * later.
857 	 */
858 	if (!req->end_io) {
859 		req->bio = NULL;
860 		req->__data_len = 0;
861 	}
862 }
863 
864 /**
865  * blk_update_request - Complete multiple bytes without completing the request
866  * @req:      the request being processed
867  * @error:    block status code
868  * @nr_bytes: number of bytes to complete for @req
869  *
870  * Description:
871  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
872  *     the request structure even if @req doesn't have leftover.
873  *     If @req has leftover, sets it up for the next range of segments.
874  *
875  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876  *     %false return from this function.
877  *
878  * Note:
879  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880  *      except in the consistency check at the end of this function.
881  *
882  * Return:
883  *     %false - this request doesn't have any more data
884  *     %true  - this request has more data
885  **/
886 bool blk_update_request(struct request *req, blk_status_t error,
887 		unsigned int nr_bytes)
888 {
889 	int total_bytes;
890 
891 	trace_block_rq_complete(req, error, nr_bytes);
892 
893 	if (!req->bio)
894 		return false;
895 
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898 	    error == BLK_STS_OK)
899 		req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901 
902 	/*
903 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
904 	 * bio_endio().  Therefore, the keyslot must be released before that.
905 	 */
906 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
907 		__blk_crypto_rq_put_keyslot(req);
908 
909 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
910 		     !(req->rq_flags & RQF_QUIET)) &&
911 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
912 		blk_print_req_error(req, error);
913 		trace_block_rq_error(req, error, nr_bytes);
914 	}
915 
916 	blk_account_io_completion(req, nr_bytes);
917 
918 	total_bytes = 0;
919 	while (req->bio) {
920 		struct bio *bio = req->bio;
921 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922 
923 		if (bio_bytes == bio->bi_iter.bi_size)
924 			req->bio = bio->bi_next;
925 
926 		/* Completion has already been traced */
927 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
928 		req_bio_endio(req, bio, bio_bytes, error);
929 
930 		total_bytes += bio_bytes;
931 		nr_bytes -= bio_bytes;
932 
933 		if (!nr_bytes)
934 			break;
935 	}
936 
937 	/*
938 	 * completely done
939 	 */
940 	if (!req->bio) {
941 		/*
942 		 * Reset counters so that the request stacking driver
943 		 * can find how many bytes remain in the request
944 		 * later.
945 		 */
946 		req->__data_len = 0;
947 		return false;
948 	}
949 
950 	req->__data_len -= total_bytes;
951 
952 	/* update sector only for requests with clear definition of sector */
953 	if (!blk_rq_is_passthrough(req))
954 		req->__sector += total_bytes >> 9;
955 
956 	/* mixed attributes always follow the first bio */
957 	if (req->rq_flags & RQF_MIXED_MERGE) {
958 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
959 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960 	}
961 
962 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963 		/*
964 		 * If total number of sectors is less than the first segment
965 		 * size, something has gone terribly wrong.
966 		 */
967 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
968 			blk_dump_rq_flags(req, "request botched");
969 			req->__data_len = blk_rq_cur_bytes(req);
970 		}
971 
972 		/* recalculate the number of segments */
973 		req->nr_phys_segments = blk_recalc_rq_segments(req);
974 	}
975 
976 	return true;
977 }
978 EXPORT_SYMBOL_GPL(blk_update_request);
979 
980 static inline void blk_account_io_done(struct request *req, u64 now)
981 {
982 	trace_block_io_done(req);
983 
984 	/*
985 	 * Account IO completion.  flush_rq isn't accounted as a
986 	 * normal IO on queueing nor completion.  Accounting the
987 	 * containing request is enough.
988 	 */
989 	if (blk_do_io_stat(req) && req->part &&
990 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
991 		const int sgrp = op_stat_group(req_op(req));
992 
993 		part_stat_lock();
994 		update_io_ticks(req->part, jiffies, true);
995 		part_stat_inc(req->part, ios[sgrp]);
996 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
997 		part_stat_local_dec(req->part,
998 				    in_flight[op_is_write(req_op(req))]);
999 		part_stat_unlock();
1000 	}
1001 }
1002 
1003 static inline void blk_account_io_start(struct request *req)
1004 {
1005 	trace_block_io_start(req);
1006 
1007 	if (blk_do_io_stat(req)) {
1008 		/*
1009 		 * All non-passthrough requests are created from a bio with one
1010 		 * exception: when a flush command that is part of a flush sequence
1011 		 * generated by the state machine in blk-flush.c is cloned onto the
1012 		 * lower device by dm-multipath we can get here without a bio.
1013 		 */
1014 		if (req->bio)
1015 			req->part = req->bio->bi_bdev;
1016 		else
1017 			req->part = req->q->disk->part0;
1018 
1019 		part_stat_lock();
1020 		update_io_ticks(req->part, jiffies, false);
1021 		part_stat_local_inc(req->part,
1022 				    in_flight[op_is_write(req_op(req))]);
1023 		part_stat_unlock();
1024 	}
1025 }
1026 
1027 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1028 {
1029 	if (rq->rq_flags & RQF_STATS)
1030 		blk_stat_add(rq, now);
1031 
1032 	blk_mq_sched_completed_request(rq, now);
1033 	blk_account_io_done(rq, now);
1034 }
1035 
1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037 {
1038 	if (blk_mq_need_time_stamp(rq))
1039 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1040 
1041 	blk_mq_finish_request(rq);
1042 
1043 	if (rq->end_io) {
1044 		rq_qos_done(rq->q, rq);
1045 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1046 			blk_mq_free_request(rq);
1047 	} else {
1048 		blk_mq_free_request(rq);
1049 	}
1050 }
1051 EXPORT_SYMBOL(__blk_mq_end_request);
1052 
1053 void blk_mq_end_request(struct request *rq, blk_status_t error)
1054 {
1055 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1056 		BUG();
1057 	__blk_mq_end_request(rq, error);
1058 }
1059 EXPORT_SYMBOL(blk_mq_end_request);
1060 
1061 #define TAG_COMP_BATCH		32
1062 
1063 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1064 					  int *tag_array, int nr_tags)
1065 {
1066 	struct request_queue *q = hctx->queue;
1067 
1068 	/*
1069 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1070 	 * update hctx->nr_active in batch
1071 	 */
1072 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1073 		__blk_mq_sub_active_requests(hctx, nr_tags);
1074 
1075 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1076 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1077 }
1078 
1079 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1080 {
1081 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1082 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1083 	struct request *rq;
1084 	u64 now = 0;
1085 
1086 	if (iob->need_ts)
1087 		now = ktime_get_ns();
1088 
1089 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1090 		prefetch(rq->bio);
1091 		prefetch(rq->rq_next);
1092 
1093 		blk_complete_request(rq);
1094 		if (iob->need_ts)
1095 			__blk_mq_end_request_acct(rq, now);
1096 
1097 		blk_mq_finish_request(rq);
1098 
1099 		rq_qos_done(rq->q, rq);
1100 
1101 		/*
1102 		 * If end_io handler returns NONE, then it still has
1103 		 * ownership of the request.
1104 		 */
1105 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1106 			continue;
1107 
1108 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1109 		if (!req_ref_put_and_test(rq))
1110 			continue;
1111 
1112 		blk_crypto_free_request(rq);
1113 		blk_pm_mark_last_busy(rq);
1114 
1115 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1116 			if (cur_hctx)
1117 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1118 			nr_tags = 0;
1119 			cur_hctx = rq->mq_hctx;
1120 		}
1121 		tags[nr_tags++] = rq->tag;
1122 	}
1123 
1124 	if (nr_tags)
1125 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1126 }
1127 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1128 
1129 static void blk_complete_reqs(struct llist_head *list)
1130 {
1131 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1132 	struct request *rq, *next;
1133 
1134 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1135 		rq->q->mq_ops->complete(rq);
1136 }
1137 
1138 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1139 {
1140 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1141 }
1142 
1143 static int blk_softirq_cpu_dead(unsigned int cpu)
1144 {
1145 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1146 	return 0;
1147 }
1148 
1149 static void __blk_mq_complete_request_remote(void *data)
1150 {
1151 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1152 }
1153 
1154 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1155 {
1156 	int cpu = raw_smp_processor_id();
1157 
1158 	if (!IS_ENABLED(CONFIG_SMP) ||
1159 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1160 		return false;
1161 	/*
1162 	 * With force threaded interrupts enabled, raising softirq from an SMP
1163 	 * function call will always result in waking the ksoftirqd thread.
1164 	 * This is probably worse than completing the request on a different
1165 	 * cache domain.
1166 	 */
1167 	if (force_irqthreads())
1168 		return false;
1169 
1170 	/* same CPU or cache domain?  Complete locally */
1171 	if (cpu == rq->mq_ctx->cpu ||
1172 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1173 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1174 		return false;
1175 
1176 	/* don't try to IPI to an offline CPU */
1177 	return cpu_online(rq->mq_ctx->cpu);
1178 }
1179 
1180 static void blk_mq_complete_send_ipi(struct request *rq)
1181 {
1182 	unsigned int cpu;
1183 
1184 	cpu = rq->mq_ctx->cpu;
1185 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1187 }
1188 
1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191 	struct llist_head *list;
1192 
1193 	preempt_disable();
1194 	list = this_cpu_ptr(&blk_cpu_done);
1195 	if (llist_add(&rq->ipi_list, list))
1196 		raise_softirq(BLOCK_SOFTIRQ);
1197 	preempt_enable();
1198 }
1199 
1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203 
1204 	/*
1205 	 * For request which hctx has only one ctx mapping,
1206 	 * or a polled request, always complete locally,
1207 	 * it's pointless to redirect the completion.
1208 	 */
1209 	if ((rq->mq_hctx->nr_ctx == 1 &&
1210 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211 	     rq->cmd_flags & REQ_POLLED)
1212 		return false;
1213 
1214 	if (blk_mq_complete_need_ipi(rq)) {
1215 		blk_mq_complete_send_ipi(rq);
1216 		return true;
1217 	}
1218 
1219 	if (rq->q->nr_hw_queues == 1) {
1220 		blk_mq_raise_softirq(rq);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226 
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:		the request being processed
1230  *
1231  * Description:
1232  *	Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 	if (!blk_mq_complete_request_remote(rq))
1237 		rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240 
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	trace_block_rq_issue(rq);
1254 
1255 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256 		rq->io_start_time_ns = ktime_get_ns();
1257 		rq->stats_sectors = blk_rq_sectors(rq);
1258 		rq->rq_flags |= RQF_STATS;
1259 		rq_qos_issue(q, rq);
1260 	}
1261 
1262 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263 
1264 	blk_add_timer(rq);
1265 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266 
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 		q->integrity.profile->prepare_fn(rq);
1270 #endif
1271 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275 
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283 	if (plug->multiple_queues)
1284 		return BLK_MAX_REQUEST_COUNT * 2;
1285 	return BLK_MAX_REQUEST_COUNT;
1286 }
1287 
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290 	struct request *last = rq_list_peek(&plug->mq_list);
1291 
1292 	if (!plug->rq_count) {
1293 		trace_block_plug(rq->q);
1294 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 		   (!blk_queue_nomerges(rq->q) &&
1296 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 		blk_mq_flush_plug_list(plug, false);
1298 		last = NULL;
1299 		trace_block_plug(rq->q);
1300 	}
1301 
1302 	if (!plug->multiple_queues && last && last->q != rq->q)
1303 		plug->multiple_queues = true;
1304 	/*
1305 	 * Any request allocated from sched tags can't be issued to
1306 	 * ->queue_rqs() directly
1307 	 */
1308 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1309 		plug->has_elevator = true;
1310 	rq->rq_next = NULL;
1311 	rq_list_add(&plug->mq_list, rq);
1312 	plug->rq_count++;
1313 }
1314 
1315 /**
1316  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1317  * @rq:		request to insert
1318  * @at_head:    insert request at head or tail of queue
1319  *
1320  * Description:
1321  *    Insert a fully prepared request at the back of the I/O scheduler queue
1322  *    for execution.  Don't wait for completion.
1323  *
1324  * Note:
1325  *    This function will invoke @done directly if the queue is dead.
1326  */
1327 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1328 {
1329 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1330 
1331 	WARN_ON(irqs_disabled());
1332 	WARN_ON(!blk_rq_is_passthrough(rq));
1333 
1334 	blk_account_io_start(rq);
1335 
1336 	/*
1337 	 * As plugging can be enabled for passthrough requests on a zoned
1338 	 * device, directly accessing the plug instead of using blk_mq_plug()
1339 	 * should not have any consequences.
1340 	 */
1341 	if (current->plug && !at_head) {
1342 		blk_add_rq_to_plug(current->plug, rq);
1343 		return;
1344 	}
1345 
1346 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1347 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1348 }
1349 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1350 
1351 struct blk_rq_wait {
1352 	struct completion done;
1353 	blk_status_t ret;
1354 };
1355 
1356 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1357 {
1358 	struct blk_rq_wait *wait = rq->end_io_data;
1359 
1360 	wait->ret = ret;
1361 	complete(&wait->done);
1362 	return RQ_END_IO_NONE;
1363 }
1364 
1365 bool blk_rq_is_poll(struct request *rq)
1366 {
1367 	if (!rq->mq_hctx)
1368 		return false;
1369 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1370 		return false;
1371 	return true;
1372 }
1373 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1374 
1375 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1376 {
1377 	do {
1378 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1379 		cond_resched();
1380 	} while (!completion_done(wait));
1381 }
1382 
1383 /**
1384  * blk_execute_rq - insert a request into queue for execution
1385  * @rq:		request to insert
1386  * @at_head:    insert request at head or tail of queue
1387  *
1388  * Description:
1389  *    Insert a fully prepared request at the back of the I/O scheduler queue
1390  *    for execution and wait for completion.
1391  * Return: The blk_status_t result provided to blk_mq_end_request().
1392  */
1393 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1394 {
1395 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1396 	struct blk_rq_wait wait = {
1397 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1398 	};
1399 
1400 	WARN_ON(irqs_disabled());
1401 	WARN_ON(!blk_rq_is_passthrough(rq));
1402 
1403 	rq->end_io_data = &wait;
1404 	rq->end_io = blk_end_sync_rq;
1405 
1406 	blk_account_io_start(rq);
1407 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1408 	blk_mq_run_hw_queue(hctx, false);
1409 
1410 	if (blk_rq_is_poll(rq)) {
1411 		blk_rq_poll_completion(rq, &wait.done);
1412 	} else {
1413 		/*
1414 		 * Prevent hang_check timer from firing at us during very long
1415 		 * I/O
1416 		 */
1417 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1418 
1419 		if (hang_check)
1420 			while (!wait_for_completion_io_timeout(&wait.done,
1421 					hang_check * (HZ/2)))
1422 				;
1423 		else
1424 			wait_for_completion_io(&wait.done);
1425 	}
1426 
1427 	return wait.ret;
1428 }
1429 EXPORT_SYMBOL(blk_execute_rq);
1430 
1431 static void __blk_mq_requeue_request(struct request *rq)
1432 {
1433 	struct request_queue *q = rq->q;
1434 
1435 	blk_mq_put_driver_tag(rq);
1436 
1437 	trace_block_rq_requeue(rq);
1438 	rq_qos_requeue(q, rq);
1439 
1440 	if (blk_mq_request_started(rq)) {
1441 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1442 		rq->rq_flags &= ~RQF_TIMED_OUT;
1443 	}
1444 }
1445 
1446 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1447 {
1448 	struct request_queue *q = rq->q;
1449 	unsigned long flags;
1450 
1451 	__blk_mq_requeue_request(rq);
1452 
1453 	/* this request will be re-inserted to io scheduler queue */
1454 	blk_mq_sched_requeue_request(rq);
1455 
1456 	spin_lock_irqsave(&q->requeue_lock, flags);
1457 	list_add_tail(&rq->queuelist, &q->requeue_list);
1458 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1459 
1460 	if (kick_requeue_list)
1461 		blk_mq_kick_requeue_list(q);
1462 }
1463 EXPORT_SYMBOL(blk_mq_requeue_request);
1464 
1465 static void blk_mq_requeue_work(struct work_struct *work)
1466 {
1467 	struct request_queue *q =
1468 		container_of(work, struct request_queue, requeue_work.work);
1469 	LIST_HEAD(rq_list);
1470 	LIST_HEAD(flush_list);
1471 	struct request *rq;
1472 
1473 	spin_lock_irq(&q->requeue_lock);
1474 	list_splice_init(&q->requeue_list, &rq_list);
1475 	list_splice_init(&q->flush_list, &flush_list);
1476 	spin_unlock_irq(&q->requeue_lock);
1477 
1478 	while (!list_empty(&rq_list)) {
1479 		rq = list_entry(rq_list.next, struct request, queuelist);
1480 		/*
1481 		 * If RQF_DONTPREP ist set, the request has been started by the
1482 		 * driver already and might have driver-specific data allocated
1483 		 * already.  Insert it into the hctx dispatch list to avoid
1484 		 * block layer merges for the request.
1485 		 */
1486 		if (rq->rq_flags & RQF_DONTPREP) {
1487 			list_del_init(&rq->queuelist);
1488 			blk_mq_request_bypass_insert(rq, 0);
1489 		} else {
1490 			list_del_init(&rq->queuelist);
1491 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1492 		}
1493 	}
1494 
1495 	while (!list_empty(&flush_list)) {
1496 		rq = list_entry(flush_list.next, struct request, queuelist);
1497 		list_del_init(&rq->queuelist);
1498 		blk_mq_insert_request(rq, 0);
1499 	}
1500 
1501 	blk_mq_run_hw_queues(q, false);
1502 }
1503 
1504 void blk_mq_kick_requeue_list(struct request_queue *q)
1505 {
1506 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1507 }
1508 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1509 
1510 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1511 				    unsigned long msecs)
1512 {
1513 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1514 				    msecs_to_jiffies(msecs));
1515 }
1516 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1517 
1518 static bool blk_is_flush_data_rq(struct request *rq)
1519 {
1520 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1521 }
1522 
1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1524 {
1525 	/*
1526 	 * If we find a request that isn't idle we know the queue is busy
1527 	 * as it's checked in the iter.
1528 	 * Return false to stop the iteration.
1529 	 *
1530 	 * In case of queue quiesce, if one flush data request is completed,
1531 	 * don't count it as inflight given the flush sequence is suspended,
1532 	 * and the original flush data request is invisible to driver, just
1533 	 * like other pending requests because of quiesce
1534 	 */
1535 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1536 				blk_is_flush_data_rq(rq) &&
1537 				blk_mq_request_completed(rq))) {
1538 		bool *busy = priv;
1539 
1540 		*busy = true;
1541 		return false;
1542 	}
1543 
1544 	return true;
1545 }
1546 
1547 bool blk_mq_queue_inflight(struct request_queue *q)
1548 {
1549 	bool busy = false;
1550 
1551 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1552 	return busy;
1553 }
1554 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1555 
1556 static void blk_mq_rq_timed_out(struct request *req)
1557 {
1558 	req->rq_flags |= RQF_TIMED_OUT;
1559 	if (req->q->mq_ops->timeout) {
1560 		enum blk_eh_timer_return ret;
1561 
1562 		ret = req->q->mq_ops->timeout(req);
1563 		if (ret == BLK_EH_DONE)
1564 			return;
1565 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1566 	}
1567 
1568 	blk_add_timer(req);
1569 }
1570 
1571 struct blk_expired_data {
1572 	bool has_timedout_rq;
1573 	unsigned long next;
1574 	unsigned long timeout_start;
1575 };
1576 
1577 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1578 {
1579 	unsigned long deadline;
1580 
1581 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1582 		return false;
1583 	if (rq->rq_flags & RQF_TIMED_OUT)
1584 		return false;
1585 
1586 	deadline = READ_ONCE(rq->deadline);
1587 	if (time_after_eq(expired->timeout_start, deadline))
1588 		return true;
1589 
1590 	if (expired->next == 0)
1591 		expired->next = deadline;
1592 	else if (time_after(expired->next, deadline))
1593 		expired->next = deadline;
1594 	return false;
1595 }
1596 
1597 void blk_mq_put_rq_ref(struct request *rq)
1598 {
1599 	if (is_flush_rq(rq)) {
1600 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1601 			blk_mq_free_request(rq);
1602 	} else if (req_ref_put_and_test(rq)) {
1603 		__blk_mq_free_request(rq);
1604 	}
1605 }
1606 
1607 static bool blk_mq_check_expired(struct request *rq, void *priv)
1608 {
1609 	struct blk_expired_data *expired = priv;
1610 
1611 	/*
1612 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1613 	 * be reallocated underneath the timeout handler's processing, then
1614 	 * the expire check is reliable. If the request is not expired, then
1615 	 * it was completed and reallocated as a new request after returning
1616 	 * from blk_mq_check_expired().
1617 	 */
1618 	if (blk_mq_req_expired(rq, expired)) {
1619 		expired->has_timedout_rq = true;
1620 		return false;
1621 	}
1622 	return true;
1623 }
1624 
1625 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1626 {
1627 	struct blk_expired_data *expired = priv;
1628 
1629 	if (blk_mq_req_expired(rq, expired))
1630 		blk_mq_rq_timed_out(rq);
1631 	return true;
1632 }
1633 
1634 static void blk_mq_timeout_work(struct work_struct *work)
1635 {
1636 	struct request_queue *q =
1637 		container_of(work, struct request_queue, timeout_work);
1638 	struct blk_expired_data expired = {
1639 		.timeout_start = jiffies,
1640 	};
1641 	struct blk_mq_hw_ctx *hctx;
1642 	unsigned long i;
1643 
1644 	/* A deadlock might occur if a request is stuck requiring a
1645 	 * timeout at the same time a queue freeze is waiting
1646 	 * completion, since the timeout code would not be able to
1647 	 * acquire the queue reference here.
1648 	 *
1649 	 * That's why we don't use blk_queue_enter here; instead, we use
1650 	 * percpu_ref_tryget directly, because we need to be able to
1651 	 * obtain a reference even in the short window between the queue
1652 	 * starting to freeze, by dropping the first reference in
1653 	 * blk_freeze_queue_start, and the moment the last request is
1654 	 * consumed, marked by the instant q_usage_counter reaches
1655 	 * zero.
1656 	 */
1657 	if (!percpu_ref_tryget(&q->q_usage_counter))
1658 		return;
1659 
1660 	/* check if there is any timed-out request */
1661 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1662 	if (expired.has_timedout_rq) {
1663 		/*
1664 		 * Before walking tags, we must ensure any submit started
1665 		 * before the current time has finished. Since the submit
1666 		 * uses srcu or rcu, wait for a synchronization point to
1667 		 * ensure all running submits have finished
1668 		 */
1669 		blk_mq_wait_quiesce_done(q->tag_set);
1670 
1671 		expired.next = 0;
1672 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1673 	}
1674 
1675 	if (expired.next != 0) {
1676 		mod_timer(&q->timeout, expired.next);
1677 	} else {
1678 		/*
1679 		 * Request timeouts are handled as a forward rolling timer. If
1680 		 * we end up here it means that no requests are pending and
1681 		 * also that no request has been pending for a while. Mark
1682 		 * each hctx as idle.
1683 		 */
1684 		queue_for_each_hw_ctx(q, hctx, i) {
1685 			/* the hctx may be unmapped, so check it here */
1686 			if (blk_mq_hw_queue_mapped(hctx))
1687 				blk_mq_tag_idle(hctx);
1688 		}
1689 	}
1690 	blk_queue_exit(q);
1691 }
1692 
1693 struct flush_busy_ctx_data {
1694 	struct blk_mq_hw_ctx *hctx;
1695 	struct list_head *list;
1696 };
1697 
1698 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1699 {
1700 	struct flush_busy_ctx_data *flush_data = data;
1701 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1702 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1703 	enum hctx_type type = hctx->type;
1704 
1705 	spin_lock(&ctx->lock);
1706 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1707 	sbitmap_clear_bit(sb, bitnr);
1708 	spin_unlock(&ctx->lock);
1709 	return true;
1710 }
1711 
1712 /*
1713  * Process software queues that have been marked busy, splicing them
1714  * to the for-dispatch
1715  */
1716 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1717 {
1718 	struct flush_busy_ctx_data data = {
1719 		.hctx = hctx,
1720 		.list = list,
1721 	};
1722 
1723 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1724 }
1725 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1726 
1727 struct dispatch_rq_data {
1728 	struct blk_mq_hw_ctx *hctx;
1729 	struct request *rq;
1730 };
1731 
1732 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1733 		void *data)
1734 {
1735 	struct dispatch_rq_data *dispatch_data = data;
1736 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1737 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1738 	enum hctx_type type = hctx->type;
1739 
1740 	spin_lock(&ctx->lock);
1741 	if (!list_empty(&ctx->rq_lists[type])) {
1742 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1743 		list_del_init(&dispatch_data->rq->queuelist);
1744 		if (list_empty(&ctx->rq_lists[type]))
1745 			sbitmap_clear_bit(sb, bitnr);
1746 	}
1747 	spin_unlock(&ctx->lock);
1748 
1749 	return !dispatch_data->rq;
1750 }
1751 
1752 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1753 					struct blk_mq_ctx *start)
1754 {
1755 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1756 	struct dispatch_rq_data data = {
1757 		.hctx = hctx,
1758 		.rq   = NULL,
1759 	};
1760 
1761 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1762 			       dispatch_rq_from_ctx, &data);
1763 
1764 	return data.rq;
1765 }
1766 
1767 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1768 {
1769 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1770 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1771 	int tag;
1772 
1773 	blk_mq_tag_busy(rq->mq_hctx);
1774 
1775 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1776 		bt = &rq->mq_hctx->tags->breserved_tags;
1777 		tag_offset = 0;
1778 	} else {
1779 		if (!hctx_may_queue(rq->mq_hctx, bt))
1780 			return false;
1781 	}
1782 
1783 	tag = __sbitmap_queue_get(bt);
1784 	if (tag == BLK_MQ_NO_TAG)
1785 		return false;
1786 
1787 	rq->tag = tag + tag_offset;
1788 	return true;
1789 }
1790 
1791 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1792 {
1793 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1794 		return false;
1795 
1796 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1797 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1798 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1799 		__blk_mq_inc_active_requests(hctx);
1800 	}
1801 	hctx->tags->rqs[rq->tag] = rq;
1802 	return true;
1803 }
1804 
1805 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1806 				int flags, void *key)
1807 {
1808 	struct blk_mq_hw_ctx *hctx;
1809 
1810 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1811 
1812 	spin_lock(&hctx->dispatch_wait_lock);
1813 	if (!list_empty(&wait->entry)) {
1814 		struct sbitmap_queue *sbq;
1815 
1816 		list_del_init(&wait->entry);
1817 		sbq = &hctx->tags->bitmap_tags;
1818 		atomic_dec(&sbq->ws_active);
1819 	}
1820 	spin_unlock(&hctx->dispatch_wait_lock);
1821 
1822 	blk_mq_run_hw_queue(hctx, true);
1823 	return 1;
1824 }
1825 
1826 /*
1827  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1828  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1829  * restart. For both cases, take care to check the condition again after
1830  * marking us as waiting.
1831  */
1832 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1833 				 struct request *rq)
1834 {
1835 	struct sbitmap_queue *sbq;
1836 	struct wait_queue_head *wq;
1837 	wait_queue_entry_t *wait;
1838 	bool ret;
1839 
1840 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1841 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1842 		blk_mq_sched_mark_restart_hctx(hctx);
1843 
1844 		/*
1845 		 * It's possible that a tag was freed in the window between the
1846 		 * allocation failure and adding the hardware queue to the wait
1847 		 * queue.
1848 		 *
1849 		 * Don't clear RESTART here, someone else could have set it.
1850 		 * At most this will cost an extra queue run.
1851 		 */
1852 		return blk_mq_get_driver_tag(rq);
1853 	}
1854 
1855 	wait = &hctx->dispatch_wait;
1856 	if (!list_empty_careful(&wait->entry))
1857 		return false;
1858 
1859 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1860 		sbq = &hctx->tags->breserved_tags;
1861 	else
1862 		sbq = &hctx->tags->bitmap_tags;
1863 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1864 
1865 	spin_lock_irq(&wq->lock);
1866 	spin_lock(&hctx->dispatch_wait_lock);
1867 	if (!list_empty(&wait->entry)) {
1868 		spin_unlock(&hctx->dispatch_wait_lock);
1869 		spin_unlock_irq(&wq->lock);
1870 		return false;
1871 	}
1872 
1873 	atomic_inc(&sbq->ws_active);
1874 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1875 	__add_wait_queue(wq, wait);
1876 
1877 	/*
1878 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1879 	 * not imply barrier in case of failure.
1880 	 *
1881 	 * Order adding us to wait queue and allocating driver tag.
1882 	 *
1883 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1884 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1885 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1886 	 *
1887 	 * Otherwise, re-order of adding wait queue and getting driver tag
1888 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1889 	 * the waitqueue_active() may not observe us in wait queue.
1890 	 */
1891 	smp_mb();
1892 
1893 	/*
1894 	 * It's possible that a tag was freed in the window between the
1895 	 * allocation failure and adding the hardware queue to the wait
1896 	 * queue.
1897 	 */
1898 	ret = blk_mq_get_driver_tag(rq);
1899 	if (!ret) {
1900 		spin_unlock(&hctx->dispatch_wait_lock);
1901 		spin_unlock_irq(&wq->lock);
1902 		return false;
1903 	}
1904 
1905 	/*
1906 	 * We got a tag, remove ourselves from the wait queue to ensure
1907 	 * someone else gets the wakeup.
1908 	 */
1909 	list_del_init(&wait->entry);
1910 	atomic_dec(&sbq->ws_active);
1911 	spin_unlock(&hctx->dispatch_wait_lock);
1912 	spin_unlock_irq(&wq->lock);
1913 
1914 	return true;
1915 }
1916 
1917 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1919 /*
1920  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1921  * - EWMA is one simple way to compute running average value
1922  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1923  * - take 4 as factor for avoiding to get too small(0) result, and this
1924  *   factor doesn't matter because EWMA decreases exponentially
1925  */
1926 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1927 {
1928 	unsigned int ewma;
1929 
1930 	ewma = hctx->dispatch_busy;
1931 
1932 	if (!ewma && !busy)
1933 		return;
1934 
1935 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1936 	if (busy)
1937 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1938 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1939 
1940 	hctx->dispatch_busy = ewma;
1941 }
1942 
1943 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1944 
1945 static void blk_mq_handle_dev_resource(struct request *rq,
1946 				       struct list_head *list)
1947 {
1948 	list_add(&rq->queuelist, list);
1949 	__blk_mq_requeue_request(rq);
1950 }
1951 
1952 static void blk_mq_handle_zone_resource(struct request *rq,
1953 					struct list_head *zone_list)
1954 {
1955 	/*
1956 	 * If we end up here it is because we cannot dispatch a request to a
1957 	 * specific zone due to LLD level zone-write locking or other zone
1958 	 * related resource not being available. In this case, set the request
1959 	 * aside in zone_list for retrying it later.
1960 	 */
1961 	list_add(&rq->queuelist, zone_list);
1962 	__blk_mq_requeue_request(rq);
1963 }
1964 
1965 enum prep_dispatch {
1966 	PREP_DISPATCH_OK,
1967 	PREP_DISPATCH_NO_TAG,
1968 	PREP_DISPATCH_NO_BUDGET,
1969 };
1970 
1971 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1972 						  bool need_budget)
1973 {
1974 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1975 	int budget_token = -1;
1976 
1977 	if (need_budget) {
1978 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1979 		if (budget_token < 0) {
1980 			blk_mq_put_driver_tag(rq);
1981 			return PREP_DISPATCH_NO_BUDGET;
1982 		}
1983 		blk_mq_set_rq_budget_token(rq, budget_token);
1984 	}
1985 
1986 	if (!blk_mq_get_driver_tag(rq)) {
1987 		/*
1988 		 * The initial allocation attempt failed, so we need to
1989 		 * rerun the hardware queue when a tag is freed. The
1990 		 * waitqueue takes care of that. If the queue is run
1991 		 * before we add this entry back on the dispatch list,
1992 		 * we'll re-run it below.
1993 		 */
1994 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1995 			/*
1996 			 * All budgets not got from this function will be put
1997 			 * together during handling partial dispatch
1998 			 */
1999 			if (need_budget)
2000 				blk_mq_put_dispatch_budget(rq->q, budget_token);
2001 			return PREP_DISPATCH_NO_TAG;
2002 		}
2003 	}
2004 
2005 	return PREP_DISPATCH_OK;
2006 }
2007 
2008 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2009 static void blk_mq_release_budgets(struct request_queue *q,
2010 		struct list_head *list)
2011 {
2012 	struct request *rq;
2013 
2014 	list_for_each_entry(rq, list, queuelist) {
2015 		int budget_token = blk_mq_get_rq_budget_token(rq);
2016 
2017 		if (budget_token >= 0)
2018 			blk_mq_put_dispatch_budget(q, budget_token);
2019 	}
2020 }
2021 
2022 /*
2023  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2024  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2025  * details)
2026  * Attention, we should explicitly call this in unusual cases:
2027  *  1) did not queue everything initially scheduled to queue
2028  *  2) the last attempt to queue a request failed
2029  */
2030 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2031 			      bool from_schedule)
2032 {
2033 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2034 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2035 		hctx->queue->mq_ops->commit_rqs(hctx);
2036 	}
2037 }
2038 
2039 /*
2040  * Returns true if we did some work AND can potentially do more.
2041  */
2042 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2043 			     unsigned int nr_budgets)
2044 {
2045 	enum prep_dispatch prep;
2046 	struct request_queue *q = hctx->queue;
2047 	struct request *rq;
2048 	int queued;
2049 	blk_status_t ret = BLK_STS_OK;
2050 	LIST_HEAD(zone_list);
2051 	bool needs_resource = false;
2052 
2053 	if (list_empty(list))
2054 		return false;
2055 
2056 	/*
2057 	 * Now process all the entries, sending them to the driver.
2058 	 */
2059 	queued = 0;
2060 	do {
2061 		struct blk_mq_queue_data bd;
2062 
2063 		rq = list_first_entry(list, struct request, queuelist);
2064 
2065 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2066 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2067 		if (prep != PREP_DISPATCH_OK)
2068 			break;
2069 
2070 		list_del_init(&rq->queuelist);
2071 
2072 		bd.rq = rq;
2073 		bd.last = list_empty(list);
2074 
2075 		/*
2076 		 * once the request is queued to lld, no need to cover the
2077 		 * budget any more
2078 		 */
2079 		if (nr_budgets)
2080 			nr_budgets--;
2081 		ret = q->mq_ops->queue_rq(hctx, &bd);
2082 		switch (ret) {
2083 		case BLK_STS_OK:
2084 			queued++;
2085 			break;
2086 		case BLK_STS_RESOURCE:
2087 			needs_resource = true;
2088 			fallthrough;
2089 		case BLK_STS_DEV_RESOURCE:
2090 			blk_mq_handle_dev_resource(rq, list);
2091 			goto out;
2092 		case BLK_STS_ZONE_RESOURCE:
2093 			/*
2094 			 * Move the request to zone_list and keep going through
2095 			 * the dispatch list to find more requests the drive can
2096 			 * accept.
2097 			 */
2098 			blk_mq_handle_zone_resource(rq, &zone_list);
2099 			needs_resource = true;
2100 			break;
2101 		default:
2102 			blk_mq_end_request(rq, ret);
2103 		}
2104 	} while (!list_empty(list));
2105 out:
2106 	if (!list_empty(&zone_list))
2107 		list_splice_tail_init(&zone_list, list);
2108 
2109 	/* If we didn't flush the entire list, we could have told the driver
2110 	 * there was more coming, but that turned out to be a lie.
2111 	 */
2112 	if (!list_empty(list) || ret != BLK_STS_OK)
2113 		blk_mq_commit_rqs(hctx, queued, false);
2114 
2115 	/*
2116 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2117 	 * that is where we will continue on next queue run.
2118 	 */
2119 	if (!list_empty(list)) {
2120 		bool needs_restart;
2121 		/* For non-shared tags, the RESTART check will suffice */
2122 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2123 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2124 			blk_mq_is_shared_tags(hctx->flags));
2125 
2126 		if (nr_budgets)
2127 			blk_mq_release_budgets(q, list);
2128 
2129 		spin_lock(&hctx->lock);
2130 		list_splice_tail_init(list, &hctx->dispatch);
2131 		spin_unlock(&hctx->lock);
2132 
2133 		/*
2134 		 * Order adding requests to hctx->dispatch and checking
2135 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2136 		 * in blk_mq_sched_restart(). Avoid restart code path to
2137 		 * miss the new added requests to hctx->dispatch, meantime
2138 		 * SCHED_RESTART is observed here.
2139 		 */
2140 		smp_mb();
2141 
2142 		/*
2143 		 * If SCHED_RESTART was set by the caller of this function and
2144 		 * it is no longer set that means that it was cleared by another
2145 		 * thread and hence that a queue rerun is needed.
2146 		 *
2147 		 * If 'no_tag' is set, that means that we failed getting
2148 		 * a driver tag with an I/O scheduler attached. If our dispatch
2149 		 * waitqueue is no longer active, ensure that we run the queue
2150 		 * AFTER adding our entries back to the list.
2151 		 *
2152 		 * If no I/O scheduler has been configured it is possible that
2153 		 * the hardware queue got stopped and restarted before requests
2154 		 * were pushed back onto the dispatch list. Rerun the queue to
2155 		 * avoid starvation. Notes:
2156 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2157 		 *   been stopped before rerunning a queue.
2158 		 * - Some but not all block drivers stop a queue before
2159 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2160 		 *   and dm-rq.
2161 		 *
2162 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2163 		 * bit is set, run queue after a delay to avoid IO stalls
2164 		 * that could otherwise occur if the queue is idle.  We'll do
2165 		 * similar if we couldn't get budget or couldn't lock a zone
2166 		 * and SCHED_RESTART is set.
2167 		 */
2168 		needs_restart = blk_mq_sched_needs_restart(hctx);
2169 		if (prep == PREP_DISPATCH_NO_BUDGET)
2170 			needs_resource = true;
2171 		if (!needs_restart ||
2172 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2173 			blk_mq_run_hw_queue(hctx, true);
2174 		else if (needs_resource)
2175 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2176 
2177 		blk_mq_update_dispatch_busy(hctx, true);
2178 		return false;
2179 	}
2180 
2181 	blk_mq_update_dispatch_busy(hctx, false);
2182 	return true;
2183 }
2184 
2185 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2186 {
2187 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2188 
2189 	if (cpu >= nr_cpu_ids)
2190 		cpu = cpumask_first(hctx->cpumask);
2191 	return cpu;
2192 }
2193 
2194 /*
2195  * It'd be great if the workqueue API had a way to pass
2196  * in a mask and had some smarts for more clever placement.
2197  * For now we just round-robin here, switching for every
2198  * BLK_MQ_CPU_WORK_BATCH queued items.
2199  */
2200 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2201 {
2202 	bool tried = false;
2203 	int next_cpu = hctx->next_cpu;
2204 
2205 	if (hctx->queue->nr_hw_queues == 1)
2206 		return WORK_CPU_UNBOUND;
2207 
2208 	if (--hctx->next_cpu_batch <= 0) {
2209 select_cpu:
2210 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2211 				cpu_online_mask);
2212 		if (next_cpu >= nr_cpu_ids)
2213 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2214 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2215 	}
2216 
2217 	/*
2218 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2219 	 * and it should only happen in the path of handling CPU DEAD.
2220 	 */
2221 	if (!cpu_online(next_cpu)) {
2222 		if (!tried) {
2223 			tried = true;
2224 			goto select_cpu;
2225 		}
2226 
2227 		/*
2228 		 * Make sure to re-select CPU next time once after CPUs
2229 		 * in hctx->cpumask become online again.
2230 		 */
2231 		hctx->next_cpu = next_cpu;
2232 		hctx->next_cpu_batch = 1;
2233 		return WORK_CPU_UNBOUND;
2234 	}
2235 
2236 	hctx->next_cpu = next_cpu;
2237 	return next_cpu;
2238 }
2239 
2240 /**
2241  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2242  * @hctx: Pointer to the hardware queue to run.
2243  * @msecs: Milliseconds of delay to wait before running the queue.
2244  *
2245  * Run a hardware queue asynchronously with a delay of @msecs.
2246  */
2247 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2248 {
2249 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2250 		return;
2251 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2252 				    msecs_to_jiffies(msecs));
2253 }
2254 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2255 
2256 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2257 {
2258 	bool need_run;
2259 
2260 	/*
2261 	 * When queue is quiesced, we may be switching io scheduler, or
2262 	 * updating nr_hw_queues, or other things, and we can't run queue
2263 	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2264 	 *
2265 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2266 	 * quiesced.
2267 	 */
2268 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2269 		need_run = !blk_queue_quiesced(hctx->queue) &&
2270 		blk_mq_hctx_has_pending(hctx));
2271 	return need_run;
2272 }
2273 
2274 /**
2275  * blk_mq_run_hw_queue - Start to run a hardware queue.
2276  * @hctx: Pointer to the hardware queue to run.
2277  * @async: If we want to run the queue asynchronously.
2278  *
2279  * Check if the request queue is not in a quiesced state and if there are
2280  * pending requests to be sent. If this is true, run the queue to send requests
2281  * to hardware.
2282  */
2283 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2284 {
2285 	bool need_run;
2286 
2287 	/*
2288 	 * We can't run the queue inline with interrupts disabled.
2289 	 */
2290 	WARN_ON_ONCE(!async && in_interrupt());
2291 
2292 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2293 
2294 	need_run = blk_mq_hw_queue_need_run(hctx);
2295 	if (!need_run) {
2296 		unsigned long flags;
2297 
2298 		/*
2299 		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2300 		 * if hw queue is quiesced locklessly above, we need the use
2301 		 * ->queue_lock to make sure we see the up-to-date status to
2302 		 * not miss rerunning the hw queue.
2303 		 */
2304 		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2305 		need_run = blk_mq_hw_queue_need_run(hctx);
2306 		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2307 
2308 		if (!need_run)
2309 			return;
2310 	}
2311 
2312 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2313 		blk_mq_delay_run_hw_queue(hctx, 0);
2314 		return;
2315 	}
2316 
2317 	blk_mq_run_dispatch_ops(hctx->queue,
2318 				blk_mq_sched_dispatch_requests(hctx));
2319 }
2320 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2321 
2322 /*
2323  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2324  * scheduler.
2325  */
2326 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2327 {
2328 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2329 	/*
2330 	 * If the IO scheduler does not respect hardware queues when
2331 	 * dispatching, we just don't bother with multiple HW queues and
2332 	 * dispatch from hctx for the current CPU since running multiple queues
2333 	 * just causes lock contention inside the scheduler and pointless cache
2334 	 * bouncing.
2335 	 */
2336 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2337 
2338 	if (!blk_mq_hctx_stopped(hctx))
2339 		return hctx;
2340 	return NULL;
2341 }
2342 
2343 /**
2344  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2345  * @q: Pointer to the request queue to run.
2346  * @async: If we want to run the queue asynchronously.
2347  */
2348 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2349 {
2350 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2351 	unsigned long i;
2352 
2353 	sq_hctx = NULL;
2354 	if (blk_queue_sq_sched(q))
2355 		sq_hctx = blk_mq_get_sq_hctx(q);
2356 	queue_for_each_hw_ctx(q, hctx, i) {
2357 		if (blk_mq_hctx_stopped(hctx))
2358 			continue;
2359 		/*
2360 		 * Dispatch from this hctx either if there's no hctx preferred
2361 		 * by IO scheduler or if it has requests that bypass the
2362 		 * scheduler.
2363 		 */
2364 		if (!sq_hctx || sq_hctx == hctx ||
2365 		    !list_empty_careful(&hctx->dispatch))
2366 			blk_mq_run_hw_queue(hctx, async);
2367 	}
2368 }
2369 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2370 
2371 /**
2372  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2373  * @q: Pointer to the request queue to run.
2374  * @msecs: Milliseconds of delay to wait before running the queues.
2375  */
2376 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2377 {
2378 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2379 	unsigned long i;
2380 
2381 	sq_hctx = NULL;
2382 	if (blk_queue_sq_sched(q))
2383 		sq_hctx = blk_mq_get_sq_hctx(q);
2384 	queue_for_each_hw_ctx(q, hctx, i) {
2385 		if (blk_mq_hctx_stopped(hctx))
2386 			continue;
2387 		/*
2388 		 * If there is already a run_work pending, leave the
2389 		 * pending delay untouched. Otherwise, a hctx can stall
2390 		 * if another hctx is re-delaying the other's work
2391 		 * before the work executes.
2392 		 */
2393 		if (delayed_work_pending(&hctx->run_work))
2394 			continue;
2395 		/*
2396 		 * Dispatch from this hctx either if there's no hctx preferred
2397 		 * by IO scheduler or if it has requests that bypass the
2398 		 * scheduler.
2399 		 */
2400 		if (!sq_hctx || sq_hctx == hctx ||
2401 		    !list_empty_careful(&hctx->dispatch))
2402 			blk_mq_delay_run_hw_queue(hctx, msecs);
2403 	}
2404 }
2405 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2406 
2407 /*
2408  * This function is often used for pausing .queue_rq() by driver when
2409  * there isn't enough resource or some conditions aren't satisfied, and
2410  * BLK_STS_RESOURCE is usually returned.
2411  *
2412  * We do not guarantee that dispatch can be drained or blocked
2413  * after blk_mq_stop_hw_queue() returns. Please use
2414  * blk_mq_quiesce_queue() for that requirement.
2415  */
2416 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2417 {
2418 	cancel_delayed_work(&hctx->run_work);
2419 
2420 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2421 }
2422 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2423 
2424 /*
2425  * This function is often used for pausing .queue_rq() by driver when
2426  * there isn't enough resource or some conditions aren't satisfied, and
2427  * BLK_STS_RESOURCE is usually returned.
2428  *
2429  * We do not guarantee that dispatch can be drained or blocked
2430  * after blk_mq_stop_hw_queues() returns. Please use
2431  * blk_mq_quiesce_queue() for that requirement.
2432  */
2433 void blk_mq_stop_hw_queues(struct request_queue *q)
2434 {
2435 	struct blk_mq_hw_ctx *hctx;
2436 	unsigned long i;
2437 
2438 	queue_for_each_hw_ctx(q, hctx, i)
2439 		blk_mq_stop_hw_queue(hctx);
2440 }
2441 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2442 
2443 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2444 {
2445 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2446 
2447 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2448 }
2449 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2450 
2451 void blk_mq_start_hw_queues(struct request_queue *q)
2452 {
2453 	struct blk_mq_hw_ctx *hctx;
2454 	unsigned long i;
2455 
2456 	queue_for_each_hw_ctx(q, hctx, i)
2457 		blk_mq_start_hw_queue(hctx);
2458 }
2459 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2460 
2461 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2462 {
2463 	if (!blk_mq_hctx_stopped(hctx))
2464 		return;
2465 
2466 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2467 	/*
2468 	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2469 	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2470 	 * list in the subsequent routine.
2471 	 */
2472 	smp_mb__after_atomic();
2473 	blk_mq_run_hw_queue(hctx, async);
2474 }
2475 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2476 
2477 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2478 {
2479 	struct blk_mq_hw_ctx *hctx;
2480 	unsigned long i;
2481 
2482 	queue_for_each_hw_ctx(q, hctx, i)
2483 		blk_mq_start_stopped_hw_queue(hctx, async ||
2484 					(hctx->flags & BLK_MQ_F_BLOCKING));
2485 }
2486 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2487 
2488 static void blk_mq_run_work_fn(struct work_struct *work)
2489 {
2490 	struct blk_mq_hw_ctx *hctx =
2491 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2492 
2493 	blk_mq_run_dispatch_ops(hctx->queue,
2494 				blk_mq_sched_dispatch_requests(hctx));
2495 }
2496 
2497 /**
2498  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2499  * @rq: Pointer to request to be inserted.
2500  * @flags: BLK_MQ_INSERT_*
2501  *
2502  * Should only be used carefully, when the caller knows we want to
2503  * bypass a potential IO scheduler on the target device.
2504  */
2505 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2506 {
2507 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2508 
2509 	spin_lock(&hctx->lock);
2510 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2511 		list_add(&rq->queuelist, &hctx->dispatch);
2512 	else
2513 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2514 	spin_unlock(&hctx->lock);
2515 }
2516 
2517 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2518 		struct blk_mq_ctx *ctx, struct list_head *list,
2519 		bool run_queue_async)
2520 {
2521 	struct request *rq;
2522 	enum hctx_type type = hctx->type;
2523 
2524 	/*
2525 	 * Try to issue requests directly if the hw queue isn't busy to save an
2526 	 * extra enqueue & dequeue to the sw queue.
2527 	 */
2528 	if (!hctx->dispatch_busy && !run_queue_async) {
2529 		blk_mq_run_dispatch_ops(hctx->queue,
2530 			blk_mq_try_issue_list_directly(hctx, list));
2531 		if (list_empty(list))
2532 			goto out;
2533 	}
2534 
2535 	/*
2536 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2537 	 * offline now
2538 	 */
2539 	list_for_each_entry(rq, list, queuelist) {
2540 		BUG_ON(rq->mq_ctx != ctx);
2541 		trace_block_rq_insert(rq);
2542 		if (rq->cmd_flags & REQ_NOWAIT)
2543 			run_queue_async = true;
2544 	}
2545 
2546 	spin_lock(&ctx->lock);
2547 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2548 	blk_mq_hctx_mark_pending(hctx, ctx);
2549 	spin_unlock(&ctx->lock);
2550 out:
2551 	blk_mq_run_hw_queue(hctx, run_queue_async);
2552 }
2553 
2554 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2555 {
2556 	struct request_queue *q = rq->q;
2557 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2558 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2559 
2560 	if (blk_rq_is_passthrough(rq)) {
2561 		/*
2562 		 * Passthrough request have to be added to hctx->dispatch
2563 		 * directly.  The device may be in a situation where it can't
2564 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2565 		 * them, which gets them added to hctx->dispatch.
2566 		 *
2567 		 * If a passthrough request is required to unblock the queues,
2568 		 * and it is added to the scheduler queue, there is no chance to
2569 		 * dispatch it given we prioritize requests in hctx->dispatch.
2570 		 */
2571 		blk_mq_request_bypass_insert(rq, flags);
2572 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2573 		/*
2574 		 * Firstly normal IO request is inserted to scheduler queue or
2575 		 * sw queue, meantime we add flush request to dispatch queue(
2576 		 * hctx->dispatch) directly and there is at most one in-flight
2577 		 * flush request for each hw queue, so it doesn't matter to add
2578 		 * flush request to tail or front of the dispatch queue.
2579 		 *
2580 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2581 		 * command, and queueing it will fail when there is any
2582 		 * in-flight normal IO request(NCQ command). When adding flush
2583 		 * rq to the front of hctx->dispatch, it is easier to introduce
2584 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2585 		 * compared with adding to the tail of dispatch queue, then
2586 		 * chance of flush merge is increased, and less flush requests
2587 		 * will be issued to controller. It is observed that ~10% time
2588 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2589 		 * drive when adding flush rq to the front of hctx->dispatch.
2590 		 *
2591 		 * Simply queue flush rq to the front of hctx->dispatch so that
2592 		 * intensive flush workloads can benefit in case of NCQ HW.
2593 		 */
2594 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2595 	} else if (q->elevator) {
2596 		LIST_HEAD(list);
2597 
2598 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2599 
2600 		list_add(&rq->queuelist, &list);
2601 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2602 	} else {
2603 		trace_block_rq_insert(rq);
2604 
2605 		spin_lock(&ctx->lock);
2606 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2607 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2608 		else
2609 			list_add_tail(&rq->queuelist,
2610 				      &ctx->rq_lists[hctx->type]);
2611 		blk_mq_hctx_mark_pending(hctx, ctx);
2612 		spin_unlock(&ctx->lock);
2613 	}
2614 }
2615 
2616 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2617 		unsigned int nr_segs)
2618 {
2619 	int err;
2620 
2621 	if (bio->bi_opf & REQ_RAHEAD)
2622 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2623 
2624 	rq->__sector = bio->bi_iter.bi_sector;
2625 	blk_rq_bio_prep(rq, bio, nr_segs);
2626 
2627 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2628 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2629 	WARN_ON_ONCE(err);
2630 
2631 	blk_account_io_start(rq);
2632 }
2633 
2634 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2635 					    struct request *rq, bool last)
2636 {
2637 	struct request_queue *q = rq->q;
2638 	struct blk_mq_queue_data bd = {
2639 		.rq = rq,
2640 		.last = last,
2641 	};
2642 	blk_status_t ret;
2643 
2644 	/*
2645 	 * For OK queue, we are done. For error, caller may kill it.
2646 	 * Any other error (busy), just add it to our list as we
2647 	 * previously would have done.
2648 	 */
2649 	ret = q->mq_ops->queue_rq(hctx, &bd);
2650 	switch (ret) {
2651 	case BLK_STS_OK:
2652 		blk_mq_update_dispatch_busy(hctx, false);
2653 		break;
2654 	case BLK_STS_RESOURCE:
2655 	case BLK_STS_DEV_RESOURCE:
2656 		blk_mq_update_dispatch_busy(hctx, true);
2657 		__blk_mq_requeue_request(rq);
2658 		break;
2659 	default:
2660 		blk_mq_update_dispatch_busy(hctx, false);
2661 		break;
2662 	}
2663 
2664 	return ret;
2665 }
2666 
2667 static bool blk_mq_get_budget_and_tag(struct request *rq)
2668 {
2669 	int budget_token;
2670 
2671 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2672 	if (budget_token < 0)
2673 		return false;
2674 	blk_mq_set_rq_budget_token(rq, budget_token);
2675 	if (!blk_mq_get_driver_tag(rq)) {
2676 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2677 		return false;
2678 	}
2679 	return true;
2680 }
2681 
2682 /**
2683  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2684  * @hctx: Pointer of the associated hardware queue.
2685  * @rq: Pointer to request to be sent.
2686  *
2687  * If the device has enough resources to accept a new request now, send the
2688  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2689  * we can try send it another time in the future. Requests inserted at this
2690  * queue have higher priority.
2691  */
2692 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2693 		struct request *rq)
2694 {
2695 	blk_status_t ret;
2696 
2697 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2698 		blk_mq_insert_request(rq, 0);
2699 		blk_mq_run_hw_queue(hctx, false);
2700 		return;
2701 	}
2702 
2703 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2704 		blk_mq_insert_request(rq, 0);
2705 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2706 		return;
2707 	}
2708 
2709 	ret = __blk_mq_issue_directly(hctx, rq, true);
2710 	switch (ret) {
2711 	case BLK_STS_OK:
2712 		break;
2713 	case BLK_STS_RESOURCE:
2714 	case BLK_STS_DEV_RESOURCE:
2715 		blk_mq_request_bypass_insert(rq, 0);
2716 		blk_mq_run_hw_queue(hctx, false);
2717 		break;
2718 	default:
2719 		blk_mq_end_request(rq, ret);
2720 		break;
2721 	}
2722 }
2723 
2724 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2725 {
2726 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2727 
2728 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2729 		blk_mq_insert_request(rq, 0);
2730 		blk_mq_run_hw_queue(hctx, false);
2731 		return BLK_STS_OK;
2732 	}
2733 
2734 	if (!blk_mq_get_budget_and_tag(rq))
2735 		return BLK_STS_RESOURCE;
2736 	return __blk_mq_issue_directly(hctx, rq, last);
2737 }
2738 
2739 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2740 {
2741 	struct blk_mq_hw_ctx *hctx = NULL;
2742 	struct request *rq;
2743 	int queued = 0;
2744 	blk_status_t ret = BLK_STS_OK;
2745 
2746 	while ((rq = rq_list_pop(&plug->mq_list))) {
2747 		bool last = rq_list_empty(plug->mq_list);
2748 
2749 		if (hctx != rq->mq_hctx) {
2750 			if (hctx) {
2751 				blk_mq_commit_rqs(hctx, queued, false);
2752 				queued = 0;
2753 			}
2754 			hctx = rq->mq_hctx;
2755 		}
2756 
2757 		ret = blk_mq_request_issue_directly(rq, last);
2758 		switch (ret) {
2759 		case BLK_STS_OK:
2760 			queued++;
2761 			break;
2762 		case BLK_STS_RESOURCE:
2763 		case BLK_STS_DEV_RESOURCE:
2764 			blk_mq_request_bypass_insert(rq, 0);
2765 			blk_mq_run_hw_queue(hctx, false);
2766 			goto out;
2767 		default:
2768 			blk_mq_end_request(rq, ret);
2769 			break;
2770 		}
2771 	}
2772 
2773 out:
2774 	if (ret != BLK_STS_OK)
2775 		blk_mq_commit_rqs(hctx, queued, false);
2776 }
2777 
2778 static void __blk_mq_flush_plug_list(struct request_queue *q,
2779 				     struct blk_plug *plug)
2780 {
2781 	if (blk_queue_quiesced(q))
2782 		return;
2783 	q->mq_ops->queue_rqs(&plug->mq_list);
2784 }
2785 
2786 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2787 {
2788 	struct blk_mq_hw_ctx *this_hctx = NULL;
2789 	struct blk_mq_ctx *this_ctx = NULL;
2790 	struct request *requeue_list = NULL;
2791 	struct request **requeue_lastp = &requeue_list;
2792 	unsigned int depth = 0;
2793 	bool is_passthrough = false;
2794 	LIST_HEAD(list);
2795 
2796 	do {
2797 		struct request *rq = rq_list_pop(&plug->mq_list);
2798 
2799 		if (!this_hctx) {
2800 			this_hctx = rq->mq_hctx;
2801 			this_ctx = rq->mq_ctx;
2802 			is_passthrough = blk_rq_is_passthrough(rq);
2803 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2804 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2805 			rq_list_add_tail(&requeue_lastp, rq);
2806 			continue;
2807 		}
2808 		list_add(&rq->queuelist, &list);
2809 		depth++;
2810 	} while (!rq_list_empty(plug->mq_list));
2811 
2812 	plug->mq_list = requeue_list;
2813 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2814 
2815 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2816 	/* passthrough requests should never be issued to the I/O scheduler */
2817 	if (is_passthrough) {
2818 		spin_lock(&this_hctx->lock);
2819 		list_splice_tail_init(&list, &this_hctx->dispatch);
2820 		spin_unlock(&this_hctx->lock);
2821 		blk_mq_run_hw_queue(this_hctx, from_sched);
2822 	} else if (this_hctx->queue->elevator) {
2823 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2824 				&list, 0);
2825 		blk_mq_run_hw_queue(this_hctx, from_sched);
2826 	} else {
2827 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2828 	}
2829 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2830 }
2831 
2832 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2833 {
2834 	struct request *rq;
2835 
2836 	/*
2837 	 * We may have been called recursively midway through handling
2838 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2839 	 * To avoid mq_list changing under our feet, clear rq_count early and
2840 	 * bail out specifically if rq_count is 0 rather than checking
2841 	 * whether the mq_list is empty.
2842 	 */
2843 	if (plug->rq_count == 0)
2844 		return;
2845 	plug->rq_count = 0;
2846 
2847 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2848 		struct request_queue *q;
2849 
2850 		rq = rq_list_peek(&plug->mq_list);
2851 		q = rq->q;
2852 
2853 		/*
2854 		 * Peek first request and see if we have a ->queue_rqs() hook.
2855 		 * If we do, we can dispatch the whole plug list in one go. We
2856 		 * already know at this point that all requests belong to the
2857 		 * same queue, caller must ensure that's the case.
2858 		 *
2859 		 * Since we pass off the full list to the driver at this point,
2860 		 * we do not increment the active request count for the queue.
2861 		 * Bypass shared tags for now because of that.
2862 		 */
2863 		if (q->mq_ops->queue_rqs &&
2864 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2865 			blk_mq_run_dispatch_ops(q,
2866 				__blk_mq_flush_plug_list(q, plug));
2867 			if (rq_list_empty(plug->mq_list))
2868 				return;
2869 		}
2870 
2871 		blk_mq_run_dispatch_ops(q,
2872 				blk_mq_plug_issue_direct(plug));
2873 		if (rq_list_empty(plug->mq_list))
2874 			return;
2875 	}
2876 
2877 	do {
2878 		blk_mq_dispatch_plug_list(plug, from_schedule);
2879 	} while (!rq_list_empty(plug->mq_list));
2880 }
2881 
2882 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2883 		struct list_head *list)
2884 {
2885 	int queued = 0;
2886 	blk_status_t ret = BLK_STS_OK;
2887 
2888 	while (!list_empty(list)) {
2889 		struct request *rq = list_first_entry(list, struct request,
2890 				queuelist);
2891 
2892 		list_del_init(&rq->queuelist);
2893 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2894 		switch (ret) {
2895 		case BLK_STS_OK:
2896 			queued++;
2897 			break;
2898 		case BLK_STS_RESOURCE:
2899 		case BLK_STS_DEV_RESOURCE:
2900 			blk_mq_request_bypass_insert(rq, 0);
2901 			if (list_empty(list))
2902 				blk_mq_run_hw_queue(hctx, false);
2903 			goto out;
2904 		default:
2905 			blk_mq_end_request(rq, ret);
2906 			break;
2907 		}
2908 	}
2909 
2910 out:
2911 	if (ret != BLK_STS_OK)
2912 		blk_mq_commit_rqs(hctx, queued, false);
2913 }
2914 
2915 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2916 				     struct bio *bio, unsigned int nr_segs)
2917 {
2918 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2919 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2920 			return true;
2921 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2922 			return true;
2923 	}
2924 	return false;
2925 }
2926 
2927 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2928 					       struct blk_plug *plug,
2929 					       struct bio *bio,
2930 					       unsigned int nsegs)
2931 {
2932 	struct blk_mq_alloc_data data = {
2933 		.q		= q,
2934 		.nr_tags	= 1,
2935 		.cmd_flags	= bio->bi_opf,
2936 	};
2937 	struct request *rq;
2938 
2939 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2940 		return NULL;
2941 
2942 	rq_qos_throttle(q, bio);
2943 
2944 	if (plug) {
2945 		data.nr_tags = plug->nr_ios;
2946 		plug->nr_ios = 1;
2947 		data.cached_rq = &plug->cached_rq;
2948 	}
2949 
2950 	rq = __blk_mq_alloc_requests(&data);
2951 	if (rq)
2952 		return rq;
2953 	rq_qos_cleanup(q, bio);
2954 	if (bio->bi_opf & REQ_NOWAIT)
2955 		bio_wouldblock_error(bio);
2956 	return NULL;
2957 }
2958 
2959 /* return true if this @rq can be used for @bio */
2960 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2961 		struct bio *bio)
2962 {
2963 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2964 	enum hctx_type hctx_type = rq->mq_hctx->type;
2965 
2966 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2967 
2968 	if (type != hctx_type &&
2969 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2970 		return false;
2971 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2972 		return false;
2973 
2974 	/*
2975 	 * If any qos ->throttle() end up blocking, we will have flushed the
2976 	 * plug and hence killed the cached_rq list as well. Pop this entry
2977 	 * before we throttle.
2978 	 */
2979 	plug->cached_rq = rq_list_next(rq);
2980 	rq_qos_throttle(rq->q, bio);
2981 
2982 	blk_mq_rq_time_init(rq, 0);
2983 	rq->cmd_flags = bio->bi_opf;
2984 	INIT_LIST_HEAD(&rq->queuelist);
2985 	return true;
2986 }
2987 
2988 /**
2989  * blk_mq_submit_bio - Create and send a request to block device.
2990  * @bio: Bio pointer.
2991  *
2992  * Builds up a request structure from @q and @bio and send to the device. The
2993  * request may not be queued directly to hardware if:
2994  * * This request can be merged with another one
2995  * * We want to place request at plug queue for possible future merging
2996  * * There is an IO scheduler active at this queue
2997  *
2998  * It will not queue the request if there is an error with the bio, or at the
2999  * request creation.
3000  */
3001 void blk_mq_submit_bio(struct bio *bio)
3002 {
3003 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3004 	struct blk_plug *plug = blk_mq_plug(bio);
3005 	const int is_sync = op_is_sync(bio->bi_opf);
3006 	struct blk_mq_hw_ctx *hctx;
3007 	struct request *rq = NULL;
3008 	unsigned int nr_segs = 1;
3009 	blk_status_t ret;
3010 
3011 	bio = blk_queue_bounce(bio, q);
3012 
3013 	if (plug) {
3014 		rq = rq_list_peek(&plug->cached_rq);
3015 		if (rq && rq->q != q)
3016 			rq = NULL;
3017 	}
3018 	if (rq) {
3019 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3020 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3021 			if (!bio)
3022 				return;
3023 		}
3024 		if (!bio_integrity_prep(bio))
3025 			return;
3026 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3027 			return;
3028 		if (blk_mq_can_use_cached_rq(rq, plug, bio))
3029 			goto done;
3030 		percpu_ref_get(&q->q_usage_counter);
3031 	} else {
3032 		if (unlikely(bio_queue_enter(bio)))
3033 			return;
3034 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3035 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3036 			if (!bio)
3037 				goto fail;
3038 		}
3039 		if (!bio_integrity_prep(bio))
3040 			goto fail;
3041 	}
3042 
3043 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3044 	if (unlikely(!rq)) {
3045 fail:
3046 		blk_queue_exit(q);
3047 		return;
3048 	}
3049 
3050 done:
3051 	trace_block_getrq(bio);
3052 
3053 	rq_qos_track(q, rq, bio);
3054 
3055 	blk_mq_bio_to_request(rq, bio, nr_segs);
3056 
3057 	ret = blk_crypto_rq_get_keyslot(rq);
3058 	if (ret != BLK_STS_OK) {
3059 		bio->bi_status = ret;
3060 		bio_endio(bio);
3061 		blk_mq_free_request(rq);
3062 		return;
3063 	}
3064 
3065 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3066 		return;
3067 
3068 	if (plug) {
3069 		blk_add_rq_to_plug(plug, rq);
3070 		return;
3071 	}
3072 
3073 	hctx = rq->mq_hctx;
3074 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3075 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3076 		blk_mq_insert_request(rq, 0);
3077 		blk_mq_run_hw_queue(hctx, true);
3078 	} else {
3079 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3080 	}
3081 }
3082 
3083 #ifdef CONFIG_BLK_MQ_STACKING
3084 /**
3085  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3086  * @rq: the request being queued
3087  */
3088 blk_status_t blk_insert_cloned_request(struct request *rq)
3089 {
3090 	struct request_queue *q = rq->q;
3091 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3092 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3093 	blk_status_t ret;
3094 
3095 	if (blk_rq_sectors(rq) > max_sectors) {
3096 		/*
3097 		 * SCSI device does not have a good way to return if
3098 		 * Write Same/Zero is actually supported. If a device rejects
3099 		 * a non-read/write command (discard, write same,etc.) the
3100 		 * low-level device driver will set the relevant queue limit to
3101 		 * 0 to prevent blk-lib from issuing more of the offending
3102 		 * operations. Commands queued prior to the queue limit being
3103 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3104 		 * errors being propagated to upper layers.
3105 		 */
3106 		if (max_sectors == 0)
3107 			return BLK_STS_NOTSUPP;
3108 
3109 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3110 			__func__, blk_rq_sectors(rq), max_sectors);
3111 		return BLK_STS_IOERR;
3112 	}
3113 
3114 	/*
3115 	 * The queue settings related to segment counting may differ from the
3116 	 * original queue.
3117 	 */
3118 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3119 	if (rq->nr_phys_segments > max_segments) {
3120 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3121 			__func__, rq->nr_phys_segments, max_segments);
3122 		return BLK_STS_IOERR;
3123 	}
3124 
3125 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3126 		return BLK_STS_IOERR;
3127 
3128 	ret = blk_crypto_rq_get_keyslot(rq);
3129 	if (ret != BLK_STS_OK)
3130 		return ret;
3131 
3132 	blk_account_io_start(rq);
3133 
3134 	/*
3135 	 * Since we have a scheduler attached on the top device,
3136 	 * bypass a potential scheduler on the bottom device for
3137 	 * insert.
3138 	 */
3139 	blk_mq_run_dispatch_ops(q,
3140 			ret = blk_mq_request_issue_directly(rq, true));
3141 	if (ret)
3142 		blk_account_io_done(rq, ktime_get_ns());
3143 	return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3146 
3147 /**
3148  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3149  * @rq: the clone request to be cleaned up
3150  *
3151  * Description:
3152  *     Free all bios in @rq for a cloned request.
3153  */
3154 void blk_rq_unprep_clone(struct request *rq)
3155 {
3156 	struct bio *bio;
3157 
3158 	while ((bio = rq->bio) != NULL) {
3159 		rq->bio = bio->bi_next;
3160 
3161 		bio_put(bio);
3162 	}
3163 }
3164 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3165 
3166 /**
3167  * blk_rq_prep_clone - Helper function to setup clone request
3168  * @rq: the request to be setup
3169  * @rq_src: original request to be cloned
3170  * @bs: bio_set that bios for clone are allocated from
3171  * @gfp_mask: memory allocation mask for bio
3172  * @bio_ctr: setup function to be called for each clone bio.
3173  *           Returns %0 for success, non %0 for failure.
3174  * @data: private data to be passed to @bio_ctr
3175  *
3176  * Description:
3177  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3178  *     Also, pages which the original bios are pointing to are not copied
3179  *     and the cloned bios just point same pages.
3180  *     So cloned bios must be completed before original bios, which means
3181  *     the caller must complete @rq before @rq_src.
3182  */
3183 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3184 		      struct bio_set *bs, gfp_t gfp_mask,
3185 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3186 		      void *data)
3187 {
3188 	struct bio *bio, *bio_src;
3189 
3190 	if (!bs)
3191 		bs = &fs_bio_set;
3192 
3193 	__rq_for_each_bio(bio_src, rq_src) {
3194 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3195 				      bs);
3196 		if (!bio)
3197 			goto free_and_out;
3198 
3199 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3200 			goto free_and_out;
3201 
3202 		if (rq->bio) {
3203 			rq->biotail->bi_next = bio;
3204 			rq->biotail = bio;
3205 		} else {
3206 			rq->bio = rq->biotail = bio;
3207 		}
3208 		bio = NULL;
3209 	}
3210 
3211 	/* Copy attributes of the original request to the clone request. */
3212 	rq->__sector = blk_rq_pos(rq_src);
3213 	rq->__data_len = blk_rq_bytes(rq_src);
3214 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3215 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3216 		rq->special_vec = rq_src->special_vec;
3217 	}
3218 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3219 	rq->ioprio = rq_src->ioprio;
3220 
3221 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3222 		goto free_and_out;
3223 
3224 	return 0;
3225 
3226 free_and_out:
3227 	if (bio)
3228 		bio_put(bio);
3229 	blk_rq_unprep_clone(rq);
3230 
3231 	return -ENOMEM;
3232 }
3233 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3234 #endif /* CONFIG_BLK_MQ_STACKING */
3235 
3236 /*
3237  * Steal bios from a request and add them to a bio list.
3238  * The request must not have been partially completed before.
3239  */
3240 void blk_steal_bios(struct bio_list *list, struct request *rq)
3241 {
3242 	if (rq->bio) {
3243 		if (list->tail)
3244 			list->tail->bi_next = rq->bio;
3245 		else
3246 			list->head = rq->bio;
3247 		list->tail = rq->biotail;
3248 
3249 		rq->bio = NULL;
3250 		rq->biotail = NULL;
3251 	}
3252 
3253 	rq->__data_len = 0;
3254 }
3255 EXPORT_SYMBOL_GPL(blk_steal_bios);
3256 
3257 static size_t order_to_size(unsigned int order)
3258 {
3259 	return (size_t)PAGE_SIZE << order;
3260 }
3261 
3262 /* called before freeing request pool in @tags */
3263 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3264 				    struct blk_mq_tags *tags)
3265 {
3266 	struct page *page;
3267 	unsigned long flags;
3268 
3269 	/*
3270 	 * There is no need to clear mapping if driver tags is not initialized
3271 	 * or the mapping belongs to the driver tags.
3272 	 */
3273 	if (!drv_tags || drv_tags == tags)
3274 		return;
3275 
3276 	list_for_each_entry(page, &tags->page_list, lru) {
3277 		unsigned long start = (unsigned long)page_address(page);
3278 		unsigned long end = start + order_to_size(page->private);
3279 		int i;
3280 
3281 		for (i = 0; i < drv_tags->nr_tags; i++) {
3282 			struct request *rq = drv_tags->rqs[i];
3283 			unsigned long rq_addr = (unsigned long)rq;
3284 
3285 			if (rq_addr >= start && rq_addr < end) {
3286 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3287 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3288 			}
3289 		}
3290 	}
3291 
3292 	/*
3293 	 * Wait until all pending iteration is done.
3294 	 *
3295 	 * Request reference is cleared and it is guaranteed to be observed
3296 	 * after the ->lock is released.
3297 	 */
3298 	spin_lock_irqsave(&drv_tags->lock, flags);
3299 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3300 }
3301 
3302 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3303 		     unsigned int hctx_idx)
3304 {
3305 	struct blk_mq_tags *drv_tags;
3306 	struct page *page;
3307 
3308 	if (list_empty(&tags->page_list))
3309 		return;
3310 
3311 	if (blk_mq_is_shared_tags(set->flags))
3312 		drv_tags = set->shared_tags;
3313 	else
3314 		drv_tags = set->tags[hctx_idx];
3315 
3316 	if (tags->static_rqs && set->ops->exit_request) {
3317 		int i;
3318 
3319 		for (i = 0; i < tags->nr_tags; i++) {
3320 			struct request *rq = tags->static_rqs[i];
3321 
3322 			if (!rq)
3323 				continue;
3324 			set->ops->exit_request(set, rq, hctx_idx);
3325 			tags->static_rqs[i] = NULL;
3326 		}
3327 	}
3328 
3329 	blk_mq_clear_rq_mapping(drv_tags, tags);
3330 
3331 	while (!list_empty(&tags->page_list)) {
3332 		page = list_first_entry(&tags->page_list, struct page, lru);
3333 		list_del_init(&page->lru);
3334 		/*
3335 		 * Remove kmemleak object previously allocated in
3336 		 * blk_mq_alloc_rqs().
3337 		 */
3338 		kmemleak_free(page_address(page));
3339 		__free_pages(page, page->private);
3340 	}
3341 }
3342 
3343 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3344 {
3345 	kfree(tags->rqs);
3346 	tags->rqs = NULL;
3347 	kfree(tags->static_rqs);
3348 	tags->static_rqs = NULL;
3349 
3350 	blk_mq_free_tags(tags);
3351 }
3352 
3353 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3354 		unsigned int hctx_idx)
3355 {
3356 	int i;
3357 
3358 	for (i = 0; i < set->nr_maps; i++) {
3359 		unsigned int start = set->map[i].queue_offset;
3360 		unsigned int end = start + set->map[i].nr_queues;
3361 
3362 		if (hctx_idx >= start && hctx_idx < end)
3363 			break;
3364 	}
3365 
3366 	if (i >= set->nr_maps)
3367 		i = HCTX_TYPE_DEFAULT;
3368 
3369 	return i;
3370 }
3371 
3372 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3373 		unsigned int hctx_idx)
3374 {
3375 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3376 
3377 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3378 }
3379 
3380 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3381 					       unsigned int hctx_idx,
3382 					       unsigned int nr_tags,
3383 					       unsigned int reserved_tags)
3384 {
3385 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3386 	struct blk_mq_tags *tags;
3387 
3388 	if (node == NUMA_NO_NODE)
3389 		node = set->numa_node;
3390 
3391 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3392 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3393 	if (!tags)
3394 		return NULL;
3395 
3396 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3397 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3398 				 node);
3399 	if (!tags->rqs)
3400 		goto err_free_tags;
3401 
3402 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3403 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3404 					node);
3405 	if (!tags->static_rqs)
3406 		goto err_free_rqs;
3407 
3408 	return tags;
3409 
3410 err_free_rqs:
3411 	kfree(tags->rqs);
3412 err_free_tags:
3413 	blk_mq_free_tags(tags);
3414 	return NULL;
3415 }
3416 
3417 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3418 			       unsigned int hctx_idx, int node)
3419 {
3420 	int ret;
3421 
3422 	if (set->ops->init_request) {
3423 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3424 		if (ret)
3425 			return ret;
3426 	}
3427 
3428 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3429 	return 0;
3430 }
3431 
3432 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3433 			    struct blk_mq_tags *tags,
3434 			    unsigned int hctx_idx, unsigned int depth)
3435 {
3436 	unsigned int i, j, entries_per_page, max_order = 4;
3437 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3438 	size_t rq_size, left;
3439 
3440 	if (node == NUMA_NO_NODE)
3441 		node = set->numa_node;
3442 
3443 	INIT_LIST_HEAD(&tags->page_list);
3444 
3445 	/*
3446 	 * rq_size is the size of the request plus driver payload, rounded
3447 	 * to the cacheline size
3448 	 */
3449 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3450 				cache_line_size());
3451 	left = rq_size * depth;
3452 
3453 	for (i = 0; i < depth; ) {
3454 		int this_order = max_order;
3455 		struct page *page;
3456 		int to_do;
3457 		void *p;
3458 
3459 		while (this_order && left < order_to_size(this_order - 1))
3460 			this_order--;
3461 
3462 		do {
3463 			page = alloc_pages_node(node,
3464 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3465 				this_order);
3466 			if (page)
3467 				break;
3468 			if (!this_order--)
3469 				break;
3470 			if (order_to_size(this_order) < rq_size)
3471 				break;
3472 		} while (1);
3473 
3474 		if (!page)
3475 			goto fail;
3476 
3477 		page->private = this_order;
3478 		list_add_tail(&page->lru, &tags->page_list);
3479 
3480 		p = page_address(page);
3481 		/*
3482 		 * Allow kmemleak to scan these pages as they contain pointers
3483 		 * to additional allocations like via ops->init_request().
3484 		 */
3485 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3486 		entries_per_page = order_to_size(this_order) / rq_size;
3487 		to_do = min(entries_per_page, depth - i);
3488 		left -= to_do * rq_size;
3489 		for (j = 0; j < to_do; j++) {
3490 			struct request *rq = p;
3491 
3492 			tags->static_rqs[i] = rq;
3493 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3494 				tags->static_rqs[i] = NULL;
3495 				goto fail;
3496 			}
3497 
3498 			p += rq_size;
3499 			i++;
3500 		}
3501 	}
3502 	return 0;
3503 
3504 fail:
3505 	blk_mq_free_rqs(set, tags, hctx_idx);
3506 	return -ENOMEM;
3507 }
3508 
3509 struct rq_iter_data {
3510 	struct blk_mq_hw_ctx *hctx;
3511 	bool has_rq;
3512 };
3513 
3514 static bool blk_mq_has_request(struct request *rq, void *data)
3515 {
3516 	struct rq_iter_data *iter_data = data;
3517 
3518 	if (rq->mq_hctx != iter_data->hctx)
3519 		return true;
3520 	iter_data->has_rq = true;
3521 	return false;
3522 }
3523 
3524 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3525 {
3526 	struct blk_mq_tags *tags = hctx->sched_tags ?
3527 			hctx->sched_tags : hctx->tags;
3528 	struct rq_iter_data data = {
3529 		.hctx	= hctx,
3530 	};
3531 
3532 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3533 	return data.has_rq;
3534 }
3535 
3536 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3537 		struct blk_mq_hw_ctx *hctx)
3538 {
3539 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3540 		return false;
3541 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3542 		return false;
3543 	return true;
3544 }
3545 
3546 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3547 {
3548 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3549 			struct blk_mq_hw_ctx, cpuhp_online);
3550 
3551 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3552 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3553 		return 0;
3554 
3555 	/*
3556 	 * Prevent new request from being allocated on the current hctx.
3557 	 *
3558 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3559 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3560 	 * seen once we return from the tag allocator.
3561 	 */
3562 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3563 	smp_mb__after_atomic();
3564 
3565 	/*
3566 	 * Try to grab a reference to the queue and wait for any outstanding
3567 	 * requests.  If we could not grab a reference the queue has been
3568 	 * frozen and there are no requests.
3569 	 */
3570 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3571 		while (blk_mq_hctx_has_requests(hctx))
3572 			msleep(5);
3573 		percpu_ref_put(&hctx->queue->q_usage_counter);
3574 	}
3575 
3576 	return 0;
3577 }
3578 
3579 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3580 {
3581 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3582 			struct blk_mq_hw_ctx, cpuhp_online);
3583 
3584 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3585 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3586 	return 0;
3587 }
3588 
3589 /*
3590  * 'cpu' is going away. splice any existing rq_list entries from this
3591  * software queue to the hw queue dispatch list, and ensure that it
3592  * gets run.
3593  */
3594 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3595 {
3596 	struct blk_mq_hw_ctx *hctx;
3597 	struct blk_mq_ctx *ctx;
3598 	LIST_HEAD(tmp);
3599 	enum hctx_type type;
3600 
3601 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3602 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3603 		return 0;
3604 
3605 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3606 	type = hctx->type;
3607 
3608 	spin_lock(&ctx->lock);
3609 	if (!list_empty(&ctx->rq_lists[type])) {
3610 		list_splice_init(&ctx->rq_lists[type], &tmp);
3611 		blk_mq_hctx_clear_pending(hctx, ctx);
3612 	}
3613 	spin_unlock(&ctx->lock);
3614 
3615 	if (list_empty(&tmp))
3616 		return 0;
3617 
3618 	spin_lock(&hctx->lock);
3619 	list_splice_tail_init(&tmp, &hctx->dispatch);
3620 	spin_unlock(&hctx->lock);
3621 
3622 	blk_mq_run_hw_queue(hctx, true);
3623 	return 0;
3624 }
3625 
3626 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3627 {
3628 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3629 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3630 						    &hctx->cpuhp_online);
3631 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3632 					    &hctx->cpuhp_dead);
3633 }
3634 
3635 /*
3636  * Before freeing hw queue, clearing the flush request reference in
3637  * tags->rqs[] for avoiding potential UAF.
3638  */
3639 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3640 		unsigned int queue_depth, struct request *flush_rq)
3641 {
3642 	int i;
3643 	unsigned long flags;
3644 
3645 	/* The hw queue may not be mapped yet */
3646 	if (!tags)
3647 		return;
3648 
3649 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3650 
3651 	for (i = 0; i < queue_depth; i++)
3652 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3653 
3654 	/*
3655 	 * Wait until all pending iteration is done.
3656 	 *
3657 	 * Request reference is cleared and it is guaranteed to be observed
3658 	 * after the ->lock is released.
3659 	 */
3660 	spin_lock_irqsave(&tags->lock, flags);
3661 	spin_unlock_irqrestore(&tags->lock, flags);
3662 }
3663 
3664 /* hctx->ctxs will be freed in queue's release handler */
3665 static void blk_mq_exit_hctx(struct request_queue *q,
3666 		struct blk_mq_tag_set *set,
3667 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3668 {
3669 	struct request *flush_rq = hctx->fq->flush_rq;
3670 
3671 	if (blk_mq_hw_queue_mapped(hctx))
3672 		blk_mq_tag_idle(hctx);
3673 
3674 	if (blk_queue_init_done(q))
3675 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3676 				set->queue_depth, flush_rq);
3677 	if (set->ops->exit_request)
3678 		set->ops->exit_request(set, flush_rq, hctx_idx);
3679 
3680 	if (set->ops->exit_hctx)
3681 		set->ops->exit_hctx(hctx, hctx_idx);
3682 
3683 	blk_mq_remove_cpuhp(hctx);
3684 
3685 	xa_erase(&q->hctx_table, hctx_idx);
3686 
3687 	spin_lock(&q->unused_hctx_lock);
3688 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3689 	spin_unlock(&q->unused_hctx_lock);
3690 }
3691 
3692 static void blk_mq_exit_hw_queues(struct request_queue *q,
3693 		struct blk_mq_tag_set *set, int nr_queue)
3694 {
3695 	struct blk_mq_hw_ctx *hctx;
3696 	unsigned long i;
3697 
3698 	queue_for_each_hw_ctx(q, hctx, i) {
3699 		if (i == nr_queue)
3700 			break;
3701 		blk_mq_exit_hctx(q, set, hctx, i);
3702 	}
3703 }
3704 
3705 static int blk_mq_init_hctx(struct request_queue *q,
3706 		struct blk_mq_tag_set *set,
3707 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3708 {
3709 	hctx->queue_num = hctx_idx;
3710 
3711 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3712 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3713 				&hctx->cpuhp_online);
3714 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3715 
3716 	hctx->tags = set->tags[hctx_idx];
3717 
3718 	if (set->ops->init_hctx &&
3719 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3720 		goto unregister_cpu_notifier;
3721 
3722 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3723 				hctx->numa_node))
3724 		goto exit_hctx;
3725 
3726 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3727 		goto exit_flush_rq;
3728 
3729 	return 0;
3730 
3731  exit_flush_rq:
3732 	if (set->ops->exit_request)
3733 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3734  exit_hctx:
3735 	if (set->ops->exit_hctx)
3736 		set->ops->exit_hctx(hctx, hctx_idx);
3737  unregister_cpu_notifier:
3738 	blk_mq_remove_cpuhp(hctx);
3739 	return -1;
3740 }
3741 
3742 static struct blk_mq_hw_ctx *
3743 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3744 		int node)
3745 {
3746 	struct blk_mq_hw_ctx *hctx;
3747 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3748 
3749 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3750 	if (!hctx)
3751 		goto fail_alloc_hctx;
3752 
3753 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3754 		goto free_hctx;
3755 
3756 	atomic_set(&hctx->nr_active, 0);
3757 	if (node == NUMA_NO_NODE)
3758 		node = set->numa_node;
3759 	hctx->numa_node = node;
3760 
3761 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3762 	spin_lock_init(&hctx->lock);
3763 	INIT_LIST_HEAD(&hctx->dispatch);
3764 	hctx->queue = q;
3765 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3766 
3767 	INIT_LIST_HEAD(&hctx->hctx_list);
3768 
3769 	/*
3770 	 * Allocate space for all possible cpus to avoid allocation at
3771 	 * runtime
3772 	 */
3773 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3774 			gfp, node);
3775 	if (!hctx->ctxs)
3776 		goto free_cpumask;
3777 
3778 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3779 				gfp, node, false, false))
3780 		goto free_ctxs;
3781 	hctx->nr_ctx = 0;
3782 
3783 	spin_lock_init(&hctx->dispatch_wait_lock);
3784 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3785 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3786 
3787 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3788 	if (!hctx->fq)
3789 		goto free_bitmap;
3790 
3791 	blk_mq_hctx_kobj_init(hctx);
3792 
3793 	return hctx;
3794 
3795  free_bitmap:
3796 	sbitmap_free(&hctx->ctx_map);
3797  free_ctxs:
3798 	kfree(hctx->ctxs);
3799  free_cpumask:
3800 	free_cpumask_var(hctx->cpumask);
3801  free_hctx:
3802 	kfree(hctx);
3803  fail_alloc_hctx:
3804 	return NULL;
3805 }
3806 
3807 static void blk_mq_init_cpu_queues(struct request_queue *q,
3808 				   unsigned int nr_hw_queues)
3809 {
3810 	struct blk_mq_tag_set *set = q->tag_set;
3811 	unsigned int i, j;
3812 
3813 	for_each_possible_cpu(i) {
3814 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3815 		struct blk_mq_hw_ctx *hctx;
3816 		int k;
3817 
3818 		__ctx->cpu = i;
3819 		spin_lock_init(&__ctx->lock);
3820 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3821 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3822 
3823 		__ctx->queue = q;
3824 
3825 		/*
3826 		 * Set local node, IFF we have more than one hw queue. If
3827 		 * not, we remain on the home node of the device
3828 		 */
3829 		for (j = 0; j < set->nr_maps; j++) {
3830 			hctx = blk_mq_map_queue_type(q, j, i);
3831 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3832 				hctx->numa_node = cpu_to_node(i);
3833 		}
3834 	}
3835 }
3836 
3837 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3838 					     unsigned int hctx_idx,
3839 					     unsigned int depth)
3840 {
3841 	struct blk_mq_tags *tags;
3842 	int ret;
3843 
3844 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3845 	if (!tags)
3846 		return NULL;
3847 
3848 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3849 	if (ret) {
3850 		blk_mq_free_rq_map(tags);
3851 		return NULL;
3852 	}
3853 
3854 	return tags;
3855 }
3856 
3857 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3858 				       int hctx_idx)
3859 {
3860 	if (blk_mq_is_shared_tags(set->flags)) {
3861 		set->tags[hctx_idx] = set->shared_tags;
3862 
3863 		return true;
3864 	}
3865 
3866 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3867 						       set->queue_depth);
3868 
3869 	return set->tags[hctx_idx];
3870 }
3871 
3872 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3873 			     struct blk_mq_tags *tags,
3874 			     unsigned int hctx_idx)
3875 {
3876 	if (tags) {
3877 		blk_mq_free_rqs(set, tags, hctx_idx);
3878 		blk_mq_free_rq_map(tags);
3879 	}
3880 }
3881 
3882 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3883 				      unsigned int hctx_idx)
3884 {
3885 	if (!blk_mq_is_shared_tags(set->flags))
3886 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3887 
3888 	set->tags[hctx_idx] = NULL;
3889 }
3890 
3891 static void blk_mq_map_swqueue(struct request_queue *q)
3892 {
3893 	unsigned int j, hctx_idx;
3894 	unsigned long i;
3895 	struct blk_mq_hw_ctx *hctx;
3896 	struct blk_mq_ctx *ctx;
3897 	struct blk_mq_tag_set *set = q->tag_set;
3898 
3899 	queue_for_each_hw_ctx(q, hctx, i) {
3900 		cpumask_clear(hctx->cpumask);
3901 		hctx->nr_ctx = 0;
3902 		hctx->dispatch_from = NULL;
3903 	}
3904 
3905 	/*
3906 	 * Map software to hardware queues.
3907 	 *
3908 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3909 	 */
3910 	for_each_possible_cpu(i) {
3911 
3912 		ctx = per_cpu_ptr(q->queue_ctx, i);
3913 		for (j = 0; j < set->nr_maps; j++) {
3914 			if (!set->map[j].nr_queues) {
3915 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3916 						HCTX_TYPE_DEFAULT, i);
3917 				continue;
3918 			}
3919 			hctx_idx = set->map[j].mq_map[i];
3920 			/* unmapped hw queue can be remapped after CPU topo changed */
3921 			if (!set->tags[hctx_idx] &&
3922 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3923 				/*
3924 				 * If tags initialization fail for some hctx,
3925 				 * that hctx won't be brought online.  In this
3926 				 * case, remap the current ctx to hctx[0] which
3927 				 * is guaranteed to always have tags allocated
3928 				 */
3929 				set->map[j].mq_map[i] = 0;
3930 			}
3931 
3932 			hctx = blk_mq_map_queue_type(q, j, i);
3933 			ctx->hctxs[j] = hctx;
3934 			/*
3935 			 * If the CPU is already set in the mask, then we've
3936 			 * mapped this one already. This can happen if
3937 			 * devices share queues across queue maps.
3938 			 */
3939 			if (cpumask_test_cpu(i, hctx->cpumask))
3940 				continue;
3941 
3942 			cpumask_set_cpu(i, hctx->cpumask);
3943 			hctx->type = j;
3944 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3945 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3946 
3947 			/*
3948 			 * If the nr_ctx type overflows, we have exceeded the
3949 			 * amount of sw queues we can support.
3950 			 */
3951 			BUG_ON(!hctx->nr_ctx);
3952 		}
3953 
3954 		for (; j < HCTX_MAX_TYPES; j++)
3955 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3956 					HCTX_TYPE_DEFAULT, i);
3957 	}
3958 
3959 	queue_for_each_hw_ctx(q, hctx, i) {
3960 		/*
3961 		 * If no software queues are mapped to this hardware queue,
3962 		 * disable it and free the request entries.
3963 		 */
3964 		if (!hctx->nr_ctx) {
3965 			/* Never unmap queue 0.  We need it as a
3966 			 * fallback in case of a new remap fails
3967 			 * allocation
3968 			 */
3969 			if (i)
3970 				__blk_mq_free_map_and_rqs(set, i);
3971 
3972 			hctx->tags = NULL;
3973 			continue;
3974 		}
3975 
3976 		hctx->tags = set->tags[i];
3977 		WARN_ON(!hctx->tags);
3978 
3979 		/*
3980 		 * Set the map size to the number of mapped software queues.
3981 		 * This is more accurate and more efficient than looping
3982 		 * over all possibly mapped software queues.
3983 		 */
3984 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3985 
3986 		/*
3987 		 * Initialize batch roundrobin counts
3988 		 */
3989 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3990 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3991 	}
3992 }
3993 
3994 /*
3995  * Caller needs to ensure that we're either frozen/quiesced, or that
3996  * the queue isn't live yet.
3997  */
3998 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3999 {
4000 	struct blk_mq_hw_ctx *hctx;
4001 	unsigned long i;
4002 
4003 	queue_for_each_hw_ctx(q, hctx, i) {
4004 		if (shared) {
4005 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4006 		} else {
4007 			blk_mq_tag_idle(hctx);
4008 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4009 		}
4010 	}
4011 }
4012 
4013 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4014 					 bool shared)
4015 {
4016 	struct request_queue *q;
4017 
4018 	lockdep_assert_held(&set->tag_list_lock);
4019 
4020 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4021 		blk_mq_freeze_queue(q);
4022 		queue_set_hctx_shared(q, shared);
4023 		blk_mq_unfreeze_queue(q);
4024 	}
4025 }
4026 
4027 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4028 {
4029 	struct blk_mq_tag_set *set = q->tag_set;
4030 
4031 	mutex_lock(&set->tag_list_lock);
4032 	list_del(&q->tag_set_list);
4033 	if (list_is_singular(&set->tag_list)) {
4034 		/* just transitioned to unshared */
4035 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4036 		/* update existing queue */
4037 		blk_mq_update_tag_set_shared(set, false);
4038 	}
4039 	mutex_unlock(&set->tag_list_lock);
4040 	INIT_LIST_HEAD(&q->tag_set_list);
4041 }
4042 
4043 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4044 				     struct request_queue *q)
4045 {
4046 	mutex_lock(&set->tag_list_lock);
4047 
4048 	/*
4049 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4050 	 */
4051 	if (!list_empty(&set->tag_list) &&
4052 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4053 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4054 		/* update existing queue */
4055 		blk_mq_update_tag_set_shared(set, true);
4056 	}
4057 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4058 		queue_set_hctx_shared(q, true);
4059 	list_add_tail(&q->tag_set_list, &set->tag_list);
4060 
4061 	mutex_unlock(&set->tag_list_lock);
4062 }
4063 
4064 /* All allocations will be freed in release handler of q->mq_kobj */
4065 static int blk_mq_alloc_ctxs(struct request_queue *q)
4066 {
4067 	struct blk_mq_ctxs *ctxs;
4068 	int cpu;
4069 
4070 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4071 	if (!ctxs)
4072 		return -ENOMEM;
4073 
4074 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4075 	if (!ctxs->queue_ctx)
4076 		goto fail;
4077 
4078 	for_each_possible_cpu(cpu) {
4079 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4080 		ctx->ctxs = ctxs;
4081 	}
4082 
4083 	q->mq_kobj = &ctxs->kobj;
4084 	q->queue_ctx = ctxs->queue_ctx;
4085 
4086 	return 0;
4087  fail:
4088 	kfree(ctxs);
4089 	return -ENOMEM;
4090 }
4091 
4092 /*
4093  * It is the actual release handler for mq, but we do it from
4094  * request queue's release handler for avoiding use-after-free
4095  * and headache because q->mq_kobj shouldn't have been introduced,
4096  * but we can't group ctx/kctx kobj without it.
4097  */
4098 void blk_mq_release(struct request_queue *q)
4099 {
4100 	struct blk_mq_hw_ctx *hctx, *next;
4101 	unsigned long i;
4102 
4103 	queue_for_each_hw_ctx(q, hctx, i)
4104 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4105 
4106 	/* all hctx are in .unused_hctx_list now */
4107 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4108 		list_del_init(&hctx->hctx_list);
4109 		kobject_put(&hctx->kobj);
4110 	}
4111 
4112 	xa_destroy(&q->hctx_table);
4113 
4114 	/*
4115 	 * release .mq_kobj and sw queue's kobject now because
4116 	 * both share lifetime with request queue.
4117 	 */
4118 	blk_mq_sysfs_deinit(q);
4119 }
4120 
4121 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4122 		void *queuedata)
4123 {
4124 	struct request_queue *q;
4125 	int ret;
4126 
4127 	q = blk_alloc_queue(set->numa_node);
4128 	if (!q)
4129 		return ERR_PTR(-ENOMEM);
4130 	q->queuedata = queuedata;
4131 	ret = blk_mq_init_allocated_queue(set, q);
4132 	if (ret) {
4133 		blk_put_queue(q);
4134 		return ERR_PTR(ret);
4135 	}
4136 	return q;
4137 }
4138 
4139 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4140 {
4141 	return blk_mq_init_queue_data(set, NULL);
4142 }
4143 EXPORT_SYMBOL(blk_mq_init_queue);
4144 
4145 /**
4146  * blk_mq_destroy_queue - shutdown a request queue
4147  * @q: request queue to shutdown
4148  *
4149  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4150  * requests will be failed with -ENODEV. The caller is responsible for dropping
4151  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4152  *
4153  * Context: can sleep
4154  */
4155 void blk_mq_destroy_queue(struct request_queue *q)
4156 {
4157 	WARN_ON_ONCE(!queue_is_mq(q));
4158 	WARN_ON_ONCE(blk_queue_registered(q));
4159 
4160 	might_sleep();
4161 
4162 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4163 	blk_queue_start_drain(q);
4164 	blk_mq_freeze_queue_wait(q);
4165 
4166 	blk_sync_queue(q);
4167 	blk_mq_cancel_work_sync(q);
4168 	blk_mq_exit_queue(q);
4169 }
4170 EXPORT_SYMBOL(blk_mq_destroy_queue);
4171 
4172 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4173 		struct lock_class_key *lkclass)
4174 {
4175 	struct request_queue *q;
4176 	struct gendisk *disk;
4177 
4178 	q = blk_mq_init_queue_data(set, queuedata);
4179 	if (IS_ERR(q))
4180 		return ERR_CAST(q);
4181 
4182 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4183 	if (!disk) {
4184 		blk_mq_destroy_queue(q);
4185 		blk_put_queue(q);
4186 		return ERR_PTR(-ENOMEM);
4187 	}
4188 	set_bit(GD_OWNS_QUEUE, &disk->state);
4189 	return disk;
4190 }
4191 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4192 
4193 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4194 		struct lock_class_key *lkclass)
4195 {
4196 	struct gendisk *disk;
4197 
4198 	if (!blk_get_queue(q))
4199 		return NULL;
4200 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4201 	if (!disk)
4202 		blk_put_queue(q);
4203 	return disk;
4204 }
4205 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4206 
4207 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4208 		struct blk_mq_tag_set *set, struct request_queue *q,
4209 		int hctx_idx, int node)
4210 {
4211 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4212 
4213 	/* reuse dead hctx first */
4214 	spin_lock(&q->unused_hctx_lock);
4215 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4216 		if (tmp->numa_node == node) {
4217 			hctx = tmp;
4218 			break;
4219 		}
4220 	}
4221 	if (hctx)
4222 		list_del_init(&hctx->hctx_list);
4223 	spin_unlock(&q->unused_hctx_lock);
4224 
4225 	if (!hctx)
4226 		hctx = blk_mq_alloc_hctx(q, set, node);
4227 	if (!hctx)
4228 		goto fail;
4229 
4230 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4231 		goto free_hctx;
4232 
4233 	return hctx;
4234 
4235  free_hctx:
4236 	kobject_put(&hctx->kobj);
4237  fail:
4238 	return NULL;
4239 }
4240 
4241 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4242 						struct request_queue *q)
4243 {
4244 	struct blk_mq_hw_ctx *hctx;
4245 	unsigned long i, j;
4246 
4247 	/* protect against switching io scheduler  */
4248 	mutex_lock(&q->sysfs_lock);
4249 	for (i = 0; i < set->nr_hw_queues; i++) {
4250 		int old_node;
4251 		int node = blk_mq_get_hctx_node(set, i);
4252 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4253 
4254 		if (old_hctx) {
4255 			old_node = old_hctx->numa_node;
4256 			blk_mq_exit_hctx(q, set, old_hctx, i);
4257 		}
4258 
4259 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4260 			if (!old_hctx)
4261 				break;
4262 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4263 					node, old_node);
4264 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4265 			WARN_ON_ONCE(!hctx);
4266 		}
4267 	}
4268 	/*
4269 	 * Increasing nr_hw_queues fails. Free the newly allocated
4270 	 * hctxs and keep the previous q->nr_hw_queues.
4271 	 */
4272 	if (i != set->nr_hw_queues) {
4273 		j = q->nr_hw_queues;
4274 	} else {
4275 		j = i;
4276 		q->nr_hw_queues = set->nr_hw_queues;
4277 	}
4278 
4279 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4280 		blk_mq_exit_hctx(q, set, hctx, j);
4281 	mutex_unlock(&q->sysfs_lock);
4282 }
4283 
4284 static void blk_mq_update_poll_flag(struct request_queue *q)
4285 {
4286 	struct blk_mq_tag_set *set = q->tag_set;
4287 
4288 	if (set->nr_maps > HCTX_TYPE_POLL &&
4289 	    set->map[HCTX_TYPE_POLL].nr_queues)
4290 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4291 	else
4292 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4293 }
4294 
4295 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4296 		struct request_queue *q)
4297 {
4298 	/* mark the queue as mq asap */
4299 	q->mq_ops = set->ops;
4300 
4301 	if (blk_mq_alloc_ctxs(q))
4302 		goto err_exit;
4303 
4304 	/* init q->mq_kobj and sw queues' kobjects */
4305 	blk_mq_sysfs_init(q);
4306 
4307 	INIT_LIST_HEAD(&q->unused_hctx_list);
4308 	spin_lock_init(&q->unused_hctx_lock);
4309 
4310 	xa_init(&q->hctx_table);
4311 
4312 	blk_mq_realloc_hw_ctxs(set, q);
4313 	if (!q->nr_hw_queues)
4314 		goto err_hctxs;
4315 
4316 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4317 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4318 
4319 	q->tag_set = set;
4320 
4321 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4322 	blk_mq_update_poll_flag(q);
4323 
4324 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4325 	INIT_LIST_HEAD(&q->flush_list);
4326 	INIT_LIST_HEAD(&q->requeue_list);
4327 	spin_lock_init(&q->requeue_lock);
4328 
4329 	q->nr_requests = set->queue_depth;
4330 
4331 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4332 	blk_mq_add_queue_tag_set(set, q);
4333 	blk_mq_map_swqueue(q);
4334 	return 0;
4335 
4336 err_hctxs:
4337 	blk_mq_release(q);
4338 err_exit:
4339 	q->mq_ops = NULL;
4340 	return -ENOMEM;
4341 }
4342 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4343 
4344 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4345 void blk_mq_exit_queue(struct request_queue *q)
4346 {
4347 	struct blk_mq_tag_set *set = q->tag_set;
4348 
4349 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4350 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4351 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4352 	blk_mq_del_queue_tag_set(q);
4353 }
4354 
4355 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4356 {
4357 	int i;
4358 
4359 	if (blk_mq_is_shared_tags(set->flags)) {
4360 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4361 						BLK_MQ_NO_HCTX_IDX,
4362 						set->queue_depth);
4363 		if (!set->shared_tags)
4364 			return -ENOMEM;
4365 	}
4366 
4367 	for (i = 0; i < set->nr_hw_queues; i++) {
4368 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4369 			goto out_unwind;
4370 		cond_resched();
4371 	}
4372 
4373 	return 0;
4374 
4375 out_unwind:
4376 	while (--i >= 0)
4377 		__blk_mq_free_map_and_rqs(set, i);
4378 
4379 	if (blk_mq_is_shared_tags(set->flags)) {
4380 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4381 					BLK_MQ_NO_HCTX_IDX);
4382 	}
4383 
4384 	return -ENOMEM;
4385 }
4386 
4387 /*
4388  * Allocate the request maps associated with this tag_set. Note that this
4389  * may reduce the depth asked for, if memory is tight. set->queue_depth
4390  * will be updated to reflect the allocated depth.
4391  */
4392 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4393 {
4394 	unsigned int depth;
4395 	int err;
4396 
4397 	depth = set->queue_depth;
4398 	do {
4399 		err = __blk_mq_alloc_rq_maps(set);
4400 		if (!err)
4401 			break;
4402 
4403 		set->queue_depth >>= 1;
4404 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4405 			err = -ENOMEM;
4406 			break;
4407 		}
4408 	} while (set->queue_depth);
4409 
4410 	if (!set->queue_depth || err) {
4411 		pr_err("blk-mq: failed to allocate request map\n");
4412 		return -ENOMEM;
4413 	}
4414 
4415 	if (depth != set->queue_depth)
4416 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4417 						depth, set->queue_depth);
4418 
4419 	return 0;
4420 }
4421 
4422 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4423 {
4424 	/*
4425 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4426 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4427 	 * number of hardware queues.
4428 	 */
4429 	if (set->nr_maps == 1)
4430 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4431 
4432 	if (set->ops->map_queues && !is_kdump_kernel()) {
4433 		int i;
4434 
4435 		/*
4436 		 * transport .map_queues is usually done in the following
4437 		 * way:
4438 		 *
4439 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4440 		 * 	mask = get_cpu_mask(queue)
4441 		 * 	for_each_cpu(cpu, mask)
4442 		 * 		set->map[x].mq_map[cpu] = queue;
4443 		 * }
4444 		 *
4445 		 * When we need to remap, the table has to be cleared for
4446 		 * killing stale mapping since one CPU may not be mapped
4447 		 * to any hw queue.
4448 		 */
4449 		for (i = 0; i < set->nr_maps; i++)
4450 			blk_mq_clear_mq_map(&set->map[i]);
4451 
4452 		set->ops->map_queues(set);
4453 	} else {
4454 		BUG_ON(set->nr_maps > 1);
4455 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4456 	}
4457 }
4458 
4459 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4460 				       int new_nr_hw_queues)
4461 {
4462 	struct blk_mq_tags **new_tags;
4463 	int i;
4464 
4465 	if (set->nr_hw_queues >= new_nr_hw_queues)
4466 		goto done;
4467 
4468 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4469 				GFP_KERNEL, set->numa_node);
4470 	if (!new_tags)
4471 		return -ENOMEM;
4472 
4473 	if (set->tags)
4474 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4475 		       sizeof(*set->tags));
4476 	kfree(set->tags);
4477 	set->tags = new_tags;
4478 
4479 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4480 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4481 			while (--i >= set->nr_hw_queues)
4482 				__blk_mq_free_map_and_rqs(set, i);
4483 			return -ENOMEM;
4484 		}
4485 		cond_resched();
4486 	}
4487 
4488 done:
4489 	set->nr_hw_queues = new_nr_hw_queues;
4490 	return 0;
4491 }
4492 
4493 /*
4494  * Alloc a tag set to be associated with one or more request queues.
4495  * May fail with EINVAL for various error conditions. May adjust the
4496  * requested depth down, if it's too large. In that case, the set
4497  * value will be stored in set->queue_depth.
4498  */
4499 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4500 {
4501 	int i, ret;
4502 
4503 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4504 
4505 	if (!set->nr_hw_queues)
4506 		return -EINVAL;
4507 	if (!set->queue_depth)
4508 		return -EINVAL;
4509 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4510 		return -EINVAL;
4511 
4512 	if (!set->ops->queue_rq)
4513 		return -EINVAL;
4514 
4515 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4516 		return -EINVAL;
4517 
4518 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4519 		pr_info("blk-mq: reduced tag depth to %u\n",
4520 			BLK_MQ_MAX_DEPTH);
4521 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4522 	}
4523 
4524 	if (!set->nr_maps)
4525 		set->nr_maps = 1;
4526 	else if (set->nr_maps > HCTX_MAX_TYPES)
4527 		return -EINVAL;
4528 
4529 	/*
4530 	 * If a crashdump is active, then we are potentially in a very
4531 	 * memory constrained environment. Limit us to 1 queue and
4532 	 * 64 tags to prevent using too much memory.
4533 	 */
4534 	if (is_kdump_kernel()) {
4535 		set->nr_hw_queues = 1;
4536 		set->nr_maps = 1;
4537 		set->queue_depth = min(64U, set->queue_depth);
4538 	}
4539 	/*
4540 	 * There is no use for more h/w queues than cpus if we just have
4541 	 * a single map
4542 	 */
4543 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4544 		set->nr_hw_queues = nr_cpu_ids;
4545 
4546 	if (set->flags & BLK_MQ_F_BLOCKING) {
4547 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4548 		if (!set->srcu)
4549 			return -ENOMEM;
4550 		ret = init_srcu_struct(set->srcu);
4551 		if (ret)
4552 			goto out_free_srcu;
4553 	}
4554 
4555 	ret = -ENOMEM;
4556 	set->tags = kcalloc_node(set->nr_hw_queues,
4557 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4558 				 set->numa_node);
4559 	if (!set->tags)
4560 		goto out_cleanup_srcu;
4561 
4562 	for (i = 0; i < set->nr_maps; i++) {
4563 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4564 						  sizeof(set->map[i].mq_map[0]),
4565 						  GFP_KERNEL, set->numa_node);
4566 		if (!set->map[i].mq_map)
4567 			goto out_free_mq_map;
4568 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4569 	}
4570 
4571 	blk_mq_update_queue_map(set);
4572 
4573 	ret = blk_mq_alloc_set_map_and_rqs(set);
4574 	if (ret)
4575 		goto out_free_mq_map;
4576 
4577 	mutex_init(&set->tag_list_lock);
4578 	INIT_LIST_HEAD(&set->tag_list);
4579 
4580 	return 0;
4581 
4582 out_free_mq_map:
4583 	for (i = 0; i < set->nr_maps; i++) {
4584 		kfree(set->map[i].mq_map);
4585 		set->map[i].mq_map = NULL;
4586 	}
4587 	kfree(set->tags);
4588 	set->tags = NULL;
4589 out_cleanup_srcu:
4590 	if (set->flags & BLK_MQ_F_BLOCKING)
4591 		cleanup_srcu_struct(set->srcu);
4592 out_free_srcu:
4593 	if (set->flags & BLK_MQ_F_BLOCKING)
4594 		kfree(set->srcu);
4595 	return ret;
4596 }
4597 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4598 
4599 /* allocate and initialize a tagset for a simple single-queue device */
4600 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4601 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4602 		unsigned int set_flags)
4603 {
4604 	memset(set, 0, sizeof(*set));
4605 	set->ops = ops;
4606 	set->nr_hw_queues = 1;
4607 	set->nr_maps = 1;
4608 	set->queue_depth = queue_depth;
4609 	set->numa_node = NUMA_NO_NODE;
4610 	set->flags = set_flags;
4611 	return blk_mq_alloc_tag_set(set);
4612 }
4613 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4614 
4615 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4616 {
4617 	int i, j;
4618 
4619 	for (i = 0; i < set->nr_hw_queues; i++)
4620 		__blk_mq_free_map_and_rqs(set, i);
4621 
4622 	if (blk_mq_is_shared_tags(set->flags)) {
4623 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4624 					BLK_MQ_NO_HCTX_IDX);
4625 	}
4626 
4627 	for (j = 0; j < set->nr_maps; j++) {
4628 		kfree(set->map[j].mq_map);
4629 		set->map[j].mq_map = NULL;
4630 	}
4631 
4632 	kfree(set->tags);
4633 	set->tags = NULL;
4634 	if (set->flags & BLK_MQ_F_BLOCKING) {
4635 		cleanup_srcu_struct(set->srcu);
4636 		kfree(set->srcu);
4637 	}
4638 }
4639 EXPORT_SYMBOL(blk_mq_free_tag_set);
4640 
4641 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4642 {
4643 	struct blk_mq_tag_set *set = q->tag_set;
4644 	struct blk_mq_hw_ctx *hctx;
4645 	int ret;
4646 	unsigned long i;
4647 
4648 	if (!set)
4649 		return -EINVAL;
4650 
4651 	if (q->nr_requests == nr)
4652 		return 0;
4653 
4654 	blk_mq_freeze_queue(q);
4655 	blk_mq_quiesce_queue(q);
4656 
4657 	ret = 0;
4658 	queue_for_each_hw_ctx(q, hctx, i) {
4659 		if (!hctx->tags)
4660 			continue;
4661 		/*
4662 		 * If we're using an MQ scheduler, just update the scheduler
4663 		 * queue depth. This is similar to what the old code would do.
4664 		 */
4665 		if (hctx->sched_tags) {
4666 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4667 						      nr, true);
4668 		} else {
4669 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4670 						      false);
4671 		}
4672 		if (ret)
4673 			break;
4674 		if (q->elevator && q->elevator->type->ops.depth_updated)
4675 			q->elevator->type->ops.depth_updated(hctx);
4676 	}
4677 	if (!ret) {
4678 		q->nr_requests = nr;
4679 		if (blk_mq_is_shared_tags(set->flags)) {
4680 			if (q->elevator)
4681 				blk_mq_tag_update_sched_shared_tags(q);
4682 			else
4683 				blk_mq_tag_resize_shared_tags(set, nr);
4684 		}
4685 	}
4686 
4687 	blk_mq_unquiesce_queue(q);
4688 	blk_mq_unfreeze_queue(q);
4689 
4690 	return ret;
4691 }
4692 
4693 /*
4694  * request_queue and elevator_type pair.
4695  * It is just used by __blk_mq_update_nr_hw_queues to cache
4696  * the elevator_type associated with a request_queue.
4697  */
4698 struct blk_mq_qe_pair {
4699 	struct list_head node;
4700 	struct request_queue *q;
4701 	struct elevator_type *type;
4702 };
4703 
4704 /*
4705  * Cache the elevator_type in qe pair list and switch the
4706  * io scheduler to 'none'
4707  */
4708 static bool blk_mq_elv_switch_none(struct list_head *head,
4709 		struct request_queue *q)
4710 {
4711 	struct blk_mq_qe_pair *qe;
4712 
4713 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4714 	if (!qe)
4715 		return false;
4716 
4717 	/* q->elevator needs protection from ->sysfs_lock */
4718 	mutex_lock(&q->sysfs_lock);
4719 
4720 	/* the check has to be done with holding sysfs_lock */
4721 	if (!q->elevator) {
4722 		kfree(qe);
4723 		goto unlock;
4724 	}
4725 
4726 	INIT_LIST_HEAD(&qe->node);
4727 	qe->q = q;
4728 	qe->type = q->elevator->type;
4729 	/* keep a reference to the elevator module as we'll switch back */
4730 	__elevator_get(qe->type);
4731 	list_add(&qe->node, head);
4732 	elevator_disable(q);
4733 unlock:
4734 	mutex_unlock(&q->sysfs_lock);
4735 
4736 	return true;
4737 }
4738 
4739 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4740 						struct request_queue *q)
4741 {
4742 	struct blk_mq_qe_pair *qe;
4743 
4744 	list_for_each_entry(qe, head, node)
4745 		if (qe->q == q)
4746 			return qe;
4747 
4748 	return NULL;
4749 }
4750 
4751 static void blk_mq_elv_switch_back(struct list_head *head,
4752 				  struct request_queue *q)
4753 {
4754 	struct blk_mq_qe_pair *qe;
4755 	struct elevator_type *t;
4756 
4757 	qe = blk_lookup_qe_pair(head, q);
4758 	if (!qe)
4759 		return;
4760 	t = qe->type;
4761 	list_del(&qe->node);
4762 	kfree(qe);
4763 
4764 	mutex_lock(&q->sysfs_lock);
4765 	elevator_switch(q, t);
4766 	/* drop the reference acquired in blk_mq_elv_switch_none */
4767 	elevator_put(t);
4768 	mutex_unlock(&q->sysfs_lock);
4769 }
4770 
4771 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4772 							int nr_hw_queues)
4773 {
4774 	struct request_queue *q;
4775 	LIST_HEAD(head);
4776 	int prev_nr_hw_queues = set->nr_hw_queues;
4777 	int i;
4778 
4779 	lockdep_assert_held(&set->tag_list_lock);
4780 
4781 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4782 		nr_hw_queues = nr_cpu_ids;
4783 	if (nr_hw_queues < 1)
4784 		return;
4785 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4786 		return;
4787 
4788 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4789 		blk_mq_freeze_queue(q);
4790 	/*
4791 	 * Switch IO scheduler to 'none', cleaning up the data associated
4792 	 * with the previous scheduler. We will switch back once we are done
4793 	 * updating the new sw to hw queue mappings.
4794 	 */
4795 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4796 		if (!blk_mq_elv_switch_none(&head, q))
4797 			goto switch_back;
4798 
4799 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4800 		blk_mq_debugfs_unregister_hctxs(q);
4801 		blk_mq_sysfs_unregister_hctxs(q);
4802 	}
4803 
4804 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4805 		goto reregister;
4806 
4807 fallback:
4808 	blk_mq_update_queue_map(set);
4809 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4810 		blk_mq_realloc_hw_ctxs(set, q);
4811 		blk_mq_update_poll_flag(q);
4812 		if (q->nr_hw_queues != set->nr_hw_queues) {
4813 			int i = prev_nr_hw_queues;
4814 
4815 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4816 					nr_hw_queues, prev_nr_hw_queues);
4817 			for (; i < set->nr_hw_queues; i++)
4818 				__blk_mq_free_map_and_rqs(set, i);
4819 
4820 			set->nr_hw_queues = prev_nr_hw_queues;
4821 			goto fallback;
4822 		}
4823 		blk_mq_map_swqueue(q);
4824 	}
4825 
4826 reregister:
4827 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4828 		blk_mq_sysfs_register_hctxs(q);
4829 		blk_mq_debugfs_register_hctxs(q);
4830 	}
4831 
4832 switch_back:
4833 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4834 		blk_mq_elv_switch_back(&head, q);
4835 
4836 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4837 		blk_mq_unfreeze_queue(q);
4838 
4839 	/* Free the excess tags when nr_hw_queues shrink. */
4840 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4841 		__blk_mq_free_map_and_rqs(set, i);
4842 }
4843 
4844 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4845 {
4846 	mutex_lock(&set->tag_list_lock);
4847 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4848 	mutex_unlock(&set->tag_list_lock);
4849 }
4850 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4851 
4852 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4853 			 struct io_comp_batch *iob, unsigned int flags)
4854 {
4855 	long state = get_current_state();
4856 	int ret;
4857 
4858 	do {
4859 		ret = q->mq_ops->poll(hctx, iob);
4860 		if (ret > 0) {
4861 			__set_current_state(TASK_RUNNING);
4862 			return ret;
4863 		}
4864 
4865 		if (signal_pending_state(state, current))
4866 			__set_current_state(TASK_RUNNING);
4867 		if (task_is_running(current))
4868 			return 1;
4869 
4870 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4871 			break;
4872 		cpu_relax();
4873 	} while (!need_resched());
4874 
4875 	__set_current_state(TASK_RUNNING);
4876 	return 0;
4877 }
4878 
4879 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4880 		struct io_comp_batch *iob, unsigned int flags)
4881 {
4882 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4883 
4884 	return blk_hctx_poll(q, hctx, iob, flags);
4885 }
4886 
4887 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4888 		unsigned int poll_flags)
4889 {
4890 	struct request_queue *q = rq->q;
4891 	int ret;
4892 
4893 	if (!blk_rq_is_poll(rq))
4894 		return 0;
4895 	if (!percpu_ref_tryget(&q->q_usage_counter))
4896 		return 0;
4897 
4898 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4899 	blk_queue_exit(q);
4900 
4901 	return ret;
4902 }
4903 EXPORT_SYMBOL_GPL(blk_rq_poll);
4904 
4905 unsigned int blk_mq_rq_cpu(struct request *rq)
4906 {
4907 	return rq->mq_ctx->cpu;
4908 }
4909 EXPORT_SYMBOL(blk_mq_rq_cpu);
4910 
4911 void blk_mq_cancel_work_sync(struct request_queue *q)
4912 {
4913 	struct blk_mq_hw_ctx *hctx;
4914 	unsigned long i;
4915 
4916 	cancel_delayed_work_sync(&q->requeue_work);
4917 
4918 	queue_for_each_hw_ctx(q, hctx, i)
4919 		cancel_delayed_work_sync(&hctx->run_work);
4920 }
4921 
4922 static int __init blk_mq_init(void)
4923 {
4924 	int i;
4925 
4926 	for_each_possible_cpu(i)
4927 		init_llist_head(&per_cpu(blk_cpu_done, i));
4928 	for_each_possible_cpu(i)
4929 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4930 			 __blk_mq_complete_request_remote, NULL);
4931 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4932 
4933 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4934 				  "block/softirq:dead", NULL,
4935 				  blk_softirq_cpu_dead);
4936 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4937 				blk_mq_hctx_notify_dead);
4938 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4939 				blk_mq_hctx_notify_online,
4940 				blk_mq_hctx_notify_offline);
4941 	return 0;
4942 }
4943 subsys_initcall(blk_mq_init);
4944