1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->part && blk_do_io_stat(rq) && 96 (!mi->part->bd_partno || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 void blk_freeze_queue_start(struct request_queue *q) 124 { 125 mutex_lock(&q->mq_freeze_lock); 126 if (++q->mq_freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 mutex_unlock(&q->mq_freeze_lock); 129 if (queue_is_mq(q)) 130 blk_mq_run_hw_queues(q, false); 131 } else { 132 mutex_unlock(&q->mq_freeze_lock); 133 } 134 } 135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 136 137 void blk_mq_freeze_queue_wait(struct request_queue *q) 138 { 139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 140 } 141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 142 143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 144 unsigned long timeout) 145 { 146 return wait_event_timeout(q->mq_freeze_wq, 147 percpu_ref_is_zero(&q->q_usage_counter), 148 timeout); 149 } 150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 151 152 /* 153 * Guarantee no request is in use, so we can change any data structure of 154 * the queue afterward. 155 */ 156 void blk_freeze_queue(struct request_queue *q) 157 { 158 /* 159 * In the !blk_mq case we are only calling this to kill the 160 * q_usage_counter, otherwise this increases the freeze depth 161 * and waits for it to return to zero. For this reason there is 162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 163 * exported to drivers as the only user for unfreeze is blk_mq. 164 */ 165 blk_freeze_queue_start(q); 166 blk_mq_freeze_queue_wait(q); 167 } 168 169 void blk_mq_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * ...just an alias to keep freeze and unfreeze actions balanced 173 * in the blk_mq_* namespace 174 */ 175 blk_freeze_queue(q); 176 } 177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 178 179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 180 { 181 mutex_lock(&q->mq_freeze_lock); 182 if (force_atomic) 183 q->q_usage_counter.data->force_atomic = true; 184 q->mq_freeze_depth--; 185 WARN_ON_ONCE(q->mq_freeze_depth < 0); 186 if (!q->mq_freeze_depth) { 187 percpu_ref_resurrect(&q->q_usage_counter); 188 wake_up_all(&q->mq_freeze_wq); 189 } 190 mutex_unlock(&q->mq_freeze_lock); 191 } 192 193 void blk_mq_unfreeze_queue(struct request_queue *q) 194 { 195 __blk_mq_unfreeze_queue(q, false); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 unsigned long flags; 206 207 spin_lock_irqsave(&q->queue_lock, flags); 208 if (!q->quiesce_depth++) 209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 210 spin_unlock_irqrestore(&q->queue_lock, flags); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 216 * @set: tag_set to wait on 217 * 218 * Note: it is driver's responsibility for making sure that quiesce has 219 * been started on or more of the request_queues of the tag_set. This 220 * function only waits for the quiesce on those request_queues that had 221 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 222 */ 223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 224 { 225 if (set->flags & BLK_MQ_F_BLOCKING) 226 synchronize_srcu(set->srcu); 227 else 228 synchronize_rcu(); 229 } 230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 231 232 /** 233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 234 * @q: request queue. 235 * 236 * Note: this function does not prevent that the struct request end_io() 237 * callback function is invoked. Once this function is returned, we make 238 * sure no dispatch can happen until the queue is unquiesced via 239 * blk_mq_unquiesce_queue(). 240 */ 241 void blk_mq_quiesce_queue(struct request_queue *q) 242 { 243 blk_mq_quiesce_queue_nowait(q); 244 /* nothing to wait for non-mq queues */ 245 if (queue_is_mq(q)) 246 blk_mq_wait_quiesce_done(q->tag_set); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 unsigned long flags; 260 bool run_queue = false; 261 262 spin_lock_irqsave(&q->queue_lock, flags); 263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 264 ; 265 } else if (!--q->quiesce_depth) { 266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 267 run_queue = true; 268 } 269 spin_unlock_irqrestore(&q->queue_lock, flags); 270 271 /* dispatch requests which are inserted during quiescing */ 272 if (run_queue) 273 blk_mq_run_hw_queues(q, true); 274 } 275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 276 277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 278 { 279 struct request_queue *q; 280 281 mutex_lock(&set->tag_list_lock); 282 list_for_each_entry(q, &set->tag_list, tag_set_list) { 283 if (!blk_queue_skip_tagset_quiesce(q)) 284 blk_mq_quiesce_queue_nowait(q); 285 } 286 mutex_unlock(&set->tag_list_lock); 287 288 blk_mq_wait_quiesce_done(set); 289 } 290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 291 292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 293 { 294 struct request_queue *q; 295 296 mutex_lock(&set->tag_list_lock); 297 list_for_each_entry(q, &set->tag_list, tag_set_list) { 298 if (!blk_queue_skip_tagset_quiesce(q)) 299 blk_mq_unquiesce_queue(q); 300 } 301 mutex_unlock(&set->tag_list_lock); 302 } 303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 304 305 void blk_mq_wake_waiters(struct request_queue *q) 306 { 307 struct blk_mq_hw_ctx *hctx; 308 unsigned long i; 309 310 queue_for_each_hw_ctx(q, hctx, i) 311 if (blk_mq_hw_queue_mapped(hctx)) 312 blk_mq_tag_wakeup_all(hctx->tags, true); 313 } 314 315 void blk_rq_init(struct request_queue *q, struct request *rq) 316 { 317 memset(rq, 0, sizeof(*rq)); 318 319 INIT_LIST_HEAD(&rq->queuelist); 320 rq->q = q; 321 rq->__sector = (sector_t) -1; 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->tag = BLK_MQ_NO_TAG; 325 rq->internal_tag = BLK_MQ_NO_TAG; 326 rq->start_time_ns = ktime_get_ns(); 327 rq->part = NULL; 328 blk_crypto_rq_set_defaults(rq); 329 } 330 EXPORT_SYMBOL(blk_rq_init); 331 332 /* Set start and alloc time when the allocated request is actually used */ 333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 334 { 335 if (blk_mq_need_time_stamp(rq)) 336 rq->start_time_ns = ktime_get_ns(); 337 else 338 rq->start_time_ns = 0; 339 340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 341 if (blk_queue_rq_alloc_time(rq->q)) 342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 343 else 344 rq->alloc_time_ns = 0; 345 #endif 346 } 347 348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 349 struct blk_mq_tags *tags, unsigned int tag) 350 { 351 struct blk_mq_ctx *ctx = data->ctx; 352 struct blk_mq_hw_ctx *hctx = data->hctx; 353 struct request_queue *q = data->q; 354 struct request *rq = tags->static_rqs[tag]; 355 356 rq->q = q; 357 rq->mq_ctx = ctx; 358 rq->mq_hctx = hctx; 359 rq->cmd_flags = data->cmd_flags; 360 361 if (data->flags & BLK_MQ_REQ_PM) 362 data->rq_flags |= RQF_PM; 363 if (blk_queue_io_stat(q)) 364 data->rq_flags |= RQF_IO_STAT; 365 rq->rq_flags = data->rq_flags; 366 367 if (data->rq_flags & RQF_SCHED_TAGS) { 368 rq->tag = BLK_MQ_NO_TAG; 369 rq->internal_tag = tag; 370 } else { 371 rq->tag = tag; 372 rq->internal_tag = BLK_MQ_NO_TAG; 373 } 374 rq->timeout = 0; 375 376 rq->part = NULL; 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_USE_SCHED) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (e->type->ops.prepare_request) 399 e->type->ops.prepare_request(rq); 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 407 { 408 unsigned int tag, tag_offset; 409 struct blk_mq_tags *tags; 410 struct request *rq; 411 unsigned long tag_mask; 412 int i, nr = 0; 413 414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 415 if (unlikely(!tag_mask)) 416 return NULL; 417 418 tags = blk_mq_tags_from_data(data); 419 for (i = 0; tag_mask; i++) { 420 if (!(tag_mask & (1UL << i))) 421 continue; 422 tag = tag_offset + i; 423 prefetch(tags->static_rqs[tag]); 424 tag_mask &= ~(1UL << i); 425 rq = blk_mq_rq_ctx_init(data, tags, tag); 426 rq_list_add(data->cached_rq, rq); 427 nr++; 428 } 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 retry: 451 data->ctx = blk_mq_get_ctx(q); 452 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 453 454 if (q->elevator) { 455 /* 456 * All requests use scheduler tags when an I/O scheduler is 457 * enabled for the queue. 458 */ 459 data->rq_flags |= RQF_SCHED_TAGS; 460 461 /* 462 * Flush/passthrough requests are special and go directly to the 463 * dispatch list. 464 */ 465 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 466 !blk_op_is_passthrough(data->cmd_flags)) { 467 struct elevator_mq_ops *ops = &q->elevator->type->ops; 468 469 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 470 471 data->rq_flags |= RQF_USE_SCHED; 472 if (ops->limit_depth) 473 ops->limit_depth(data->cmd_flags, data); 474 } 475 } else { 476 blk_mq_tag_busy(data->hctx); 477 } 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data); 487 if (rq) { 488 blk_mq_rq_time_init(rq, alloc_time_ns); 489 return rq; 490 } 491 data->nr_tags = 1; 492 } 493 494 /* 495 * Waiting allocations only fail because of an inactive hctx. In that 496 * case just retry the hctx assignment and tag allocation as CPU hotplug 497 * should have migrated us to an online CPU by now. 498 */ 499 tag = blk_mq_get_tag(data); 500 if (tag == BLK_MQ_NO_TAG) { 501 if (data->flags & BLK_MQ_REQ_NOWAIT) 502 return NULL; 503 /* 504 * Give up the CPU and sleep for a random short time to 505 * ensure that thread using a realtime scheduling class 506 * are migrated off the CPU, and thus off the hctx that 507 * is going away. 508 */ 509 msleep(3); 510 goto retry; 511 } 512 513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 514 blk_mq_rq_time_init(rq, alloc_time_ns); 515 return rq; 516 } 517 518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 519 struct blk_plug *plug, 520 blk_opf_t opf, 521 blk_mq_req_flags_t flags) 522 { 523 struct blk_mq_alloc_data data = { 524 .q = q, 525 .flags = flags, 526 .cmd_flags = opf, 527 .nr_tags = plug->nr_ios, 528 .cached_rq = &plug->cached_rq, 529 }; 530 struct request *rq; 531 532 if (blk_queue_enter(q, flags)) 533 return NULL; 534 535 plug->nr_ios = 1; 536 537 rq = __blk_mq_alloc_requests(&data); 538 if (unlikely(!rq)) 539 blk_queue_exit(q); 540 return rq; 541 } 542 543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 544 blk_opf_t opf, 545 blk_mq_req_flags_t flags) 546 { 547 struct blk_plug *plug = current->plug; 548 struct request *rq; 549 550 if (!plug) 551 return NULL; 552 553 if (rq_list_empty(plug->cached_rq)) { 554 if (plug->nr_ios == 1) 555 return NULL; 556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 557 if (!rq) 558 return NULL; 559 } else { 560 rq = rq_list_peek(&plug->cached_rq); 561 if (!rq || rq->q != q) 562 return NULL; 563 564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 565 return NULL; 566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 567 return NULL; 568 569 plug->cached_rq = rq_list_next(rq); 570 blk_mq_rq_time_init(rq, 0); 571 } 572 573 rq->cmd_flags = opf; 574 INIT_LIST_HEAD(&rq->queuelist); 575 return rq; 576 } 577 578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 579 blk_mq_req_flags_t flags) 580 { 581 struct request *rq; 582 583 rq = blk_mq_alloc_cached_request(q, opf, flags); 584 if (!rq) { 585 struct blk_mq_alloc_data data = { 586 .q = q, 587 .flags = flags, 588 .cmd_flags = opf, 589 .nr_tags = 1, 590 }; 591 int ret; 592 593 ret = blk_queue_enter(q, flags); 594 if (ret) 595 return ERR_PTR(ret); 596 597 rq = __blk_mq_alloc_requests(&data); 598 if (!rq) 599 goto out_queue_exit; 600 } 601 rq->__data_len = 0; 602 rq->__sector = (sector_t) -1; 603 rq->bio = rq->biotail = NULL; 604 return rq; 605 out_queue_exit: 606 blk_queue_exit(q); 607 return ERR_PTR(-EWOULDBLOCK); 608 } 609 EXPORT_SYMBOL(blk_mq_alloc_request); 610 611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 613 { 614 struct blk_mq_alloc_data data = { 615 .q = q, 616 .flags = flags, 617 .cmd_flags = opf, 618 .nr_tags = 1, 619 }; 620 u64 alloc_time_ns = 0; 621 struct request *rq; 622 unsigned int cpu; 623 unsigned int tag; 624 int ret; 625 626 /* alloc_time includes depth and tag waits */ 627 if (blk_queue_rq_alloc_time(q)) 628 alloc_time_ns = ktime_get_ns(); 629 630 /* 631 * If the tag allocator sleeps we could get an allocation for a 632 * different hardware context. No need to complicate the low level 633 * allocator for this for the rare use case of a command tied to 634 * a specific queue. 635 */ 636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 638 return ERR_PTR(-EINVAL); 639 640 if (hctx_idx >= q->nr_hw_queues) 641 return ERR_PTR(-EIO); 642 643 ret = blk_queue_enter(q, flags); 644 if (ret) 645 return ERR_PTR(ret); 646 647 /* 648 * Check if the hardware context is actually mapped to anything. 649 * If not tell the caller that it should skip this queue. 650 */ 651 ret = -EXDEV; 652 data.hctx = xa_load(&q->hctx_table, hctx_idx); 653 if (!blk_mq_hw_queue_mapped(data.hctx)) 654 goto out_queue_exit; 655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 656 if (cpu >= nr_cpu_ids) 657 goto out_queue_exit; 658 data.ctx = __blk_mq_get_ctx(q, cpu); 659 660 if (q->elevator) 661 data.rq_flags |= RQF_SCHED_TAGS; 662 else 663 blk_mq_tag_busy(data.hctx); 664 665 if (flags & BLK_MQ_REQ_RESERVED) 666 data.rq_flags |= RQF_RESV; 667 668 ret = -EWOULDBLOCK; 669 tag = blk_mq_get_tag(&data); 670 if (tag == BLK_MQ_NO_TAG) 671 goto out_queue_exit; 672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 673 blk_mq_rq_time_init(rq, alloc_time_ns); 674 rq->__data_len = 0; 675 rq->__sector = (sector_t) -1; 676 rq->bio = rq->biotail = NULL; 677 return rq; 678 679 out_queue_exit: 680 blk_queue_exit(q); 681 return ERR_PTR(ret); 682 } 683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 684 685 static void blk_mq_finish_request(struct request *rq) 686 { 687 struct request_queue *q = rq->q; 688 689 if (rq->rq_flags & RQF_USE_SCHED) { 690 q->elevator->type->ops.finish_request(rq); 691 /* 692 * For postflush request that may need to be 693 * completed twice, we should clear this flag 694 * to avoid double finish_request() on the rq. 695 */ 696 rq->rq_flags &= ~RQF_USE_SCHED; 697 } 698 } 699 700 static void __blk_mq_free_request(struct request *rq) 701 { 702 struct request_queue *q = rq->q; 703 struct blk_mq_ctx *ctx = rq->mq_ctx; 704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 705 const int sched_tag = rq->internal_tag; 706 707 blk_crypto_free_request(rq); 708 blk_pm_mark_last_busy(rq); 709 rq->mq_hctx = NULL; 710 711 if (rq->rq_flags & RQF_MQ_INFLIGHT) 712 __blk_mq_dec_active_requests(hctx); 713 714 if (rq->tag != BLK_MQ_NO_TAG) 715 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 716 if (sched_tag != BLK_MQ_NO_TAG) 717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 718 blk_mq_sched_restart(hctx); 719 blk_queue_exit(q); 720 } 721 722 void blk_mq_free_request(struct request *rq) 723 { 724 struct request_queue *q = rq->q; 725 726 blk_mq_finish_request(rq); 727 728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 729 laptop_io_completion(q->disk->bdi); 730 731 rq_qos_done(q, rq); 732 733 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 734 if (req_ref_put_and_test(rq)) 735 __blk_mq_free_request(rq); 736 } 737 EXPORT_SYMBOL_GPL(blk_mq_free_request); 738 739 void blk_mq_free_plug_rqs(struct blk_plug *plug) 740 { 741 struct request *rq; 742 743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 744 blk_mq_free_request(rq); 745 } 746 747 void blk_dump_rq_flags(struct request *rq, char *msg) 748 { 749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 750 rq->q->disk ? rq->q->disk->disk_name : "?", 751 (__force unsigned long long) rq->cmd_flags); 752 753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 754 (unsigned long long)blk_rq_pos(rq), 755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 756 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 757 rq->bio, rq->biotail, blk_rq_bytes(rq)); 758 } 759 EXPORT_SYMBOL(blk_dump_rq_flags); 760 761 static void req_bio_endio(struct request *rq, struct bio *bio, 762 unsigned int nbytes, blk_status_t error) 763 { 764 if (unlikely(error)) { 765 bio->bi_status = error; 766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 767 /* 768 * Partial zone append completions cannot be supported as the 769 * BIO fragments may end up not being written sequentially. 770 */ 771 if (bio->bi_iter.bi_size != nbytes) 772 bio->bi_status = BLK_STS_IOERR; 773 else 774 bio->bi_iter.bi_sector = rq->__sector; 775 } 776 777 bio_advance(bio, nbytes); 778 779 if (unlikely(rq->rq_flags & RQF_QUIET)) 780 bio_set_flag(bio, BIO_QUIET); 781 /* don't actually finish bio if it's part of flush sequence */ 782 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 783 bio_endio(bio); 784 } 785 786 static void blk_account_io_completion(struct request *req, unsigned int bytes) 787 { 788 if (req->part && blk_do_io_stat(req)) { 789 const int sgrp = op_stat_group(req_op(req)); 790 791 part_stat_lock(); 792 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 793 part_stat_unlock(); 794 } 795 } 796 797 static void blk_print_req_error(struct request *req, blk_status_t status) 798 { 799 printk_ratelimited(KERN_ERR 800 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 801 "phys_seg %u prio class %u\n", 802 blk_status_to_str(status), 803 req->q->disk ? req->q->disk->disk_name : "?", 804 blk_rq_pos(req), (__force u32)req_op(req), 805 blk_op_str(req_op(req)), 806 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 807 req->nr_phys_segments, 808 IOPRIO_PRIO_CLASS(req->ioprio)); 809 } 810 811 /* 812 * Fully end IO on a request. Does not support partial completions, or 813 * errors. 814 */ 815 static void blk_complete_request(struct request *req) 816 { 817 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 818 int total_bytes = blk_rq_bytes(req); 819 struct bio *bio = req->bio; 820 821 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 822 823 if (!bio) 824 return; 825 826 #ifdef CONFIG_BLK_DEV_INTEGRITY 827 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 828 req->q->integrity.profile->complete_fn(req, total_bytes); 829 #endif 830 831 /* 832 * Upper layers may call blk_crypto_evict_key() anytime after the last 833 * bio_endio(). Therefore, the keyslot must be released before that. 834 */ 835 blk_crypto_rq_put_keyslot(req); 836 837 blk_account_io_completion(req, total_bytes); 838 839 do { 840 struct bio *next = bio->bi_next; 841 842 /* Completion has already been traced */ 843 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 844 845 if (req_op(req) == REQ_OP_ZONE_APPEND) 846 bio->bi_iter.bi_sector = req->__sector; 847 848 if (!is_flush) 849 bio_endio(bio); 850 bio = next; 851 } while (bio); 852 853 /* 854 * Reset counters so that the request stacking driver 855 * can find how many bytes remain in the request 856 * later. 857 */ 858 if (!req->end_io) { 859 req->bio = NULL; 860 req->__data_len = 0; 861 } 862 } 863 864 /** 865 * blk_update_request - Complete multiple bytes without completing the request 866 * @req: the request being processed 867 * @error: block status code 868 * @nr_bytes: number of bytes to complete for @req 869 * 870 * Description: 871 * Ends I/O on a number of bytes attached to @req, but doesn't complete 872 * the request structure even if @req doesn't have leftover. 873 * If @req has leftover, sets it up for the next range of segments. 874 * 875 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 876 * %false return from this function. 877 * 878 * Note: 879 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 880 * except in the consistency check at the end of this function. 881 * 882 * Return: 883 * %false - this request doesn't have any more data 884 * %true - this request has more data 885 **/ 886 bool blk_update_request(struct request *req, blk_status_t error, 887 unsigned int nr_bytes) 888 { 889 int total_bytes; 890 891 trace_block_rq_complete(req, error, nr_bytes); 892 893 if (!req->bio) 894 return false; 895 896 #ifdef CONFIG_BLK_DEV_INTEGRITY 897 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 898 error == BLK_STS_OK) 899 req->q->integrity.profile->complete_fn(req, nr_bytes); 900 #endif 901 902 /* 903 * Upper layers may call blk_crypto_evict_key() anytime after the last 904 * bio_endio(). Therefore, the keyslot must be released before that. 905 */ 906 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 907 __blk_crypto_rq_put_keyslot(req); 908 909 if (unlikely(error && !blk_rq_is_passthrough(req) && 910 !(req->rq_flags & RQF_QUIET)) && 911 !test_bit(GD_DEAD, &req->q->disk->state)) { 912 blk_print_req_error(req, error); 913 trace_block_rq_error(req, error, nr_bytes); 914 } 915 916 blk_account_io_completion(req, nr_bytes); 917 918 total_bytes = 0; 919 while (req->bio) { 920 struct bio *bio = req->bio; 921 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 922 923 if (bio_bytes == bio->bi_iter.bi_size) 924 req->bio = bio->bi_next; 925 926 /* Completion has already been traced */ 927 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 928 req_bio_endio(req, bio, bio_bytes, error); 929 930 total_bytes += bio_bytes; 931 nr_bytes -= bio_bytes; 932 933 if (!nr_bytes) 934 break; 935 } 936 937 /* 938 * completely done 939 */ 940 if (!req->bio) { 941 /* 942 * Reset counters so that the request stacking driver 943 * can find how many bytes remain in the request 944 * later. 945 */ 946 req->__data_len = 0; 947 return false; 948 } 949 950 req->__data_len -= total_bytes; 951 952 /* update sector only for requests with clear definition of sector */ 953 if (!blk_rq_is_passthrough(req)) 954 req->__sector += total_bytes >> 9; 955 956 /* mixed attributes always follow the first bio */ 957 if (req->rq_flags & RQF_MIXED_MERGE) { 958 req->cmd_flags &= ~REQ_FAILFAST_MASK; 959 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 960 } 961 962 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 963 /* 964 * If total number of sectors is less than the first segment 965 * size, something has gone terribly wrong. 966 */ 967 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 968 blk_dump_rq_flags(req, "request botched"); 969 req->__data_len = blk_rq_cur_bytes(req); 970 } 971 972 /* recalculate the number of segments */ 973 req->nr_phys_segments = blk_recalc_rq_segments(req); 974 } 975 976 return true; 977 } 978 EXPORT_SYMBOL_GPL(blk_update_request); 979 980 static inline void blk_account_io_done(struct request *req, u64 now) 981 { 982 trace_block_io_done(req); 983 984 /* 985 * Account IO completion. flush_rq isn't accounted as a 986 * normal IO on queueing nor completion. Accounting the 987 * containing request is enough. 988 */ 989 if (blk_do_io_stat(req) && req->part && 990 !(req->rq_flags & RQF_FLUSH_SEQ)) { 991 const int sgrp = op_stat_group(req_op(req)); 992 993 part_stat_lock(); 994 update_io_ticks(req->part, jiffies, true); 995 part_stat_inc(req->part, ios[sgrp]); 996 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 997 part_stat_local_dec(req->part, 998 in_flight[op_is_write(req_op(req))]); 999 part_stat_unlock(); 1000 } 1001 } 1002 1003 static inline void blk_account_io_start(struct request *req) 1004 { 1005 trace_block_io_start(req); 1006 1007 if (blk_do_io_stat(req)) { 1008 /* 1009 * All non-passthrough requests are created from a bio with one 1010 * exception: when a flush command that is part of a flush sequence 1011 * generated by the state machine in blk-flush.c is cloned onto the 1012 * lower device by dm-multipath we can get here without a bio. 1013 */ 1014 if (req->bio) 1015 req->part = req->bio->bi_bdev; 1016 else 1017 req->part = req->q->disk->part0; 1018 1019 part_stat_lock(); 1020 update_io_ticks(req->part, jiffies, false); 1021 part_stat_local_inc(req->part, 1022 in_flight[op_is_write(req_op(req))]); 1023 part_stat_unlock(); 1024 } 1025 } 1026 1027 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1028 { 1029 if (rq->rq_flags & RQF_STATS) 1030 blk_stat_add(rq, now); 1031 1032 blk_mq_sched_completed_request(rq, now); 1033 blk_account_io_done(rq, now); 1034 } 1035 1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1037 { 1038 if (blk_mq_need_time_stamp(rq)) 1039 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1040 1041 blk_mq_finish_request(rq); 1042 1043 if (rq->end_io) { 1044 rq_qos_done(rq->q, rq); 1045 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1046 blk_mq_free_request(rq); 1047 } else { 1048 blk_mq_free_request(rq); 1049 } 1050 } 1051 EXPORT_SYMBOL(__blk_mq_end_request); 1052 1053 void blk_mq_end_request(struct request *rq, blk_status_t error) 1054 { 1055 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1056 BUG(); 1057 __blk_mq_end_request(rq, error); 1058 } 1059 EXPORT_SYMBOL(blk_mq_end_request); 1060 1061 #define TAG_COMP_BATCH 32 1062 1063 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1064 int *tag_array, int nr_tags) 1065 { 1066 struct request_queue *q = hctx->queue; 1067 1068 /* 1069 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1070 * update hctx->nr_active in batch 1071 */ 1072 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1073 __blk_mq_sub_active_requests(hctx, nr_tags); 1074 1075 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1076 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1077 } 1078 1079 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1080 { 1081 int tags[TAG_COMP_BATCH], nr_tags = 0; 1082 struct blk_mq_hw_ctx *cur_hctx = NULL; 1083 struct request *rq; 1084 u64 now = 0; 1085 1086 if (iob->need_ts) 1087 now = ktime_get_ns(); 1088 1089 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1090 prefetch(rq->bio); 1091 prefetch(rq->rq_next); 1092 1093 blk_complete_request(rq); 1094 if (iob->need_ts) 1095 __blk_mq_end_request_acct(rq, now); 1096 1097 blk_mq_finish_request(rq); 1098 1099 rq_qos_done(rq->q, rq); 1100 1101 /* 1102 * If end_io handler returns NONE, then it still has 1103 * ownership of the request. 1104 */ 1105 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1106 continue; 1107 1108 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1109 if (!req_ref_put_and_test(rq)) 1110 continue; 1111 1112 blk_crypto_free_request(rq); 1113 blk_pm_mark_last_busy(rq); 1114 1115 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1116 if (cur_hctx) 1117 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1118 nr_tags = 0; 1119 cur_hctx = rq->mq_hctx; 1120 } 1121 tags[nr_tags++] = rq->tag; 1122 } 1123 1124 if (nr_tags) 1125 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1126 } 1127 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1128 1129 static void blk_complete_reqs(struct llist_head *list) 1130 { 1131 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1132 struct request *rq, *next; 1133 1134 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1135 rq->q->mq_ops->complete(rq); 1136 } 1137 1138 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1139 { 1140 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1141 } 1142 1143 static int blk_softirq_cpu_dead(unsigned int cpu) 1144 { 1145 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1146 return 0; 1147 } 1148 1149 static void __blk_mq_complete_request_remote(void *data) 1150 { 1151 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1152 } 1153 1154 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1155 { 1156 int cpu = raw_smp_processor_id(); 1157 1158 if (!IS_ENABLED(CONFIG_SMP) || 1159 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1160 return false; 1161 /* 1162 * With force threaded interrupts enabled, raising softirq from an SMP 1163 * function call will always result in waking the ksoftirqd thread. 1164 * This is probably worse than completing the request on a different 1165 * cache domain. 1166 */ 1167 if (force_irqthreads()) 1168 return false; 1169 1170 /* same CPU or cache domain? Complete locally */ 1171 if (cpu == rq->mq_ctx->cpu || 1172 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1173 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1174 return false; 1175 1176 /* don't try to IPI to an offline CPU */ 1177 return cpu_online(rq->mq_ctx->cpu); 1178 } 1179 1180 static void blk_mq_complete_send_ipi(struct request *rq) 1181 { 1182 unsigned int cpu; 1183 1184 cpu = rq->mq_ctx->cpu; 1185 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1186 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1187 } 1188 1189 static void blk_mq_raise_softirq(struct request *rq) 1190 { 1191 struct llist_head *list; 1192 1193 preempt_disable(); 1194 list = this_cpu_ptr(&blk_cpu_done); 1195 if (llist_add(&rq->ipi_list, list)) 1196 raise_softirq(BLOCK_SOFTIRQ); 1197 preempt_enable(); 1198 } 1199 1200 bool blk_mq_complete_request_remote(struct request *rq) 1201 { 1202 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1203 1204 /* 1205 * For request which hctx has only one ctx mapping, 1206 * or a polled request, always complete locally, 1207 * it's pointless to redirect the completion. 1208 */ 1209 if ((rq->mq_hctx->nr_ctx == 1 && 1210 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1211 rq->cmd_flags & REQ_POLLED) 1212 return false; 1213 1214 if (blk_mq_complete_need_ipi(rq)) { 1215 blk_mq_complete_send_ipi(rq); 1216 return true; 1217 } 1218 1219 if (rq->q->nr_hw_queues == 1) { 1220 blk_mq_raise_softirq(rq); 1221 return true; 1222 } 1223 return false; 1224 } 1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1226 1227 /** 1228 * blk_mq_complete_request - end I/O on a request 1229 * @rq: the request being processed 1230 * 1231 * Description: 1232 * Complete a request by scheduling the ->complete_rq operation. 1233 **/ 1234 void blk_mq_complete_request(struct request *rq) 1235 { 1236 if (!blk_mq_complete_request_remote(rq)) 1237 rq->q->mq_ops->complete(rq); 1238 } 1239 EXPORT_SYMBOL(blk_mq_complete_request); 1240 1241 /** 1242 * blk_mq_start_request - Start processing a request 1243 * @rq: Pointer to request to be started 1244 * 1245 * Function used by device drivers to notify the block layer that a request 1246 * is going to be processed now, so blk layer can do proper initializations 1247 * such as starting the timeout timer. 1248 */ 1249 void blk_mq_start_request(struct request *rq) 1250 { 1251 struct request_queue *q = rq->q; 1252 1253 trace_block_rq_issue(rq); 1254 1255 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1256 rq->io_start_time_ns = ktime_get_ns(); 1257 rq->stats_sectors = blk_rq_sectors(rq); 1258 rq->rq_flags |= RQF_STATS; 1259 rq_qos_issue(q, rq); 1260 } 1261 1262 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1263 1264 blk_add_timer(rq); 1265 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1266 1267 #ifdef CONFIG_BLK_DEV_INTEGRITY 1268 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1269 q->integrity.profile->prepare_fn(rq); 1270 #endif 1271 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1272 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1273 } 1274 EXPORT_SYMBOL(blk_mq_start_request); 1275 1276 /* 1277 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1278 * queues. This is important for md arrays to benefit from merging 1279 * requests. 1280 */ 1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1282 { 1283 if (plug->multiple_queues) 1284 return BLK_MAX_REQUEST_COUNT * 2; 1285 return BLK_MAX_REQUEST_COUNT; 1286 } 1287 1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1289 { 1290 struct request *last = rq_list_peek(&plug->mq_list); 1291 1292 if (!plug->rq_count) { 1293 trace_block_plug(rq->q); 1294 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1295 (!blk_queue_nomerges(rq->q) && 1296 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1297 blk_mq_flush_plug_list(plug, false); 1298 last = NULL; 1299 trace_block_plug(rq->q); 1300 } 1301 1302 if (!plug->multiple_queues && last && last->q != rq->q) 1303 plug->multiple_queues = true; 1304 /* 1305 * Any request allocated from sched tags can't be issued to 1306 * ->queue_rqs() directly 1307 */ 1308 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1309 plug->has_elevator = true; 1310 rq->rq_next = NULL; 1311 rq_list_add(&plug->mq_list, rq); 1312 plug->rq_count++; 1313 } 1314 1315 /** 1316 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1317 * @rq: request to insert 1318 * @at_head: insert request at head or tail of queue 1319 * 1320 * Description: 1321 * Insert a fully prepared request at the back of the I/O scheduler queue 1322 * for execution. Don't wait for completion. 1323 * 1324 * Note: 1325 * This function will invoke @done directly if the queue is dead. 1326 */ 1327 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1328 { 1329 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1330 1331 WARN_ON(irqs_disabled()); 1332 WARN_ON(!blk_rq_is_passthrough(rq)); 1333 1334 blk_account_io_start(rq); 1335 1336 /* 1337 * As plugging can be enabled for passthrough requests on a zoned 1338 * device, directly accessing the plug instead of using blk_mq_plug() 1339 * should not have any consequences. 1340 */ 1341 if (current->plug && !at_head) { 1342 blk_add_rq_to_plug(current->plug, rq); 1343 return; 1344 } 1345 1346 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1347 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1348 } 1349 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1350 1351 struct blk_rq_wait { 1352 struct completion done; 1353 blk_status_t ret; 1354 }; 1355 1356 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1357 { 1358 struct blk_rq_wait *wait = rq->end_io_data; 1359 1360 wait->ret = ret; 1361 complete(&wait->done); 1362 return RQ_END_IO_NONE; 1363 } 1364 1365 bool blk_rq_is_poll(struct request *rq) 1366 { 1367 if (!rq->mq_hctx) 1368 return false; 1369 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1370 return false; 1371 return true; 1372 } 1373 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1374 1375 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1376 { 1377 do { 1378 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1379 cond_resched(); 1380 } while (!completion_done(wait)); 1381 } 1382 1383 /** 1384 * blk_execute_rq - insert a request into queue for execution 1385 * @rq: request to insert 1386 * @at_head: insert request at head or tail of queue 1387 * 1388 * Description: 1389 * Insert a fully prepared request at the back of the I/O scheduler queue 1390 * for execution and wait for completion. 1391 * Return: The blk_status_t result provided to blk_mq_end_request(). 1392 */ 1393 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1394 { 1395 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1396 struct blk_rq_wait wait = { 1397 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1398 }; 1399 1400 WARN_ON(irqs_disabled()); 1401 WARN_ON(!blk_rq_is_passthrough(rq)); 1402 1403 rq->end_io_data = &wait; 1404 rq->end_io = blk_end_sync_rq; 1405 1406 blk_account_io_start(rq); 1407 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1408 blk_mq_run_hw_queue(hctx, false); 1409 1410 if (blk_rq_is_poll(rq)) { 1411 blk_rq_poll_completion(rq, &wait.done); 1412 } else { 1413 /* 1414 * Prevent hang_check timer from firing at us during very long 1415 * I/O 1416 */ 1417 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1418 1419 if (hang_check) 1420 while (!wait_for_completion_io_timeout(&wait.done, 1421 hang_check * (HZ/2))) 1422 ; 1423 else 1424 wait_for_completion_io(&wait.done); 1425 } 1426 1427 return wait.ret; 1428 } 1429 EXPORT_SYMBOL(blk_execute_rq); 1430 1431 static void __blk_mq_requeue_request(struct request *rq) 1432 { 1433 struct request_queue *q = rq->q; 1434 1435 blk_mq_put_driver_tag(rq); 1436 1437 trace_block_rq_requeue(rq); 1438 rq_qos_requeue(q, rq); 1439 1440 if (blk_mq_request_started(rq)) { 1441 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1442 rq->rq_flags &= ~RQF_TIMED_OUT; 1443 } 1444 } 1445 1446 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1447 { 1448 struct request_queue *q = rq->q; 1449 unsigned long flags; 1450 1451 __blk_mq_requeue_request(rq); 1452 1453 /* this request will be re-inserted to io scheduler queue */ 1454 blk_mq_sched_requeue_request(rq); 1455 1456 spin_lock_irqsave(&q->requeue_lock, flags); 1457 list_add_tail(&rq->queuelist, &q->requeue_list); 1458 spin_unlock_irqrestore(&q->requeue_lock, flags); 1459 1460 if (kick_requeue_list) 1461 blk_mq_kick_requeue_list(q); 1462 } 1463 EXPORT_SYMBOL(blk_mq_requeue_request); 1464 1465 static void blk_mq_requeue_work(struct work_struct *work) 1466 { 1467 struct request_queue *q = 1468 container_of(work, struct request_queue, requeue_work.work); 1469 LIST_HEAD(rq_list); 1470 LIST_HEAD(flush_list); 1471 struct request *rq; 1472 1473 spin_lock_irq(&q->requeue_lock); 1474 list_splice_init(&q->requeue_list, &rq_list); 1475 list_splice_init(&q->flush_list, &flush_list); 1476 spin_unlock_irq(&q->requeue_lock); 1477 1478 while (!list_empty(&rq_list)) { 1479 rq = list_entry(rq_list.next, struct request, queuelist); 1480 /* 1481 * If RQF_DONTPREP ist set, the request has been started by the 1482 * driver already and might have driver-specific data allocated 1483 * already. Insert it into the hctx dispatch list to avoid 1484 * block layer merges for the request. 1485 */ 1486 if (rq->rq_flags & RQF_DONTPREP) { 1487 list_del_init(&rq->queuelist); 1488 blk_mq_request_bypass_insert(rq, 0); 1489 } else { 1490 list_del_init(&rq->queuelist); 1491 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1492 } 1493 } 1494 1495 while (!list_empty(&flush_list)) { 1496 rq = list_entry(flush_list.next, struct request, queuelist); 1497 list_del_init(&rq->queuelist); 1498 blk_mq_insert_request(rq, 0); 1499 } 1500 1501 blk_mq_run_hw_queues(q, false); 1502 } 1503 1504 void blk_mq_kick_requeue_list(struct request_queue *q) 1505 { 1506 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1507 } 1508 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1509 1510 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1511 unsigned long msecs) 1512 { 1513 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1514 msecs_to_jiffies(msecs)); 1515 } 1516 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1517 1518 static bool blk_is_flush_data_rq(struct request *rq) 1519 { 1520 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1521 } 1522 1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1524 { 1525 /* 1526 * If we find a request that isn't idle we know the queue is busy 1527 * as it's checked in the iter. 1528 * Return false to stop the iteration. 1529 * 1530 * In case of queue quiesce, if one flush data request is completed, 1531 * don't count it as inflight given the flush sequence is suspended, 1532 * and the original flush data request is invisible to driver, just 1533 * like other pending requests because of quiesce 1534 */ 1535 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1536 blk_is_flush_data_rq(rq) && 1537 blk_mq_request_completed(rq))) { 1538 bool *busy = priv; 1539 1540 *busy = true; 1541 return false; 1542 } 1543 1544 return true; 1545 } 1546 1547 bool blk_mq_queue_inflight(struct request_queue *q) 1548 { 1549 bool busy = false; 1550 1551 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1552 return busy; 1553 } 1554 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1555 1556 static void blk_mq_rq_timed_out(struct request *req) 1557 { 1558 req->rq_flags |= RQF_TIMED_OUT; 1559 if (req->q->mq_ops->timeout) { 1560 enum blk_eh_timer_return ret; 1561 1562 ret = req->q->mq_ops->timeout(req); 1563 if (ret == BLK_EH_DONE) 1564 return; 1565 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1566 } 1567 1568 blk_add_timer(req); 1569 } 1570 1571 struct blk_expired_data { 1572 bool has_timedout_rq; 1573 unsigned long next; 1574 unsigned long timeout_start; 1575 }; 1576 1577 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1578 { 1579 unsigned long deadline; 1580 1581 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1582 return false; 1583 if (rq->rq_flags & RQF_TIMED_OUT) 1584 return false; 1585 1586 deadline = READ_ONCE(rq->deadline); 1587 if (time_after_eq(expired->timeout_start, deadline)) 1588 return true; 1589 1590 if (expired->next == 0) 1591 expired->next = deadline; 1592 else if (time_after(expired->next, deadline)) 1593 expired->next = deadline; 1594 return false; 1595 } 1596 1597 void blk_mq_put_rq_ref(struct request *rq) 1598 { 1599 if (is_flush_rq(rq)) { 1600 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1601 blk_mq_free_request(rq); 1602 } else if (req_ref_put_and_test(rq)) { 1603 __blk_mq_free_request(rq); 1604 } 1605 } 1606 1607 static bool blk_mq_check_expired(struct request *rq, void *priv) 1608 { 1609 struct blk_expired_data *expired = priv; 1610 1611 /* 1612 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1613 * be reallocated underneath the timeout handler's processing, then 1614 * the expire check is reliable. If the request is not expired, then 1615 * it was completed and reallocated as a new request after returning 1616 * from blk_mq_check_expired(). 1617 */ 1618 if (blk_mq_req_expired(rq, expired)) { 1619 expired->has_timedout_rq = true; 1620 return false; 1621 } 1622 return true; 1623 } 1624 1625 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1626 { 1627 struct blk_expired_data *expired = priv; 1628 1629 if (blk_mq_req_expired(rq, expired)) 1630 blk_mq_rq_timed_out(rq); 1631 return true; 1632 } 1633 1634 static void blk_mq_timeout_work(struct work_struct *work) 1635 { 1636 struct request_queue *q = 1637 container_of(work, struct request_queue, timeout_work); 1638 struct blk_expired_data expired = { 1639 .timeout_start = jiffies, 1640 }; 1641 struct blk_mq_hw_ctx *hctx; 1642 unsigned long i; 1643 1644 /* A deadlock might occur if a request is stuck requiring a 1645 * timeout at the same time a queue freeze is waiting 1646 * completion, since the timeout code would not be able to 1647 * acquire the queue reference here. 1648 * 1649 * That's why we don't use blk_queue_enter here; instead, we use 1650 * percpu_ref_tryget directly, because we need to be able to 1651 * obtain a reference even in the short window between the queue 1652 * starting to freeze, by dropping the first reference in 1653 * blk_freeze_queue_start, and the moment the last request is 1654 * consumed, marked by the instant q_usage_counter reaches 1655 * zero. 1656 */ 1657 if (!percpu_ref_tryget(&q->q_usage_counter)) 1658 return; 1659 1660 /* check if there is any timed-out request */ 1661 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1662 if (expired.has_timedout_rq) { 1663 /* 1664 * Before walking tags, we must ensure any submit started 1665 * before the current time has finished. Since the submit 1666 * uses srcu or rcu, wait for a synchronization point to 1667 * ensure all running submits have finished 1668 */ 1669 blk_mq_wait_quiesce_done(q->tag_set); 1670 1671 expired.next = 0; 1672 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1673 } 1674 1675 if (expired.next != 0) { 1676 mod_timer(&q->timeout, expired.next); 1677 } else { 1678 /* 1679 * Request timeouts are handled as a forward rolling timer. If 1680 * we end up here it means that no requests are pending and 1681 * also that no request has been pending for a while. Mark 1682 * each hctx as idle. 1683 */ 1684 queue_for_each_hw_ctx(q, hctx, i) { 1685 /* the hctx may be unmapped, so check it here */ 1686 if (blk_mq_hw_queue_mapped(hctx)) 1687 blk_mq_tag_idle(hctx); 1688 } 1689 } 1690 blk_queue_exit(q); 1691 } 1692 1693 struct flush_busy_ctx_data { 1694 struct blk_mq_hw_ctx *hctx; 1695 struct list_head *list; 1696 }; 1697 1698 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1699 { 1700 struct flush_busy_ctx_data *flush_data = data; 1701 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1702 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1703 enum hctx_type type = hctx->type; 1704 1705 spin_lock(&ctx->lock); 1706 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1707 sbitmap_clear_bit(sb, bitnr); 1708 spin_unlock(&ctx->lock); 1709 return true; 1710 } 1711 1712 /* 1713 * Process software queues that have been marked busy, splicing them 1714 * to the for-dispatch 1715 */ 1716 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1717 { 1718 struct flush_busy_ctx_data data = { 1719 .hctx = hctx, 1720 .list = list, 1721 }; 1722 1723 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1724 } 1725 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1726 1727 struct dispatch_rq_data { 1728 struct blk_mq_hw_ctx *hctx; 1729 struct request *rq; 1730 }; 1731 1732 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1733 void *data) 1734 { 1735 struct dispatch_rq_data *dispatch_data = data; 1736 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1737 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1738 enum hctx_type type = hctx->type; 1739 1740 spin_lock(&ctx->lock); 1741 if (!list_empty(&ctx->rq_lists[type])) { 1742 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1743 list_del_init(&dispatch_data->rq->queuelist); 1744 if (list_empty(&ctx->rq_lists[type])) 1745 sbitmap_clear_bit(sb, bitnr); 1746 } 1747 spin_unlock(&ctx->lock); 1748 1749 return !dispatch_data->rq; 1750 } 1751 1752 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1753 struct blk_mq_ctx *start) 1754 { 1755 unsigned off = start ? start->index_hw[hctx->type] : 0; 1756 struct dispatch_rq_data data = { 1757 .hctx = hctx, 1758 .rq = NULL, 1759 }; 1760 1761 __sbitmap_for_each_set(&hctx->ctx_map, off, 1762 dispatch_rq_from_ctx, &data); 1763 1764 return data.rq; 1765 } 1766 1767 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1768 { 1769 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1770 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1771 int tag; 1772 1773 blk_mq_tag_busy(rq->mq_hctx); 1774 1775 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1776 bt = &rq->mq_hctx->tags->breserved_tags; 1777 tag_offset = 0; 1778 } else { 1779 if (!hctx_may_queue(rq->mq_hctx, bt)) 1780 return false; 1781 } 1782 1783 tag = __sbitmap_queue_get(bt); 1784 if (tag == BLK_MQ_NO_TAG) 1785 return false; 1786 1787 rq->tag = tag + tag_offset; 1788 return true; 1789 } 1790 1791 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1792 { 1793 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1794 return false; 1795 1796 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1797 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1798 rq->rq_flags |= RQF_MQ_INFLIGHT; 1799 __blk_mq_inc_active_requests(hctx); 1800 } 1801 hctx->tags->rqs[rq->tag] = rq; 1802 return true; 1803 } 1804 1805 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1806 int flags, void *key) 1807 { 1808 struct blk_mq_hw_ctx *hctx; 1809 1810 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1811 1812 spin_lock(&hctx->dispatch_wait_lock); 1813 if (!list_empty(&wait->entry)) { 1814 struct sbitmap_queue *sbq; 1815 1816 list_del_init(&wait->entry); 1817 sbq = &hctx->tags->bitmap_tags; 1818 atomic_dec(&sbq->ws_active); 1819 } 1820 spin_unlock(&hctx->dispatch_wait_lock); 1821 1822 blk_mq_run_hw_queue(hctx, true); 1823 return 1; 1824 } 1825 1826 /* 1827 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1828 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1829 * restart. For both cases, take care to check the condition again after 1830 * marking us as waiting. 1831 */ 1832 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1833 struct request *rq) 1834 { 1835 struct sbitmap_queue *sbq; 1836 struct wait_queue_head *wq; 1837 wait_queue_entry_t *wait; 1838 bool ret; 1839 1840 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1841 !(blk_mq_is_shared_tags(hctx->flags))) { 1842 blk_mq_sched_mark_restart_hctx(hctx); 1843 1844 /* 1845 * It's possible that a tag was freed in the window between the 1846 * allocation failure and adding the hardware queue to the wait 1847 * queue. 1848 * 1849 * Don't clear RESTART here, someone else could have set it. 1850 * At most this will cost an extra queue run. 1851 */ 1852 return blk_mq_get_driver_tag(rq); 1853 } 1854 1855 wait = &hctx->dispatch_wait; 1856 if (!list_empty_careful(&wait->entry)) 1857 return false; 1858 1859 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1860 sbq = &hctx->tags->breserved_tags; 1861 else 1862 sbq = &hctx->tags->bitmap_tags; 1863 wq = &bt_wait_ptr(sbq, hctx)->wait; 1864 1865 spin_lock_irq(&wq->lock); 1866 spin_lock(&hctx->dispatch_wait_lock); 1867 if (!list_empty(&wait->entry)) { 1868 spin_unlock(&hctx->dispatch_wait_lock); 1869 spin_unlock_irq(&wq->lock); 1870 return false; 1871 } 1872 1873 atomic_inc(&sbq->ws_active); 1874 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1875 __add_wait_queue(wq, wait); 1876 1877 /* 1878 * Add one explicit barrier since blk_mq_get_driver_tag() may 1879 * not imply barrier in case of failure. 1880 * 1881 * Order adding us to wait queue and allocating driver tag. 1882 * 1883 * The pair is the one implied in sbitmap_queue_wake_up() which 1884 * orders clearing sbitmap tag bits and waitqueue_active() in 1885 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1886 * 1887 * Otherwise, re-order of adding wait queue and getting driver tag 1888 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1889 * the waitqueue_active() may not observe us in wait queue. 1890 */ 1891 smp_mb(); 1892 1893 /* 1894 * It's possible that a tag was freed in the window between the 1895 * allocation failure and adding the hardware queue to the wait 1896 * queue. 1897 */ 1898 ret = blk_mq_get_driver_tag(rq); 1899 if (!ret) { 1900 spin_unlock(&hctx->dispatch_wait_lock); 1901 spin_unlock_irq(&wq->lock); 1902 return false; 1903 } 1904 1905 /* 1906 * We got a tag, remove ourselves from the wait queue to ensure 1907 * someone else gets the wakeup. 1908 */ 1909 list_del_init(&wait->entry); 1910 atomic_dec(&sbq->ws_active); 1911 spin_unlock(&hctx->dispatch_wait_lock); 1912 spin_unlock_irq(&wq->lock); 1913 1914 return true; 1915 } 1916 1917 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1919 /* 1920 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1921 * - EWMA is one simple way to compute running average value 1922 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1923 * - take 4 as factor for avoiding to get too small(0) result, and this 1924 * factor doesn't matter because EWMA decreases exponentially 1925 */ 1926 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1927 { 1928 unsigned int ewma; 1929 1930 ewma = hctx->dispatch_busy; 1931 1932 if (!ewma && !busy) 1933 return; 1934 1935 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1936 if (busy) 1937 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1938 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1939 1940 hctx->dispatch_busy = ewma; 1941 } 1942 1943 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1944 1945 static void blk_mq_handle_dev_resource(struct request *rq, 1946 struct list_head *list) 1947 { 1948 list_add(&rq->queuelist, list); 1949 __blk_mq_requeue_request(rq); 1950 } 1951 1952 static void blk_mq_handle_zone_resource(struct request *rq, 1953 struct list_head *zone_list) 1954 { 1955 /* 1956 * If we end up here it is because we cannot dispatch a request to a 1957 * specific zone due to LLD level zone-write locking or other zone 1958 * related resource not being available. In this case, set the request 1959 * aside in zone_list for retrying it later. 1960 */ 1961 list_add(&rq->queuelist, zone_list); 1962 __blk_mq_requeue_request(rq); 1963 } 1964 1965 enum prep_dispatch { 1966 PREP_DISPATCH_OK, 1967 PREP_DISPATCH_NO_TAG, 1968 PREP_DISPATCH_NO_BUDGET, 1969 }; 1970 1971 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1972 bool need_budget) 1973 { 1974 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1975 int budget_token = -1; 1976 1977 if (need_budget) { 1978 budget_token = blk_mq_get_dispatch_budget(rq->q); 1979 if (budget_token < 0) { 1980 blk_mq_put_driver_tag(rq); 1981 return PREP_DISPATCH_NO_BUDGET; 1982 } 1983 blk_mq_set_rq_budget_token(rq, budget_token); 1984 } 1985 1986 if (!blk_mq_get_driver_tag(rq)) { 1987 /* 1988 * The initial allocation attempt failed, so we need to 1989 * rerun the hardware queue when a tag is freed. The 1990 * waitqueue takes care of that. If the queue is run 1991 * before we add this entry back on the dispatch list, 1992 * we'll re-run it below. 1993 */ 1994 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1995 /* 1996 * All budgets not got from this function will be put 1997 * together during handling partial dispatch 1998 */ 1999 if (need_budget) 2000 blk_mq_put_dispatch_budget(rq->q, budget_token); 2001 return PREP_DISPATCH_NO_TAG; 2002 } 2003 } 2004 2005 return PREP_DISPATCH_OK; 2006 } 2007 2008 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2009 static void blk_mq_release_budgets(struct request_queue *q, 2010 struct list_head *list) 2011 { 2012 struct request *rq; 2013 2014 list_for_each_entry(rq, list, queuelist) { 2015 int budget_token = blk_mq_get_rq_budget_token(rq); 2016 2017 if (budget_token >= 0) 2018 blk_mq_put_dispatch_budget(q, budget_token); 2019 } 2020 } 2021 2022 /* 2023 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2024 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2025 * details) 2026 * Attention, we should explicitly call this in unusual cases: 2027 * 1) did not queue everything initially scheduled to queue 2028 * 2) the last attempt to queue a request failed 2029 */ 2030 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2031 bool from_schedule) 2032 { 2033 if (hctx->queue->mq_ops->commit_rqs && queued) { 2034 trace_block_unplug(hctx->queue, queued, !from_schedule); 2035 hctx->queue->mq_ops->commit_rqs(hctx); 2036 } 2037 } 2038 2039 /* 2040 * Returns true if we did some work AND can potentially do more. 2041 */ 2042 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2043 unsigned int nr_budgets) 2044 { 2045 enum prep_dispatch prep; 2046 struct request_queue *q = hctx->queue; 2047 struct request *rq; 2048 int queued; 2049 blk_status_t ret = BLK_STS_OK; 2050 LIST_HEAD(zone_list); 2051 bool needs_resource = false; 2052 2053 if (list_empty(list)) 2054 return false; 2055 2056 /* 2057 * Now process all the entries, sending them to the driver. 2058 */ 2059 queued = 0; 2060 do { 2061 struct blk_mq_queue_data bd; 2062 2063 rq = list_first_entry(list, struct request, queuelist); 2064 2065 WARN_ON_ONCE(hctx != rq->mq_hctx); 2066 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2067 if (prep != PREP_DISPATCH_OK) 2068 break; 2069 2070 list_del_init(&rq->queuelist); 2071 2072 bd.rq = rq; 2073 bd.last = list_empty(list); 2074 2075 /* 2076 * once the request is queued to lld, no need to cover the 2077 * budget any more 2078 */ 2079 if (nr_budgets) 2080 nr_budgets--; 2081 ret = q->mq_ops->queue_rq(hctx, &bd); 2082 switch (ret) { 2083 case BLK_STS_OK: 2084 queued++; 2085 break; 2086 case BLK_STS_RESOURCE: 2087 needs_resource = true; 2088 fallthrough; 2089 case BLK_STS_DEV_RESOURCE: 2090 blk_mq_handle_dev_resource(rq, list); 2091 goto out; 2092 case BLK_STS_ZONE_RESOURCE: 2093 /* 2094 * Move the request to zone_list and keep going through 2095 * the dispatch list to find more requests the drive can 2096 * accept. 2097 */ 2098 blk_mq_handle_zone_resource(rq, &zone_list); 2099 needs_resource = true; 2100 break; 2101 default: 2102 blk_mq_end_request(rq, ret); 2103 } 2104 } while (!list_empty(list)); 2105 out: 2106 if (!list_empty(&zone_list)) 2107 list_splice_tail_init(&zone_list, list); 2108 2109 /* If we didn't flush the entire list, we could have told the driver 2110 * there was more coming, but that turned out to be a lie. 2111 */ 2112 if (!list_empty(list) || ret != BLK_STS_OK) 2113 blk_mq_commit_rqs(hctx, queued, false); 2114 2115 /* 2116 * Any items that need requeuing? Stuff them into hctx->dispatch, 2117 * that is where we will continue on next queue run. 2118 */ 2119 if (!list_empty(list)) { 2120 bool needs_restart; 2121 /* For non-shared tags, the RESTART check will suffice */ 2122 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2123 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2124 blk_mq_is_shared_tags(hctx->flags)); 2125 2126 if (nr_budgets) 2127 blk_mq_release_budgets(q, list); 2128 2129 spin_lock(&hctx->lock); 2130 list_splice_tail_init(list, &hctx->dispatch); 2131 spin_unlock(&hctx->lock); 2132 2133 /* 2134 * Order adding requests to hctx->dispatch and checking 2135 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2136 * in blk_mq_sched_restart(). Avoid restart code path to 2137 * miss the new added requests to hctx->dispatch, meantime 2138 * SCHED_RESTART is observed here. 2139 */ 2140 smp_mb(); 2141 2142 /* 2143 * If SCHED_RESTART was set by the caller of this function and 2144 * it is no longer set that means that it was cleared by another 2145 * thread and hence that a queue rerun is needed. 2146 * 2147 * If 'no_tag' is set, that means that we failed getting 2148 * a driver tag with an I/O scheduler attached. If our dispatch 2149 * waitqueue is no longer active, ensure that we run the queue 2150 * AFTER adding our entries back to the list. 2151 * 2152 * If no I/O scheduler has been configured it is possible that 2153 * the hardware queue got stopped and restarted before requests 2154 * were pushed back onto the dispatch list. Rerun the queue to 2155 * avoid starvation. Notes: 2156 * - blk_mq_run_hw_queue() checks whether or not a queue has 2157 * been stopped before rerunning a queue. 2158 * - Some but not all block drivers stop a queue before 2159 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2160 * and dm-rq. 2161 * 2162 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2163 * bit is set, run queue after a delay to avoid IO stalls 2164 * that could otherwise occur if the queue is idle. We'll do 2165 * similar if we couldn't get budget or couldn't lock a zone 2166 * and SCHED_RESTART is set. 2167 */ 2168 needs_restart = blk_mq_sched_needs_restart(hctx); 2169 if (prep == PREP_DISPATCH_NO_BUDGET) 2170 needs_resource = true; 2171 if (!needs_restart || 2172 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2173 blk_mq_run_hw_queue(hctx, true); 2174 else if (needs_resource) 2175 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2176 2177 blk_mq_update_dispatch_busy(hctx, true); 2178 return false; 2179 } 2180 2181 blk_mq_update_dispatch_busy(hctx, false); 2182 return true; 2183 } 2184 2185 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2186 { 2187 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2188 2189 if (cpu >= nr_cpu_ids) 2190 cpu = cpumask_first(hctx->cpumask); 2191 return cpu; 2192 } 2193 2194 /* 2195 * It'd be great if the workqueue API had a way to pass 2196 * in a mask and had some smarts for more clever placement. 2197 * For now we just round-robin here, switching for every 2198 * BLK_MQ_CPU_WORK_BATCH queued items. 2199 */ 2200 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2201 { 2202 bool tried = false; 2203 int next_cpu = hctx->next_cpu; 2204 2205 if (hctx->queue->nr_hw_queues == 1) 2206 return WORK_CPU_UNBOUND; 2207 2208 if (--hctx->next_cpu_batch <= 0) { 2209 select_cpu: 2210 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2211 cpu_online_mask); 2212 if (next_cpu >= nr_cpu_ids) 2213 next_cpu = blk_mq_first_mapped_cpu(hctx); 2214 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2215 } 2216 2217 /* 2218 * Do unbound schedule if we can't find a online CPU for this hctx, 2219 * and it should only happen in the path of handling CPU DEAD. 2220 */ 2221 if (!cpu_online(next_cpu)) { 2222 if (!tried) { 2223 tried = true; 2224 goto select_cpu; 2225 } 2226 2227 /* 2228 * Make sure to re-select CPU next time once after CPUs 2229 * in hctx->cpumask become online again. 2230 */ 2231 hctx->next_cpu = next_cpu; 2232 hctx->next_cpu_batch = 1; 2233 return WORK_CPU_UNBOUND; 2234 } 2235 2236 hctx->next_cpu = next_cpu; 2237 return next_cpu; 2238 } 2239 2240 /** 2241 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2242 * @hctx: Pointer to the hardware queue to run. 2243 * @msecs: Milliseconds of delay to wait before running the queue. 2244 * 2245 * Run a hardware queue asynchronously with a delay of @msecs. 2246 */ 2247 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2248 { 2249 if (unlikely(blk_mq_hctx_stopped(hctx))) 2250 return; 2251 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2252 msecs_to_jiffies(msecs)); 2253 } 2254 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2255 2256 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2257 { 2258 bool need_run; 2259 2260 /* 2261 * When queue is quiesced, we may be switching io scheduler, or 2262 * updating nr_hw_queues, or other things, and we can't run queue 2263 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2264 * 2265 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2266 * quiesced. 2267 */ 2268 __blk_mq_run_dispatch_ops(hctx->queue, false, 2269 need_run = !blk_queue_quiesced(hctx->queue) && 2270 blk_mq_hctx_has_pending(hctx)); 2271 return need_run; 2272 } 2273 2274 /** 2275 * blk_mq_run_hw_queue - Start to run a hardware queue. 2276 * @hctx: Pointer to the hardware queue to run. 2277 * @async: If we want to run the queue asynchronously. 2278 * 2279 * Check if the request queue is not in a quiesced state and if there are 2280 * pending requests to be sent. If this is true, run the queue to send requests 2281 * to hardware. 2282 */ 2283 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2284 { 2285 bool need_run; 2286 2287 /* 2288 * We can't run the queue inline with interrupts disabled. 2289 */ 2290 WARN_ON_ONCE(!async && in_interrupt()); 2291 2292 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2293 2294 need_run = blk_mq_hw_queue_need_run(hctx); 2295 if (!need_run) { 2296 unsigned long flags; 2297 2298 /* 2299 * Synchronize with blk_mq_unquiesce_queue(), because we check 2300 * if hw queue is quiesced locklessly above, we need the use 2301 * ->queue_lock to make sure we see the up-to-date status to 2302 * not miss rerunning the hw queue. 2303 */ 2304 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2305 need_run = blk_mq_hw_queue_need_run(hctx); 2306 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2307 2308 if (!need_run) 2309 return; 2310 } 2311 2312 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2313 blk_mq_delay_run_hw_queue(hctx, 0); 2314 return; 2315 } 2316 2317 blk_mq_run_dispatch_ops(hctx->queue, 2318 blk_mq_sched_dispatch_requests(hctx)); 2319 } 2320 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2321 2322 /* 2323 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2324 * scheduler. 2325 */ 2326 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2327 { 2328 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2329 /* 2330 * If the IO scheduler does not respect hardware queues when 2331 * dispatching, we just don't bother with multiple HW queues and 2332 * dispatch from hctx for the current CPU since running multiple queues 2333 * just causes lock contention inside the scheduler and pointless cache 2334 * bouncing. 2335 */ 2336 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2337 2338 if (!blk_mq_hctx_stopped(hctx)) 2339 return hctx; 2340 return NULL; 2341 } 2342 2343 /** 2344 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2345 * @q: Pointer to the request queue to run. 2346 * @async: If we want to run the queue asynchronously. 2347 */ 2348 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2349 { 2350 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2351 unsigned long i; 2352 2353 sq_hctx = NULL; 2354 if (blk_queue_sq_sched(q)) 2355 sq_hctx = blk_mq_get_sq_hctx(q); 2356 queue_for_each_hw_ctx(q, hctx, i) { 2357 if (blk_mq_hctx_stopped(hctx)) 2358 continue; 2359 /* 2360 * Dispatch from this hctx either if there's no hctx preferred 2361 * by IO scheduler or if it has requests that bypass the 2362 * scheduler. 2363 */ 2364 if (!sq_hctx || sq_hctx == hctx || 2365 !list_empty_careful(&hctx->dispatch)) 2366 blk_mq_run_hw_queue(hctx, async); 2367 } 2368 } 2369 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2370 2371 /** 2372 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2373 * @q: Pointer to the request queue to run. 2374 * @msecs: Milliseconds of delay to wait before running the queues. 2375 */ 2376 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2377 { 2378 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2379 unsigned long i; 2380 2381 sq_hctx = NULL; 2382 if (blk_queue_sq_sched(q)) 2383 sq_hctx = blk_mq_get_sq_hctx(q); 2384 queue_for_each_hw_ctx(q, hctx, i) { 2385 if (blk_mq_hctx_stopped(hctx)) 2386 continue; 2387 /* 2388 * If there is already a run_work pending, leave the 2389 * pending delay untouched. Otherwise, a hctx can stall 2390 * if another hctx is re-delaying the other's work 2391 * before the work executes. 2392 */ 2393 if (delayed_work_pending(&hctx->run_work)) 2394 continue; 2395 /* 2396 * Dispatch from this hctx either if there's no hctx preferred 2397 * by IO scheduler or if it has requests that bypass the 2398 * scheduler. 2399 */ 2400 if (!sq_hctx || sq_hctx == hctx || 2401 !list_empty_careful(&hctx->dispatch)) 2402 blk_mq_delay_run_hw_queue(hctx, msecs); 2403 } 2404 } 2405 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2406 2407 /* 2408 * This function is often used for pausing .queue_rq() by driver when 2409 * there isn't enough resource or some conditions aren't satisfied, and 2410 * BLK_STS_RESOURCE is usually returned. 2411 * 2412 * We do not guarantee that dispatch can be drained or blocked 2413 * after blk_mq_stop_hw_queue() returns. Please use 2414 * blk_mq_quiesce_queue() for that requirement. 2415 */ 2416 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2417 { 2418 cancel_delayed_work(&hctx->run_work); 2419 2420 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2421 } 2422 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2423 2424 /* 2425 * This function is often used for pausing .queue_rq() by driver when 2426 * there isn't enough resource or some conditions aren't satisfied, and 2427 * BLK_STS_RESOURCE is usually returned. 2428 * 2429 * We do not guarantee that dispatch can be drained or blocked 2430 * after blk_mq_stop_hw_queues() returns. Please use 2431 * blk_mq_quiesce_queue() for that requirement. 2432 */ 2433 void blk_mq_stop_hw_queues(struct request_queue *q) 2434 { 2435 struct blk_mq_hw_ctx *hctx; 2436 unsigned long i; 2437 2438 queue_for_each_hw_ctx(q, hctx, i) 2439 blk_mq_stop_hw_queue(hctx); 2440 } 2441 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2442 2443 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2444 { 2445 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2446 2447 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2448 } 2449 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2450 2451 void blk_mq_start_hw_queues(struct request_queue *q) 2452 { 2453 struct blk_mq_hw_ctx *hctx; 2454 unsigned long i; 2455 2456 queue_for_each_hw_ctx(q, hctx, i) 2457 blk_mq_start_hw_queue(hctx); 2458 } 2459 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2460 2461 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2462 { 2463 if (!blk_mq_hctx_stopped(hctx)) 2464 return; 2465 2466 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2467 /* 2468 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2469 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2470 * list in the subsequent routine. 2471 */ 2472 smp_mb__after_atomic(); 2473 blk_mq_run_hw_queue(hctx, async); 2474 } 2475 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2476 2477 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2478 { 2479 struct blk_mq_hw_ctx *hctx; 2480 unsigned long i; 2481 2482 queue_for_each_hw_ctx(q, hctx, i) 2483 blk_mq_start_stopped_hw_queue(hctx, async || 2484 (hctx->flags & BLK_MQ_F_BLOCKING)); 2485 } 2486 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2487 2488 static void blk_mq_run_work_fn(struct work_struct *work) 2489 { 2490 struct blk_mq_hw_ctx *hctx = 2491 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2492 2493 blk_mq_run_dispatch_ops(hctx->queue, 2494 blk_mq_sched_dispatch_requests(hctx)); 2495 } 2496 2497 /** 2498 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2499 * @rq: Pointer to request to be inserted. 2500 * @flags: BLK_MQ_INSERT_* 2501 * 2502 * Should only be used carefully, when the caller knows we want to 2503 * bypass a potential IO scheduler on the target device. 2504 */ 2505 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2506 { 2507 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2508 2509 spin_lock(&hctx->lock); 2510 if (flags & BLK_MQ_INSERT_AT_HEAD) 2511 list_add(&rq->queuelist, &hctx->dispatch); 2512 else 2513 list_add_tail(&rq->queuelist, &hctx->dispatch); 2514 spin_unlock(&hctx->lock); 2515 } 2516 2517 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2518 struct blk_mq_ctx *ctx, struct list_head *list, 2519 bool run_queue_async) 2520 { 2521 struct request *rq; 2522 enum hctx_type type = hctx->type; 2523 2524 /* 2525 * Try to issue requests directly if the hw queue isn't busy to save an 2526 * extra enqueue & dequeue to the sw queue. 2527 */ 2528 if (!hctx->dispatch_busy && !run_queue_async) { 2529 blk_mq_run_dispatch_ops(hctx->queue, 2530 blk_mq_try_issue_list_directly(hctx, list)); 2531 if (list_empty(list)) 2532 goto out; 2533 } 2534 2535 /* 2536 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2537 * offline now 2538 */ 2539 list_for_each_entry(rq, list, queuelist) { 2540 BUG_ON(rq->mq_ctx != ctx); 2541 trace_block_rq_insert(rq); 2542 if (rq->cmd_flags & REQ_NOWAIT) 2543 run_queue_async = true; 2544 } 2545 2546 spin_lock(&ctx->lock); 2547 list_splice_tail_init(list, &ctx->rq_lists[type]); 2548 blk_mq_hctx_mark_pending(hctx, ctx); 2549 spin_unlock(&ctx->lock); 2550 out: 2551 blk_mq_run_hw_queue(hctx, run_queue_async); 2552 } 2553 2554 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2555 { 2556 struct request_queue *q = rq->q; 2557 struct blk_mq_ctx *ctx = rq->mq_ctx; 2558 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2559 2560 if (blk_rq_is_passthrough(rq)) { 2561 /* 2562 * Passthrough request have to be added to hctx->dispatch 2563 * directly. The device may be in a situation where it can't 2564 * handle FS request, and always returns BLK_STS_RESOURCE for 2565 * them, which gets them added to hctx->dispatch. 2566 * 2567 * If a passthrough request is required to unblock the queues, 2568 * and it is added to the scheduler queue, there is no chance to 2569 * dispatch it given we prioritize requests in hctx->dispatch. 2570 */ 2571 blk_mq_request_bypass_insert(rq, flags); 2572 } else if (req_op(rq) == REQ_OP_FLUSH) { 2573 /* 2574 * Firstly normal IO request is inserted to scheduler queue or 2575 * sw queue, meantime we add flush request to dispatch queue( 2576 * hctx->dispatch) directly and there is at most one in-flight 2577 * flush request for each hw queue, so it doesn't matter to add 2578 * flush request to tail or front of the dispatch queue. 2579 * 2580 * Secondly in case of NCQ, flush request belongs to non-NCQ 2581 * command, and queueing it will fail when there is any 2582 * in-flight normal IO request(NCQ command). When adding flush 2583 * rq to the front of hctx->dispatch, it is easier to introduce 2584 * extra time to flush rq's latency because of S_SCHED_RESTART 2585 * compared with adding to the tail of dispatch queue, then 2586 * chance of flush merge is increased, and less flush requests 2587 * will be issued to controller. It is observed that ~10% time 2588 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2589 * drive when adding flush rq to the front of hctx->dispatch. 2590 * 2591 * Simply queue flush rq to the front of hctx->dispatch so that 2592 * intensive flush workloads can benefit in case of NCQ HW. 2593 */ 2594 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2595 } else if (q->elevator) { 2596 LIST_HEAD(list); 2597 2598 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2599 2600 list_add(&rq->queuelist, &list); 2601 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2602 } else { 2603 trace_block_rq_insert(rq); 2604 2605 spin_lock(&ctx->lock); 2606 if (flags & BLK_MQ_INSERT_AT_HEAD) 2607 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2608 else 2609 list_add_tail(&rq->queuelist, 2610 &ctx->rq_lists[hctx->type]); 2611 blk_mq_hctx_mark_pending(hctx, ctx); 2612 spin_unlock(&ctx->lock); 2613 } 2614 } 2615 2616 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2617 unsigned int nr_segs) 2618 { 2619 int err; 2620 2621 if (bio->bi_opf & REQ_RAHEAD) 2622 rq->cmd_flags |= REQ_FAILFAST_MASK; 2623 2624 rq->__sector = bio->bi_iter.bi_sector; 2625 blk_rq_bio_prep(rq, bio, nr_segs); 2626 2627 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2628 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2629 WARN_ON_ONCE(err); 2630 2631 blk_account_io_start(rq); 2632 } 2633 2634 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2635 struct request *rq, bool last) 2636 { 2637 struct request_queue *q = rq->q; 2638 struct blk_mq_queue_data bd = { 2639 .rq = rq, 2640 .last = last, 2641 }; 2642 blk_status_t ret; 2643 2644 /* 2645 * For OK queue, we are done. For error, caller may kill it. 2646 * Any other error (busy), just add it to our list as we 2647 * previously would have done. 2648 */ 2649 ret = q->mq_ops->queue_rq(hctx, &bd); 2650 switch (ret) { 2651 case BLK_STS_OK: 2652 blk_mq_update_dispatch_busy(hctx, false); 2653 break; 2654 case BLK_STS_RESOURCE: 2655 case BLK_STS_DEV_RESOURCE: 2656 blk_mq_update_dispatch_busy(hctx, true); 2657 __blk_mq_requeue_request(rq); 2658 break; 2659 default: 2660 blk_mq_update_dispatch_busy(hctx, false); 2661 break; 2662 } 2663 2664 return ret; 2665 } 2666 2667 static bool blk_mq_get_budget_and_tag(struct request *rq) 2668 { 2669 int budget_token; 2670 2671 budget_token = blk_mq_get_dispatch_budget(rq->q); 2672 if (budget_token < 0) 2673 return false; 2674 blk_mq_set_rq_budget_token(rq, budget_token); 2675 if (!blk_mq_get_driver_tag(rq)) { 2676 blk_mq_put_dispatch_budget(rq->q, budget_token); 2677 return false; 2678 } 2679 return true; 2680 } 2681 2682 /** 2683 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2684 * @hctx: Pointer of the associated hardware queue. 2685 * @rq: Pointer to request to be sent. 2686 * 2687 * If the device has enough resources to accept a new request now, send the 2688 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2689 * we can try send it another time in the future. Requests inserted at this 2690 * queue have higher priority. 2691 */ 2692 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2693 struct request *rq) 2694 { 2695 blk_status_t ret; 2696 2697 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2698 blk_mq_insert_request(rq, 0); 2699 blk_mq_run_hw_queue(hctx, false); 2700 return; 2701 } 2702 2703 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2704 blk_mq_insert_request(rq, 0); 2705 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2706 return; 2707 } 2708 2709 ret = __blk_mq_issue_directly(hctx, rq, true); 2710 switch (ret) { 2711 case BLK_STS_OK: 2712 break; 2713 case BLK_STS_RESOURCE: 2714 case BLK_STS_DEV_RESOURCE: 2715 blk_mq_request_bypass_insert(rq, 0); 2716 blk_mq_run_hw_queue(hctx, false); 2717 break; 2718 default: 2719 blk_mq_end_request(rq, ret); 2720 break; 2721 } 2722 } 2723 2724 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2725 { 2726 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2727 2728 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2729 blk_mq_insert_request(rq, 0); 2730 blk_mq_run_hw_queue(hctx, false); 2731 return BLK_STS_OK; 2732 } 2733 2734 if (!blk_mq_get_budget_and_tag(rq)) 2735 return BLK_STS_RESOURCE; 2736 return __blk_mq_issue_directly(hctx, rq, last); 2737 } 2738 2739 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2740 { 2741 struct blk_mq_hw_ctx *hctx = NULL; 2742 struct request *rq; 2743 int queued = 0; 2744 blk_status_t ret = BLK_STS_OK; 2745 2746 while ((rq = rq_list_pop(&plug->mq_list))) { 2747 bool last = rq_list_empty(plug->mq_list); 2748 2749 if (hctx != rq->mq_hctx) { 2750 if (hctx) { 2751 blk_mq_commit_rqs(hctx, queued, false); 2752 queued = 0; 2753 } 2754 hctx = rq->mq_hctx; 2755 } 2756 2757 ret = blk_mq_request_issue_directly(rq, last); 2758 switch (ret) { 2759 case BLK_STS_OK: 2760 queued++; 2761 break; 2762 case BLK_STS_RESOURCE: 2763 case BLK_STS_DEV_RESOURCE: 2764 blk_mq_request_bypass_insert(rq, 0); 2765 blk_mq_run_hw_queue(hctx, false); 2766 goto out; 2767 default: 2768 blk_mq_end_request(rq, ret); 2769 break; 2770 } 2771 } 2772 2773 out: 2774 if (ret != BLK_STS_OK) 2775 blk_mq_commit_rqs(hctx, queued, false); 2776 } 2777 2778 static void __blk_mq_flush_plug_list(struct request_queue *q, 2779 struct blk_plug *plug) 2780 { 2781 if (blk_queue_quiesced(q)) 2782 return; 2783 q->mq_ops->queue_rqs(&plug->mq_list); 2784 } 2785 2786 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2787 { 2788 struct blk_mq_hw_ctx *this_hctx = NULL; 2789 struct blk_mq_ctx *this_ctx = NULL; 2790 struct request *requeue_list = NULL; 2791 struct request **requeue_lastp = &requeue_list; 2792 unsigned int depth = 0; 2793 bool is_passthrough = false; 2794 LIST_HEAD(list); 2795 2796 do { 2797 struct request *rq = rq_list_pop(&plug->mq_list); 2798 2799 if (!this_hctx) { 2800 this_hctx = rq->mq_hctx; 2801 this_ctx = rq->mq_ctx; 2802 is_passthrough = blk_rq_is_passthrough(rq); 2803 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2804 is_passthrough != blk_rq_is_passthrough(rq)) { 2805 rq_list_add_tail(&requeue_lastp, rq); 2806 continue; 2807 } 2808 list_add(&rq->queuelist, &list); 2809 depth++; 2810 } while (!rq_list_empty(plug->mq_list)); 2811 2812 plug->mq_list = requeue_list; 2813 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2814 2815 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2816 /* passthrough requests should never be issued to the I/O scheduler */ 2817 if (is_passthrough) { 2818 spin_lock(&this_hctx->lock); 2819 list_splice_tail_init(&list, &this_hctx->dispatch); 2820 spin_unlock(&this_hctx->lock); 2821 blk_mq_run_hw_queue(this_hctx, from_sched); 2822 } else if (this_hctx->queue->elevator) { 2823 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2824 &list, 0); 2825 blk_mq_run_hw_queue(this_hctx, from_sched); 2826 } else { 2827 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2828 } 2829 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2830 } 2831 2832 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2833 { 2834 struct request *rq; 2835 2836 /* 2837 * We may have been called recursively midway through handling 2838 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2839 * To avoid mq_list changing under our feet, clear rq_count early and 2840 * bail out specifically if rq_count is 0 rather than checking 2841 * whether the mq_list is empty. 2842 */ 2843 if (plug->rq_count == 0) 2844 return; 2845 plug->rq_count = 0; 2846 2847 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2848 struct request_queue *q; 2849 2850 rq = rq_list_peek(&plug->mq_list); 2851 q = rq->q; 2852 2853 /* 2854 * Peek first request and see if we have a ->queue_rqs() hook. 2855 * If we do, we can dispatch the whole plug list in one go. We 2856 * already know at this point that all requests belong to the 2857 * same queue, caller must ensure that's the case. 2858 * 2859 * Since we pass off the full list to the driver at this point, 2860 * we do not increment the active request count for the queue. 2861 * Bypass shared tags for now because of that. 2862 */ 2863 if (q->mq_ops->queue_rqs && 2864 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2865 blk_mq_run_dispatch_ops(q, 2866 __blk_mq_flush_plug_list(q, plug)); 2867 if (rq_list_empty(plug->mq_list)) 2868 return; 2869 } 2870 2871 blk_mq_run_dispatch_ops(q, 2872 blk_mq_plug_issue_direct(plug)); 2873 if (rq_list_empty(plug->mq_list)) 2874 return; 2875 } 2876 2877 do { 2878 blk_mq_dispatch_plug_list(plug, from_schedule); 2879 } while (!rq_list_empty(plug->mq_list)); 2880 } 2881 2882 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2883 struct list_head *list) 2884 { 2885 int queued = 0; 2886 blk_status_t ret = BLK_STS_OK; 2887 2888 while (!list_empty(list)) { 2889 struct request *rq = list_first_entry(list, struct request, 2890 queuelist); 2891 2892 list_del_init(&rq->queuelist); 2893 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2894 switch (ret) { 2895 case BLK_STS_OK: 2896 queued++; 2897 break; 2898 case BLK_STS_RESOURCE: 2899 case BLK_STS_DEV_RESOURCE: 2900 blk_mq_request_bypass_insert(rq, 0); 2901 if (list_empty(list)) 2902 blk_mq_run_hw_queue(hctx, false); 2903 goto out; 2904 default: 2905 blk_mq_end_request(rq, ret); 2906 break; 2907 } 2908 } 2909 2910 out: 2911 if (ret != BLK_STS_OK) 2912 blk_mq_commit_rqs(hctx, queued, false); 2913 } 2914 2915 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2916 struct bio *bio, unsigned int nr_segs) 2917 { 2918 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2919 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2920 return true; 2921 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2922 return true; 2923 } 2924 return false; 2925 } 2926 2927 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2928 struct blk_plug *plug, 2929 struct bio *bio, 2930 unsigned int nsegs) 2931 { 2932 struct blk_mq_alloc_data data = { 2933 .q = q, 2934 .nr_tags = 1, 2935 .cmd_flags = bio->bi_opf, 2936 }; 2937 struct request *rq; 2938 2939 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2940 return NULL; 2941 2942 rq_qos_throttle(q, bio); 2943 2944 if (plug) { 2945 data.nr_tags = plug->nr_ios; 2946 plug->nr_ios = 1; 2947 data.cached_rq = &plug->cached_rq; 2948 } 2949 2950 rq = __blk_mq_alloc_requests(&data); 2951 if (rq) 2952 return rq; 2953 rq_qos_cleanup(q, bio); 2954 if (bio->bi_opf & REQ_NOWAIT) 2955 bio_wouldblock_error(bio); 2956 return NULL; 2957 } 2958 2959 /* return true if this @rq can be used for @bio */ 2960 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug, 2961 struct bio *bio) 2962 { 2963 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf); 2964 enum hctx_type hctx_type = rq->mq_hctx->type; 2965 2966 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2967 2968 if (type != hctx_type && 2969 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2970 return false; 2971 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2972 return false; 2973 2974 /* 2975 * If any qos ->throttle() end up blocking, we will have flushed the 2976 * plug and hence killed the cached_rq list as well. Pop this entry 2977 * before we throttle. 2978 */ 2979 plug->cached_rq = rq_list_next(rq); 2980 rq_qos_throttle(rq->q, bio); 2981 2982 blk_mq_rq_time_init(rq, 0); 2983 rq->cmd_flags = bio->bi_opf; 2984 INIT_LIST_HEAD(&rq->queuelist); 2985 return true; 2986 } 2987 2988 /** 2989 * blk_mq_submit_bio - Create and send a request to block device. 2990 * @bio: Bio pointer. 2991 * 2992 * Builds up a request structure from @q and @bio and send to the device. The 2993 * request may not be queued directly to hardware if: 2994 * * This request can be merged with another one 2995 * * We want to place request at plug queue for possible future merging 2996 * * There is an IO scheduler active at this queue 2997 * 2998 * It will not queue the request if there is an error with the bio, or at the 2999 * request creation. 3000 */ 3001 void blk_mq_submit_bio(struct bio *bio) 3002 { 3003 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3004 struct blk_plug *plug = blk_mq_plug(bio); 3005 const int is_sync = op_is_sync(bio->bi_opf); 3006 struct blk_mq_hw_ctx *hctx; 3007 struct request *rq = NULL; 3008 unsigned int nr_segs = 1; 3009 blk_status_t ret; 3010 3011 bio = blk_queue_bounce(bio, q); 3012 3013 if (plug) { 3014 rq = rq_list_peek(&plug->cached_rq); 3015 if (rq && rq->q != q) 3016 rq = NULL; 3017 } 3018 if (rq) { 3019 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3020 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3021 if (!bio) 3022 return; 3023 } 3024 if (!bio_integrity_prep(bio)) 3025 return; 3026 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3027 return; 3028 if (blk_mq_can_use_cached_rq(rq, plug, bio)) 3029 goto done; 3030 percpu_ref_get(&q->q_usage_counter); 3031 } else { 3032 if (unlikely(bio_queue_enter(bio))) 3033 return; 3034 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3035 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3036 if (!bio) 3037 goto fail; 3038 } 3039 if (!bio_integrity_prep(bio)) 3040 goto fail; 3041 } 3042 3043 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3044 if (unlikely(!rq)) { 3045 fail: 3046 blk_queue_exit(q); 3047 return; 3048 } 3049 3050 done: 3051 trace_block_getrq(bio); 3052 3053 rq_qos_track(q, rq, bio); 3054 3055 blk_mq_bio_to_request(rq, bio, nr_segs); 3056 3057 ret = blk_crypto_rq_get_keyslot(rq); 3058 if (ret != BLK_STS_OK) { 3059 bio->bi_status = ret; 3060 bio_endio(bio); 3061 blk_mq_free_request(rq); 3062 return; 3063 } 3064 3065 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3066 return; 3067 3068 if (plug) { 3069 blk_add_rq_to_plug(plug, rq); 3070 return; 3071 } 3072 3073 hctx = rq->mq_hctx; 3074 if ((rq->rq_flags & RQF_USE_SCHED) || 3075 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3076 blk_mq_insert_request(rq, 0); 3077 blk_mq_run_hw_queue(hctx, true); 3078 } else { 3079 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3080 } 3081 } 3082 3083 #ifdef CONFIG_BLK_MQ_STACKING 3084 /** 3085 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3086 * @rq: the request being queued 3087 */ 3088 blk_status_t blk_insert_cloned_request(struct request *rq) 3089 { 3090 struct request_queue *q = rq->q; 3091 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3092 unsigned int max_segments = blk_rq_get_max_segments(rq); 3093 blk_status_t ret; 3094 3095 if (blk_rq_sectors(rq) > max_sectors) { 3096 /* 3097 * SCSI device does not have a good way to return if 3098 * Write Same/Zero is actually supported. If a device rejects 3099 * a non-read/write command (discard, write same,etc.) the 3100 * low-level device driver will set the relevant queue limit to 3101 * 0 to prevent blk-lib from issuing more of the offending 3102 * operations. Commands queued prior to the queue limit being 3103 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3104 * errors being propagated to upper layers. 3105 */ 3106 if (max_sectors == 0) 3107 return BLK_STS_NOTSUPP; 3108 3109 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3110 __func__, blk_rq_sectors(rq), max_sectors); 3111 return BLK_STS_IOERR; 3112 } 3113 3114 /* 3115 * The queue settings related to segment counting may differ from the 3116 * original queue. 3117 */ 3118 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3119 if (rq->nr_phys_segments > max_segments) { 3120 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3121 __func__, rq->nr_phys_segments, max_segments); 3122 return BLK_STS_IOERR; 3123 } 3124 3125 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3126 return BLK_STS_IOERR; 3127 3128 ret = blk_crypto_rq_get_keyslot(rq); 3129 if (ret != BLK_STS_OK) 3130 return ret; 3131 3132 blk_account_io_start(rq); 3133 3134 /* 3135 * Since we have a scheduler attached on the top device, 3136 * bypass a potential scheduler on the bottom device for 3137 * insert. 3138 */ 3139 blk_mq_run_dispatch_ops(q, 3140 ret = blk_mq_request_issue_directly(rq, true)); 3141 if (ret) 3142 blk_account_io_done(rq, ktime_get_ns()); 3143 return ret; 3144 } 3145 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3146 3147 /** 3148 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3149 * @rq: the clone request to be cleaned up 3150 * 3151 * Description: 3152 * Free all bios in @rq for a cloned request. 3153 */ 3154 void blk_rq_unprep_clone(struct request *rq) 3155 { 3156 struct bio *bio; 3157 3158 while ((bio = rq->bio) != NULL) { 3159 rq->bio = bio->bi_next; 3160 3161 bio_put(bio); 3162 } 3163 } 3164 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3165 3166 /** 3167 * blk_rq_prep_clone - Helper function to setup clone request 3168 * @rq: the request to be setup 3169 * @rq_src: original request to be cloned 3170 * @bs: bio_set that bios for clone are allocated from 3171 * @gfp_mask: memory allocation mask for bio 3172 * @bio_ctr: setup function to be called for each clone bio. 3173 * Returns %0 for success, non %0 for failure. 3174 * @data: private data to be passed to @bio_ctr 3175 * 3176 * Description: 3177 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3178 * Also, pages which the original bios are pointing to are not copied 3179 * and the cloned bios just point same pages. 3180 * So cloned bios must be completed before original bios, which means 3181 * the caller must complete @rq before @rq_src. 3182 */ 3183 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3184 struct bio_set *bs, gfp_t gfp_mask, 3185 int (*bio_ctr)(struct bio *, struct bio *, void *), 3186 void *data) 3187 { 3188 struct bio *bio, *bio_src; 3189 3190 if (!bs) 3191 bs = &fs_bio_set; 3192 3193 __rq_for_each_bio(bio_src, rq_src) { 3194 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3195 bs); 3196 if (!bio) 3197 goto free_and_out; 3198 3199 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3200 goto free_and_out; 3201 3202 if (rq->bio) { 3203 rq->biotail->bi_next = bio; 3204 rq->biotail = bio; 3205 } else { 3206 rq->bio = rq->biotail = bio; 3207 } 3208 bio = NULL; 3209 } 3210 3211 /* Copy attributes of the original request to the clone request. */ 3212 rq->__sector = blk_rq_pos(rq_src); 3213 rq->__data_len = blk_rq_bytes(rq_src); 3214 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3215 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3216 rq->special_vec = rq_src->special_vec; 3217 } 3218 rq->nr_phys_segments = rq_src->nr_phys_segments; 3219 rq->ioprio = rq_src->ioprio; 3220 3221 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3222 goto free_and_out; 3223 3224 return 0; 3225 3226 free_and_out: 3227 if (bio) 3228 bio_put(bio); 3229 blk_rq_unprep_clone(rq); 3230 3231 return -ENOMEM; 3232 } 3233 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3234 #endif /* CONFIG_BLK_MQ_STACKING */ 3235 3236 /* 3237 * Steal bios from a request and add them to a bio list. 3238 * The request must not have been partially completed before. 3239 */ 3240 void blk_steal_bios(struct bio_list *list, struct request *rq) 3241 { 3242 if (rq->bio) { 3243 if (list->tail) 3244 list->tail->bi_next = rq->bio; 3245 else 3246 list->head = rq->bio; 3247 list->tail = rq->biotail; 3248 3249 rq->bio = NULL; 3250 rq->biotail = NULL; 3251 } 3252 3253 rq->__data_len = 0; 3254 } 3255 EXPORT_SYMBOL_GPL(blk_steal_bios); 3256 3257 static size_t order_to_size(unsigned int order) 3258 { 3259 return (size_t)PAGE_SIZE << order; 3260 } 3261 3262 /* called before freeing request pool in @tags */ 3263 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3264 struct blk_mq_tags *tags) 3265 { 3266 struct page *page; 3267 unsigned long flags; 3268 3269 /* 3270 * There is no need to clear mapping if driver tags is not initialized 3271 * or the mapping belongs to the driver tags. 3272 */ 3273 if (!drv_tags || drv_tags == tags) 3274 return; 3275 3276 list_for_each_entry(page, &tags->page_list, lru) { 3277 unsigned long start = (unsigned long)page_address(page); 3278 unsigned long end = start + order_to_size(page->private); 3279 int i; 3280 3281 for (i = 0; i < drv_tags->nr_tags; i++) { 3282 struct request *rq = drv_tags->rqs[i]; 3283 unsigned long rq_addr = (unsigned long)rq; 3284 3285 if (rq_addr >= start && rq_addr < end) { 3286 WARN_ON_ONCE(req_ref_read(rq) != 0); 3287 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3288 } 3289 } 3290 } 3291 3292 /* 3293 * Wait until all pending iteration is done. 3294 * 3295 * Request reference is cleared and it is guaranteed to be observed 3296 * after the ->lock is released. 3297 */ 3298 spin_lock_irqsave(&drv_tags->lock, flags); 3299 spin_unlock_irqrestore(&drv_tags->lock, flags); 3300 } 3301 3302 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3303 unsigned int hctx_idx) 3304 { 3305 struct blk_mq_tags *drv_tags; 3306 struct page *page; 3307 3308 if (list_empty(&tags->page_list)) 3309 return; 3310 3311 if (blk_mq_is_shared_tags(set->flags)) 3312 drv_tags = set->shared_tags; 3313 else 3314 drv_tags = set->tags[hctx_idx]; 3315 3316 if (tags->static_rqs && set->ops->exit_request) { 3317 int i; 3318 3319 for (i = 0; i < tags->nr_tags; i++) { 3320 struct request *rq = tags->static_rqs[i]; 3321 3322 if (!rq) 3323 continue; 3324 set->ops->exit_request(set, rq, hctx_idx); 3325 tags->static_rqs[i] = NULL; 3326 } 3327 } 3328 3329 blk_mq_clear_rq_mapping(drv_tags, tags); 3330 3331 while (!list_empty(&tags->page_list)) { 3332 page = list_first_entry(&tags->page_list, struct page, lru); 3333 list_del_init(&page->lru); 3334 /* 3335 * Remove kmemleak object previously allocated in 3336 * blk_mq_alloc_rqs(). 3337 */ 3338 kmemleak_free(page_address(page)); 3339 __free_pages(page, page->private); 3340 } 3341 } 3342 3343 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3344 { 3345 kfree(tags->rqs); 3346 tags->rqs = NULL; 3347 kfree(tags->static_rqs); 3348 tags->static_rqs = NULL; 3349 3350 blk_mq_free_tags(tags); 3351 } 3352 3353 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3354 unsigned int hctx_idx) 3355 { 3356 int i; 3357 3358 for (i = 0; i < set->nr_maps; i++) { 3359 unsigned int start = set->map[i].queue_offset; 3360 unsigned int end = start + set->map[i].nr_queues; 3361 3362 if (hctx_idx >= start && hctx_idx < end) 3363 break; 3364 } 3365 3366 if (i >= set->nr_maps) 3367 i = HCTX_TYPE_DEFAULT; 3368 3369 return i; 3370 } 3371 3372 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3373 unsigned int hctx_idx) 3374 { 3375 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3376 3377 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3378 } 3379 3380 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3381 unsigned int hctx_idx, 3382 unsigned int nr_tags, 3383 unsigned int reserved_tags) 3384 { 3385 int node = blk_mq_get_hctx_node(set, hctx_idx); 3386 struct blk_mq_tags *tags; 3387 3388 if (node == NUMA_NO_NODE) 3389 node = set->numa_node; 3390 3391 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3392 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3393 if (!tags) 3394 return NULL; 3395 3396 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3397 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3398 node); 3399 if (!tags->rqs) 3400 goto err_free_tags; 3401 3402 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3403 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3404 node); 3405 if (!tags->static_rqs) 3406 goto err_free_rqs; 3407 3408 return tags; 3409 3410 err_free_rqs: 3411 kfree(tags->rqs); 3412 err_free_tags: 3413 blk_mq_free_tags(tags); 3414 return NULL; 3415 } 3416 3417 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3418 unsigned int hctx_idx, int node) 3419 { 3420 int ret; 3421 3422 if (set->ops->init_request) { 3423 ret = set->ops->init_request(set, rq, hctx_idx, node); 3424 if (ret) 3425 return ret; 3426 } 3427 3428 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3429 return 0; 3430 } 3431 3432 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3433 struct blk_mq_tags *tags, 3434 unsigned int hctx_idx, unsigned int depth) 3435 { 3436 unsigned int i, j, entries_per_page, max_order = 4; 3437 int node = blk_mq_get_hctx_node(set, hctx_idx); 3438 size_t rq_size, left; 3439 3440 if (node == NUMA_NO_NODE) 3441 node = set->numa_node; 3442 3443 INIT_LIST_HEAD(&tags->page_list); 3444 3445 /* 3446 * rq_size is the size of the request plus driver payload, rounded 3447 * to the cacheline size 3448 */ 3449 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3450 cache_line_size()); 3451 left = rq_size * depth; 3452 3453 for (i = 0; i < depth; ) { 3454 int this_order = max_order; 3455 struct page *page; 3456 int to_do; 3457 void *p; 3458 3459 while (this_order && left < order_to_size(this_order - 1)) 3460 this_order--; 3461 3462 do { 3463 page = alloc_pages_node(node, 3464 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3465 this_order); 3466 if (page) 3467 break; 3468 if (!this_order--) 3469 break; 3470 if (order_to_size(this_order) < rq_size) 3471 break; 3472 } while (1); 3473 3474 if (!page) 3475 goto fail; 3476 3477 page->private = this_order; 3478 list_add_tail(&page->lru, &tags->page_list); 3479 3480 p = page_address(page); 3481 /* 3482 * Allow kmemleak to scan these pages as they contain pointers 3483 * to additional allocations like via ops->init_request(). 3484 */ 3485 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3486 entries_per_page = order_to_size(this_order) / rq_size; 3487 to_do = min(entries_per_page, depth - i); 3488 left -= to_do * rq_size; 3489 for (j = 0; j < to_do; j++) { 3490 struct request *rq = p; 3491 3492 tags->static_rqs[i] = rq; 3493 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3494 tags->static_rqs[i] = NULL; 3495 goto fail; 3496 } 3497 3498 p += rq_size; 3499 i++; 3500 } 3501 } 3502 return 0; 3503 3504 fail: 3505 blk_mq_free_rqs(set, tags, hctx_idx); 3506 return -ENOMEM; 3507 } 3508 3509 struct rq_iter_data { 3510 struct blk_mq_hw_ctx *hctx; 3511 bool has_rq; 3512 }; 3513 3514 static bool blk_mq_has_request(struct request *rq, void *data) 3515 { 3516 struct rq_iter_data *iter_data = data; 3517 3518 if (rq->mq_hctx != iter_data->hctx) 3519 return true; 3520 iter_data->has_rq = true; 3521 return false; 3522 } 3523 3524 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3525 { 3526 struct blk_mq_tags *tags = hctx->sched_tags ? 3527 hctx->sched_tags : hctx->tags; 3528 struct rq_iter_data data = { 3529 .hctx = hctx, 3530 }; 3531 3532 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3533 return data.has_rq; 3534 } 3535 3536 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3537 struct blk_mq_hw_ctx *hctx) 3538 { 3539 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3540 return false; 3541 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3542 return false; 3543 return true; 3544 } 3545 3546 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3547 { 3548 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3549 struct blk_mq_hw_ctx, cpuhp_online); 3550 3551 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3552 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3553 return 0; 3554 3555 /* 3556 * Prevent new request from being allocated on the current hctx. 3557 * 3558 * The smp_mb__after_atomic() Pairs with the implied barrier in 3559 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3560 * seen once we return from the tag allocator. 3561 */ 3562 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3563 smp_mb__after_atomic(); 3564 3565 /* 3566 * Try to grab a reference to the queue and wait for any outstanding 3567 * requests. If we could not grab a reference the queue has been 3568 * frozen and there are no requests. 3569 */ 3570 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3571 while (blk_mq_hctx_has_requests(hctx)) 3572 msleep(5); 3573 percpu_ref_put(&hctx->queue->q_usage_counter); 3574 } 3575 3576 return 0; 3577 } 3578 3579 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3580 { 3581 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3582 struct blk_mq_hw_ctx, cpuhp_online); 3583 3584 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3585 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3586 return 0; 3587 } 3588 3589 /* 3590 * 'cpu' is going away. splice any existing rq_list entries from this 3591 * software queue to the hw queue dispatch list, and ensure that it 3592 * gets run. 3593 */ 3594 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3595 { 3596 struct blk_mq_hw_ctx *hctx; 3597 struct blk_mq_ctx *ctx; 3598 LIST_HEAD(tmp); 3599 enum hctx_type type; 3600 3601 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3602 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3603 return 0; 3604 3605 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3606 type = hctx->type; 3607 3608 spin_lock(&ctx->lock); 3609 if (!list_empty(&ctx->rq_lists[type])) { 3610 list_splice_init(&ctx->rq_lists[type], &tmp); 3611 blk_mq_hctx_clear_pending(hctx, ctx); 3612 } 3613 spin_unlock(&ctx->lock); 3614 3615 if (list_empty(&tmp)) 3616 return 0; 3617 3618 spin_lock(&hctx->lock); 3619 list_splice_tail_init(&tmp, &hctx->dispatch); 3620 spin_unlock(&hctx->lock); 3621 3622 blk_mq_run_hw_queue(hctx, true); 3623 return 0; 3624 } 3625 3626 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3627 { 3628 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3629 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3630 &hctx->cpuhp_online); 3631 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3632 &hctx->cpuhp_dead); 3633 } 3634 3635 /* 3636 * Before freeing hw queue, clearing the flush request reference in 3637 * tags->rqs[] for avoiding potential UAF. 3638 */ 3639 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3640 unsigned int queue_depth, struct request *flush_rq) 3641 { 3642 int i; 3643 unsigned long flags; 3644 3645 /* The hw queue may not be mapped yet */ 3646 if (!tags) 3647 return; 3648 3649 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3650 3651 for (i = 0; i < queue_depth; i++) 3652 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3653 3654 /* 3655 * Wait until all pending iteration is done. 3656 * 3657 * Request reference is cleared and it is guaranteed to be observed 3658 * after the ->lock is released. 3659 */ 3660 spin_lock_irqsave(&tags->lock, flags); 3661 spin_unlock_irqrestore(&tags->lock, flags); 3662 } 3663 3664 /* hctx->ctxs will be freed in queue's release handler */ 3665 static void blk_mq_exit_hctx(struct request_queue *q, 3666 struct blk_mq_tag_set *set, 3667 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3668 { 3669 struct request *flush_rq = hctx->fq->flush_rq; 3670 3671 if (blk_mq_hw_queue_mapped(hctx)) 3672 blk_mq_tag_idle(hctx); 3673 3674 if (blk_queue_init_done(q)) 3675 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3676 set->queue_depth, flush_rq); 3677 if (set->ops->exit_request) 3678 set->ops->exit_request(set, flush_rq, hctx_idx); 3679 3680 if (set->ops->exit_hctx) 3681 set->ops->exit_hctx(hctx, hctx_idx); 3682 3683 blk_mq_remove_cpuhp(hctx); 3684 3685 xa_erase(&q->hctx_table, hctx_idx); 3686 3687 spin_lock(&q->unused_hctx_lock); 3688 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3689 spin_unlock(&q->unused_hctx_lock); 3690 } 3691 3692 static void blk_mq_exit_hw_queues(struct request_queue *q, 3693 struct blk_mq_tag_set *set, int nr_queue) 3694 { 3695 struct blk_mq_hw_ctx *hctx; 3696 unsigned long i; 3697 3698 queue_for_each_hw_ctx(q, hctx, i) { 3699 if (i == nr_queue) 3700 break; 3701 blk_mq_exit_hctx(q, set, hctx, i); 3702 } 3703 } 3704 3705 static int blk_mq_init_hctx(struct request_queue *q, 3706 struct blk_mq_tag_set *set, 3707 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3708 { 3709 hctx->queue_num = hctx_idx; 3710 3711 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3712 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3713 &hctx->cpuhp_online); 3714 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3715 3716 hctx->tags = set->tags[hctx_idx]; 3717 3718 if (set->ops->init_hctx && 3719 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3720 goto unregister_cpu_notifier; 3721 3722 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3723 hctx->numa_node)) 3724 goto exit_hctx; 3725 3726 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3727 goto exit_flush_rq; 3728 3729 return 0; 3730 3731 exit_flush_rq: 3732 if (set->ops->exit_request) 3733 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3734 exit_hctx: 3735 if (set->ops->exit_hctx) 3736 set->ops->exit_hctx(hctx, hctx_idx); 3737 unregister_cpu_notifier: 3738 blk_mq_remove_cpuhp(hctx); 3739 return -1; 3740 } 3741 3742 static struct blk_mq_hw_ctx * 3743 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3744 int node) 3745 { 3746 struct blk_mq_hw_ctx *hctx; 3747 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3748 3749 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3750 if (!hctx) 3751 goto fail_alloc_hctx; 3752 3753 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3754 goto free_hctx; 3755 3756 atomic_set(&hctx->nr_active, 0); 3757 if (node == NUMA_NO_NODE) 3758 node = set->numa_node; 3759 hctx->numa_node = node; 3760 3761 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3762 spin_lock_init(&hctx->lock); 3763 INIT_LIST_HEAD(&hctx->dispatch); 3764 hctx->queue = q; 3765 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3766 3767 INIT_LIST_HEAD(&hctx->hctx_list); 3768 3769 /* 3770 * Allocate space for all possible cpus to avoid allocation at 3771 * runtime 3772 */ 3773 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3774 gfp, node); 3775 if (!hctx->ctxs) 3776 goto free_cpumask; 3777 3778 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3779 gfp, node, false, false)) 3780 goto free_ctxs; 3781 hctx->nr_ctx = 0; 3782 3783 spin_lock_init(&hctx->dispatch_wait_lock); 3784 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3785 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3786 3787 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3788 if (!hctx->fq) 3789 goto free_bitmap; 3790 3791 blk_mq_hctx_kobj_init(hctx); 3792 3793 return hctx; 3794 3795 free_bitmap: 3796 sbitmap_free(&hctx->ctx_map); 3797 free_ctxs: 3798 kfree(hctx->ctxs); 3799 free_cpumask: 3800 free_cpumask_var(hctx->cpumask); 3801 free_hctx: 3802 kfree(hctx); 3803 fail_alloc_hctx: 3804 return NULL; 3805 } 3806 3807 static void blk_mq_init_cpu_queues(struct request_queue *q, 3808 unsigned int nr_hw_queues) 3809 { 3810 struct blk_mq_tag_set *set = q->tag_set; 3811 unsigned int i, j; 3812 3813 for_each_possible_cpu(i) { 3814 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3815 struct blk_mq_hw_ctx *hctx; 3816 int k; 3817 3818 __ctx->cpu = i; 3819 spin_lock_init(&__ctx->lock); 3820 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3821 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3822 3823 __ctx->queue = q; 3824 3825 /* 3826 * Set local node, IFF we have more than one hw queue. If 3827 * not, we remain on the home node of the device 3828 */ 3829 for (j = 0; j < set->nr_maps; j++) { 3830 hctx = blk_mq_map_queue_type(q, j, i); 3831 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3832 hctx->numa_node = cpu_to_node(i); 3833 } 3834 } 3835 } 3836 3837 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3838 unsigned int hctx_idx, 3839 unsigned int depth) 3840 { 3841 struct blk_mq_tags *tags; 3842 int ret; 3843 3844 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3845 if (!tags) 3846 return NULL; 3847 3848 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3849 if (ret) { 3850 blk_mq_free_rq_map(tags); 3851 return NULL; 3852 } 3853 3854 return tags; 3855 } 3856 3857 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3858 int hctx_idx) 3859 { 3860 if (blk_mq_is_shared_tags(set->flags)) { 3861 set->tags[hctx_idx] = set->shared_tags; 3862 3863 return true; 3864 } 3865 3866 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3867 set->queue_depth); 3868 3869 return set->tags[hctx_idx]; 3870 } 3871 3872 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3873 struct blk_mq_tags *tags, 3874 unsigned int hctx_idx) 3875 { 3876 if (tags) { 3877 blk_mq_free_rqs(set, tags, hctx_idx); 3878 blk_mq_free_rq_map(tags); 3879 } 3880 } 3881 3882 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3883 unsigned int hctx_idx) 3884 { 3885 if (!blk_mq_is_shared_tags(set->flags)) 3886 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3887 3888 set->tags[hctx_idx] = NULL; 3889 } 3890 3891 static void blk_mq_map_swqueue(struct request_queue *q) 3892 { 3893 unsigned int j, hctx_idx; 3894 unsigned long i; 3895 struct blk_mq_hw_ctx *hctx; 3896 struct blk_mq_ctx *ctx; 3897 struct blk_mq_tag_set *set = q->tag_set; 3898 3899 queue_for_each_hw_ctx(q, hctx, i) { 3900 cpumask_clear(hctx->cpumask); 3901 hctx->nr_ctx = 0; 3902 hctx->dispatch_from = NULL; 3903 } 3904 3905 /* 3906 * Map software to hardware queues. 3907 * 3908 * If the cpu isn't present, the cpu is mapped to first hctx. 3909 */ 3910 for_each_possible_cpu(i) { 3911 3912 ctx = per_cpu_ptr(q->queue_ctx, i); 3913 for (j = 0; j < set->nr_maps; j++) { 3914 if (!set->map[j].nr_queues) { 3915 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3916 HCTX_TYPE_DEFAULT, i); 3917 continue; 3918 } 3919 hctx_idx = set->map[j].mq_map[i]; 3920 /* unmapped hw queue can be remapped after CPU topo changed */ 3921 if (!set->tags[hctx_idx] && 3922 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3923 /* 3924 * If tags initialization fail for some hctx, 3925 * that hctx won't be brought online. In this 3926 * case, remap the current ctx to hctx[0] which 3927 * is guaranteed to always have tags allocated 3928 */ 3929 set->map[j].mq_map[i] = 0; 3930 } 3931 3932 hctx = blk_mq_map_queue_type(q, j, i); 3933 ctx->hctxs[j] = hctx; 3934 /* 3935 * If the CPU is already set in the mask, then we've 3936 * mapped this one already. This can happen if 3937 * devices share queues across queue maps. 3938 */ 3939 if (cpumask_test_cpu(i, hctx->cpumask)) 3940 continue; 3941 3942 cpumask_set_cpu(i, hctx->cpumask); 3943 hctx->type = j; 3944 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3945 hctx->ctxs[hctx->nr_ctx++] = ctx; 3946 3947 /* 3948 * If the nr_ctx type overflows, we have exceeded the 3949 * amount of sw queues we can support. 3950 */ 3951 BUG_ON(!hctx->nr_ctx); 3952 } 3953 3954 for (; j < HCTX_MAX_TYPES; j++) 3955 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3956 HCTX_TYPE_DEFAULT, i); 3957 } 3958 3959 queue_for_each_hw_ctx(q, hctx, i) { 3960 /* 3961 * If no software queues are mapped to this hardware queue, 3962 * disable it and free the request entries. 3963 */ 3964 if (!hctx->nr_ctx) { 3965 /* Never unmap queue 0. We need it as a 3966 * fallback in case of a new remap fails 3967 * allocation 3968 */ 3969 if (i) 3970 __blk_mq_free_map_and_rqs(set, i); 3971 3972 hctx->tags = NULL; 3973 continue; 3974 } 3975 3976 hctx->tags = set->tags[i]; 3977 WARN_ON(!hctx->tags); 3978 3979 /* 3980 * Set the map size to the number of mapped software queues. 3981 * This is more accurate and more efficient than looping 3982 * over all possibly mapped software queues. 3983 */ 3984 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3985 3986 /* 3987 * Initialize batch roundrobin counts 3988 */ 3989 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3990 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3991 } 3992 } 3993 3994 /* 3995 * Caller needs to ensure that we're either frozen/quiesced, or that 3996 * the queue isn't live yet. 3997 */ 3998 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3999 { 4000 struct blk_mq_hw_ctx *hctx; 4001 unsigned long i; 4002 4003 queue_for_each_hw_ctx(q, hctx, i) { 4004 if (shared) { 4005 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4006 } else { 4007 blk_mq_tag_idle(hctx); 4008 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4009 } 4010 } 4011 } 4012 4013 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4014 bool shared) 4015 { 4016 struct request_queue *q; 4017 4018 lockdep_assert_held(&set->tag_list_lock); 4019 4020 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4021 blk_mq_freeze_queue(q); 4022 queue_set_hctx_shared(q, shared); 4023 blk_mq_unfreeze_queue(q); 4024 } 4025 } 4026 4027 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4028 { 4029 struct blk_mq_tag_set *set = q->tag_set; 4030 4031 mutex_lock(&set->tag_list_lock); 4032 list_del(&q->tag_set_list); 4033 if (list_is_singular(&set->tag_list)) { 4034 /* just transitioned to unshared */ 4035 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4036 /* update existing queue */ 4037 blk_mq_update_tag_set_shared(set, false); 4038 } 4039 mutex_unlock(&set->tag_list_lock); 4040 INIT_LIST_HEAD(&q->tag_set_list); 4041 } 4042 4043 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4044 struct request_queue *q) 4045 { 4046 mutex_lock(&set->tag_list_lock); 4047 4048 /* 4049 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4050 */ 4051 if (!list_empty(&set->tag_list) && 4052 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4053 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4054 /* update existing queue */ 4055 blk_mq_update_tag_set_shared(set, true); 4056 } 4057 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4058 queue_set_hctx_shared(q, true); 4059 list_add_tail(&q->tag_set_list, &set->tag_list); 4060 4061 mutex_unlock(&set->tag_list_lock); 4062 } 4063 4064 /* All allocations will be freed in release handler of q->mq_kobj */ 4065 static int blk_mq_alloc_ctxs(struct request_queue *q) 4066 { 4067 struct blk_mq_ctxs *ctxs; 4068 int cpu; 4069 4070 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4071 if (!ctxs) 4072 return -ENOMEM; 4073 4074 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4075 if (!ctxs->queue_ctx) 4076 goto fail; 4077 4078 for_each_possible_cpu(cpu) { 4079 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4080 ctx->ctxs = ctxs; 4081 } 4082 4083 q->mq_kobj = &ctxs->kobj; 4084 q->queue_ctx = ctxs->queue_ctx; 4085 4086 return 0; 4087 fail: 4088 kfree(ctxs); 4089 return -ENOMEM; 4090 } 4091 4092 /* 4093 * It is the actual release handler for mq, but we do it from 4094 * request queue's release handler for avoiding use-after-free 4095 * and headache because q->mq_kobj shouldn't have been introduced, 4096 * but we can't group ctx/kctx kobj without it. 4097 */ 4098 void blk_mq_release(struct request_queue *q) 4099 { 4100 struct blk_mq_hw_ctx *hctx, *next; 4101 unsigned long i; 4102 4103 queue_for_each_hw_ctx(q, hctx, i) 4104 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4105 4106 /* all hctx are in .unused_hctx_list now */ 4107 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4108 list_del_init(&hctx->hctx_list); 4109 kobject_put(&hctx->kobj); 4110 } 4111 4112 xa_destroy(&q->hctx_table); 4113 4114 /* 4115 * release .mq_kobj and sw queue's kobject now because 4116 * both share lifetime with request queue. 4117 */ 4118 blk_mq_sysfs_deinit(q); 4119 } 4120 4121 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4122 void *queuedata) 4123 { 4124 struct request_queue *q; 4125 int ret; 4126 4127 q = blk_alloc_queue(set->numa_node); 4128 if (!q) 4129 return ERR_PTR(-ENOMEM); 4130 q->queuedata = queuedata; 4131 ret = blk_mq_init_allocated_queue(set, q); 4132 if (ret) { 4133 blk_put_queue(q); 4134 return ERR_PTR(ret); 4135 } 4136 return q; 4137 } 4138 4139 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4140 { 4141 return blk_mq_init_queue_data(set, NULL); 4142 } 4143 EXPORT_SYMBOL(blk_mq_init_queue); 4144 4145 /** 4146 * blk_mq_destroy_queue - shutdown a request queue 4147 * @q: request queue to shutdown 4148 * 4149 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4150 * requests will be failed with -ENODEV. The caller is responsible for dropping 4151 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4152 * 4153 * Context: can sleep 4154 */ 4155 void blk_mq_destroy_queue(struct request_queue *q) 4156 { 4157 WARN_ON_ONCE(!queue_is_mq(q)); 4158 WARN_ON_ONCE(blk_queue_registered(q)); 4159 4160 might_sleep(); 4161 4162 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4163 blk_queue_start_drain(q); 4164 blk_mq_freeze_queue_wait(q); 4165 4166 blk_sync_queue(q); 4167 blk_mq_cancel_work_sync(q); 4168 blk_mq_exit_queue(q); 4169 } 4170 EXPORT_SYMBOL(blk_mq_destroy_queue); 4171 4172 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4173 struct lock_class_key *lkclass) 4174 { 4175 struct request_queue *q; 4176 struct gendisk *disk; 4177 4178 q = blk_mq_init_queue_data(set, queuedata); 4179 if (IS_ERR(q)) 4180 return ERR_CAST(q); 4181 4182 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4183 if (!disk) { 4184 blk_mq_destroy_queue(q); 4185 blk_put_queue(q); 4186 return ERR_PTR(-ENOMEM); 4187 } 4188 set_bit(GD_OWNS_QUEUE, &disk->state); 4189 return disk; 4190 } 4191 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4192 4193 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4194 struct lock_class_key *lkclass) 4195 { 4196 struct gendisk *disk; 4197 4198 if (!blk_get_queue(q)) 4199 return NULL; 4200 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4201 if (!disk) 4202 blk_put_queue(q); 4203 return disk; 4204 } 4205 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4206 4207 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4208 struct blk_mq_tag_set *set, struct request_queue *q, 4209 int hctx_idx, int node) 4210 { 4211 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4212 4213 /* reuse dead hctx first */ 4214 spin_lock(&q->unused_hctx_lock); 4215 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4216 if (tmp->numa_node == node) { 4217 hctx = tmp; 4218 break; 4219 } 4220 } 4221 if (hctx) 4222 list_del_init(&hctx->hctx_list); 4223 spin_unlock(&q->unused_hctx_lock); 4224 4225 if (!hctx) 4226 hctx = blk_mq_alloc_hctx(q, set, node); 4227 if (!hctx) 4228 goto fail; 4229 4230 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4231 goto free_hctx; 4232 4233 return hctx; 4234 4235 free_hctx: 4236 kobject_put(&hctx->kobj); 4237 fail: 4238 return NULL; 4239 } 4240 4241 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4242 struct request_queue *q) 4243 { 4244 struct blk_mq_hw_ctx *hctx; 4245 unsigned long i, j; 4246 4247 /* protect against switching io scheduler */ 4248 mutex_lock(&q->sysfs_lock); 4249 for (i = 0; i < set->nr_hw_queues; i++) { 4250 int old_node; 4251 int node = blk_mq_get_hctx_node(set, i); 4252 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4253 4254 if (old_hctx) { 4255 old_node = old_hctx->numa_node; 4256 blk_mq_exit_hctx(q, set, old_hctx, i); 4257 } 4258 4259 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4260 if (!old_hctx) 4261 break; 4262 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4263 node, old_node); 4264 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4265 WARN_ON_ONCE(!hctx); 4266 } 4267 } 4268 /* 4269 * Increasing nr_hw_queues fails. Free the newly allocated 4270 * hctxs and keep the previous q->nr_hw_queues. 4271 */ 4272 if (i != set->nr_hw_queues) { 4273 j = q->nr_hw_queues; 4274 } else { 4275 j = i; 4276 q->nr_hw_queues = set->nr_hw_queues; 4277 } 4278 4279 xa_for_each_start(&q->hctx_table, j, hctx, j) 4280 blk_mq_exit_hctx(q, set, hctx, j); 4281 mutex_unlock(&q->sysfs_lock); 4282 } 4283 4284 static void blk_mq_update_poll_flag(struct request_queue *q) 4285 { 4286 struct blk_mq_tag_set *set = q->tag_set; 4287 4288 if (set->nr_maps > HCTX_TYPE_POLL && 4289 set->map[HCTX_TYPE_POLL].nr_queues) 4290 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4291 else 4292 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4293 } 4294 4295 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4296 struct request_queue *q) 4297 { 4298 /* mark the queue as mq asap */ 4299 q->mq_ops = set->ops; 4300 4301 if (blk_mq_alloc_ctxs(q)) 4302 goto err_exit; 4303 4304 /* init q->mq_kobj and sw queues' kobjects */ 4305 blk_mq_sysfs_init(q); 4306 4307 INIT_LIST_HEAD(&q->unused_hctx_list); 4308 spin_lock_init(&q->unused_hctx_lock); 4309 4310 xa_init(&q->hctx_table); 4311 4312 blk_mq_realloc_hw_ctxs(set, q); 4313 if (!q->nr_hw_queues) 4314 goto err_hctxs; 4315 4316 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4317 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4318 4319 q->tag_set = set; 4320 4321 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4322 blk_mq_update_poll_flag(q); 4323 4324 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4325 INIT_LIST_HEAD(&q->flush_list); 4326 INIT_LIST_HEAD(&q->requeue_list); 4327 spin_lock_init(&q->requeue_lock); 4328 4329 q->nr_requests = set->queue_depth; 4330 4331 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4332 blk_mq_add_queue_tag_set(set, q); 4333 blk_mq_map_swqueue(q); 4334 return 0; 4335 4336 err_hctxs: 4337 blk_mq_release(q); 4338 err_exit: 4339 q->mq_ops = NULL; 4340 return -ENOMEM; 4341 } 4342 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4343 4344 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4345 void blk_mq_exit_queue(struct request_queue *q) 4346 { 4347 struct blk_mq_tag_set *set = q->tag_set; 4348 4349 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4350 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4351 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4352 blk_mq_del_queue_tag_set(q); 4353 } 4354 4355 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4356 { 4357 int i; 4358 4359 if (blk_mq_is_shared_tags(set->flags)) { 4360 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4361 BLK_MQ_NO_HCTX_IDX, 4362 set->queue_depth); 4363 if (!set->shared_tags) 4364 return -ENOMEM; 4365 } 4366 4367 for (i = 0; i < set->nr_hw_queues; i++) { 4368 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4369 goto out_unwind; 4370 cond_resched(); 4371 } 4372 4373 return 0; 4374 4375 out_unwind: 4376 while (--i >= 0) 4377 __blk_mq_free_map_and_rqs(set, i); 4378 4379 if (blk_mq_is_shared_tags(set->flags)) { 4380 blk_mq_free_map_and_rqs(set, set->shared_tags, 4381 BLK_MQ_NO_HCTX_IDX); 4382 } 4383 4384 return -ENOMEM; 4385 } 4386 4387 /* 4388 * Allocate the request maps associated with this tag_set. Note that this 4389 * may reduce the depth asked for, if memory is tight. set->queue_depth 4390 * will be updated to reflect the allocated depth. 4391 */ 4392 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4393 { 4394 unsigned int depth; 4395 int err; 4396 4397 depth = set->queue_depth; 4398 do { 4399 err = __blk_mq_alloc_rq_maps(set); 4400 if (!err) 4401 break; 4402 4403 set->queue_depth >>= 1; 4404 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4405 err = -ENOMEM; 4406 break; 4407 } 4408 } while (set->queue_depth); 4409 4410 if (!set->queue_depth || err) { 4411 pr_err("blk-mq: failed to allocate request map\n"); 4412 return -ENOMEM; 4413 } 4414 4415 if (depth != set->queue_depth) 4416 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4417 depth, set->queue_depth); 4418 4419 return 0; 4420 } 4421 4422 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4423 { 4424 /* 4425 * blk_mq_map_queues() and multiple .map_queues() implementations 4426 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4427 * number of hardware queues. 4428 */ 4429 if (set->nr_maps == 1) 4430 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4431 4432 if (set->ops->map_queues && !is_kdump_kernel()) { 4433 int i; 4434 4435 /* 4436 * transport .map_queues is usually done in the following 4437 * way: 4438 * 4439 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4440 * mask = get_cpu_mask(queue) 4441 * for_each_cpu(cpu, mask) 4442 * set->map[x].mq_map[cpu] = queue; 4443 * } 4444 * 4445 * When we need to remap, the table has to be cleared for 4446 * killing stale mapping since one CPU may not be mapped 4447 * to any hw queue. 4448 */ 4449 for (i = 0; i < set->nr_maps; i++) 4450 blk_mq_clear_mq_map(&set->map[i]); 4451 4452 set->ops->map_queues(set); 4453 } else { 4454 BUG_ON(set->nr_maps > 1); 4455 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4456 } 4457 } 4458 4459 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4460 int new_nr_hw_queues) 4461 { 4462 struct blk_mq_tags **new_tags; 4463 int i; 4464 4465 if (set->nr_hw_queues >= new_nr_hw_queues) 4466 goto done; 4467 4468 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4469 GFP_KERNEL, set->numa_node); 4470 if (!new_tags) 4471 return -ENOMEM; 4472 4473 if (set->tags) 4474 memcpy(new_tags, set->tags, set->nr_hw_queues * 4475 sizeof(*set->tags)); 4476 kfree(set->tags); 4477 set->tags = new_tags; 4478 4479 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4480 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4481 while (--i >= set->nr_hw_queues) 4482 __blk_mq_free_map_and_rqs(set, i); 4483 return -ENOMEM; 4484 } 4485 cond_resched(); 4486 } 4487 4488 done: 4489 set->nr_hw_queues = new_nr_hw_queues; 4490 return 0; 4491 } 4492 4493 /* 4494 * Alloc a tag set to be associated with one or more request queues. 4495 * May fail with EINVAL for various error conditions. May adjust the 4496 * requested depth down, if it's too large. In that case, the set 4497 * value will be stored in set->queue_depth. 4498 */ 4499 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4500 { 4501 int i, ret; 4502 4503 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4504 4505 if (!set->nr_hw_queues) 4506 return -EINVAL; 4507 if (!set->queue_depth) 4508 return -EINVAL; 4509 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4510 return -EINVAL; 4511 4512 if (!set->ops->queue_rq) 4513 return -EINVAL; 4514 4515 if (!set->ops->get_budget ^ !set->ops->put_budget) 4516 return -EINVAL; 4517 4518 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4519 pr_info("blk-mq: reduced tag depth to %u\n", 4520 BLK_MQ_MAX_DEPTH); 4521 set->queue_depth = BLK_MQ_MAX_DEPTH; 4522 } 4523 4524 if (!set->nr_maps) 4525 set->nr_maps = 1; 4526 else if (set->nr_maps > HCTX_MAX_TYPES) 4527 return -EINVAL; 4528 4529 /* 4530 * If a crashdump is active, then we are potentially in a very 4531 * memory constrained environment. Limit us to 1 queue and 4532 * 64 tags to prevent using too much memory. 4533 */ 4534 if (is_kdump_kernel()) { 4535 set->nr_hw_queues = 1; 4536 set->nr_maps = 1; 4537 set->queue_depth = min(64U, set->queue_depth); 4538 } 4539 /* 4540 * There is no use for more h/w queues than cpus if we just have 4541 * a single map 4542 */ 4543 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4544 set->nr_hw_queues = nr_cpu_ids; 4545 4546 if (set->flags & BLK_MQ_F_BLOCKING) { 4547 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4548 if (!set->srcu) 4549 return -ENOMEM; 4550 ret = init_srcu_struct(set->srcu); 4551 if (ret) 4552 goto out_free_srcu; 4553 } 4554 4555 ret = -ENOMEM; 4556 set->tags = kcalloc_node(set->nr_hw_queues, 4557 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4558 set->numa_node); 4559 if (!set->tags) 4560 goto out_cleanup_srcu; 4561 4562 for (i = 0; i < set->nr_maps; i++) { 4563 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4564 sizeof(set->map[i].mq_map[0]), 4565 GFP_KERNEL, set->numa_node); 4566 if (!set->map[i].mq_map) 4567 goto out_free_mq_map; 4568 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4569 } 4570 4571 blk_mq_update_queue_map(set); 4572 4573 ret = blk_mq_alloc_set_map_and_rqs(set); 4574 if (ret) 4575 goto out_free_mq_map; 4576 4577 mutex_init(&set->tag_list_lock); 4578 INIT_LIST_HEAD(&set->tag_list); 4579 4580 return 0; 4581 4582 out_free_mq_map: 4583 for (i = 0; i < set->nr_maps; i++) { 4584 kfree(set->map[i].mq_map); 4585 set->map[i].mq_map = NULL; 4586 } 4587 kfree(set->tags); 4588 set->tags = NULL; 4589 out_cleanup_srcu: 4590 if (set->flags & BLK_MQ_F_BLOCKING) 4591 cleanup_srcu_struct(set->srcu); 4592 out_free_srcu: 4593 if (set->flags & BLK_MQ_F_BLOCKING) 4594 kfree(set->srcu); 4595 return ret; 4596 } 4597 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4598 4599 /* allocate and initialize a tagset for a simple single-queue device */ 4600 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4601 const struct blk_mq_ops *ops, unsigned int queue_depth, 4602 unsigned int set_flags) 4603 { 4604 memset(set, 0, sizeof(*set)); 4605 set->ops = ops; 4606 set->nr_hw_queues = 1; 4607 set->nr_maps = 1; 4608 set->queue_depth = queue_depth; 4609 set->numa_node = NUMA_NO_NODE; 4610 set->flags = set_flags; 4611 return blk_mq_alloc_tag_set(set); 4612 } 4613 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4614 4615 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4616 { 4617 int i, j; 4618 4619 for (i = 0; i < set->nr_hw_queues; i++) 4620 __blk_mq_free_map_and_rqs(set, i); 4621 4622 if (blk_mq_is_shared_tags(set->flags)) { 4623 blk_mq_free_map_and_rqs(set, set->shared_tags, 4624 BLK_MQ_NO_HCTX_IDX); 4625 } 4626 4627 for (j = 0; j < set->nr_maps; j++) { 4628 kfree(set->map[j].mq_map); 4629 set->map[j].mq_map = NULL; 4630 } 4631 4632 kfree(set->tags); 4633 set->tags = NULL; 4634 if (set->flags & BLK_MQ_F_BLOCKING) { 4635 cleanup_srcu_struct(set->srcu); 4636 kfree(set->srcu); 4637 } 4638 } 4639 EXPORT_SYMBOL(blk_mq_free_tag_set); 4640 4641 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4642 { 4643 struct blk_mq_tag_set *set = q->tag_set; 4644 struct blk_mq_hw_ctx *hctx; 4645 int ret; 4646 unsigned long i; 4647 4648 if (!set) 4649 return -EINVAL; 4650 4651 if (q->nr_requests == nr) 4652 return 0; 4653 4654 blk_mq_freeze_queue(q); 4655 blk_mq_quiesce_queue(q); 4656 4657 ret = 0; 4658 queue_for_each_hw_ctx(q, hctx, i) { 4659 if (!hctx->tags) 4660 continue; 4661 /* 4662 * If we're using an MQ scheduler, just update the scheduler 4663 * queue depth. This is similar to what the old code would do. 4664 */ 4665 if (hctx->sched_tags) { 4666 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4667 nr, true); 4668 } else { 4669 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4670 false); 4671 } 4672 if (ret) 4673 break; 4674 if (q->elevator && q->elevator->type->ops.depth_updated) 4675 q->elevator->type->ops.depth_updated(hctx); 4676 } 4677 if (!ret) { 4678 q->nr_requests = nr; 4679 if (blk_mq_is_shared_tags(set->flags)) { 4680 if (q->elevator) 4681 blk_mq_tag_update_sched_shared_tags(q); 4682 else 4683 blk_mq_tag_resize_shared_tags(set, nr); 4684 } 4685 } 4686 4687 blk_mq_unquiesce_queue(q); 4688 blk_mq_unfreeze_queue(q); 4689 4690 return ret; 4691 } 4692 4693 /* 4694 * request_queue and elevator_type pair. 4695 * It is just used by __blk_mq_update_nr_hw_queues to cache 4696 * the elevator_type associated with a request_queue. 4697 */ 4698 struct blk_mq_qe_pair { 4699 struct list_head node; 4700 struct request_queue *q; 4701 struct elevator_type *type; 4702 }; 4703 4704 /* 4705 * Cache the elevator_type in qe pair list and switch the 4706 * io scheduler to 'none' 4707 */ 4708 static bool blk_mq_elv_switch_none(struct list_head *head, 4709 struct request_queue *q) 4710 { 4711 struct blk_mq_qe_pair *qe; 4712 4713 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4714 if (!qe) 4715 return false; 4716 4717 /* q->elevator needs protection from ->sysfs_lock */ 4718 mutex_lock(&q->sysfs_lock); 4719 4720 /* the check has to be done with holding sysfs_lock */ 4721 if (!q->elevator) { 4722 kfree(qe); 4723 goto unlock; 4724 } 4725 4726 INIT_LIST_HEAD(&qe->node); 4727 qe->q = q; 4728 qe->type = q->elevator->type; 4729 /* keep a reference to the elevator module as we'll switch back */ 4730 __elevator_get(qe->type); 4731 list_add(&qe->node, head); 4732 elevator_disable(q); 4733 unlock: 4734 mutex_unlock(&q->sysfs_lock); 4735 4736 return true; 4737 } 4738 4739 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4740 struct request_queue *q) 4741 { 4742 struct blk_mq_qe_pair *qe; 4743 4744 list_for_each_entry(qe, head, node) 4745 if (qe->q == q) 4746 return qe; 4747 4748 return NULL; 4749 } 4750 4751 static void blk_mq_elv_switch_back(struct list_head *head, 4752 struct request_queue *q) 4753 { 4754 struct blk_mq_qe_pair *qe; 4755 struct elevator_type *t; 4756 4757 qe = blk_lookup_qe_pair(head, q); 4758 if (!qe) 4759 return; 4760 t = qe->type; 4761 list_del(&qe->node); 4762 kfree(qe); 4763 4764 mutex_lock(&q->sysfs_lock); 4765 elevator_switch(q, t); 4766 /* drop the reference acquired in blk_mq_elv_switch_none */ 4767 elevator_put(t); 4768 mutex_unlock(&q->sysfs_lock); 4769 } 4770 4771 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4772 int nr_hw_queues) 4773 { 4774 struct request_queue *q; 4775 LIST_HEAD(head); 4776 int prev_nr_hw_queues = set->nr_hw_queues; 4777 int i; 4778 4779 lockdep_assert_held(&set->tag_list_lock); 4780 4781 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4782 nr_hw_queues = nr_cpu_ids; 4783 if (nr_hw_queues < 1) 4784 return; 4785 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4786 return; 4787 4788 list_for_each_entry(q, &set->tag_list, tag_set_list) 4789 blk_mq_freeze_queue(q); 4790 /* 4791 * Switch IO scheduler to 'none', cleaning up the data associated 4792 * with the previous scheduler. We will switch back once we are done 4793 * updating the new sw to hw queue mappings. 4794 */ 4795 list_for_each_entry(q, &set->tag_list, tag_set_list) 4796 if (!blk_mq_elv_switch_none(&head, q)) 4797 goto switch_back; 4798 4799 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4800 blk_mq_debugfs_unregister_hctxs(q); 4801 blk_mq_sysfs_unregister_hctxs(q); 4802 } 4803 4804 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4805 goto reregister; 4806 4807 fallback: 4808 blk_mq_update_queue_map(set); 4809 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4810 blk_mq_realloc_hw_ctxs(set, q); 4811 blk_mq_update_poll_flag(q); 4812 if (q->nr_hw_queues != set->nr_hw_queues) { 4813 int i = prev_nr_hw_queues; 4814 4815 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4816 nr_hw_queues, prev_nr_hw_queues); 4817 for (; i < set->nr_hw_queues; i++) 4818 __blk_mq_free_map_and_rqs(set, i); 4819 4820 set->nr_hw_queues = prev_nr_hw_queues; 4821 goto fallback; 4822 } 4823 blk_mq_map_swqueue(q); 4824 } 4825 4826 reregister: 4827 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4828 blk_mq_sysfs_register_hctxs(q); 4829 blk_mq_debugfs_register_hctxs(q); 4830 } 4831 4832 switch_back: 4833 list_for_each_entry(q, &set->tag_list, tag_set_list) 4834 blk_mq_elv_switch_back(&head, q); 4835 4836 list_for_each_entry(q, &set->tag_list, tag_set_list) 4837 blk_mq_unfreeze_queue(q); 4838 4839 /* Free the excess tags when nr_hw_queues shrink. */ 4840 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4841 __blk_mq_free_map_and_rqs(set, i); 4842 } 4843 4844 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4845 { 4846 mutex_lock(&set->tag_list_lock); 4847 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4848 mutex_unlock(&set->tag_list_lock); 4849 } 4850 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4851 4852 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4853 struct io_comp_batch *iob, unsigned int flags) 4854 { 4855 long state = get_current_state(); 4856 int ret; 4857 4858 do { 4859 ret = q->mq_ops->poll(hctx, iob); 4860 if (ret > 0) { 4861 __set_current_state(TASK_RUNNING); 4862 return ret; 4863 } 4864 4865 if (signal_pending_state(state, current)) 4866 __set_current_state(TASK_RUNNING); 4867 if (task_is_running(current)) 4868 return 1; 4869 4870 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4871 break; 4872 cpu_relax(); 4873 } while (!need_resched()); 4874 4875 __set_current_state(TASK_RUNNING); 4876 return 0; 4877 } 4878 4879 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4880 struct io_comp_batch *iob, unsigned int flags) 4881 { 4882 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4883 4884 return blk_hctx_poll(q, hctx, iob, flags); 4885 } 4886 4887 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4888 unsigned int poll_flags) 4889 { 4890 struct request_queue *q = rq->q; 4891 int ret; 4892 4893 if (!blk_rq_is_poll(rq)) 4894 return 0; 4895 if (!percpu_ref_tryget(&q->q_usage_counter)) 4896 return 0; 4897 4898 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4899 blk_queue_exit(q); 4900 4901 return ret; 4902 } 4903 EXPORT_SYMBOL_GPL(blk_rq_poll); 4904 4905 unsigned int blk_mq_rq_cpu(struct request *rq) 4906 { 4907 return rq->mq_ctx->cpu; 4908 } 4909 EXPORT_SYMBOL(blk_mq_rq_cpu); 4910 4911 void blk_mq_cancel_work_sync(struct request_queue *q) 4912 { 4913 struct blk_mq_hw_ctx *hctx; 4914 unsigned long i; 4915 4916 cancel_delayed_work_sync(&q->requeue_work); 4917 4918 queue_for_each_hw_ctx(q, hctx, i) 4919 cancel_delayed_work_sync(&hctx->run_work); 4920 } 4921 4922 static int __init blk_mq_init(void) 4923 { 4924 int i; 4925 4926 for_each_possible_cpu(i) 4927 init_llist_head(&per_cpu(blk_cpu_done, i)); 4928 for_each_possible_cpu(i) 4929 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4930 __blk_mq_complete_request_remote, NULL); 4931 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4932 4933 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4934 "block/softirq:dead", NULL, 4935 blk_softirq_cpu_dead); 4936 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4937 blk_mq_hctx_notify_dead); 4938 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4939 blk_mq_hctx_notify_online, 4940 blk_mq_hctx_notify_offline); 4941 return 0; 4942 } 4943 subsys_initcall(blk_mq_init); 4944