1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include "blk.h" 34 #include "blk-mq.h" 35 #include "blk-mq-debugfs.h" 36 #include "blk-mq-tag.h" 37 #include "blk-pm.h" 38 #include "blk-stat.h" 39 #include "blk-mq-sched.h" 40 #include "blk-rq-qos.h" 41 42 static void blk_mq_poll_stats_start(struct request_queue *q); 43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 44 45 static int blk_mq_poll_stats_bkt(const struct request *rq) 46 { 47 int ddir, sectors, bucket; 48 49 ddir = rq_data_dir(rq); 50 sectors = blk_rq_stats_sectors(rq); 51 52 bucket = ddir + 2 * ilog2(sectors); 53 54 if (bucket < 0) 55 return -1; 56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 58 59 return bucket; 60 } 61 62 /* 63 * Check if any of the ctx, dispatch list or elevator 64 * have pending work in this hardware queue. 65 */ 66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 67 { 68 return !list_empty_careful(&hctx->dispatch) || 69 sbitmap_any_bit_set(&hctx->ctx_map) || 70 blk_mq_sched_has_work(hctx); 71 } 72 73 /* 74 * Mark this ctx as having pending work in this hardware queue 75 */ 76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 77 struct blk_mq_ctx *ctx) 78 { 79 const int bit = ctx->index_hw[hctx->type]; 80 81 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 82 sbitmap_set_bit(&hctx->ctx_map, bit); 83 } 84 85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 86 struct blk_mq_ctx *ctx) 87 { 88 const int bit = ctx->index_hw[hctx->type]; 89 90 sbitmap_clear_bit(&hctx->ctx_map, bit); 91 } 92 93 struct mq_inflight { 94 struct hd_struct *part; 95 unsigned int *inflight; 96 }; 97 98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 99 struct request *rq, void *priv, 100 bool reserved) 101 { 102 struct mq_inflight *mi = priv; 103 104 /* 105 * index[0] counts the specific partition that was asked for. 106 */ 107 if (rq->part == mi->part) 108 mi->inflight[0]++; 109 110 return true; 111 } 112 113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 114 { 115 unsigned inflight[2]; 116 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 117 118 inflight[0] = inflight[1] = 0; 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 121 return inflight[0]; 122 } 123 124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 125 struct request *rq, void *priv, 126 bool reserved) 127 { 128 struct mq_inflight *mi = priv; 129 130 if (rq->part == mi->part) 131 mi->inflight[rq_data_dir(rq)]++; 132 133 return true; 134 } 135 136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 137 unsigned int inflight[2]) 138 { 139 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 140 141 inflight[0] = inflight[1] = 0; 142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 143 } 144 145 void blk_freeze_queue_start(struct request_queue *q) 146 { 147 mutex_lock(&q->mq_freeze_lock); 148 if (++q->mq_freeze_depth == 1) { 149 percpu_ref_kill(&q->q_usage_counter); 150 mutex_unlock(&q->mq_freeze_lock); 151 if (queue_is_mq(q)) 152 blk_mq_run_hw_queues(q, false); 153 } else { 154 mutex_unlock(&q->mq_freeze_lock); 155 } 156 } 157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 158 159 void blk_mq_freeze_queue_wait(struct request_queue *q) 160 { 161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 162 } 163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 164 165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 166 unsigned long timeout) 167 { 168 return wait_event_timeout(q->mq_freeze_wq, 169 percpu_ref_is_zero(&q->q_usage_counter), 170 timeout); 171 } 172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 173 174 /* 175 * Guarantee no request is in use, so we can change any data structure of 176 * the queue afterward. 177 */ 178 void blk_freeze_queue(struct request_queue *q) 179 { 180 /* 181 * In the !blk_mq case we are only calling this to kill the 182 * q_usage_counter, otherwise this increases the freeze depth 183 * and waits for it to return to zero. For this reason there is 184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 185 * exported to drivers as the only user for unfreeze is blk_mq. 186 */ 187 blk_freeze_queue_start(q); 188 blk_mq_freeze_queue_wait(q); 189 } 190 191 void blk_mq_freeze_queue(struct request_queue *q) 192 { 193 /* 194 * ...just an alias to keep freeze and unfreeze actions balanced 195 * in the blk_mq_* namespace 196 */ 197 blk_freeze_queue(q); 198 } 199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 200 201 void blk_mq_unfreeze_queue(struct request_queue *q) 202 { 203 mutex_lock(&q->mq_freeze_lock); 204 q->mq_freeze_depth--; 205 WARN_ON_ONCE(q->mq_freeze_depth < 0); 206 if (!q->mq_freeze_depth) { 207 percpu_ref_resurrect(&q->q_usage_counter); 208 wake_up_all(&q->mq_freeze_wq); 209 } 210 mutex_unlock(&q->mq_freeze_lock); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 213 214 /* 215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 216 * mpt3sas driver such that this function can be removed. 217 */ 218 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 219 { 220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 221 } 222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 223 224 /** 225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 226 * @q: request queue. 227 * 228 * Note: this function does not prevent that the struct request end_io() 229 * callback function is invoked. Once this function is returned, we make 230 * sure no dispatch can happen until the queue is unquiesced via 231 * blk_mq_unquiesce_queue(). 232 */ 233 void blk_mq_quiesce_queue(struct request_queue *q) 234 { 235 struct blk_mq_hw_ctx *hctx; 236 unsigned int i; 237 bool rcu = false; 238 239 blk_mq_quiesce_queue_nowait(q); 240 241 queue_for_each_hw_ctx(q, hctx, i) { 242 if (hctx->flags & BLK_MQ_F_BLOCKING) 243 synchronize_srcu(hctx->srcu); 244 else 245 rcu = true; 246 } 247 if (rcu) 248 synchronize_rcu(); 249 } 250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 251 252 /* 253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 254 * @q: request queue. 255 * 256 * This function recovers queue into the state before quiescing 257 * which is done by blk_mq_quiesce_queue. 258 */ 259 void blk_mq_unquiesce_queue(struct request_queue *q) 260 { 261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 262 263 /* dispatch requests which are inserted during quiescing */ 264 blk_mq_run_hw_queues(q, true); 265 } 266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 267 268 void blk_mq_wake_waiters(struct request_queue *q) 269 { 270 struct blk_mq_hw_ctx *hctx; 271 unsigned int i; 272 273 queue_for_each_hw_ctx(q, hctx, i) 274 if (blk_mq_hw_queue_mapped(hctx)) 275 blk_mq_tag_wakeup_all(hctx->tags, true); 276 } 277 278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 279 { 280 return blk_mq_has_free_tags(hctx->tags); 281 } 282 EXPORT_SYMBOL(blk_mq_can_queue); 283 284 /* 285 * Only need start/end time stamping if we have iostat or 286 * blk stats enabled, or using an IO scheduler. 287 */ 288 static inline bool blk_mq_need_time_stamp(struct request *rq) 289 { 290 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 291 } 292 293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 294 unsigned int tag, unsigned int op, u64 alloc_time_ns) 295 { 296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 297 struct request *rq = tags->static_rqs[tag]; 298 req_flags_t rq_flags = 0; 299 300 if (data->flags & BLK_MQ_REQ_INTERNAL) { 301 rq->tag = -1; 302 rq->internal_tag = tag; 303 } else { 304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 305 rq_flags = RQF_MQ_INFLIGHT; 306 atomic_inc(&data->hctx->nr_active); 307 } 308 rq->tag = tag; 309 rq->internal_tag = -1; 310 data->hctx->tags->rqs[rq->tag] = rq; 311 } 312 313 /* csd/requeue_work/fifo_time is initialized before use */ 314 rq->q = data->q; 315 rq->mq_ctx = data->ctx; 316 rq->mq_hctx = data->hctx; 317 rq->rq_flags = rq_flags; 318 rq->cmd_flags = op; 319 if (data->flags & BLK_MQ_REQ_PREEMPT) 320 rq->rq_flags |= RQF_PREEMPT; 321 if (blk_queue_io_stat(data->q)) 322 rq->rq_flags |= RQF_IO_STAT; 323 INIT_LIST_HEAD(&rq->queuelist); 324 INIT_HLIST_NODE(&rq->hash); 325 RB_CLEAR_NODE(&rq->rb_node); 326 rq->rq_disk = NULL; 327 rq->part = NULL; 328 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 329 rq->alloc_time_ns = alloc_time_ns; 330 #endif 331 if (blk_mq_need_time_stamp(rq)) 332 rq->start_time_ns = ktime_get_ns(); 333 else 334 rq->start_time_ns = 0; 335 rq->io_start_time_ns = 0; 336 rq->stats_sectors = 0; 337 rq->nr_phys_segments = 0; 338 #if defined(CONFIG_BLK_DEV_INTEGRITY) 339 rq->nr_integrity_segments = 0; 340 #endif 341 /* tag was already set */ 342 rq->extra_len = 0; 343 WRITE_ONCE(rq->deadline, 0); 344 345 rq->timeout = 0; 346 347 rq->end_io = NULL; 348 rq->end_io_data = NULL; 349 350 data->ctx->rq_dispatched[op_is_sync(op)]++; 351 refcount_set(&rq->ref, 1); 352 return rq; 353 } 354 355 static struct request *blk_mq_get_request(struct request_queue *q, 356 struct bio *bio, 357 struct blk_mq_alloc_data *data) 358 { 359 struct elevator_queue *e = q->elevator; 360 struct request *rq; 361 unsigned int tag; 362 bool clear_ctx_on_error = false; 363 u64 alloc_time_ns = 0; 364 365 blk_queue_enter_live(q); 366 367 /* alloc_time includes depth and tag waits */ 368 if (blk_queue_rq_alloc_time(q)) 369 alloc_time_ns = ktime_get_ns(); 370 371 data->q = q; 372 if (likely(!data->ctx)) { 373 data->ctx = blk_mq_get_ctx(q); 374 clear_ctx_on_error = true; 375 } 376 if (likely(!data->hctx)) 377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 378 data->ctx); 379 if (data->cmd_flags & REQ_NOWAIT) 380 data->flags |= BLK_MQ_REQ_NOWAIT; 381 382 if (e) { 383 data->flags |= BLK_MQ_REQ_INTERNAL; 384 385 /* 386 * Flush requests are special and go directly to the 387 * dispatch list. Don't include reserved tags in the 388 * limiting, as it isn't useful. 389 */ 390 if (!op_is_flush(data->cmd_flags) && 391 e->type->ops.limit_depth && 392 !(data->flags & BLK_MQ_REQ_RESERVED)) 393 e->type->ops.limit_depth(data->cmd_flags, data); 394 } else { 395 blk_mq_tag_busy(data->hctx); 396 } 397 398 tag = blk_mq_get_tag(data); 399 if (tag == BLK_MQ_TAG_FAIL) { 400 if (clear_ctx_on_error) 401 data->ctx = NULL; 402 blk_queue_exit(q); 403 return NULL; 404 } 405 406 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns); 407 if (!op_is_flush(data->cmd_flags)) { 408 rq->elv.icq = NULL; 409 if (e && e->type->ops.prepare_request) { 410 if (e->type->icq_cache) 411 blk_mq_sched_assign_ioc(rq); 412 413 e->type->ops.prepare_request(rq, bio); 414 rq->rq_flags |= RQF_ELVPRIV; 415 } 416 } 417 data->hctx->queued++; 418 return rq; 419 } 420 421 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 422 blk_mq_req_flags_t flags) 423 { 424 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 425 struct request *rq; 426 int ret; 427 428 ret = blk_queue_enter(q, flags); 429 if (ret) 430 return ERR_PTR(ret); 431 432 rq = blk_mq_get_request(q, NULL, &alloc_data); 433 blk_queue_exit(q); 434 435 if (!rq) 436 return ERR_PTR(-EWOULDBLOCK); 437 438 rq->__data_len = 0; 439 rq->__sector = (sector_t) -1; 440 rq->bio = rq->biotail = NULL; 441 return rq; 442 } 443 EXPORT_SYMBOL(blk_mq_alloc_request); 444 445 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 446 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 447 { 448 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 449 struct request *rq; 450 unsigned int cpu; 451 int ret; 452 453 /* 454 * If the tag allocator sleeps we could get an allocation for a 455 * different hardware context. No need to complicate the low level 456 * allocator for this for the rare use case of a command tied to 457 * a specific queue. 458 */ 459 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 460 return ERR_PTR(-EINVAL); 461 462 if (hctx_idx >= q->nr_hw_queues) 463 return ERR_PTR(-EIO); 464 465 ret = blk_queue_enter(q, flags); 466 if (ret) 467 return ERR_PTR(ret); 468 469 /* 470 * Check if the hardware context is actually mapped to anything. 471 * If not tell the caller that it should skip this queue. 472 */ 473 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 474 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 475 blk_queue_exit(q); 476 return ERR_PTR(-EXDEV); 477 } 478 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 479 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 480 481 rq = blk_mq_get_request(q, NULL, &alloc_data); 482 blk_queue_exit(q); 483 484 if (!rq) 485 return ERR_PTR(-EWOULDBLOCK); 486 487 return rq; 488 } 489 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 490 491 static void __blk_mq_free_request(struct request *rq) 492 { 493 struct request_queue *q = rq->q; 494 struct blk_mq_ctx *ctx = rq->mq_ctx; 495 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 496 const int sched_tag = rq->internal_tag; 497 498 blk_pm_mark_last_busy(rq); 499 rq->mq_hctx = NULL; 500 if (rq->tag != -1) 501 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 502 if (sched_tag != -1) 503 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 504 blk_mq_sched_restart(hctx); 505 blk_queue_exit(q); 506 } 507 508 void blk_mq_free_request(struct request *rq) 509 { 510 struct request_queue *q = rq->q; 511 struct elevator_queue *e = q->elevator; 512 struct blk_mq_ctx *ctx = rq->mq_ctx; 513 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 514 515 if (rq->rq_flags & RQF_ELVPRIV) { 516 if (e && e->type->ops.finish_request) 517 e->type->ops.finish_request(rq); 518 if (rq->elv.icq) { 519 put_io_context(rq->elv.icq->ioc); 520 rq->elv.icq = NULL; 521 } 522 } 523 524 ctx->rq_completed[rq_is_sync(rq)]++; 525 if (rq->rq_flags & RQF_MQ_INFLIGHT) 526 atomic_dec(&hctx->nr_active); 527 528 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 529 laptop_io_completion(q->backing_dev_info); 530 531 rq_qos_done(q, rq); 532 533 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 534 if (refcount_dec_and_test(&rq->ref)) 535 __blk_mq_free_request(rq); 536 } 537 EXPORT_SYMBOL_GPL(blk_mq_free_request); 538 539 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 540 { 541 u64 now = 0; 542 543 if (blk_mq_need_time_stamp(rq)) 544 now = ktime_get_ns(); 545 546 if (rq->rq_flags & RQF_STATS) { 547 blk_mq_poll_stats_start(rq->q); 548 blk_stat_add(rq, now); 549 } 550 551 if (rq->internal_tag != -1) 552 blk_mq_sched_completed_request(rq, now); 553 554 blk_account_io_done(rq, now); 555 556 if (rq->end_io) { 557 rq_qos_done(rq->q, rq); 558 rq->end_io(rq, error); 559 } else { 560 blk_mq_free_request(rq); 561 } 562 } 563 EXPORT_SYMBOL(__blk_mq_end_request); 564 565 void blk_mq_end_request(struct request *rq, blk_status_t error) 566 { 567 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 568 BUG(); 569 __blk_mq_end_request(rq, error); 570 } 571 EXPORT_SYMBOL(blk_mq_end_request); 572 573 static void __blk_mq_complete_request_remote(void *data) 574 { 575 struct request *rq = data; 576 struct request_queue *q = rq->q; 577 578 q->mq_ops->complete(rq); 579 } 580 581 static void __blk_mq_complete_request(struct request *rq) 582 { 583 struct blk_mq_ctx *ctx = rq->mq_ctx; 584 struct request_queue *q = rq->q; 585 bool shared = false; 586 int cpu; 587 588 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 589 /* 590 * Most of single queue controllers, there is only one irq vector 591 * for handling IO completion, and the only irq's affinity is set 592 * as all possible CPUs. On most of ARCHs, this affinity means the 593 * irq is handled on one specific CPU. 594 * 595 * So complete IO reqeust in softirq context in case of single queue 596 * for not degrading IO performance by irqsoff latency. 597 */ 598 if (q->nr_hw_queues == 1) { 599 __blk_complete_request(rq); 600 return; 601 } 602 603 /* 604 * For a polled request, always complete locallly, it's pointless 605 * to redirect the completion. 606 */ 607 if ((rq->cmd_flags & REQ_HIPRI) || 608 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 609 q->mq_ops->complete(rq); 610 return; 611 } 612 613 cpu = get_cpu(); 614 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 615 shared = cpus_share_cache(cpu, ctx->cpu); 616 617 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 618 rq->csd.func = __blk_mq_complete_request_remote; 619 rq->csd.info = rq; 620 rq->csd.flags = 0; 621 smp_call_function_single_async(ctx->cpu, &rq->csd); 622 } else { 623 q->mq_ops->complete(rq); 624 } 625 put_cpu(); 626 } 627 628 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 629 __releases(hctx->srcu) 630 { 631 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 632 rcu_read_unlock(); 633 else 634 srcu_read_unlock(hctx->srcu, srcu_idx); 635 } 636 637 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 638 __acquires(hctx->srcu) 639 { 640 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 641 /* shut up gcc false positive */ 642 *srcu_idx = 0; 643 rcu_read_lock(); 644 } else 645 *srcu_idx = srcu_read_lock(hctx->srcu); 646 } 647 648 /** 649 * blk_mq_complete_request - end I/O on a request 650 * @rq: the request being processed 651 * 652 * Description: 653 * Ends all I/O on a request. It does not handle partial completions. 654 * The actual completion happens out-of-order, through a IPI handler. 655 **/ 656 bool blk_mq_complete_request(struct request *rq) 657 { 658 if (unlikely(blk_should_fake_timeout(rq->q))) 659 return false; 660 __blk_mq_complete_request(rq); 661 return true; 662 } 663 EXPORT_SYMBOL(blk_mq_complete_request); 664 665 int blk_mq_request_started(struct request *rq) 666 { 667 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 668 } 669 EXPORT_SYMBOL_GPL(blk_mq_request_started); 670 671 int blk_mq_request_completed(struct request *rq) 672 { 673 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; 674 } 675 EXPORT_SYMBOL_GPL(blk_mq_request_completed); 676 677 void blk_mq_start_request(struct request *rq) 678 { 679 struct request_queue *q = rq->q; 680 681 trace_block_rq_issue(q, rq); 682 683 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 684 rq->io_start_time_ns = ktime_get_ns(); 685 rq->stats_sectors = blk_rq_sectors(rq); 686 rq->rq_flags |= RQF_STATS; 687 rq_qos_issue(q, rq); 688 } 689 690 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 691 692 blk_add_timer(rq); 693 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 694 695 if (q->dma_drain_size && blk_rq_bytes(rq)) { 696 /* 697 * Make sure space for the drain appears. We know we can do 698 * this because max_hw_segments has been adjusted to be one 699 * fewer than the device can handle. 700 */ 701 rq->nr_phys_segments++; 702 } 703 } 704 EXPORT_SYMBOL(blk_mq_start_request); 705 706 static void __blk_mq_requeue_request(struct request *rq) 707 { 708 struct request_queue *q = rq->q; 709 710 blk_mq_put_driver_tag(rq); 711 712 trace_block_rq_requeue(q, rq); 713 rq_qos_requeue(q, rq); 714 715 if (blk_mq_request_started(rq)) { 716 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 717 rq->rq_flags &= ~RQF_TIMED_OUT; 718 if (q->dma_drain_size && blk_rq_bytes(rq)) 719 rq->nr_phys_segments--; 720 } 721 } 722 723 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 724 { 725 __blk_mq_requeue_request(rq); 726 727 /* this request will be re-inserted to io scheduler queue */ 728 blk_mq_sched_requeue_request(rq); 729 730 BUG_ON(!list_empty(&rq->queuelist)); 731 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 732 } 733 EXPORT_SYMBOL(blk_mq_requeue_request); 734 735 static void blk_mq_requeue_work(struct work_struct *work) 736 { 737 struct request_queue *q = 738 container_of(work, struct request_queue, requeue_work.work); 739 LIST_HEAD(rq_list); 740 struct request *rq, *next; 741 742 spin_lock_irq(&q->requeue_lock); 743 list_splice_init(&q->requeue_list, &rq_list); 744 spin_unlock_irq(&q->requeue_lock); 745 746 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 747 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 748 continue; 749 750 rq->rq_flags &= ~RQF_SOFTBARRIER; 751 list_del_init(&rq->queuelist); 752 /* 753 * If RQF_DONTPREP, rq has contained some driver specific 754 * data, so insert it to hctx dispatch list to avoid any 755 * merge. 756 */ 757 if (rq->rq_flags & RQF_DONTPREP) 758 blk_mq_request_bypass_insert(rq, false); 759 else 760 blk_mq_sched_insert_request(rq, true, false, false); 761 } 762 763 while (!list_empty(&rq_list)) { 764 rq = list_entry(rq_list.next, struct request, queuelist); 765 list_del_init(&rq->queuelist); 766 blk_mq_sched_insert_request(rq, false, false, false); 767 } 768 769 blk_mq_run_hw_queues(q, false); 770 } 771 772 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 773 bool kick_requeue_list) 774 { 775 struct request_queue *q = rq->q; 776 unsigned long flags; 777 778 /* 779 * We abuse this flag that is otherwise used by the I/O scheduler to 780 * request head insertion from the workqueue. 781 */ 782 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 783 784 spin_lock_irqsave(&q->requeue_lock, flags); 785 if (at_head) { 786 rq->rq_flags |= RQF_SOFTBARRIER; 787 list_add(&rq->queuelist, &q->requeue_list); 788 } else { 789 list_add_tail(&rq->queuelist, &q->requeue_list); 790 } 791 spin_unlock_irqrestore(&q->requeue_lock, flags); 792 793 if (kick_requeue_list) 794 blk_mq_kick_requeue_list(q); 795 } 796 797 void blk_mq_kick_requeue_list(struct request_queue *q) 798 { 799 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 800 } 801 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 802 803 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 804 unsigned long msecs) 805 { 806 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 807 msecs_to_jiffies(msecs)); 808 } 809 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 810 811 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 812 { 813 if (tag < tags->nr_tags) { 814 prefetch(tags->rqs[tag]); 815 return tags->rqs[tag]; 816 } 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(blk_mq_tag_to_rq); 821 822 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 823 void *priv, bool reserved) 824 { 825 /* 826 * If we find a request that is inflight and the queue matches, 827 * we know the queue is busy. Return false to stop the iteration. 828 */ 829 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 830 bool *busy = priv; 831 832 *busy = true; 833 return false; 834 } 835 836 return true; 837 } 838 839 bool blk_mq_queue_inflight(struct request_queue *q) 840 { 841 bool busy = false; 842 843 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 844 return busy; 845 } 846 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 847 848 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 849 { 850 req->rq_flags |= RQF_TIMED_OUT; 851 if (req->q->mq_ops->timeout) { 852 enum blk_eh_timer_return ret; 853 854 ret = req->q->mq_ops->timeout(req, reserved); 855 if (ret == BLK_EH_DONE) 856 return; 857 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 858 } 859 860 blk_add_timer(req); 861 } 862 863 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 864 { 865 unsigned long deadline; 866 867 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 868 return false; 869 if (rq->rq_flags & RQF_TIMED_OUT) 870 return false; 871 872 deadline = READ_ONCE(rq->deadline); 873 if (time_after_eq(jiffies, deadline)) 874 return true; 875 876 if (*next == 0) 877 *next = deadline; 878 else if (time_after(*next, deadline)) 879 *next = deadline; 880 return false; 881 } 882 883 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 884 struct request *rq, void *priv, bool reserved) 885 { 886 unsigned long *next = priv; 887 888 /* 889 * Just do a quick check if it is expired before locking the request in 890 * so we're not unnecessarilly synchronizing across CPUs. 891 */ 892 if (!blk_mq_req_expired(rq, next)) 893 return true; 894 895 /* 896 * We have reason to believe the request may be expired. Take a 897 * reference on the request to lock this request lifetime into its 898 * currently allocated context to prevent it from being reallocated in 899 * the event the completion by-passes this timeout handler. 900 * 901 * If the reference was already released, then the driver beat the 902 * timeout handler to posting a natural completion. 903 */ 904 if (!refcount_inc_not_zero(&rq->ref)) 905 return true; 906 907 /* 908 * The request is now locked and cannot be reallocated underneath the 909 * timeout handler's processing. Re-verify this exact request is truly 910 * expired; if it is not expired, then the request was completed and 911 * reallocated as a new request. 912 */ 913 if (blk_mq_req_expired(rq, next)) 914 blk_mq_rq_timed_out(rq, reserved); 915 if (refcount_dec_and_test(&rq->ref)) 916 __blk_mq_free_request(rq); 917 918 return true; 919 } 920 921 static void blk_mq_timeout_work(struct work_struct *work) 922 { 923 struct request_queue *q = 924 container_of(work, struct request_queue, timeout_work); 925 unsigned long next = 0; 926 struct blk_mq_hw_ctx *hctx; 927 int i; 928 929 /* A deadlock might occur if a request is stuck requiring a 930 * timeout at the same time a queue freeze is waiting 931 * completion, since the timeout code would not be able to 932 * acquire the queue reference here. 933 * 934 * That's why we don't use blk_queue_enter here; instead, we use 935 * percpu_ref_tryget directly, because we need to be able to 936 * obtain a reference even in the short window between the queue 937 * starting to freeze, by dropping the first reference in 938 * blk_freeze_queue_start, and the moment the last request is 939 * consumed, marked by the instant q_usage_counter reaches 940 * zero. 941 */ 942 if (!percpu_ref_tryget(&q->q_usage_counter)) 943 return; 944 945 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 946 947 if (next != 0) { 948 mod_timer(&q->timeout, next); 949 } else { 950 /* 951 * Request timeouts are handled as a forward rolling timer. If 952 * we end up here it means that no requests are pending and 953 * also that no request has been pending for a while. Mark 954 * each hctx as idle. 955 */ 956 queue_for_each_hw_ctx(q, hctx, i) { 957 /* the hctx may be unmapped, so check it here */ 958 if (blk_mq_hw_queue_mapped(hctx)) 959 blk_mq_tag_idle(hctx); 960 } 961 } 962 blk_queue_exit(q); 963 } 964 965 struct flush_busy_ctx_data { 966 struct blk_mq_hw_ctx *hctx; 967 struct list_head *list; 968 }; 969 970 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 971 { 972 struct flush_busy_ctx_data *flush_data = data; 973 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 974 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 975 enum hctx_type type = hctx->type; 976 977 spin_lock(&ctx->lock); 978 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 979 sbitmap_clear_bit(sb, bitnr); 980 spin_unlock(&ctx->lock); 981 return true; 982 } 983 984 /* 985 * Process software queues that have been marked busy, splicing them 986 * to the for-dispatch 987 */ 988 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 989 { 990 struct flush_busy_ctx_data data = { 991 .hctx = hctx, 992 .list = list, 993 }; 994 995 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 996 } 997 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 998 999 struct dispatch_rq_data { 1000 struct blk_mq_hw_ctx *hctx; 1001 struct request *rq; 1002 }; 1003 1004 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1005 void *data) 1006 { 1007 struct dispatch_rq_data *dispatch_data = data; 1008 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1009 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1010 enum hctx_type type = hctx->type; 1011 1012 spin_lock(&ctx->lock); 1013 if (!list_empty(&ctx->rq_lists[type])) { 1014 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1015 list_del_init(&dispatch_data->rq->queuelist); 1016 if (list_empty(&ctx->rq_lists[type])) 1017 sbitmap_clear_bit(sb, bitnr); 1018 } 1019 spin_unlock(&ctx->lock); 1020 1021 return !dispatch_data->rq; 1022 } 1023 1024 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1025 struct blk_mq_ctx *start) 1026 { 1027 unsigned off = start ? start->index_hw[hctx->type] : 0; 1028 struct dispatch_rq_data data = { 1029 .hctx = hctx, 1030 .rq = NULL, 1031 }; 1032 1033 __sbitmap_for_each_set(&hctx->ctx_map, off, 1034 dispatch_rq_from_ctx, &data); 1035 1036 return data.rq; 1037 } 1038 1039 static inline unsigned int queued_to_index(unsigned int queued) 1040 { 1041 if (!queued) 1042 return 0; 1043 1044 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1045 } 1046 1047 bool blk_mq_get_driver_tag(struct request *rq) 1048 { 1049 struct blk_mq_alloc_data data = { 1050 .q = rq->q, 1051 .hctx = rq->mq_hctx, 1052 .flags = BLK_MQ_REQ_NOWAIT, 1053 .cmd_flags = rq->cmd_flags, 1054 }; 1055 bool shared; 1056 1057 if (rq->tag != -1) 1058 goto done; 1059 1060 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1061 data.flags |= BLK_MQ_REQ_RESERVED; 1062 1063 shared = blk_mq_tag_busy(data.hctx); 1064 rq->tag = blk_mq_get_tag(&data); 1065 if (rq->tag >= 0) { 1066 if (shared) { 1067 rq->rq_flags |= RQF_MQ_INFLIGHT; 1068 atomic_inc(&data.hctx->nr_active); 1069 } 1070 data.hctx->tags->rqs[rq->tag] = rq; 1071 } 1072 1073 done: 1074 return rq->tag != -1; 1075 } 1076 1077 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1078 int flags, void *key) 1079 { 1080 struct blk_mq_hw_ctx *hctx; 1081 1082 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1083 1084 spin_lock(&hctx->dispatch_wait_lock); 1085 if (!list_empty(&wait->entry)) { 1086 struct sbitmap_queue *sbq; 1087 1088 list_del_init(&wait->entry); 1089 sbq = &hctx->tags->bitmap_tags; 1090 atomic_dec(&sbq->ws_active); 1091 } 1092 spin_unlock(&hctx->dispatch_wait_lock); 1093 1094 blk_mq_run_hw_queue(hctx, true); 1095 return 1; 1096 } 1097 1098 /* 1099 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1100 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1101 * restart. For both cases, take care to check the condition again after 1102 * marking us as waiting. 1103 */ 1104 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1105 struct request *rq) 1106 { 1107 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1108 struct wait_queue_head *wq; 1109 wait_queue_entry_t *wait; 1110 bool ret; 1111 1112 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1113 blk_mq_sched_mark_restart_hctx(hctx); 1114 1115 /* 1116 * It's possible that a tag was freed in the window between the 1117 * allocation failure and adding the hardware queue to the wait 1118 * queue. 1119 * 1120 * Don't clear RESTART here, someone else could have set it. 1121 * At most this will cost an extra queue run. 1122 */ 1123 return blk_mq_get_driver_tag(rq); 1124 } 1125 1126 wait = &hctx->dispatch_wait; 1127 if (!list_empty_careful(&wait->entry)) 1128 return false; 1129 1130 wq = &bt_wait_ptr(sbq, hctx)->wait; 1131 1132 spin_lock_irq(&wq->lock); 1133 spin_lock(&hctx->dispatch_wait_lock); 1134 if (!list_empty(&wait->entry)) { 1135 spin_unlock(&hctx->dispatch_wait_lock); 1136 spin_unlock_irq(&wq->lock); 1137 return false; 1138 } 1139 1140 atomic_inc(&sbq->ws_active); 1141 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1142 __add_wait_queue(wq, wait); 1143 1144 /* 1145 * It's possible that a tag was freed in the window between the 1146 * allocation failure and adding the hardware queue to the wait 1147 * queue. 1148 */ 1149 ret = blk_mq_get_driver_tag(rq); 1150 if (!ret) { 1151 spin_unlock(&hctx->dispatch_wait_lock); 1152 spin_unlock_irq(&wq->lock); 1153 return false; 1154 } 1155 1156 /* 1157 * We got a tag, remove ourselves from the wait queue to ensure 1158 * someone else gets the wakeup. 1159 */ 1160 list_del_init(&wait->entry); 1161 atomic_dec(&sbq->ws_active); 1162 spin_unlock(&hctx->dispatch_wait_lock); 1163 spin_unlock_irq(&wq->lock); 1164 1165 return true; 1166 } 1167 1168 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1169 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1170 /* 1171 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1172 * - EWMA is one simple way to compute running average value 1173 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1174 * - take 4 as factor for avoiding to get too small(0) result, and this 1175 * factor doesn't matter because EWMA decreases exponentially 1176 */ 1177 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1178 { 1179 unsigned int ewma; 1180 1181 if (hctx->queue->elevator) 1182 return; 1183 1184 ewma = hctx->dispatch_busy; 1185 1186 if (!ewma && !busy) 1187 return; 1188 1189 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1190 if (busy) 1191 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1192 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1193 1194 hctx->dispatch_busy = ewma; 1195 } 1196 1197 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1198 1199 /* 1200 * Returns true if we did some work AND can potentially do more. 1201 */ 1202 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1203 bool got_budget) 1204 { 1205 struct blk_mq_hw_ctx *hctx; 1206 struct request *rq, *nxt; 1207 bool no_tag = false; 1208 int errors, queued; 1209 blk_status_t ret = BLK_STS_OK; 1210 1211 if (list_empty(list)) 1212 return false; 1213 1214 WARN_ON(!list_is_singular(list) && got_budget); 1215 1216 /* 1217 * Now process all the entries, sending them to the driver. 1218 */ 1219 errors = queued = 0; 1220 do { 1221 struct blk_mq_queue_data bd; 1222 1223 rq = list_first_entry(list, struct request, queuelist); 1224 1225 hctx = rq->mq_hctx; 1226 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1227 break; 1228 1229 if (!blk_mq_get_driver_tag(rq)) { 1230 /* 1231 * The initial allocation attempt failed, so we need to 1232 * rerun the hardware queue when a tag is freed. The 1233 * waitqueue takes care of that. If the queue is run 1234 * before we add this entry back on the dispatch list, 1235 * we'll re-run it below. 1236 */ 1237 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1238 blk_mq_put_dispatch_budget(hctx); 1239 /* 1240 * For non-shared tags, the RESTART check 1241 * will suffice. 1242 */ 1243 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1244 no_tag = true; 1245 break; 1246 } 1247 } 1248 1249 list_del_init(&rq->queuelist); 1250 1251 bd.rq = rq; 1252 1253 /* 1254 * Flag last if we have no more requests, or if we have more 1255 * but can't assign a driver tag to it. 1256 */ 1257 if (list_empty(list)) 1258 bd.last = true; 1259 else { 1260 nxt = list_first_entry(list, struct request, queuelist); 1261 bd.last = !blk_mq_get_driver_tag(nxt); 1262 } 1263 1264 ret = q->mq_ops->queue_rq(hctx, &bd); 1265 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1266 /* 1267 * If an I/O scheduler has been configured and we got a 1268 * driver tag for the next request already, free it 1269 * again. 1270 */ 1271 if (!list_empty(list)) { 1272 nxt = list_first_entry(list, struct request, queuelist); 1273 blk_mq_put_driver_tag(nxt); 1274 } 1275 list_add(&rq->queuelist, list); 1276 __blk_mq_requeue_request(rq); 1277 break; 1278 } 1279 1280 if (unlikely(ret != BLK_STS_OK)) { 1281 errors++; 1282 blk_mq_end_request(rq, BLK_STS_IOERR); 1283 continue; 1284 } 1285 1286 queued++; 1287 } while (!list_empty(list)); 1288 1289 hctx->dispatched[queued_to_index(queued)]++; 1290 1291 /* 1292 * Any items that need requeuing? Stuff them into hctx->dispatch, 1293 * that is where we will continue on next queue run. 1294 */ 1295 if (!list_empty(list)) { 1296 bool needs_restart; 1297 1298 /* 1299 * If we didn't flush the entire list, we could have told 1300 * the driver there was more coming, but that turned out to 1301 * be a lie. 1302 */ 1303 if (q->mq_ops->commit_rqs) 1304 q->mq_ops->commit_rqs(hctx); 1305 1306 spin_lock(&hctx->lock); 1307 list_splice_init(list, &hctx->dispatch); 1308 spin_unlock(&hctx->lock); 1309 1310 /* 1311 * If SCHED_RESTART was set by the caller of this function and 1312 * it is no longer set that means that it was cleared by another 1313 * thread and hence that a queue rerun is needed. 1314 * 1315 * If 'no_tag' is set, that means that we failed getting 1316 * a driver tag with an I/O scheduler attached. If our dispatch 1317 * waitqueue is no longer active, ensure that we run the queue 1318 * AFTER adding our entries back to the list. 1319 * 1320 * If no I/O scheduler has been configured it is possible that 1321 * the hardware queue got stopped and restarted before requests 1322 * were pushed back onto the dispatch list. Rerun the queue to 1323 * avoid starvation. Notes: 1324 * - blk_mq_run_hw_queue() checks whether or not a queue has 1325 * been stopped before rerunning a queue. 1326 * - Some but not all block drivers stop a queue before 1327 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1328 * and dm-rq. 1329 * 1330 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1331 * bit is set, run queue after a delay to avoid IO stalls 1332 * that could otherwise occur if the queue is idle. 1333 */ 1334 needs_restart = blk_mq_sched_needs_restart(hctx); 1335 if (!needs_restart || 1336 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1337 blk_mq_run_hw_queue(hctx, true); 1338 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1339 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1340 1341 blk_mq_update_dispatch_busy(hctx, true); 1342 return false; 1343 } else 1344 blk_mq_update_dispatch_busy(hctx, false); 1345 1346 /* 1347 * If the host/device is unable to accept more work, inform the 1348 * caller of that. 1349 */ 1350 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1351 return false; 1352 1353 return (queued + errors) != 0; 1354 } 1355 1356 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1357 { 1358 int srcu_idx; 1359 1360 /* 1361 * We should be running this queue from one of the CPUs that 1362 * are mapped to it. 1363 * 1364 * There are at least two related races now between setting 1365 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1366 * __blk_mq_run_hw_queue(): 1367 * 1368 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1369 * but later it becomes online, then this warning is harmless 1370 * at all 1371 * 1372 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1373 * but later it becomes offline, then the warning can't be 1374 * triggered, and we depend on blk-mq timeout handler to 1375 * handle dispatched requests to this hctx 1376 */ 1377 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1378 cpu_online(hctx->next_cpu)) { 1379 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1380 raw_smp_processor_id(), 1381 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1382 dump_stack(); 1383 } 1384 1385 /* 1386 * We can't run the queue inline with ints disabled. Ensure that 1387 * we catch bad users of this early. 1388 */ 1389 WARN_ON_ONCE(in_interrupt()); 1390 1391 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1392 1393 hctx_lock(hctx, &srcu_idx); 1394 blk_mq_sched_dispatch_requests(hctx); 1395 hctx_unlock(hctx, srcu_idx); 1396 } 1397 1398 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1399 { 1400 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1401 1402 if (cpu >= nr_cpu_ids) 1403 cpu = cpumask_first(hctx->cpumask); 1404 return cpu; 1405 } 1406 1407 /* 1408 * It'd be great if the workqueue API had a way to pass 1409 * in a mask and had some smarts for more clever placement. 1410 * For now we just round-robin here, switching for every 1411 * BLK_MQ_CPU_WORK_BATCH queued items. 1412 */ 1413 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1414 { 1415 bool tried = false; 1416 int next_cpu = hctx->next_cpu; 1417 1418 if (hctx->queue->nr_hw_queues == 1) 1419 return WORK_CPU_UNBOUND; 1420 1421 if (--hctx->next_cpu_batch <= 0) { 1422 select_cpu: 1423 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1424 cpu_online_mask); 1425 if (next_cpu >= nr_cpu_ids) 1426 next_cpu = blk_mq_first_mapped_cpu(hctx); 1427 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1428 } 1429 1430 /* 1431 * Do unbound schedule if we can't find a online CPU for this hctx, 1432 * and it should only happen in the path of handling CPU DEAD. 1433 */ 1434 if (!cpu_online(next_cpu)) { 1435 if (!tried) { 1436 tried = true; 1437 goto select_cpu; 1438 } 1439 1440 /* 1441 * Make sure to re-select CPU next time once after CPUs 1442 * in hctx->cpumask become online again. 1443 */ 1444 hctx->next_cpu = next_cpu; 1445 hctx->next_cpu_batch = 1; 1446 return WORK_CPU_UNBOUND; 1447 } 1448 1449 hctx->next_cpu = next_cpu; 1450 return next_cpu; 1451 } 1452 1453 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1454 unsigned long msecs) 1455 { 1456 if (unlikely(blk_mq_hctx_stopped(hctx))) 1457 return; 1458 1459 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1460 int cpu = get_cpu(); 1461 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1462 __blk_mq_run_hw_queue(hctx); 1463 put_cpu(); 1464 return; 1465 } 1466 1467 put_cpu(); 1468 } 1469 1470 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1471 msecs_to_jiffies(msecs)); 1472 } 1473 1474 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1475 { 1476 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1477 } 1478 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1479 1480 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1481 { 1482 int srcu_idx; 1483 bool need_run; 1484 1485 /* 1486 * When queue is quiesced, we may be switching io scheduler, or 1487 * updating nr_hw_queues, or other things, and we can't run queue 1488 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1489 * 1490 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1491 * quiesced. 1492 */ 1493 hctx_lock(hctx, &srcu_idx); 1494 need_run = !blk_queue_quiesced(hctx->queue) && 1495 blk_mq_hctx_has_pending(hctx); 1496 hctx_unlock(hctx, srcu_idx); 1497 1498 if (need_run) { 1499 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1500 return true; 1501 } 1502 1503 return false; 1504 } 1505 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1506 1507 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1508 { 1509 struct blk_mq_hw_ctx *hctx; 1510 int i; 1511 1512 queue_for_each_hw_ctx(q, hctx, i) { 1513 if (blk_mq_hctx_stopped(hctx)) 1514 continue; 1515 1516 blk_mq_run_hw_queue(hctx, async); 1517 } 1518 } 1519 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1520 1521 /** 1522 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1523 * @q: request queue. 1524 * 1525 * The caller is responsible for serializing this function against 1526 * blk_mq_{start,stop}_hw_queue(). 1527 */ 1528 bool blk_mq_queue_stopped(struct request_queue *q) 1529 { 1530 struct blk_mq_hw_ctx *hctx; 1531 int i; 1532 1533 queue_for_each_hw_ctx(q, hctx, i) 1534 if (blk_mq_hctx_stopped(hctx)) 1535 return true; 1536 1537 return false; 1538 } 1539 EXPORT_SYMBOL(blk_mq_queue_stopped); 1540 1541 /* 1542 * This function is often used for pausing .queue_rq() by driver when 1543 * there isn't enough resource or some conditions aren't satisfied, and 1544 * BLK_STS_RESOURCE is usually returned. 1545 * 1546 * We do not guarantee that dispatch can be drained or blocked 1547 * after blk_mq_stop_hw_queue() returns. Please use 1548 * blk_mq_quiesce_queue() for that requirement. 1549 */ 1550 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1551 { 1552 cancel_delayed_work(&hctx->run_work); 1553 1554 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1555 } 1556 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1557 1558 /* 1559 * This function is often used for pausing .queue_rq() by driver when 1560 * there isn't enough resource or some conditions aren't satisfied, and 1561 * BLK_STS_RESOURCE is usually returned. 1562 * 1563 * We do not guarantee that dispatch can be drained or blocked 1564 * after blk_mq_stop_hw_queues() returns. Please use 1565 * blk_mq_quiesce_queue() for that requirement. 1566 */ 1567 void blk_mq_stop_hw_queues(struct request_queue *q) 1568 { 1569 struct blk_mq_hw_ctx *hctx; 1570 int i; 1571 1572 queue_for_each_hw_ctx(q, hctx, i) 1573 blk_mq_stop_hw_queue(hctx); 1574 } 1575 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1576 1577 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1578 { 1579 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1580 1581 blk_mq_run_hw_queue(hctx, false); 1582 } 1583 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1584 1585 void blk_mq_start_hw_queues(struct request_queue *q) 1586 { 1587 struct blk_mq_hw_ctx *hctx; 1588 int i; 1589 1590 queue_for_each_hw_ctx(q, hctx, i) 1591 blk_mq_start_hw_queue(hctx); 1592 } 1593 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1594 1595 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1596 { 1597 if (!blk_mq_hctx_stopped(hctx)) 1598 return; 1599 1600 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1601 blk_mq_run_hw_queue(hctx, async); 1602 } 1603 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1604 1605 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1606 { 1607 struct blk_mq_hw_ctx *hctx; 1608 int i; 1609 1610 queue_for_each_hw_ctx(q, hctx, i) 1611 blk_mq_start_stopped_hw_queue(hctx, async); 1612 } 1613 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1614 1615 static void blk_mq_run_work_fn(struct work_struct *work) 1616 { 1617 struct blk_mq_hw_ctx *hctx; 1618 1619 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1620 1621 /* 1622 * If we are stopped, don't run the queue. 1623 */ 1624 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1625 return; 1626 1627 __blk_mq_run_hw_queue(hctx); 1628 } 1629 1630 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1631 struct request *rq, 1632 bool at_head) 1633 { 1634 struct blk_mq_ctx *ctx = rq->mq_ctx; 1635 enum hctx_type type = hctx->type; 1636 1637 lockdep_assert_held(&ctx->lock); 1638 1639 trace_block_rq_insert(hctx->queue, rq); 1640 1641 if (at_head) 1642 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1643 else 1644 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1645 } 1646 1647 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1648 bool at_head) 1649 { 1650 struct blk_mq_ctx *ctx = rq->mq_ctx; 1651 1652 lockdep_assert_held(&ctx->lock); 1653 1654 __blk_mq_insert_req_list(hctx, rq, at_head); 1655 blk_mq_hctx_mark_pending(hctx, ctx); 1656 } 1657 1658 /* 1659 * Should only be used carefully, when the caller knows we want to 1660 * bypass a potential IO scheduler on the target device. 1661 */ 1662 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1663 { 1664 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1665 1666 spin_lock(&hctx->lock); 1667 list_add_tail(&rq->queuelist, &hctx->dispatch); 1668 spin_unlock(&hctx->lock); 1669 1670 if (run_queue) 1671 blk_mq_run_hw_queue(hctx, false); 1672 } 1673 1674 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1675 struct list_head *list) 1676 1677 { 1678 struct request *rq; 1679 enum hctx_type type = hctx->type; 1680 1681 /* 1682 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1683 * offline now 1684 */ 1685 list_for_each_entry(rq, list, queuelist) { 1686 BUG_ON(rq->mq_ctx != ctx); 1687 trace_block_rq_insert(hctx->queue, rq); 1688 } 1689 1690 spin_lock(&ctx->lock); 1691 list_splice_tail_init(list, &ctx->rq_lists[type]); 1692 blk_mq_hctx_mark_pending(hctx, ctx); 1693 spin_unlock(&ctx->lock); 1694 } 1695 1696 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1697 { 1698 struct request *rqa = container_of(a, struct request, queuelist); 1699 struct request *rqb = container_of(b, struct request, queuelist); 1700 1701 if (rqa->mq_ctx < rqb->mq_ctx) 1702 return -1; 1703 else if (rqa->mq_ctx > rqb->mq_ctx) 1704 return 1; 1705 else if (rqa->mq_hctx < rqb->mq_hctx) 1706 return -1; 1707 else if (rqa->mq_hctx > rqb->mq_hctx) 1708 return 1; 1709 1710 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1711 } 1712 1713 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1714 { 1715 struct blk_mq_hw_ctx *this_hctx; 1716 struct blk_mq_ctx *this_ctx; 1717 struct request_queue *this_q; 1718 struct request *rq; 1719 LIST_HEAD(list); 1720 LIST_HEAD(rq_list); 1721 unsigned int depth; 1722 1723 list_splice_init(&plug->mq_list, &list); 1724 1725 if (plug->rq_count > 2 && plug->multiple_queues) 1726 list_sort(NULL, &list, plug_rq_cmp); 1727 1728 plug->rq_count = 0; 1729 1730 this_q = NULL; 1731 this_hctx = NULL; 1732 this_ctx = NULL; 1733 depth = 0; 1734 1735 while (!list_empty(&list)) { 1736 rq = list_entry_rq(list.next); 1737 list_del_init(&rq->queuelist); 1738 BUG_ON(!rq->q); 1739 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1740 if (this_hctx) { 1741 trace_block_unplug(this_q, depth, !from_schedule); 1742 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1743 &rq_list, 1744 from_schedule); 1745 } 1746 1747 this_q = rq->q; 1748 this_ctx = rq->mq_ctx; 1749 this_hctx = rq->mq_hctx; 1750 depth = 0; 1751 } 1752 1753 depth++; 1754 list_add_tail(&rq->queuelist, &rq_list); 1755 } 1756 1757 /* 1758 * If 'this_hctx' is set, we know we have entries to complete 1759 * on 'rq_list'. Do those. 1760 */ 1761 if (this_hctx) { 1762 trace_block_unplug(this_q, depth, !from_schedule); 1763 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1764 from_schedule); 1765 } 1766 } 1767 1768 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1769 unsigned int nr_segs) 1770 { 1771 if (bio->bi_opf & REQ_RAHEAD) 1772 rq->cmd_flags |= REQ_FAILFAST_MASK; 1773 1774 rq->__sector = bio->bi_iter.bi_sector; 1775 rq->write_hint = bio->bi_write_hint; 1776 blk_rq_bio_prep(rq, bio, nr_segs); 1777 1778 blk_account_io_start(rq, true); 1779 } 1780 1781 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1782 struct request *rq, 1783 blk_qc_t *cookie, bool last) 1784 { 1785 struct request_queue *q = rq->q; 1786 struct blk_mq_queue_data bd = { 1787 .rq = rq, 1788 .last = last, 1789 }; 1790 blk_qc_t new_cookie; 1791 blk_status_t ret; 1792 1793 new_cookie = request_to_qc_t(hctx, rq); 1794 1795 /* 1796 * For OK queue, we are done. For error, caller may kill it. 1797 * Any other error (busy), just add it to our list as we 1798 * previously would have done. 1799 */ 1800 ret = q->mq_ops->queue_rq(hctx, &bd); 1801 switch (ret) { 1802 case BLK_STS_OK: 1803 blk_mq_update_dispatch_busy(hctx, false); 1804 *cookie = new_cookie; 1805 break; 1806 case BLK_STS_RESOURCE: 1807 case BLK_STS_DEV_RESOURCE: 1808 blk_mq_update_dispatch_busy(hctx, true); 1809 __blk_mq_requeue_request(rq); 1810 break; 1811 default: 1812 blk_mq_update_dispatch_busy(hctx, false); 1813 *cookie = BLK_QC_T_NONE; 1814 break; 1815 } 1816 1817 return ret; 1818 } 1819 1820 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1821 struct request *rq, 1822 blk_qc_t *cookie, 1823 bool bypass_insert, bool last) 1824 { 1825 struct request_queue *q = rq->q; 1826 bool run_queue = true; 1827 1828 /* 1829 * RCU or SRCU read lock is needed before checking quiesced flag. 1830 * 1831 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1832 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1833 * and avoid driver to try to dispatch again. 1834 */ 1835 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1836 run_queue = false; 1837 bypass_insert = false; 1838 goto insert; 1839 } 1840 1841 if (q->elevator && !bypass_insert) 1842 goto insert; 1843 1844 if (!blk_mq_get_dispatch_budget(hctx)) 1845 goto insert; 1846 1847 if (!blk_mq_get_driver_tag(rq)) { 1848 blk_mq_put_dispatch_budget(hctx); 1849 goto insert; 1850 } 1851 1852 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1853 insert: 1854 if (bypass_insert) 1855 return BLK_STS_RESOURCE; 1856 1857 blk_mq_request_bypass_insert(rq, run_queue); 1858 return BLK_STS_OK; 1859 } 1860 1861 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1862 struct request *rq, blk_qc_t *cookie) 1863 { 1864 blk_status_t ret; 1865 int srcu_idx; 1866 1867 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1868 1869 hctx_lock(hctx, &srcu_idx); 1870 1871 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1872 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1873 blk_mq_request_bypass_insert(rq, true); 1874 else if (ret != BLK_STS_OK) 1875 blk_mq_end_request(rq, ret); 1876 1877 hctx_unlock(hctx, srcu_idx); 1878 } 1879 1880 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1881 { 1882 blk_status_t ret; 1883 int srcu_idx; 1884 blk_qc_t unused_cookie; 1885 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1886 1887 hctx_lock(hctx, &srcu_idx); 1888 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1889 hctx_unlock(hctx, srcu_idx); 1890 1891 return ret; 1892 } 1893 1894 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1895 struct list_head *list) 1896 { 1897 while (!list_empty(list)) { 1898 blk_status_t ret; 1899 struct request *rq = list_first_entry(list, struct request, 1900 queuelist); 1901 1902 list_del_init(&rq->queuelist); 1903 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1904 if (ret != BLK_STS_OK) { 1905 if (ret == BLK_STS_RESOURCE || 1906 ret == BLK_STS_DEV_RESOURCE) { 1907 blk_mq_request_bypass_insert(rq, 1908 list_empty(list)); 1909 break; 1910 } 1911 blk_mq_end_request(rq, ret); 1912 } 1913 } 1914 1915 /* 1916 * If we didn't flush the entire list, we could have told 1917 * the driver there was more coming, but that turned out to 1918 * be a lie. 1919 */ 1920 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) 1921 hctx->queue->mq_ops->commit_rqs(hctx); 1922 } 1923 1924 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1925 { 1926 list_add_tail(&rq->queuelist, &plug->mq_list); 1927 plug->rq_count++; 1928 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1929 struct request *tmp; 1930 1931 tmp = list_first_entry(&plug->mq_list, struct request, 1932 queuelist); 1933 if (tmp->q != rq->q) 1934 plug->multiple_queues = true; 1935 } 1936 } 1937 1938 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1939 { 1940 const int is_sync = op_is_sync(bio->bi_opf); 1941 const int is_flush_fua = op_is_flush(bio->bi_opf); 1942 struct blk_mq_alloc_data data = { .flags = 0}; 1943 struct request *rq; 1944 struct blk_plug *plug; 1945 struct request *same_queue_rq = NULL; 1946 unsigned int nr_segs; 1947 blk_qc_t cookie; 1948 1949 blk_queue_bounce(q, &bio); 1950 __blk_queue_split(q, &bio, &nr_segs); 1951 1952 if (!bio_integrity_prep(bio)) 1953 return BLK_QC_T_NONE; 1954 1955 if (!is_flush_fua && !blk_queue_nomerges(q) && 1956 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 1957 return BLK_QC_T_NONE; 1958 1959 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 1960 return BLK_QC_T_NONE; 1961 1962 rq_qos_throttle(q, bio); 1963 1964 data.cmd_flags = bio->bi_opf; 1965 rq = blk_mq_get_request(q, bio, &data); 1966 if (unlikely(!rq)) { 1967 rq_qos_cleanup(q, bio); 1968 if (bio->bi_opf & REQ_NOWAIT) 1969 bio_wouldblock_error(bio); 1970 return BLK_QC_T_NONE; 1971 } 1972 1973 trace_block_getrq(q, bio, bio->bi_opf); 1974 1975 rq_qos_track(q, rq, bio); 1976 1977 cookie = request_to_qc_t(data.hctx, rq); 1978 1979 blk_mq_bio_to_request(rq, bio, nr_segs); 1980 1981 plug = blk_mq_plug(q, bio); 1982 if (unlikely(is_flush_fua)) { 1983 /* bypass scheduler for flush rq */ 1984 blk_insert_flush(rq); 1985 blk_mq_run_hw_queue(data.hctx, true); 1986 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1987 /* 1988 * Use plugging if we have a ->commit_rqs() hook as well, as 1989 * we know the driver uses bd->last in a smart fashion. 1990 */ 1991 unsigned int request_count = plug->rq_count; 1992 struct request *last = NULL; 1993 1994 if (!request_count) 1995 trace_block_plug(q); 1996 else 1997 last = list_entry_rq(plug->mq_list.prev); 1998 1999 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2000 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2001 blk_flush_plug_list(plug, false); 2002 trace_block_plug(q); 2003 } 2004 2005 blk_add_rq_to_plug(plug, rq); 2006 } else if (plug && !blk_queue_nomerges(q)) { 2007 /* 2008 * We do limited plugging. If the bio can be merged, do that. 2009 * Otherwise the existing request in the plug list will be 2010 * issued. So the plug list will have one request at most 2011 * The plug list might get flushed before this. If that happens, 2012 * the plug list is empty, and same_queue_rq is invalid. 2013 */ 2014 if (list_empty(&plug->mq_list)) 2015 same_queue_rq = NULL; 2016 if (same_queue_rq) { 2017 list_del_init(&same_queue_rq->queuelist); 2018 plug->rq_count--; 2019 } 2020 blk_add_rq_to_plug(plug, rq); 2021 trace_block_plug(q); 2022 2023 if (same_queue_rq) { 2024 data.hctx = same_queue_rq->mq_hctx; 2025 trace_block_unplug(q, 1, true); 2026 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2027 &cookie); 2028 } 2029 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2030 !data.hctx->dispatch_busy)) { 2031 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2032 } else { 2033 blk_mq_sched_insert_request(rq, false, true, true); 2034 } 2035 2036 return cookie; 2037 } 2038 2039 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2040 unsigned int hctx_idx) 2041 { 2042 struct page *page; 2043 2044 if (tags->rqs && set->ops->exit_request) { 2045 int i; 2046 2047 for (i = 0; i < tags->nr_tags; i++) { 2048 struct request *rq = tags->static_rqs[i]; 2049 2050 if (!rq) 2051 continue; 2052 set->ops->exit_request(set, rq, hctx_idx); 2053 tags->static_rqs[i] = NULL; 2054 } 2055 } 2056 2057 while (!list_empty(&tags->page_list)) { 2058 page = list_first_entry(&tags->page_list, struct page, lru); 2059 list_del_init(&page->lru); 2060 /* 2061 * Remove kmemleak object previously allocated in 2062 * blk_mq_alloc_rqs(). 2063 */ 2064 kmemleak_free(page_address(page)); 2065 __free_pages(page, page->private); 2066 } 2067 } 2068 2069 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2070 { 2071 kfree(tags->rqs); 2072 tags->rqs = NULL; 2073 kfree(tags->static_rqs); 2074 tags->static_rqs = NULL; 2075 2076 blk_mq_free_tags(tags); 2077 } 2078 2079 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2080 unsigned int hctx_idx, 2081 unsigned int nr_tags, 2082 unsigned int reserved_tags) 2083 { 2084 struct blk_mq_tags *tags; 2085 int node; 2086 2087 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2088 if (node == NUMA_NO_NODE) 2089 node = set->numa_node; 2090 2091 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2092 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2093 if (!tags) 2094 return NULL; 2095 2096 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2097 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2098 node); 2099 if (!tags->rqs) { 2100 blk_mq_free_tags(tags); 2101 return NULL; 2102 } 2103 2104 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2105 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2106 node); 2107 if (!tags->static_rqs) { 2108 kfree(tags->rqs); 2109 blk_mq_free_tags(tags); 2110 return NULL; 2111 } 2112 2113 return tags; 2114 } 2115 2116 static size_t order_to_size(unsigned int order) 2117 { 2118 return (size_t)PAGE_SIZE << order; 2119 } 2120 2121 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2122 unsigned int hctx_idx, int node) 2123 { 2124 int ret; 2125 2126 if (set->ops->init_request) { 2127 ret = set->ops->init_request(set, rq, hctx_idx, node); 2128 if (ret) 2129 return ret; 2130 } 2131 2132 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2133 return 0; 2134 } 2135 2136 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2137 unsigned int hctx_idx, unsigned int depth) 2138 { 2139 unsigned int i, j, entries_per_page, max_order = 4; 2140 size_t rq_size, left; 2141 int node; 2142 2143 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2144 if (node == NUMA_NO_NODE) 2145 node = set->numa_node; 2146 2147 INIT_LIST_HEAD(&tags->page_list); 2148 2149 /* 2150 * rq_size is the size of the request plus driver payload, rounded 2151 * to the cacheline size 2152 */ 2153 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2154 cache_line_size()); 2155 left = rq_size * depth; 2156 2157 for (i = 0; i < depth; ) { 2158 int this_order = max_order; 2159 struct page *page; 2160 int to_do; 2161 void *p; 2162 2163 while (this_order && left < order_to_size(this_order - 1)) 2164 this_order--; 2165 2166 do { 2167 page = alloc_pages_node(node, 2168 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2169 this_order); 2170 if (page) 2171 break; 2172 if (!this_order--) 2173 break; 2174 if (order_to_size(this_order) < rq_size) 2175 break; 2176 } while (1); 2177 2178 if (!page) 2179 goto fail; 2180 2181 page->private = this_order; 2182 list_add_tail(&page->lru, &tags->page_list); 2183 2184 p = page_address(page); 2185 /* 2186 * Allow kmemleak to scan these pages as they contain pointers 2187 * to additional allocations like via ops->init_request(). 2188 */ 2189 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2190 entries_per_page = order_to_size(this_order) / rq_size; 2191 to_do = min(entries_per_page, depth - i); 2192 left -= to_do * rq_size; 2193 for (j = 0; j < to_do; j++) { 2194 struct request *rq = p; 2195 2196 tags->static_rqs[i] = rq; 2197 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2198 tags->static_rqs[i] = NULL; 2199 goto fail; 2200 } 2201 2202 p += rq_size; 2203 i++; 2204 } 2205 } 2206 return 0; 2207 2208 fail: 2209 blk_mq_free_rqs(set, tags, hctx_idx); 2210 return -ENOMEM; 2211 } 2212 2213 /* 2214 * 'cpu' is going away. splice any existing rq_list entries from this 2215 * software queue to the hw queue dispatch list, and ensure that it 2216 * gets run. 2217 */ 2218 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2219 { 2220 struct blk_mq_hw_ctx *hctx; 2221 struct blk_mq_ctx *ctx; 2222 LIST_HEAD(tmp); 2223 enum hctx_type type; 2224 2225 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2226 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2227 type = hctx->type; 2228 2229 spin_lock(&ctx->lock); 2230 if (!list_empty(&ctx->rq_lists[type])) { 2231 list_splice_init(&ctx->rq_lists[type], &tmp); 2232 blk_mq_hctx_clear_pending(hctx, ctx); 2233 } 2234 spin_unlock(&ctx->lock); 2235 2236 if (list_empty(&tmp)) 2237 return 0; 2238 2239 spin_lock(&hctx->lock); 2240 list_splice_tail_init(&tmp, &hctx->dispatch); 2241 spin_unlock(&hctx->lock); 2242 2243 blk_mq_run_hw_queue(hctx, true); 2244 return 0; 2245 } 2246 2247 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2248 { 2249 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2250 &hctx->cpuhp_dead); 2251 } 2252 2253 /* hctx->ctxs will be freed in queue's release handler */ 2254 static void blk_mq_exit_hctx(struct request_queue *q, 2255 struct blk_mq_tag_set *set, 2256 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2257 { 2258 if (blk_mq_hw_queue_mapped(hctx)) 2259 blk_mq_tag_idle(hctx); 2260 2261 if (set->ops->exit_request) 2262 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2263 2264 if (set->ops->exit_hctx) 2265 set->ops->exit_hctx(hctx, hctx_idx); 2266 2267 blk_mq_remove_cpuhp(hctx); 2268 2269 spin_lock(&q->unused_hctx_lock); 2270 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2271 spin_unlock(&q->unused_hctx_lock); 2272 } 2273 2274 static void blk_mq_exit_hw_queues(struct request_queue *q, 2275 struct blk_mq_tag_set *set, int nr_queue) 2276 { 2277 struct blk_mq_hw_ctx *hctx; 2278 unsigned int i; 2279 2280 queue_for_each_hw_ctx(q, hctx, i) { 2281 if (i == nr_queue) 2282 break; 2283 blk_mq_debugfs_unregister_hctx(hctx); 2284 blk_mq_exit_hctx(q, set, hctx, i); 2285 } 2286 } 2287 2288 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2289 { 2290 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2291 2292 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2293 __alignof__(struct blk_mq_hw_ctx)) != 2294 sizeof(struct blk_mq_hw_ctx)); 2295 2296 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2297 hw_ctx_size += sizeof(struct srcu_struct); 2298 2299 return hw_ctx_size; 2300 } 2301 2302 static int blk_mq_init_hctx(struct request_queue *q, 2303 struct blk_mq_tag_set *set, 2304 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2305 { 2306 hctx->queue_num = hctx_idx; 2307 2308 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2309 2310 hctx->tags = set->tags[hctx_idx]; 2311 2312 if (set->ops->init_hctx && 2313 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2314 goto unregister_cpu_notifier; 2315 2316 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2317 hctx->numa_node)) 2318 goto exit_hctx; 2319 return 0; 2320 2321 exit_hctx: 2322 if (set->ops->exit_hctx) 2323 set->ops->exit_hctx(hctx, hctx_idx); 2324 unregister_cpu_notifier: 2325 blk_mq_remove_cpuhp(hctx); 2326 return -1; 2327 } 2328 2329 static struct blk_mq_hw_ctx * 2330 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2331 int node) 2332 { 2333 struct blk_mq_hw_ctx *hctx; 2334 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2335 2336 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2337 if (!hctx) 2338 goto fail_alloc_hctx; 2339 2340 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2341 goto free_hctx; 2342 2343 atomic_set(&hctx->nr_active, 0); 2344 if (node == NUMA_NO_NODE) 2345 node = set->numa_node; 2346 hctx->numa_node = node; 2347 2348 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2349 spin_lock_init(&hctx->lock); 2350 INIT_LIST_HEAD(&hctx->dispatch); 2351 hctx->queue = q; 2352 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2353 2354 INIT_LIST_HEAD(&hctx->hctx_list); 2355 2356 /* 2357 * Allocate space for all possible cpus to avoid allocation at 2358 * runtime 2359 */ 2360 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2361 gfp, node); 2362 if (!hctx->ctxs) 2363 goto free_cpumask; 2364 2365 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2366 gfp, node)) 2367 goto free_ctxs; 2368 hctx->nr_ctx = 0; 2369 2370 spin_lock_init(&hctx->dispatch_wait_lock); 2371 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2372 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2373 2374 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2375 gfp); 2376 if (!hctx->fq) 2377 goto free_bitmap; 2378 2379 if (hctx->flags & BLK_MQ_F_BLOCKING) 2380 init_srcu_struct(hctx->srcu); 2381 blk_mq_hctx_kobj_init(hctx); 2382 2383 return hctx; 2384 2385 free_bitmap: 2386 sbitmap_free(&hctx->ctx_map); 2387 free_ctxs: 2388 kfree(hctx->ctxs); 2389 free_cpumask: 2390 free_cpumask_var(hctx->cpumask); 2391 free_hctx: 2392 kfree(hctx); 2393 fail_alloc_hctx: 2394 return NULL; 2395 } 2396 2397 static void blk_mq_init_cpu_queues(struct request_queue *q, 2398 unsigned int nr_hw_queues) 2399 { 2400 struct blk_mq_tag_set *set = q->tag_set; 2401 unsigned int i, j; 2402 2403 for_each_possible_cpu(i) { 2404 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2405 struct blk_mq_hw_ctx *hctx; 2406 int k; 2407 2408 __ctx->cpu = i; 2409 spin_lock_init(&__ctx->lock); 2410 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2411 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2412 2413 __ctx->queue = q; 2414 2415 /* 2416 * Set local node, IFF we have more than one hw queue. If 2417 * not, we remain on the home node of the device 2418 */ 2419 for (j = 0; j < set->nr_maps; j++) { 2420 hctx = blk_mq_map_queue_type(q, j, i); 2421 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2422 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2423 } 2424 } 2425 } 2426 2427 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2428 { 2429 int ret = 0; 2430 2431 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2432 set->queue_depth, set->reserved_tags); 2433 if (!set->tags[hctx_idx]) 2434 return false; 2435 2436 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2437 set->queue_depth); 2438 if (!ret) 2439 return true; 2440 2441 blk_mq_free_rq_map(set->tags[hctx_idx]); 2442 set->tags[hctx_idx] = NULL; 2443 return false; 2444 } 2445 2446 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2447 unsigned int hctx_idx) 2448 { 2449 if (set->tags && set->tags[hctx_idx]) { 2450 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2451 blk_mq_free_rq_map(set->tags[hctx_idx]); 2452 set->tags[hctx_idx] = NULL; 2453 } 2454 } 2455 2456 static void blk_mq_map_swqueue(struct request_queue *q) 2457 { 2458 unsigned int i, j, hctx_idx; 2459 struct blk_mq_hw_ctx *hctx; 2460 struct blk_mq_ctx *ctx; 2461 struct blk_mq_tag_set *set = q->tag_set; 2462 2463 queue_for_each_hw_ctx(q, hctx, i) { 2464 cpumask_clear(hctx->cpumask); 2465 hctx->nr_ctx = 0; 2466 hctx->dispatch_from = NULL; 2467 } 2468 2469 /* 2470 * Map software to hardware queues. 2471 * 2472 * If the cpu isn't present, the cpu is mapped to first hctx. 2473 */ 2474 for_each_possible_cpu(i) { 2475 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2476 /* unmapped hw queue can be remapped after CPU topo changed */ 2477 if (!set->tags[hctx_idx] && 2478 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2479 /* 2480 * If tags initialization fail for some hctx, 2481 * that hctx won't be brought online. In this 2482 * case, remap the current ctx to hctx[0] which 2483 * is guaranteed to always have tags allocated 2484 */ 2485 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2486 } 2487 2488 ctx = per_cpu_ptr(q->queue_ctx, i); 2489 for (j = 0; j < set->nr_maps; j++) { 2490 if (!set->map[j].nr_queues) { 2491 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2492 HCTX_TYPE_DEFAULT, i); 2493 continue; 2494 } 2495 2496 hctx = blk_mq_map_queue_type(q, j, i); 2497 ctx->hctxs[j] = hctx; 2498 /* 2499 * If the CPU is already set in the mask, then we've 2500 * mapped this one already. This can happen if 2501 * devices share queues across queue maps. 2502 */ 2503 if (cpumask_test_cpu(i, hctx->cpumask)) 2504 continue; 2505 2506 cpumask_set_cpu(i, hctx->cpumask); 2507 hctx->type = j; 2508 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2509 hctx->ctxs[hctx->nr_ctx++] = ctx; 2510 2511 /* 2512 * If the nr_ctx type overflows, we have exceeded the 2513 * amount of sw queues we can support. 2514 */ 2515 BUG_ON(!hctx->nr_ctx); 2516 } 2517 2518 for (; j < HCTX_MAX_TYPES; j++) 2519 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2520 HCTX_TYPE_DEFAULT, i); 2521 } 2522 2523 queue_for_each_hw_ctx(q, hctx, i) { 2524 /* 2525 * If no software queues are mapped to this hardware queue, 2526 * disable it and free the request entries. 2527 */ 2528 if (!hctx->nr_ctx) { 2529 /* Never unmap queue 0. We need it as a 2530 * fallback in case of a new remap fails 2531 * allocation 2532 */ 2533 if (i && set->tags[i]) 2534 blk_mq_free_map_and_requests(set, i); 2535 2536 hctx->tags = NULL; 2537 continue; 2538 } 2539 2540 hctx->tags = set->tags[i]; 2541 WARN_ON(!hctx->tags); 2542 2543 /* 2544 * Set the map size to the number of mapped software queues. 2545 * This is more accurate and more efficient than looping 2546 * over all possibly mapped software queues. 2547 */ 2548 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2549 2550 /* 2551 * Initialize batch roundrobin counts 2552 */ 2553 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2554 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2555 } 2556 } 2557 2558 /* 2559 * Caller needs to ensure that we're either frozen/quiesced, or that 2560 * the queue isn't live yet. 2561 */ 2562 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2563 { 2564 struct blk_mq_hw_ctx *hctx; 2565 int i; 2566 2567 queue_for_each_hw_ctx(q, hctx, i) { 2568 if (shared) 2569 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2570 else 2571 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2572 } 2573 } 2574 2575 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2576 bool shared) 2577 { 2578 struct request_queue *q; 2579 2580 lockdep_assert_held(&set->tag_list_lock); 2581 2582 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2583 blk_mq_freeze_queue(q); 2584 queue_set_hctx_shared(q, shared); 2585 blk_mq_unfreeze_queue(q); 2586 } 2587 } 2588 2589 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2590 { 2591 struct blk_mq_tag_set *set = q->tag_set; 2592 2593 mutex_lock(&set->tag_list_lock); 2594 list_del_rcu(&q->tag_set_list); 2595 if (list_is_singular(&set->tag_list)) { 2596 /* just transitioned to unshared */ 2597 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2598 /* update existing queue */ 2599 blk_mq_update_tag_set_depth(set, false); 2600 } 2601 mutex_unlock(&set->tag_list_lock); 2602 INIT_LIST_HEAD(&q->tag_set_list); 2603 } 2604 2605 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2606 struct request_queue *q) 2607 { 2608 mutex_lock(&set->tag_list_lock); 2609 2610 /* 2611 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2612 */ 2613 if (!list_empty(&set->tag_list) && 2614 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2615 set->flags |= BLK_MQ_F_TAG_SHARED; 2616 /* update existing queue */ 2617 blk_mq_update_tag_set_depth(set, true); 2618 } 2619 if (set->flags & BLK_MQ_F_TAG_SHARED) 2620 queue_set_hctx_shared(q, true); 2621 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2622 2623 mutex_unlock(&set->tag_list_lock); 2624 } 2625 2626 /* All allocations will be freed in release handler of q->mq_kobj */ 2627 static int blk_mq_alloc_ctxs(struct request_queue *q) 2628 { 2629 struct blk_mq_ctxs *ctxs; 2630 int cpu; 2631 2632 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2633 if (!ctxs) 2634 return -ENOMEM; 2635 2636 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2637 if (!ctxs->queue_ctx) 2638 goto fail; 2639 2640 for_each_possible_cpu(cpu) { 2641 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2642 ctx->ctxs = ctxs; 2643 } 2644 2645 q->mq_kobj = &ctxs->kobj; 2646 q->queue_ctx = ctxs->queue_ctx; 2647 2648 return 0; 2649 fail: 2650 kfree(ctxs); 2651 return -ENOMEM; 2652 } 2653 2654 /* 2655 * It is the actual release handler for mq, but we do it from 2656 * request queue's release handler for avoiding use-after-free 2657 * and headache because q->mq_kobj shouldn't have been introduced, 2658 * but we can't group ctx/kctx kobj without it. 2659 */ 2660 void blk_mq_release(struct request_queue *q) 2661 { 2662 struct blk_mq_hw_ctx *hctx, *next; 2663 int i; 2664 2665 queue_for_each_hw_ctx(q, hctx, i) 2666 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2667 2668 /* all hctx are in .unused_hctx_list now */ 2669 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2670 list_del_init(&hctx->hctx_list); 2671 kobject_put(&hctx->kobj); 2672 } 2673 2674 kfree(q->queue_hw_ctx); 2675 2676 /* 2677 * release .mq_kobj and sw queue's kobject now because 2678 * both share lifetime with request queue. 2679 */ 2680 blk_mq_sysfs_deinit(q); 2681 } 2682 2683 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2684 { 2685 struct request_queue *uninit_q, *q; 2686 2687 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2688 if (!uninit_q) 2689 return ERR_PTR(-ENOMEM); 2690 2691 /* 2692 * Initialize the queue without an elevator. device_add_disk() will do 2693 * the initialization. 2694 */ 2695 q = blk_mq_init_allocated_queue(set, uninit_q, false); 2696 if (IS_ERR(q)) 2697 blk_cleanup_queue(uninit_q); 2698 2699 return q; 2700 } 2701 EXPORT_SYMBOL(blk_mq_init_queue); 2702 2703 /* 2704 * Helper for setting up a queue with mq ops, given queue depth, and 2705 * the passed in mq ops flags. 2706 */ 2707 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2708 const struct blk_mq_ops *ops, 2709 unsigned int queue_depth, 2710 unsigned int set_flags) 2711 { 2712 struct request_queue *q; 2713 int ret; 2714 2715 memset(set, 0, sizeof(*set)); 2716 set->ops = ops; 2717 set->nr_hw_queues = 1; 2718 set->nr_maps = 1; 2719 set->queue_depth = queue_depth; 2720 set->numa_node = NUMA_NO_NODE; 2721 set->flags = set_flags; 2722 2723 ret = blk_mq_alloc_tag_set(set); 2724 if (ret) 2725 return ERR_PTR(ret); 2726 2727 q = blk_mq_init_queue(set); 2728 if (IS_ERR(q)) { 2729 blk_mq_free_tag_set(set); 2730 return q; 2731 } 2732 2733 return q; 2734 } 2735 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2736 2737 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2738 struct blk_mq_tag_set *set, struct request_queue *q, 2739 int hctx_idx, int node) 2740 { 2741 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2742 2743 /* reuse dead hctx first */ 2744 spin_lock(&q->unused_hctx_lock); 2745 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2746 if (tmp->numa_node == node) { 2747 hctx = tmp; 2748 break; 2749 } 2750 } 2751 if (hctx) 2752 list_del_init(&hctx->hctx_list); 2753 spin_unlock(&q->unused_hctx_lock); 2754 2755 if (!hctx) 2756 hctx = blk_mq_alloc_hctx(q, set, node); 2757 if (!hctx) 2758 goto fail; 2759 2760 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2761 goto free_hctx; 2762 2763 return hctx; 2764 2765 free_hctx: 2766 kobject_put(&hctx->kobj); 2767 fail: 2768 return NULL; 2769 } 2770 2771 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2772 struct request_queue *q) 2773 { 2774 int i, j, end; 2775 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2776 2777 /* protect against switching io scheduler */ 2778 mutex_lock(&q->sysfs_lock); 2779 for (i = 0; i < set->nr_hw_queues; i++) { 2780 int node; 2781 struct blk_mq_hw_ctx *hctx; 2782 2783 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2784 /* 2785 * If the hw queue has been mapped to another numa node, 2786 * we need to realloc the hctx. If allocation fails, fallback 2787 * to use the previous one. 2788 */ 2789 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2790 continue; 2791 2792 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2793 if (hctx) { 2794 if (hctxs[i]) 2795 blk_mq_exit_hctx(q, set, hctxs[i], i); 2796 hctxs[i] = hctx; 2797 } else { 2798 if (hctxs[i]) 2799 pr_warn("Allocate new hctx on node %d fails,\ 2800 fallback to previous one on node %d\n", 2801 node, hctxs[i]->numa_node); 2802 else 2803 break; 2804 } 2805 } 2806 /* 2807 * Increasing nr_hw_queues fails. Free the newly allocated 2808 * hctxs and keep the previous q->nr_hw_queues. 2809 */ 2810 if (i != set->nr_hw_queues) { 2811 j = q->nr_hw_queues; 2812 end = i; 2813 } else { 2814 j = i; 2815 end = q->nr_hw_queues; 2816 q->nr_hw_queues = set->nr_hw_queues; 2817 } 2818 2819 for (; j < end; j++) { 2820 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2821 2822 if (hctx) { 2823 if (hctx->tags) 2824 blk_mq_free_map_and_requests(set, j); 2825 blk_mq_exit_hctx(q, set, hctx, j); 2826 hctxs[j] = NULL; 2827 } 2828 } 2829 mutex_unlock(&q->sysfs_lock); 2830 } 2831 2832 /* 2833 * Maximum number of hardware queues we support. For single sets, we'll never 2834 * have more than the CPUs (software queues). For multiple sets, the tag_set 2835 * user may have set ->nr_hw_queues larger. 2836 */ 2837 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2838 { 2839 if (set->nr_maps == 1) 2840 return nr_cpu_ids; 2841 2842 return max(set->nr_hw_queues, nr_cpu_ids); 2843 } 2844 2845 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2846 struct request_queue *q, 2847 bool elevator_init) 2848 { 2849 /* mark the queue as mq asap */ 2850 q->mq_ops = set->ops; 2851 2852 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2853 blk_mq_poll_stats_bkt, 2854 BLK_MQ_POLL_STATS_BKTS, q); 2855 if (!q->poll_cb) 2856 goto err_exit; 2857 2858 if (blk_mq_alloc_ctxs(q)) 2859 goto err_poll; 2860 2861 /* init q->mq_kobj and sw queues' kobjects */ 2862 blk_mq_sysfs_init(q); 2863 2864 q->nr_queues = nr_hw_queues(set); 2865 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2866 GFP_KERNEL, set->numa_node); 2867 if (!q->queue_hw_ctx) 2868 goto err_sys_init; 2869 2870 INIT_LIST_HEAD(&q->unused_hctx_list); 2871 spin_lock_init(&q->unused_hctx_lock); 2872 2873 blk_mq_realloc_hw_ctxs(set, q); 2874 if (!q->nr_hw_queues) 2875 goto err_hctxs; 2876 2877 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2878 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2879 2880 q->tag_set = set; 2881 2882 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2883 if (set->nr_maps > HCTX_TYPE_POLL && 2884 set->map[HCTX_TYPE_POLL].nr_queues) 2885 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2886 2887 q->sg_reserved_size = INT_MAX; 2888 2889 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2890 INIT_LIST_HEAD(&q->requeue_list); 2891 spin_lock_init(&q->requeue_lock); 2892 2893 blk_queue_make_request(q, blk_mq_make_request); 2894 2895 /* 2896 * Do this after blk_queue_make_request() overrides it... 2897 */ 2898 q->nr_requests = set->queue_depth; 2899 2900 /* 2901 * Default to classic polling 2902 */ 2903 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2904 2905 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2906 blk_mq_add_queue_tag_set(set, q); 2907 blk_mq_map_swqueue(q); 2908 2909 if (elevator_init) 2910 elevator_init_mq(q); 2911 2912 return q; 2913 2914 err_hctxs: 2915 kfree(q->queue_hw_ctx); 2916 q->nr_hw_queues = 0; 2917 err_sys_init: 2918 blk_mq_sysfs_deinit(q); 2919 err_poll: 2920 blk_stat_free_callback(q->poll_cb); 2921 q->poll_cb = NULL; 2922 err_exit: 2923 q->mq_ops = NULL; 2924 return ERR_PTR(-ENOMEM); 2925 } 2926 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2927 2928 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2929 void blk_mq_exit_queue(struct request_queue *q) 2930 { 2931 struct blk_mq_tag_set *set = q->tag_set; 2932 2933 blk_mq_del_queue_tag_set(q); 2934 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2935 } 2936 2937 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2938 { 2939 int i; 2940 2941 for (i = 0; i < set->nr_hw_queues; i++) 2942 if (!__blk_mq_alloc_rq_map(set, i)) 2943 goto out_unwind; 2944 2945 return 0; 2946 2947 out_unwind: 2948 while (--i >= 0) 2949 blk_mq_free_rq_map(set->tags[i]); 2950 2951 return -ENOMEM; 2952 } 2953 2954 /* 2955 * Allocate the request maps associated with this tag_set. Note that this 2956 * may reduce the depth asked for, if memory is tight. set->queue_depth 2957 * will be updated to reflect the allocated depth. 2958 */ 2959 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2960 { 2961 unsigned int depth; 2962 int err; 2963 2964 depth = set->queue_depth; 2965 do { 2966 err = __blk_mq_alloc_rq_maps(set); 2967 if (!err) 2968 break; 2969 2970 set->queue_depth >>= 1; 2971 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2972 err = -ENOMEM; 2973 break; 2974 } 2975 } while (set->queue_depth); 2976 2977 if (!set->queue_depth || err) { 2978 pr_err("blk-mq: failed to allocate request map\n"); 2979 return -ENOMEM; 2980 } 2981 2982 if (depth != set->queue_depth) 2983 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2984 depth, set->queue_depth); 2985 2986 return 0; 2987 } 2988 2989 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2990 { 2991 if (set->ops->map_queues && !is_kdump_kernel()) { 2992 int i; 2993 2994 /* 2995 * transport .map_queues is usually done in the following 2996 * way: 2997 * 2998 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2999 * mask = get_cpu_mask(queue) 3000 * for_each_cpu(cpu, mask) 3001 * set->map[x].mq_map[cpu] = queue; 3002 * } 3003 * 3004 * When we need to remap, the table has to be cleared for 3005 * killing stale mapping since one CPU may not be mapped 3006 * to any hw queue. 3007 */ 3008 for (i = 0; i < set->nr_maps; i++) 3009 blk_mq_clear_mq_map(&set->map[i]); 3010 3011 return set->ops->map_queues(set); 3012 } else { 3013 BUG_ON(set->nr_maps > 1); 3014 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3015 } 3016 } 3017 3018 /* 3019 * Alloc a tag set to be associated with one or more request queues. 3020 * May fail with EINVAL for various error conditions. May adjust the 3021 * requested depth down, if it's too large. In that case, the set 3022 * value will be stored in set->queue_depth. 3023 */ 3024 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3025 { 3026 int i, ret; 3027 3028 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3029 3030 if (!set->nr_hw_queues) 3031 return -EINVAL; 3032 if (!set->queue_depth) 3033 return -EINVAL; 3034 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3035 return -EINVAL; 3036 3037 if (!set->ops->queue_rq) 3038 return -EINVAL; 3039 3040 if (!set->ops->get_budget ^ !set->ops->put_budget) 3041 return -EINVAL; 3042 3043 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3044 pr_info("blk-mq: reduced tag depth to %u\n", 3045 BLK_MQ_MAX_DEPTH); 3046 set->queue_depth = BLK_MQ_MAX_DEPTH; 3047 } 3048 3049 if (!set->nr_maps) 3050 set->nr_maps = 1; 3051 else if (set->nr_maps > HCTX_MAX_TYPES) 3052 return -EINVAL; 3053 3054 /* 3055 * If a crashdump is active, then we are potentially in a very 3056 * memory constrained environment. Limit us to 1 queue and 3057 * 64 tags to prevent using too much memory. 3058 */ 3059 if (is_kdump_kernel()) { 3060 set->nr_hw_queues = 1; 3061 set->nr_maps = 1; 3062 set->queue_depth = min(64U, set->queue_depth); 3063 } 3064 /* 3065 * There is no use for more h/w queues than cpus if we just have 3066 * a single map 3067 */ 3068 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3069 set->nr_hw_queues = nr_cpu_ids; 3070 3071 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3072 GFP_KERNEL, set->numa_node); 3073 if (!set->tags) 3074 return -ENOMEM; 3075 3076 ret = -ENOMEM; 3077 for (i = 0; i < set->nr_maps; i++) { 3078 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3079 sizeof(set->map[i].mq_map[0]), 3080 GFP_KERNEL, set->numa_node); 3081 if (!set->map[i].mq_map) 3082 goto out_free_mq_map; 3083 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3084 } 3085 3086 ret = blk_mq_update_queue_map(set); 3087 if (ret) 3088 goto out_free_mq_map; 3089 3090 ret = blk_mq_alloc_rq_maps(set); 3091 if (ret) 3092 goto out_free_mq_map; 3093 3094 mutex_init(&set->tag_list_lock); 3095 INIT_LIST_HEAD(&set->tag_list); 3096 3097 return 0; 3098 3099 out_free_mq_map: 3100 for (i = 0; i < set->nr_maps; i++) { 3101 kfree(set->map[i].mq_map); 3102 set->map[i].mq_map = NULL; 3103 } 3104 kfree(set->tags); 3105 set->tags = NULL; 3106 return ret; 3107 } 3108 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3109 3110 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3111 { 3112 int i, j; 3113 3114 for (i = 0; i < nr_hw_queues(set); i++) 3115 blk_mq_free_map_and_requests(set, i); 3116 3117 for (j = 0; j < set->nr_maps; j++) { 3118 kfree(set->map[j].mq_map); 3119 set->map[j].mq_map = NULL; 3120 } 3121 3122 kfree(set->tags); 3123 set->tags = NULL; 3124 } 3125 EXPORT_SYMBOL(blk_mq_free_tag_set); 3126 3127 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3128 { 3129 struct blk_mq_tag_set *set = q->tag_set; 3130 struct blk_mq_hw_ctx *hctx; 3131 int i, ret; 3132 3133 if (!set) 3134 return -EINVAL; 3135 3136 if (q->nr_requests == nr) 3137 return 0; 3138 3139 blk_mq_freeze_queue(q); 3140 blk_mq_quiesce_queue(q); 3141 3142 ret = 0; 3143 queue_for_each_hw_ctx(q, hctx, i) { 3144 if (!hctx->tags) 3145 continue; 3146 /* 3147 * If we're using an MQ scheduler, just update the scheduler 3148 * queue depth. This is similar to what the old code would do. 3149 */ 3150 if (!hctx->sched_tags) { 3151 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3152 false); 3153 } else { 3154 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3155 nr, true); 3156 } 3157 if (ret) 3158 break; 3159 if (q->elevator && q->elevator->type->ops.depth_updated) 3160 q->elevator->type->ops.depth_updated(hctx); 3161 } 3162 3163 if (!ret) 3164 q->nr_requests = nr; 3165 3166 blk_mq_unquiesce_queue(q); 3167 blk_mq_unfreeze_queue(q); 3168 3169 return ret; 3170 } 3171 3172 /* 3173 * request_queue and elevator_type pair. 3174 * It is just used by __blk_mq_update_nr_hw_queues to cache 3175 * the elevator_type associated with a request_queue. 3176 */ 3177 struct blk_mq_qe_pair { 3178 struct list_head node; 3179 struct request_queue *q; 3180 struct elevator_type *type; 3181 }; 3182 3183 /* 3184 * Cache the elevator_type in qe pair list and switch the 3185 * io scheduler to 'none' 3186 */ 3187 static bool blk_mq_elv_switch_none(struct list_head *head, 3188 struct request_queue *q) 3189 { 3190 struct blk_mq_qe_pair *qe; 3191 3192 if (!q->elevator) 3193 return true; 3194 3195 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3196 if (!qe) 3197 return false; 3198 3199 INIT_LIST_HEAD(&qe->node); 3200 qe->q = q; 3201 qe->type = q->elevator->type; 3202 list_add(&qe->node, head); 3203 3204 mutex_lock(&q->sysfs_lock); 3205 /* 3206 * After elevator_switch_mq, the previous elevator_queue will be 3207 * released by elevator_release. The reference of the io scheduler 3208 * module get by elevator_get will also be put. So we need to get 3209 * a reference of the io scheduler module here to prevent it to be 3210 * removed. 3211 */ 3212 __module_get(qe->type->elevator_owner); 3213 elevator_switch_mq(q, NULL); 3214 mutex_unlock(&q->sysfs_lock); 3215 3216 return true; 3217 } 3218 3219 static void blk_mq_elv_switch_back(struct list_head *head, 3220 struct request_queue *q) 3221 { 3222 struct blk_mq_qe_pair *qe; 3223 struct elevator_type *t = NULL; 3224 3225 list_for_each_entry(qe, head, node) 3226 if (qe->q == q) { 3227 t = qe->type; 3228 break; 3229 } 3230 3231 if (!t) 3232 return; 3233 3234 list_del(&qe->node); 3235 kfree(qe); 3236 3237 mutex_lock(&q->sysfs_lock); 3238 elevator_switch_mq(q, t); 3239 mutex_unlock(&q->sysfs_lock); 3240 } 3241 3242 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3243 int nr_hw_queues) 3244 { 3245 struct request_queue *q; 3246 LIST_HEAD(head); 3247 int prev_nr_hw_queues; 3248 3249 lockdep_assert_held(&set->tag_list_lock); 3250 3251 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3252 nr_hw_queues = nr_cpu_ids; 3253 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3254 return; 3255 3256 list_for_each_entry(q, &set->tag_list, tag_set_list) 3257 blk_mq_freeze_queue(q); 3258 /* 3259 * Sync with blk_mq_queue_tag_busy_iter. 3260 */ 3261 synchronize_rcu(); 3262 /* 3263 * Switch IO scheduler to 'none', cleaning up the data associated 3264 * with the previous scheduler. We will switch back once we are done 3265 * updating the new sw to hw queue mappings. 3266 */ 3267 list_for_each_entry(q, &set->tag_list, tag_set_list) 3268 if (!blk_mq_elv_switch_none(&head, q)) 3269 goto switch_back; 3270 3271 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3272 blk_mq_debugfs_unregister_hctxs(q); 3273 blk_mq_sysfs_unregister(q); 3274 } 3275 3276 prev_nr_hw_queues = set->nr_hw_queues; 3277 set->nr_hw_queues = nr_hw_queues; 3278 blk_mq_update_queue_map(set); 3279 fallback: 3280 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3281 blk_mq_realloc_hw_ctxs(set, q); 3282 if (q->nr_hw_queues != set->nr_hw_queues) { 3283 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3284 nr_hw_queues, prev_nr_hw_queues); 3285 set->nr_hw_queues = prev_nr_hw_queues; 3286 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3287 goto fallback; 3288 } 3289 blk_mq_map_swqueue(q); 3290 } 3291 3292 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3293 blk_mq_sysfs_register(q); 3294 blk_mq_debugfs_register_hctxs(q); 3295 } 3296 3297 switch_back: 3298 list_for_each_entry(q, &set->tag_list, tag_set_list) 3299 blk_mq_elv_switch_back(&head, q); 3300 3301 list_for_each_entry(q, &set->tag_list, tag_set_list) 3302 blk_mq_unfreeze_queue(q); 3303 } 3304 3305 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3306 { 3307 mutex_lock(&set->tag_list_lock); 3308 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3309 mutex_unlock(&set->tag_list_lock); 3310 } 3311 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3312 3313 /* Enable polling stats and return whether they were already enabled. */ 3314 static bool blk_poll_stats_enable(struct request_queue *q) 3315 { 3316 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3317 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3318 return true; 3319 blk_stat_add_callback(q, q->poll_cb); 3320 return false; 3321 } 3322 3323 static void blk_mq_poll_stats_start(struct request_queue *q) 3324 { 3325 /* 3326 * We don't arm the callback if polling stats are not enabled or the 3327 * callback is already active. 3328 */ 3329 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3330 blk_stat_is_active(q->poll_cb)) 3331 return; 3332 3333 blk_stat_activate_msecs(q->poll_cb, 100); 3334 } 3335 3336 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3337 { 3338 struct request_queue *q = cb->data; 3339 int bucket; 3340 3341 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3342 if (cb->stat[bucket].nr_samples) 3343 q->poll_stat[bucket] = cb->stat[bucket]; 3344 } 3345 } 3346 3347 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3348 struct blk_mq_hw_ctx *hctx, 3349 struct request *rq) 3350 { 3351 unsigned long ret = 0; 3352 int bucket; 3353 3354 /* 3355 * If stats collection isn't on, don't sleep but turn it on for 3356 * future users 3357 */ 3358 if (!blk_poll_stats_enable(q)) 3359 return 0; 3360 3361 /* 3362 * As an optimistic guess, use half of the mean service time 3363 * for this type of request. We can (and should) make this smarter. 3364 * For instance, if the completion latencies are tight, we can 3365 * get closer than just half the mean. This is especially 3366 * important on devices where the completion latencies are longer 3367 * than ~10 usec. We do use the stats for the relevant IO size 3368 * if available which does lead to better estimates. 3369 */ 3370 bucket = blk_mq_poll_stats_bkt(rq); 3371 if (bucket < 0) 3372 return ret; 3373 3374 if (q->poll_stat[bucket].nr_samples) 3375 ret = (q->poll_stat[bucket].mean + 1) / 2; 3376 3377 return ret; 3378 } 3379 3380 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3381 struct blk_mq_hw_ctx *hctx, 3382 struct request *rq) 3383 { 3384 struct hrtimer_sleeper hs; 3385 enum hrtimer_mode mode; 3386 unsigned int nsecs; 3387 ktime_t kt; 3388 3389 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3390 return false; 3391 3392 /* 3393 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3394 * 3395 * 0: use half of prev avg 3396 * >0: use this specific value 3397 */ 3398 if (q->poll_nsec > 0) 3399 nsecs = q->poll_nsec; 3400 else 3401 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3402 3403 if (!nsecs) 3404 return false; 3405 3406 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3407 3408 /* 3409 * This will be replaced with the stats tracking code, using 3410 * 'avg_completion_time / 2' as the pre-sleep target. 3411 */ 3412 kt = nsecs; 3413 3414 mode = HRTIMER_MODE_REL; 3415 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3416 hrtimer_set_expires(&hs.timer, kt); 3417 3418 do { 3419 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3420 break; 3421 set_current_state(TASK_UNINTERRUPTIBLE); 3422 hrtimer_sleeper_start_expires(&hs, mode); 3423 if (hs.task) 3424 io_schedule(); 3425 hrtimer_cancel(&hs.timer); 3426 mode = HRTIMER_MODE_ABS; 3427 } while (hs.task && !signal_pending(current)); 3428 3429 __set_current_state(TASK_RUNNING); 3430 destroy_hrtimer_on_stack(&hs.timer); 3431 return true; 3432 } 3433 3434 static bool blk_mq_poll_hybrid(struct request_queue *q, 3435 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3436 { 3437 struct request *rq; 3438 3439 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3440 return false; 3441 3442 if (!blk_qc_t_is_internal(cookie)) 3443 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3444 else { 3445 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3446 /* 3447 * With scheduling, if the request has completed, we'll 3448 * get a NULL return here, as we clear the sched tag when 3449 * that happens. The request still remains valid, like always, 3450 * so we should be safe with just the NULL check. 3451 */ 3452 if (!rq) 3453 return false; 3454 } 3455 3456 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3457 } 3458 3459 /** 3460 * blk_poll - poll for IO completions 3461 * @q: the queue 3462 * @cookie: cookie passed back at IO submission time 3463 * @spin: whether to spin for completions 3464 * 3465 * Description: 3466 * Poll for completions on the passed in queue. Returns number of 3467 * completed entries found. If @spin is true, then blk_poll will continue 3468 * looping until at least one completion is found, unless the task is 3469 * otherwise marked running (or we need to reschedule). 3470 */ 3471 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3472 { 3473 struct blk_mq_hw_ctx *hctx; 3474 long state; 3475 3476 if (!blk_qc_t_valid(cookie) || 3477 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3478 return 0; 3479 3480 if (current->plug) 3481 blk_flush_plug_list(current->plug, false); 3482 3483 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3484 3485 /* 3486 * If we sleep, have the caller restart the poll loop to reset 3487 * the state. Like for the other success return cases, the 3488 * caller is responsible for checking if the IO completed. If 3489 * the IO isn't complete, we'll get called again and will go 3490 * straight to the busy poll loop. 3491 */ 3492 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3493 return 1; 3494 3495 hctx->poll_considered++; 3496 3497 state = current->state; 3498 do { 3499 int ret; 3500 3501 hctx->poll_invoked++; 3502 3503 ret = q->mq_ops->poll(hctx); 3504 if (ret > 0) { 3505 hctx->poll_success++; 3506 __set_current_state(TASK_RUNNING); 3507 return ret; 3508 } 3509 3510 if (signal_pending_state(state, current)) 3511 __set_current_state(TASK_RUNNING); 3512 3513 if (current->state == TASK_RUNNING) 3514 return 1; 3515 if (ret < 0 || !spin) 3516 break; 3517 cpu_relax(); 3518 } while (!need_resched()); 3519 3520 __set_current_state(TASK_RUNNING); 3521 return 0; 3522 } 3523 EXPORT_SYMBOL_GPL(blk_poll); 3524 3525 unsigned int blk_mq_rq_cpu(struct request *rq) 3526 { 3527 return rq->mq_ctx->cpu; 3528 } 3529 EXPORT_SYMBOL(blk_mq_rq_cpu); 3530 3531 static int __init blk_mq_init(void) 3532 { 3533 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3534 blk_mq_hctx_notify_dead); 3535 return 0; 3536 } 3537 subsys_initcall(blk_mq_init); 3538