xref: /openbmc/linux/block/blk-mq.c (revision 6355592e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41 
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 	int ddir, sectors, bucket;
48 
49 	ddir = rq_data_dir(rq);
50 	sectors = blk_rq_stats_sectors(rq);
51 
52 	bucket = ddir + 2 * ilog2(sectors);
53 
54 	if (bucket < 0)
55 		return -1;
56 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 
59 	return bucket;
60 }
61 
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 	return !list_empty_careful(&hctx->dispatch) ||
69 		sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			blk_mq_sched_has_work(hctx);
71 }
72 
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 				     struct blk_mq_ctx *ctx)
78 {
79 	const int bit = ctx->index_hw[hctx->type];
80 
81 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 		sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84 
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 				      struct blk_mq_ctx *ctx)
87 {
88 	const int bit = ctx->index_hw[hctx->type];
89 
90 	sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92 
93 struct mq_inflight {
94 	struct hd_struct *part;
95 	unsigned int *inflight;
96 };
97 
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99 				  struct request *rq, void *priv,
100 				  bool reserved)
101 {
102 	struct mq_inflight *mi = priv;
103 
104 	/*
105 	 * index[0] counts the specific partition that was asked for.
106 	 */
107 	if (rq->part == mi->part)
108 		mi->inflight[0]++;
109 
110 	return true;
111 }
112 
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115 	unsigned inflight[2];
116 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 
118 	inflight[0] = inflight[1] = 0;
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return inflight[0];
122 }
123 
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 				     struct request *rq, void *priv,
126 				     bool reserved)
127 {
128 	struct mq_inflight *mi = priv;
129 
130 	if (rq->part == mi->part)
131 		mi->inflight[rq_data_dir(rq)]++;
132 
133 	return true;
134 }
135 
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 			 unsigned int inflight[2])
138 {
139 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
140 
141 	inflight[0] = inflight[1] = 0;
142 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144 
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147 	mutex_lock(&q->mq_freeze_lock);
148 	if (++q->mq_freeze_depth == 1) {
149 		percpu_ref_kill(&q->q_usage_counter);
150 		mutex_unlock(&q->mq_freeze_lock);
151 		if (queue_is_mq(q))
152 			blk_mq_run_hw_queues(q, false);
153 	} else {
154 		mutex_unlock(&q->mq_freeze_lock);
155 	}
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158 
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164 
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 				     unsigned long timeout)
167 {
168 	return wait_event_timeout(q->mq_freeze_wq,
169 					percpu_ref_is_zero(&q->q_usage_counter),
170 					timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173 
174 /*
175  * Guarantee no request is in use, so we can change any data structure of
176  * the queue afterward.
177  */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180 	/*
181 	 * In the !blk_mq case we are only calling this to kill the
182 	 * q_usage_counter, otherwise this increases the freeze depth
183 	 * and waits for it to return to zero.  For this reason there is
184 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 	 * exported to drivers as the only user for unfreeze is blk_mq.
186 	 */
187 	blk_freeze_queue_start(q);
188 	blk_mq_freeze_queue_wait(q);
189 }
190 
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193 	/*
194 	 * ...just an alias to keep freeze and unfreeze actions balanced
195 	 * in the blk_mq_* namespace
196 	 */
197 	blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200 
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203 	mutex_lock(&q->mq_freeze_lock);
204 	q->mq_freeze_depth--;
205 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 	if (!q->mq_freeze_depth) {
207 		percpu_ref_resurrect(&q->q_usage_counter);
208 		wake_up_all(&q->mq_freeze_wq);
209 	}
210 	mutex_unlock(&q->mq_freeze_lock);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213 
214 /*
215  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216  * mpt3sas driver such that this function can be removed.
217  */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223 
224 /**
225  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226  * @q: request queue.
227  *
228  * Note: this function does not prevent that the struct request end_io()
229  * callback function is invoked. Once this function is returned, we make
230  * sure no dispatch can happen until the queue is unquiesced via
231  * blk_mq_unquiesce_queue().
232  */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235 	struct blk_mq_hw_ctx *hctx;
236 	unsigned int i;
237 	bool rcu = false;
238 
239 	blk_mq_quiesce_queue_nowait(q);
240 
241 	queue_for_each_hw_ctx(q, hctx, i) {
242 		if (hctx->flags & BLK_MQ_F_BLOCKING)
243 			synchronize_srcu(hctx->srcu);
244 		else
245 			rcu = true;
246 	}
247 	if (rcu)
248 		synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251 
252 /*
253  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254  * @q: request queue.
255  *
256  * This function recovers queue into the state before quiescing
257  * which is done by blk_mq_quiesce_queue.
258  */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262 
263 	/* dispatch requests which are inserted during quiescing */
264 	blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267 
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270 	struct blk_mq_hw_ctx *hctx;
271 	unsigned int i;
272 
273 	queue_for_each_hw_ctx(q, hctx, i)
274 		if (blk_mq_hw_queue_mapped(hctx))
275 			blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277 
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280 	return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283 
284 /*
285  * Only need start/end time stamping if we have iostat or
286  * blk stats enabled, or using an IO scheduler.
287  */
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
289 {
290 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
291 }
292 
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294 		unsigned int tag, unsigned int op, u64 alloc_time_ns)
295 {
296 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 	struct request *rq = tags->static_rqs[tag];
298 	req_flags_t rq_flags = 0;
299 
300 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
301 		rq->tag = -1;
302 		rq->internal_tag = tag;
303 	} else {
304 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305 			rq_flags = RQF_MQ_INFLIGHT;
306 			atomic_inc(&data->hctx->nr_active);
307 		}
308 		rq->tag = tag;
309 		rq->internal_tag = -1;
310 		data->hctx->tags->rqs[rq->tag] = rq;
311 	}
312 
313 	/* csd/requeue_work/fifo_time is initialized before use */
314 	rq->q = data->q;
315 	rq->mq_ctx = data->ctx;
316 	rq->mq_hctx = data->hctx;
317 	rq->rq_flags = rq_flags;
318 	rq->cmd_flags = op;
319 	if (data->flags & BLK_MQ_REQ_PREEMPT)
320 		rq->rq_flags |= RQF_PREEMPT;
321 	if (blk_queue_io_stat(data->q))
322 		rq->rq_flags |= RQF_IO_STAT;
323 	INIT_LIST_HEAD(&rq->queuelist);
324 	INIT_HLIST_NODE(&rq->hash);
325 	RB_CLEAR_NODE(&rq->rb_node);
326 	rq->rq_disk = NULL;
327 	rq->part = NULL;
328 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
329 	rq->alloc_time_ns = alloc_time_ns;
330 #endif
331 	if (blk_mq_need_time_stamp(rq))
332 		rq->start_time_ns = ktime_get_ns();
333 	else
334 		rq->start_time_ns = 0;
335 	rq->io_start_time_ns = 0;
336 	rq->stats_sectors = 0;
337 	rq->nr_phys_segments = 0;
338 #if defined(CONFIG_BLK_DEV_INTEGRITY)
339 	rq->nr_integrity_segments = 0;
340 #endif
341 	/* tag was already set */
342 	rq->extra_len = 0;
343 	WRITE_ONCE(rq->deadline, 0);
344 
345 	rq->timeout = 0;
346 
347 	rq->end_io = NULL;
348 	rq->end_io_data = NULL;
349 
350 	data->ctx->rq_dispatched[op_is_sync(op)]++;
351 	refcount_set(&rq->ref, 1);
352 	return rq;
353 }
354 
355 static struct request *blk_mq_get_request(struct request_queue *q,
356 					  struct bio *bio,
357 					  struct blk_mq_alloc_data *data)
358 {
359 	struct elevator_queue *e = q->elevator;
360 	struct request *rq;
361 	unsigned int tag;
362 	bool clear_ctx_on_error = false;
363 	u64 alloc_time_ns = 0;
364 
365 	blk_queue_enter_live(q);
366 
367 	/* alloc_time includes depth and tag waits */
368 	if (blk_queue_rq_alloc_time(q))
369 		alloc_time_ns = ktime_get_ns();
370 
371 	data->q = q;
372 	if (likely(!data->ctx)) {
373 		data->ctx = blk_mq_get_ctx(q);
374 		clear_ctx_on_error = true;
375 	}
376 	if (likely(!data->hctx))
377 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
378 						data->ctx);
379 	if (data->cmd_flags & REQ_NOWAIT)
380 		data->flags |= BLK_MQ_REQ_NOWAIT;
381 
382 	if (e) {
383 		data->flags |= BLK_MQ_REQ_INTERNAL;
384 
385 		/*
386 		 * Flush requests are special and go directly to the
387 		 * dispatch list. Don't include reserved tags in the
388 		 * limiting, as it isn't useful.
389 		 */
390 		if (!op_is_flush(data->cmd_flags) &&
391 		    e->type->ops.limit_depth &&
392 		    !(data->flags & BLK_MQ_REQ_RESERVED))
393 			e->type->ops.limit_depth(data->cmd_flags, data);
394 	} else {
395 		blk_mq_tag_busy(data->hctx);
396 	}
397 
398 	tag = blk_mq_get_tag(data);
399 	if (tag == BLK_MQ_TAG_FAIL) {
400 		if (clear_ctx_on_error)
401 			data->ctx = NULL;
402 		blk_queue_exit(q);
403 		return NULL;
404 	}
405 
406 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
407 	if (!op_is_flush(data->cmd_flags)) {
408 		rq->elv.icq = NULL;
409 		if (e && e->type->ops.prepare_request) {
410 			if (e->type->icq_cache)
411 				blk_mq_sched_assign_ioc(rq);
412 
413 			e->type->ops.prepare_request(rq, bio);
414 			rq->rq_flags |= RQF_ELVPRIV;
415 		}
416 	}
417 	data->hctx->queued++;
418 	return rq;
419 }
420 
421 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
422 		blk_mq_req_flags_t flags)
423 {
424 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
425 	struct request *rq;
426 	int ret;
427 
428 	ret = blk_queue_enter(q, flags);
429 	if (ret)
430 		return ERR_PTR(ret);
431 
432 	rq = blk_mq_get_request(q, NULL, &alloc_data);
433 	blk_queue_exit(q);
434 
435 	if (!rq)
436 		return ERR_PTR(-EWOULDBLOCK);
437 
438 	rq->__data_len = 0;
439 	rq->__sector = (sector_t) -1;
440 	rq->bio = rq->biotail = NULL;
441 	return rq;
442 }
443 EXPORT_SYMBOL(blk_mq_alloc_request);
444 
445 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
446 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
447 {
448 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
449 	struct request *rq;
450 	unsigned int cpu;
451 	int ret;
452 
453 	/*
454 	 * If the tag allocator sleeps we could get an allocation for a
455 	 * different hardware context.  No need to complicate the low level
456 	 * allocator for this for the rare use case of a command tied to
457 	 * a specific queue.
458 	 */
459 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
460 		return ERR_PTR(-EINVAL);
461 
462 	if (hctx_idx >= q->nr_hw_queues)
463 		return ERR_PTR(-EIO);
464 
465 	ret = blk_queue_enter(q, flags);
466 	if (ret)
467 		return ERR_PTR(ret);
468 
469 	/*
470 	 * Check if the hardware context is actually mapped to anything.
471 	 * If not tell the caller that it should skip this queue.
472 	 */
473 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
474 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
475 		blk_queue_exit(q);
476 		return ERR_PTR(-EXDEV);
477 	}
478 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
479 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
480 
481 	rq = blk_mq_get_request(q, NULL, &alloc_data);
482 	blk_queue_exit(q);
483 
484 	if (!rq)
485 		return ERR_PTR(-EWOULDBLOCK);
486 
487 	return rq;
488 }
489 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
490 
491 static void __blk_mq_free_request(struct request *rq)
492 {
493 	struct request_queue *q = rq->q;
494 	struct blk_mq_ctx *ctx = rq->mq_ctx;
495 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
496 	const int sched_tag = rq->internal_tag;
497 
498 	blk_pm_mark_last_busy(rq);
499 	rq->mq_hctx = NULL;
500 	if (rq->tag != -1)
501 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
502 	if (sched_tag != -1)
503 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
504 	blk_mq_sched_restart(hctx);
505 	blk_queue_exit(q);
506 }
507 
508 void blk_mq_free_request(struct request *rq)
509 {
510 	struct request_queue *q = rq->q;
511 	struct elevator_queue *e = q->elevator;
512 	struct blk_mq_ctx *ctx = rq->mq_ctx;
513 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
514 
515 	if (rq->rq_flags & RQF_ELVPRIV) {
516 		if (e && e->type->ops.finish_request)
517 			e->type->ops.finish_request(rq);
518 		if (rq->elv.icq) {
519 			put_io_context(rq->elv.icq->ioc);
520 			rq->elv.icq = NULL;
521 		}
522 	}
523 
524 	ctx->rq_completed[rq_is_sync(rq)]++;
525 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
526 		atomic_dec(&hctx->nr_active);
527 
528 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
529 		laptop_io_completion(q->backing_dev_info);
530 
531 	rq_qos_done(q, rq);
532 
533 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
534 	if (refcount_dec_and_test(&rq->ref))
535 		__blk_mq_free_request(rq);
536 }
537 EXPORT_SYMBOL_GPL(blk_mq_free_request);
538 
539 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
540 {
541 	u64 now = 0;
542 
543 	if (blk_mq_need_time_stamp(rq))
544 		now = ktime_get_ns();
545 
546 	if (rq->rq_flags & RQF_STATS) {
547 		blk_mq_poll_stats_start(rq->q);
548 		blk_stat_add(rq, now);
549 	}
550 
551 	if (rq->internal_tag != -1)
552 		blk_mq_sched_completed_request(rq, now);
553 
554 	blk_account_io_done(rq, now);
555 
556 	if (rq->end_io) {
557 		rq_qos_done(rq->q, rq);
558 		rq->end_io(rq, error);
559 	} else {
560 		blk_mq_free_request(rq);
561 	}
562 }
563 EXPORT_SYMBOL(__blk_mq_end_request);
564 
565 void blk_mq_end_request(struct request *rq, blk_status_t error)
566 {
567 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
568 		BUG();
569 	__blk_mq_end_request(rq, error);
570 }
571 EXPORT_SYMBOL(blk_mq_end_request);
572 
573 static void __blk_mq_complete_request_remote(void *data)
574 {
575 	struct request *rq = data;
576 	struct request_queue *q = rq->q;
577 
578 	q->mq_ops->complete(rq);
579 }
580 
581 static void __blk_mq_complete_request(struct request *rq)
582 {
583 	struct blk_mq_ctx *ctx = rq->mq_ctx;
584 	struct request_queue *q = rq->q;
585 	bool shared = false;
586 	int cpu;
587 
588 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
589 	/*
590 	 * Most of single queue controllers, there is only one irq vector
591 	 * for handling IO completion, and the only irq's affinity is set
592 	 * as all possible CPUs. On most of ARCHs, this affinity means the
593 	 * irq is handled on one specific CPU.
594 	 *
595 	 * So complete IO reqeust in softirq context in case of single queue
596 	 * for not degrading IO performance by irqsoff latency.
597 	 */
598 	if (q->nr_hw_queues == 1) {
599 		__blk_complete_request(rq);
600 		return;
601 	}
602 
603 	/*
604 	 * For a polled request, always complete locallly, it's pointless
605 	 * to redirect the completion.
606 	 */
607 	if ((rq->cmd_flags & REQ_HIPRI) ||
608 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
609 		q->mq_ops->complete(rq);
610 		return;
611 	}
612 
613 	cpu = get_cpu();
614 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
615 		shared = cpus_share_cache(cpu, ctx->cpu);
616 
617 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
618 		rq->csd.func = __blk_mq_complete_request_remote;
619 		rq->csd.info = rq;
620 		rq->csd.flags = 0;
621 		smp_call_function_single_async(ctx->cpu, &rq->csd);
622 	} else {
623 		q->mq_ops->complete(rq);
624 	}
625 	put_cpu();
626 }
627 
628 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
629 	__releases(hctx->srcu)
630 {
631 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
632 		rcu_read_unlock();
633 	else
634 		srcu_read_unlock(hctx->srcu, srcu_idx);
635 }
636 
637 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
638 	__acquires(hctx->srcu)
639 {
640 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
641 		/* shut up gcc false positive */
642 		*srcu_idx = 0;
643 		rcu_read_lock();
644 	} else
645 		*srcu_idx = srcu_read_lock(hctx->srcu);
646 }
647 
648 /**
649  * blk_mq_complete_request - end I/O on a request
650  * @rq:		the request being processed
651  *
652  * Description:
653  *	Ends all I/O on a request. It does not handle partial completions.
654  *	The actual completion happens out-of-order, through a IPI handler.
655  **/
656 bool blk_mq_complete_request(struct request *rq)
657 {
658 	if (unlikely(blk_should_fake_timeout(rq->q)))
659 		return false;
660 	__blk_mq_complete_request(rq);
661 	return true;
662 }
663 EXPORT_SYMBOL(blk_mq_complete_request);
664 
665 int blk_mq_request_started(struct request *rq)
666 {
667 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
668 }
669 EXPORT_SYMBOL_GPL(blk_mq_request_started);
670 
671 int blk_mq_request_completed(struct request *rq)
672 {
673 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_request_completed);
676 
677 void blk_mq_start_request(struct request *rq)
678 {
679 	struct request_queue *q = rq->q;
680 
681 	trace_block_rq_issue(q, rq);
682 
683 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
684 		rq->io_start_time_ns = ktime_get_ns();
685 		rq->stats_sectors = blk_rq_sectors(rq);
686 		rq->rq_flags |= RQF_STATS;
687 		rq_qos_issue(q, rq);
688 	}
689 
690 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
691 
692 	blk_add_timer(rq);
693 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
694 
695 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
696 		/*
697 		 * Make sure space for the drain appears.  We know we can do
698 		 * this because max_hw_segments has been adjusted to be one
699 		 * fewer than the device can handle.
700 		 */
701 		rq->nr_phys_segments++;
702 	}
703 }
704 EXPORT_SYMBOL(blk_mq_start_request);
705 
706 static void __blk_mq_requeue_request(struct request *rq)
707 {
708 	struct request_queue *q = rq->q;
709 
710 	blk_mq_put_driver_tag(rq);
711 
712 	trace_block_rq_requeue(q, rq);
713 	rq_qos_requeue(q, rq);
714 
715 	if (blk_mq_request_started(rq)) {
716 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
717 		rq->rq_flags &= ~RQF_TIMED_OUT;
718 		if (q->dma_drain_size && blk_rq_bytes(rq))
719 			rq->nr_phys_segments--;
720 	}
721 }
722 
723 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
724 {
725 	__blk_mq_requeue_request(rq);
726 
727 	/* this request will be re-inserted to io scheduler queue */
728 	blk_mq_sched_requeue_request(rq);
729 
730 	BUG_ON(!list_empty(&rq->queuelist));
731 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
732 }
733 EXPORT_SYMBOL(blk_mq_requeue_request);
734 
735 static void blk_mq_requeue_work(struct work_struct *work)
736 {
737 	struct request_queue *q =
738 		container_of(work, struct request_queue, requeue_work.work);
739 	LIST_HEAD(rq_list);
740 	struct request *rq, *next;
741 
742 	spin_lock_irq(&q->requeue_lock);
743 	list_splice_init(&q->requeue_list, &rq_list);
744 	spin_unlock_irq(&q->requeue_lock);
745 
746 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
747 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
748 			continue;
749 
750 		rq->rq_flags &= ~RQF_SOFTBARRIER;
751 		list_del_init(&rq->queuelist);
752 		/*
753 		 * If RQF_DONTPREP, rq has contained some driver specific
754 		 * data, so insert it to hctx dispatch list to avoid any
755 		 * merge.
756 		 */
757 		if (rq->rq_flags & RQF_DONTPREP)
758 			blk_mq_request_bypass_insert(rq, false);
759 		else
760 			blk_mq_sched_insert_request(rq, true, false, false);
761 	}
762 
763 	while (!list_empty(&rq_list)) {
764 		rq = list_entry(rq_list.next, struct request, queuelist);
765 		list_del_init(&rq->queuelist);
766 		blk_mq_sched_insert_request(rq, false, false, false);
767 	}
768 
769 	blk_mq_run_hw_queues(q, false);
770 }
771 
772 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
773 				bool kick_requeue_list)
774 {
775 	struct request_queue *q = rq->q;
776 	unsigned long flags;
777 
778 	/*
779 	 * We abuse this flag that is otherwise used by the I/O scheduler to
780 	 * request head insertion from the workqueue.
781 	 */
782 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
783 
784 	spin_lock_irqsave(&q->requeue_lock, flags);
785 	if (at_head) {
786 		rq->rq_flags |= RQF_SOFTBARRIER;
787 		list_add(&rq->queuelist, &q->requeue_list);
788 	} else {
789 		list_add_tail(&rq->queuelist, &q->requeue_list);
790 	}
791 	spin_unlock_irqrestore(&q->requeue_lock, flags);
792 
793 	if (kick_requeue_list)
794 		blk_mq_kick_requeue_list(q);
795 }
796 
797 void blk_mq_kick_requeue_list(struct request_queue *q)
798 {
799 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
800 }
801 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
802 
803 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
804 				    unsigned long msecs)
805 {
806 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
807 				    msecs_to_jiffies(msecs));
808 }
809 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
810 
811 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
812 {
813 	if (tag < tags->nr_tags) {
814 		prefetch(tags->rqs[tag]);
815 		return tags->rqs[tag];
816 	}
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(blk_mq_tag_to_rq);
821 
822 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
823 			       void *priv, bool reserved)
824 {
825 	/*
826 	 * If we find a request that is inflight and the queue matches,
827 	 * we know the queue is busy. Return false to stop the iteration.
828 	 */
829 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
830 		bool *busy = priv;
831 
832 		*busy = true;
833 		return false;
834 	}
835 
836 	return true;
837 }
838 
839 bool blk_mq_queue_inflight(struct request_queue *q)
840 {
841 	bool busy = false;
842 
843 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
844 	return busy;
845 }
846 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
847 
848 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
849 {
850 	req->rq_flags |= RQF_TIMED_OUT;
851 	if (req->q->mq_ops->timeout) {
852 		enum blk_eh_timer_return ret;
853 
854 		ret = req->q->mq_ops->timeout(req, reserved);
855 		if (ret == BLK_EH_DONE)
856 			return;
857 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
858 	}
859 
860 	blk_add_timer(req);
861 }
862 
863 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
864 {
865 	unsigned long deadline;
866 
867 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
868 		return false;
869 	if (rq->rq_flags & RQF_TIMED_OUT)
870 		return false;
871 
872 	deadline = READ_ONCE(rq->deadline);
873 	if (time_after_eq(jiffies, deadline))
874 		return true;
875 
876 	if (*next == 0)
877 		*next = deadline;
878 	else if (time_after(*next, deadline))
879 		*next = deadline;
880 	return false;
881 }
882 
883 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
884 		struct request *rq, void *priv, bool reserved)
885 {
886 	unsigned long *next = priv;
887 
888 	/*
889 	 * Just do a quick check if it is expired before locking the request in
890 	 * so we're not unnecessarilly synchronizing across CPUs.
891 	 */
892 	if (!blk_mq_req_expired(rq, next))
893 		return true;
894 
895 	/*
896 	 * We have reason to believe the request may be expired. Take a
897 	 * reference on the request to lock this request lifetime into its
898 	 * currently allocated context to prevent it from being reallocated in
899 	 * the event the completion by-passes this timeout handler.
900 	 *
901 	 * If the reference was already released, then the driver beat the
902 	 * timeout handler to posting a natural completion.
903 	 */
904 	if (!refcount_inc_not_zero(&rq->ref))
905 		return true;
906 
907 	/*
908 	 * The request is now locked and cannot be reallocated underneath the
909 	 * timeout handler's processing. Re-verify this exact request is truly
910 	 * expired; if it is not expired, then the request was completed and
911 	 * reallocated as a new request.
912 	 */
913 	if (blk_mq_req_expired(rq, next))
914 		blk_mq_rq_timed_out(rq, reserved);
915 	if (refcount_dec_and_test(&rq->ref))
916 		__blk_mq_free_request(rq);
917 
918 	return true;
919 }
920 
921 static void blk_mq_timeout_work(struct work_struct *work)
922 {
923 	struct request_queue *q =
924 		container_of(work, struct request_queue, timeout_work);
925 	unsigned long next = 0;
926 	struct blk_mq_hw_ctx *hctx;
927 	int i;
928 
929 	/* A deadlock might occur if a request is stuck requiring a
930 	 * timeout at the same time a queue freeze is waiting
931 	 * completion, since the timeout code would not be able to
932 	 * acquire the queue reference here.
933 	 *
934 	 * That's why we don't use blk_queue_enter here; instead, we use
935 	 * percpu_ref_tryget directly, because we need to be able to
936 	 * obtain a reference even in the short window between the queue
937 	 * starting to freeze, by dropping the first reference in
938 	 * blk_freeze_queue_start, and the moment the last request is
939 	 * consumed, marked by the instant q_usage_counter reaches
940 	 * zero.
941 	 */
942 	if (!percpu_ref_tryget(&q->q_usage_counter))
943 		return;
944 
945 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
946 
947 	if (next != 0) {
948 		mod_timer(&q->timeout, next);
949 	} else {
950 		/*
951 		 * Request timeouts are handled as a forward rolling timer. If
952 		 * we end up here it means that no requests are pending and
953 		 * also that no request has been pending for a while. Mark
954 		 * each hctx as idle.
955 		 */
956 		queue_for_each_hw_ctx(q, hctx, i) {
957 			/* the hctx may be unmapped, so check it here */
958 			if (blk_mq_hw_queue_mapped(hctx))
959 				blk_mq_tag_idle(hctx);
960 		}
961 	}
962 	blk_queue_exit(q);
963 }
964 
965 struct flush_busy_ctx_data {
966 	struct blk_mq_hw_ctx *hctx;
967 	struct list_head *list;
968 };
969 
970 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
971 {
972 	struct flush_busy_ctx_data *flush_data = data;
973 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
974 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
975 	enum hctx_type type = hctx->type;
976 
977 	spin_lock(&ctx->lock);
978 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
979 	sbitmap_clear_bit(sb, bitnr);
980 	spin_unlock(&ctx->lock);
981 	return true;
982 }
983 
984 /*
985  * Process software queues that have been marked busy, splicing them
986  * to the for-dispatch
987  */
988 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
989 {
990 	struct flush_busy_ctx_data data = {
991 		.hctx = hctx,
992 		.list = list,
993 	};
994 
995 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
996 }
997 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
998 
999 struct dispatch_rq_data {
1000 	struct blk_mq_hw_ctx *hctx;
1001 	struct request *rq;
1002 };
1003 
1004 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1005 		void *data)
1006 {
1007 	struct dispatch_rq_data *dispatch_data = data;
1008 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1009 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1010 	enum hctx_type type = hctx->type;
1011 
1012 	spin_lock(&ctx->lock);
1013 	if (!list_empty(&ctx->rq_lists[type])) {
1014 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1015 		list_del_init(&dispatch_data->rq->queuelist);
1016 		if (list_empty(&ctx->rq_lists[type]))
1017 			sbitmap_clear_bit(sb, bitnr);
1018 	}
1019 	spin_unlock(&ctx->lock);
1020 
1021 	return !dispatch_data->rq;
1022 }
1023 
1024 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1025 					struct blk_mq_ctx *start)
1026 {
1027 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1028 	struct dispatch_rq_data data = {
1029 		.hctx = hctx,
1030 		.rq   = NULL,
1031 	};
1032 
1033 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1034 			       dispatch_rq_from_ctx, &data);
1035 
1036 	return data.rq;
1037 }
1038 
1039 static inline unsigned int queued_to_index(unsigned int queued)
1040 {
1041 	if (!queued)
1042 		return 0;
1043 
1044 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1045 }
1046 
1047 bool blk_mq_get_driver_tag(struct request *rq)
1048 {
1049 	struct blk_mq_alloc_data data = {
1050 		.q = rq->q,
1051 		.hctx = rq->mq_hctx,
1052 		.flags = BLK_MQ_REQ_NOWAIT,
1053 		.cmd_flags = rq->cmd_flags,
1054 	};
1055 	bool shared;
1056 
1057 	if (rq->tag != -1)
1058 		goto done;
1059 
1060 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1061 		data.flags |= BLK_MQ_REQ_RESERVED;
1062 
1063 	shared = blk_mq_tag_busy(data.hctx);
1064 	rq->tag = blk_mq_get_tag(&data);
1065 	if (rq->tag >= 0) {
1066 		if (shared) {
1067 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1068 			atomic_inc(&data.hctx->nr_active);
1069 		}
1070 		data.hctx->tags->rqs[rq->tag] = rq;
1071 	}
1072 
1073 done:
1074 	return rq->tag != -1;
1075 }
1076 
1077 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1078 				int flags, void *key)
1079 {
1080 	struct blk_mq_hw_ctx *hctx;
1081 
1082 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1083 
1084 	spin_lock(&hctx->dispatch_wait_lock);
1085 	if (!list_empty(&wait->entry)) {
1086 		struct sbitmap_queue *sbq;
1087 
1088 		list_del_init(&wait->entry);
1089 		sbq = &hctx->tags->bitmap_tags;
1090 		atomic_dec(&sbq->ws_active);
1091 	}
1092 	spin_unlock(&hctx->dispatch_wait_lock);
1093 
1094 	blk_mq_run_hw_queue(hctx, true);
1095 	return 1;
1096 }
1097 
1098 /*
1099  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1100  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1101  * restart. For both cases, take care to check the condition again after
1102  * marking us as waiting.
1103  */
1104 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1105 				 struct request *rq)
1106 {
1107 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1108 	struct wait_queue_head *wq;
1109 	wait_queue_entry_t *wait;
1110 	bool ret;
1111 
1112 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1113 		blk_mq_sched_mark_restart_hctx(hctx);
1114 
1115 		/*
1116 		 * It's possible that a tag was freed in the window between the
1117 		 * allocation failure and adding the hardware queue to the wait
1118 		 * queue.
1119 		 *
1120 		 * Don't clear RESTART here, someone else could have set it.
1121 		 * At most this will cost an extra queue run.
1122 		 */
1123 		return blk_mq_get_driver_tag(rq);
1124 	}
1125 
1126 	wait = &hctx->dispatch_wait;
1127 	if (!list_empty_careful(&wait->entry))
1128 		return false;
1129 
1130 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1131 
1132 	spin_lock_irq(&wq->lock);
1133 	spin_lock(&hctx->dispatch_wait_lock);
1134 	if (!list_empty(&wait->entry)) {
1135 		spin_unlock(&hctx->dispatch_wait_lock);
1136 		spin_unlock_irq(&wq->lock);
1137 		return false;
1138 	}
1139 
1140 	atomic_inc(&sbq->ws_active);
1141 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1142 	__add_wait_queue(wq, wait);
1143 
1144 	/*
1145 	 * It's possible that a tag was freed in the window between the
1146 	 * allocation failure and adding the hardware queue to the wait
1147 	 * queue.
1148 	 */
1149 	ret = blk_mq_get_driver_tag(rq);
1150 	if (!ret) {
1151 		spin_unlock(&hctx->dispatch_wait_lock);
1152 		spin_unlock_irq(&wq->lock);
1153 		return false;
1154 	}
1155 
1156 	/*
1157 	 * We got a tag, remove ourselves from the wait queue to ensure
1158 	 * someone else gets the wakeup.
1159 	 */
1160 	list_del_init(&wait->entry);
1161 	atomic_dec(&sbq->ws_active);
1162 	spin_unlock(&hctx->dispatch_wait_lock);
1163 	spin_unlock_irq(&wq->lock);
1164 
1165 	return true;
1166 }
1167 
1168 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1169 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1170 /*
1171  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1172  * - EWMA is one simple way to compute running average value
1173  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1174  * - take 4 as factor for avoiding to get too small(0) result, and this
1175  *   factor doesn't matter because EWMA decreases exponentially
1176  */
1177 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1178 {
1179 	unsigned int ewma;
1180 
1181 	if (hctx->queue->elevator)
1182 		return;
1183 
1184 	ewma = hctx->dispatch_busy;
1185 
1186 	if (!ewma && !busy)
1187 		return;
1188 
1189 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1190 	if (busy)
1191 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1192 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1193 
1194 	hctx->dispatch_busy = ewma;
1195 }
1196 
1197 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1198 
1199 /*
1200  * Returns true if we did some work AND can potentially do more.
1201  */
1202 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1203 			     bool got_budget)
1204 {
1205 	struct blk_mq_hw_ctx *hctx;
1206 	struct request *rq, *nxt;
1207 	bool no_tag = false;
1208 	int errors, queued;
1209 	blk_status_t ret = BLK_STS_OK;
1210 
1211 	if (list_empty(list))
1212 		return false;
1213 
1214 	WARN_ON(!list_is_singular(list) && got_budget);
1215 
1216 	/*
1217 	 * Now process all the entries, sending them to the driver.
1218 	 */
1219 	errors = queued = 0;
1220 	do {
1221 		struct blk_mq_queue_data bd;
1222 
1223 		rq = list_first_entry(list, struct request, queuelist);
1224 
1225 		hctx = rq->mq_hctx;
1226 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1227 			break;
1228 
1229 		if (!blk_mq_get_driver_tag(rq)) {
1230 			/*
1231 			 * The initial allocation attempt failed, so we need to
1232 			 * rerun the hardware queue when a tag is freed. The
1233 			 * waitqueue takes care of that. If the queue is run
1234 			 * before we add this entry back on the dispatch list,
1235 			 * we'll re-run it below.
1236 			 */
1237 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1238 				blk_mq_put_dispatch_budget(hctx);
1239 				/*
1240 				 * For non-shared tags, the RESTART check
1241 				 * will suffice.
1242 				 */
1243 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1244 					no_tag = true;
1245 				break;
1246 			}
1247 		}
1248 
1249 		list_del_init(&rq->queuelist);
1250 
1251 		bd.rq = rq;
1252 
1253 		/*
1254 		 * Flag last if we have no more requests, or if we have more
1255 		 * but can't assign a driver tag to it.
1256 		 */
1257 		if (list_empty(list))
1258 			bd.last = true;
1259 		else {
1260 			nxt = list_first_entry(list, struct request, queuelist);
1261 			bd.last = !blk_mq_get_driver_tag(nxt);
1262 		}
1263 
1264 		ret = q->mq_ops->queue_rq(hctx, &bd);
1265 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1266 			/*
1267 			 * If an I/O scheduler has been configured and we got a
1268 			 * driver tag for the next request already, free it
1269 			 * again.
1270 			 */
1271 			if (!list_empty(list)) {
1272 				nxt = list_first_entry(list, struct request, queuelist);
1273 				blk_mq_put_driver_tag(nxt);
1274 			}
1275 			list_add(&rq->queuelist, list);
1276 			__blk_mq_requeue_request(rq);
1277 			break;
1278 		}
1279 
1280 		if (unlikely(ret != BLK_STS_OK)) {
1281 			errors++;
1282 			blk_mq_end_request(rq, BLK_STS_IOERR);
1283 			continue;
1284 		}
1285 
1286 		queued++;
1287 	} while (!list_empty(list));
1288 
1289 	hctx->dispatched[queued_to_index(queued)]++;
1290 
1291 	/*
1292 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1293 	 * that is where we will continue on next queue run.
1294 	 */
1295 	if (!list_empty(list)) {
1296 		bool needs_restart;
1297 
1298 		/*
1299 		 * If we didn't flush the entire list, we could have told
1300 		 * the driver there was more coming, but that turned out to
1301 		 * be a lie.
1302 		 */
1303 		if (q->mq_ops->commit_rqs)
1304 			q->mq_ops->commit_rqs(hctx);
1305 
1306 		spin_lock(&hctx->lock);
1307 		list_splice_init(list, &hctx->dispatch);
1308 		spin_unlock(&hctx->lock);
1309 
1310 		/*
1311 		 * If SCHED_RESTART was set by the caller of this function and
1312 		 * it is no longer set that means that it was cleared by another
1313 		 * thread and hence that a queue rerun is needed.
1314 		 *
1315 		 * If 'no_tag' is set, that means that we failed getting
1316 		 * a driver tag with an I/O scheduler attached. If our dispatch
1317 		 * waitqueue is no longer active, ensure that we run the queue
1318 		 * AFTER adding our entries back to the list.
1319 		 *
1320 		 * If no I/O scheduler has been configured it is possible that
1321 		 * the hardware queue got stopped and restarted before requests
1322 		 * were pushed back onto the dispatch list. Rerun the queue to
1323 		 * avoid starvation. Notes:
1324 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1325 		 *   been stopped before rerunning a queue.
1326 		 * - Some but not all block drivers stop a queue before
1327 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1328 		 *   and dm-rq.
1329 		 *
1330 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1331 		 * bit is set, run queue after a delay to avoid IO stalls
1332 		 * that could otherwise occur if the queue is idle.
1333 		 */
1334 		needs_restart = blk_mq_sched_needs_restart(hctx);
1335 		if (!needs_restart ||
1336 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1337 			blk_mq_run_hw_queue(hctx, true);
1338 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1339 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1340 
1341 		blk_mq_update_dispatch_busy(hctx, true);
1342 		return false;
1343 	} else
1344 		blk_mq_update_dispatch_busy(hctx, false);
1345 
1346 	/*
1347 	 * If the host/device is unable to accept more work, inform the
1348 	 * caller of that.
1349 	 */
1350 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1351 		return false;
1352 
1353 	return (queued + errors) != 0;
1354 }
1355 
1356 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1357 {
1358 	int srcu_idx;
1359 
1360 	/*
1361 	 * We should be running this queue from one of the CPUs that
1362 	 * are mapped to it.
1363 	 *
1364 	 * There are at least two related races now between setting
1365 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1366 	 * __blk_mq_run_hw_queue():
1367 	 *
1368 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1369 	 *   but later it becomes online, then this warning is harmless
1370 	 *   at all
1371 	 *
1372 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1373 	 *   but later it becomes offline, then the warning can't be
1374 	 *   triggered, and we depend on blk-mq timeout handler to
1375 	 *   handle dispatched requests to this hctx
1376 	 */
1377 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1378 		cpu_online(hctx->next_cpu)) {
1379 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1380 			raw_smp_processor_id(),
1381 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1382 		dump_stack();
1383 	}
1384 
1385 	/*
1386 	 * We can't run the queue inline with ints disabled. Ensure that
1387 	 * we catch bad users of this early.
1388 	 */
1389 	WARN_ON_ONCE(in_interrupt());
1390 
1391 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1392 
1393 	hctx_lock(hctx, &srcu_idx);
1394 	blk_mq_sched_dispatch_requests(hctx);
1395 	hctx_unlock(hctx, srcu_idx);
1396 }
1397 
1398 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1399 {
1400 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1401 
1402 	if (cpu >= nr_cpu_ids)
1403 		cpu = cpumask_first(hctx->cpumask);
1404 	return cpu;
1405 }
1406 
1407 /*
1408  * It'd be great if the workqueue API had a way to pass
1409  * in a mask and had some smarts for more clever placement.
1410  * For now we just round-robin here, switching for every
1411  * BLK_MQ_CPU_WORK_BATCH queued items.
1412  */
1413 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1414 {
1415 	bool tried = false;
1416 	int next_cpu = hctx->next_cpu;
1417 
1418 	if (hctx->queue->nr_hw_queues == 1)
1419 		return WORK_CPU_UNBOUND;
1420 
1421 	if (--hctx->next_cpu_batch <= 0) {
1422 select_cpu:
1423 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1424 				cpu_online_mask);
1425 		if (next_cpu >= nr_cpu_ids)
1426 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1427 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1428 	}
1429 
1430 	/*
1431 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1432 	 * and it should only happen in the path of handling CPU DEAD.
1433 	 */
1434 	if (!cpu_online(next_cpu)) {
1435 		if (!tried) {
1436 			tried = true;
1437 			goto select_cpu;
1438 		}
1439 
1440 		/*
1441 		 * Make sure to re-select CPU next time once after CPUs
1442 		 * in hctx->cpumask become online again.
1443 		 */
1444 		hctx->next_cpu = next_cpu;
1445 		hctx->next_cpu_batch = 1;
1446 		return WORK_CPU_UNBOUND;
1447 	}
1448 
1449 	hctx->next_cpu = next_cpu;
1450 	return next_cpu;
1451 }
1452 
1453 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1454 					unsigned long msecs)
1455 {
1456 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1457 		return;
1458 
1459 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1460 		int cpu = get_cpu();
1461 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1462 			__blk_mq_run_hw_queue(hctx);
1463 			put_cpu();
1464 			return;
1465 		}
1466 
1467 		put_cpu();
1468 	}
1469 
1470 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1471 				    msecs_to_jiffies(msecs));
1472 }
1473 
1474 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1475 {
1476 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1477 }
1478 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1479 
1480 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1481 {
1482 	int srcu_idx;
1483 	bool need_run;
1484 
1485 	/*
1486 	 * When queue is quiesced, we may be switching io scheduler, or
1487 	 * updating nr_hw_queues, or other things, and we can't run queue
1488 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1489 	 *
1490 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1491 	 * quiesced.
1492 	 */
1493 	hctx_lock(hctx, &srcu_idx);
1494 	need_run = !blk_queue_quiesced(hctx->queue) &&
1495 		blk_mq_hctx_has_pending(hctx);
1496 	hctx_unlock(hctx, srcu_idx);
1497 
1498 	if (need_run) {
1499 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1500 		return true;
1501 	}
1502 
1503 	return false;
1504 }
1505 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1506 
1507 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1508 {
1509 	struct blk_mq_hw_ctx *hctx;
1510 	int i;
1511 
1512 	queue_for_each_hw_ctx(q, hctx, i) {
1513 		if (blk_mq_hctx_stopped(hctx))
1514 			continue;
1515 
1516 		blk_mq_run_hw_queue(hctx, async);
1517 	}
1518 }
1519 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1520 
1521 /**
1522  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1523  * @q: request queue.
1524  *
1525  * The caller is responsible for serializing this function against
1526  * blk_mq_{start,stop}_hw_queue().
1527  */
1528 bool blk_mq_queue_stopped(struct request_queue *q)
1529 {
1530 	struct blk_mq_hw_ctx *hctx;
1531 	int i;
1532 
1533 	queue_for_each_hw_ctx(q, hctx, i)
1534 		if (blk_mq_hctx_stopped(hctx))
1535 			return true;
1536 
1537 	return false;
1538 }
1539 EXPORT_SYMBOL(blk_mq_queue_stopped);
1540 
1541 /*
1542  * This function is often used for pausing .queue_rq() by driver when
1543  * there isn't enough resource or some conditions aren't satisfied, and
1544  * BLK_STS_RESOURCE is usually returned.
1545  *
1546  * We do not guarantee that dispatch can be drained or blocked
1547  * after blk_mq_stop_hw_queue() returns. Please use
1548  * blk_mq_quiesce_queue() for that requirement.
1549  */
1550 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1551 {
1552 	cancel_delayed_work(&hctx->run_work);
1553 
1554 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1555 }
1556 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1557 
1558 /*
1559  * This function is often used for pausing .queue_rq() by driver when
1560  * there isn't enough resource or some conditions aren't satisfied, and
1561  * BLK_STS_RESOURCE is usually returned.
1562  *
1563  * We do not guarantee that dispatch can be drained or blocked
1564  * after blk_mq_stop_hw_queues() returns. Please use
1565  * blk_mq_quiesce_queue() for that requirement.
1566  */
1567 void blk_mq_stop_hw_queues(struct request_queue *q)
1568 {
1569 	struct blk_mq_hw_ctx *hctx;
1570 	int i;
1571 
1572 	queue_for_each_hw_ctx(q, hctx, i)
1573 		blk_mq_stop_hw_queue(hctx);
1574 }
1575 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1576 
1577 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1578 {
1579 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1580 
1581 	blk_mq_run_hw_queue(hctx, false);
1582 }
1583 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1584 
1585 void blk_mq_start_hw_queues(struct request_queue *q)
1586 {
1587 	struct blk_mq_hw_ctx *hctx;
1588 	int i;
1589 
1590 	queue_for_each_hw_ctx(q, hctx, i)
1591 		blk_mq_start_hw_queue(hctx);
1592 }
1593 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1594 
1595 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1596 {
1597 	if (!blk_mq_hctx_stopped(hctx))
1598 		return;
1599 
1600 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1601 	blk_mq_run_hw_queue(hctx, async);
1602 }
1603 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1604 
1605 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1606 {
1607 	struct blk_mq_hw_ctx *hctx;
1608 	int i;
1609 
1610 	queue_for_each_hw_ctx(q, hctx, i)
1611 		blk_mq_start_stopped_hw_queue(hctx, async);
1612 }
1613 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1614 
1615 static void blk_mq_run_work_fn(struct work_struct *work)
1616 {
1617 	struct blk_mq_hw_ctx *hctx;
1618 
1619 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1620 
1621 	/*
1622 	 * If we are stopped, don't run the queue.
1623 	 */
1624 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1625 		return;
1626 
1627 	__blk_mq_run_hw_queue(hctx);
1628 }
1629 
1630 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1631 					    struct request *rq,
1632 					    bool at_head)
1633 {
1634 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1635 	enum hctx_type type = hctx->type;
1636 
1637 	lockdep_assert_held(&ctx->lock);
1638 
1639 	trace_block_rq_insert(hctx->queue, rq);
1640 
1641 	if (at_head)
1642 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1643 	else
1644 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1645 }
1646 
1647 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1648 			     bool at_head)
1649 {
1650 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1651 
1652 	lockdep_assert_held(&ctx->lock);
1653 
1654 	__blk_mq_insert_req_list(hctx, rq, at_head);
1655 	blk_mq_hctx_mark_pending(hctx, ctx);
1656 }
1657 
1658 /*
1659  * Should only be used carefully, when the caller knows we want to
1660  * bypass a potential IO scheduler on the target device.
1661  */
1662 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1663 {
1664 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1665 
1666 	spin_lock(&hctx->lock);
1667 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1668 	spin_unlock(&hctx->lock);
1669 
1670 	if (run_queue)
1671 		blk_mq_run_hw_queue(hctx, false);
1672 }
1673 
1674 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1675 			    struct list_head *list)
1676 
1677 {
1678 	struct request *rq;
1679 	enum hctx_type type = hctx->type;
1680 
1681 	/*
1682 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1683 	 * offline now
1684 	 */
1685 	list_for_each_entry(rq, list, queuelist) {
1686 		BUG_ON(rq->mq_ctx != ctx);
1687 		trace_block_rq_insert(hctx->queue, rq);
1688 	}
1689 
1690 	spin_lock(&ctx->lock);
1691 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1692 	blk_mq_hctx_mark_pending(hctx, ctx);
1693 	spin_unlock(&ctx->lock);
1694 }
1695 
1696 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1697 {
1698 	struct request *rqa = container_of(a, struct request, queuelist);
1699 	struct request *rqb = container_of(b, struct request, queuelist);
1700 
1701 	if (rqa->mq_ctx < rqb->mq_ctx)
1702 		return -1;
1703 	else if (rqa->mq_ctx > rqb->mq_ctx)
1704 		return 1;
1705 	else if (rqa->mq_hctx < rqb->mq_hctx)
1706 		return -1;
1707 	else if (rqa->mq_hctx > rqb->mq_hctx)
1708 		return 1;
1709 
1710 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1711 }
1712 
1713 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1714 {
1715 	struct blk_mq_hw_ctx *this_hctx;
1716 	struct blk_mq_ctx *this_ctx;
1717 	struct request_queue *this_q;
1718 	struct request *rq;
1719 	LIST_HEAD(list);
1720 	LIST_HEAD(rq_list);
1721 	unsigned int depth;
1722 
1723 	list_splice_init(&plug->mq_list, &list);
1724 
1725 	if (plug->rq_count > 2 && plug->multiple_queues)
1726 		list_sort(NULL, &list, plug_rq_cmp);
1727 
1728 	plug->rq_count = 0;
1729 
1730 	this_q = NULL;
1731 	this_hctx = NULL;
1732 	this_ctx = NULL;
1733 	depth = 0;
1734 
1735 	while (!list_empty(&list)) {
1736 		rq = list_entry_rq(list.next);
1737 		list_del_init(&rq->queuelist);
1738 		BUG_ON(!rq->q);
1739 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1740 			if (this_hctx) {
1741 				trace_block_unplug(this_q, depth, !from_schedule);
1742 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1743 								&rq_list,
1744 								from_schedule);
1745 			}
1746 
1747 			this_q = rq->q;
1748 			this_ctx = rq->mq_ctx;
1749 			this_hctx = rq->mq_hctx;
1750 			depth = 0;
1751 		}
1752 
1753 		depth++;
1754 		list_add_tail(&rq->queuelist, &rq_list);
1755 	}
1756 
1757 	/*
1758 	 * If 'this_hctx' is set, we know we have entries to complete
1759 	 * on 'rq_list'. Do those.
1760 	 */
1761 	if (this_hctx) {
1762 		trace_block_unplug(this_q, depth, !from_schedule);
1763 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1764 						from_schedule);
1765 	}
1766 }
1767 
1768 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1769 		unsigned int nr_segs)
1770 {
1771 	if (bio->bi_opf & REQ_RAHEAD)
1772 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1773 
1774 	rq->__sector = bio->bi_iter.bi_sector;
1775 	rq->write_hint = bio->bi_write_hint;
1776 	blk_rq_bio_prep(rq, bio, nr_segs);
1777 
1778 	blk_account_io_start(rq, true);
1779 }
1780 
1781 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1782 					    struct request *rq,
1783 					    blk_qc_t *cookie, bool last)
1784 {
1785 	struct request_queue *q = rq->q;
1786 	struct blk_mq_queue_data bd = {
1787 		.rq = rq,
1788 		.last = last,
1789 	};
1790 	blk_qc_t new_cookie;
1791 	blk_status_t ret;
1792 
1793 	new_cookie = request_to_qc_t(hctx, rq);
1794 
1795 	/*
1796 	 * For OK queue, we are done. For error, caller may kill it.
1797 	 * Any other error (busy), just add it to our list as we
1798 	 * previously would have done.
1799 	 */
1800 	ret = q->mq_ops->queue_rq(hctx, &bd);
1801 	switch (ret) {
1802 	case BLK_STS_OK:
1803 		blk_mq_update_dispatch_busy(hctx, false);
1804 		*cookie = new_cookie;
1805 		break;
1806 	case BLK_STS_RESOURCE:
1807 	case BLK_STS_DEV_RESOURCE:
1808 		blk_mq_update_dispatch_busy(hctx, true);
1809 		__blk_mq_requeue_request(rq);
1810 		break;
1811 	default:
1812 		blk_mq_update_dispatch_busy(hctx, false);
1813 		*cookie = BLK_QC_T_NONE;
1814 		break;
1815 	}
1816 
1817 	return ret;
1818 }
1819 
1820 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1821 						struct request *rq,
1822 						blk_qc_t *cookie,
1823 						bool bypass_insert, bool last)
1824 {
1825 	struct request_queue *q = rq->q;
1826 	bool run_queue = true;
1827 
1828 	/*
1829 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1830 	 *
1831 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1832 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1833 	 * and avoid driver to try to dispatch again.
1834 	 */
1835 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1836 		run_queue = false;
1837 		bypass_insert = false;
1838 		goto insert;
1839 	}
1840 
1841 	if (q->elevator && !bypass_insert)
1842 		goto insert;
1843 
1844 	if (!blk_mq_get_dispatch_budget(hctx))
1845 		goto insert;
1846 
1847 	if (!blk_mq_get_driver_tag(rq)) {
1848 		blk_mq_put_dispatch_budget(hctx);
1849 		goto insert;
1850 	}
1851 
1852 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1853 insert:
1854 	if (bypass_insert)
1855 		return BLK_STS_RESOURCE;
1856 
1857 	blk_mq_request_bypass_insert(rq, run_queue);
1858 	return BLK_STS_OK;
1859 }
1860 
1861 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1862 		struct request *rq, blk_qc_t *cookie)
1863 {
1864 	blk_status_t ret;
1865 	int srcu_idx;
1866 
1867 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1868 
1869 	hctx_lock(hctx, &srcu_idx);
1870 
1871 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1872 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1873 		blk_mq_request_bypass_insert(rq, true);
1874 	else if (ret != BLK_STS_OK)
1875 		blk_mq_end_request(rq, ret);
1876 
1877 	hctx_unlock(hctx, srcu_idx);
1878 }
1879 
1880 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1881 {
1882 	blk_status_t ret;
1883 	int srcu_idx;
1884 	blk_qc_t unused_cookie;
1885 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1886 
1887 	hctx_lock(hctx, &srcu_idx);
1888 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1889 	hctx_unlock(hctx, srcu_idx);
1890 
1891 	return ret;
1892 }
1893 
1894 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1895 		struct list_head *list)
1896 {
1897 	while (!list_empty(list)) {
1898 		blk_status_t ret;
1899 		struct request *rq = list_first_entry(list, struct request,
1900 				queuelist);
1901 
1902 		list_del_init(&rq->queuelist);
1903 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1904 		if (ret != BLK_STS_OK) {
1905 			if (ret == BLK_STS_RESOURCE ||
1906 					ret == BLK_STS_DEV_RESOURCE) {
1907 				blk_mq_request_bypass_insert(rq,
1908 							list_empty(list));
1909 				break;
1910 			}
1911 			blk_mq_end_request(rq, ret);
1912 		}
1913 	}
1914 
1915 	/*
1916 	 * If we didn't flush the entire list, we could have told
1917 	 * the driver there was more coming, but that turned out to
1918 	 * be a lie.
1919 	 */
1920 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1921 		hctx->queue->mq_ops->commit_rqs(hctx);
1922 }
1923 
1924 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1925 {
1926 	list_add_tail(&rq->queuelist, &plug->mq_list);
1927 	plug->rq_count++;
1928 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1929 		struct request *tmp;
1930 
1931 		tmp = list_first_entry(&plug->mq_list, struct request,
1932 						queuelist);
1933 		if (tmp->q != rq->q)
1934 			plug->multiple_queues = true;
1935 	}
1936 }
1937 
1938 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1939 {
1940 	const int is_sync = op_is_sync(bio->bi_opf);
1941 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1942 	struct blk_mq_alloc_data data = { .flags = 0};
1943 	struct request *rq;
1944 	struct blk_plug *plug;
1945 	struct request *same_queue_rq = NULL;
1946 	unsigned int nr_segs;
1947 	blk_qc_t cookie;
1948 
1949 	blk_queue_bounce(q, &bio);
1950 	__blk_queue_split(q, &bio, &nr_segs);
1951 
1952 	if (!bio_integrity_prep(bio))
1953 		return BLK_QC_T_NONE;
1954 
1955 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1956 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1957 		return BLK_QC_T_NONE;
1958 
1959 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1960 		return BLK_QC_T_NONE;
1961 
1962 	rq_qos_throttle(q, bio);
1963 
1964 	data.cmd_flags = bio->bi_opf;
1965 	rq = blk_mq_get_request(q, bio, &data);
1966 	if (unlikely(!rq)) {
1967 		rq_qos_cleanup(q, bio);
1968 		if (bio->bi_opf & REQ_NOWAIT)
1969 			bio_wouldblock_error(bio);
1970 		return BLK_QC_T_NONE;
1971 	}
1972 
1973 	trace_block_getrq(q, bio, bio->bi_opf);
1974 
1975 	rq_qos_track(q, rq, bio);
1976 
1977 	cookie = request_to_qc_t(data.hctx, rq);
1978 
1979 	blk_mq_bio_to_request(rq, bio, nr_segs);
1980 
1981 	plug = blk_mq_plug(q, bio);
1982 	if (unlikely(is_flush_fua)) {
1983 		/* bypass scheduler for flush rq */
1984 		blk_insert_flush(rq);
1985 		blk_mq_run_hw_queue(data.hctx, true);
1986 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1987 		/*
1988 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1989 		 * we know the driver uses bd->last in a smart fashion.
1990 		 */
1991 		unsigned int request_count = plug->rq_count;
1992 		struct request *last = NULL;
1993 
1994 		if (!request_count)
1995 			trace_block_plug(q);
1996 		else
1997 			last = list_entry_rq(plug->mq_list.prev);
1998 
1999 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2000 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2001 			blk_flush_plug_list(plug, false);
2002 			trace_block_plug(q);
2003 		}
2004 
2005 		blk_add_rq_to_plug(plug, rq);
2006 	} else if (plug && !blk_queue_nomerges(q)) {
2007 		/*
2008 		 * We do limited plugging. If the bio can be merged, do that.
2009 		 * Otherwise the existing request in the plug list will be
2010 		 * issued. So the plug list will have one request at most
2011 		 * The plug list might get flushed before this. If that happens,
2012 		 * the plug list is empty, and same_queue_rq is invalid.
2013 		 */
2014 		if (list_empty(&plug->mq_list))
2015 			same_queue_rq = NULL;
2016 		if (same_queue_rq) {
2017 			list_del_init(&same_queue_rq->queuelist);
2018 			plug->rq_count--;
2019 		}
2020 		blk_add_rq_to_plug(plug, rq);
2021 		trace_block_plug(q);
2022 
2023 		if (same_queue_rq) {
2024 			data.hctx = same_queue_rq->mq_hctx;
2025 			trace_block_unplug(q, 1, true);
2026 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2027 					&cookie);
2028 		}
2029 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2030 			!data.hctx->dispatch_busy)) {
2031 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2032 	} else {
2033 		blk_mq_sched_insert_request(rq, false, true, true);
2034 	}
2035 
2036 	return cookie;
2037 }
2038 
2039 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2040 		     unsigned int hctx_idx)
2041 {
2042 	struct page *page;
2043 
2044 	if (tags->rqs && set->ops->exit_request) {
2045 		int i;
2046 
2047 		for (i = 0; i < tags->nr_tags; i++) {
2048 			struct request *rq = tags->static_rqs[i];
2049 
2050 			if (!rq)
2051 				continue;
2052 			set->ops->exit_request(set, rq, hctx_idx);
2053 			tags->static_rqs[i] = NULL;
2054 		}
2055 	}
2056 
2057 	while (!list_empty(&tags->page_list)) {
2058 		page = list_first_entry(&tags->page_list, struct page, lru);
2059 		list_del_init(&page->lru);
2060 		/*
2061 		 * Remove kmemleak object previously allocated in
2062 		 * blk_mq_alloc_rqs().
2063 		 */
2064 		kmemleak_free(page_address(page));
2065 		__free_pages(page, page->private);
2066 	}
2067 }
2068 
2069 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2070 {
2071 	kfree(tags->rqs);
2072 	tags->rqs = NULL;
2073 	kfree(tags->static_rqs);
2074 	tags->static_rqs = NULL;
2075 
2076 	blk_mq_free_tags(tags);
2077 }
2078 
2079 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2080 					unsigned int hctx_idx,
2081 					unsigned int nr_tags,
2082 					unsigned int reserved_tags)
2083 {
2084 	struct blk_mq_tags *tags;
2085 	int node;
2086 
2087 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2088 	if (node == NUMA_NO_NODE)
2089 		node = set->numa_node;
2090 
2091 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2092 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2093 	if (!tags)
2094 		return NULL;
2095 
2096 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2097 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2098 				 node);
2099 	if (!tags->rqs) {
2100 		blk_mq_free_tags(tags);
2101 		return NULL;
2102 	}
2103 
2104 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2105 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2106 					node);
2107 	if (!tags->static_rqs) {
2108 		kfree(tags->rqs);
2109 		blk_mq_free_tags(tags);
2110 		return NULL;
2111 	}
2112 
2113 	return tags;
2114 }
2115 
2116 static size_t order_to_size(unsigned int order)
2117 {
2118 	return (size_t)PAGE_SIZE << order;
2119 }
2120 
2121 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2122 			       unsigned int hctx_idx, int node)
2123 {
2124 	int ret;
2125 
2126 	if (set->ops->init_request) {
2127 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2128 		if (ret)
2129 			return ret;
2130 	}
2131 
2132 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2133 	return 0;
2134 }
2135 
2136 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2137 		     unsigned int hctx_idx, unsigned int depth)
2138 {
2139 	unsigned int i, j, entries_per_page, max_order = 4;
2140 	size_t rq_size, left;
2141 	int node;
2142 
2143 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2144 	if (node == NUMA_NO_NODE)
2145 		node = set->numa_node;
2146 
2147 	INIT_LIST_HEAD(&tags->page_list);
2148 
2149 	/*
2150 	 * rq_size is the size of the request plus driver payload, rounded
2151 	 * to the cacheline size
2152 	 */
2153 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2154 				cache_line_size());
2155 	left = rq_size * depth;
2156 
2157 	for (i = 0; i < depth; ) {
2158 		int this_order = max_order;
2159 		struct page *page;
2160 		int to_do;
2161 		void *p;
2162 
2163 		while (this_order && left < order_to_size(this_order - 1))
2164 			this_order--;
2165 
2166 		do {
2167 			page = alloc_pages_node(node,
2168 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2169 				this_order);
2170 			if (page)
2171 				break;
2172 			if (!this_order--)
2173 				break;
2174 			if (order_to_size(this_order) < rq_size)
2175 				break;
2176 		} while (1);
2177 
2178 		if (!page)
2179 			goto fail;
2180 
2181 		page->private = this_order;
2182 		list_add_tail(&page->lru, &tags->page_list);
2183 
2184 		p = page_address(page);
2185 		/*
2186 		 * Allow kmemleak to scan these pages as they contain pointers
2187 		 * to additional allocations like via ops->init_request().
2188 		 */
2189 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2190 		entries_per_page = order_to_size(this_order) / rq_size;
2191 		to_do = min(entries_per_page, depth - i);
2192 		left -= to_do * rq_size;
2193 		for (j = 0; j < to_do; j++) {
2194 			struct request *rq = p;
2195 
2196 			tags->static_rqs[i] = rq;
2197 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2198 				tags->static_rqs[i] = NULL;
2199 				goto fail;
2200 			}
2201 
2202 			p += rq_size;
2203 			i++;
2204 		}
2205 	}
2206 	return 0;
2207 
2208 fail:
2209 	blk_mq_free_rqs(set, tags, hctx_idx);
2210 	return -ENOMEM;
2211 }
2212 
2213 /*
2214  * 'cpu' is going away. splice any existing rq_list entries from this
2215  * software queue to the hw queue dispatch list, and ensure that it
2216  * gets run.
2217  */
2218 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2219 {
2220 	struct blk_mq_hw_ctx *hctx;
2221 	struct blk_mq_ctx *ctx;
2222 	LIST_HEAD(tmp);
2223 	enum hctx_type type;
2224 
2225 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2226 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2227 	type = hctx->type;
2228 
2229 	spin_lock(&ctx->lock);
2230 	if (!list_empty(&ctx->rq_lists[type])) {
2231 		list_splice_init(&ctx->rq_lists[type], &tmp);
2232 		blk_mq_hctx_clear_pending(hctx, ctx);
2233 	}
2234 	spin_unlock(&ctx->lock);
2235 
2236 	if (list_empty(&tmp))
2237 		return 0;
2238 
2239 	spin_lock(&hctx->lock);
2240 	list_splice_tail_init(&tmp, &hctx->dispatch);
2241 	spin_unlock(&hctx->lock);
2242 
2243 	blk_mq_run_hw_queue(hctx, true);
2244 	return 0;
2245 }
2246 
2247 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2248 {
2249 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2250 					    &hctx->cpuhp_dead);
2251 }
2252 
2253 /* hctx->ctxs will be freed in queue's release handler */
2254 static void blk_mq_exit_hctx(struct request_queue *q,
2255 		struct blk_mq_tag_set *set,
2256 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2257 {
2258 	if (blk_mq_hw_queue_mapped(hctx))
2259 		blk_mq_tag_idle(hctx);
2260 
2261 	if (set->ops->exit_request)
2262 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2263 
2264 	if (set->ops->exit_hctx)
2265 		set->ops->exit_hctx(hctx, hctx_idx);
2266 
2267 	blk_mq_remove_cpuhp(hctx);
2268 
2269 	spin_lock(&q->unused_hctx_lock);
2270 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2271 	spin_unlock(&q->unused_hctx_lock);
2272 }
2273 
2274 static void blk_mq_exit_hw_queues(struct request_queue *q,
2275 		struct blk_mq_tag_set *set, int nr_queue)
2276 {
2277 	struct blk_mq_hw_ctx *hctx;
2278 	unsigned int i;
2279 
2280 	queue_for_each_hw_ctx(q, hctx, i) {
2281 		if (i == nr_queue)
2282 			break;
2283 		blk_mq_debugfs_unregister_hctx(hctx);
2284 		blk_mq_exit_hctx(q, set, hctx, i);
2285 	}
2286 }
2287 
2288 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2289 {
2290 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2291 
2292 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2293 			   __alignof__(struct blk_mq_hw_ctx)) !=
2294 		     sizeof(struct blk_mq_hw_ctx));
2295 
2296 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2297 		hw_ctx_size += sizeof(struct srcu_struct);
2298 
2299 	return hw_ctx_size;
2300 }
2301 
2302 static int blk_mq_init_hctx(struct request_queue *q,
2303 		struct blk_mq_tag_set *set,
2304 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2305 {
2306 	hctx->queue_num = hctx_idx;
2307 
2308 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2309 
2310 	hctx->tags = set->tags[hctx_idx];
2311 
2312 	if (set->ops->init_hctx &&
2313 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2314 		goto unregister_cpu_notifier;
2315 
2316 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2317 				hctx->numa_node))
2318 		goto exit_hctx;
2319 	return 0;
2320 
2321  exit_hctx:
2322 	if (set->ops->exit_hctx)
2323 		set->ops->exit_hctx(hctx, hctx_idx);
2324  unregister_cpu_notifier:
2325 	blk_mq_remove_cpuhp(hctx);
2326 	return -1;
2327 }
2328 
2329 static struct blk_mq_hw_ctx *
2330 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2331 		int node)
2332 {
2333 	struct blk_mq_hw_ctx *hctx;
2334 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2335 
2336 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2337 	if (!hctx)
2338 		goto fail_alloc_hctx;
2339 
2340 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2341 		goto free_hctx;
2342 
2343 	atomic_set(&hctx->nr_active, 0);
2344 	if (node == NUMA_NO_NODE)
2345 		node = set->numa_node;
2346 	hctx->numa_node = node;
2347 
2348 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2349 	spin_lock_init(&hctx->lock);
2350 	INIT_LIST_HEAD(&hctx->dispatch);
2351 	hctx->queue = q;
2352 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2353 
2354 	INIT_LIST_HEAD(&hctx->hctx_list);
2355 
2356 	/*
2357 	 * Allocate space for all possible cpus to avoid allocation at
2358 	 * runtime
2359 	 */
2360 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2361 			gfp, node);
2362 	if (!hctx->ctxs)
2363 		goto free_cpumask;
2364 
2365 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2366 				gfp, node))
2367 		goto free_ctxs;
2368 	hctx->nr_ctx = 0;
2369 
2370 	spin_lock_init(&hctx->dispatch_wait_lock);
2371 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2372 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2373 
2374 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2375 			gfp);
2376 	if (!hctx->fq)
2377 		goto free_bitmap;
2378 
2379 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2380 		init_srcu_struct(hctx->srcu);
2381 	blk_mq_hctx_kobj_init(hctx);
2382 
2383 	return hctx;
2384 
2385  free_bitmap:
2386 	sbitmap_free(&hctx->ctx_map);
2387  free_ctxs:
2388 	kfree(hctx->ctxs);
2389  free_cpumask:
2390 	free_cpumask_var(hctx->cpumask);
2391  free_hctx:
2392 	kfree(hctx);
2393  fail_alloc_hctx:
2394 	return NULL;
2395 }
2396 
2397 static void blk_mq_init_cpu_queues(struct request_queue *q,
2398 				   unsigned int nr_hw_queues)
2399 {
2400 	struct blk_mq_tag_set *set = q->tag_set;
2401 	unsigned int i, j;
2402 
2403 	for_each_possible_cpu(i) {
2404 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2405 		struct blk_mq_hw_ctx *hctx;
2406 		int k;
2407 
2408 		__ctx->cpu = i;
2409 		spin_lock_init(&__ctx->lock);
2410 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2411 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2412 
2413 		__ctx->queue = q;
2414 
2415 		/*
2416 		 * Set local node, IFF we have more than one hw queue. If
2417 		 * not, we remain on the home node of the device
2418 		 */
2419 		for (j = 0; j < set->nr_maps; j++) {
2420 			hctx = blk_mq_map_queue_type(q, j, i);
2421 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2422 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2423 		}
2424 	}
2425 }
2426 
2427 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2428 {
2429 	int ret = 0;
2430 
2431 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2432 					set->queue_depth, set->reserved_tags);
2433 	if (!set->tags[hctx_idx])
2434 		return false;
2435 
2436 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2437 				set->queue_depth);
2438 	if (!ret)
2439 		return true;
2440 
2441 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2442 	set->tags[hctx_idx] = NULL;
2443 	return false;
2444 }
2445 
2446 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2447 					 unsigned int hctx_idx)
2448 {
2449 	if (set->tags && set->tags[hctx_idx]) {
2450 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2451 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2452 		set->tags[hctx_idx] = NULL;
2453 	}
2454 }
2455 
2456 static void blk_mq_map_swqueue(struct request_queue *q)
2457 {
2458 	unsigned int i, j, hctx_idx;
2459 	struct blk_mq_hw_ctx *hctx;
2460 	struct blk_mq_ctx *ctx;
2461 	struct blk_mq_tag_set *set = q->tag_set;
2462 
2463 	queue_for_each_hw_ctx(q, hctx, i) {
2464 		cpumask_clear(hctx->cpumask);
2465 		hctx->nr_ctx = 0;
2466 		hctx->dispatch_from = NULL;
2467 	}
2468 
2469 	/*
2470 	 * Map software to hardware queues.
2471 	 *
2472 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2473 	 */
2474 	for_each_possible_cpu(i) {
2475 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2476 		/* unmapped hw queue can be remapped after CPU topo changed */
2477 		if (!set->tags[hctx_idx] &&
2478 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2479 			/*
2480 			 * If tags initialization fail for some hctx,
2481 			 * that hctx won't be brought online.  In this
2482 			 * case, remap the current ctx to hctx[0] which
2483 			 * is guaranteed to always have tags allocated
2484 			 */
2485 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2486 		}
2487 
2488 		ctx = per_cpu_ptr(q->queue_ctx, i);
2489 		for (j = 0; j < set->nr_maps; j++) {
2490 			if (!set->map[j].nr_queues) {
2491 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2492 						HCTX_TYPE_DEFAULT, i);
2493 				continue;
2494 			}
2495 
2496 			hctx = blk_mq_map_queue_type(q, j, i);
2497 			ctx->hctxs[j] = hctx;
2498 			/*
2499 			 * If the CPU is already set in the mask, then we've
2500 			 * mapped this one already. This can happen if
2501 			 * devices share queues across queue maps.
2502 			 */
2503 			if (cpumask_test_cpu(i, hctx->cpumask))
2504 				continue;
2505 
2506 			cpumask_set_cpu(i, hctx->cpumask);
2507 			hctx->type = j;
2508 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2509 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2510 
2511 			/*
2512 			 * If the nr_ctx type overflows, we have exceeded the
2513 			 * amount of sw queues we can support.
2514 			 */
2515 			BUG_ON(!hctx->nr_ctx);
2516 		}
2517 
2518 		for (; j < HCTX_MAX_TYPES; j++)
2519 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2520 					HCTX_TYPE_DEFAULT, i);
2521 	}
2522 
2523 	queue_for_each_hw_ctx(q, hctx, i) {
2524 		/*
2525 		 * If no software queues are mapped to this hardware queue,
2526 		 * disable it and free the request entries.
2527 		 */
2528 		if (!hctx->nr_ctx) {
2529 			/* Never unmap queue 0.  We need it as a
2530 			 * fallback in case of a new remap fails
2531 			 * allocation
2532 			 */
2533 			if (i && set->tags[i])
2534 				blk_mq_free_map_and_requests(set, i);
2535 
2536 			hctx->tags = NULL;
2537 			continue;
2538 		}
2539 
2540 		hctx->tags = set->tags[i];
2541 		WARN_ON(!hctx->tags);
2542 
2543 		/*
2544 		 * Set the map size to the number of mapped software queues.
2545 		 * This is more accurate and more efficient than looping
2546 		 * over all possibly mapped software queues.
2547 		 */
2548 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2549 
2550 		/*
2551 		 * Initialize batch roundrobin counts
2552 		 */
2553 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2554 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2555 	}
2556 }
2557 
2558 /*
2559  * Caller needs to ensure that we're either frozen/quiesced, or that
2560  * the queue isn't live yet.
2561  */
2562 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2563 {
2564 	struct blk_mq_hw_ctx *hctx;
2565 	int i;
2566 
2567 	queue_for_each_hw_ctx(q, hctx, i) {
2568 		if (shared)
2569 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2570 		else
2571 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2572 	}
2573 }
2574 
2575 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2576 					bool shared)
2577 {
2578 	struct request_queue *q;
2579 
2580 	lockdep_assert_held(&set->tag_list_lock);
2581 
2582 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2583 		blk_mq_freeze_queue(q);
2584 		queue_set_hctx_shared(q, shared);
2585 		blk_mq_unfreeze_queue(q);
2586 	}
2587 }
2588 
2589 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2590 {
2591 	struct blk_mq_tag_set *set = q->tag_set;
2592 
2593 	mutex_lock(&set->tag_list_lock);
2594 	list_del_rcu(&q->tag_set_list);
2595 	if (list_is_singular(&set->tag_list)) {
2596 		/* just transitioned to unshared */
2597 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2598 		/* update existing queue */
2599 		blk_mq_update_tag_set_depth(set, false);
2600 	}
2601 	mutex_unlock(&set->tag_list_lock);
2602 	INIT_LIST_HEAD(&q->tag_set_list);
2603 }
2604 
2605 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2606 				     struct request_queue *q)
2607 {
2608 	mutex_lock(&set->tag_list_lock);
2609 
2610 	/*
2611 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2612 	 */
2613 	if (!list_empty(&set->tag_list) &&
2614 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2615 		set->flags |= BLK_MQ_F_TAG_SHARED;
2616 		/* update existing queue */
2617 		blk_mq_update_tag_set_depth(set, true);
2618 	}
2619 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2620 		queue_set_hctx_shared(q, true);
2621 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2622 
2623 	mutex_unlock(&set->tag_list_lock);
2624 }
2625 
2626 /* All allocations will be freed in release handler of q->mq_kobj */
2627 static int blk_mq_alloc_ctxs(struct request_queue *q)
2628 {
2629 	struct blk_mq_ctxs *ctxs;
2630 	int cpu;
2631 
2632 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2633 	if (!ctxs)
2634 		return -ENOMEM;
2635 
2636 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2637 	if (!ctxs->queue_ctx)
2638 		goto fail;
2639 
2640 	for_each_possible_cpu(cpu) {
2641 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2642 		ctx->ctxs = ctxs;
2643 	}
2644 
2645 	q->mq_kobj = &ctxs->kobj;
2646 	q->queue_ctx = ctxs->queue_ctx;
2647 
2648 	return 0;
2649  fail:
2650 	kfree(ctxs);
2651 	return -ENOMEM;
2652 }
2653 
2654 /*
2655  * It is the actual release handler for mq, but we do it from
2656  * request queue's release handler for avoiding use-after-free
2657  * and headache because q->mq_kobj shouldn't have been introduced,
2658  * but we can't group ctx/kctx kobj without it.
2659  */
2660 void blk_mq_release(struct request_queue *q)
2661 {
2662 	struct blk_mq_hw_ctx *hctx, *next;
2663 	int i;
2664 
2665 	queue_for_each_hw_ctx(q, hctx, i)
2666 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2667 
2668 	/* all hctx are in .unused_hctx_list now */
2669 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2670 		list_del_init(&hctx->hctx_list);
2671 		kobject_put(&hctx->kobj);
2672 	}
2673 
2674 	kfree(q->queue_hw_ctx);
2675 
2676 	/*
2677 	 * release .mq_kobj and sw queue's kobject now because
2678 	 * both share lifetime with request queue.
2679 	 */
2680 	blk_mq_sysfs_deinit(q);
2681 }
2682 
2683 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2684 {
2685 	struct request_queue *uninit_q, *q;
2686 
2687 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2688 	if (!uninit_q)
2689 		return ERR_PTR(-ENOMEM);
2690 
2691 	/*
2692 	 * Initialize the queue without an elevator. device_add_disk() will do
2693 	 * the initialization.
2694 	 */
2695 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2696 	if (IS_ERR(q))
2697 		blk_cleanup_queue(uninit_q);
2698 
2699 	return q;
2700 }
2701 EXPORT_SYMBOL(blk_mq_init_queue);
2702 
2703 /*
2704  * Helper for setting up a queue with mq ops, given queue depth, and
2705  * the passed in mq ops flags.
2706  */
2707 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2708 					   const struct blk_mq_ops *ops,
2709 					   unsigned int queue_depth,
2710 					   unsigned int set_flags)
2711 {
2712 	struct request_queue *q;
2713 	int ret;
2714 
2715 	memset(set, 0, sizeof(*set));
2716 	set->ops = ops;
2717 	set->nr_hw_queues = 1;
2718 	set->nr_maps = 1;
2719 	set->queue_depth = queue_depth;
2720 	set->numa_node = NUMA_NO_NODE;
2721 	set->flags = set_flags;
2722 
2723 	ret = blk_mq_alloc_tag_set(set);
2724 	if (ret)
2725 		return ERR_PTR(ret);
2726 
2727 	q = blk_mq_init_queue(set);
2728 	if (IS_ERR(q)) {
2729 		blk_mq_free_tag_set(set);
2730 		return q;
2731 	}
2732 
2733 	return q;
2734 }
2735 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2736 
2737 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2738 		struct blk_mq_tag_set *set, struct request_queue *q,
2739 		int hctx_idx, int node)
2740 {
2741 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2742 
2743 	/* reuse dead hctx first */
2744 	spin_lock(&q->unused_hctx_lock);
2745 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2746 		if (tmp->numa_node == node) {
2747 			hctx = tmp;
2748 			break;
2749 		}
2750 	}
2751 	if (hctx)
2752 		list_del_init(&hctx->hctx_list);
2753 	spin_unlock(&q->unused_hctx_lock);
2754 
2755 	if (!hctx)
2756 		hctx = blk_mq_alloc_hctx(q, set, node);
2757 	if (!hctx)
2758 		goto fail;
2759 
2760 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2761 		goto free_hctx;
2762 
2763 	return hctx;
2764 
2765  free_hctx:
2766 	kobject_put(&hctx->kobj);
2767  fail:
2768 	return NULL;
2769 }
2770 
2771 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2772 						struct request_queue *q)
2773 {
2774 	int i, j, end;
2775 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2776 
2777 	/* protect against switching io scheduler  */
2778 	mutex_lock(&q->sysfs_lock);
2779 	for (i = 0; i < set->nr_hw_queues; i++) {
2780 		int node;
2781 		struct blk_mq_hw_ctx *hctx;
2782 
2783 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2784 		/*
2785 		 * If the hw queue has been mapped to another numa node,
2786 		 * we need to realloc the hctx. If allocation fails, fallback
2787 		 * to use the previous one.
2788 		 */
2789 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2790 			continue;
2791 
2792 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2793 		if (hctx) {
2794 			if (hctxs[i])
2795 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2796 			hctxs[i] = hctx;
2797 		} else {
2798 			if (hctxs[i])
2799 				pr_warn("Allocate new hctx on node %d fails,\
2800 						fallback to previous one on node %d\n",
2801 						node, hctxs[i]->numa_node);
2802 			else
2803 				break;
2804 		}
2805 	}
2806 	/*
2807 	 * Increasing nr_hw_queues fails. Free the newly allocated
2808 	 * hctxs and keep the previous q->nr_hw_queues.
2809 	 */
2810 	if (i != set->nr_hw_queues) {
2811 		j = q->nr_hw_queues;
2812 		end = i;
2813 	} else {
2814 		j = i;
2815 		end = q->nr_hw_queues;
2816 		q->nr_hw_queues = set->nr_hw_queues;
2817 	}
2818 
2819 	for (; j < end; j++) {
2820 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2821 
2822 		if (hctx) {
2823 			if (hctx->tags)
2824 				blk_mq_free_map_and_requests(set, j);
2825 			blk_mq_exit_hctx(q, set, hctx, j);
2826 			hctxs[j] = NULL;
2827 		}
2828 	}
2829 	mutex_unlock(&q->sysfs_lock);
2830 }
2831 
2832 /*
2833  * Maximum number of hardware queues we support. For single sets, we'll never
2834  * have more than the CPUs (software queues). For multiple sets, the tag_set
2835  * user may have set ->nr_hw_queues larger.
2836  */
2837 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2838 {
2839 	if (set->nr_maps == 1)
2840 		return nr_cpu_ids;
2841 
2842 	return max(set->nr_hw_queues, nr_cpu_ids);
2843 }
2844 
2845 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2846 						  struct request_queue *q,
2847 						  bool elevator_init)
2848 {
2849 	/* mark the queue as mq asap */
2850 	q->mq_ops = set->ops;
2851 
2852 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2853 					     blk_mq_poll_stats_bkt,
2854 					     BLK_MQ_POLL_STATS_BKTS, q);
2855 	if (!q->poll_cb)
2856 		goto err_exit;
2857 
2858 	if (blk_mq_alloc_ctxs(q))
2859 		goto err_poll;
2860 
2861 	/* init q->mq_kobj and sw queues' kobjects */
2862 	blk_mq_sysfs_init(q);
2863 
2864 	q->nr_queues = nr_hw_queues(set);
2865 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2866 						GFP_KERNEL, set->numa_node);
2867 	if (!q->queue_hw_ctx)
2868 		goto err_sys_init;
2869 
2870 	INIT_LIST_HEAD(&q->unused_hctx_list);
2871 	spin_lock_init(&q->unused_hctx_lock);
2872 
2873 	blk_mq_realloc_hw_ctxs(set, q);
2874 	if (!q->nr_hw_queues)
2875 		goto err_hctxs;
2876 
2877 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2878 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2879 
2880 	q->tag_set = set;
2881 
2882 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2883 	if (set->nr_maps > HCTX_TYPE_POLL &&
2884 	    set->map[HCTX_TYPE_POLL].nr_queues)
2885 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2886 
2887 	q->sg_reserved_size = INT_MAX;
2888 
2889 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2890 	INIT_LIST_HEAD(&q->requeue_list);
2891 	spin_lock_init(&q->requeue_lock);
2892 
2893 	blk_queue_make_request(q, blk_mq_make_request);
2894 
2895 	/*
2896 	 * Do this after blk_queue_make_request() overrides it...
2897 	 */
2898 	q->nr_requests = set->queue_depth;
2899 
2900 	/*
2901 	 * Default to classic polling
2902 	 */
2903 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2904 
2905 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2906 	blk_mq_add_queue_tag_set(set, q);
2907 	blk_mq_map_swqueue(q);
2908 
2909 	if (elevator_init)
2910 		elevator_init_mq(q);
2911 
2912 	return q;
2913 
2914 err_hctxs:
2915 	kfree(q->queue_hw_ctx);
2916 	q->nr_hw_queues = 0;
2917 err_sys_init:
2918 	blk_mq_sysfs_deinit(q);
2919 err_poll:
2920 	blk_stat_free_callback(q->poll_cb);
2921 	q->poll_cb = NULL;
2922 err_exit:
2923 	q->mq_ops = NULL;
2924 	return ERR_PTR(-ENOMEM);
2925 }
2926 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2927 
2928 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2929 void blk_mq_exit_queue(struct request_queue *q)
2930 {
2931 	struct blk_mq_tag_set	*set = q->tag_set;
2932 
2933 	blk_mq_del_queue_tag_set(q);
2934 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2935 }
2936 
2937 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2938 {
2939 	int i;
2940 
2941 	for (i = 0; i < set->nr_hw_queues; i++)
2942 		if (!__blk_mq_alloc_rq_map(set, i))
2943 			goto out_unwind;
2944 
2945 	return 0;
2946 
2947 out_unwind:
2948 	while (--i >= 0)
2949 		blk_mq_free_rq_map(set->tags[i]);
2950 
2951 	return -ENOMEM;
2952 }
2953 
2954 /*
2955  * Allocate the request maps associated with this tag_set. Note that this
2956  * may reduce the depth asked for, if memory is tight. set->queue_depth
2957  * will be updated to reflect the allocated depth.
2958  */
2959 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2960 {
2961 	unsigned int depth;
2962 	int err;
2963 
2964 	depth = set->queue_depth;
2965 	do {
2966 		err = __blk_mq_alloc_rq_maps(set);
2967 		if (!err)
2968 			break;
2969 
2970 		set->queue_depth >>= 1;
2971 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2972 			err = -ENOMEM;
2973 			break;
2974 		}
2975 	} while (set->queue_depth);
2976 
2977 	if (!set->queue_depth || err) {
2978 		pr_err("blk-mq: failed to allocate request map\n");
2979 		return -ENOMEM;
2980 	}
2981 
2982 	if (depth != set->queue_depth)
2983 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2984 						depth, set->queue_depth);
2985 
2986 	return 0;
2987 }
2988 
2989 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2990 {
2991 	if (set->ops->map_queues && !is_kdump_kernel()) {
2992 		int i;
2993 
2994 		/*
2995 		 * transport .map_queues is usually done in the following
2996 		 * way:
2997 		 *
2998 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2999 		 * 	mask = get_cpu_mask(queue)
3000 		 * 	for_each_cpu(cpu, mask)
3001 		 * 		set->map[x].mq_map[cpu] = queue;
3002 		 * }
3003 		 *
3004 		 * When we need to remap, the table has to be cleared for
3005 		 * killing stale mapping since one CPU may not be mapped
3006 		 * to any hw queue.
3007 		 */
3008 		for (i = 0; i < set->nr_maps; i++)
3009 			blk_mq_clear_mq_map(&set->map[i]);
3010 
3011 		return set->ops->map_queues(set);
3012 	} else {
3013 		BUG_ON(set->nr_maps > 1);
3014 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3015 	}
3016 }
3017 
3018 /*
3019  * Alloc a tag set to be associated with one or more request queues.
3020  * May fail with EINVAL for various error conditions. May adjust the
3021  * requested depth down, if it's too large. In that case, the set
3022  * value will be stored in set->queue_depth.
3023  */
3024 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3025 {
3026 	int i, ret;
3027 
3028 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3029 
3030 	if (!set->nr_hw_queues)
3031 		return -EINVAL;
3032 	if (!set->queue_depth)
3033 		return -EINVAL;
3034 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3035 		return -EINVAL;
3036 
3037 	if (!set->ops->queue_rq)
3038 		return -EINVAL;
3039 
3040 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3041 		return -EINVAL;
3042 
3043 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3044 		pr_info("blk-mq: reduced tag depth to %u\n",
3045 			BLK_MQ_MAX_DEPTH);
3046 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3047 	}
3048 
3049 	if (!set->nr_maps)
3050 		set->nr_maps = 1;
3051 	else if (set->nr_maps > HCTX_MAX_TYPES)
3052 		return -EINVAL;
3053 
3054 	/*
3055 	 * If a crashdump is active, then we are potentially in a very
3056 	 * memory constrained environment. Limit us to 1 queue and
3057 	 * 64 tags to prevent using too much memory.
3058 	 */
3059 	if (is_kdump_kernel()) {
3060 		set->nr_hw_queues = 1;
3061 		set->nr_maps = 1;
3062 		set->queue_depth = min(64U, set->queue_depth);
3063 	}
3064 	/*
3065 	 * There is no use for more h/w queues than cpus if we just have
3066 	 * a single map
3067 	 */
3068 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3069 		set->nr_hw_queues = nr_cpu_ids;
3070 
3071 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3072 				 GFP_KERNEL, set->numa_node);
3073 	if (!set->tags)
3074 		return -ENOMEM;
3075 
3076 	ret = -ENOMEM;
3077 	for (i = 0; i < set->nr_maps; i++) {
3078 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3079 						  sizeof(set->map[i].mq_map[0]),
3080 						  GFP_KERNEL, set->numa_node);
3081 		if (!set->map[i].mq_map)
3082 			goto out_free_mq_map;
3083 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3084 	}
3085 
3086 	ret = blk_mq_update_queue_map(set);
3087 	if (ret)
3088 		goto out_free_mq_map;
3089 
3090 	ret = blk_mq_alloc_rq_maps(set);
3091 	if (ret)
3092 		goto out_free_mq_map;
3093 
3094 	mutex_init(&set->tag_list_lock);
3095 	INIT_LIST_HEAD(&set->tag_list);
3096 
3097 	return 0;
3098 
3099 out_free_mq_map:
3100 	for (i = 0; i < set->nr_maps; i++) {
3101 		kfree(set->map[i].mq_map);
3102 		set->map[i].mq_map = NULL;
3103 	}
3104 	kfree(set->tags);
3105 	set->tags = NULL;
3106 	return ret;
3107 }
3108 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3109 
3110 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3111 {
3112 	int i, j;
3113 
3114 	for (i = 0; i < nr_hw_queues(set); i++)
3115 		blk_mq_free_map_and_requests(set, i);
3116 
3117 	for (j = 0; j < set->nr_maps; j++) {
3118 		kfree(set->map[j].mq_map);
3119 		set->map[j].mq_map = NULL;
3120 	}
3121 
3122 	kfree(set->tags);
3123 	set->tags = NULL;
3124 }
3125 EXPORT_SYMBOL(blk_mq_free_tag_set);
3126 
3127 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3128 {
3129 	struct blk_mq_tag_set *set = q->tag_set;
3130 	struct blk_mq_hw_ctx *hctx;
3131 	int i, ret;
3132 
3133 	if (!set)
3134 		return -EINVAL;
3135 
3136 	if (q->nr_requests == nr)
3137 		return 0;
3138 
3139 	blk_mq_freeze_queue(q);
3140 	blk_mq_quiesce_queue(q);
3141 
3142 	ret = 0;
3143 	queue_for_each_hw_ctx(q, hctx, i) {
3144 		if (!hctx->tags)
3145 			continue;
3146 		/*
3147 		 * If we're using an MQ scheduler, just update the scheduler
3148 		 * queue depth. This is similar to what the old code would do.
3149 		 */
3150 		if (!hctx->sched_tags) {
3151 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3152 							false);
3153 		} else {
3154 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3155 							nr, true);
3156 		}
3157 		if (ret)
3158 			break;
3159 		if (q->elevator && q->elevator->type->ops.depth_updated)
3160 			q->elevator->type->ops.depth_updated(hctx);
3161 	}
3162 
3163 	if (!ret)
3164 		q->nr_requests = nr;
3165 
3166 	blk_mq_unquiesce_queue(q);
3167 	blk_mq_unfreeze_queue(q);
3168 
3169 	return ret;
3170 }
3171 
3172 /*
3173  * request_queue and elevator_type pair.
3174  * It is just used by __blk_mq_update_nr_hw_queues to cache
3175  * the elevator_type associated with a request_queue.
3176  */
3177 struct blk_mq_qe_pair {
3178 	struct list_head node;
3179 	struct request_queue *q;
3180 	struct elevator_type *type;
3181 };
3182 
3183 /*
3184  * Cache the elevator_type in qe pair list and switch the
3185  * io scheduler to 'none'
3186  */
3187 static bool blk_mq_elv_switch_none(struct list_head *head,
3188 		struct request_queue *q)
3189 {
3190 	struct blk_mq_qe_pair *qe;
3191 
3192 	if (!q->elevator)
3193 		return true;
3194 
3195 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3196 	if (!qe)
3197 		return false;
3198 
3199 	INIT_LIST_HEAD(&qe->node);
3200 	qe->q = q;
3201 	qe->type = q->elevator->type;
3202 	list_add(&qe->node, head);
3203 
3204 	mutex_lock(&q->sysfs_lock);
3205 	/*
3206 	 * After elevator_switch_mq, the previous elevator_queue will be
3207 	 * released by elevator_release. The reference of the io scheduler
3208 	 * module get by elevator_get will also be put. So we need to get
3209 	 * a reference of the io scheduler module here to prevent it to be
3210 	 * removed.
3211 	 */
3212 	__module_get(qe->type->elevator_owner);
3213 	elevator_switch_mq(q, NULL);
3214 	mutex_unlock(&q->sysfs_lock);
3215 
3216 	return true;
3217 }
3218 
3219 static void blk_mq_elv_switch_back(struct list_head *head,
3220 		struct request_queue *q)
3221 {
3222 	struct blk_mq_qe_pair *qe;
3223 	struct elevator_type *t = NULL;
3224 
3225 	list_for_each_entry(qe, head, node)
3226 		if (qe->q == q) {
3227 			t = qe->type;
3228 			break;
3229 		}
3230 
3231 	if (!t)
3232 		return;
3233 
3234 	list_del(&qe->node);
3235 	kfree(qe);
3236 
3237 	mutex_lock(&q->sysfs_lock);
3238 	elevator_switch_mq(q, t);
3239 	mutex_unlock(&q->sysfs_lock);
3240 }
3241 
3242 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3243 							int nr_hw_queues)
3244 {
3245 	struct request_queue *q;
3246 	LIST_HEAD(head);
3247 	int prev_nr_hw_queues;
3248 
3249 	lockdep_assert_held(&set->tag_list_lock);
3250 
3251 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3252 		nr_hw_queues = nr_cpu_ids;
3253 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3254 		return;
3255 
3256 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3257 		blk_mq_freeze_queue(q);
3258 	/*
3259 	 * Sync with blk_mq_queue_tag_busy_iter.
3260 	 */
3261 	synchronize_rcu();
3262 	/*
3263 	 * Switch IO scheduler to 'none', cleaning up the data associated
3264 	 * with the previous scheduler. We will switch back once we are done
3265 	 * updating the new sw to hw queue mappings.
3266 	 */
3267 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3268 		if (!blk_mq_elv_switch_none(&head, q))
3269 			goto switch_back;
3270 
3271 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3272 		blk_mq_debugfs_unregister_hctxs(q);
3273 		blk_mq_sysfs_unregister(q);
3274 	}
3275 
3276 	prev_nr_hw_queues = set->nr_hw_queues;
3277 	set->nr_hw_queues = nr_hw_queues;
3278 	blk_mq_update_queue_map(set);
3279 fallback:
3280 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3281 		blk_mq_realloc_hw_ctxs(set, q);
3282 		if (q->nr_hw_queues != set->nr_hw_queues) {
3283 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3284 					nr_hw_queues, prev_nr_hw_queues);
3285 			set->nr_hw_queues = prev_nr_hw_queues;
3286 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3287 			goto fallback;
3288 		}
3289 		blk_mq_map_swqueue(q);
3290 	}
3291 
3292 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3293 		blk_mq_sysfs_register(q);
3294 		blk_mq_debugfs_register_hctxs(q);
3295 	}
3296 
3297 switch_back:
3298 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3299 		blk_mq_elv_switch_back(&head, q);
3300 
3301 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3302 		blk_mq_unfreeze_queue(q);
3303 }
3304 
3305 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3306 {
3307 	mutex_lock(&set->tag_list_lock);
3308 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3309 	mutex_unlock(&set->tag_list_lock);
3310 }
3311 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3312 
3313 /* Enable polling stats and return whether they were already enabled. */
3314 static bool blk_poll_stats_enable(struct request_queue *q)
3315 {
3316 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3317 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3318 		return true;
3319 	blk_stat_add_callback(q, q->poll_cb);
3320 	return false;
3321 }
3322 
3323 static void blk_mq_poll_stats_start(struct request_queue *q)
3324 {
3325 	/*
3326 	 * We don't arm the callback if polling stats are not enabled or the
3327 	 * callback is already active.
3328 	 */
3329 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3330 	    blk_stat_is_active(q->poll_cb))
3331 		return;
3332 
3333 	blk_stat_activate_msecs(q->poll_cb, 100);
3334 }
3335 
3336 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3337 {
3338 	struct request_queue *q = cb->data;
3339 	int bucket;
3340 
3341 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3342 		if (cb->stat[bucket].nr_samples)
3343 			q->poll_stat[bucket] = cb->stat[bucket];
3344 	}
3345 }
3346 
3347 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3348 				       struct blk_mq_hw_ctx *hctx,
3349 				       struct request *rq)
3350 {
3351 	unsigned long ret = 0;
3352 	int bucket;
3353 
3354 	/*
3355 	 * If stats collection isn't on, don't sleep but turn it on for
3356 	 * future users
3357 	 */
3358 	if (!blk_poll_stats_enable(q))
3359 		return 0;
3360 
3361 	/*
3362 	 * As an optimistic guess, use half of the mean service time
3363 	 * for this type of request. We can (and should) make this smarter.
3364 	 * For instance, if the completion latencies are tight, we can
3365 	 * get closer than just half the mean. This is especially
3366 	 * important on devices where the completion latencies are longer
3367 	 * than ~10 usec. We do use the stats for the relevant IO size
3368 	 * if available which does lead to better estimates.
3369 	 */
3370 	bucket = blk_mq_poll_stats_bkt(rq);
3371 	if (bucket < 0)
3372 		return ret;
3373 
3374 	if (q->poll_stat[bucket].nr_samples)
3375 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3376 
3377 	return ret;
3378 }
3379 
3380 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3381 				     struct blk_mq_hw_ctx *hctx,
3382 				     struct request *rq)
3383 {
3384 	struct hrtimer_sleeper hs;
3385 	enum hrtimer_mode mode;
3386 	unsigned int nsecs;
3387 	ktime_t kt;
3388 
3389 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3390 		return false;
3391 
3392 	/*
3393 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3394 	 *
3395 	 *  0:	use half of prev avg
3396 	 * >0:	use this specific value
3397 	 */
3398 	if (q->poll_nsec > 0)
3399 		nsecs = q->poll_nsec;
3400 	else
3401 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3402 
3403 	if (!nsecs)
3404 		return false;
3405 
3406 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3407 
3408 	/*
3409 	 * This will be replaced with the stats tracking code, using
3410 	 * 'avg_completion_time / 2' as the pre-sleep target.
3411 	 */
3412 	kt = nsecs;
3413 
3414 	mode = HRTIMER_MODE_REL;
3415 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3416 	hrtimer_set_expires(&hs.timer, kt);
3417 
3418 	do {
3419 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3420 			break;
3421 		set_current_state(TASK_UNINTERRUPTIBLE);
3422 		hrtimer_sleeper_start_expires(&hs, mode);
3423 		if (hs.task)
3424 			io_schedule();
3425 		hrtimer_cancel(&hs.timer);
3426 		mode = HRTIMER_MODE_ABS;
3427 	} while (hs.task && !signal_pending(current));
3428 
3429 	__set_current_state(TASK_RUNNING);
3430 	destroy_hrtimer_on_stack(&hs.timer);
3431 	return true;
3432 }
3433 
3434 static bool blk_mq_poll_hybrid(struct request_queue *q,
3435 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3436 {
3437 	struct request *rq;
3438 
3439 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3440 		return false;
3441 
3442 	if (!blk_qc_t_is_internal(cookie))
3443 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3444 	else {
3445 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3446 		/*
3447 		 * With scheduling, if the request has completed, we'll
3448 		 * get a NULL return here, as we clear the sched tag when
3449 		 * that happens. The request still remains valid, like always,
3450 		 * so we should be safe with just the NULL check.
3451 		 */
3452 		if (!rq)
3453 			return false;
3454 	}
3455 
3456 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3457 }
3458 
3459 /**
3460  * blk_poll - poll for IO completions
3461  * @q:  the queue
3462  * @cookie: cookie passed back at IO submission time
3463  * @spin: whether to spin for completions
3464  *
3465  * Description:
3466  *    Poll for completions on the passed in queue. Returns number of
3467  *    completed entries found. If @spin is true, then blk_poll will continue
3468  *    looping until at least one completion is found, unless the task is
3469  *    otherwise marked running (or we need to reschedule).
3470  */
3471 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3472 {
3473 	struct blk_mq_hw_ctx *hctx;
3474 	long state;
3475 
3476 	if (!blk_qc_t_valid(cookie) ||
3477 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3478 		return 0;
3479 
3480 	if (current->plug)
3481 		blk_flush_plug_list(current->plug, false);
3482 
3483 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3484 
3485 	/*
3486 	 * If we sleep, have the caller restart the poll loop to reset
3487 	 * the state. Like for the other success return cases, the
3488 	 * caller is responsible for checking if the IO completed. If
3489 	 * the IO isn't complete, we'll get called again and will go
3490 	 * straight to the busy poll loop.
3491 	 */
3492 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3493 		return 1;
3494 
3495 	hctx->poll_considered++;
3496 
3497 	state = current->state;
3498 	do {
3499 		int ret;
3500 
3501 		hctx->poll_invoked++;
3502 
3503 		ret = q->mq_ops->poll(hctx);
3504 		if (ret > 0) {
3505 			hctx->poll_success++;
3506 			__set_current_state(TASK_RUNNING);
3507 			return ret;
3508 		}
3509 
3510 		if (signal_pending_state(state, current))
3511 			__set_current_state(TASK_RUNNING);
3512 
3513 		if (current->state == TASK_RUNNING)
3514 			return 1;
3515 		if (ret < 0 || !spin)
3516 			break;
3517 		cpu_relax();
3518 	} while (!need_resched());
3519 
3520 	__set_current_state(TASK_RUNNING);
3521 	return 0;
3522 }
3523 EXPORT_SYMBOL_GPL(blk_poll);
3524 
3525 unsigned int blk_mq_rq_cpu(struct request *rq)
3526 {
3527 	return rq->mq_ctx->cpu;
3528 }
3529 EXPORT_SYMBOL(blk_mq_rq_cpu);
3530 
3531 static int __init blk_mq_init(void)
3532 {
3533 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3534 				blk_mq_hctx_notify_dead);
3535 	return 0;
3536 }
3537 subsys_initcall(blk_mq_init);
3538