1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->part && blk_do_io_stat(rq) && 96 (!mi->part->bd_partno || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 void blk_freeze_queue_start(struct request_queue *q) 124 { 125 mutex_lock(&q->mq_freeze_lock); 126 if (++q->mq_freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 mutex_unlock(&q->mq_freeze_lock); 129 if (queue_is_mq(q)) 130 blk_mq_run_hw_queues(q, false); 131 } else { 132 mutex_unlock(&q->mq_freeze_lock); 133 } 134 } 135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 136 137 void blk_mq_freeze_queue_wait(struct request_queue *q) 138 { 139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 140 } 141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 142 143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 144 unsigned long timeout) 145 { 146 return wait_event_timeout(q->mq_freeze_wq, 147 percpu_ref_is_zero(&q->q_usage_counter), 148 timeout); 149 } 150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 151 152 /* 153 * Guarantee no request is in use, so we can change any data structure of 154 * the queue afterward. 155 */ 156 void blk_freeze_queue(struct request_queue *q) 157 { 158 /* 159 * In the !blk_mq case we are only calling this to kill the 160 * q_usage_counter, otherwise this increases the freeze depth 161 * and waits for it to return to zero. For this reason there is 162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 163 * exported to drivers as the only user for unfreeze is blk_mq. 164 */ 165 blk_freeze_queue_start(q); 166 blk_mq_freeze_queue_wait(q); 167 } 168 169 void blk_mq_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * ...just an alias to keep freeze and unfreeze actions balanced 173 * in the blk_mq_* namespace 174 */ 175 blk_freeze_queue(q); 176 } 177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 178 179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 180 { 181 mutex_lock(&q->mq_freeze_lock); 182 if (force_atomic) 183 q->q_usage_counter.data->force_atomic = true; 184 q->mq_freeze_depth--; 185 WARN_ON_ONCE(q->mq_freeze_depth < 0); 186 if (!q->mq_freeze_depth) { 187 percpu_ref_resurrect(&q->q_usage_counter); 188 wake_up_all(&q->mq_freeze_wq); 189 } 190 mutex_unlock(&q->mq_freeze_lock); 191 } 192 193 void blk_mq_unfreeze_queue(struct request_queue *q) 194 { 195 __blk_mq_unfreeze_queue(q, false); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 unsigned long flags; 206 207 spin_lock_irqsave(&q->queue_lock, flags); 208 if (!q->quiesce_depth++) 209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 210 spin_unlock_irqrestore(&q->queue_lock, flags); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 216 * @set: tag_set to wait on 217 * 218 * Note: it is driver's responsibility for making sure that quiesce has 219 * been started on or more of the request_queues of the tag_set. This 220 * function only waits for the quiesce on those request_queues that had 221 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 222 */ 223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 224 { 225 if (set->flags & BLK_MQ_F_BLOCKING) 226 synchronize_srcu(set->srcu); 227 else 228 synchronize_rcu(); 229 } 230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 231 232 /** 233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 234 * @q: request queue. 235 * 236 * Note: this function does not prevent that the struct request end_io() 237 * callback function is invoked. Once this function is returned, we make 238 * sure no dispatch can happen until the queue is unquiesced via 239 * blk_mq_unquiesce_queue(). 240 */ 241 void blk_mq_quiesce_queue(struct request_queue *q) 242 { 243 blk_mq_quiesce_queue_nowait(q); 244 /* nothing to wait for non-mq queues */ 245 if (queue_is_mq(q)) 246 blk_mq_wait_quiesce_done(q->tag_set); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 unsigned long flags; 260 bool run_queue = false; 261 262 spin_lock_irqsave(&q->queue_lock, flags); 263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 264 ; 265 } else if (!--q->quiesce_depth) { 266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 267 run_queue = true; 268 } 269 spin_unlock_irqrestore(&q->queue_lock, flags); 270 271 /* dispatch requests which are inserted during quiescing */ 272 if (run_queue) 273 blk_mq_run_hw_queues(q, true); 274 } 275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 276 277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 278 { 279 struct request_queue *q; 280 281 mutex_lock(&set->tag_list_lock); 282 list_for_each_entry(q, &set->tag_list, tag_set_list) { 283 if (!blk_queue_skip_tagset_quiesce(q)) 284 blk_mq_quiesce_queue_nowait(q); 285 } 286 blk_mq_wait_quiesce_done(set); 287 mutex_unlock(&set->tag_list_lock); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 290 291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 292 { 293 struct request_queue *q; 294 295 mutex_lock(&set->tag_list_lock); 296 list_for_each_entry(q, &set->tag_list, tag_set_list) { 297 if (!blk_queue_skip_tagset_quiesce(q)) 298 blk_mq_unquiesce_queue(q); 299 } 300 mutex_unlock(&set->tag_list_lock); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 303 304 void blk_mq_wake_waiters(struct request_queue *q) 305 { 306 struct blk_mq_hw_ctx *hctx; 307 unsigned long i; 308 309 queue_for_each_hw_ctx(q, hctx, i) 310 if (blk_mq_hw_queue_mapped(hctx)) 311 blk_mq_tag_wakeup_all(hctx->tags, true); 312 } 313 314 void blk_rq_init(struct request_queue *q, struct request *rq) 315 { 316 memset(rq, 0, sizeof(*rq)); 317 318 INIT_LIST_HEAD(&rq->queuelist); 319 rq->q = q; 320 rq->__sector = (sector_t) -1; 321 INIT_HLIST_NODE(&rq->hash); 322 RB_CLEAR_NODE(&rq->rb_node); 323 rq->tag = BLK_MQ_NO_TAG; 324 rq->internal_tag = BLK_MQ_NO_TAG; 325 rq->start_time_ns = ktime_get_ns(); 326 rq->part = NULL; 327 blk_crypto_rq_set_defaults(rq); 328 } 329 EXPORT_SYMBOL(blk_rq_init); 330 331 /* Set start and alloc time when the allocated request is actually used */ 332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 333 { 334 if (blk_mq_need_time_stamp(rq)) 335 rq->start_time_ns = ktime_get_ns(); 336 else 337 rq->start_time_ns = 0; 338 339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 340 if (blk_queue_rq_alloc_time(rq->q)) 341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 342 else 343 rq->alloc_time_ns = 0; 344 #endif 345 } 346 347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 348 struct blk_mq_tags *tags, unsigned int tag) 349 { 350 struct blk_mq_ctx *ctx = data->ctx; 351 struct blk_mq_hw_ctx *hctx = data->hctx; 352 struct request_queue *q = data->q; 353 struct request *rq = tags->static_rqs[tag]; 354 355 rq->q = q; 356 rq->mq_ctx = ctx; 357 rq->mq_hctx = hctx; 358 rq->cmd_flags = data->cmd_flags; 359 360 if (data->flags & BLK_MQ_REQ_PM) 361 data->rq_flags |= RQF_PM; 362 if (blk_queue_io_stat(q)) 363 data->rq_flags |= RQF_IO_STAT; 364 rq->rq_flags = data->rq_flags; 365 366 if (data->rq_flags & RQF_SCHED_TAGS) { 367 rq->tag = BLK_MQ_NO_TAG; 368 rq->internal_tag = tag; 369 } else { 370 rq->tag = tag; 371 rq->internal_tag = BLK_MQ_NO_TAG; 372 } 373 rq->timeout = 0; 374 375 rq->part = NULL; 376 rq->io_start_time_ns = 0; 377 rq->stats_sectors = 0; 378 rq->nr_phys_segments = 0; 379 #if defined(CONFIG_BLK_DEV_INTEGRITY) 380 rq->nr_integrity_segments = 0; 381 #endif 382 rq->end_io = NULL; 383 rq->end_io_data = NULL; 384 385 blk_crypto_rq_set_defaults(rq); 386 INIT_LIST_HEAD(&rq->queuelist); 387 /* tag was already set */ 388 WRITE_ONCE(rq->deadline, 0); 389 req_ref_set(rq, 1); 390 391 if (rq->rq_flags & RQF_USE_SCHED) { 392 struct elevator_queue *e = data->q->elevator; 393 394 INIT_HLIST_NODE(&rq->hash); 395 RB_CLEAR_NODE(&rq->rb_node); 396 397 if (e->type->ops.prepare_request) 398 e->type->ops.prepare_request(rq); 399 } 400 401 return rq; 402 } 403 404 static inline struct request * 405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 406 { 407 unsigned int tag, tag_offset; 408 struct blk_mq_tags *tags; 409 struct request *rq; 410 unsigned long tag_mask; 411 int i, nr = 0; 412 413 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 414 if (unlikely(!tag_mask)) 415 return NULL; 416 417 tags = blk_mq_tags_from_data(data); 418 for (i = 0; tag_mask; i++) { 419 if (!(tag_mask & (1UL << i))) 420 continue; 421 tag = tag_offset + i; 422 prefetch(tags->static_rqs[tag]); 423 tag_mask &= ~(1UL << i); 424 rq = blk_mq_rq_ctx_init(data, tags, tag); 425 rq_list_add(data->cached_rq, rq); 426 nr++; 427 } 428 /* caller already holds a reference, add for remainder */ 429 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 430 data->nr_tags -= nr; 431 432 return rq_list_pop(data->cached_rq); 433 } 434 435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 436 { 437 struct request_queue *q = data->q; 438 u64 alloc_time_ns = 0; 439 struct request *rq; 440 unsigned int tag; 441 442 /* alloc_time includes depth and tag waits */ 443 if (blk_queue_rq_alloc_time(q)) 444 alloc_time_ns = ktime_get_ns(); 445 446 if (data->cmd_flags & REQ_NOWAIT) 447 data->flags |= BLK_MQ_REQ_NOWAIT; 448 449 if (q->elevator) { 450 /* 451 * All requests use scheduler tags when an I/O scheduler is 452 * enabled for the queue. 453 */ 454 data->rq_flags |= RQF_SCHED_TAGS; 455 456 /* 457 * Flush/passthrough requests are special and go directly to the 458 * dispatch list. 459 */ 460 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 461 !blk_op_is_passthrough(data->cmd_flags)) { 462 struct elevator_mq_ops *ops = &q->elevator->type->ops; 463 464 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 465 466 data->rq_flags |= RQF_USE_SCHED; 467 if (ops->limit_depth) 468 ops->limit_depth(data->cmd_flags, data); 469 } 470 } 471 472 retry: 473 data->ctx = blk_mq_get_ctx(q); 474 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 475 if (!(data->rq_flags & RQF_SCHED_TAGS)) 476 blk_mq_tag_busy(data->hctx); 477 478 if (data->flags & BLK_MQ_REQ_RESERVED) 479 data->rq_flags |= RQF_RESV; 480 481 /* 482 * Try batched alloc if we want more than 1 tag. 483 */ 484 if (data->nr_tags > 1) { 485 rq = __blk_mq_alloc_requests_batch(data); 486 if (rq) { 487 blk_mq_rq_time_init(rq, alloc_time_ns); 488 return rq; 489 } 490 data->nr_tags = 1; 491 } 492 493 /* 494 * Waiting allocations only fail because of an inactive hctx. In that 495 * case just retry the hctx assignment and tag allocation as CPU hotplug 496 * should have migrated us to an online CPU by now. 497 */ 498 tag = blk_mq_get_tag(data); 499 if (tag == BLK_MQ_NO_TAG) { 500 if (data->flags & BLK_MQ_REQ_NOWAIT) 501 return NULL; 502 /* 503 * Give up the CPU and sleep for a random short time to 504 * ensure that thread using a realtime scheduling class 505 * are migrated off the CPU, and thus off the hctx that 506 * is going away. 507 */ 508 msleep(3); 509 goto retry; 510 } 511 512 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 513 blk_mq_rq_time_init(rq, alloc_time_ns); 514 return rq; 515 } 516 517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 518 struct blk_plug *plug, 519 blk_opf_t opf, 520 blk_mq_req_flags_t flags) 521 { 522 struct blk_mq_alloc_data data = { 523 .q = q, 524 .flags = flags, 525 .cmd_flags = opf, 526 .nr_tags = plug->nr_ios, 527 .cached_rq = &plug->cached_rq, 528 }; 529 struct request *rq; 530 531 if (blk_queue_enter(q, flags)) 532 return NULL; 533 534 plug->nr_ios = 1; 535 536 rq = __blk_mq_alloc_requests(&data); 537 if (unlikely(!rq)) 538 blk_queue_exit(q); 539 return rq; 540 } 541 542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 543 blk_opf_t opf, 544 blk_mq_req_flags_t flags) 545 { 546 struct blk_plug *plug = current->plug; 547 struct request *rq; 548 549 if (!plug) 550 return NULL; 551 552 if (rq_list_empty(plug->cached_rq)) { 553 if (plug->nr_ios == 1) 554 return NULL; 555 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 556 if (!rq) 557 return NULL; 558 } else { 559 rq = rq_list_peek(&plug->cached_rq); 560 if (!rq || rq->q != q) 561 return NULL; 562 563 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 564 return NULL; 565 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 566 return NULL; 567 568 plug->cached_rq = rq_list_next(rq); 569 blk_mq_rq_time_init(rq, 0); 570 } 571 572 rq->cmd_flags = opf; 573 INIT_LIST_HEAD(&rq->queuelist); 574 return rq; 575 } 576 577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 578 blk_mq_req_flags_t flags) 579 { 580 struct request *rq; 581 582 rq = blk_mq_alloc_cached_request(q, opf, flags); 583 if (!rq) { 584 struct blk_mq_alloc_data data = { 585 .q = q, 586 .flags = flags, 587 .cmd_flags = opf, 588 .nr_tags = 1, 589 }; 590 int ret; 591 592 ret = blk_queue_enter(q, flags); 593 if (ret) 594 return ERR_PTR(ret); 595 596 rq = __blk_mq_alloc_requests(&data); 597 if (!rq) 598 goto out_queue_exit; 599 } 600 rq->__data_len = 0; 601 rq->__sector = (sector_t) -1; 602 rq->bio = rq->biotail = NULL; 603 return rq; 604 out_queue_exit: 605 blk_queue_exit(q); 606 return ERR_PTR(-EWOULDBLOCK); 607 } 608 EXPORT_SYMBOL(blk_mq_alloc_request); 609 610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 611 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 612 { 613 struct blk_mq_alloc_data data = { 614 .q = q, 615 .flags = flags, 616 .cmd_flags = opf, 617 .nr_tags = 1, 618 }; 619 u64 alloc_time_ns = 0; 620 struct request *rq; 621 unsigned int cpu; 622 unsigned int tag; 623 int ret; 624 625 /* alloc_time includes depth and tag waits */ 626 if (blk_queue_rq_alloc_time(q)) 627 alloc_time_ns = ktime_get_ns(); 628 629 /* 630 * If the tag allocator sleeps we could get an allocation for a 631 * different hardware context. No need to complicate the low level 632 * allocator for this for the rare use case of a command tied to 633 * a specific queue. 634 */ 635 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 636 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 637 return ERR_PTR(-EINVAL); 638 639 if (hctx_idx >= q->nr_hw_queues) 640 return ERR_PTR(-EIO); 641 642 ret = blk_queue_enter(q, flags); 643 if (ret) 644 return ERR_PTR(ret); 645 646 /* 647 * Check if the hardware context is actually mapped to anything. 648 * If not tell the caller that it should skip this queue. 649 */ 650 ret = -EXDEV; 651 data.hctx = xa_load(&q->hctx_table, hctx_idx); 652 if (!blk_mq_hw_queue_mapped(data.hctx)) 653 goto out_queue_exit; 654 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 655 if (cpu >= nr_cpu_ids) 656 goto out_queue_exit; 657 data.ctx = __blk_mq_get_ctx(q, cpu); 658 659 if (q->elevator) 660 data.rq_flags |= RQF_SCHED_TAGS; 661 else 662 blk_mq_tag_busy(data.hctx); 663 664 if (flags & BLK_MQ_REQ_RESERVED) 665 data.rq_flags |= RQF_RESV; 666 667 ret = -EWOULDBLOCK; 668 tag = blk_mq_get_tag(&data); 669 if (tag == BLK_MQ_NO_TAG) 670 goto out_queue_exit; 671 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 672 blk_mq_rq_time_init(rq, alloc_time_ns); 673 rq->__data_len = 0; 674 rq->__sector = (sector_t) -1; 675 rq->bio = rq->biotail = NULL; 676 return rq; 677 678 out_queue_exit: 679 blk_queue_exit(q); 680 return ERR_PTR(ret); 681 } 682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 683 684 static void blk_mq_finish_request(struct request *rq) 685 { 686 struct request_queue *q = rq->q; 687 688 if (rq->rq_flags & RQF_USE_SCHED) { 689 q->elevator->type->ops.finish_request(rq); 690 /* 691 * For postflush request that may need to be 692 * completed twice, we should clear this flag 693 * to avoid double finish_request() on the rq. 694 */ 695 rq->rq_flags &= ~RQF_USE_SCHED; 696 } 697 } 698 699 static void __blk_mq_free_request(struct request *rq) 700 { 701 struct request_queue *q = rq->q; 702 struct blk_mq_ctx *ctx = rq->mq_ctx; 703 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 704 const int sched_tag = rq->internal_tag; 705 706 blk_crypto_free_request(rq); 707 blk_pm_mark_last_busy(rq); 708 rq->mq_hctx = NULL; 709 710 if (rq->rq_flags & RQF_MQ_INFLIGHT) 711 __blk_mq_dec_active_requests(hctx); 712 713 if (rq->tag != BLK_MQ_NO_TAG) 714 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 715 if (sched_tag != BLK_MQ_NO_TAG) 716 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 717 blk_mq_sched_restart(hctx); 718 blk_queue_exit(q); 719 } 720 721 void blk_mq_free_request(struct request *rq) 722 { 723 struct request_queue *q = rq->q; 724 725 blk_mq_finish_request(rq); 726 727 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 728 laptop_io_completion(q->disk->bdi); 729 730 rq_qos_done(q, rq); 731 732 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 733 if (req_ref_put_and_test(rq)) 734 __blk_mq_free_request(rq); 735 } 736 EXPORT_SYMBOL_GPL(blk_mq_free_request); 737 738 void blk_mq_free_plug_rqs(struct blk_plug *plug) 739 { 740 struct request *rq; 741 742 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 743 blk_mq_free_request(rq); 744 } 745 746 void blk_dump_rq_flags(struct request *rq, char *msg) 747 { 748 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 749 rq->q->disk ? rq->q->disk->disk_name : "?", 750 (__force unsigned long long) rq->cmd_flags); 751 752 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 753 (unsigned long long)blk_rq_pos(rq), 754 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 755 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 756 rq->bio, rq->biotail, blk_rq_bytes(rq)); 757 } 758 EXPORT_SYMBOL(blk_dump_rq_flags); 759 760 static void req_bio_endio(struct request *rq, struct bio *bio, 761 unsigned int nbytes, blk_status_t error) 762 { 763 if (unlikely(error)) { 764 bio->bi_status = error; 765 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 766 /* 767 * Partial zone append completions cannot be supported as the 768 * BIO fragments may end up not being written sequentially. 769 */ 770 if (bio->bi_iter.bi_size != nbytes) 771 bio->bi_status = BLK_STS_IOERR; 772 else 773 bio->bi_iter.bi_sector = rq->__sector; 774 } 775 776 bio_advance(bio, nbytes); 777 778 if (unlikely(rq->rq_flags & RQF_QUIET)) 779 bio_set_flag(bio, BIO_QUIET); 780 /* don't actually finish bio if it's part of flush sequence */ 781 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 782 bio_endio(bio); 783 } 784 785 static void blk_account_io_completion(struct request *req, unsigned int bytes) 786 { 787 if (req->part && blk_do_io_stat(req)) { 788 const int sgrp = op_stat_group(req_op(req)); 789 790 part_stat_lock(); 791 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 792 part_stat_unlock(); 793 } 794 } 795 796 static void blk_print_req_error(struct request *req, blk_status_t status) 797 { 798 printk_ratelimited(KERN_ERR 799 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 800 "phys_seg %u prio class %u\n", 801 blk_status_to_str(status), 802 req->q->disk ? req->q->disk->disk_name : "?", 803 blk_rq_pos(req), (__force u32)req_op(req), 804 blk_op_str(req_op(req)), 805 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 806 req->nr_phys_segments, 807 IOPRIO_PRIO_CLASS(req->ioprio)); 808 } 809 810 /* 811 * Fully end IO on a request. Does not support partial completions, or 812 * errors. 813 */ 814 static void blk_complete_request(struct request *req) 815 { 816 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 817 int total_bytes = blk_rq_bytes(req); 818 struct bio *bio = req->bio; 819 820 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 821 822 if (!bio) 823 return; 824 825 #ifdef CONFIG_BLK_DEV_INTEGRITY 826 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 827 req->q->integrity.profile->complete_fn(req, total_bytes); 828 #endif 829 830 /* 831 * Upper layers may call blk_crypto_evict_key() anytime after the last 832 * bio_endio(). Therefore, the keyslot must be released before that. 833 */ 834 blk_crypto_rq_put_keyslot(req); 835 836 blk_account_io_completion(req, total_bytes); 837 838 do { 839 struct bio *next = bio->bi_next; 840 841 /* Completion has already been traced */ 842 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 843 844 if (req_op(req) == REQ_OP_ZONE_APPEND) 845 bio->bi_iter.bi_sector = req->__sector; 846 847 if (!is_flush) 848 bio_endio(bio); 849 bio = next; 850 } while (bio); 851 852 /* 853 * Reset counters so that the request stacking driver 854 * can find how many bytes remain in the request 855 * later. 856 */ 857 if (!req->end_io) { 858 req->bio = NULL; 859 req->__data_len = 0; 860 } 861 } 862 863 /** 864 * blk_update_request - Complete multiple bytes without completing the request 865 * @req: the request being processed 866 * @error: block status code 867 * @nr_bytes: number of bytes to complete for @req 868 * 869 * Description: 870 * Ends I/O on a number of bytes attached to @req, but doesn't complete 871 * the request structure even if @req doesn't have leftover. 872 * If @req has leftover, sets it up for the next range of segments. 873 * 874 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 875 * %false return from this function. 876 * 877 * Note: 878 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 879 * except in the consistency check at the end of this function. 880 * 881 * Return: 882 * %false - this request doesn't have any more data 883 * %true - this request has more data 884 **/ 885 bool blk_update_request(struct request *req, blk_status_t error, 886 unsigned int nr_bytes) 887 { 888 int total_bytes; 889 890 trace_block_rq_complete(req, error, nr_bytes); 891 892 if (!req->bio) 893 return false; 894 895 #ifdef CONFIG_BLK_DEV_INTEGRITY 896 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 897 error == BLK_STS_OK) 898 req->q->integrity.profile->complete_fn(req, nr_bytes); 899 #endif 900 901 /* 902 * Upper layers may call blk_crypto_evict_key() anytime after the last 903 * bio_endio(). Therefore, the keyslot must be released before that. 904 */ 905 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 906 __blk_crypto_rq_put_keyslot(req); 907 908 if (unlikely(error && !blk_rq_is_passthrough(req) && 909 !(req->rq_flags & RQF_QUIET)) && 910 !test_bit(GD_DEAD, &req->q->disk->state)) { 911 blk_print_req_error(req, error); 912 trace_block_rq_error(req, error, nr_bytes); 913 } 914 915 blk_account_io_completion(req, nr_bytes); 916 917 total_bytes = 0; 918 while (req->bio) { 919 struct bio *bio = req->bio; 920 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 921 922 if (bio_bytes == bio->bi_iter.bi_size) 923 req->bio = bio->bi_next; 924 925 /* Completion has already been traced */ 926 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 927 req_bio_endio(req, bio, bio_bytes, error); 928 929 total_bytes += bio_bytes; 930 nr_bytes -= bio_bytes; 931 932 if (!nr_bytes) 933 break; 934 } 935 936 /* 937 * completely done 938 */ 939 if (!req->bio) { 940 /* 941 * Reset counters so that the request stacking driver 942 * can find how many bytes remain in the request 943 * later. 944 */ 945 req->__data_len = 0; 946 return false; 947 } 948 949 req->__data_len -= total_bytes; 950 951 /* update sector only for requests with clear definition of sector */ 952 if (!blk_rq_is_passthrough(req)) 953 req->__sector += total_bytes >> 9; 954 955 /* mixed attributes always follow the first bio */ 956 if (req->rq_flags & RQF_MIXED_MERGE) { 957 req->cmd_flags &= ~REQ_FAILFAST_MASK; 958 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 959 } 960 961 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 962 /* 963 * If total number of sectors is less than the first segment 964 * size, something has gone terribly wrong. 965 */ 966 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 967 blk_dump_rq_flags(req, "request botched"); 968 req->__data_len = blk_rq_cur_bytes(req); 969 } 970 971 /* recalculate the number of segments */ 972 req->nr_phys_segments = blk_recalc_rq_segments(req); 973 } 974 975 return true; 976 } 977 EXPORT_SYMBOL_GPL(blk_update_request); 978 979 static inline void blk_account_io_done(struct request *req, u64 now) 980 { 981 trace_block_io_done(req); 982 983 /* 984 * Account IO completion. flush_rq isn't accounted as a 985 * normal IO on queueing nor completion. Accounting the 986 * containing request is enough. 987 */ 988 if (blk_do_io_stat(req) && req->part && 989 !(req->rq_flags & RQF_FLUSH_SEQ)) { 990 const int sgrp = op_stat_group(req_op(req)); 991 992 part_stat_lock(); 993 update_io_ticks(req->part, jiffies, true); 994 part_stat_inc(req->part, ios[sgrp]); 995 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 996 part_stat_unlock(); 997 } 998 } 999 1000 static inline void blk_account_io_start(struct request *req) 1001 { 1002 trace_block_io_start(req); 1003 1004 if (blk_do_io_stat(req)) { 1005 /* 1006 * All non-passthrough requests are created from a bio with one 1007 * exception: when a flush command that is part of a flush sequence 1008 * generated by the state machine in blk-flush.c is cloned onto the 1009 * lower device by dm-multipath we can get here without a bio. 1010 */ 1011 if (req->bio) 1012 req->part = req->bio->bi_bdev; 1013 else 1014 req->part = req->q->disk->part0; 1015 1016 part_stat_lock(); 1017 update_io_ticks(req->part, jiffies, false); 1018 part_stat_unlock(); 1019 } 1020 } 1021 1022 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1023 { 1024 if (rq->rq_flags & RQF_STATS) 1025 blk_stat_add(rq, now); 1026 1027 blk_mq_sched_completed_request(rq, now); 1028 blk_account_io_done(rq, now); 1029 } 1030 1031 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1032 { 1033 if (blk_mq_need_time_stamp(rq)) 1034 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1035 1036 blk_mq_finish_request(rq); 1037 1038 if (rq->end_io) { 1039 rq_qos_done(rq->q, rq); 1040 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1041 blk_mq_free_request(rq); 1042 } else { 1043 blk_mq_free_request(rq); 1044 } 1045 } 1046 EXPORT_SYMBOL(__blk_mq_end_request); 1047 1048 void blk_mq_end_request(struct request *rq, blk_status_t error) 1049 { 1050 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1051 BUG(); 1052 __blk_mq_end_request(rq, error); 1053 } 1054 EXPORT_SYMBOL(blk_mq_end_request); 1055 1056 #define TAG_COMP_BATCH 32 1057 1058 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1059 int *tag_array, int nr_tags) 1060 { 1061 struct request_queue *q = hctx->queue; 1062 1063 /* 1064 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1065 * update hctx->nr_active in batch 1066 */ 1067 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1068 __blk_mq_sub_active_requests(hctx, nr_tags); 1069 1070 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1071 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1072 } 1073 1074 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1075 { 1076 int tags[TAG_COMP_BATCH], nr_tags = 0; 1077 struct blk_mq_hw_ctx *cur_hctx = NULL; 1078 struct request *rq; 1079 u64 now = 0; 1080 1081 if (iob->need_ts) 1082 now = ktime_get_ns(); 1083 1084 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1085 prefetch(rq->bio); 1086 prefetch(rq->rq_next); 1087 1088 blk_complete_request(rq); 1089 if (iob->need_ts) 1090 __blk_mq_end_request_acct(rq, now); 1091 1092 blk_mq_finish_request(rq); 1093 1094 rq_qos_done(rq->q, rq); 1095 1096 /* 1097 * If end_io handler returns NONE, then it still has 1098 * ownership of the request. 1099 */ 1100 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1101 continue; 1102 1103 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1104 if (!req_ref_put_and_test(rq)) 1105 continue; 1106 1107 blk_crypto_free_request(rq); 1108 blk_pm_mark_last_busy(rq); 1109 1110 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1111 if (cur_hctx) 1112 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1113 nr_tags = 0; 1114 cur_hctx = rq->mq_hctx; 1115 } 1116 tags[nr_tags++] = rq->tag; 1117 } 1118 1119 if (nr_tags) 1120 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1121 } 1122 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1123 1124 static void blk_complete_reqs(struct llist_head *list) 1125 { 1126 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1127 struct request *rq, *next; 1128 1129 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1130 rq->q->mq_ops->complete(rq); 1131 } 1132 1133 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1134 { 1135 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1136 } 1137 1138 static int blk_softirq_cpu_dead(unsigned int cpu) 1139 { 1140 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1141 return 0; 1142 } 1143 1144 static void __blk_mq_complete_request_remote(void *data) 1145 { 1146 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1147 } 1148 1149 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1150 { 1151 int cpu = raw_smp_processor_id(); 1152 1153 if (!IS_ENABLED(CONFIG_SMP) || 1154 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1155 return false; 1156 /* 1157 * With force threaded interrupts enabled, raising softirq from an SMP 1158 * function call will always result in waking the ksoftirqd thread. 1159 * This is probably worse than completing the request on a different 1160 * cache domain. 1161 */ 1162 if (force_irqthreads()) 1163 return false; 1164 1165 /* same CPU or cache domain? Complete locally */ 1166 if (cpu == rq->mq_ctx->cpu || 1167 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1168 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1169 return false; 1170 1171 /* don't try to IPI to an offline CPU */ 1172 return cpu_online(rq->mq_ctx->cpu); 1173 } 1174 1175 static void blk_mq_complete_send_ipi(struct request *rq) 1176 { 1177 struct llist_head *list; 1178 unsigned int cpu; 1179 1180 cpu = rq->mq_ctx->cpu; 1181 list = &per_cpu(blk_cpu_done, cpu); 1182 if (llist_add(&rq->ipi_list, list)) { 1183 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1184 smp_call_function_single_async(cpu, &rq->csd); 1185 } 1186 } 1187 1188 static void blk_mq_raise_softirq(struct request *rq) 1189 { 1190 struct llist_head *list; 1191 1192 preempt_disable(); 1193 list = this_cpu_ptr(&blk_cpu_done); 1194 if (llist_add(&rq->ipi_list, list)) 1195 raise_softirq(BLOCK_SOFTIRQ); 1196 preempt_enable(); 1197 } 1198 1199 bool blk_mq_complete_request_remote(struct request *rq) 1200 { 1201 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1202 1203 /* 1204 * For request which hctx has only one ctx mapping, 1205 * or a polled request, always complete locally, 1206 * it's pointless to redirect the completion. 1207 */ 1208 if ((rq->mq_hctx->nr_ctx == 1 && 1209 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1210 rq->cmd_flags & REQ_POLLED) 1211 return false; 1212 1213 if (blk_mq_complete_need_ipi(rq)) { 1214 blk_mq_complete_send_ipi(rq); 1215 return true; 1216 } 1217 1218 if (rq->q->nr_hw_queues == 1) { 1219 blk_mq_raise_softirq(rq); 1220 return true; 1221 } 1222 return false; 1223 } 1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1225 1226 /** 1227 * blk_mq_complete_request - end I/O on a request 1228 * @rq: the request being processed 1229 * 1230 * Description: 1231 * Complete a request by scheduling the ->complete_rq operation. 1232 **/ 1233 void blk_mq_complete_request(struct request *rq) 1234 { 1235 if (!blk_mq_complete_request_remote(rq)) 1236 rq->q->mq_ops->complete(rq); 1237 } 1238 EXPORT_SYMBOL(blk_mq_complete_request); 1239 1240 /** 1241 * blk_mq_start_request - Start processing a request 1242 * @rq: Pointer to request to be started 1243 * 1244 * Function used by device drivers to notify the block layer that a request 1245 * is going to be processed now, so blk layer can do proper initializations 1246 * such as starting the timeout timer. 1247 */ 1248 void blk_mq_start_request(struct request *rq) 1249 { 1250 struct request_queue *q = rq->q; 1251 1252 trace_block_rq_issue(rq); 1253 1254 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1255 rq->io_start_time_ns = ktime_get_ns(); 1256 rq->stats_sectors = blk_rq_sectors(rq); 1257 rq->rq_flags |= RQF_STATS; 1258 rq_qos_issue(q, rq); 1259 } 1260 1261 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1262 1263 blk_add_timer(rq); 1264 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1265 1266 #ifdef CONFIG_BLK_DEV_INTEGRITY 1267 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1268 q->integrity.profile->prepare_fn(rq); 1269 #endif 1270 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1271 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1272 } 1273 EXPORT_SYMBOL(blk_mq_start_request); 1274 1275 /* 1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1277 * queues. This is important for md arrays to benefit from merging 1278 * requests. 1279 */ 1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1281 { 1282 if (plug->multiple_queues) 1283 return BLK_MAX_REQUEST_COUNT * 2; 1284 return BLK_MAX_REQUEST_COUNT; 1285 } 1286 1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1288 { 1289 struct request *last = rq_list_peek(&plug->mq_list); 1290 1291 if (!plug->rq_count) { 1292 trace_block_plug(rq->q); 1293 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1294 (!blk_queue_nomerges(rq->q) && 1295 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1296 blk_mq_flush_plug_list(plug, false); 1297 last = NULL; 1298 trace_block_plug(rq->q); 1299 } 1300 1301 if (!plug->multiple_queues && last && last->q != rq->q) 1302 plug->multiple_queues = true; 1303 /* 1304 * Any request allocated from sched tags can't be issued to 1305 * ->queue_rqs() directly 1306 */ 1307 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1308 plug->has_elevator = true; 1309 rq->rq_next = NULL; 1310 rq_list_add(&plug->mq_list, rq); 1311 plug->rq_count++; 1312 } 1313 1314 /** 1315 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1316 * @rq: request to insert 1317 * @at_head: insert request at head or tail of queue 1318 * 1319 * Description: 1320 * Insert a fully prepared request at the back of the I/O scheduler queue 1321 * for execution. Don't wait for completion. 1322 * 1323 * Note: 1324 * This function will invoke @done directly if the queue is dead. 1325 */ 1326 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1327 { 1328 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1329 1330 WARN_ON(irqs_disabled()); 1331 WARN_ON(!blk_rq_is_passthrough(rq)); 1332 1333 blk_account_io_start(rq); 1334 1335 /* 1336 * As plugging can be enabled for passthrough requests on a zoned 1337 * device, directly accessing the plug instead of using blk_mq_plug() 1338 * should not have any consequences. 1339 */ 1340 if (current->plug && !at_head) { 1341 blk_add_rq_to_plug(current->plug, rq); 1342 return; 1343 } 1344 1345 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1346 blk_mq_run_hw_queue(hctx, false); 1347 } 1348 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1349 1350 struct blk_rq_wait { 1351 struct completion done; 1352 blk_status_t ret; 1353 }; 1354 1355 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1356 { 1357 struct blk_rq_wait *wait = rq->end_io_data; 1358 1359 wait->ret = ret; 1360 complete(&wait->done); 1361 return RQ_END_IO_NONE; 1362 } 1363 1364 bool blk_rq_is_poll(struct request *rq) 1365 { 1366 if (!rq->mq_hctx) 1367 return false; 1368 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1369 return false; 1370 return true; 1371 } 1372 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1373 1374 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1375 { 1376 do { 1377 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1378 cond_resched(); 1379 } while (!completion_done(wait)); 1380 } 1381 1382 /** 1383 * blk_execute_rq - insert a request into queue for execution 1384 * @rq: request to insert 1385 * @at_head: insert request at head or tail of queue 1386 * 1387 * Description: 1388 * Insert a fully prepared request at the back of the I/O scheduler queue 1389 * for execution and wait for completion. 1390 * Return: The blk_status_t result provided to blk_mq_end_request(). 1391 */ 1392 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1393 { 1394 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1395 struct blk_rq_wait wait = { 1396 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1397 }; 1398 1399 WARN_ON(irqs_disabled()); 1400 WARN_ON(!blk_rq_is_passthrough(rq)); 1401 1402 rq->end_io_data = &wait; 1403 rq->end_io = blk_end_sync_rq; 1404 1405 blk_account_io_start(rq); 1406 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1407 blk_mq_run_hw_queue(hctx, false); 1408 1409 if (blk_rq_is_poll(rq)) { 1410 blk_rq_poll_completion(rq, &wait.done); 1411 } else { 1412 /* 1413 * Prevent hang_check timer from firing at us during very long 1414 * I/O 1415 */ 1416 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1417 1418 if (hang_check) 1419 while (!wait_for_completion_io_timeout(&wait.done, 1420 hang_check * (HZ/2))) 1421 ; 1422 else 1423 wait_for_completion_io(&wait.done); 1424 } 1425 1426 return wait.ret; 1427 } 1428 EXPORT_SYMBOL(blk_execute_rq); 1429 1430 static void __blk_mq_requeue_request(struct request *rq) 1431 { 1432 struct request_queue *q = rq->q; 1433 1434 blk_mq_put_driver_tag(rq); 1435 1436 trace_block_rq_requeue(rq); 1437 rq_qos_requeue(q, rq); 1438 1439 if (blk_mq_request_started(rq)) { 1440 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1441 rq->rq_flags &= ~RQF_TIMED_OUT; 1442 } 1443 } 1444 1445 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1446 { 1447 struct request_queue *q = rq->q; 1448 unsigned long flags; 1449 1450 __blk_mq_requeue_request(rq); 1451 1452 /* this request will be re-inserted to io scheduler queue */ 1453 blk_mq_sched_requeue_request(rq); 1454 1455 spin_lock_irqsave(&q->requeue_lock, flags); 1456 list_add_tail(&rq->queuelist, &q->requeue_list); 1457 spin_unlock_irqrestore(&q->requeue_lock, flags); 1458 1459 if (kick_requeue_list) 1460 blk_mq_kick_requeue_list(q); 1461 } 1462 EXPORT_SYMBOL(blk_mq_requeue_request); 1463 1464 static void blk_mq_requeue_work(struct work_struct *work) 1465 { 1466 struct request_queue *q = 1467 container_of(work, struct request_queue, requeue_work.work); 1468 LIST_HEAD(rq_list); 1469 LIST_HEAD(flush_list); 1470 struct request *rq; 1471 1472 spin_lock_irq(&q->requeue_lock); 1473 list_splice_init(&q->requeue_list, &rq_list); 1474 list_splice_init(&q->flush_list, &flush_list); 1475 spin_unlock_irq(&q->requeue_lock); 1476 1477 while (!list_empty(&rq_list)) { 1478 rq = list_entry(rq_list.next, struct request, queuelist); 1479 /* 1480 * If RQF_DONTPREP ist set, the request has been started by the 1481 * driver already and might have driver-specific data allocated 1482 * already. Insert it into the hctx dispatch list to avoid 1483 * block layer merges for the request. 1484 */ 1485 if (rq->rq_flags & RQF_DONTPREP) { 1486 list_del_init(&rq->queuelist); 1487 blk_mq_request_bypass_insert(rq, 0); 1488 } else { 1489 list_del_init(&rq->queuelist); 1490 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1491 } 1492 } 1493 1494 while (!list_empty(&flush_list)) { 1495 rq = list_entry(flush_list.next, struct request, queuelist); 1496 list_del_init(&rq->queuelist); 1497 blk_mq_insert_request(rq, 0); 1498 } 1499 1500 blk_mq_run_hw_queues(q, false); 1501 } 1502 1503 void blk_mq_kick_requeue_list(struct request_queue *q) 1504 { 1505 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1506 } 1507 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1508 1509 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1510 unsigned long msecs) 1511 { 1512 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1513 msecs_to_jiffies(msecs)); 1514 } 1515 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1516 1517 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1518 { 1519 /* 1520 * If we find a request that isn't idle we know the queue is busy 1521 * as it's checked in the iter. 1522 * Return false to stop the iteration. 1523 */ 1524 if (blk_mq_request_started(rq)) { 1525 bool *busy = priv; 1526 1527 *busy = true; 1528 return false; 1529 } 1530 1531 return true; 1532 } 1533 1534 bool blk_mq_queue_inflight(struct request_queue *q) 1535 { 1536 bool busy = false; 1537 1538 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1539 return busy; 1540 } 1541 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1542 1543 static void blk_mq_rq_timed_out(struct request *req) 1544 { 1545 req->rq_flags |= RQF_TIMED_OUT; 1546 if (req->q->mq_ops->timeout) { 1547 enum blk_eh_timer_return ret; 1548 1549 ret = req->q->mq_ops->timeout(req); 1550 if (ret == BLK_EH_DONE) 1551 return; 1552 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1553 } 1554 1555 blk_add_timer(req); 1556 } 1557 1558 struct blk_expired_data { 1559 bool has_timedout_rq; 1560 unsigned long next; 1561 unsigned long timeout_start; 1562 }; 1563 1564 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1565 { 1566 unsigned long deadline; 1567 1568 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1569 return false; 1570 if (rq->rq_flags & RQF_TIMED_OUT) 1571 return false; 1572 1573 deadline = READ_ONCE(rq->deadline); 1574 if (time_after_eq(expired->timeout_start, deadline)) 1575 return true; 1576 1577 if (expired->next == 0) 1578 expired->next = deadline; 1579 else if (time_after(expired->next, deadline)) 1580 expired->next = deadline; 1581 return false; 1582 } 1583 1584 void blk_mq_put_rq_ref(struct request *rq) 1585 { 1586 if (is_flush_rq(rq)) { 1587 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1588 blk_mq_free_request(rq); 1589 } else if (req_ref_put_and_test(rq)) { 1590 __blk_mq_free_request(rq); 1591 } 1592 } 1593 1594 static bool blk_mq_check_expired(struct request *rq, void *priv) 1595 { 1596 struct blk_expired_data *expired = priv; 1597 1598 /* 1599 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1600 * be reallocated underneath the timeout handler's processing, then 1601 * the expire check is reliable. If the request is not expired, then 1602 * it was completed and reallocated as a new request after returning 1603 * from blk_mq_check_expired(). 1604 */ 1605 if (blk_mq_req_expired(rq, expired)) { 1606 expired->has_timedout_rq = true; 1607 return false; 1608 } 1609 return true; 1610 } 1611 1612 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1613 { 1614 struct blk_expired_data *expired = priv; 1615 1616 if (blk_mq_req_expired(rq, expired)) 1617 blk_mq_rq_timed_out(rq); 1618 return true; 1619 } 1620 1621 static void blk_mq_timeout_work(struct work_struct *work) 1622 { 1623 struct request_queue *q = 1624 container_of(work, struct request_queue, timeout_work); 1625 struct blk_expired_data expired = { 1626 .timeout_start = jiffies, 1627 }; 1628 struct blk_mq_hw_ctx *hctx; 1629 unsigned long i; 1630 1631 /* A deadlock might occur if a request is stuck requiring a 1632 * timeout at the same time a queue freeze is waiting 1633 * completion, since the timeout code would not be able to 1634 * acquire the queue reference here. 1635 * 1636 * That's why we don't use blk_queue_enter here; instead, we use 1637 * percpu_ref_tryget directly, because we need to be able to 1638 * obtain a reference even in the short window between the queue 1639 * starting to freeze, by dropping the first reference in 1640 * blk_freeze_queue_start, and the moment the last request is 1641 * consumed, marked by the instant q_usage_counter reaches 1642 * zero. 1643 */ 1644 if (!percpu_ref_tryget(&q->q_usage_counter)) 1645 return; 1646 1647 /* check if there is any timed-out request */ 1648 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1649 if (expired.has_timedout_rq) { 1650 /* 1651 * Before walking tags, we must ensure any submit started 1652 * before the current time has finished. Since the submit 1653 * uses srcu or rcu, wait for a synchronization point to 1654 * ensure all running submits have finished 1655 */ 1656 blk_mq_wait_quiesce_done(q->tag_set); 1657 1658 expired.next = 0; 1659 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1660 } 1661 1662 if (expired.next != 0) { 1663 mod_timer(&q->timeout, expired.next); 1664 } else { 1665 /* 1666 * Request timeouts are handled as a forward rolling timer. If 1667 * we end up here it means that no requests are pending and 1668 * also that no request has been pending for a while. Mark 1669 * each hctx as idle. 1670 */ 1671 queue_for_each_hw_ctx(q, hctx, i) { 1672 /* the hctx may be unmapped, so check it here */ 1673 if (blk_mq_hw_queue_mapped(hctx)) 1674 blk_mq_tag_idle(hctx); 1675 } 1676 } 1677 blk_queue_exit(q); 1678 } 1679 1680 struct flush_busy_ctx_data { 1681 struct blk_mq_hw_ctx *hctx; 1682 struct list_head *list; 1683 }; 1684 1685 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1686 { 1687 struct flush_busy_ctx_data *flush_data = data; 1688 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1689 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1690 enum hctx_type type = hctx->type; 1691 1692 spin_lock(&ctx->lock); 1693 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1694 sbitmap_clear_bit(sb, bitnr); 1695 spin_unlock(&ctx->lock); 1696 return true; 1697 } 1698 1699 /* 1700 * Process software queues that have been marked busy, splicing them 1701 * to the for-dispatch 1702 */ 1703 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1704 { 1705 struct flush_busy_ctx_data data = { 1706 .hctx = hctx, 1707 .list = list, 1708 }; 1709 1710 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1711 } 1712 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1713 1714 struct dispatch_rq_data { 1715 struct blk_mq_hw_ctx *hctx; 1716 struct request *rq; 1717 }; 1718 1719 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1720 void *data) 1721 { 1722 struct dispatch_rq_data *dispatch_data = data; 1723 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1724 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1725 enum hctx_type type = hctx->type; 1726 1727 spin_lock(&ctx->lock); 1728 if (!list_empty(&ctx->rq_lists[type])) { 1729 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1730 list_del_init(&dispatch_data->rq->queuelist); 1731 if (list_empty(&ctx->rq_lists[type])) 1732 sbitmap_clear_bit(sb, bitnr); 1733 } 1734 spin_unlock(&ctx->lock); 1735 1736 return !dispatch_data->rq; 1737 } 1738 1739 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1740 struct blk_mq_ctx *start) 1741 { 1742 unsigned off = start ? start->index_hw[hctx->type] : 0; 1743 struct dispatch_rq_data data = { 1744 .hctx = hctx, 1745 .rq = NULL, 1746 }; 1747 1748 __sbitmap_for_each_set(&hctx->ctx_map, off, 1749 dispatch_rq_from_ctx, &data); 1750 1751 return data.rq; 1752 } 1753 1754 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1755 { 1756 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1757 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1758 int tag; 1759 1760 blk_mq_tag_busy(rq->mq_hctx); 1761 1762 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1763 bt = &rq->mq_hctx->tags->breserved_tags; 1764 tag_offset = 0; 1765 } else { 1766 if (!hctx_may_queue(rq->mq_hctx, bt)) 1767 return false; 1768 } 1769 1770 tag = __sbitmap_queue_get(bt); 1771 if (tag == BLK_MQ_NO_TAG) 1772 return false; 1773 1774 rq->tag = tag + tag_offset; 1775 return true; 1776 } 1777 1778 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1779 { 1780 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1781 return false; 1782 1783 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1784 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1785 rq->rq_flags |= RQF_MQ_INFLIGHT; 1786 __blk_mq_inc_active_requests(hctx); 1787 } 1788 hctx->tags->rqs[rq->tag] = rq; 1789 return true; 1790 } 1791 1792 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1793 int flags, void *key) 1794 { 1795 struct blk_mq_hw_ctx *hctx; 1796 1797 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1798 1799 spin_lock(&hctx->dispatch_wait_lock); 1800 if (!list_empty(&wait->entry)) { 1801 struct sbitmap_queue *sbq; 1802 1803 list_del_init(&wait->entry); 1804 sbq = &hctx->tags->bitmap_tags; 1805 atomic_dec(&sbq->ws_active); 1806 } 1807 spin_unlock(&hctx->dispatch_wait_lock); 1808 1809 blk_mq_run_hw_queue(hctx, true); 1810 return 1; 1811 } 1812 1813 /* 1814 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1815 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1816 * restart. For both cases, take care to check the condition again after 1817 * marking us as waiting. 1818 */ 1819 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1820 struct request *rq) 1821 { 1822 struct sbitmap_queue *sbq; 1823 struct wait_queue_head *wq; 1824 wait_queue_entry_t *wait; 1825 bool ret; 1826 1827 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1828 !(blk_mq_is_shared_tags(hctx->flags))) { 1829 blk_mq_sched_mark_restart_hctx(hctx); 1830 1831 /* 1832 * It's possible that a tag was freed in the window between the 1833 * allocation failure and adding the hardware queue to the wait 1834 * queue. 1835 * 1836 * Don't clear RESTART here, someone else could have set it. 1837 * At most this will cost an extra queue run. 1838 */ 1839 return blk_mq_get_driver_tag(rq); 1840 } 1841 1842 wait = &hctx->dispatch_wait; 1843 if (!list_empty_careful(&wait->entry)) 1844 return false; 1845 1846 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1847 sbq = &hctx->tags->breserved_tags; 1848 else 1849 sbq = &hctx->tags->bitmap_tags; 1850 wq = &bt_wait_ptr(sbq, hctx)->wait; 1851 1852 spin_lock_irq(&wq->lock); 1853 spin_lock(&hctx->dispatch_wait_lock); 1854 if (!list_empty(&wait->entry)) { 1855 spin_unlock(&hctx->dispatch_wait_lock); 1856 spin_unlock_irq(&wq->lock); 1857 return false; 1858 } 1859 1860 atomic_inc(&sbq->ws_active); 1861 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1862 __add_wait_queue(wq, wait); 1863 1864 /* 1865 * It's possible that a tag was freed in the window between the 1866 * allocation failure and adding the hardware queue to the wait 1867 * queue. 1868 */ 1869 ret = blk_mq_get_driver_tag(rq); 1870 if (!ret) { 1871 spin_unlock(&hctx->dispatch_wait_lock); 1872 spin_unlock_irq(&wq->lock); 1873 return false; 1874 } 1875 1876 /* 1877 * We got a tag, remove ourselves from the wait queue to ensure 1878 * someone else gets the wakeup. 1879 */ 1880 list_del_init(&wait->entry); 1881 atomic_dec(&sbq->ws_active); 1882 spin_unlock(&hctx->dispatch_wait_lock); 1883 spin_unlock_irq(&wq->lock); 1884 1885 return true; 1886 } 1887 1888 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1890 /* 1891 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1892 * - EWMA is one simple way to compute running average value 1893 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1894 * - take 4 as factor for avoiding to get too small(0) result, and this 1895 * factor doesn't matter because EWMA decreases exponentially 1896 */ 1897 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1898 { 1899 unsigned int ewma; 1900 1901 ewma = hctx->dispatch_busy; 1902 1903 if (!ewma && !busy) 1904 return; 1905 1906 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1907 if (busy) 1908 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1909 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1910 1911 hctx->dispatch_busy = ewma; 1912 } 1913 1914 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1915 1916 static void blk_mq_handle_dev_resource(struct request *rq, 1917 struct list_head *list) 1918 { 1919 list_add(&rq->queuelist, list); 1920 __blk_mq_requeue_request(rq); 1921 } 1922 1923 static void blk_mq_handle_zone_resource(struct request *rq, 1924 struct list_head *zone_list) 1925 { 1926 /* 1927 * If we end up here it is because we cannot dispatch a request to a 1928 * specific zone due to LLD level zone-write locking or other zone 1929 * related resource not being available. In this case, set the request 1930 * aside in zone_list for retrying it later. 1931 */ 1932 list_add(&rq->queuelist, zone_list); 1933 __blk_mq_requeue_request(rq); 1934 } 1935 1936 enum prep_dispatch { 1937 PREP_DISPATCH_OK, 1938 PREP_DISPATCH_NO_TAG, 1939 PREP_DISPATCH_NO_BUDGET, 1940 }; 1941 1942 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1943 bool need_budget) 1944 { 1945 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1946 int budget_token = -1; 1947 1948 if (need_budget) { 1949 budget_token = blk_mq_get_dispatch_budget(rq->q); 1950 if (budget_token < 0) { 1951 blk_mq_put_driver_tag(rq); 1952 return PREP_DISPATCH_NO_BUDGET; 1953 } 1954 blk_mq_set_rq_budget_token(rq, budget_token); 1955 } 1956 1957 if (!blk_mq_get_driver_tag(rq)) { 1958 /* 1959 * The initial allocation attempt failed, so we need to 1960 * rerun the hardware queue when a tag is freed. The 1961 * waitqueue takes care of that. If the queue is run 1962 * before we add this entry back on the dispatch list, 1963 * we'll re-run it below. 1964 */ 1965 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1966 /* 1967 * All budgets not got from this function will be put 1968 * together during handling partial dispatch 1969 */ 1970 if (need_budget) 1971 blk_mq_put_dispatch_budget(rq->q, budget_token); 1972 return PREP_DISPATCH_NO_TAG; 1973 } 1974 } 1975 1976 return PREP_DISPATCH_OK; 1977 } 1978 1979 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1980 static void blk_mq_release_budgets(struct request_queue *q, 1981 struct list_head *list) 1982 { 1983 struct request *rq; 1984 1985 list_for_each_entry(rq, list, queuelist) { 1986 int budget_token = blk_mq_get_rq_budget_token(rq); 1987 1988 if (budget_token >= 0) 1989 blk_mq_put_dispatch_budget(q, budget_token); 1990 } 1991 } 1992 1993 /* 1994 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1995 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1996 * details) 1997 * Attention, we should explicitly call this in unusual cases: 1998 * 1) did not queue everything initially scheduled to queue 1999 * 2) the last attempt to queue a request failed 2000 */ 2001 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2002 bool from_schedule) 2003 { 2004 if (hctx->queue->mq_ops->commit_rqs && queued) { 2005 trace_block_unplug(hctx->queue, queued, !from_schedule); 2006 hctx->queue->mq_ops->commit_rqs(hctx); 2007 } 2008 } 2009 2010 /* 2011 * Returns true if we did some work AND can potentially do more. 2012 */ 2013 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2014 unsigned int nr_budgets) 2015 { 2016 enum prep_dispatch prep; 2017 struct request_queue *q = hctx->queue; 2018 struct request *rq; 2019 int queued; 2020 blk_status_t ret = BLK_STS_OK; 2021 LIST_HEAD(zone_list); 2022 bool needs_resource = false; 2023 2024 if (list_empty(list)) 2025 return false; 2026 2027 /* 2028 * Now process all the entries, sending them to the driver. 2029 */ 2030 queued = 0; 2031 do { 2032 struct blk_mq_queue_data bd; 2033 2034 rq = list_first_entry(list, struct request, queuelist); 2035 2036 WARN_ON_ONCE(hctx != rq->mq_hctx); 2037 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2038 if (prep != PREP_DISPATCH_OK) 2039 break; 2040 2041 list_del_init(&rq->queuelist); 2042 2043 bd.rq = rq; 2044 bd.last = list_empty(list); 2045 2046 /* 2047 * once the request is queued to lld, no need to cover the 2048 * budget any more 2049 */ 2050 if (nr_budgets) 2051 nr_budgets--; 2052 ret = q->mq_ops->queue_rq(hctx, &bd); 2053 switch (ret) { 2054 case BLK_STS_OK: 2055 queued++; 2056 break; 2057 case BLK_STS_RESOURCE: 2058 needs_resource = true; 2059 fallthrough; 2060 case BLK_STS_DEV_RESOURCE: 2061 blk_mq_handle_dev_resource(rq, list); 2062 goto out; 2063 case BLK_STS_ZONE_RESOURCE: 2064 /* 2065 * Move the request to zone_list and keep going through 2066 * the dispatch list to find more requests the drive can 2067 * accept. 2068 */ 2069 blk_mq_handle_zone_resource(rq, &zone_list); 2070 needs_resource = true; 2071 break; 2072 default: 2073 blk_mq_end_request(rq, ret); 2074 } 2075 } while (!list_empty(list)); 2076 out: 2077 if (!list_empty(&zone_list)) 2078 list_splice_tail_init(&zone_list, list); 2079 2080 /* If we didn't flush the entire list, we could have told the driver 2081 * there was more coming, but that turned out to be a lie. 2082 */ 2083 if (!list_empty(list) || ret != BLK_STS_OK) 2084 blk_mq_commit_rqs(hctx, queued, false); 2085 2086 /* 2087 * Any items that need requeuing? Stuff them into hctx->dispatch, 2088 * that is where we will continue on next queue run. 2089 */ 2090 if (!list_empty(list)) { 2091 bool needs_restart; 2092 /* For non-shared tags, the RESTART check will suffice */ 2093 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2094 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2095 blk_mq_is_shared_tags(hctx->flags)); 2096 2097 if (nr_budgets) 2098 blk_mq_release_budgets(q, list); 2099 2100 spin_lock(&hctx->lock); 2101 list_splice_tail_init(list, &hctx->dispatch); 2102 spin_unlock(&hctx->lock); 2103 2104 /* 2105 * Order adding requests to hctx->dispatch and checking 2106 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2107 * in blk_mq_sched_restart(). Avoid restart code path to 2108 * miss the new added requests to hctx->dispatch, meantime 2109 * SCHED_RESTART is observed here. 2110 */ 2111 smp_mb(); 2112 2113 /* 2114 * If SCHED_RESTART was set by the caller of this function and 2115 * it is no longer set that means that it was cleared by another 2116 * thread and hence that a queue rerun is needed. 2117 * 2118 * If 'no_tag' is set, that means that we failed getting 2119 * a driver tag with an I/O scheduler attached. If our dispatch 2120 * waitqueue is no longer active, ensure that we run the queue 2121 * AFTER adding our entries back to the list. 2122 * 2123 * If no I/O scheduler has been configured it is possible that 2124 * the hardware queue got stopped and restarted before requests 2125 * were pushed back onto the dispatch list. Rerun the queue to 2126 * avoid starvation. Notes: 2127 * - blk_mq_run_hw_queue() checks whether or not a queue has 2128 * been stopped before rerunning a queue. 2129 * - Some but not all block drivers stop a queue before 2130 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2131 * and dm-rq. 2132 * 2133 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2134 * bit is set, run queue after a delay to avoid IO stalls 2135 * that could otherwise occur if the queue is idle. We'll do 2136 * similar if we couldn't get budget or couldn't lock a zone 2137 * and SCHED_RESTART is set. 2138 */ 2139 needs_restart = blk_mq_sched_needs_restart(hctx); 2140 if (prep == PREP_DISPATCH_NO_BUDGET) 2141 needs_resource = true; 2142 if (!needs_restart || 2143 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2144 blk_mq_run_hw_queue(hctx, true); 2145 else if (needs_resource) 2146 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2147 2148 blk_mq_update_dispatch_busy(hctx, true); 2149 return false; 2150 } 2151 2152 blk_mq_update_dispatch_busy(hctx, false); 2153 return true; 2154 } 2155 2156 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2157 { 2158 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2159 2160 if (cpu >= nr_cpu_ids) 2161 cpu = cpumask_first(hctx->cpumask); 2162 return cpu; 2163 } 2164 2165 /* 2166 * It'd be great if the workqueue API had a way to pass 2167 * in a mask and had some smarts for more clever placement. 2168 * For now we just round-robin here, switching for every 2169 * BLK_MQ_CPU_WORK_BATCH queued items. 2170 */ 2171 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2172 { 2173 bool tried = false; 2174 int next_cpu = hctx->next_cpu; 2175 2176 if (hctx->queue->nr_hw_queues == 1) 2177 return WORK_CPU_UNBOUND; 2178 2179 if (--hctx->next_cpu_batch <= 0) { 2180 select_cpu: 2181 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2182 cpu_online_mask); 2183 if (next_cpu >= nr_cpu_ids) 2184 next_cpu = blk_mq_first_mapped_cpu(hctx); 2185 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2186 } 2187 2188 /* 2189 * Do unbound schedule if we can't find a online CPU for this hctx, 2190 * and it should only happen in the path of handling CPU DEAD. 2191 */ 2192 if (!cpu_online(next_cpu)) { 2193 if (!tried) { 2194 tried = true; 2195 goto select_cpu; 2196 } 2197 2198 /* 2199 * Make sure to re-select CPU next time once after CPUs 2200 * in hctx->cpumask become online again. 2201 */ 2202 hctx->next_cpu = next_cpu; 2203 hctx->next_cpu_batch = 1; 2204 return WORK_CPU_UNBOUND; 2205 } 2206 2207 hctx->next_cpu = next_cpu; 2208 return next_cpu; 2209 } 2210 2211 /** 2212 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2213 * @hctx: Pointer to the hardware queue to run. 2214 * @msecs: Milliseconds of delay to wait before running the queue. 2215 * 2216 * Run a hardware queue asynchronously with a delay of @msecs. 2217 */ 2218 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2219 { 2220 if (unlikely(blk_mq_hctx_stopped(hctx))) 2221 return; 2222 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2223 msecs_to_jiffies(msecs)); 2224 } 2225 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2226 2227 /** 2228 * blk_mq_run_hw_queue - Start to run a hardware queue. 2229 * @hctx: Pointer to the hardware queue to run. 2230 * @async: If we want to run the queue asynchronously. 2231 * 2232 * Check if the request queue is not in a quiesced state and if there are 2233 * pending requests to be sent. If this is true, run the queue to send requests 2234 * to hardware. 2235 */ 2236 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2237 { 2238 bool need_run; 2239 2240 /* 2241 * We can't run the queue inline with interrupts disabled. 2242 */ 2243 WARN_ON_ONCE(!async && in_interrupt()); 2244 2245 /* 2246 * When queue is quiesced, we may be switching io scheduler, or 2247 * updating nr_hw_queues, or other things, and we can't run queue 2248 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2249 * 2250 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2251 * quiesced. 2252 */ 2253 __blk_mq_run_dispatch_ops(hctx->queue, false, 2254 need_run = !blk_queue_quiesced(hctx->queue) && 2255 blk_mq_hctx_has_pending(hctx)); 2256 2257 if (!need_run) 2258 return; 2259 2260 if (async || (hctx->flags & BLK_MQ_F_BLOCKING) || 2261 !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2262 blk_mq_delay_run_hw_queue(hctx, 0); 2263 return; 2264 } 2265 2266 blk_mq_run_dispatch_ops(hctx->queue, 2267 blk_mq_sched_dispatch_requests(hctx)); 2268 } 2269 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2270 2271 /* 2272 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2273 * scheduler. 2274 */ 2275 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2276 { 2277 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2278 /* 2279 * If the IO scheduler does not respect hardware queues when 2280 * dispatching, we just don't bother with multiple HW queues and 2281 * dispatch from hctx for the current CPU since running multiple queues 2282 * just causes lock contention inside the scheduler and pointless cache 2283 * bouncing. 2284 */ 2285 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2286 2287 if (!blk_mq_hctx_stopped(hctx)) 2288 return hctx; 2289 return NULL; 2290 } 2291 2292 /** 2293 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2294 * @q: Pointer to the request queue to run. 2295 * @async: If we want to run the queue asynchronously. 2296 */ 2297 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2298 { 2299 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2300 unsigned long i; 2301 2302 sq_hctx = NULL; 2303 if (blk_queue_sq_sched(q)) 2304 sq_hctx = blk_mq_get_sq_hctx(q); 2305 queue_for_each_hw_ctx(q, hctx, i) { 2306 if (blk_mq_hctx_stopped(hctx)) 2307 continue; 2308 /* 2309 * Dispatch from this hctx either if there's no hctx preferred 2310 * by IO scheduler or if it has requests that bypass the 2311 * scheduler. 2312 */ 2313 if (!sq_hctx || sq_hctx == hctx || 2314 !list_empty_careful(&hctx->dispatch)) 2315 blk_mq_run_hw_queue(hctx, async); 2316 } 2317 } 2318 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2319 2320 /** 2321 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2322 * @q: Pointer to the request queue to run. 2323 * @msecs: Milliseconds of delay to wait before running the queues. 2324 */ 2325 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2326 { 2327 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2328 unsigned long i; 2329 2330 sq_hctx = NULL; 2331 if (blk_queue_sq_sched(q)) 2332 sq_hctx = blk_mq_get_sq_hctx(q); 2333 queue_for_each_hw_ctx(q, hctx, i) { 2334 if (blk_mq_hctx_stopped(hctx)) 2335 continue; 2336 /* 2337 * If there is already a run_work pending, leave the 2338 * pending delay untouched. Otherwise, a hctx can stall 2339 * if another hctx is re-delaying the other's work 2340 * before the work executes. 2341 */ 2342 if (delayed_work_pending(&hctx->run_work)) 2343 continue; 2344 /* 2345 * Dispatch from this hctx either if there's no hctx preferred 2346 * by IO scheduler or if it has requests that bypass the 2347 * scheduler. 2348 */ 2349 if (!sq_hctx || sq_hctx == hctx || 2350 !list_empty_careful(&hctx->dispatch)) 2351 blk_mq_delay_run_hw_queue(hctx, msecs); 2352 } 2353 } 2354 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2355 2356 /* 2357 * This function is often used for pausing .queue_rq() by driver when 2358 * there isn't enough resource or some conditions aren't satisfied, and 2359 * BLK_STS_RESOURCE is usually returned. 2360 * 2361 * We do not guarantee that dispatch can be drained or blocked 2362 * after blk_mq_stop_hw_queue() returns. Please use 2363 * blk_mq_quiesce_queue() for that requirement. 2364 */ 2365 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2366 { 2367 cancel_delayed_work(&hctx->run_work); 2368 2369 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2370 } 2371 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2372 2373 /* 2374 * This function is often used for pausing .queue_rq() by driver when 2375 * there isn't enough resource or some conditions aren't satisfied, and 2376 * BLK_STS_RESOURCE is usually returned. 2377 * 2378 * We do not guarantee that dispatch can be drained or blocked 2379 * after blk_mq_stop_hw_queues() returns. Please use 2380 * blk_mq_quiesce_queue() for that requirement. 2381 */ 2382 void blk_mq_stop_hw_queues(struct request_queue *q) 2383 { 2384 struct blk_mq_hw_ctx *hctx; 2385 unsigned long i; 2386 2387 queue_for_each_hw_ctx(q, hctx, i) 2388 blk_mq_stop_hw_queue(hctx); 2389 } 2390 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2391 2392 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2393 { 2394 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2395 2396 blk_mq_run_hw_queue(hctx, false); 2397 } 2398 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2399 2400 void blk_mq_start_hw_queues(struct request_queue *q) 2401 { 2402 struct blk_mq_hw_ctx *hctx; 2403 unsigned long i; 2404 2405 queue_for_each_hw_ctx(q, hctx, i) 2406 blk_mq_start_hw_queue(hctx); 2407 } 2408 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2409 2410 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2411 { 2412 if (!blk_mq_hctx_stopped(hctx)) 2413 return; 2414 2415 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2416 blk_mq_run_hw_queue(hctx, async); 2417 } 2418 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2419 2420 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2421 { 2422 struct blk_mq_hw_ctx *hctx; 2423 unsigned long i; 2424 2425 queue_for_each_hw_ctx(q, hctx, i) 2426 blk_mq_start_stopped_hw_queue(hctx, async); 2427 } 2428 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2429 2430 static void blk_mq_run_work_fn(struct work_struct *work) 2431 { 2432 struct blk_mq_hw_ctx *hctx = 2433 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2434 2435 blk_mq_run_dispatch_ops(hctx->queue, 2436 blk_mq_sched_dispatch_requests(hctx)); 2437 } 2438 2439 /** 2440 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2441 * @rq: Pointer to request to be inserted. 2442 * @flags: BLK_MQ_INSERT_* 2443 * 2444 * Should only be used carefully, when the caller knows we want to 2445 * bypass a potential IO scheduler on the target device. 2446 */ 2447 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2448 { 2449 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2450 2451 spin_lock(&hctx->lock); 2452 if (flags & BLK_MQ_INSERT_AT_HEAD) 2453 list_add(&rq->queuelist, &hctx->dispatch); 2454 else 2455 list_add_tail(&rq->queuelist, &hctx->dispatch); 2456 spin_unlock(&hctx->lock); 2457 } 2458 2459 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2460 struct blk_mq_ctx *ctx, struct list_head *list, 2461 bool run_queue_async) 2462 { 2463 struct request *rq; 2464 enum hctx_type type = hctx->type; 2465 2466 /* 2467 * Try to issue requests directly if the hw queue isn't busy to save an 2468 * extra enqueue & dequeue to the sw queue. 2469 */ 2470 if (!hctx->dispatch_busy && !run_queue_async) { 2471 blk_mq_run_dispatch_ops(hctx->queue, 2472 blk_mq_try_issue_list_directly(hctx, list)); 2473 if (list_empty(list)) 2474 goto out; 2475 } 2476 2477 /* 2478 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2479 * offline now 2480 */ 2481 list_for_each_entry(rq, list, queuelist) { 2482 BUG_ON(rq->mq_ctx != ctx); 2483 trace_block_rq_insert(rq); 2484 } 2485 2486 spin_lock(&ctx->lock); 2487 list_splice_tail_init(list, &ctx->rq_lists[type]); 2488 blk_mq_hctx_mark_pending(hctx, ctx); 2489 spin_unlock(&ctx->lock); 2490 out: 2491 blk_mq_run_hw_queue(hctx, run_queue_async); 2492 } 2493 2494 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2495 { 2496 struct request_queue *q = rq->q; 2497 struct blk_mq_ctx *ctx = rq->mq_ctx; 2498 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2499 2500 if (blk_rq_is_passthrough(rq)) { 2501 /* 2502 * Passthrough request have to be added to hctx->dispatch 2503 * directly. The device may be in a situation where it can't 2504 * handle FS request, and always returns BLK_STS_RESOURCE for 2505 * them, which gets them added to hctx->dispatch. 2506 * 2507 * If a passthrough request is required to unblock the queues, 2508 * and it is added to the scheduler queue, there is no chance to 2509 * dispatch it given we prioritize requests in hctx->dispatch. 2510 */ 2511 blk_mq_request_bypass_insert(rq, flags); 2512 } else if (req_op(rq) == REQ_OP_FLUSH) { 2513 /* 2514 * Firstly normal IO request is inserted to scheduler queue or 2515 * sw queue, meantime we add flush request to dispatch queue( 2516 * hctx->dispatch) directly and there is at most one in-flight 2517 * flush request for each hw queue, so it doesn't matter to add 2518 * flush request to tail or front of the dispatch queue. 2519 * 2520 * Secondly in case of NCQ, flush request belongs to non-NCQ 2521 * command, and queueing it will fail when there is any 2522 * in-flight normal IO request(NCQ command). When adding flush 2523 * rq to the front of hctx->dispatch, it is easier to introduce 2524 * extra time to flush rq's latency because of S_SCHED_RESTART 2525 * compared with adding to the tail of dispatch queue, then 2526 * chance of flush merge is increased, and less flush requests 2527 * will be issued to controller. It is observed that ~10% time 2528 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2529 * drive when adding flush rq to the front of hctx->dispatch. 2530 * 2531 * Simply queue flush rq to the front of hctx->dispatch so that 2532 * intensive flush workloads can benefit in case of NCQ HW. 2533 */ 2534 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2535 } else if (q->elevator) { 2536 LIST_HEAD(list); 2537 2538 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2539 2540 list_add(&rq->queuelist, &list); 2541 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2542 } else { 2543 trace_block_rq_insert(rq); 2544 2545 spin_lock(&ctx->lock); 2546 if (flags & BLK_MQ_INSERT_AT_HEAD) 2547 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2548 else 2549 list_add_tail(&rq->queuelist, 2550 &ctx->rq_lists[hctx->type]); 2551 blk_mq_hctx_mark_pending(hctx, ctx); 2552 spin_unlock(&ctx->lock); 2553 } 2554 } 2555 2556 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2557 unsigned int nr_segs) 2558 { 2559 int err; 2560 2561 if (bio->bi_opf & REQ_RAHEAD) 2562 rq->cmd_flags |= REQ_FAILFAST_MASK; 2563 2564 rq->__sector = bio->bi_iter.bi_sector; 2565 blk_rq_bio_prep(rq, bio, nr_segs); 2566 2567 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2568 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2569 WARN_ON_ONCE(err); 2570 2571 blk_account_io_start(rq); 2572 } 2573 2574 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2575 struct request *rq, bool last) 2576 { 2577 struct request_queue *q = rq->q; 2578 struct blk_mq_queue_data bd = { 2579 .rq = rq, 2580 .last = last, 2581 }; 2582 blk_status_t ret; 2583 2584 /* 2585 * For OK queue, we are done. For error, caller may kill it. 2586 * Any other error (busy), just add it to our list as we 2587 * previously would have done. 2588 */ 2589 ret = q->mq_ops->queue_rq(hctx, &bd); 2590 switch (ret) { 2591 case BLK_STS_OK: 2592 blk_mq_update_dispatch_busy(hctx, false); 2593 break; 2594 case BLK_STS_RESOURCE: 2595 case BLK_STS_DEV_RESOURCE: 2596 blk_mq_update_dispatch_busy(hctx, true); 2597 __blk_mq_requeue_request(rq); 2598 break; 2599 default: 2600 blk_mq_update_dispatch_busy(hctx, false); 2601 break; 2602 } 2603 2604 return ret; 2605 } 2606 2607 static bool blk_mq_get_budget_and_tag(struct request *rq) 2608 { 2609 int budget_token; 2610 2611 budget_token = blk_mq_get_dispatch_budget(rq->q); 2612 if (budget_token < 0) 2613 return false; 2614 blk_mq_set_rq_budget_token(rq, budget_token); 2615 if (!blk_mq_get_driver_tag(rq)) { 2616 blk_mq_put_dispatch_budget(rq->q, budget_token); 2617 return false; 2618 } 2619 return true; 2620 } 2621 2622 /** 2623 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2624 * @hctx: Pointer of the associated hardware queue. 2625 * @rq: Pointer to request to be sent. 2626 * 2627 * If the device has enough resources to accept a new request now, send the 2628 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2629 * we can try send it another time in the future. Requests inserted at this 2630 * queue have higher priority. 2631 */ 2632 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2633 struct request *rq) 2634 { 2635 blk_status_t ret; 2636 2637 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2638 blk_mq_insert_request(rq, 0); 2639 return; 2640 } 2641 2642 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2643 blk_mq_insert_request(rq, 0); 2644 blk_mq_run_hw_queue(hctx, false); 2645 return; 2646 } 2647 2648 ret = __blk_mq_issue_directly(hctx, rq, true); 2649 switch (ret) { 2650 case BLK_STS_OK: 2651 break; 2652 case BLK_STS_RESOURCE: 2653 case BLK_STS_DEV_RESOURCE: 2654 blk_mq_request_bypass_insert(rq, 0); 2655 blk_mq_run_hw_queue(hctx, false); 2656 break; 2657 default: 2658 blk_mq_end_request(rq, ret); 2659 break; 2660 } 2661 } 2662 2663 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2664 { 2665 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2666 2667 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2668 blk_mq_insert_request(rq, 0); 2669 return BLK_STS_OK; 2670 } 2671 2672 if (!blk_mq_get_budget_and_tag(rq)) 2673 return BLK_STS_RESOURCE; 2674 return __blk_mq_issue_directly(hctx, rq, last); 2675 } 2676 2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2678 { 2679 struct blk_mq_hw_ctx *hctx = NULL; 2680 struct request *rq; 2681 int queued = 0; 2682 blk_status_t ret = BLK_STS_OK; 2683 2684 while ((rq = rq_list_pop(&plug->mq_list))) { 2685 bool last = rq_list_empty(plug->mq_list); 2686 2687 if (hctx != rq->mq_hctx) { 2688 if (hctx) { 2689 blk_mq_commit_rqs(hctx, queued, false); 2690 queued = 0; 2691 } 2692 hctx = rq->mq_hctx; 2693 } 2694 2695 ret = blk_mq_request_issue_directly(rq, last); 2696 switch (ret) { 2697 case BLK_STS_OK: 2698 queued++; 2699 break; 2700 case BLK_STS_RESOURCE: 2701 case BLK_STS_DEV_RESOURCE: 2702 blk_mq_request_bypass_insert(rq, 0); 2703 blk_mq_run_hw_queue(hctx, false); 2704 goto out; 2705 default: 2706 blk_mq_end_request(rq, ret); 2707 break; 2708 } 2709 } 2710 2711 out: 2712 if (ret != BLK_STS_OK) 2713 blk_mq_commit_rqs(hctx, queued, false); 2714 } 2715 2716 static void __blk_mq_flush_plug_list(struct request_queue *q, 2717 struct blk_plug *plug) 2718 { 2719 if (blk_queue_quiesced(q)) 2720 return; 2721 q->mq_ops->queue_rqs(&plug->mq_list); 2722 } 2723 2724 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2725 { 2726 struct blk_mq_hw_ctx *this_hctx = NULL; 2727 struct blk_mq_ctx *this_ctx = NULL; 2728 struct request *requeue_list = NULL; 2729 struct request **requeue_lastp = &requeue_list; 2730 unsigned int depth = 0; 2731 bool is_passthrough = false; 2732 LIST_HEAD(list); 2733 2734 do { 2735 struct request *rq = rq_list_pop(&plug->mq_list); 2736 2737 if (!this_hctx) { 2738 this_hctx = rq->mq_hctx; 2739 this_ctx = rq->mq_ctx; 2740 is_passthrough = blk_rq_is_passthrough(rq); 2741 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2742 is_passthrough != blk_rq_is_passthrough(rq)) { 2743 rq_list_add_tail(&requeue_lastp, rq); 2744 continue; 2745 } 2746 list_add(&rq->queuelist, &list); 2747 depth++; 2748 } while (!rq_list_empty(plug->mq_list)); 2749 2750 plug->mq_list = requeue_list; 2751 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2752 2753 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2754 /* passthrough requests should never be issued to the I/O scheduler */ 2755 if (is_passthrough) { 2756 spin_lock(&this_hctx->lock); 2757 list_splice_tail_init(&list, &this_hctx->dispatch); 2758 spin_unlock(&this_hctx->lock); 2759 blk_mq_run_hw_queue(this_hctx, from_sched); 2760 } else if (this_hctx->queue->elevator) { 2761 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2762 &list, 0); 2763 blk_mq_run_hw_queue(this_hctx, from_sched); 2764 } else { 2765 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2766 } 2767 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2768 } 2769 2770 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2771 { 2772 struct request *rq; 2773 2774 /* 2775 * We may have been called recursively midway through handling 2776 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2777 * To avoid mq_list changing under our feet, clear rq_count early and 2778 * bail out specifically if rq_count is 0 rather than checking 2779 * whether the mq_list is empty. 2780 */ 2781 if (plug->rq_count == 0) 2782 return; 2783 plug->rq_count = 0; 2784 2785 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2786 struct request_queue *q; 2787 2788 rq = rq_list_peek(&plug->mq_list); 2789 q = rq->q; 2790 2791 /* 2792 * Peek first request and see if we have a ->queue_rqs() hook. 2793 * If we do, we can dispatch the whole plug list in one go. We 2794 * already know at this point that all requests belong to the 2795 * same queue, caller must ensure that's the case. 2796 * 2797 * Since we pass off the full list to the driver at this point, 2798 * we do not increment the active request count for the queue. 2799 * Bypass shared tags for now because of that. 2800 */ 2801 if (q->mq_ops->queue_rqs && 2802 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2803 blk_mq_run_dispatch_ops(q, 2804 __blk_mq_flush_plug_list(q, plug)); 2805 if (rq_list_empty(plug->mq_list)) 2806 return; 2807 } 2808 2809 blk_mq_run_dispatch_ops(q, 2810 blk_mq_plug_issue_direct(plug)); 2811 if (rq_list_empty(plug->mq_list)) 2812 return; 2813 } 2814 2815 do { 2816 blk_mq_dispatch_plug_list(plug, from_schedule); 2817 } while (!rq_list_empty(plug->mq_list)); 2818 } 2819 2820 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2821 struct list_head *list) 2822 { 2823 int queued = 0; 2824 blk_status_t ret = BLK_STS_OK; 2825 2826 while (!list_empty(list)) { 2827 struct request *rq = list_first_entry(list, struct request, 2828 queuelist); 2829 2830 list_del_init(&rq->queuelist); 2831 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2832 switch (ret) { 2833 case BLK_STS_OK: 2834 queued++; 2835 break; 2836 case BLK_STS_RESOURCE: 2837 case BLK_STS_DEV_RESOURCE: 2838 blk_mq_request_bypass_insert(rq, 0); 2839 if (list_empty(list)) 2840 blk_mq_run_hw_queue(hctx, false); 2841 goto out; 2842 default: 2843 blk_mq_end_request(rq, ret); 2844 break; 2845 } 2846 } 2847 2848 out: 2849 if (ret != BLK_STS_OK) 2850 blk_mq_commit_rqs(hctx, queued, false); 2851 } 2852 2853 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2854 struct bio *bio, unsigned int nr_segs) 2855 { 2856 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2857 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2858 return true; 2859 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2860 return true; 2861 } 2862 return false; 2863 } 2864 2865 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2866 struct blk_plug *plug, 2867 struct bio *bio, 2868 unsigned int nsegs) 2869 { 2870 struct blk_mq_alloc_data data = { 2871 .q = q, 2872 .nr_tags = 1, 2873 .cmd_flags = bio->bi_opf, 2874 }; 2875 struct request *rq; 2876 2877 if (unlikely(bio_queue_enter(bio))) 2878 return NULL; 2879 2880 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2881 goto queue_exit; 2882 2883 rq_qos_throttle(q, bio); 2884 2885 if (plug) { 2886 data.nr_tags = plug->nr_ios; 2887 plug->nr_ios = 1; 2888 data.cached_rq = &plug->cached_rq; 2889 } 2890 2891 rq = __blk_mq_alloc_requests(&data); 2892 if (rq) 2893 return rq; 2894 rq_qos_cleanup(q, bio); 2895 if (bio->bi_opf & REQ_NOWAIT) 2896 bio_wouldblock_error(bio); 2897 queue_exit: 2898 blk_queue_exit(q); 2899 return NULL; 2900 } 2901 2902 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2903 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2904 { 2905 struct request *rq; 2906 enum hctx_type type, hctx_type; 2907 2908 if (!plug) 2909 return NULL; 2910 rq = rq_list_peek(&plug->cached_rq); 2911 if (!rq || rq->q != q) 2912 return NULL; 2913 2914 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2915 *bio = NULL; 2916 return NULL; 2917 } 2918 2919 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2920 hctx_type = rq->mq_hctx->type; 2921 if (type != hctx_type && 2922 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2923 return NULL; 2924 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2925 return NULL; 2926 2927 /* 2928 * If any qos ->throttle() end up blocking, we will have flushed the 2929 * plug and hence killed the cached_rq list as well. Pop this entry 2930 * before we throttle. 2931 */ 2932 plug->cached_rq = rq_list_next(rq); 2933 rq_qos_throttle(q, *bio); 2934 2935 blk_mq_rq_time_init(rq, 0); 2936 rq->cmd_flags = (*bio)->bi_opf; 2937 INIT_LIST_HEAD(&rq->queuelist); 2938 return rq; 2939 } 2940 2941 static void bio_set_ioprio(struct bio *bio) 2942 { 2943 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2944 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2945 bio->bi_ioprio = get_current_ioprio(); 2946 blkcg_set_ioprio(bio); 2947 } 2948 2949 /** 2950 * blk_mq_submit_bio - Create and send a request to block device. 2951 * @bio: Bio pointer. 2952 * 2953 * Builds up a request structure from @q and @bio and send to the device. The 2954 * request may not be queued directly to hardware if: 2955 * * This request can be merged with another one 2956 * * We want to place request at plug queue for possible future merging 2957 * * There is an IO scheduler active at this queue 2958 * 2959 * It will not queue the request if there is an error with the bio, or at the 2960 * request creation. 2961 */ 2962 void blk_mq_submit_bio(struct bio *bio) 2963 { 2964 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2965 struct blk_plug *plug = blk_mq_plug(bio); 2966 const int is_sync = op_is_sync(bio->bi_opf); 2967 struct blk_mq_hw_ctx *hctx; 2968 struct request *rq; 2969 unsigned int nr_segs = 1; 2970 blk_status_t ret; 2971 2972 bio = blk_queue_bounce(bio, q); 2973 if (bio_may_exceed_limits(bio, &q->limits)) { 2974 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2975 if (!bio) 2976 return; 2977 } 2978 2979 if (!bio_integrity_prep(bio)) 2980 return; 2981 2982 bio_set_ioprio(bio); 2983 2984 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2985 if (!rq) { 2986 if (!bio) 2987 return; 2988 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2989 if (unlikely(!rq)) 2990 return; 2991 } 2992 2993 trace_block_getrq(bio); 2994 2995 rq_qos_track(q, rq, bio); 2996 2997 blk_mq_bio_to_request(rq, bio, nr_segs); 2998 2999 ret = blk_crypto_rq_get_keyslot(rq); 3000 if (ret != BLK_STS_OK) { 3001 bio->bi_status = ret; 3002 bio_endio(bio); 3003 blk_mq_free_request(rq); 3004 return; 3005 } 3006 3007 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3008 return; 3009 3010 if (plug) { 3011 blk_add_rq_to_plug(plug, rq); 3012 return; 3013 } 3014 3015 hctx = rq->mq_hctx; 3016 if ((rq->rq_flags & RQF_USE_SCHED) || 3017 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3018 blk_mq_insert_request(rq, 0); 3019 blk_mq_run_hw_queue(hctx, true); 3020 } else { 3021 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3022 } 3023 } 3024 3025 #ifdef CONFIG_BLK_MQ_STACKING 3026 /** 3027 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3028 * @rq: the request being queued 3029 */ 3030 blk_status_t blk_insert_cloned_request(struct request *rq) 3031 { 3032 struct request_queue *q = rq->q; 3033 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3034 unsigned int max_segments = blk_rq_get_max_segments(rq); 3035 blk_status_t ret; 3036 3037 if (blk_rq_sectors(rq) > max_sectors) { 3038 /* 3039 * SCSI device does not have a good way to return if 3040 * Write Same/Zero is actually supported. If a device rejects 3041 * a non-read/write command (discard, write same,etc.) the 3042 * low-level device driver will set the relevant queue limit to 3043 * 0 to prevent blk-lib from issuing more of the offending 3044 * operations. Commands queued prior to the queue limit being 3045 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3046 * errors being propagated to upper layers. 3047 */ 3048 if (max_sectors == 0) 3049 return BLK_STS_NOTSUPP; 3050 3051 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3052 __func__, blk_rq_sectors(rq), max_sectors); 3053 return BLK_STS_IOERR; 3054 } 3055 3056 /* 3057 * The queue settings related to segment counting may differ from the 3058 * original queue. 3059 */ 3060 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3061 if (rq->nr_phys_segments > max_segments) { 3062 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3063 __func__, rq->nr_phys_segments, max_segments); 3064 return BLK_STS_IOERR; 3065 } 3066 3067 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3068 return BLK_STS_IOERR; 3069 3070 ret = blk_crypto_rq_get_keyslot(rq); 3071 if (ret != BLK_STS_OK) 3072 return ret; 3073 3074 blk_account_io_start(rq); 3075 3076 /* 3077 * Since we have a scheduler attached on the top device, 3078 * bypass a potential scheduler on the bottom device for 3079 * insert. 3080 */ 3081 blk_mq_run_dispatch_ops(q, 3082 ret = blk_mq_request_issue_directly(rq, true)); 3083 if (ret) 3084 blk_account_io_done(rq, ktime_get_ns()); 3085 return ret; 3086 } 3087 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3088 3089 /** 3090 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3091 * @rq: the clone request to be cleaned up 3092 * 3093 * Description: 3094 * Free all bios in @rq for a cloned request. 3095 */ 3096 void blk_rq_unprep_clone(struct request *rq) 3097 { 3098 struct bio *bio; 3099 3100 while ((bio = rq->bio) != NULL) { 3101 rq->bio = bio->bi_next; 3102 3103 bio_put(bio); 3104 } 3105 } 3106 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3107 3108 /** 3109 * blk_rq_prep_clone - Helper function to setup clone request 3110 * @rq: the request to be setup 3111 * @rq_src: original request to be cloned 3112 * @bs: bio_set that bios for clone are allocated from 3113 * @gfp_mask: memory allocation mask for bio 3114 * @bio_ctr: setup function to be called for each clone bio. 3115 * Returns %0 for success, non %0 for failure. 3116 * @data: private data to be passed to @bio_ctr 3117 * 3118 * Description: 3119 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3120 * Also, pages which the original bios are pointing to are not copied 3121 * and the cloned bios just point same pages. 3122 * So cloned bios must be completed before original bios, which means 3123 * the caller must complete @rq before @rq_src. 3124 */ 3125 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3126 struct bio_set *bs, gfp_t gfp_mask, 3127 int (*bio_ctr)(struct bio *, struct bio *, void *), 3128 void *data) 3129 { 3130 struct bio *bio, *bio_src; 3131 3132 if (!bs) 3133 bs = &fs_bio_set; 3134 3135 __rq_for_each_bio(bio_src, rq_src) { 3136 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3137 bs); 3138 if (!bio) 3139 goto free_and_out; 3140 3141 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3142 goto free_and_out; 3143 3144 if (rq->bio) { 3145 rq->biotail->bi_next = bio; 3146 rq->biotail = bio; 3147 } else { 3148 rq->bio = rq->biotail = bio; 3149 } 3150 bio = NULL; 3151 } 3152 3153 /* Copy attributes of the original request to the clone request. */ 3154 rq->__sector = blk_rq_pos(rq_src); 3155 rq->__data_len = blk_rq_bytes(rq_src); 3156 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3157 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3158 rq->special_vec = rq_src->special_vec; 3159 } 3160 rq->nr_phys_segments = rq_src->nr_phys_segments; 3161 rq->ioprio = rq_src->ioprio; 3162 3163 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3164 goto free_and_out; 3165 3166 return 0; 3167 3168 free_and_out: 3169 if (bio) 3170 bio_put(bio); 3171 blk_rq_unprep_clone(rq); 3172 3173 return -ENOMEM; 3174 } 3175 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3176 #endif /* CONFIG_BLK_MQ_STACKING */ 3177 3178 /* 3179 * Steal bios from a request and add them to a bio list. 3180 * The request must not have been partially completed before. 3181 */ 3182 void blk_steal_bios(struct bio_list *list, struct request *rq) 3183 { 3184 if (rq->bio) { 3185 if (list->tail) 3186 list->tail->bi_next = rq->bio; 3187 else 3188 list->head = rq->bio; 3189 list->tail = rq->biotail; 3190 3191 rq->bio = NULL; 3192 rq->biotail = NULL; 3193 } 3194 3195 rq->__data_len = 0; 3196 } 3197 EXPORT_SYMBOL_GPL(blk_steal_bios); 3198 3199 static size_t order_to_size(unsigned int order) 3200 { 3201 return (size_t)PAGE_SIZE << order; 3202 } 3203 3204 /* called before freeing request pool in @tags */ 3205 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3206 struct blk_mq_tags *tags) 3207 { 3208 struct page *page; 3209 unsigned long flags; 3210 3211 /* 3212 * There is no need to clear mapping if driver tags is not initialized 3213 * or the mapping belongs to the driver tags. 3214 */ 3215 if (!drv_tags || drv_tags == tags) 3216 return; 3217 3218 list_for_each_entry(page, &tags->page_list, lru) { 3219 unsigned long start = (unsigned long)page_address(page); 3220 unsigned long end = start + order_to_size(page->private); 3221 int i; 3222 3223 for (i = 0; i < drv_tags->nr_tags; i++) { 3224 struct request *rq = drv_tags->rqs[i]; 3225 unsigned long rq_addr = (unsigned long)rq; 3226 3227 if (rq_addr >= start && rq_addr < end) { 3228 WARN_ON_ONCE(req_ref_read(rq) != 0); 3229 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3230 } 3231 } 3232 } 3233 3234 /* 3235 * Wait until all pending iteration is done. 3236 * 3237 * Request reference is cleared and it is guaranteed to be observed 3238 * after the ->lock is released. 3239 */ 3240 spin_lock_irqsave(&drv_tags->lock, flags); 3241 spin_unlock_irqrestore(&drv_tags->lock, flags); 3242 } 3243 3244 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3245 unsigned int hctx_idx) 3246 { 3247 struct blk_mq_tags *drv_tags; 3248 struct page *page; 3249 3250 if (list_empty(&tags->page_list)) 3251 return; 3252 3253 if (blk_mq_is_shared_tags(set->flags)) 3254 drv_tags = set->shared_tags; 3255 else 3256 drv_tags = set->tags[hctx_idx]; 3257 3258 if (tags->static_rqs && set->ops->exit_request) { 3259 int i; 3260 3261 for (i = 0; i < tags->nr_tags; i++) { 3262 struct request *rq = tags->static_rqs[i]; 3263 3264 if (!rq) 3265 continue; 3266 set->ops->exit_request(set, rq, hctx_idx); 3267 tags->static_rqs[i] = NULL; 3268 } 3269 } 3270 3271 blk_mq_clear_rq_mapping(drv_tags, tags); 3272 3273 while (!list_empty(&tags->page_list)) { 3274 page = list_first_entry(&tags->page_list, struct page, lru); 3275 list_del_init(&page->lru); 3276 /* 3277 * Remove kmemleak object previously allocated in 3278 * blk_mq_alloc_rqs(). 3279 */ 3280 kmemleak_free(page_address(page)); 3281 __free_pages(page, page->private); 3282 } 3283 } 3284 3285 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3286 { 3287 kfree(tags->rqs); 3288 tags->rqs = NULL; 3289 kfree(tags->static_rqs); 3290 tags->static_rqs = NULL; 3291 3292 blk_mq_free_tags(tags); 3293 } 3294 3295 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3296 unsigned int hctx_idx) 3297 { 3298 int i; 3299 3300 for (i = 0; i < set->nr_maps; i++) { 3301 unsigned int start = set->map[i].queue_offset; 3302 unsigned int end = start + set->map[i].nr_queues; 3303 3304 if (hctx_idx >= start && hctx_idx < end) 3305 break; 3306 } 3307 3308 if (i >= set->nr_maps) 3309 i = HCTX_TYPE_DEFAULT; 3310 3311 return i; 3312 } 3313 3314 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3315 unsigned int hctx_idx) 3316 { 3317 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3318 3319 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3320 } 3321 3322 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3323 unsigned int hctx_idx, 3324 unsigned int nr_tags, 3325 unsigned int reserved_tags) 3326 { 3327 int node = blk_mq_get_hctx_node(set, hctx_idx); 3328 struct blk_mq_tags *tags; 3329 3330 if (node == NUMA_NO_NODE) 3331 node = set->numa_node; 3332 3333 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3334 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3335 if (!tags) 3336 return NULL; 3337 3338 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3339 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3340 node); 3341 if (!tags->rqs) 3342 goto err_free_tags; 3343 3344 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3345 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3346 node); 3347 if (!tags->static_rqs) 3348 goto err_free_rqs; 3349 3350 return tags; 3351 3352 err_free_rqs: 3353 kfree(tags->rqs); 3354 err_free_tags: 3355 blk_mq_free_tags(tags); 3356 return NULL; 3357 } 3358 3359 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3360 unsigned int hctx_idx, int node) 3361 { 3362 int ret; 3363 3364 if (set->ops->init_request) { 3365 ret = set->ops->init_request(set, rq, hctx_idx, node); 3366 if (ret) 3367 return ret; 3368 } 3369 3370 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3371 return 0; 3372 } 3373 3374 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3375 struct blk_mq_tags *tags, 3376 unsigned int hctx_idx, unsigned int depth) 3377 { 3378 unsigned int i, j, entries_per_page, max_order = 4; 3379 int node = blk_mq_get_hctx_node(set, hctx_idx); 3380 size_t rq_size, left; 3381 3382 if (node == NUMA_NO_NODE) 3383 node = set->numa_node; 3384 3385 INIT_LIST_HEAD(&tags->page_list); 3386 3387 /* 3388 * rq_size is the size of the request plus driver payload, rounded 3389 * to the cacheline size 3390 */ 3391 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3392 cache_line_size()); 3393 left = rq_size * depth; 3394 3395 for (i = 0; i < depth; ) { 3396 int this_order = max_order; 3397 struct page *page; 3398 int to_do; 3399 void *p; 3400 3401 while (this_order && left < order_to_size(this_order - 1)) 3402 this_order--; 3403 3404 do { 3405 page = alloc_pages_node(node, 3406 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3407 this_order); 3408 if (page) 3409 break; 3410 if (!this_order--) 3411 break; 3412 if (order_to_size(this_order) < rq_size) 3413 break; 3414 } while (1); 3415 3416 if (!page) 3417 goto fail; 3418 3419 page->private = this_order; 3420 list_add_tail(&page->lru, &tags->page_list); 3421 3422 p = page_address(page); 3423 /* 3424 * Allow kmemleak to scan these pages as they contain pointers 3425 * to additional allocations like via ops->init_request(). 3426 */ 3427 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3428 entries_per_page = order_to_size(this_order) / rq_size; 3429 to_do = min(entries_per_page, depth - i); 3430 left -= to_do * rq_size; 3431 for (j = 0; j < to_do; j++) { 3432 struct request *rq = p; 3433 3434 tags->static_rqs[i] = rq; 3435 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3436 tags->static_rqs[i] = NULL; 3437 goto fail; 3438 } 3439 3440 p += rq_size; 3441 i++; 3442 } 3443 } 3444 return 0; 3445 3446 fail: 3447 blk_mq_free_rqs(set, tags, hctx_idx); 3448 return -ENOMEM; 3449 } 3450 3451 struct rq_iter_data { 3452 struct blk_mq_hw_ctx *hctx; 3453 bool has_rq; 3454 }; 3455 3456 static bool blk_mq_has_request(struct request *rq, void *data) 3457 { 3458 struct rq_iter_data *iter_data = data; 3459 3460 if (rq->mq_hctx != iter_data->hctx) 3461 return true; 3462 iter_data->has_rq = true; 3463 return false; 3464 } 3465 3466 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3467 { 3468 struct blk_mq_tags *tags = hctx->sched_tags ? 3469 hctx->sched_tags : hctx->tags; 3470 struct rq_iter_data data = { 3471 .hctx = hctx, 3472 }; 3473 3474 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3475 return data.has_rq; 3476 } 3477 3478 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3479 struct blk_mq_hw_ctx *hctx) 3480 { 3481 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3482 return false; 3483 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3484 return false; 3485 return true; 3486 } 3487 3488 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3489 { 3490 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3491 struct blk_mq_hw_ctx, cpuhp_online); 3492 3493 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3494 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3495 return 0; 3496 3497 /* 3498 * Prevent new request from being allocated on the current hctx. 3499 * 3500 * The smp_mb__after_atomic() Pairs with the implied barrier in 3501 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3502 * seen once we return from the tag allocator. 3503 */ 3504 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3505 smp_mb__after_atomic(); 3506 3507 /* 3508 * Try to grab a reference to the queue and wait for any outstanding 3509 * requests. If we could not grab a reference the queue has been 3510 * frozen and there are no requests. 3511 */ 3512 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3513 while (blk_mq_hctx_has_requests(hctx)) 3514 msleep(5); 3515 percpu_ref_put(&hctx->queue->q_usage_counter); 3516 } 3517 3518 return 0; 3519 } 3520 3521 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3522 { 3523 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3524 struct blk_mq_hw_ctx, cpuhp_online); 3525 3526 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3527 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3528 return 0; 3529 } 3530 3531 /* 3532 * 'cpu' is going away. splice any existing rq_list entries from this 3533 * software queue to the hw queue dispatch list, and ensure that it 3534 * gets run. 3535 */ 3536 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3537 { 3538 struct blk_mq_hw_ctx *hctx; 3539 struct blk_mq_ctx *ctx; 3540 LIST_HEAD(tmp); 3541 enum hctx_type type; 3542 3543 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3544 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3545 return 0; 3546 3547 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3548 type = hctx->type; 3549 3550 spin_lock(&ctx->lock); 3551 if (!list_empty(&ctx->rq_lists[type])) { 3552 list_splice_init(&ctx->rq_lists[type], &tmp); 3553 blk_mq_hctx_clear_pending(hctx, ctx); 3554 } 3555 spin_unlock(&ctx->lock); 3556 3557 if (list_empty(&tmp)) 3558 return 0; 3559 3560 spin_lock(&hctx->lock); 3561 list_splice_tail_init(&tmp, &hctx->dispatch); 3562 spin_unlock(&hctx->lock); 3563 3564 blk_mq_run_hw_queue(hctx, true); 3565 return 0; 3566 } 3567 3568 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3569 { 3570 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3571 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3572 &hctx->cpuhp_online); 3573 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3574 &hctx->cpuhp_dead); 3575 } 3576 3577 /* 3578 * Before freeing hw queue, clearing the flush request reference in 3579 * tags->rqs[] for avoiding potential UAF. 3580 */ 3581 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3582 unsigned int queue_depth, struct request *flush_rq) 3583 { 3584 int i; 3585 unsigned long flags; 3586 3587 /* The hw queue may not be mapped yet */ 3588 if (!tags) 3589 return; 3590 3591 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3592 3593 for (i = 0; i < queue_depth; i++) 3594 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3595 3596 /* 3597 * Wait until all pending iteration is done. 3598 * 3599 * Request reference is cleared and it is guaranteed to be observed 3600 * after the ->lock is released. 3601 */ 3602 spin_lock_irqsave(&tags->lock, flags); 3603 spin_unlock_irqrestore(&tags->lock, flags); 3604 } 3605 3606 /* hctx->ctxs will be freed in queue's release handler */ 3607 static void blk_mq_exit_hctx(struct request_queue *q, 3608 struct blk_mq_tag_set *set, 3609 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3610 { 3611 struct request *flush_rq = hctx->fq->flush_rq; 3612 3613 if (blk_mq_hw_queue_mapped(hctx)) 3614 blk_mq_tag_idle(hctx); 3615 3616 if (blk_queue_init_done(q)) 3617 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3618 set->queue_depth, flush_rq); 3619 if (set->ops->exit_request) 3620 set->ops->exit_request(set, flush_rq, hctx_idx); 3621 3622 if (set->ops->exit_hctx) 3623 set->ops->exit_hctx(hctx, hctx_idx); 3624 3625 blk_mq_remove_cpuhp(hctx); 3626 3627 xa_erase(&q->hctx_table, hctx_idx); 3628 3629 spin_lock(&q->unused_hctx_lock); 3630 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3631 spin_unlock(&q->unused_hctx_lock); 3632 } 3633 3634 static void blk_mq_exit_hw_queues(struct request_queue *q, 3635 struct blk_mq_tag_set *set, int nr_queue) 3636 { 3637 struct blk_mq_hw_ctx *hctx; 3638 unsigned long i; 3639 3640 queue_for_each_hw_ctx(q, hctx, i) { 3641 if (i == nr_queue) 3642 break; 3643 blk_mq_exit_hctx(q, set, hctx, i); 3644 } 3645 } 3646 3647 static int blk_mq_init_hctx(struct request_queue *q, 3648 struct blk_mq_tag_set *set, 3649 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3650 { 3651 hctx->queue_num = hctx_idx; 3652 3653 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3654 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3655 &hctx->cpuhp_online); 3656 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3657 3658 hctx->tags = set->tags[hctx_idx]; 3659 3660 if (set->ops->init_hctx && 3661 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3662 goto unregister_cpu_notifier; 3663 3664 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3665 hctx->numa_node)) 3666 goto exit_hctx; 3667 3668 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3669 goto exit_flush_rq; 3670 3671 return 0; 3672 3673 exit_flush_rq: 3674 if (set->ops->exit_request) 3675 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3676 exit_hctx: 3677 if (set->ops->exit_hctx) 3678 set->ops->exit_hctx(hctx, hctx_idx); 3679 unregister_cpu_notifier: 3680 blk_mq_remove_cpuhp(hctx); 3681 return -1; 3682 } 3683 3684 static struct blk_mq_hw_ctx * 3685 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3686 int node) 3687 { 3688 struct blk_mq_hw_ctx *hctx; 3689 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3690 3691 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3692 if (!hctx) 3693 goto fail_alloc_hctx; 3694 3695 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3696 goto free_hctx; 3697 3698 atomic_set(&hctx->nr_active, 0); 3699 if (node == NUMA_NO_NODE) 3700 node = set->numa_node; 3701 hctx->numa_node = node; 3702 3703 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3704 spin_lock_init(&hctx->lock); 3705 INIT_LIST_HEAD(&hctx->dispatch); 3706 hctx->queue = q; 3707 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3708 3709 INIT_LIST_HEAD(&hctx->hctx_list); 3710 3711 /* 3712 * Allocate space for all possible cpus to avoid allocation at 3713 * runtime 3714 */ 3715 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3716 gfp, node); 3717 if (!hctx->ctxs) 3718 goto free_cpumask; 3719 3720 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3721 gfp, node, false, false)) 3722 goto free_ctxs; 3723 hctx->nr_ctx = 0; 3724 3725 spin_lock_init(&hctx->dispatch_wait_lock); 3726 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3727 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3728 3729 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3730 if (!hctx->fq) 3731 goto free_bitmap; 3732 3733 blk_mq_hctx_kobj_init(hctx); 3734 3735 return hctx; 3736 3737 free_bitmap: 3738 sbitmap_free(&hctx->ctx_map); 3739 free_ctxs: 3740 kfree(hctx->ctxs); 3741 free_cpumask: 3742 free_cpumask_var(hctx->cpumask); 3743 free_hctx: 3744 kfree(hctx); 3745 fail_alloc_hctx: 3746 return NULL; 3747 } 3748 3749 static void blk_mq_init_cpu_queues(struct request_queue *q, 3750 unsigned int nr_hw_queues) 3751 { 3752 struct blk_mq_tag_set *set = q->tag_set; 3753 unsigned int i, j; 3754 3755 for_each_possible_cpu(i) { 3756 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3757 struct blk_mq_hw_ctx *hctx; 3758 int k; 3759 3760 __ctx->cpu = i; 3761 spin_lock_init(&__ctx->lock); 3762 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3763 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3764 3765 __ctx->queue = q; 3766 3767 /* 3768 * Set local node, IFF we have more than one hw queue. If 3769 * not, we remain on the home node of the device 3770 */ 3771 for (j = 0; j < set->nr_maps; j++) { 3772 hctx = blk_mq_map_queue_type(q, j, i); 3773 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3774 hctx->numa_node = cpu_to_node(i); 3775 } 3776 } 3777 } 3778 3779 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3780 unsigned int hctx_idx, 3781 unsigned int depth) 3782 { 3783 struct blk_mq_tags *tags; 3784 int ret; 3785 3786 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3787 if (!tags) 3788 return NULL; 3789 3790 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3791 if (ret) { 3792 blk_mq_free_rq_map(tags); 3793 return NULL; 3794 } 3795 3796 return tags; 3797 } 3798 3799 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3800 int hctx_idx) 3801 { 3802 if (blk_mq_is_shared_tags(set->flags)) { 3803 set->tags[hctx_idx] = set->shared_tags; 3804 3805 return true; 3806 } 3807 3808 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3809 set->queue_depth); 3810 3811 return set->tags[hctx_idx]; 3812 } 3813 3814 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3815 struct blk_mq_tags *tags, 3816 unsigned int hctx_idx) 3817 { 3818 if (tags) { 3819 blk_mq_free_rqs(set, tags, hctx_idx); 3820 blk_mq_free_rq_map(tags); 3821 } 3822 } 3823 3824 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3825 unsigned int hctx_idx) 3826 { 3827 if (!blk_mq_is_shared_tags(set->flags)) 3828 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3829 3830 set->tags[hctx_idx] = NULL; 3831 } 3832 3833 static void blk_mq_map_swqueue(struct request_queue *q) 3834 { 3835 unsigned int j, hctx_idx; 3836 unsigned long i; 3837 struct blk_mq_hw_ctx *hctx; 3838 struct blk_mq_ctx *ctx; 3839 struct blk_mq_tag_set *set = q->tag_set; 3840 3841 queue_for_each_hw_ctx(q, hctx, i) { 3842 cpumask_clear(hctx->cpumask); 3843 hctx->nr_ctx = 0; 3844 hctx->dispatch_from = NULL; 3845 } 3846 3847 /* 3848 * Map software to hardware queues. 3849 * 3850 * If the cpu isn't present, the cpu is mapped to first hctx. 3851 */ 3852 for_each_possible_cpu(i) { 3853 3854 ctx = per_cpu_ptr(q->queue_ctx, i); 3855 for (j = 0; j < set->nr_maps; j++) { 3856 if (!set->map[j].nr_queues) { 3857 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3858 HCTX_TYPE_DEFAULT, i); 3859 continue; 3860 } 3861 hctx_idx = set->map[j].mq_map[i]; 3862 /* unmapped hw queue can be remapped after CPU topo changed */ 3863 if (!set->tags[hctx_idx] && 3864 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3865 /* 3866 * If tags initialization fail for some hctx, 3867 * that hctx won't be brought online. In this 3868 * case, remap the current ctx to hctx[0] which 3869 * is guaranteed to always have tags allocated 3870 */ 3871 set->map[j].mq_map[i] = 0; 3872 } 3873 3874 hctx = blk_mq_map_queue_type(q, j, i); 3875 ctx->hctxs[j] = hctx; 3876 /* 3877 * If the CPU is already set in the mask, then we've 3878 * mapped this one already. This can happen if 3879 * devices share queues across queue maps. 3880 */ 3881 if (cpumask_test_cpu(i, hctx->cpumask)) 3882 continue; 3883 3884 cpumask_set_cpu(i, hctx->cpumask); 3885 hctx->type = j; 3886 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3887 hctx->ctxs[hctx->nr_ctx++] = ctx; 3888 3889 /* 3890 * If the nr_ctx type overflows, we have exceeded the 3891 * amount of sw queues we can support. 3892 */ 3893 BUG_ON(!hctx->nr_ctx); 3894 } 3895 3896 for (; j < HCTX_MAX_TYPES; j++) 3897 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3898 HCTX_TYPE_DEFAULT, i); 3899 } 3900 3901 queue_for_each_hw_ctx(q, hctx, i) { 3902 /* 3903 * If no software queues are mapped to this hardware queue, 3904 * disable it and free the request entries. 3905 */ 3906 if (!hctx->nr_ctx) { 3907 /* Never unmap queue 0. We need it as a 3908 * fallback in case of a new remap fails 3909 * allocation 3910 */ 3911 if (i) 3912 __blk_mq_free_map_and_rqs(set, i); 3913 3914 hctx->tags = NULL; 3915 continue; 3916 } 3917 3918 hctx->tags = set->tags[i]; 3919 WARN_ON(!hctx->tags); 3920 3921 /* 3922 * Set the map size to the number of mapped software queues. 3923 * This is more accurate and more efficient than looping 3924 * over all possibly mapped software queues. 3925 */ 3926 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3927 3928 /* 3929 * Initialize batch roundrobin counts 3930 */ 3931 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3932 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3933 } 3934 } 3935 3936 /* 3937 * Caller needs to ensure that we're either frozen/quiesced, or that 3938 * the queue isn't live yet. 3939 */ 3940 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3941 { 3942 struct blk_mq_hw_ctx *hctx; 3943 unsigned long i; 3944 3945 queue_for_each_hw_ctx(q, hctx, i) { 3946 if (shared) { 3947 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3948 } else { 3949 blk_mq_tag_idle(hctx); 3950 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3951 } 3952 } 3953 } 3954 3955 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3956 bool shared) 3957 { 3958 struct request_queue *q; 3959 3960 lockdep_assert_held(&set->tag_list_lock); 3961 3962 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3963 blk_mq_freeze_queue(q); 3964 queue_set_hctx_shared(q, shared); 3965 blk_mq_unfreeze_queue(q); 3966 } 3967 } 3968 3969 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3970 { 3971 struct blk_mq_tag_set *set = q->tag_set; 3972 3973 mutex_lock(&set->tag_list_lock); 3974 list_del(&q->tag_set_list); 3975 if (list_is_singular(&set->tag_list)) { 3976 /* just transitioned to unshared */ 3977 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3978 /* update existing queue */ 3979 blk_mq_update_tag_set_shared(set, false); 3980 } 3981 mutex_unlock(&set->tag_list_lock); 3982 INIT_LIST_HEAD(&q->tag_set_list); 3983 } 3984 3985 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3986 struct request_queue *q) 3987 { 3988 mutex_lock(&set->tag_list_lock); 3989 3990 /* 3991 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3992 */ 3993 if (!list_empty(&set->tag_list) && 3994 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3995 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3996 /* update existing queue */ 3997 blk_mq_update_tag_set_shared(set, true); 3998 } 3999 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4000 queue_set_hctx_shared(q, true); 4001 list_add_tail(&q->tag_set_list, &set->tag_list); 4002 4003 mutex_unlock(&set->tag_list_lock); 4004 } 4005 4006 /* All allocations will be freed in release handler of q->mq_kobj */ 4007 static int blk_mq_alloc_ctxs(struct request_queue *q) 4008 { 4009 struct blk_mq_ctxs *ctxs; 4010 int cpu; 4011 4012 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4013 if (!ctxs) 4014 return -ENOMEM; 4015 4016 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4017 if (!ctxs->queue_ctx) 4018 goto fail; 4019 4020 for_each_possible_cpu(cpu) { 4021 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4022 ctx->ctxs = ctxs; 4023 } 4024 4025 q->mq_kobj = &ctxs->kobj; 4026 q->queue_ctx = ctxs->queue_ctx; 4027 4028 return 0; 4029 fail: 4030 kfree(ctxs); 4031 return -ENOMEM; 4032 } 4033 4034 /* 4035 * It is the actual release handler for mq, but we do it from 4036 * request queue's release handler for avoiding use-after-free 4037 * and headache because q->mq_kobj shouldn't have been introduced, 4038 * but we can't group ctx/kctx kobj without it. 4039 */ 4040 void blk_mq_release(struct request_queue *q) 4041 { 4042 struct blk_mq_hw_ctx *hctx, *next; 4043 unsigned long i; 4044 4045 queue_for_each_hw_ctx(q, hctx, i) 4046 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4047 4048 /* all hctx are in .unused_hctx_list now */ 4049 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4050 list_del_init(&hctx->hctx_list); 4051 kobject_put(&hctx->kobj); 4052 } 4053 4054 xa_destroy(&q->hctx_table); 4055 4056 /* 4057 * release .mq_kobj and sw queue's kobject now because 4058 * both share lifetime with request queue. 4059 */ 4060 blk_mq_sysfs_deinit(q); 4061 } 4062 4063 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4064 void *queuedata) 4065 { 4066 struct request_queue *q; 4067 int ret; 4068 4069 q = blk_alloc_queue(set->numa_node); 4070 if (!q) 4071 return ERR_PTR(-ENOMEM); 4072 q->queuedata = queuedata; 4073 ret = blk_mq_init_allocated_queue(set, q); 4074 if (ret) { 4075 blk_put_queue(q); 4076 return ERR_PTR(ret); 4077 } 4078 return q; 4079 } 4080 4081 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4082 { 4083 return blk_mq_init_queue_data(set, NULL); 4084 } 4085 EXPORT_SYMBOL(blk_mq_init_queue); 4086 4087 /** 4088 * blk_mq_destroy_queue - shutdown a request queue 4089 * @q: request queue to shutdown 4090 * 4091 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4092 * requests will be failed with -ENODEV. The caller is responsible for dropping 4093 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4094 * 4095 * Context: can sleep 4096 */ 4097 void blk_mq_destroy_queue(struct request_queue *q) 4098 { 4099 WARN_ON_ONCE(!queue_is_mq(q)); 4100 WARN_ON_ONCE(blk_queue_registered(q)); 4101 4102 might_sleep(); 4103 4104 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4105 blk_queue_start_drain(q); 4106 blk_mq_freeze_queue_wait(q); 4107 4108 blk_sync_queue(q); 4109 blk_mq_cancel_work_sync(q); 4110 blk_mq_exit_queue(q); 4111 } 4112 EXPORT_SYMBOL(blk_mq_destroy_queue); 4113 4114 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4115 struct lock_class_key *lkclass) 4116 { 4117 struct request_queue *q; 4118 struct gendisk *disk; 4119 4120 q = blk_mq_init_queue_data(set, queuedata); 4121 if (IS_ERR(q)) 4122 return ERR_CAST(q); 4123 4124 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4125 if (!disk) { 4126 blk_mq_destroy_queue(q); 4127 blk_put_queue(q); 4128 return ERR_PTR(-ENOMEM); 4129 } 4130 set_bit(GD_OWNS_QUEUE, &disk->state); 4131 return disk; 4132 } 4133 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4134 4135 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4136 struct lock_class_key *lkclass) 4137 { 4138 struct gendisk *disk; 4139 4140 if (!blk_get_queue(q)) 4141 return NULL; 4142 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4143 if (!disk) 4144 blk_put_queue(q); 4145 return disk; 4146 } 4147 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4148 4149 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4150 struct blk_mq_tag_set *set, struct request_queue *q, 4151 int hctx_idx, int node) 4152 { 4153 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4154 4155 /* reuse dead hctx first */ 4156 spin_lock(&q->unused_hctx_lock); 4157 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4158 if (tmp->numa_node == node) { 4159 hctx = tmp; 4160 break; 4161 } 4162 } 4163 if (hctx) 4164 list_del_init(&hctx->hctx_list); 4165 spin_unlock(&q->unused_hctx_lock); 4166 4167 if (!hctx) 4168 hctx = blk_mq_alloc_hctx(q, set, node); 4169 if (!hctx) 4170 goto fail; 4171 4172 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4173 goto free_hctx; 4174 4175 return hctx; 4176 4177 free_hctx: 4178 kobject_put(&hctx->kobj); 4179 fail: 4180 return NULL; 4181 } 4182 4183 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4184 struct request_queue *q) 4185 { 4186 struct blk_mq_hw_ctx *hctx; 4187 unsigned long i, j; 4188 4189 /* protect against switching io scheduler */ 4190 mutex_lock(&q->sysfs_lock); 4191 for (i = 0; i < set->nr_hw_queues; i++) { 4192 int old_node; 4193 int node = blk_mq_get_hctx_node(set, i); 4194 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4195 4196 if (old_hctx) { 4197 old_node = old_hctx->numa_node; 4198 blk_mq_exit_hctx(q, set, old_hctx, i); 4199 } 4200 4201 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4202 if (!old_hctx) 4203 break; 4204 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4205 node, old_node); 4206 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4207 WARN_ON_ONCE(!hctx); 4208 } 4209 } 4210 /* 4211 * Increasing nr_hw_queues fails. Free the newly allocated 4212 * hctxs and keep the previous q->nr_hw_queues. 4213 */ 4214 if (i != set->nr_hw_queues) { 4215 j = q->nr_hw_queues; 4216 } else { 4217 j = i; 4218 q->nr_hw_queues = set->nr_hw_queues; 4219 } 4220 4221 xa_for_each_start(&q->hctx_table, j, hctx, j) 4222 blk_mq_exit_hctx(q, set, hctx, j); 4223 mutex_unlock(&q->sysfs_lock); 4224 } 4225 4226 static void blk_mq_update_poll_flag(struct request_queue *q) 4227 { 4228 struct blk_mq_tag_set *set = q->tag_set; 4229 4230 if (set->nr_maps > HCTX_TYPE_POLL && 4231 set->map[HCTX_TYPE_POLL].nr_queues) 4232 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4233 else 4234 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4235 } 4236 4237 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4238 struct request_queue *q) 4239 { 4240 /* mark the queue as mq asap */ 4241 q->mq_ops = set->ops; 4242 4243 if (blk_mq_alloc_ctxs(q)) 4244 goto err_exit; 4245 4246 /* init q->mq_kobj and sw queues' kobjects */ 4247 blk_mq_sysfs_init(q); 4248 4249 INIT_LIST_HEAD(&q->unused_hctx_list); 4250 spin_lock_init(&q->unused_hctx_lock); 4251 4252 xa_init(&q->hctx_table); 4253 4254 blk_mq_realloc_hw_ctxs(set, q); 4255 if (!q->nr_hw_queues) 4256 goto err_hctxs; 4257 4258 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4259 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4260 4261 q->tag_set = set; 4262 4263 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4264 blk_mq_update_poll_flag(q); 4265 4266 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4267 INIT_LIST_HEAD(&q->flush_list); 4268 INIT_LIST_HEAD(&q->requeue_list); 4269 spin_lock_init(&q->requeue_lock); 4270 4271 q->nr_requests = set->queue_depth; 4272 4273 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4274 blk_mq_add_queue_tag_set(set, q); 4275 blk_mq_map_swqueue(q); 4276 return 0; 4277 4278 err_hctxs: 4279 blk_mq_release(q); 4280 err_exit: 4281 q->mq_ops = NULL; 4282 return -ENOMEM; 4283 } 4284 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4285 4286 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4287 void blk_mq_exit_queue(struct request_queue *q) 4288 { 4289 struct blk_mq_tag_set *set = q->tag_set; 4290 4291 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4292 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4293 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4294 blk_mq_del_queue_tag_set(q); 4295 } 4296 4297 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4298 { 4299 int i; 4300 4301 if (blk_mq_is_shared_tags(set->flags)) { 4302 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4303 BLK_MQ_NO_HCTX_IDX, 4304 set->queue_depth); 4305 if (!set->shared_tags) 4306 return -ENOMEM; 4307 } 4308 4309 for (i = 0; i < set->nr_hw_queues; i++) { 4310 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4311 goto out_unwind; 4312 cond_resched(); 4313 } 4314 4315 return 0; 4316 4317 out_unwind: 4318 while (--i >= 0) 4319 __blk_mq_free_map_and_rqs(set, i); 4320 4321 if (blk_mq_is_shared_tags(set->flags)) { 4322 blk_mq_free_map_and_rqs(set, set->shared_tags, 4323 BLK_MQ_NO_HCTX_IDX); 4324 } 4325 4326 return -ENOMEM; 4327 } 4328 4329 /* 4330 * Allocate the request maps associated with this tag_set. Note that this 4331 * may reduce the depth asked for, if memory is tight. set->queue_depth 4332 * will be updated to reflect the allocated depth. 4333 */ 4334 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4335 { 4336 unsigned int depth; 4337 int err; 4338 4339 depth = set->queue_depth; 4340 do { 4341 err = __blk_mq_alloc_rq_maps(set); 4342 if (!err) 4343 break; 4344 4345 set->queue_depth >>= 1; 4346 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4347 err = -ENOMEM; 4348 break; 4349 } 4350 } while (set->queue_depth); 4351 4352 if (!set->queue_depth || err) { 4353 pr_err("blk-mq: failed to allocate request map\n"); 4354 return -ENOMEM; 4355 } 4356 4357 if (depth != set->queue_depth) 4358 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4359 depth, set->queue_depth); 4360 4361 return 0; 4362 } 4363 4364 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4365 { 4366 /* 4367 * blk_mq_map_queues() and multiple .map_queues() implementations 4368 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4369 * number of hardware queues. 4370 */ 4371 if (set->nr_maps == 1) 4372 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4373 4374 if (set->ops->map_queues && !is_kdump_kernel()) { 4375 int i; 4376 4377 /* 4378 * transport .map_queues is usually done in the following 4379 * way: 4380 * 4381 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4382 * mask = get_cpu_mask(queue) 4383 * for_each_cpu(cpu, mask) 4384 * set->map[x].mq_map[cpu] = queue; 4385 * } 4386 * 4387 * When we need to remap, the table has to be cleared for 4388 * killing stale mapping since one CPU may not be mapped 4389 * to any hw queue. 4390 */ 4391 for (i = 0; i < set->nr_maps; i++) 4392 blk_mq_clear_mq_map(&set->map[i]); 4393 4394 set->ops->map_queues(set); 4395 } else { 4396 BUG_ON(set->nr_maps > 1); 4397 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4398 } 4399 } 4400 4401 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4402 int new_nr_hw_queues) 4403 { 4404 struct blk_mq_tags **new_tags; 4405 4406 if (set->nr_hw_queues >= new_nr_hw_queues) 4407 goto done; 4408 4409 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4410 GFP_KERNEL, set->numa_node); 4411 if (!new_tags) 4412 return -ENOMEM; 4413 4414 if (set->tags) 4415 memcpy(new_tags, set->tags, set->nr_hw_queues * 4416 sizeof(*set->tags)); 4417 kfree(set->tags); 4418 set->tags = new_tags; 4419 done: 4420 set->nr_hw_queues = new_nr_hw_queues; 4421 return 0; 4422 } 4423 4424 /* 4425 * Alloc a tag set to be associated with one or more request queues. 4426 * May fail with EINVAL for various error conditions. May adjust the 4427 * requested depth down, if it's too large. In that case, the set 4428 * value will be stored in set->queue_depth. 4429 */ 4430 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4431 { 4432 int i, ret; 4433 4434 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4435 4436 if (!set->nr_hw_queues) 4437 return -EINVAL; 4438 if (!set->queue_depth) 4439 return -EINVAL; 4440 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4441 return -EINVAL; 4442 4443 if (!set->ops->queue_rq) 4444 return -EINVAL; 4445 4446 if (!set->ops->get_budget ^ !set->ops->put_budget) 4447 return -EINVAL; 4448 4449 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4450 pr_info("blk-mq: reduced tag depth to %u\n", 4451 BLK_MQ_MAX_DEPTH); 4452 set->queue_depth = BLK_MQ_MAX_DEPTH; 4453 } 4454 4455 if (!set->nr_maps) 4456 set->nr_maps = 1; 4457 else if (set->nr_maps > HCTX_MAX_TYPES) 4458 return -EINVAL; 4459 4460 /* 4461 * If a crashdump is active, then we are potentially in a very 4462 * memory constrained environment. Limit us to 1 queue and 4463 * 64 tags to prevent using too much memory. 4464 */ 4465 if (is_kdump_kernel()) { 4466 set->nr_hw_queues = 1; 4467 set->nr_maps = 1; 4468 set->queue_depth = min(64U, set->queue_depth); 4469 } 4470 /* 4471 * There is no use for more h/w queues than cpus if we just have 4472 * a single map 4473 */ 4474 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4475 set->nr_hw_queues = nr_cpu_ids; 4476 4477 if (set->flags & BLK_MQ_F_BLOCKING) { 4478 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4479 if (!set->srcu) 4480 return -ENOMEM; 4481 ret = init_srcu_struct(set->srcu); 4482 if (ret) 4483 goto out_free_srcu; 4484 } 4485 4486 ret = -ENOMEM; 4487 set->tags = kcalloc_node(set->nr_hw_queues, 4488 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4489 set->numa_node); 4490 if (!set->tags) 4491 goto out_cleanup_srcu; 4492 4493 for (i = 0; i < set->nr_maps; i++) { 4494 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4495 sizeof(set->map[i].mq_map[0]), 4496 GFP_KERNEL, set->numa_node); 4497 if (!set->map[i].mq_map) 4498 goto out_free_mq_map; 4499 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4500 } 4501 4502 blk_mq_update_queue_map(set); 4503 4504 ret = blk_mq_alloc_set_map_and_rqs(set); 4505 if (ret) 4506 goto out_free_mq_map; 4507 4508 mutex_init(&set->tag_list_lock); 4509 INIT_LIST_HEAD(&set->tag_list); 4510 4511 return 0; 4512 4513 out_free_mq_map: 4514 for (i = 0; i < set->nr_maps; i++) { 4515 kfree(set->map[i].mq_map); 4516 set->map[i].mq_map = NULL; 4517 } 4518 kfree(set->tags); 4519 set->tags = NULL; 4520 out_cleanup_srcu: 4521 if (set->flags & BLK_MQ_F_BLOCKING) 4522 cleanup_srcu_struct(set->srcu); 4523 out_free_srcu: 4524 if (set->flags & BLK_MQ_F_BLOCKING) 4525 kfree(set->srcu); 4526 return ret; 4527 } 4528 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4529 4530 /* allocate and initialize a tagset for a simple single-queue device */ 4531 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4532 const struct blk_mq_ops *ops, unsigned int queue_depth, 4533 unsigned int set_flags) 4534 { 4535 memset(set, 0, sizeof(*set)); 4536 set->ops = ops; 4537 set->nr_hw_queues = 1; 4538 set->nr_maps = 1; 4539 set->queue_depth = queue_depth; 4540 set->numa_node = NUMA_NO_NODE; 4541 set->flags = set_flags; 4542 return blk_mq_alloc_tag_set(set); 4543 } 4544 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4545 4546 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4547 { 4548 int i, j; 4549 4550 for (i = 0; i < set->nr_hw_queues; i++) 4551 __blk_mq_free_map_and_rqs(set, i); 4552 4553 if (blk_mq_is_shared_tags(set->flags)) { 4554 blk_mq_free_map_and_rqs(set, set->shared_tags, 4555 BLK_MQ_NO_HCTX_IDX); 4556 } 4557 4558 for (j = 0; j < set->nr_maps; j++) { 4559 kfree(set->map[j].mq_map); 4560 set->map[j].mq_map = NULL; 4561 } 4562 4563 kfree(set->tags); 4564 set->tags = NULL; 4565 if (set->flags & BLK_MQ_F_BLOCKING) { 4566 cleanup_srcu_struct(set->srcu); 4567 kfree(set->srcu); 4568 } 4569 } 4570 EXPORT_SYMBOL(blk_mq_free_tag_set); 4571 4572 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4573 { 4574 struct blk_mq_tag_set *set = q->tag_set; 4575 struct blk_mq_hw_ctx *hctx; 4576 int ret; 4577 unsigned long i; 4578 4579 if (!set) 4580 return -EINVAL; 4581 4582 if (q->nr_requests == nr) 4583 return 0; 4584 4585 blk_mq_freeze_queue(q); 4586 blk_mq_quiesce_queue(q); 4587 4588 ret = 0; 4589 queue_for_each_hw_ctx(q, hctx, i) { 4590 if (!hctx->tags) 4591 continue; 4592 /* 4593 * If we're using an MQ scheduler, just update the scheduler 4594 * queue depth. This is similar to what the old code would do. 4595 */ 4596 if (hctx->sched_tags) { 4597 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4598 nr, true); 4599 } else { 4600 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4601 false); 4602 } 4603 if (ret) 4604 break; 4605 if (q->elevator && q->elevator->type->ops.depth_updated) 4606 q->elevator->type->ops.depth_updated(hctx); 4607 } 4608 if (!ret) { 4609 q->nr_requests = nr; 4610 if (blk_mq_is_shared_tags(set->flags)) { 4611 if (q->elevator) 4612 blk_mq_tag_update_sched_shared_tags(q); 4613 else 4614 blk_mq_tag_resize_shared_tags(set, nr); 4615 } 4616 } 4617 4618 blk_mq_unquiesce_queue(q); 4619 blk_mq_unfreeze_queue(q); 4620 4621 return ret; 4622 } 4623 4624 /* 4625 * request_queue and elevator_type pair. 4626 * It is just used by __blk_mq_update_nr_hw_queues to cache 4627 * the elevator_type associated with a request_queue. 4628 */ 4629 struct blk_mq_qe_pair { 4630 struct list_head node; 4631 struct request_queue *q; 4632 struct elevator_type *type; 4633 }; 4634 4635 /* 4636 * Cache the elevator_type in qe pair list and switch the 4637 * io scheduler to 'none' 4638 */ 4639 static bool blk_mq_elv_switch_none(struct list_head *head, 4640 struct request_queue *q) 4641 { 4642 struct blk_mq_qe_pair *qe; 4643 4644 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4645 if (!qe) 4646 return false; 4647 4648 /* q->elevator needs protection from ->sysfs_lock */ 4649 mutex_lock(&q->sysfs_lock); 4650 4651 /* the check has to be done with holding sysfs_lock */ 4652 if (!q->elevator) { 4653 kfree(qe); 4654 goto unlock; 4655 } 4656 4657 INIT_LIST_HEAD(&qe->node); 4658 qe->q = q; 4659 qe->type = q->elevator->type; 4660 /* keep a reference to the elevator module as we'll switch back */ 4661 __elevator_get(qe->type); 4662 list_add(&qe->node, head); 4663 elevator_disable(q); 4664 unlock: 4665 mutex_unlock(&q->sysfs_lock); 4666 4667 return true; 4668 } 4669 4670 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4671 struct request_queue *q) 4672 { 4673 struct blk_mq_qe_pair *qe; 4674 4675 list_for_each_entry(qe, head, node) 4676 if (qe->q == q) 4677 return qe; 4678 4679 return NULL; 4680 } 4681 4682 static void blk_mq_elv_switch_back(struct list_head *head, 4683 struct request_queue *q) 4684 { 4685 struct blk_mq_qe_pair *qe; 4686 struct elevator_type *t; 4687 4688 qe = blk_lookup_qe_pair(head, q); 4689 if (!qe) 4690 return; 4691 t = qe->type; 4692 list_del(&qe->node); 4693 kfree(qe); 4694 4695 mutex_lock(&q->sysfs_lock); 4696 elevator_switch(q, t); 4697 /* drop the reference acquired in blk_mq_elv_switch_none */ 4698 elevator_put(t); 4699 mutex_unlock(&q->sysfs_lock); 4700 } 4701 4702 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4703 int nr_hw_queues) 4704 { 4705 struct request_queue *q; 4706 LIST_HEAD(head); 4707 int prev_nr_hw_queues; 4708 4709 lockdep_assert_held(&set->tag_list_lock); 4710 4711 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4712 nr_hw_queues = nr_cpu_ids; 4713 if (nr_hw_queues < 1) 4714 return; 4715 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4716 return; 4717 4718 list_for_each_entry(q, &set->tag_list, tag_set_list) 4719 blk_mq_freeze_queue(q); 4720 /* 4721 * Switch IO scheduler to 'none', cleaning up the data associated 4722 * with the previous scheduler. We will switch back once we are done 4723 * updating the new sw to hw queue mappings. 4724 */ 4725 list_for_each_entry(q, &set->tag_list, tag_set_list) 4726 if (!blk_mq_elv_switch_none(&head, q)) 4727 goto switch_back; 4728 4729 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4730 blk_mq_debugfs_unregister_hctxs(q); 4731 blk_mq_sysfs_unregister_hctxs(q); 4732 } 4733 4734 prev_nr_hw_queues = set->nr_hw_queues; 4735 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4736 goto reregister; 4737 4738 fallback: 4739 blk_mq_update_queue_map(set); 4740 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4741 blk_mq_realloc_hw_ctxs(set, q); 4742 blk_mq_update_poll_flag(q); 4743 if (q->nr_hw_queues != set->nr_hw_queues) { 4744 int i = prev_nr_hw_queues; 4745 4746 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4747 nr_hw_queues, prev_nr_hw_queues); 4748 for (; i < set->nr_hw_queues; i++) 4749 __blk_mq_free_map_and_rqs(set, i); 4750 4751 set->nr_hw_queues = prev_nr_hw_queues; 4752 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4753 goto fallback; 4754 } 4755 blk_mq_map_swqueue(q); 4756 } 4757 4758 reregister: 4759 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4760 blk_mq_sysfs_register_hctxs(q); 4761 blk_mq_debugfs_register_hctxs(q); 4762 } 4763 4764 switch_back: 4765 list_for_each_entry(q, &set->tag_list, tag_set_list) 4766 blk_mq_elv_switch_back(&head, q); 4767 4768 list_for_each_entry(q, &set->tag_list, tag_set_list) 4769 blk_mq_unfreeze_queue(q); 4770 } 4771 4772 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4773 { 4774 mutex_lock(&set->tag_list_lock); 4775 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4776 mutex_unlock(&set->tag_list_lock); 4777 } 4778 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4779 4780 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4781 struct io_comp_batch *iob, unsigned int flags) 4782 { 4783 long state = get_current_state(); 4784 int ret; 4785 4786 do { 4787 ret = q->mq_ops->poll(hctx, iob); 4788 if (ret > 0) { 4789 __set_current_state(TASK_RUNNING); 4790 return ret; 4791 } 4792 4793 if (signal_pending_state(state, current)) 4794 __set_current_state(TASK_RUNNING); 4795 if (task_is_running(current)) 4796 return 1; 4797 4798 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4799 break; 4800 cpu_relax(); 4801 } while (!need_resched()); 4802 4803 __set_current_state(TASK_RUNNING); 4804 return 0; 4805 } 4806 4807 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4808 struct io_comp_batch *iob, unsigned int flags) 4809 { 4810 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4811 4812 return blk_hctx_poll(q, hctx, iob, flags); 4813 } 4814 4815 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4816 unsigned int poll_flags) 4817 { 4818 struct request_queue *q = rq->q; 4819 int ret; 4820 4821 if (!blk_rq_is_poll(rq)) 4822 return 0; 4823 if (!percpu_ref_tryget(&q->q_usage_counter)) 4824 return 0; 4825 4826 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4827 blk_queue_exit(q); 4828 4829 return ret; 4830 } 4831 EXPORT_SYMBOL_GPL(blk_rq_poll); 4832 4833 unsigned int blk_mq_rq_cpu(struct request *rq) 4834 { 4835 return rq->mq_ctx->cpu; 4836 } 4837 EXPORT_SYMBOL(blk_mq_rq_cpu); 4838 4839 void blk_mq_cancel_work_sync(struct request_queue *q) 4840 { 4841 struct blk_mq_hw_ctx *hctx; 4842 unsigned long i; 4843 4844 cancel_delayed_work_sync(&q->requeue_work); 4845 4846 queue_for_each_hw_ctx(q, hctx, i) 4847 cancel_delayed_work_sync(&hctx->run_work); 4848 } 4849 4850 static int __init blk_mq_init(void) 4851 { 4852 int i; 4853 4854 for_each_possible_cpu(i) 4855 init_llist_head(&per_cpu(blk_cpu_done, i)); 4856 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4857 4858 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4859 "block/softirq:dead", NULL, 4860 blk_softirq_cpu_dead); 4861 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4862 blk_mq_hctx_notify_dead); 4863 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4864 blk_mq_hctx_notify_online, 4865 blk_mq_hctx_notify_offline); 4866 return 0; 4867 } 4868 subsys_initcall(blk_mq_init); 4869