xref: /openbmc/linux/block/blk-mq.c (revision 62a9bbf2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266 	if (set->flags & BLK_MQ_F_BLOCKING)
267 		synchronize_srcu(set->srcu);
268 	else
269 		synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272 
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284 	blk_mq_quiesce_queue_nowait(q);
285 	/* nothing to wait for non-mq queues */
286 	if (queue_is_mq(q))
287 		blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290 
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300 	unsigned long flags;
301 	bool run_queue = false;
302 
303 	spin_lock_irqsave(&q->queue_lock, flags);
304 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305 		;
306 	} else if (!--q->quiesce_depth) {
307 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308 		run_queue = true;
309 	}
310 	spin_unlock_irqrestore(&q->queue_lock, flags);
311 
312 	/* dispatch requests which are inserted during quiescing */
313 	if (run_queue)
314 		blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317 
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320 	struct request_queue *q;
321 
322 	mutex_lock(&set->tag_list_lock);
323 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
324 		if (!blk_queue_skip_tagset_quiesce(q))
325 			blk_mq_quiesce_queue_nowait(q);
326 	}
327 	blk_mq_wait_quiesce_done(set);
328 	mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331 
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334 	struct request_queue *q;
335 
336 	mutex_lock(&set->tag_list_lock);
337 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
338 		if (!blk_queue_skip_tagset_quiesce(q))
339 			blk_mq_unquiesce_queue(q);
340 	}
341 	mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344 
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347 	struct blk_mq_hw_ctx *hctx;
348 	unsigned long i;
349 
350 	queue_for_each_hw_ctx(q, hctx, i)
351 		if (blk_mq_hw_queue_mapped(hctx))
352 			blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354 
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357 	memset(rq, 0, sizeof(*rq));
358 
359 	INIT_LIST_HEAD(&rq->queuelist);
360 	rq->q = q;
361 	rq->__sector = (sector_t) -1;
362 	INIT_HLIST_NODE(&rq->hash);
363 	RB_CLEAR_NODE(&rq->rb_node);
364 	rq->tag = BLK_MQ_NO_TAG;
365 	rq->internal_tag = BLK_MQ_NO_TAG;
366 	rq->start_time_ns = ktime_get_ns();
367 	rq->part = NULL;
368 	blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371 
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375 	struct blk_mq_ctx *ctx = data->ctx;
376 	struct blk_mq_hw_ctx *hctx = data->hctx;
377 	struct request_queue *q = data->q;
378 	struct request *rq = tags->static_rqs[tag];
379 
380 	rq->q = q;
381 	rq->mq_ctx = ctx;
382 	rq->mq_hctx = hctx;
383 	rq->cmd_flags = data->cmd_flags;
384 
385 	if (data->flags & BLK_MQ_REQ_PM)
386 		data->rq_flags |= RQF_PM;
387 	if (blk_queue_io_stat(q))
388 		data->rq_flags |= RQF_IO_STAT;
389 	rq->rq_flags = data->rq_flags;
390 
391 	if (!(data->rq_flags & RQF_ELV)) {
392 		rq->tag = tag;
393 		rq->internal_tag = BLK_MQ_NO_TAG;
394 	} else {
395 		rq->tag = BLK_MQ_NO_TAG;
396 		rq->internal_tag = tag;
397 	}
398 	rq->timeout = 0;
399 
400 	if (blk_mq_need_time_stamp(rq))
401 		rq->start_time_ns = ktime_get_ns();
402 	else
403 		rq->start_time_ns = 0;
404 	rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406 	rq->alloc_time_ns = alloc_time_ns;
407 #endif
408 	rq->io_start_time_ns = 0;
409 	rq->stats_sectors = 0;
410 	rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412 	rq->nr_integrity_segments = 0;
413 #endif
414 	rq->end_io = NULL;
415 	rq->end_io_data = NULL;
416 
417 	blk_crypto_rq_set_defaults(rq);
418 	INIT_LIST_HEAD(&rq->queuelist);
419 	/* tag was already set */
420 	WRITE_ONCE(rq->deadline, 0);
421 	req_ref_set(rq, 1);
422 
423 	if (rq->rq_flags & RQF_ELV) {
424 		struct elevator_queue *e = data->q->elevator;
425 
426 		INIT_HLIST_NODE(&rq->hash);
427 		RB_CLEAR_NODE(&rq->rb_node);
428 
429 		if (!op_is_flush(data->cmd_flags) &&
430 		    e->type->ops.prepare_request) {
431 			e->type->ops.prepare_request(rq);
432 			rq->rq_flags |= RQF_ELVPRIV;
433 		}
434 	}
435 
436 	return rq;
437 }
438 
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441 		u64 alloc_time_ns)
442 {
443 	unsigned int tag, tag_offset;
444 	struct blk_mq_tags *tags;
445 	struct request *rq;
446 	unsigned long tag_mask;
447 	int i, nr = 0;
448 
449 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450 	if (unlikely(!tag_mask))
451 		return NULL;
452 
453 	tags = blk_mq_tags_from_data(data);
454 	for (i = 0; tag_mask; i++) {
455 		if (!(tag_mask & (1UL << i)))
456 			continue;
457 		tag = tag_offset + i;
458 		prefetch(tags->static_rqs[tag]);
459 		tag_mask &= ~(1UL << i);
460 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461 		rq_list_add(data->cached_rq, rq);
462 		nr++;
463 	}
464 	/* caller already holds a reference, add for remainder */
465 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466 	data->nr_tags -= nr;
467 
468 	return rq_list_pop(data->cached_rq);
469 }
470 
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473 	struct request_queue *q = data->q;
474 	u64 alloc_time_ns = 0;
475 	struct request *rq;
476 	unsigned int tag;
477 
478 	/* alloc_time includes depth and tag waits */
479 	if (blk_queue_rq_alloc_time(q))
480 		alloc_time_ns = ktime_get_ns();
481 
482 	if (data->cmd_flags & REQ_NOWAIT)
483 		data->flags |= BLK_MQ_REQ_NOWAIT;
484 
485 	if (q->elevator) {
486 		struct elevator_queue *e = q->elevator;
487 
488 		data->rq_flags |= RQF_ELV;
489 
490 		/*
491 		 * Flush/passthrough requests are special and go directly to the
492 		 * dispatch list. Don't include reserved tags in the
493 		 * limiting, as it isn't useful.
494 		 */
495 		if (!op_is_flush(data->cmd_flags) &&
496 		    !blk_op_is_passthrough(data->cmd_flags) &&
497 		    e->type->ops.limit_depth &&
498 		    !(data->flags & BLK_MQ_REQ_RESERVED))
499 			e->type->ops.limit_depth(data->cmd_flags, data);
500 	}
501 
502 retry:
503 	data->ctx = blk_mq_get_ctx(q);
504 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505 	if (!(data->rq_flags & RQF_ELV))
506 		blk_mq_tag_busy(data->hctx);
507 
508 	if (data->flags & BLK_MQ_REQ_RESERVED)
509 		data->rq_flags |= RQF_RESV;
510 
511 	/*
512 	 * Try batched alloc if we want more than 1 tag.
513 	 */
514 	if (data->nr_tags > 1) {
515 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516 		if (rq)
517 			return rq;
518 		data->nr_tags = 1;
519 	}
520 
521 	/*
522 	 * Waiting allocations only fail because of an inactive hctx.  In that
523 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
524 	 * should have migrated us to an online CPU by now.
525 	 */
526 	tag = blk_mq_get_tag(data);
527 	if (tag == BLK_MQ_NO_TAG) {
528 		if (data->flags & BLK_MQ_REQ_NOWAIT)
529 			return NULL;
530 		/*
531 		 * Give up the CPU and sleep for a random short time to
532 		 * ensure that thread using a realtime scheduling class
533 		 * are migrated off the CPU, and thus off the hctx that
534 		 * is going away.
535 		 */
536 		msleep(3);
537 		goto retry;
538 	}
539 
540 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541 					alloc_time_ns);
542 }
543 
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545 					    struct blk_plug *plug,
546 					    blk_opf_t opf,
547 					    blk_mq_req_flags_t flags)
548 {
549 	struct blk_mq_alloc_data data = {
550 		.q		= q,
551 		.flags		= flags,
552 		.cmd_flags	= opf,
553 		.nr_tags	= plug->nr_ios,
554 		.cached_rq	= &plug->cached_rq,
555 	};
556 	struct request *rq;
557 
558 	if (blk_queue_enter(q, flags))
559 		return NULL;
560 
561 	plug->nr_ios = 1;
562 
563 	rq = __blk_mq_alloc_requests(&data);
564 	if (unlikely(!rq))
565 		blk_queue_exit(q);
566 	return rq;
567 }
568 
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570 						   blk_opf_t opf,
571 						   blk_mq_req_flags_t flags)
572 {
573 	struct blk_plug *plug = current->plug;
574 	struct request *rq;
575 
576 	if (!plug)
577 		return NULL;
578 
579 	if (rq_list_empty(plug->cached_rq)) {
580 		if (plug->nr_ios == 1)
581 			return NULL;
582 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583 		if (!rq)
584 			return NULL;
585 	} else {
586 		rq = rq_list_peek(&plug->cached_rq);
587 		if (!rq || rq->q != q)
588 			return NULL;
589 
590 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591 			return NULL;
592 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593 			return NULL;
594 
595 		plug->cached_rq = rq_list_next(rq);
596 	}
597 
598 	rq->cmd_flags = opf;
599 	INIT_LIST_HEAD(&rq->queuelist);
600 	return rq;
601 }
602 
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604 		blk_mq_req_flags_t flags)
605 {
606 	struct request *rq;
607 
608 	rq = blk_mq_alloc_cached_request(q, opf, flags);
609 	if (!rq) {
610 		struct blk_mq_alloc_data data = {
611 			.q		= q,
612 			.flags		= flags,
613 			.cmd_flags	= opf,
614 			.nr_tags	= 1,
615 		};
616 		int ret;
617 
618 		ret = blk_queue_enter(q, flags);
619 		if (ret)
620 			return ERR_PTR(ret);
621 
622 		rq = __blk_mq_alloc_requests(&data);
623 		if (!rq)
624 			goto out_queue_exit;
625 	}
626 	rq->__data_len = 0;
627 	rq->__sector = (sector_t) -1;
628 	rq->bio = rq->biotail = NULL;
629 	return rq;
630 out_queue_exit:
631 	blk_queue_exit(q);
632 	return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635 
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639 	struct blk_mq_alloc_data data = {
640 		.q		= q,
641 		.flags		= flags,
642 		.cmd_flags	= opf,
643 		.nr_tags	= 1,
644 	};
645 	u64 alloc_time_ns = 0;
646 	struct request *rq;
647 	unsigned int cpu;
648 	unsigned int tag;
649 	int ret;
650 
651 	/* alloc_time includes depth and tag waits */
652 	if (blk_queue_rq_alloc_time(q))
653 		alloc_time_ns = ktime_get_ns();
654 
655 	/*
656 	 * If the tag allocator sleeps we could get an allocation for a
657 	 * different hardware context.  No need to complicate the low level
658 	 * allocator for this for the rare use case of a command tied to
659 	 * a specific queue.
660 	 */
661 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
662 		return ERR_PTR(-EINVAL);
663 
664 	if (hctx_idx >= q->nr_hw_queues)
665 		return ERR_PTR(-EIO);
666 
667 	ret = blk_queue_enter(q, flags);
668 	if (ret)
669 		return ERR_PTR(ret);
670 
671 	/*
672 	 * Check if the hardware context is actually mapped to anything.
673 	 * If not tell the caller that it should skip this queue.
674 	 */
675 	ret = -EXDEV;
676 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
677 	if (!blk_mq_hw_queue_mapped(data.hctx))
678 		goto out_queue_exit;
679 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
680 	if (cpu >= nr_cpu_ids)
681 		goto out_queue_exit;
682 	data.ctx = __blk_mq_get_ctx(q, cpu);
683 
684 	if (!q->elevator)
685 		blk_mq_tag_busy(data.hctx);
686 	else
687 		data.rq_flags |= RQF_ELV;
688 
689 	if (flags & BLK_MQ_REQ_RESERVED)
690 		data.rq_flags |= RQF_RESV;
691 
692 	ret = -EWOULDBLOCK;
693 	tag = blk_mq_get_tag(&data);
694 	if (tag == BLK_MQ_NO_TAG)
695 		goto out_queue_exit;
696 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
697 					alloc_time_ns);
698 	rq->__data_len = 0;
699 	rq->__sector = (sector_t) -1;
700 	rq->bio = rq->biotail = NULL;
701 	return rq;
702 
703 out_queue_exit:
704 	blk_queue_exit(q);
705 	return ERR_PTR(ret);
706 }
707 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
708 
709 static void __blk_mq_free_request(struct request *rq)
710 {
711 	struct request_queue *q = rq->q;
712 	struct blk_mq_ctx *ctx = rq->mq_ctx;
713 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
714 	const int sched_tag = rq->internal_tag;
715 
716 	blk_crypto_free_request(rq);
717 	blk_pm_mark_last_busy(rq);
718 	rq->mq_hctx = NULL;
719 	if (rq->tag != BLK_MQ_NO_TAG)
720 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
721 	if (sched_tag != BLK_MQ_NO_TAG)
722 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723 	blk_mq_sched_restart(hctx);
724 	blk_queue_exit(q);
725 }
726 
727 void blk_mq_free_request(struct request *rq)
728 {
729 	struct request_queue *q = rq->q;
730 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
731 
732 	if ((rq->rq_flags & RQF_ELVPRIV) &&
733 	    q->elevator->type->ops.finish_request)
734 		q->elevator->type->ops.finish_request(rq);
735 
736 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
737 		__blk_mq_dec_active_requests(hctx);
738 
739 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
740 		laptop_io_completion(q->disk->bdi);
741 
742 	rq_qos_done(q, rq);
743 
744 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
745 	if (req_ref_put_and_test(rq))
746 		__blk_mq_free_request(rq);
747 }
748 EXPORT_SYMBOL_GPL(blk_mq_free_request);
749 
750 void blk_mq_free_plug_rqs(struct blk_plug *plug)
751 {
752 	struct request *rq;
753 
754 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
755 		blk_mq_free_request(rq);
756 }
757 
758 void blk_dump_rq_flags(struct request *rq, char *msg)
759 {
760 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
761 		rq->q->disk ? rq->q->disk->disk_name : "?",
762 		(__force unsigned long long) rq->cmd_flags);
763 
764 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
765 	       (unsigned long long)blk_rq_pos(rq),
766 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
767 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
768 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
769 }
770 EXPORT_SYMBOL(blk_dump_rq_flags);
771 
772 static void req_bio_endio(struct request *rq, struct bio *bio,
773 			  unsigned int nbytes, blk_status_t error)
774 {
775 	if (unlikely(error)) {
776 		bio->bi_status = error;
777 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
778 		/*
779 		 * Partial zone append completions cannot be supported as the
780 		 * BIO fragments may end up not being written sequentially.
781 		 */
782 		if (bio->bi_iter.bi_size != nbytes)
783 			bio->bi_status = BLK_STS_IOERR;
784 		else
785 			bio->bi_iter.bi_sector = rq->__sector;
786 	}
787 
788 	bio_advance(bio, nbytes);
789 
790 	if (unlikely(rq->rq_flags & RQF_QUIET))
791 		bio_set_flag(bio, BIO_QUIET);
792 	/* don't actually finish bio if it's part of flush sequence */
793 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
794 		bio_endio(bio);
795 }
796 
797 static void blk_account_io_completion(struct request *req, unsigned int bytes)
798 {
799 	if (req->part && blk_do_io_stat(req)) {
800 		const int sgrp = op_stat_group(req_op(req));
801 
802 		part_stat_lock();
803 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
804 		part_stat_unlock();
805 	}
806 }
807 
808 static void blk_print_req_error(struct request *req, blk_status_t status)
809 {
810 	printk_ratelimited(KERN_ERR
811 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
812 		"phys_seg %u prio class %u\n",
813 		blk_status_to_str(status),
814 		req->q->disk ? req->q->disk->disk_name : "?",
815 		blk_rq_pos(req), (__force u32)req_op(req),
816 		blk_op_str(req_op(req)),
817 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
818 		req->nr_phys_segments,
819 		IOPRIO_PRIO_CLASS(req->ioprio));
820 }
821 
822 /*
823  * Fully end IO on a request. Does not support partial completions, or
824  * errors.
825  */
826 static void blk_complete_request(struct request *req)
827 {
828 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
829 	int total_bytes = blk_rq_bytes(req);
830 	struct bio *bio = req->bio;
831 
832 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
833 
834 	if (!bio)
835 		return;
836 
837 #ifdef CONFIG_BLK_DEV_INTEGRITY
838 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
839 		req->q->integrity.profile->complete_fn(req, total_bytes);
840 #endif
841 
842 	blk_account_io_completion(req, total_bytes);
843 
844 	do {
845 		struct bio *next = bio->bi_next;
846 
847 		/* Completion has already been traced */
848 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849 
850 		if (req_op(req) == REQ_OP_ZONE_APPEND)
851 			bio->bi_iter.bi_sector = req->__sector;
852 
853 		if (!is_flush)
854 			bio_endio(bio);
855 		bio = next;
856 	} while (bio);
857 
858 	/*
859 	 * Reset counters so that the request stacking driver
860 	 * can find how many bytes remain in the request
861 	 * later.
862 	 */
863 	if (!req->end_io) {
864 		req->bio = NULL;
865 		req->__data_len = 0;
866 	}
867 }
868 
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892 		unsigned int nr_bytes)
893 {
894 	int total_bytes;
895 
896 	trace_block_rq_complete(req, error, nr_bytes);
897 
898 	if (!req->bio)
899 		return false;
900 
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903 	    error == BLK_STS_OK)
904 		req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906 
907 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
908 		     !(req->rq_flags & RQF_QUIET)) &&
909 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
910 		blk_print_req_error(req, error);
911 		trace_block_rq_error(req, error, nr_bytes);
912 	}
913 
914 	blk_account_io_completion(req, nr_bytes);
915 
916 	total_bytes = 0;
917 	while (req->bio) {
918 		struct bio *bio = req->bio;
919 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
920 
921 		if (bio_bytes == bio->bi_iter.bi_size)
922 			req->bio = bio->bi_next;
923 
924 		/* Completion has already been traced */
925 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
926 		req_bio_endio(req, bio, bio_bytes, error);
927 
928 		total_bytes += bio_bytes;
929 		nr_bytes -= bio_bytes;
930 
931 		if (!nr_bytes)
932 			break;
933 	}
934 
935 	/*
936 	 * completely done
937 	 */
938 	if (!req->bio) {
939 		/*
940 		 * Reset counters so that the request stacking driver
941 		 * can find how many bytes remain in the request
942 		 * later.
943 		 */
944 		req->__data_len = 0;
945 		return false;
946 	}
947 
948 	req->__data_len -= total_bytes;
949 
950 	/* update sector only for requests with clear definition of sector */
951 	if (!blk_rq_is_passthrough(req))
952 		req->__sector += total_bytes >> 9;
953 
954 	/* mixed attributes always follow the first bio */
955 	if (req->rq_flags & RQF_MIXED_MERGE) {
956 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
957 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
958 	}
959 
960 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
961 		/*
962 		 * If total number of sectors is less than the first segment
963 		 * size, something has gone terribly wrong.
964 		 */
965 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
966 			blk_dump_rq_flags(req, "request botched");
967 			req->__data_len = blk_rq_cur_bytes(req);
968 		}
969 
970 		/* recalculate the number of segments */
971 		req->nr_phys_segments = blk_recalc_rq_segments(req);
972 	}
973 
974 	return true;
975 }
976 EXPORT_SYMBOL_GPL(blk_update_request);
977 
978 static void __blk_account_io_done(struct request *req, u64 now)
979 {
980 	const int sgrp = op_stat_group(req_op(req));
981 
982 	part_stat_lock();
983 	update_io_ticks(req->part, jiffies, true);
984 	part_stat_inc(req->part, ios[sgrp]);
985 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
986 	part_stat_unlock();
987 }
988 
989 static inline void blk_account_io_done(struct request *req, u64 now)
990 {
991 	/*
992 	 * Account IO completion.  flush_rq isn't accounted as a
993 	 * normal IO on queueing nor completion.  Accounting the
994 	 * containing request is enough.
995 	 */
996 	if (blk_do_io_stat(req) && req->part &&
997 	    !(req->rq_flags & RQF_FLUSH_SEQ))
998 		__blk_account_io_done(req, now);
999 }
1000 
1001 static void __blk_account_io_start(struct request *rq)
1002 {
1003 	/*
1004 	 * All non-passthrough requests are created from a bio with one
1005 	 * exception: when a flush command that is part of a flush sequence
1006 	 * generated by the state machine in blk-flush.c is cloned onto the
1007 	 * lower device by dm-multipath we can get here without a bio.
1008 	 */
1009 	if (rq->bio)
1010 		rq->part = rq->bio->bi_bdev;
1011 	else
1012 		rq->part = rq->q->disk->part0;
1013 
1014 	part_stat_lock();
1015 	update_io_ticks(rq->part, jiffies, false);
1016 	part_stat_unlock();
1017 }
1018 
1019 static inline void blk_account_io_start(struct request *req)
1020 {
1021 	if (blk_do_io_stat(req))
1022 		__blk_account_io_start(req);
1023 }
1024 
1025 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1026 {
1027 	if (rq->rq_flags & RQF_STATS) {
1028 		blk_mq_poll_stats_start(rq->q);
1029 		blk_stat_add(rq, now);
1030 	}
1031 
1032 	blk_mq_sched_completed_request(rq, now);
1033 	blk_account_io_done(rq, now);
1034 }
1035 
1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037 {
1038 	if (blk_mq_need_time_stamp(rq))
1039 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1040 
1041 	if (rq->end_io) {
1042 		rq_qos_done(rq->q, rq);
1043 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044 			blk_mq_free_request(rq);
1045 	} else {
1046 		blk_mq_free_request(rq);
1047 	}
1048 }
1049 EXPORT_SYMBOL(__blk_mq_end_request);
1050 
1051 void blk_mq_end_request(struct request *rq, blk_status_t error)
1052 {
1053 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1054 		BUG();
1055 	__blk_mq_end_request(rq, error);
1056 }
1057 EXPORT_SYMBOL(blk_mq_end_request);
1058 
1059 #define TAG_COMP_BATCH		32
1060 
1061 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062 					  int *tag_array, int nr_tags)
1063 {
1064 	struct request_queue *q = hctx->queue;
1065 
1066 	/*
1067 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1068 	 * update hctx->nr_active in batch
1069 	 */
1070 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1071 		__blk_mq_sub_active_requests(hctx, nr_tags);
1072 
1073 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1074 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1075 }
1076 
1077 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1078 {
1079 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1080 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1081 	struct request *rq;
1082 	u64 now = 0;
1083 
1084 	if (iob->need_ts)
1085 		now = ktime_get_ns();
1086 
1087 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1088 		prefetch(rq->bio);
1089 		prefetch(rq->rq_next);
1090 
1091 		blk_complete_request(rq);
1092 		if (iob->need_ts)
1093 			__blk_mq_end_request_acct(rq, now);
1094 
1095 		rq_qos_done(rq->q, rq);
1096 
1097 		/*
1098 		 * If end_io handler returns NONE, then it still has
1099 		 * ownership of the request.
1100 		 */
1101 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102 			continue;
1103 
1104 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105 		if (!req_ref_put_and_test(rq))
1106 			continue;
1107 
1108 		blk_crypto_free_request(rq);
1109 		blk_pm_mark_last_busy(rq);
1110 
1111 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112 			if (cur_hctx)
1113 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114 			nr_tags = 0;
1115 			cur_hctx = rq->mq_hctx;
1116 		}
1117 		tags[nr_tags++] = rq->tag;
1118 	}
1119 
1120 	if (nr_tags)
1121 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124 
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128 	struct request *rq, *next;
1129 
1130 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131 		rq->q->mq_ops->complete(rq);
1132 }
1133 
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138 
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142 	return 0;
1143 }
1144 
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149 
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152 	int cpu = raw_smp_processor_id();
1153 
1154 	if (!IS_ENABLED(CONFIG_SMP) ||
1155 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156 		return false;
1157 	/*
1158 	 * With force threaded interrupts enabled, raising softirq from an SMP
1159 	 * function call will always result in waking the ksoftirqd thread.
1160 	 * This is probably worse than completing the request on a different
1161 	 * cache domain.
1162 	 */
1163 	if (force_irqthreads())
1164 		return false;
1165 
1166 	/* same CPU or cache domain?  Complete locally */
1167 	if (cpu == rq->mq_ctx->cpu ||
1168 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170 		return false;
1171 
1172 	/* don't try to IPI to an offline CPU */
1173 	return cpu_online(rq->mq_ctx->cpu);
1174 }
1175 
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178 	struct llist_head *list;
1179 	unsigned int cpu;
1180 
1181 	cpu = rq->mq_ctx->cpu;
1182 	list = &per_cpu(blk_cpu_done, cpu);
1183 	if (llist_add(&rq->ipi_list, list)) {
1184 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1185 		smp_call_function_single_async(cpu, &rq->csd);
1186 	}
1187 }
1188 
1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191 	struct llist_head *list;
1192 
1193 	preempt_disable();
1194 	list = this_cpu_ptr(&blk_cpu_done);
1195 	if (llist_add(&rq->ipi_list, list))
1196 		raise_softirq(BLOCK_SOFTIRQ);
1197 	preempt_enable();
1198 }
1199 
1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203 
1204 	/*
1205 	 * For request which hctx has only one ctx mapping,
1206 	 * or a polled request, always complete locally,
1207 	 * it's pointless to redirect the completion.
1208 	 */
1209 	if (rq->mq_hctx->nr_ctx == 1 ||
1210 		rq->cmd_flags & REQ_POLLED)
1211 		return false;
1212 
1213 	if (blk_mq_complete_need_ipi(rq)) {
1214 		blk_mq_complete_send_ipi(rq);
1215 		return true;
1216 	}
1217 
1218 	if (rq->q->nr_hw_queues == 1) {
1219 		blk_mq_raise_softirq(rq);
1220 		return true;
1221 	}
1222 	return false;
1223 }
1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225 
1226 /**
1227  * blk_mq_complete_request - end I/O on a request
1228  * @rq:		the request being processed
1229  *
1230  * Description:
1231  *	Complete a request by scheduling the ->complete_rq operation.
1232  **/
1233 void blk_mq_complete_request(struct request *rq)
1234 {
1235 	if (!blk_mq_complete_request_remote(rq))
1236 		rq->q->mq_ops->complete(rq);
1237 }
1238 EXPORT_SYMBOL(blk_mq_complete_request);
1239 
1240 /**
1241  * blk_mq_start_request - Start processing a request
1242  * @rq: Pointer to request to be started
1243  *
1244  * Function used by device drivers to notify the block layer that a request
1245  * is going to be processed now, so blk layer can do proper initializations
1246  * such as starting the timeout timer.
1247  */
1248 void blk_mq_start_request(struct request *rq)
1249 {
1250 	struct request_queue *q = rq->q;
1251 
1252 	trace_block_rq_issue(rq);
1253 
1254 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255 		rq->io_start_time_ns = ktime_get_ns();
1256 		rq->stats_sectors = blk_rq_sectors(rq);
1257 		rq->rq_flags |= RQF_STATS;
1258 		rq_qos_issue(q, rq);
1259 	}
1260 
1261 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262 
1263 	blk_add_timer(rq);
1264 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265 
1266 #ifdef CONFIG_BLK_DEV_INTEGRITY
1267 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268 		q->integrity.profile->prepare_fn(rq);
1269 #endif
1270 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1272 }
1273 EXPORT_SYMBOL(blk_mq_start_request);
1274 
1275 /*
1276  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277  * queues. This is important for md arrays to benefit from merging
1278  * requests.
1279  */
1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281 {
1282 	if (plug->multiple_queues)
1283 		return BLK_MAX_REQUEST_COUNT * 2;
1284 	return BLK_MAX_REQUEST_COUNT;
1285 }
1286 
1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288 {
1289 	struct request *last = rq_list_peek(&plug->mq_list);
1290 
1291 	if (!plug->rq_count) {
1292 		trace_block_plug(rq->q);
1293 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294 		   (!blk_queue_nomerges(rq->q) &&
1295 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296 		blk_mq_flush_plug_list(plug, false);
1297 		last = NULL;
1298 		trace_block_plug(rq->q);
1299 	}
1300 
1301 	if (!plug->multiple_queues && last && last->q != rq->q)
1302 		plug->multiple_queues = true;
1303 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1304 		plug->has_elevator = true;
1305 	rq->rq_next = NULL;
1306 	rq_list_add(&plug->mq_list, rq);
1307 	plug->rq_count++;
1308 }
1309 
1310 /**
1311  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312  * @rq:		request to insert
1313  * @at_head:    insert request at head or tail of queue
1314  *
1315  * Description:
1316  *    Insert a fully prepared request at the back of the I/O scheduler queue
1317  *    for execution.  Don't wait for completion.
1318  *
1319  * Note:
1320  *    This function will invoke @done directly if the queue is dead.
1321  */
1322 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1323 {
1324 	WARN_ON(irqs_disabled());
1325 	WARN_ON(!blk_rq_is_passthrough(rq));
1326 
1327 	blk_account_io_start(rq);
1328 
1329 	/*
1330 	 * As plugging can be enabled for passthrough requests on a zoned
1331 	 * device, directly accessing the plug instead of using blk_mq_plug()
1332 	 * should not have any consequences.
1333 	 */
1334 	if (current->plug)
1335 		blk_add_rq_to_plug(current->plug, rq);
1336 	else
1337 		blk_mq_sched_insert_request(rq, at_head, true, false);
1338 }
1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340 
1341 struct blk_rq_wait {
1342 	struct completion done;
1343 	blk_status_t ret;
1344 };
1345 
1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1347 {
1348 	struct blk_rq_wait *wait = rq->end_io_data;
1349 
1350 	wait->ret = ret;
1351 	complete(&wait->done);
1352 	return RQ_END_IO_NONE;
1353 }
1354 
1355 bool blk_rq_is_poll(struct request *rq)
1356 {
1357 	if (!rq->mq_hctx)
1358 		return false;
1359 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360 		return false;
1361 	if (WARN_ON_ONCE(!rq->bio))
1362 		return false;
1363 	return true;
1364 }
1365 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1366 
1367 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1368 {
1369 	do {
1370 		bio_poll(rq->bio, NULL, 0);
1371 		cond_resched();
1372 	} while (!completion_done(wait));
1373 }
1374 
1375 /**
1376  * blk_execute_rq - insert a request into queue for execution
1377  * @rq:		request to insert
1378  * @at_head:    insert request at head or tail of queue
1379  *
1380  * Description:
1381  *    Insert a fully prepared request at the back of the I/O scheduler queue
1382  *    for execution and wait for completion.
1383  * Return: The blk_status_t result provided to blk_mq_end_request().
1384  */
1385 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1386 {
1387 	struct blk_rq_wait wait = {
1388 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1389 	};
1390 
1391 	WARN_ON(irqs_disabled());
1392 	WARN_ON(!blk_rq_is_passthrough(rq));
1393 
1394 	rq->end_io_data = &wait;
1395 	rq->end_io = blk_end_sync_rq;
1396 
1397 	blk_account_io_start(rq);
1398 	blk_mq_sched_insert_request(rq, at_head, true, false);
1399 
1400 	if (blk_rq_is_poll(rq)) {
1401 		blk_rq_poll_completion(rq, &wait.done);
1402 	} else {
1403 		/*
1404 		 * Prevent hang_check timer from firing at us during very long
1405 		 * I/O
1406 		 */
1407 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1408 
1409 		if (hang_check)
1410 			while (!wait_for_completion_io_timeout(&wait.done,
1411 					hang_check * (HZ/2)))
1412 				;
1413 		else
1414 			wait_for_completion_io(&wait.done);
1415 	}
1416 
1417 	return wait.ret;
1418 }
1419 EXPORT_SYMBOL(blk_execute_rq);
1420 
1421 static void __blk_mq_requeue_request(struct request *rq)
1422 {
1423 	struct request_queue *q = rq->q;
1424 
1425 	blk_mq_put_driver_tag(rq);
1426 
1427 	trace_block_rq_requeue(rq);
1428 	rq_qos_requeue(q, rq);
1429 
1430 	if (blk_mq_request_started(rq)) {
1431 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1432 		rq->rq_flags &= ~RQF_TIMED_OUT;
1433 	}
1434 }
1435 
1436 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1437 {
1438 	__blk_mq_requeue_request(rq);
1439 
1440 	/* this request will be re-inserted to io scheduler queue */
1441 	blk_mq_sched_requeue_request(rq);
1442 
1443 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1444 }
1445 EXPORT_SYMBOL(blk_mq_requeue_request);
1446 
1447 static void blk_mq_requeue_work(struct work_struct *work)
1448 {
1449 	struct request_queue *q =
1450 		container_of(work, struct request_queue, requeue_work.work);
1451 	LIST_HEAD(rq_list);
1452 	struct request *rq, *next;
1453 
1454 	spin_lock_irq(&q->requeue_lock);
1455 	list_splice_init(&q->requeue_list, &rq_list);
1456 	spin_unlock_irq(&q->requeue_lock);
1457 
1458 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1459 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1460 			continue;
1461 
1462 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1463 		list_del_init(&rq->queuelist);
1464 		/*
1465 		 * If RQF_DONTPREP, rq has contained some driver specific
1466 		 * data, so insert it to hctx dispatch list to avoid any
1467 		 * merge.
1468 		 */
1469 		if (rq->rq_flags & RQF_DONTPREP)
1470 			blk_mq_request_bypass_insert(rq, false, false);
1471 		else
1472 			blk_mq_sched_insert_request(rq, true, false, false);
1473 	}
1474 
1475 	while (!list_empty(&rq_list)) {
1476 		rq = list_entry(rq_list.next, struct request, queuelist);
1477 		list_del_init(&rq->queuelist);
1478 		blk_mq_sched_insert_request(rq, false, false, false);
1479 	}
1480 
1481 	blk_mq_run_hw_queues(q, false);
1482 }
1483 
1484 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1485 				bool kick_requeue_list)
1486 {
1487 	struct request_queue *q = rq->q;
1488 	unsigned long flags;
1489 
1490 	/*
1491 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1492 	 * request head insertion from the workqueue.
1493 	 */
1494 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1495 
1496 	spin_lock_irqsave(&q->requeue_lock, flags);
1497 	if (at_head) {
1498 		rq->rq_flags |= RQF_SOFTBARRIER;
1499 		list_add(&rq->queuelist, &q->requeue_list);
1500 	} else {
1501 		list_add_tail(&rq->queuelist, &q->requeue_list);
1502 	}
1503 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1504 
1505 	if (kick_requeue_list)
1506 		blk_mq_kick_requeue_list(q);
1507 }
1508 
1509 void blk_mq_kick_requeue_list(struct request_queue *q)
1510 {
1511 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1512 }
1513 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1514 
1515 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1516 				    unsigned long msecs)
1517 {
1518 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1519 				    msecs_to_jiffies(msecs));
1520 }
1521 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1522 
1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1524 {
1525 	/*
1526 	 * If we find a request that isn't idle we know the queue is busy
1527 	 * as it's checked in the iter.
1528 	 * Return false to stop the iteration.
1529 	 */
1530 	if (blk_mq_request_started(rq)) {
1531 		bool *busy = priv;
1532 
1533 		*busy = true;
1534 		return false;
1535 	}
1536 
1537 	return true;
1538 }
1539 
1540 bool blk_mq_queue_inflight(struct request_queue *q)
1541 {
1542 	bool busy = false;
1543 
1544 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1545 	return busy;
1546 }
1547 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1548 
1549 static void blk_mq_rq_timed_out(struct request *req)
1550 {
1551 	req->rq_flags |= RQF_TIMED_OUT;
1552 	if (req->q->mq_ops->timeout) {
1553 		enum blk_eh_timer_return ret;
1554 
1555 		ret = req->q->mq_ops->timeout(req);
1556 		if (ret == BLK_EH_DONE)
1557 			return;
1558 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1559 	}
1560 
1561 	blk_add_timer(req);
1562 }
1563 
1564 struct blk_expired_data {
1565 	bool has_timedout_rq;
1566 	unsigned long next;
1567 	unsigned long timeout_start;
1568 };
1569 
1570 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1571 {
1572 	unsigned long deadline;
1573 
1574 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1575 		return false;
1576 	if (rq->rq_flags & RQF_TIMED_OUT)
1577 		return false;
1578 
1579 	deadline = READ_ONCE(rq->deadline);
1580 	if (time_after_eq(expired->timeout_start, deadline))
1581 		return true;
1582 
1583 	if (expired->next == 0)
1584 		expired->next = deadline;
1585 	else if (time_after(expired->next, deadline))
1586 		expired->next = deadline;
1587 	return false;
1588 }
1589 
1590 void blk_mq_put_rq_ref(struct request *rq)
1591 {
1592 	if (is_flush_rq(rq)) {
1593 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1594 			blk_mq_free_request(rq);
1595 	} else if (req_ref_put_and_test(rq)) {
1596 		__blk_mq_free_request(rq);
1597 	}
1598 }
1599 
1600 static bool blk_mq_check_expired(struct request *rq, void *priv)
1601 {
1602 	struct blk_expired_data *expired = priv;
1603 
1604 	/*
1605 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1606 	 * be reallocated underneath the timeout handler's processing, then
1607 	 * the expire check is reliable. If the request is not expired, then
1608 	 * it was completed and reallocated as a new request after returning
1609 	 * from blk_mq_check_expired().
1610 	 */
1611 	if (blk_mq_req_expired(rq, expired)) {
1612 		expired->has_timedout_rq = true;
1613 		return false;
1614 	}
1615 	return true;
1616 }
1617 
1618 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1619 {
1620 	struct blk_expired_data *expired = priv;
1621 
1622 	if (blk_mq_req_expired(rq, expired))
1623 		blk_mq_rq_timed_out(rq);
1624 	return true;
1625 }
1626 
1627 static void blk_mq_timeout_work(struct work_struct *work)
1628 {
1629 	struct request_queue *q =
1630 		container_of(work, struct request_queue, timeout_work);
1631 	struct blk_expired_data expired = {
1632 		.timeout_start = jiffies,
1633 	};
1634 	struct blk_mq_hw_ctx *hctx;
1635 	unsigned long i;
1636 
1637 	/* A deadlock might occur if a request is stuck requiring a
1638 	 * timeout at the same time a queue freeze is waiting
1639 	 * completion, since the timeout code would not be able to
1640 	 * acquire the queue reference here.
1641 	 *
1642 	 * That's why we don't use blk_queue_enter here; instead, we use
1643 	 * percpu_ref_tryget directly, because we need to be able to
1644 	 * obtain a reference even in the short window between the queue
1645 	 * starting to freeze, by dropping the first reference in
1646 	 * blk_freeze_queue_start, and the moment the last request is
1647 	 * consumed, marked by the instant q_usage_counter reaches
1648 	 * zero.
1649 	 */
1650 	if (!percpu_ref_tryget(&q->q_usage_counter))
1651 		return;
1652 
1653 	/* check if there is any timed-out request */
1654 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1655 	if (expired.has_timedout_rq) {
1656 		/*
1657 		 * Before walking tags, we must ensure any submit started
1658 		 * before the current time has finished. Since the submit
1659 		 * uses srcu or rcu, wait for a synchronization point to
1660 		 * ensure all running submits have finished
1661 		 */
1662 		blk_mq_wait_quiesce_done(q->tag_set);
1663 
1664 		expired.next = 0;
1665 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1666 	}
1667 
1668 	if (expired.next != 0) {
1669 		mod_timer(&q->timeout, expired.next);
1670 	} else {
1671 		/*
1672 		 * Request timeouts are handled as a forward rolling timer. If
1673 		 * we end up here it means that no requests are pending and
1674 		 * also that no request has been pending for a while. Mark
1675 		 * each hctx as idle.
1676 		 */
1677 		queue_for_each_hw_ctx(q, hctx, i) {
1678 			/* the hctx may be unmapped, so check it here */
1679 			if (blk_mq_hw_queue_mapped(hctx))
1680 				blk_mq_tag_idle(hctx);
1681 		}
1682 	}
1683 	blk_queue_exit(q);
1684 }
1685 
1686 struct flush_busy_ctx_data {
1687 	struct blk_mq_hw_ctx *hctx;
1688 	struct list_head *list;
1689 };
1690 
1691 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1692 {
1693 	struct flush_busy_ctx_data *flush_data = data;
1694 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1695 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696 	enum hctx_type type = hctx->type;
1697 
1698 	spin_lock(&ctx->lock);
1699 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1700 	sbitmap_clear_bit(sb, bitnr);
1701 	spin_unlock(&ctx->lock);
1702 	return true;
1703 }
1704 
1705 /*
1706  * Process software queues that have been marked busy, splicing them
1707  * to the for-dispatch
1708  */
1709 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1710 {
1711 	struct flush_busy_ctx_data data = {
1712 		.hctx = hctx,
1713 		.list = list,
1714 	};
1715 
1716 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1717 }
1718 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1719 
1720 struct dispatch_rq_data {
1721 	struct blk_mq_hw_ctx *hctx;
1722 	struct request *rq;
1723 };
1724 
1725 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1726 		void *data)
1727 {
1728 	struct dispatch_rq_data *dispatch_data = data;
1729 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1730 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1731 	enum hctx_type type = hctx->type;
1732 
1733 	spin_lock(&ctx->lock);
1734 	if (!list_empty(&ctx->rq_lists[type])) {
1735 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1736 		list_del_init(&dispatch_data->rq->queuelist);
1737 		if (list_empty(&ctx->rq_lists[type]))
1738 			sbitmap_clear_bit(sb, bitnr);
1739 	}
1740 	spin_unlock(&ctx->lock);
1741 
1742 	return !dispatch_data->rq;
1743 }
1744 
1745 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1746 					struct blk_mq_ctx *start)
1747 {
1748 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1749 	struct dispatch_rq_data data = {
1750 		.hctx = hctx,
1751 		.rq   = NULL,
1752 	};
1753 
1754 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1755 			       dispatch_rq_from_ctx, &data);
1756 
1757 	return data.rq;
1758 }
1759 
1760 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1761 {
1762 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1763 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1764 	int tag;
1765 
1766 	blk_mq_tag_busy(rq->mq_hctx);
1767 
1768 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1769 		bt = &rq->mq_hctx->tags->breserved_tags;
1770 		tag_offset = 0;
1771 	} else {
1772 		if (!hctx_may_queue(rq->mq_hctx, bt))
1773 			return false;
1774 	}
1775 
1776 	tag = __sbitmap_queue_get(bt);
1777 	if (tag == BLK_MQ_NO_TAG)
1778 		return false;
1779 
1780 	rq->tag = tag + tag_offset;
1781 	return true;
1782 }
1783 
1784 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1785 {
1786 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1787 		return false;
1788 
1789 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1790 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1791 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1792 		__blk_mq_inc_active_requests(hctx);
1793 	}
1794 	hctx->tags->rqs[rq->tag] = rq;
1795 	return true;
1796 }
1797 
1798 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1799 				int flags, void *key)
1800 {
1801 	struct blk_mq_hw_ctx *hctx;
1802 
1803 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1804 
1805 	spin_lock(&hctx->dispatch_wait_lock);
1806 	if (!list_empty(&wait->entry)) {
1807 		struct sbitmap_queue *sbq;
1808 
1809 		list_del_init(&wait->entry);
1810 		sbq = &hctx->tags->bitmap_tags;
1811 		atomic_dec(&sbq->ws_active);
1812 	}
1813 	spin_unlock(&hctx->dispatch_wait_lock);
1814 
1815 	blk_mq_run_hw_queue(hctx, true);
1816 	return 1;
1817 }
1818 
1819 /*
1820  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1821  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1822  * restart. For both cases, take care to check the condition again after
1823  * marking us as waiting.
1824  */
1825 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1826 				 struct request *rq)
1827 {
1828 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1829 	struct wait_queue_head *wq;
1830 	wait_queue_entry_t *wait;
1831 	bool ret;
1832 
1833 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1834 		blk_mq_sched_mark_restart_hctx(hctx);
1835 
1836 		/*
1837 		 * It's possible that a tag was freed in the window between the
1838 		 * allocation failure and adding the hardware queue to the wait
1839 		 * queue.
1840 		 *
1841 		 * Don't clear RESTART here, someone else could have set it.
1842 		 * At most this will cost an extra queue run.
1843 		 */
1844 		return blk_mq_get_driver_tag(rq);
1845 	}
1846 
1847 	wait = &hctx->dispatch_wait;
1848 	if (!list_empty_careful(&wait->entry))
1849 		return false;
1850 
1851 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1852 
1853 	spin_lock_irq(&wq->lock);
1854 	spin_lock(&hctx->dispatch_wait_lock);
1855 	if (!list_empty(&wait->entry)) {
1856 		spin_unlock(&hctx->dispatch_wait_lock);
1857 		spin_unlock_irq(&wq->lock);
1858 		return false;
1859 	}
1860 
1861 	atomic_inc(&sbq->ws_active);
1862 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1863 	__add_wait_queue(wq, wait);
1864 
1865 	/*
1866 	 * It's possible that a tag was freed in the window between the
1867 	 * allocation failure and adding the hardware queue to the wait
1868 	 * queue.
1869 	 */
1870 	ret = blk_mq_get_driver_tag(rq);
1871 	if (!ret) {
1872 		spin_unlock(&hctx->dispatch_wait_lock);
1873 		spin_unlock_irq(&wq->lock);
1874 		return false;
1875 	}
1876 
1877 	/*
1878 	 * We got a tag, remove ourselves from the wait queue to ensure
1879 	 * someone else gets the wakeup.
1880 	 */
1881 	list_del_init(&wait->entry);
1882 	atomic_dec(&sbq->ws_active);
1883 	spin_unlock(&hctx->dispatch_wait_lock);
1884 	spin_unlock_irq(&wq->lock);
1885 
1886 	return true;
1887 }
1888 
1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1891 /*
1892  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893  * - EWMA is one simple way to compute running average value
1894  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895  * - take 4 as factor for avoiding to get too small(0) result, and this
1896  *   factor doesn't matter because EWMA decreases exponentially
1897  */
1898 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1899 {
1900 	unsigned int ewma;
1901 
1902 	ewma = hctx->dispatch_busy;
1903 
1904 	if (!ewma && !busy)
1905 		return;
1906 
1907 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1908 	if (busy)
1909 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1911 
1912 	hctx->dispatch_busy = ewma;
1913 }
1914 
1915 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1916 
1917 static void blk_mq_handle_dev_resource(struct request *rq,
1918 				       struct list_head *list)
1919 {
1920 	struct request *next =
1921 		list_first_entry_or_null(list, struct request, queuelist);
1922 
1923 	/*
1924 	 * If an I/O scheduler has been configured and we got a driver tag for
1925 	 * the next request already, free it.
1926 	 */
1927 	if (next)
1928 		blk_mq_put_driver_tag(next);
1929 
1930 	list_add(&rq->queuelist, list);
1931 	__blk_mq_requeue_request(rq);
1932 }
1933 
1934 static void blk_mq_handle_zone_resource(struct request *rq,
1935 					struct list_head *zone_list)
1936 {
1937 	/*
1938 	 * If we end up here it is because we cannot dispatch a request to a
1939 	 * specific zone due to LLD level zone-write locking or other zone
1940 	 * related resource not being available. In this case, set the request
1941 	 * aside in zone_list for retrying it later.
1942 	 */
1943 	list_add(&rq->queuelist, zone_list);
1944 	__blk_mq_requeue_request(rq);
1945 }
1946 
1947 enum prep_dispatch {
1948 	PREP_DISPATCH_OK,
1949 	PREP_DISPATCH_NO_TAG,
1950 	PREP_DISPATCH_NO_BUDGET,
1951 };
1952 
1953 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1954 						  bool need_budget)
1955 {
1956 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1957 	int budget_token = -1;
1958 
1959 	if (need_budget) {
1960 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1961 		if (budget_token < 0) {
1962 			blk_mq_put_driver_tag(rq);
1963 			return PREP_DISPATCH_NO_BUDGET;
1964 		}
1965 		blk_mq_set_rq_budget_token(rq, budget_token);
1966 	}
1967 
1968 	if (!blk_mq_get_driver_tag(rq)) {
1969 		/*
1970 		 * The initial allocation attempt failed, so we need to
1971 		 * rerun the hardware queue when a tag is freed. The
1972 		 * waitqueue takes care of that. If the queue is run
1973 		 * before we add this entry back on the dispatch list,
1974 		 * we'll re-run it below.
1975 		 */
1976 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1977 			/*
1978 			 * All budgets not got from this function will be put
1979 			 * together during handling partial dispatch
1980 			 */
1981 			if (need_budget)
1982 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1983 			return PREP_DISPATCH_NO_TAG;
1984 		}
1985 	}
1986 
1987 	return PREP_DISPATCH_OK;
1988 }
1989 
1990 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1991 static void blk_mq_release_budgets(struct request_queue *q,
1992 		struct list_head *list)
1993 {
1994 	struct request *rq;
1995 
1996 	list_for_each_entry(rq, list, queuelist) {
1997 		int budget_token = blk_mq_get_rq_budget_token(rq);
1998 
1999 		if (budget_token >= 0)
2000 			blk_mq_put_dispatch_budget(q, budget_token);
2001 	}
2002 }
2003 
2004 /*
2005  * Returns true if we did some work AND can potentially do more.
2006  */
2007 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2008 			     unsigned int nr_budgets)
2009 {
2010 	enum prep_dispatch prep;
2011 	struct request_queue *q = hctx->queue;
2012 	struct request *rq, *nxt;
2013 	int errors, queued;
2014 	blk_status_t ret = BLK_STS_OK;
2015 	LIST_HEAD(zone_list);
2016 	bool needs_resource = false;
2017 
2018 	if (list_empty(list))
2019 		return false;
2020 
2021 	/*
2022 	 * Now process all the entries, sending them to the driver.
2023 	 */
2024 	errors = queued = 0;
2025 	do {
2026 		struct blk_mq_queue_data bd;
2027 
2028 		rq = list_first_entry(list, struct request, queuelist);
2029 
2030 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2031 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2032 		if (prep != PREP_DISPATCH_OK)
2033 			break;
2034 
2035 		list_del_init(&rq->queuelist);
2036 
2037 		bd.rq = rq;
2038 
2039 		/*
2040 		 * Flag last if we have no more requests, or if we have more
2041 		 * but can't assign a driver tag to it.
2042 		 */
2043 		if (list_empty(list))
2044 			bd.last = true;
2045 		else {
2046 			nxt = list_first_entry(list, struct request, queuelist);
2047 			bd.last = !blk_mq_get_driver_tag(nxt);
2048 		}
2049 
2050 		/*
2051 		 * once the request is queued to lld, no need to cover the
2052 		 * budget any more
2053 		 */
2054 		if (nr_budgets)
2055 			nr_budgets--;
2056 		ret = q->mq_ops->queue_rq(hctx, &bd);
2057 		switch (ret) {
2058 		case BLK_STS_OK:
2059 			queued++;
2060 			break;
2061 		case BLK_STS_RESOURCE:
2062 			needs_resource = true;
2063 			fallthrough;
2064 		case BLK_STS_DEV_RESOURCE:
2065 			blk_mq_handle_dev_resource(rq, list);
2066 			goto out;
2067 		case BLK_STS_ZONE_RESOURCE:
2068 			/*
2069 			 * Move the request to zone_list and keep going through
2070 			 * the dispatch list to find more requests the drive can
2071 			 * accept.
2072 			 */
2073 			blk_mq_handle_zone_resource(rq, &zone_list);
2074 			needs_resource = true;
2075 			break;
2076 		default:
2077 			errors++;
2078 			blk_mq_end_request(rq, ret);
2079 		}
2080 	} while (!list_empty(list));
2081 out:
2082 	if (!list_empty(&zone_list))
2083 		list_splice_tail_init(&zone_list, list);
2084 
2085 	/* If we didn't flush the entire list, we could have told the driver
2086 	 * there was more coming, but that turned out to be a lie.
2087 	 */
2088 	if ((!list_empty(list) || errors || needs_resource ||
2089 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2090 		q->mq_ops->commit_rqs(hctx);
2091 	/*
2092 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2093 	 * that is where we will continue on next queue run.
2094 	 */
2095 	if (!list_empty(list)) {
2096 		bool needs_restart;
2097 		/* For non-shared tags, the RESTART check will suffice */
2098 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2100 
2101 		if (nr_budgets)
2102 			blk_mq_release_budgets(q, list);
2103 
2104 		spin_lock(&hctx->lock);
2105 		list_splice_tail_init(list, &hctx->dispatch);
2106 		spin_unlock(&hctx->lock);
2107 
2108 		/*
2109 		 * Order adding requests to hctx->dispatch and checking
2110 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2111 		 * in blk_mq_sched_restart(). Avoid restart code path to
2112 		 * miss the new added requests to hctx->dispatch, meantime
2113 		 * SCHED_RESTART is observed here.
2114 		 */
2115 		smp_mb();
2116 
2117 		/*
2118 		 * If SCHED_RESTART was set by the caller of this function and
2119 		 * it is no longer set that means that it was cleared by another
2120 		 * thread and hence that a queue rerun is needed.
2121 		 *
2122 		 * If 'no_tag' is set, that means that we failed getting
2123 		 * a driver tag with an I/O scheduler attached. If our dispatch
2124 		 * waitqueue is no longer active, ensure that we run the queue
2125 		 * AFTER adding our entries back to the list.
2126 		 *
2127 		 * If no I/O scheduler has been configured it is possible that
2128 		 * the hardware queue got stopped and restarted before requests
2129 		 * were pushed back onto the dispatch list. Rerun the queue to
2130 		 * avoid starvation. Notes:
2131 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2132 		 *   been stopped before rerunning a queue.
2133 		 * - Some but not all block drivers stop a queue before
2134 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2135 		 *   and dm-rq.
2136 		 *
2137 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2138 		 * bit is set, run queue after a delay to avoid IO stalls
2139 		 * that could otherwise occur if the queue is idle.  We'll do
2140 		 * similar if we couldn't get budget or couldn't lock a zone
2141 		 * and SCHED_RESTART is set.
2142 		 */
2143 		needs_restart = blk_mq_sched_needs_restart(hctx);
2144 		if (prep == PREP_DISPATCH_NO_BUDGET)
2145 			needs_resource = true;
2146 		if (!needs_restart ||
2147 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2148 			blk_mq_run_hw_queue(hctx, true);
2149 		else if (needs_resource)
2150 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2151 
2152 		blk_mq_update_dispatch_busy(hctx, true);
2153 		return false;
2154 	} else
2155 		blk_mq_update_dispatch_busy(hctx, false);
2156 
2157 	return (queued + errors) != 0;
2158 }
2159 
2160 /**
2161  * __blk_mq_run_hw_queue - Run a hardware queue.
2162  * @hctx: Pointer to the hardware queue to run.
2163  *
2164  * Send pending requests to the hardware.
2165  */
2166 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2167 {
2168 	/*
2169 	 * We can't run the queue inline with ints disabled. Ensure that
2170 	 * we catch bad users of this early.
2171 	 */
2172 	WARN_ON_ONCE(in_interrupt());
2173 
2174 	blk_mq_run_dispatch_ops(hctx->queue,
2175 			blk_mq_sched_dispatch_requests(hctx));
2176 }
2177 
2178 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2179 {
2180 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2181 
2182 	if (cpu >= nr_cpu_ids)
2183 		cpu = cpumask_first(hctx->cpumask);
2184 	return cpu;
2185 }
2186 
2187 /*
2188  * It'd be great if the workqueue API had a way to pass
2189  * in a mask and had some smarts for more clever placement.
2190  * For now we just round-robin here, switching for every
2191  * BLK_MQ_CPU_WORK_BATCH queued items.
2192  */
2193 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2194 {
2195 	bool tried = false;
2196 	int next_cpu = hctx->next_cpu;
2197 
2198 	if (hctx->queue->nr_hw_queues == 1)
2199 		return WORK_CPU_UNBOUND;
2200 
2201 	if (--hctx->next_cpu_batch <= 0) {
2202 select_cpu:
2203 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2204 				cpu_online_mask);
2205 		if (next_cpu >= nr_cpu_ids)
2206 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2207 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2208 	}
2209 
2210 	/*
2211 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2212 	 * and it should only happen in the path of handling CPU DEAD.
2213 	 */
2214 	if (!cpu_online(next_cpu)) {
2215 		if (!tried) {
2216 			tried = true;
2217 			goto select_cpu;
2218 		}
2219 
2220 		/*
2221 		 * Make sure to re-select CPU next time once after CPUs
2222 		 * in hctx->cpumask become online again.
2223 		 */
2224 		hctx->next_cpu = next_cpu;
2225 		hctx->next_cpu_batch = 1;
2226 		return WORK_CPU_UNBOUND;
2227 	}
2228 
2229 	hctx->next_cpu = next_cpu;
2230 	return next_cpu;
2231 }
2232 
2233 /**
2234  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2235  * @hctx: Pointer to the hardware queue to run.
2236  * @async: If we want to run the queue asynchronously.
2237  * @msecs: Milliseconds of delay to wait before running the queue.
2238  *
2239  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2240  * with a delay of @msecs.
2241  */
2242 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2243 					unsigned long msecs)
2244 {
2245 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2246 		return;
2247 
2248 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2249 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2250 			__blk_mq_run_hw_queue(hctx);
2251 			return;
2252 		}
2253 	}
2254 
2255 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2256 				    msecs_to_jiffies(msecs));
2257 }
2258 
2259 /**
2260  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2261  * @hctx: Pointer to the hardware queue to run.
2262  * @msecs: Milliseconds of delay to wait before running the queue.
2263  *
2264  * Run a hardware queue asynchronously with a delay of @msecs.
2265  */
2266 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2267 {
2268 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2269 }
2270 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2271 
2272 /**
2273  * blk_mq_run_hw_queue - Start to run a hardware queue.
2274  * @hctx: Pointer to the hardware queue to run.
2275  * @async: If we want to run the queue asynchronously.
2276  *
2277  * Check if the request queue is not in a quiesced state and if there are
2278  * pending requests to be sent. If this is true, run the queue to send requests
2279  * to hardware.
2280  */
2281 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2282 {
2283 	bool need_run;
2284 
2285 	/*
2286 	 * When queue is quiesced, we may be switching io scheduler, or
2287 	 * updating nr_hw_queues, or other things, and we can't run queue
2288 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2289 	 *
2290 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2291 	 * quiesced.
2292 	 */
2293 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2294 		need_run = !blk_queue_quiesced(hctx->queue) &&
2295 		blk_mq_hctx_has_pending(hctx));
2296 
2297 	if (need_run)
2298 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2299 }
2300 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2301 
2302 /*
2303  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2304  * scheduler.
2305  */
2306 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2307 {
2308 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2309 	/*
2310 	 * If the IO scheduler does not respect hardware queues when
2311 	 * dispatching, we just don't bother with multiple HW queues and
2312 	 * dispatch from hctx for the current CPU since running multiple queues
2313 	 * just causes lock contention inside the scheduler and pointless cache
2314 	 * bouncing.
2315 	 */
2316 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2317 
2318 	if (!blk_mq_hctx_stopped(hctx))
2319 		return hctx;
2320 	return NULL;
2321 }
2322 
2323 /**
2324  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2325  * @q: Pointer to the request queue to run.
2326  * @async: If we want to run the queue asynchronously.
2327  */
2328 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2329 {
2330 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2331 	unsigned long i;
2332 
2333 	sq_hctx = NULL;
2334 	if (blk_queue_sq_sched(q))
2335 		sq_hctx = blk_mq_get_sq_hctx(q);
2336 	queue_for_each_hw_ctx(q, hctx, i) {
2337 		if (blk_mq_hctx_stopped(hctx))
2338 			continue;
2339 		/*
2340 		 * Dispatch from this hctx either if there's no hctx preferred
2341 		 * by IO scheduler or if it has requests that bypass the
2342 		 * scheduler.
2343 		 */
2344 		if (!sq_hctx || sq_hctx == hctx ||
2345 		    !list_empty_careful(&hctx->dispatch))
2346 			blk_mq_run_hw_queue(hctx, async);
2347 	}
2348 }
2349 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2350 
2351 /**
2352  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2353  * @q: Pointer to the request queue to run.
2354  * @msecs: Milliseconds of delay to wait before running the queues.
2355  */
2356 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2357 {
2358 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2359 	unsigned long i;
2360 
2361 	sq_hctx = NULL;
2362 	if (blk_queue_sq_sched(q))
2363 		sq_hctx = blk_mq_get_sq_hctx(q);
2364 	queue_for_each_hw_ctx(q, hctx, i) {
2365 		if (blk_mq_hctx_stopped(hctx))
2366 			continue;
2367 		/*
2368 		 * If there is already a run_work pending, leave the
2369 		 * pending delay untouched. Otherwise, a hctx can stall
2370 		 * if another hctx is re-delaying the other's work
2371 		 * before the work executes.
2372 		 */
2373 		if (delayed_work_pending(&hctx->run_work))
2374 			continue;
2375 		/*
2376 		 * Dispatch from this hctx either if there's no hctx preferred
2377 		 * by IO scheduler or if it has requests that bypass the
2378 		 * scheduler.
2379 		 */
2380 		if (!sq_hctx || sq_hctx == hctx ||
2381 		    !list_empty_careful(&hctx->dispatch))
2382 			blk_mq_delay_run_hw_queue(hctx, msecs);
2383 	}
2384 }
2385 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2386 
2387 /*
2388  * This function is often used for pausing .queue_rq() by driver when
2389  * there isn't enough resource or some conditions aren't satisfied, and
2390  * BLK_STS_RESOURCE is usually returned.
2391  *
2392  * We do not guarantee that dispatch can be drained or blocked
2393  * after blk_mq_stop_hw_queue() returns. Please use
2394  * blk_mq_quiesce_queue() for that requirement.
2395  */
2396 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2397 {
2398 	cancel_delayed_work(&hctx->run_work);
2399 
2400 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401 }
2402 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2403 
2404 /*
2405  * This function is often used for pausing .queue_rq() by driver when
2406  * there isn't enough resource or some conditions aren't satisfied, and
2407  * BLK_STS_RESOURCE is usually returned.
2408  *
2409  * We do not guarantee that dispatch can be drained or blocked
2410  * after blk_mq_stop_hw_queues() returns. Please use
2411  * blk_mq_quiesce_queue() for that requirement.
2412  */
2413 void blk_mq_stop_hw_queues(struct request_queue *q)
2414 {
2415 	struct blk_mq_hw_ctx *hctx;
2416 	unsigned long i;
2417 
2418 	queue_for_each_hw_ctx(q, hctx, i)
2419 		blk_mq_stop_hw_queue(hctx);
2420 }
2421 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2422 
2423 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2424 {
2425 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2426 
2427 	blk_mq_run_hw_queue(hctx, false);
2428 }
2429 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2430 
2431 void blk_mq_start_hw_queues(struct request_queue *q)
2432 {
2433 	struct blk_mq_hw_ctx *hctx;
2434 	unsigned long i;
2435 
2436 	queue_for_each_hw_ctx(q, hctx, i)
2437 		blk_mq_start_hw_queue(hctx);
2438 }
2439 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2440 
2441 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2442 {
2443 	if (!blk_mq_hctx_stopped(hctx))
2444 		return;
2445 
2446 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2447 	blk_mq_run_hw_queue(hctx, async);
2448 }
2449 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2450 
2451 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2452 {
2453 	struct blk_mq_hw_ctx *hctx;
2454 	unsigned long i;
2455 
2456 	queue_for_each_hw_ctx(q, hctx, i)
2457 		blk_mq_start_stopped_hw_queue(hctx, async);
2458 }
2459 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2460 
2461 static void blk_mq_run_work_fn(struct work_struct *work)
2462 {
2463 	struct blk_mq_hw_ctx *hctx;
2464 
2465 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2466 
2467 	/*
2468 	 * If we are stopped, don't run the queue.
2469 	 */
2470 	if (blk_mq_hctx_stopped(hctx))
2471 		return;
2472 
2473 	__blk_mq_run_hw_queue(hctx);
2474 }
2475 
2476 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2477 					    struct request *rq,
2478 					    bool at_head)
2479 {
2480 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2481 	enum hctx_type type = hctx->type;
2482 
2483 	lockdep_assert_held(&ctx->lock);
2484 
2485 	trace_block_rq_insert(rq);
2486 
2487 	if (at_head)
2488 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2489 	else
2490 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2491 }
2492 
2493 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2494 			     bool at_head)
2495 {
2496 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2497 
2498 	lockdep_assert_held(&ctx->lock);
2499 
2500 	__blk_mq_insert_req_list(hctx, rq, at_head);
2501 	blk_mq_hctx_mark_pending(hctx, ctx);
2502 }
2503 
2504 /**
2505  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2506  * @rq: Pointer to request to be inserted.
2507  * @at_head: true if the request should be inserted at the head of the list.
2508  * @run_queue: If we should run the hardware queue after inserting the request.
2509  *
2510  * Should only be used carefully, when the caller knows we want to
2511  * bypass a potential IO scheduler on the target device.
2512  */
2513 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2514 				  bool run_queue)
2515 {
2516 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2517 
2518 	spin_lock(&hctx->lock);
2519 	if (at_head)
2520 		list_add(&rq->queuelist, &hctx->dispatch);
2521 	else
2522 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2523 	spin_unlock(&hctx->lock);
2524 
2525 	if (run_queue)
2526 		blk_mq_run_hw_queue(hctx, false);
2527 }
2528 
2529 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2530 			    struct list_head *list)
2531 
2532 {
2533 	struct request *rq;
2534 	enum hctx_type type = hctx->type;
2535 
2536 	/*
2537 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2538 	 * offline now
2539 	 */
2540 	list_for_each_entry(rq, list, queuelist) {
2541 		BUG_ON(rq->mq_ctx != ctx);
2542 		trace_block_rq_insert(rq);
2543 	}
2544 
2545 	spin_lock(&ctx->lock);
2546 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2547 	blk_mq_hctx_mark_pending(hctx, ctx);
2548 	spin_unlock(&ctx->lock);
2549 }
2550 
2551 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2552 			      bool from_schedule)
2553 {
2554 	if (hctx->queue->mq_ops->commit_rqs) {
2555 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2556 		hctx->queue->mq_ops->commit_rqs(hctx);
2557 	}
2558 	*queued = 0;
2559 }
2560 
2561 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562 		unsigned int nr_segs)
2563 {
2564 	int err;
2565 
2566 	if (bio->bi_opf & REQ_RAHEAD)
2567 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2568 
2569 	rq->__sector = bio->bi_iter.bi_sector;
2570 	blk_rq_bio_prep(rq, bio, nr_segs);
2571 
2572 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2573 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2574 	WARN_ON_ONCE(err);
2575 
2576 	blk_account_io_start(rq);
2577 }
2578 
2579 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2580 					    struct request *rq, bool last)
2581 {
2582 	struct request_queue *q = rq->q;
2583 	struct blk_mq_queue_data bd = {
2584 		.rq = rq,
2585 		.last = last,
2586 	};
2587 	blk_status_t ret;
2588 
2589 	/*
2590 	 * For OK queue, we are done. For error, caller may kill it.
2591 	 * Any other error (busy), just add it to our list as we
2592 	 * previously would have done.
2593 	 */
2594 	ret = q->mq_ops->queue_rq(hctx, &bd);
2595 	switch (ret) {
2596 	case BLK_STS_OK:
2597 		blk_mq_update_dispatch_busy(hctx, false);
2598 		break;
2599 	case BLK_STS_RESOURCE:
2600 	case BLK_STS_DEV_RESOURCE:
2601 		blk_mq_update_dispatch_busy(hctx, true);
2602 		__blk_mq_requeue_request(rq);
2603 		break;
2604 	default:
2605 		blk_mq_update_dispatch_busy(hctx, false);
2606 		break;
2607 	}
2608 
2609 	return ret;
2610 }
2611 
2612 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2613 						struct request *rq,
2614 						bool bypass_insert, bool last)
2615 {
2616 	struct request_queue *q = rq->q;
2617 	bool run_queue = true;
2618 	int budget_token;
2619 
2620 	/*
2621 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2622 	 *
2623 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2624 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2625 	 * and avoid driver to try to dispatch again.
2626 	 */
2627 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2628 		run_queue = false;
2629 		bypass_insert = false;
2630 		goto insert;
2631 	}
2632 
2633 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2634 		goto insert;
2635 
2636 	budget_token = blk_mq_get_dispatch_budget(q);
2637 	if (budget_token < 0)
2638 		goto insert;
2639 
2640 	blk_mq_set_rq_budget_token(rq, budget_token);
2641 
2642 	if (!blk_mq_get_driver_tag(rq)) {
2643 		blk_mq_put_dispatch_budget(q, budget_token);
2644 		goto insert;
2645 	}
2646 
2647 	return __blk_mq_issue_directly(hctx, rq, last);
2648 insert:
2649 	if (bypass_insert)
2650 		return BLK_STS_RESOURCE;
2651 
2652 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2653 
2654 	return BLK_STS_OK;
2655 }
2656 
2657 /**
2658  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2659  * @hctx: Pointer of the associated hardware queue.
2660  * @rq: Pointer to request to be sent.
2661  *
2662  * If the device has enough resources to accept a new request now, send the
2663  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2664  * we can try send it another time in the future. Requests inserted at this
2665  * queue have higher priority.
2666  */
2667 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2668 		struct request *rq)
2669 {
2670 	blk_status_t ret =
2671 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2672 
2673 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2674 		blk_mq_request_bypass_insert(rq, false, true);
2675 	else if (ret != BLK_STS_OK)
2676 		blk_mq_end_request(rq, ret);
2677 }
2678 
2679 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2680 {
2681 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2682 }
2683 
2684 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2685 {
2686 	struct blk_mq_hw_ctx *hctx = NULL;
2687 	struct request *rq;
2688 	int queued = 0;
2689 	int errors = 0;
2690 
2691 	while ((rq = rq_list_pop(&plug->mq_list))) {
2692 		bool last = rq_list_empty(plug->mq_list);
2693 		blk_status_t ret;
2694 
2695 		if (hctx != rq->mq_hctx) {
2696 			if (hctx)
2697 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2698 			hctx = rq->mq_hctx;
2699 		}
2700 
2701 		ret = blk_mq_request_issue_directly(rq, last);
2702 		switch (ret) {
2703 		case BLK_STS_OK:
2704 			queued++;
2705 			break;
2706 		case BLK_STS_RESOURCE:
2707 		case BLK_STS_DEV_RESOURCE:
2708 			blk_mq_request_bypass_insert(rq, false, true);
2709 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2710 			return;
2711 		default:
2712 			blk_mq_end_request(rq, ret);
2713 			errors++;
2714 			break;
2715 		}
2716 	}
2717 
2718 	/*
2719 	 * If we didn't flush the entire list, we could have told the driver
2720 	 * there was more coming, but that turned out to be a lie.
2721 	 */
2722 	if (errors)
2723 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2724 }
2725 
2726 static void __blk_mq_flush_plug_list(struct request_queue *q,
2727 				     struct blk_plug *plug)
2728 {
2729 	if (blk_queue_quiesced(q))
2730 		return;
2731 	q->mq_ops->queue_rqs(&plug->mq_list);
2732 }
2733 
2734 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2735 {
2736 	struct blk_mq_hw_ctx *this_hctx = NULL;
2737 	struct blk_mq_ctx *this_ctx = NULL;
2738 	struct request *requeue_list = NULL;
2739 	unsigned int depth = 0;
2740 	LIST_HEAD(list);
2741 
2742 	do {
2743 		struct request *rq = rq_list_pop(&plug->mq_list);
2744 
2745 		if (!this_hctx) {
2746 			this_hctx = rq->mq_hctx;
2747 			this_ctx = rq->mq_ctx;
2748 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2749 			rq_list_add(&requeue_list, rq);
2750 			continue;
2751 		}
2752 		list_add_tail(&rq->queuelist, &list);
2753 		depth++;
2754 	} while (!rq_list_empty(plug->mq_list));
2755 
2756 	plug->mq_list = requeue_list;
2757 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2759 }
2760 
2761 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2762 {
2763 	struct request *rq;
2764 
2765 	if (rq_list_empty(plug->mq_list))
2766 		return;
2767 	plug->rq_count = 0;
2768 
2769 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2770 		struct request_queue *q;
2771 
2772 		rq = rq_list_peek(&plug->mq_list);
2773 		q = rq->q;
2774 
2775 		/*
2776 		 * Peek first request and see if we have a ->queue_rqs() hook.
2777 		 * If we do, we can dispatch the whole plug list in one go. We
2778 		 * already know at this point that all requests belong to the
2779 		 * same queue, caller must ensure that's the case.
2780 		 *
2781 		 * Since we pass off the full list to the driver at this point,
2782 		 * we do not increment the active request count for the queue.
2783 		 * Bypass shared tags for now because of that.
2784 		 */
2785 		if (q->mq_ops->queue_rqs &&
2786 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2787 			blk_mq_run_dispatch_ops(q,
2788 				__blk_mq_flush_plug_list(q, plug));
2789 			if (rq_list_empty(plug->mq_list))
2790 				return;
2791 		}
2792 
2793 		blk_mq_run_dispatch_ops(q,
2794 				blk_mq_plug_issue_direct(plug, false));
2795 		if (rq_list_empty(plug->mq_list))
2796 			return;
2797 	}
2798 
2799 	do {
2800 		blk_mq_dispatch_plug_list(plug, from_schedule);
2801 	} while (!rq_list_empty(plug->mq_list));
2802 }
2803 
2804 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2805 		struct list_head *list)
2806 {
2807 	int queued = 0;
2808 	int errors = 0;
2809 
2810 	while (!list_empty(list)) {
2811 		blk_status_t ret;
2812 		struct request *rq = list_first_entry(list, struct request,
2813 				queuelist);
2814 
2815 		list_del_init(&rq->queuelist);
2816 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2817 		if (ret != BLK_STS_OK) {
2818 			errors++;
2819 			if (ret == BLK_STS_RESOURCE ||
2820 					ret == BLK_STS_DEV_RESOURCE) {
2821 				blk_mq_request_bypass_insert(rq, false,
2822 							list_empty(list));
2823 				break;
2824 			}
2825 			blk_mq_end_request(rq, ret);
2826 		} else
2827 			queued++;
2828 	}
2829 
2830 	/*
2831 	 * If we didn't flush the entire list, we could have told
2832 	 * the driver there was more coming, but that turned out to
2833 	 * be a lie.
2834 	 */
2835 	if ((!list_empty(list) || errors) &&
2836 	     hctx->queue->mq_ops->commit_rqs && queued)
2837 		hctx->queue->mq_ops->commit_rqs(hctx);
2838 }
2839 
2840 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2841 				     struct bio *bio, unsigned int nr_segs)
2842 {
2843 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2844 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2845 			return true;
2846 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2847 			return true;
2848 	}
2849 	return false;
2850 }
2851 
2852 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2853 					       struct blk_plug *plug,
2854 					       struct bio *bio,
2855 					       unsigned int nsegs)
2856 {
2857 	struct blk_mq_alloc_data data = {
2858 		.q		= q,
2859 		.nr_tags	= 1,
2860 		.cmd_flags	= bio->bi_opf,
2861 	};
2862 	struct request *rq;
2863 
2864 	if (unlikely(bio_queue_enter(bio)))
2865 		return NULL;
2866 
2867 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2868 		goto queue_exit;
2869 
2870 	rq_qos_throttle(q, bio);
2871 
2872 	if (plug) {
2873 		data.nr_tags = plug->nr_ios;
2874 		plug->nr_ios = 1;
2875 		data.cached_rq = &plug->cached_rq;
2876 	}
2877 
2878 	rq = __blk_mq_alloc_requests(&data);
2879 	if (rq)
2880 		return rq;
2881 	rq_qos_cleanup(q, bio);
2882 	if (bio->bi_opf & REQ_NOWAIT)
2883 		bio_wouldblock_error(bio);
2884 queue_exit:
2885 	blk_queue_exit(q);
2886 	return NULL;
2887 }
2888 
2889 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2890 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2891 {
2892 	struct request *rq;
2893 
2894 	if (!plug)
2895 		return NULL;
2896 	rq = rq_list_peek(&plug->cached_rq);
2897 	if (!rq || rq->q != q)
2898 		return NULL;
2899 
2900 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2901 		*bio = NULL;
2902 		return NULL;
2903 	}
2904 
2905 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2906 		return NULL;
2907 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2908 		return NULL;
2909 
2910 	/*
2911 	 * If any qos ->throttle() end up blocking, we will have flushed the
2912 	 * plug and hence killed the cached_rq list as well. Pop this entry
2913 	 * before we throttle.
2914 	 */
2915 	plug->cached_rq = rq_list_next(rq);
2916 	rq_qos_throttle(q, *bio);
2917 
2918 	rq->cmd_flags = (*bio)->bi_opf;
2919 	INIT_LIST_HEAD(&rq->queuelist);
2920 	return rq;
2921 }
2922 
2923 static void bio_set_ioprio(struct bio *bio)
2924 {
2925 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2926 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2927 		bio->bi_ioprio = get_current_ioprio();
2928 	blkcg_set_ioprio(bio);
2929 }
2930 
2931 /**
2932  * blk_mq_submit_bio - Create and send a request to block device.
2933  * @bio: Bio pointer.
2934  *
2935  * Builds up a request structure from @q and @bio and send to the device. The
2936  * request may not be queued directly to hardware if:
2937  * * This request can be merged with another one
2938  * * We want to place request at plug queue for possible future merging
2939  * * There is an IO scheduler active at this queue
2940  *
2941  * It will not queue the request if there is an error with the bio, or at the
2942  * request creation.
2943  */
2944 void blk_mq_submit_bio(struct bio *bio)
2945 {
2946 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2947 	struct blk_plug *plug = blk_mq_plug(bio);
2948 	const int is_sync = op_is_sync(bio->bi_opf);
2949 	struct request *rq;
2950 	unsigned int nr_segs = 1;
2951 	blk_status_t ret;
2952 
2953 	bio = blk_queue_bounce(bio, q);
2954 	if (bio_may_exceed_limits(bio, &q->limits)) {
2955 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2956 		if (!bio)
2957 			return;
2958 	}
2959 
2960 	if (!bio_integrity_prep(bio))
2961 		return;
2962 
2963 	bio_set_ioprio(bio);
2964 
2965 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2966 	if (!rq) {
2967 		if (!bio)
2968 			return;
2969 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2970 		if (unlikely(!rq))
2971 			return;
2972 	}
2973 
2974 	trace_block_getrq(bio);
2975 
2976 	rq_qos_track(q, rq, bio);
2977 
2978 	blk_mq_bio_to_request(rq, bio, nr_segs);
2979 
2980 	ret = blk_crypto_init_request(rq);
2981 	if (ret != BLK_STS_OK) {
2982 		bio->bi_status = ret;
2983 		bio_endio(bio);
2984 		blk_mq_free_request(rq);
2985 		return;
2986 	}
2987 
2988 	if (op_is_flush(bio->bi_opf)) {
2989 		blk_insert_flush(rq);
2990 		return;
2991 	}
2992 
2993 	if (plug)
2994 		blk_add_rq_to_plug(plug, rq);
2995 	else if ((rq->rq_flags & RQF_ELV) ||
2996 		 (rq->mq_hctx->dispatch_busy &&
2997 		  (q->nr_hw_queues == 1 || !is_sync)))
2998 		blk_mq_sched_insert_request(rq, false, true, true);
2999 	else
3000 		blk_mq_run_dispatch_ops(rq->q,
3001 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
3002 }
3003 
3004 #ifdef CONFIG_BLK_MQ_STACKING
3005 /**
3006  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3007  * @rq: the request being queued
3008  */
3009 blk_status_t blk_insert_cloned_request(struct request *rq)
3010 {
3011 	struct request_queue *q = rq->q;
3012 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3013 	blk_status_t ret;
3014 
3015 	if (blk_rq_sectors(rq) > max_sectors) {
3016 		/*
3017 		 * SCSI device does not have a good way to return if
3018 		 * Write Same/Zero is actually supported. If a device rejects
3019 		 * a non-read/write command (discard, write same,etc.) the
3020 		 * low-level device driver will set the relevant queue limit to
3021 		 * 0 to prevent blk-lib from issuing more of the offending
3022 		 * operations. Commands queued prior to the queue limit being
3023 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3024 		 * errors being propagated to upper layers.
3025 		 */
3026 		if (max_sectors == 0)
3027 			return BLK_STS_NOTSUPP;
3028 
3029 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3030 			__func__, blk_rq_sectors(rq), max_sectors);
3031 		return BLK_STS_IOERR;
3032 	}
3033 
3034 	/*
3035 	 * The queue settings related to segment counting may differ from the
3036 	 * original queue.
3037 	 */
3038 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3039 	if (rq->nr_phys_segments > queue_max_segments(q)) {
3040 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3041 			__func__, rq->nr_phys_segments, queue_max_segments(q));
3042 		return BLK_STS_IOERR;
3043 	}
3044 
3045 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3046 		return BLK_STS_IOERR;
3047 
3048 	if (blk_crypto_insert_cloned_request(rq))
3049 		return BLK_STS_IOERR;
3050 
3051 	blk_account_io_start(rq);
3052 
3053 	/*
3054 	 * Since we have a scheduler attached on the top device,
3055 	 * bypass a potential scheduler on the bottom device for
3056 	 * insert.
3057 	 */
3058 	blk_mq_run_dispatch_ops(q,
3059 			ret = blk_mq_request_issue_directly(rq, true));
3060 	if (ret)
3061 		blk_account_io_done(rq, ktime_get_ns());
3062 	return ret;
3063 }
3064 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3065 
3066 /**
3067  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3068  * @rq: the clone request to be cleaned up
3069  *
3070  * Description:
3071  *     Free all bios in @rq for a cloned request.
3072  */
3073 void blk_rq_unprep_clone(struct request *rq)
3074 {
3075 	struct bio *bio;
3076 
3077 	while ((bio = rq->bio) != NULL) {
3078 		rq->bio = bio->bi_next;
3079 
3080 		bio_put(bio);
3081 	}
3082 }
3083 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3084 
3085 /**
3086  * blk_rq_prep_clone - Helper function to setup clone request
3087  * @rq: the request to be setup
3088  * @rq_src: original request to be cloned
3089  * @bs: bio_set that bios for clone are allocated from
3090  * @gfp_mask: memory allocation mask for bio
3091  * @bio_ctr: setup function to be called for each clone bio.
3092  *           Returns %0 for success, non %0 for failure.
3093  * @data: private data to be passed to @bio_ctr
3094  *
3095  * Description:
3096  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3097  *     Also, pages which the original bios are pointing to are not copied
3098  *     and the cloned bios just point same pages.
3099  *     So cloned bios must be completed before original bios, which means
3100  *     the caller must complete @rq before @rq_src.
3101  */
3102 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3103 		      struct bio_set *bs, gfp_t gfp_mask,
3104 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3105 		      void *data)
3106 {
3107 	struct bio *bio, *bio_src;
3108 
3109 	if (!bs)
3110 		bs = &fs_bio_set;
3111 
3112 	__rq_for_each_bio(bio_src, rq_src) {
3113 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3114 				      bs);
3115 		if (!bio)
3116 			goto free_and_out;
3117 
3118 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3119 			goto free_and_out;
3120 
3121 		if (rq->bio) {
3122 			rq->biotail->bi_next = bio;
3123 			rq->biotail = bio;
3124 		} else {
3125 			rq->bio = rq->biotail = bio;
3126 		}
3127 		bio = NULL;
3128 	}
3129 
3130 	/* Copy attributes of the original request to the clone request. */
3131 	rq->__sector = blk_rq_pos(rq_src);
3132 	rq->__data_len = blk_rq_bytes(rq_src);
3133 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3134 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3135 		rq->special_vec = rq_src->special_vec;
3136 	}
3137 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3138 	rq->ioprio = rq_src->ioprio;
3139 
3140 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3141 		goto free_and_out;
3142 
3143 	return 0;
3144 
3145 free_and_out:
3146 	if (bio)
3147 		bio_put(bio);
3148 	blk_rq_unprep_clone(rq);
3149 
3150 	return -ENOMEM;
3151 }
3152 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3153 #endif /* CONFIG_BLK_MQ_STACKING */
3154 
3155 /*
3156  * Steal bios from a request and add them to a bio list.
3157  * The request must not have been partially completed before.
3158  */
3159 void blk_steal_bios(struct bio_list *list, struct request *rq)
3160 {
3161 	if (rq->bio) {
3162 		if (list->tail)
3163 			list->tail->bi_next = rq->bio;
3164 		else
3165 			list->head = rq->bio;
3166 		list->tail = rq->biotail;
3167 
3168 		rq->bio = NULL;
3169 		rq->biotail = NULL;
3170 	}
3171 
3172 	rq->__data_len = 0;
3173 }
3174 EXPORT_SYMBOL_GPL(blk_steal_bios);
3175 
3176 static size_t order_to_size(unsigned int order)
3177 {
3178 	return (size_t)PAGE_SIZE << order;
3179 }
3180 
3181 /* called before freeing request pool in @tags */
3182 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3183 				    struct blk_mq_tags *tags)
3184 {
3185 	struct page *page;
3186 	unsigned long flags;
3187 
3188 	/*
3189 	 * There is no need to clear mapping if driver tags is not initialized
3190 	 * or the mapping belongs to the driver tags.
3191 	 */
3192 	if (!drv_tags || drv_tags == tags)
3193 		return;
3194 
3195 	list_for_each_entry(page, &tags->page_list, lru) {
3196 		unsigned long start = (unsigned long)page_address(page);
3197 		unsigned long end = start + order_to_size(page->private);
3198 		int i;
3199 
3200 		for (i = 0; i < drv_tags->nr_tags; i++) {
3201 			struct request *rq = drv_tags->rqs[i];
3202 			unsigned long rq_addr = (unsigned long)rq;
3203 
3204 			if (rq_addr >= start && rq_addr < end) {
3205 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3206 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3207 			}
3208 		}
3209 	}
3210 
3211 	/*
3212 	 * Wait until all pending iteration is done.
3213 	 *
3214 	 * Request reference is cleared and it is guaranteed to be observed
3215 	 * after the ->lock is released.
3216 	 */
3217 	spin_lock_irqsave(&drv_tags->lock, flags);
3218 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3219 }
3220 
3221 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3222 		     unsigned int hctx_idx)
3223 {
3224 	struct blk_mq_tags *drv_tags;
3225 	struct page *page;
3226 
3227 	if (list_empty(&tags->page_list))
3228 		return;
3229 
3230 	if (blk_mq_is_shared_tags(set->flags))
3231 		drv_tags = set->shared_tags;
3232 	else
3233 		drv_tags = set->tags[hctx_idx];
3234 
3235 	if (tags->static_rqs && set->ops->exit_request) {
3236 		int i;
3237 
3238 		for (i = 0; i < tags->nr_tags; i++) {
3239 			struct request *rq = tags->static_rqs[i];
3240 
3241 			if (!rq)
3242 				continue;
3243 			set->ops->exit_request(set, rq, hctx_idx);
3244 			tags->static_rqs[i] = NULL;
3245 		}
3246 	}
3247 
3248 	blk_mq_clear_rq_mapping(drv_tags, tags);
3249 
3250 	while (!list_empty(&tags->page_list)) {
3251 		page = list_first_entry(&tags->page_list, struct page, lru);
3252 		list_del_init(&page->lru);
3253 		/*
3254 		 * Remove kmemleak object previously allocated in
3255 		 * blk_mq_alloc_rqs().
3256 		 */
3257 		kmemleak_free(page_address(page));
3258 		__free_pages(page, page->private);
3259 	}
3260 }
3261 
3262 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3263 {
3264 	kfree(tags->rqs);
3265 	tags->rqs = NULL;
3266 	kfree(tags->static_rqs);
3267 	tags->static_rqs = NULL;
3268 
3269 	blk_mq_free_tags(tags);
3270 }
3271 
3272 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3273 		unsigned int hctx_idx)
3274 {
3275 	int i;
3276 
3277 	for (i = 0; i < set->nr_maps; i++) {
3278 		unsigned int start = set->map[i].queue_offset;
3279 		unsigned int end = start + set->map[i].nr_queues;
3280 
3281 		if (hctx_idx >= start && hctx_idx < end)
3282 			break;
3283 	}
3284 
3285 	if (i >= set->nr_maps)
3286 		i = HCTX_TYPE_DEFAULT;
3287 
3288 	return i;
3289 }
3290 
3291 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3292 		unsigned int hctx_idx)
3293 {
3294 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3295 
3296 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3297 }
3298 
3299 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3300 					       unsigned int hctx_idx,
3301 					       unsigned int nr_tags,
3302 					       unsigned int reserved_tags)
3303 {
3304 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3305 	struct blk_mq_tags *tags;
3306 
3307 	if (node == NUMA_NO_NODE)
3308 		node = set->numa_node;
3309 
3310 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3311 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3312 	if (!tags)
3313 		return NULL;
3314 
3315 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3316 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3317 				 node);
3318 	if (!tags->rqs)
3319 		goto err_free_tags;
3320 
3321 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3322 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3323 					node);
3324 	if (!tags->static_rqs)
3325 		goto err_free_rqs;
3326 
3327 	return tags;
3328 
3329 err_free_rqs:
3330 	kfree(tags->rqs);
3331 err_free_tags:
3332 	blk_mq_free_tags(tags);
3333 	return NULL;
3334 }
3335 
3336 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3337 			       unsigned int hctx_idx, int node)
3338 {
3339 	int ret;
3340 
3341 	if (set->ops->init_request) {
3342 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3343 		if (ret)
3344 			return ret;
3345 	}
3346 
3347 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3348 	return 0;
3349 }
3350 
3351 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3352 			    struct blk_mq_tags *tags,
3353 			    unsigned int hctx_idx, unsigned int depth)
3354 {
3355 	unsigned int i, j, entries_per_page, max_order = 4;
3356 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3357 	size_t rq_size, left;
3358 
3359 	if (node == NUMA_NO_NODE)
3360 		node = set->numa_node;
3361 
3362 	INIT_LIST_HEAD(&tags->page_list);
3363 
3364 	/*
3365 	 * rq_size is the size of the request plus driver payload, rounded
3366 	 * to the cacheline size
3367 	 */
3368 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3369 				cache_line_size());
3370 	left = rq_size * depth;
3371 
3372 	for (i = 0; i < depth; ) {
3373 		int this_order = max_order;
3374 		struct page *page;
3375 		int to_do;
3376 		void *p;
3377 
3378 		while (this_order && left < order_to_size(this_order - 1))
3379 			this_order--;
3380 
3381 		do {
3382 			page = alloc_pages_node(node,
3383 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3384 				this_order);
3385 			if (page)
3386 				break;
3387 			if (!this_order--)
3388 				break;
3389 			if (order_to_size(this_order) < rq_size)
3390 				break;
3391 		} while (1);
3392 
3393 		if (!page)
3394 			goto fail;
3395 
3396 		page->private = this_order;
3397 		list_add_tail(&page->lru, &tags->page_list);
3398 
3399 		p = page_address(page);
3400 		/*
3401 		 * Allow kmemleak to scan these pages as they contain pointers
3402 		 * to additional allocations like via ops->init_request().
3403 		 */
3404 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3405 		entries_per_page = order_to_size(this_order) / rq_size;
3406 		to_do = min(entries_per_page, depth - i);
3407 		left -= to_do * rq_size;
3408 		for (j = 0; j < to_do; j++) {
3409 			struct request *rq = p;
3410 
3411 			tags->static_rqs[i] = rq;
3412 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3413 				tags->static_rqs[i] = NULL;
3414 				goto fail;
3415 			}
3416 
3417 			p += rq_size;
3418 			i++;
3419 		}
3420 	}
3421 	return 0;
3422 
3423 fail:
3424 	blk_mq_free_rqs(set, tags, hctx_idx);
3425 	return -ENOMEM;
3426 }
3427 
3428 struct rq_iter_data {
3429 	struct blk_mq_hw_ctx *hctx;
3430 	bool has_rq;
3431 };
3432 
3433 static bool blk_mq_has_request(struct request *rq, void *data)
3434 {
3435 	struct rq_iter_data *iter_data = data;
3436 
3437 	if (rq->mq_hctx != iter_data->hctx)
3438 		return true;
3439 	iter_data->has_rq = true;
3440 	return false;
3441 }
3442 
3443 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3444 {
3445 	struct blk_mq_tags *tags = hctx->sched_tags ?
3446 			hctx->sched_tags : hctx->tags;
3447 	struct rq_iter_data data = {
3448 		.hctx	= hctx,
3449 	};
3450 
3451 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3452 	return data.has_rq;
3453 }
3454 
3455 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3456 		struct blk_mq_hw_ctx *hctx)
3457 {
3458 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3459 		return false;
3460 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3461 		return false;
3462 	return true;
3463 }
3464 
3465 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3466 {
3467 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3468 			struct blk_mq_hw_ctx, cpuhp_online);
3469 
3470 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3471 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3472 		return 0;
3473 
3474 	/*
3475 	 * Prevent new request from being allocated on the current hctx.
3476 	 *
3477 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3478 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3479 	 * seen once we return from the tag allocator.
3480 	 */
3481 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3482 	smp_mb__after_atomic();
3483 
3484 	/*
3485 	 * Try to grab a reference to the queue and wait for any outstanding
3486 	 * requests.  If we could not grab a reference the queue has been
3487 	 * frozen and there are no requests.
3488 	 */
3489 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3490 		while (blk_mq_hctx_has_requests(hctx))
3491 			msleep(5);
3492 		percpu_ref_put(&hctx->queue->q_usage_counter);
3493 	}
3494 
3495 	return 0;
3496 }
3497 
3498 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3499 {
3500 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3501 			struct blk_mq_hw_ctx, cpuhp_online);
3502 
3503 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3504 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3505 	return 0;
3506 }
3507 
3508 /*
3509  * 'cpu' is going away. splice any existing rq_list entries from this
3510  * software queue to the hw queue dispatch list, and ensure that it
3511  * gets run.
3512  */
3513 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3514 {
3515 	struct blk_mq_hw_ctx *hctx;
3516 	struct blk_mq_ctx *ctx;
3517 	LIST_HEAD(tmp);
3518 	enum hctx_type type;
3519 
3520 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3521 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3522 		return 0;
3523 
3524 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3525 	type = hctx->type;
3526 
3527 	spin_lock(&ctx->lock);
3528 	if (!list_empty(&ctx->rq_lists[type])) {
3529 		list_splice_init(&ctx->rq_lists[type], &tmp);
3530 		blk_mq_hctx_clear_pending(hctx, ctx);
3531 	}
3532 	spin_unlock(&ctx->lock);
3533 
3534 	if (list_empty(&tmp))
3535 		return 0;
3536 
3537 	spin_lock(&hctx->lock);
3538 	list_splice_tail_init(&tmp, &hctx->dispatch);
3539 	spin_unlock(&hctx->lock);
3540 
3541 	blk_mq_run_hw_queue(hctx, true);
3542 	return 0;
3543 }
3544 
3545 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3546 {
3547 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3548 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3549 						    &hctx->cpuhp_online);
3550 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3551 					    &hctx->cpuhp_dead);
3552 }
3553 
3554 /*
3555  * Before freeing hw queue, clearing the flush request reference in
3556  * tags->rqs[] for avoiding potential UAF.
3557  */
3558 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3559 		unsigned int queue_depth, struct request *flush_rq)
3560 {
3561 	int i;
3562 	unsigned long flags;
3563 
3564 	/* The hw queue may not be mapped yet */
3565 	if (!tags)
3566 		return;
3567 
3568 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3569 
3570 	for (i = 0; i < queue_depth; i++)
3571 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3572 
3573 	/*
3574 	 * Wait until all pending iteration is done.
3575 	 *
3576 	 * Request reference is cleared and it is guaranteed to be observed
3577 	 * after the ->lock is released.
3578 	 */
3579 	spin_lock_irqsave(&tags->lock, flags);
3580 	spin_unlock_irqrestore(&tags->lock, flags);
3581 }
3582 
3583 /* hctx->ctxs will be freed in queue's release handler */
3584 static void blk_mq_exit_hctx(struct request_queue *q,
3585 		struct blk_mq_tag_set *set,
3586 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3587 {
3588 	struct request *flush_rq = hctx->fq->flush_rq;
3589 
3590 	if (blk_mq_hw_queue_mapped(hctx))
3591 		blk_mq_tag_idle(hctx);
3592 
3593 	if (blk_queue_init_done(q))
3594 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3595 				set->queue_depth, flush_rq);
3596 	if (set->ops->exit_request)
3597 		set->ops->exit_request(set, flush_rq, hctx_idx);
3598 
3599 	if (set->ops->exit_hctx)
3600 		set->ops->exit_hctx(hctx, hctx_idx);
3601 
3602 	blk_mq_remove_cpuhp(hctx);
3603 
3604 	xa_erase(&q->hctx_table, hctx_idx);
3605 
3606 	spin_lock(&q->unused_hctx_lock);
3607 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3608 	spin_unlock(&q->unused_hctx_lock);
3609 }
3610 
3611 static void blk_mq_exit_hw_queues(struct request_queue *q,
3612 		struct blk_mq_tag_set *set, int nr_queue)
3613 {
3614 	struct blk_mq_hw_ctx *hctx;
3615 	unsigned long i;
3616 
3617 	queue_for_each_hw_ctx(q, hctx, i) {
3618 		if (i == nr_queue)
3619 			break;
3620 		blk_mq_exit_hctx(q, set, hctx, i);
3621 	}
3622 }
3623 
3624 static int blk_mq_init_hctx(struct request_queue *q,
3625 		struct blk_mq_tag_set *set,
3626 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3627 {
3628 	hctx->queue_num = hctx_idx;
3629 
3630 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3631 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3632 				&hctx->cpuhp_online);
3633 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3634 
3635 	hctx->tags = set->tags[hctx_idx];
3636 
3637 	if (set->ops->init_hctx &&
3638 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3639 		goto unregister_cpu_notifier;
3640 
3641 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3642 				hctx->numa_node))
3643 		goto exit_hctx;
3644 
3645 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3646 		goto exit_flush_rq;
3647 
3648 	return 0;
3649 
3650  exit_flush_rq:
3651 	if (set->ops->exit_request)
3652 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3653  exit_hctx:
3654 	if (set->ops->exit_hctx)
3655 		set->ops->exit_hctx(hctx, hctx_idx);
3656  unregister_cpu_notifier:
3657 	blk_mq_remove_cpuhp(hctx);
3658 	return -1;
3659 }
3660 
3661 static struct blk_mq_hw_ctx *
3662 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3663 		int node)
3664 {
3665 	struct blk_mq_hw_ctx *hctx;
3666 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3667 
3668 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3669 	if (!hctx)
3670 		goto fail_alloc_hctx;
3671 
3672 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3673 		goto free_hctx;
3674 
3675 	atomic_set(&hctx->nr_active, 0);
3676 	if (node == NUMA_NO_NODE)
3677 		node = set->numa_node;
3678 	hctx->numa_node = node;
3679 
3680 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3681 	spin_lock_init(&hctx->lock);
3682 	INIT_LIST_HEAD(&hctx->dispatch);
3683 	hctx->queue = q;
3684 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3685 
3686 	INIT_LIST_HEAD(&hctx->hctx_list);
3687 
3688 	/*
3689 	 * Allocate space for all possible cpus to avoid allocation at
3690 	 * runtime
3691 	 */
3692 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3693 			gfp, node);
3694 	if (!hctx->ctxs)
3695 		goto free_cpumask;
3696 
3697 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3698 				gfp, node, false, false))
3699 		goto free_ctxs;
3700 	hctx->nr_ctx = 0;
3701 
3702 	spin_lock_init(&hctx->dispatch_wait_lock);
3703 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3704 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3705 
3706 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3707 	if (!hctx->fq)
3708 		goto free_bitmap;
3709 
3710 	blk_mq_hctx_kobj_init(hctx);
3711 
3712 	return hctx;
3713 
3714  free_bitmap:
3715 	sbitmap_free(&hctx->ctx_map);
3716  free_ctxs:
3717 	kfree(hctx->ctxs);
3718  free_cpumask:
3719 	free_cpumask_var(hctx->cpumask);
3720  free_hctx:
3721 	kfree(hctx);
3722  fail_alloc_hctx:
3723 	return NULL;
3724 }
3725 
3726 static void blk_mq_init_cpu_queues(struct request_queue *q,
3727 				   unsigned int nr_hw_queues)
3728 {
3729 	struct blk_mq_tag_set *set = q->tag_set;
3730 	unsigned int i, j;
3731 
3732 	for_each_possible_cpu(i) {
3733 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3734 		struct blk_mq_hw_ctx *hctx;
3735 		int k;
3736 
3737 		__ctx->cpu = i;
3738 		spin_lock_init(&__ctx->lock);
3739 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3740 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3741 
3742 		__ctx->queue = q;
3743 
3744 		/*
3745 		 * Set local node, IFF we have more than one hw queue. If
3746 		 * not, we remain on the home node of the device
3747 		 */
3748 		for (j = 0; j < set->nr_maps; j++) {
3749 			hctx = blk_mq_map_queue_type(q, j, i);
3750 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3751 				hctx->numa_node = cpu_to_node(i);
3752 		}
3753 	}
3754 }
3755 
3756 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3757 					     unsigned int hctx_idx,
3758 					     unsigned int depth)
3759 {
3760 	struct blk_mq_tags *tags;
3761 	int ret;
3762 
3763 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3764 	if (!tags)
3765 		return NULL;
3766 
3767 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3768 	if (ret) {
3769 		blk_mq_free_rq_map(tags);
3770 		return NULL;
3771 	}
3772 
3773 	return tags;
3774 }
3775 
3776 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3777 				       int hctx_idx)
3778 {
3779 	if (blk_mq_is_shared_tags(set->flags)) {
3780 		set->tags[hctx_idx] = set->shared_tags;
3781 
3782 		return true;
3783 	}
3784 
3785 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3786 						       set->queue_depth);
3787 
3788 	return set->tags[hctx_idx];
3789 }
3790 
3791 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3792 			     struct blk_mq_tags *tags,
3793 			     unsigned int hctx_idx)
3794 {
3795 	if (tags) {
3796 		blk_mq_free_rqs(set, tags, hctx_idx);
3797 		blk_mq_free_rq_map(tags);
3798 	}
3799 }
3800 
3801 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3802 				      unsigned int hctx_idx)
3803 {
3804 	if (!blk_mq_is_shared_tags(set->flags))
3805 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3806 
3807 	set->tags[hctx_idx] = NULL;
3808 }
3809 
3810 static void blk_mq_map_swqueue(struct request_queue *q)
3811 {
3812 	unsigned int j, hctx_idx;
3813 	unsigned long i;
3814 	struct blk_mq_hw_ctx *hctx;
3815 	struct blk_mq_ctx *ctx;
3816 	struct blk_mq_tag_set *set = q->tag_set;
3817 
3818 	queue_for_each_hw_ctx(q, hctx, i) {
3819 		cpumask_clear(hctx->cpumask);
3820 		hctx->nr_ctx = 0;
3821 		hctx->dispatch_from = NULL;
3822 	}
3823 
3824 	/*
3825 	 * Map software to hardware queues.
3826 	 *
3827 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3828 	 */
3829 	for_each_possible_cpu(i) {
3830 
3831 		ctx = per_cpu_ptr(q->queue_ctx, i);
3832 		for (j = 0; j < set->nr_maps; j++) {
3833 			if (!set->map[j].nr_queues) {
3834 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3835 						HCTX_TYPE_DEFAULT, i);
3836 				continue;
3837 			}
3838 			hctx_idx = set->map[j].mq_map[i];
3839 			/* unmapped hw queue can be remapped after CPU topo changed */
3840 			if (!set->tags[hctx_idx] &&
3841 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3842 				/*
3843 				 * If tags initialization fail for some hctx,
3844 				 * that hctx won't be brought online.  In this
3845 				 * case, remap the current ctx to hctx[0] which
3846 				 * is guaranteed to always have tags allocated
3847 				 */
3848 				set->map[j].mq_map[i] = 0;
3849 			}
3850 
3851 			hctx = blk_mq_map_queue_type(q, j, i);
3852 			ctx->hctxs[j] = hctx;
3853 			/*
3854 			 * If the CPU is already set in the mask, then we've
3855 			 * mapped this one already. This can happen if
3856 			 * devices share queues across queue maps.
3857 			 */
3858 			if (cpumask_test_cpu(i, hctx->cpumask))
3859 				continue;
3860 
3861 			cpumask_set_cpu(i, hctx->cpumask);
3862 			hctx->type = j;
3863 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3864 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3865 
3866 			/*
3867 			 * If the nr_ctx type overflows, we have exceeded the
3868 			 * amount of sw queues we can support.
3869 			 */
3870 			BUG_ON(!hctx->nr_ctx);
3871 		}
3872 
3873 		for (; j < HCTX_MAX_TYPES; j++)
3874 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3875 					HCTX_TYPE_DEFAULT, i);
3876 	}
3877 
3878 	queue_for_each_hw_ctx(q, hctx, i) {
3879 		/*
3880 		 * If no software queues are mapped to this hardware queue,
3881 		 * disable it and free the request entries.
3882 		 */
3883 		if (!hctx->nr_ctx) {
3884 			/* Never unmap queue 0.  We need it as a
3885 			 * fallback in case of a new remap fails
3886 			 * allocation
3887 			 */
3888 			if (i)
3889 				__blk_mq_free_map_and_rqs(set, i);
3890 
3891 			hctx->tags = NULL;
3892 			continue;
3893 		}
3894 
3895 		hctx->tags = set->tags[i];
3896 		WARN_ON(!hctx->tags);
3897 
3898 		/*
3899 		 * Set the map size to the number of mapped software queues.
3900 		 * This is more accurate and more efficient than looping
3901 		 * over all possibly mapped software queues.
3902 		 */
3903 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3904 
3905 		/*
3906 		 * Initialize batch roundrobin counts
3907 		 */
3908 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3909 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3910 	}
3911 }
3912 
3913 /*
3914  * Caller needs to ensure that we're either frozen/quiesced, or that
3915  * the queue isn't live yet.
3916  */
3917 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3918 {
3919 	struct blk_mq_hw_ctx *hctx;
3920 	unsigned long i;
3921 
3922 	queue_for_each_hw_ctx(q, hctx, i) {
3923 		if (shared) {
3924 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3925 		} else {
3926 			blk_mq_tag_idle(hctx);
3927 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3928 		}
3929 	}
3930 }
3931 
3932 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3933 					 bool shared)
3934 {
3935 	struct request_queue *q;
3936 
3937 	lockdep_assert_held(&set->tag_list_lock);
3938 
3939 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3940 		blk_mq_freeze_queue(q);
3941 		queue_set_hctx_shared(q, shared);
3942 		blk_mq_unfreeze_queue(q);
3943 	}
3944 }
3945 
3946 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3947 {
3948 	struct blk_mq_tag_set *set = q->tag_set;
3949 
3950 	mutex_lock(&set->tag_list_lock);
3951 	list_del(&q->tag_set_list);
3952 	if (list_is_singular(&set->tag_list)) {
3953 		/* just transitioned to unshared */
3954 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3955 		/* update existing queue */
3956 		blk_mq_update_tag_set_shared(set, false);
3957 	}
3958 	mutex_unlock(&set->tag_list_lock);
3959 	INIT_LIST_HEAD(&q->tag_set_list);
3960 }
3961 
3962 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3963 				     struct request_queue *q)
3964 {
3965 	mutex_lock(&set->tag_list_lock);
3966 
3967 	/*
3968 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3969 	 */
3970 	if (!list_empty(&set->tag_list) &&
3971 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3972 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3973 		/* update existing queue */
3974 		blk_mq_update_tag_set_shared(set, true);
3975 	}
3976 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3977 		queue_set_hctx_shared(q, true);
3978 	list_add_tail(&q->tag_set_list, &set->tag_list);
3979 
3980 	mutex_unlock(&set->tag_list_lock);
3981 }
3982 
3983 /* All allocations will be freed in release handler of q->mq_kobj */
3984 static int blk_mq_alloc_ctxs(struct request_queue *q)
3985 {
3986 	struct blk_mq_ctxs *ctxs;
3987 	int cpu;
3988 
3989 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3990 	if (!ctxs)
3991 		return -ENOMEM;
3992 
3993 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3994 	if (!ctxs->queue_ctx)
3995 		goto fail;
3996 
3997 	for_each_possible_cpu(cpu) {
3998 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3999 		ctx->ctxs = ctxs;
4000 	}
4001 
4002 	q->mq_kobj = &ctxs->kobj;
4003 	q->queue_ctx = ctxs->queue_ctx;
4004 
4005 	return 0;
4006  fail:
4007 	kfree(ctxs);
4008 	return -ENOMEM;
4009 }
4010 
4011 /*
4012  * It is the actual release handler for mq, but we do it from
4013  * request queue's release handler for avoiding use-after-free
4014  * and headache because q->mq_kobj shouldn't have been introduced,
4015  * but we can't group ctx/kctx kobj without it.
4016  */
4017 void blk_mq_release(struct request_queue *q)
4018 {
4019 	struct blk_mq_hw_ctx *hctx, *next;
4020 	unsigned long i;
4021 
4022 	queue_for_each_hw_ctx(q, hctx, i)
4023 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4024 
4025 	/* all hctx are in .unused_hctx_list now */
4026 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4027 		list_del_init(&hctx->hctx_list);
4028 		kobject_put(&hctx->kobj);
4029 	}
4030 
4031 	xa_destroy(&q->hctx_table);
4032 
4033 	/*
4034 	 * release .mq_kobj and sw queue's kobject now because
4035 	 * both share lifetime with request queue.
4036 	 */
4037 	blk_mq_sysfs_deinit(q);
4038 }
4039 
4040 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4041 		void *queuedata)
4042 {
4043 	struct request_queue *q;
4044 	int ret;
4045 
4046 	q = blk_alloc_queue(set->numa_node);
4047 	if (!q)
4048 		return ERR_PTR(-ENOMEM);
4049 	q->queuedata = queuedata;
4050 	ret = blk_mq_init_allocated_queue(set, q);
4051 	if (ret) {
4052 		blk_put_queue(q);
4053 		return ERR_PTR(ret);
4054 	}
4055 	return q;
4056 }
4057 
4058 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4059 {
4060 	return blk_mq_init_queue_data(set, NULL);
4061 }
4062 EXPORT_SYMBOL(blk_mq_init_queue);
4063 
4064 /**
4065  * blk_mq_destroy_queue - shutdown a request queue
4066  * @q: request queue to shutdown
4067  *
4068  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4069  * the initial reference.  All future requests will failed with -ENODEV.
4070  *
4071  * Context: can sleep
4072  */
4073 void blk_mq_destroy_queue(struct request_queue *q)
4074 {
4075 	WARN_ON_ONCE(!queue_is_mq(q));
4076 	WARN_ON_ONCE(blk_queue_registered(q));
4077 
4078 	might_sleep();
4079 
4080 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4081 	blk_queue_start_drain(q);
4082 	blk_mq_freeze_queue_wait(q);
4083 
4084 	blk_sync_queue(q);
4085 	blk_mq_cancel_work_sync(q);
4086 	blk_mq_exit_queue(q);
4087 }
4088 EXPORT_SYMBOL(blk_mq_destroy_queue);
4089 
4090 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4091 		struct lock_class_key *lkclass)
4092 {
4093 	struct request_queue *q;
4094 	struct gendisk *disk;
4095 
4096 	q = blk_mq_init_queue_data(set, queuedata);
4097 	if (IS_ERR(q))
4098 		return ERR_CAST(q);
4099 
4100 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4101 	if (!disk) {
4102 		blk_mq_destroy_queue(q);
4103 		blk_put_queue(q);
4104 		return ERR_PTR(-ENOMEM);
4105 	}
4106 	set_bit(GD_OWNS_QUEUE, &disk->state);
4107 	return disk;
4108 }
4109 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4110 
4111 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4112 		struct lock_class_key *lkclass)
4113 {
4114 	struct gendisk *disk;
4115 
4116 	if (!blk_get_queue(q))
4117 		return NULL;
4118 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4119 	if (!disk)
4120 		blk_put_queue(q);
4121 	return disk;
4122 }
4123 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4124 
4125 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4126 		struct blk_mq_tag_set *set, struct request_queue *q,
4127 		int hctx_idx, int node)
4128 {
4129 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4130 
4131 	/* reuse dead hctx first */
4132 	spin_lock(&q->unused_hctx_lock);
4133 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4134 		if (tmp->numa_node == node) {
4135 			hctx = tmp;
4136 			break;
4137 		}
4138 	}
4139 	if (hctx)
4140 		list_del_init(&hctx->hctx_list);
4141 	spin_unlock(&q->unused_hctx_lock);
4142 
4143 	if (!hctx)
4144 		hctx = blk_mq_alloc_hctx(q, set, node);
4145 	if (!hctx)
4146 		goto fail;
4147 
4148 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4149 		goto free_hctx;
4150 
4151 	return hctx;
4152 
4153  free_hctx:
4154 	kobject_put(&hctx->kobj);
4155  fail:
4156 	return NULL;
4157 }
4158 
4159 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4160 						struct request_queue *q)
4161 {
4162 	struct blk_mq_hw_ctx *hctx;
4163 	unsigned long i, j;
4164 
4165 	/* protect against switching io scheduler  */
4166 	mutex_lock(&q->sysfs_lock);
4167 	for (i = 0; i < set->nr_hw_queues; i++) {
4168 		int old_node;
4169 		int node = blk_mq_get_hctx_node(set, i);
4170 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4171 
4172 		if (old_hctx) {
4173 			old_node = old_hctx->numa_node;
4174 			blk_mq_exit_hctx(q, set, old_hctx, i);
4175 		}
4176 
4177 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4178 			if (!old_hctx)
4179 				break;
4180 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4181 					node, old_node);
4182 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4183 			WARN_ON_ONCE(!hctx);
4184 		}
4185 	}
4186 	/*
4187 	 * Increasing nr_hw_queues fails. Free the newly allocated
4188 	 * hctxs and keep the previous q->nr_hw_queues.
4189 	 */
4190 	if (i != set->nr_hw_queues) {
4191 		j = q->nr_hw_queues;
4192 	} else {
4193 		j = i;
4194 		q->nr_hw_queues = set->nr_hw_queues;
4195 	}
4196 
4197 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4198 		blk_mq_exit_hctx(q, set, hctx, j);
4199 	mutex_unlock(&q->sysfs_lock);
4200 }
4201 
4202 static void blk_mq_update_poll_flag(struct request_queue *q)
4203 {
4204 	struct blk_mq_tag_set *set = q->tag_set;
4205 
4206 	if (set->nr_maps > HCTX_TYPE_POLL &&
4207 	    set->map[HCTX_TYPE_POLL].nr_queues)
4208 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4209 	else
4210 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4211 }
4212 
4213 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4214 		struct request_queue *q)
4215 {
4216 	/* mark the queue as mq asap */
4217 	q->mq_ops = set->ops;
4218 
4219 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4220 					     blk_mq_poll_stats_bkt,
4221 					     BLK_MQ_POLL_STATS_BKTS, q);
4222 	if (!q->poll_cb)
4223 		goto err_exit;
4224 
4225 	if (blk_mq_alloc_ctxs(q))
4226 		goto err_poll;
4227 
4228 	/* init q->mq_kobj and sw queues' kobjects */
4229 	blk_mq_sysfs_init(q);
4230 
4231 	INIT_LIST_HEAD(&q->unused_hctx_list);
4232 	spin_lock_init(&q->unused_hctx_lock);
4233 
4234 	xa_init(&q->hctx_table);
4235 
4236 	blk_mq_realloc_hw_ctxs(set, q);
4237 	if (!q->nr_hw_queues)
4238 		goto err_hctxs;
4239 
4240 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4241 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4242 
4243 	q->tag_set = set;
4244 
4245 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4246 	blk_mq_update_poll_flag(q);
4247 
4248 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4249 	INIT_LIST_HEAD(&q->requeue_list);
4250 	spin_lock_init(&q->requeue_lock);
4251 
4252 	q->nr_requests = set->queue_depth;
4253 
4254 	/*
4255 	 * Default to classic polling
4256 	 */
4257 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4258 
4259 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4260 	blk_mq_add_queue_tag_set(set, q);
4261 	blk_mq_map_swqueue(q);
4262 	return 0;
4263 
4264 err_hctxs:
4265 	blk_mq_release(q);
4266 err_poll:
4267 	blk_stat_free_callback(q->poll_cb);
4268 	q->poll_cb = NULL;
4269 err_exit:
4270 	q->mq_ops = NULL;
4271 	return -ENOMEM;
4272 }
4273 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4274 
4275 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4276 void blk_mq_exit_queue(struct request_queue *q)
4277 {
4278 	struct blk_mq_tag_set *set = q->tag_set;
4279 
4280 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4281 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4282 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4283 	blk_mq_del_queue_tag_set(q);
4284 }
4285 
4286 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4287 {
4288 	int i;
4289 
4290 	if (blk_mq_is_shared_tags(set->flags)) {
4291 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4292 						BLK_MQ_NO_HCTX_IDX,
4293 						set->queue_depth);
4294 		if (!set->shared_tags)
4295 			return -ENOMEM;
4296 	}
4297 
4298 	for (i = 0; i < set->nr_hw_queues; i++) {
4299 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4300 			goto out_unwind;
4301 		cond_resched();
4302 	}
4303 
4304 	return 0;
4305 
4306 out_unwind:
4307 	while (--i >= 0)
4308 		__blk_mq_free_map_and_rqs(set, i);
4309 
4310 	if (blk_mq_is_shared_tags(set->flags)) {
4311 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4312 					BLK_MQ_NO_HCTX_IDX);
4313 	}
4314 
4315 	return -ENOMEM;
4316 }
4317 
4318 /*
4319  * Allocate the request maps associated with this tag_set. Note that this
4320  * may reduce the depth asked for, if memory is tight. set->queue_depth
4321  * will be updated to reflect the allocated depth.
4322  */
4323 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4324 {
4325 	unsigned int depth;
4326 	int err;
4327 
4328 	depth = set->queue_depth;
4329 	do {
4330 		err = __blk_mq_alloc_rq_maps(set);
4331 		if (!err)
4332 			break;
4333 
4334 		set->queue_depth >>= 1;
4335 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4336 			err = -ENOMEM;
4337 			break;
4338 		}
4339 	} while (set->queue_depth);
4340 
4341 	if (!set->queue_depth || err) {
4342 		pr_err("blk-mq: failed to allocate request map\n");
4343 		return -ENOMEM;
4344 	}
4345 
4346 	if (depth != set->queue_depth)
4347 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4348 						depth, set->queue_depth);
4349 
4350 	return 0;
4351 }
4352 
4353 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4354 {
4355 	/*
4356 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4357 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4358 	 * number of hardware queues.
4359 	 */
4360 	if (set->nr_maps == 1)
4361 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4362 
4363 	if (set->ops->map_queues && !is_kdump_kernel()) {
4364 		int i;
4365 
4366 		/*
4367 		 * transport .map_queues is usually done in the following
4368 		 * way:
4369 		 *
4370 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4371 		 * 	mask = get_cpu_mask(queue)
4372 		 * 	for_each_cpu(cpu, mask)
4373 		 * 		set->map[x].mq_map[cpu] = queue;
4374 		 * }
4375 		 *
4376 		 * When we need to remap, the table has to be cleared for
4377 		 * killing stale mapping since one CPU may not be mapped
4378 		 * to any hw queue.
4379 		 */
4380 		for (i = 0; i < set->nr_maps; i++)
4381 			blk_mq_clear_mq_map(&set->map[i]);
4382 
4383 		set->ops->map_queues(set);
4384 	} else {
4385 		BUG_ON(set->nr_maps > 1);
4386 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4387 	}
4388 }
4389 
4390 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4391 				       int new_nr_hw_queues)
4392 {
4393 	struct blk_mq_tags **new_tags;
4394 
4395 	if (set->nr_hw_queues >= new_nr_hw_queues)
4396 		goto done;
4397 
4398 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4399 				GFP_KERNEL, set->numa_node);
4400 	if (!new_tags)
4401 		return -ENOMEM;
4402 
4403 	if (set->tags)
4404 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4405 		       sizeof(*set->tags));
4406 	kfree(set->tags);
4407 	set->tags = new_tags;
4408 done:
4409 	set->nr_hw_queues = new_nr_hw_queues;
4410 	return 0;
4411 }
4412 
4413 /*
4414  * Alloc a tag set to be associated with one or more request queues.
4415  * May fail with EINVAL for various error conditions. May adjust the
4416  * requested depth down, if it's too large. In that case, the set
4417  * value will be stored in set->queue_depth.
4418  */
4419 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4420 {
4421 	int i, ret;
4422 
4423 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4424 
4425 	if (!set->nr_hw_queues)
4426 		return -EINVAL;
4427 	if (!set->queue_depth)
4428 		return -EINVAL;
4429 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4430 		return -EINVAL;
4431 
4432 	if (!set->ops->queue_rq)
4433 		return -EINVAL;
4434 
4435 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4436 		return -EINVAL;
4437 
4438 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4439 		pr_info("blk-mq: reduced tag depth to %u\n",
4440 			BLK_MQ_MAX_DEPTH);
4441 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4442 	}
4443 
4444 	if (!set->nr_maps)
4445 		set->nr_maps = 1;
4446 	else if (set->nr_maps > HCTX_MAX_TYPES)
4447 		return -EINVAL;
4448 
4449 	/*
4450 	 * If a crashdump is active, then we are potentially in a very
4451 	 * memory constrained environment. Limit us to 1 queue and
4452 	 * 64 tags to prevent using too much memory.
4453 	 */
4454 	if (is_kdump_kernel()) {
4455 		set->nr_hw_queues = 1;
4456 		set->nr_maps = 1;
4457 		set->queue_depth = min(64U, set->queue_depth);
4458 	}
4459 	/*
4460 	 * There is no use for more h/w queues than cpus if we just have
4461 	 * a single map
4462 	 */
4463 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4464 		set->nr_hw_queues = nr_cpu_ids;
4465 
4466 	if (set->flags & BLK_MQ_F_BLOCKING) {
4467 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4468 		if (!set->srcu)
4469 			return -ENOMEM;
4470 		ret = init_srcu_struct(set->srcu);
4471 		if (ret)
4472 			goto out_free_srcu;
4473 	}
4474 
4475 	ret = -ENOMEM;
4476 	set->tags = kcalloc_node(set->nr_hw_queues,
4477 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4478 				 set->numa_node);
4479 	if (!set->tags)
4480 		goto out_cleanup_srcu;
4481 
4482 	for (i = 0; i < set->nr_maps; i++) {
4483 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4484 						  sizeof(set->map[i].mq_map[0]),
4485 						  GFP_KERNEL, set->numa_node);
4486 		if (!set->map[i].mq_map)
4487 			goto out_free_mq_map;
4488 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4489 	}
4490 
4491 	blk_mq_update_queue_map(set);
4492 
4493 	ret = blk_mq_alloc_set_map_and_rqs(set);
4494 	if (ret)
4495 		goto out_free_mq_map;
4496 
4497 	mutex_init(&set->tag_list_lock);
4498 	INIT_LIST_HEAD(&set->tag_list);
4499 
4500 	return 0;
4501 
4502 out_free_mq_map:
4503 	for (i = 0; i < set->nr_maps; i++) {
4504 		kfree(set->map[i].mq_map);
4505 		set->map[i].mq_map = NULL;
4506 	}
4507 	kfree(set->tags);
4508 	set->tags = NULL;
4509 out_cleanup_srcu:
4510 	if (set->flags & BLK_MQ_F_BLOCKING)
4511 		cleanup_srcu_struct(set->srcu);
4512 out_free_srcu:
4513 	if (set->flags & BLK_MQ_F_BLOCKING)
4514 		kfree(set->srcu);
4515 	return ret;
4516 }
4517 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4518 
4519 /* allocate and initialize a tagset for a simple single-queue device */
4520 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4521 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4522 		unsigned int set_flags)
4523 {
4524 	memset(set, 0, sizeof(*set));
4525 	set->ops = ops;
4526 	set->nr_hw_queues = 1;
4527 	set->nr_maps = 1;
4528 	set->queue_depth = queue_depth;
4529 	set->numa_node = NUMA_NO_NODE;
4530 	set->flags = set_flags;
4531 	return blk_mq_alloc_tag_set(set);
4532 }
4533 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4534 
4535 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4536 {
4537 	int i, j;
4538 
4539 	for (i = 0; i < set->nr_hw_queues; i++)
4540 		__blk_mq_free_map_and_rqs(set, i);
4541 
4542 	if (blk_mq_is_shared_tags(set->flags)) {
4543 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4544 					BLK_MQ_NO_HCTX_IDX);
4545 	}
4546 
4547 	for (j = 0; j < set->nr_maps; j++) {
4548 		kfree(set->map[j].mq_map);
4549 		set->map[j].mq_map = NULL;
4550 	}
4551 
4552 	kfree(set->tags);
4553 	set->tags = NULL;
4554 	if (set->flags & BLK_MQ_F_BLOCKING) {
4555 		cleanup_srcu_struct(set->srcu);
4556 		kfree(set->srcu);
4557 	}
4558 }
4559 EXPORT_SYMBOL(blk_mq_free_tag_set);
4560 
4561 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4562 {
4563 	struct blk_mq_tag_set *set = q->tag_set;
4564 	struct blk_mq_hw_ctx *hctx;
4565 	int ret;
4566 	unsigned long i;
4567 
4568 	if (!set)
4569 		return -EINVAL;
4570 
4571 	if (q->nr_requests == nr)
4572 		return 0;
4573 
4574 	blk_mq_freeze_queue(q);
4575 	blk_mq_quiesce_queue(q);
4576 
4577 	ret = 0;
4578 	queue_for_each_hw_ctx(q, hctx, i) {
4579 		if (!hctx->tags)
4580 			continue;
4581 		/*
4582 		 * If we're using an MQ scheduler, just update the scheduler
4583 		 * queue depth. This is similar to what the old code would do.
4584 		 */
4585 		if (hctx->sched_tags) {
4586 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4587 						      nr, true);
4588 		} else {
4589 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4590 						      false);
4591 		}
4592 		if (ret)
4593 			break;
4594 		if (q->elevator && q->elevator->type->ops.depth_updated)
4595 			q->elevator->type->ops.depth_updated(hctx);
4596 	}
4597 	if (!ret) {
4598 		q->nr_requests = nr;
4599 		if (blk_mq_is_shared_tags(set->flags)) {
4600 			if (q->elevator)
4601 				blk_mq_tag_update_sched_shared_tags(q);
4602 			else
4603 				blk_mq_tag_resize_shared_tags(set, nr);
4604 		}
4605 	}
4606 
4607 	blk_mq_unquiesce_queue(q);
4608 	blk_mq_unfreeze_queue(q);
4609 
4610 	return ret;
4611 }
4612 
4613 /*
4614  * request_queue and elevator_type pair.
4615  * It is just used by __blk_mq_update_nr_hw_queues to cache
4616  * the elevator_type associated with a request_queue.
4617  */
4618 struct blk_mq_qe_pair {
4619 	struct list_head node;
4620 	struct request_queue *q;
4621 	struct elevator_type *type;
4622 };
4623 
4624 /*
4625  * Cache the elevator_type in qe pair list and switch the
4626  * io scheduler to 'none'
4627  */
4628 static bool blk_mq_elv_switch_none(struct list_head *head,
4629 		struct request_queue *q)
4630 {
4631 	struct blk_mq_qe_pair *qe;
4632 
4633 	if (!q->elevator)
4634 		return true;
4635 
4636 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4637 	if (!qe)
4638 		return false;
4639 
4640 	/* q->elevator needs protection from ->sysfs_lock */
4641 	mutex_lock(&q->sysfs_lock);
4642 
4643 	INIT_LIST_HEAD(&qe->node);
4644 	qe->q = q;
4645 	qe->type = q->elevator->type;
4646 	/* keep a reference to the elevator module as we'll switch back */
4647 	__elevator_get(qe->type);
4648 	list_add(&qe->node, head);
4649 	elevator_disable(q);
4650 	mutex_unlock(&q->sysfs_lock);
4651 
4652 	return true;
4653 }
4654 
4655 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4656 						struct request_queue *q)
4657 {
4658 	struct blk_mq_qe_pair *qe;
4659 
4660 	list_for_each_entry(qe, head, node)
4661 		if (qe->q == q)
4662 			return qe;
4663 
4664 	return NULL;
4665 }
4666 
4667 static void blk_mq_elv_switch_back(struct list_head *head,
4668 				  struct request_queue *q)
4669 {
4670 	struct blk_mq_qe_pair *qe;
4671 	struct elevator_type *t;
4672 
4673 	qe = blk_lookup_qe_pair(head, q);
4674 	if (!qe)
4675 		return;
4676 	t = qe->type;
4677 	list_del(&qe->node);
4678 	kfree(qe);
4679 
4680 	mutex_lock(&q->sysfs_lock);
4681 	elevator_switch(q, t);
4682 	/* drop the reference acquired in blk_mq_elv_switch_none */
4683 	elevator_put(t);
4684 	mutex_unlock(&q->sysfs_lock);
4685 }
4686 
4687 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4688 							int nr_hw_queues)
4689 {
4690 	struct request_queue *q;
4691 	LIST_HEAD(head);
4692 	int prev_nr_hw_queues;
4693 
4694 	lockdep_assert_held(&set->tag_list_lock);
4695 
4696 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4697 		nr_hw_queues = nr_cpu_ids;
4698 	if (nr_hw_queues < 1)
4699 		return;
4700 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4701 		return;
4702 
4703 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4704 		blk_mq_freeze_queue(q);
4705 	/*
4706 	 * Switch IO scheduler to 'none', cleaning up the data associated
4707 	 * with the previous scheduler. We will switch back once we are done
4708 	 * updating the new sw to hw queue mappings.
4709 	 */
4710 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4711 		if (!blk_mq_elv_switch_none(&head, q))
4712 			goto switch_back;
4713 
4714 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4715 		blk_mq_debugfs_unregister_hctxs(q);
4716 		blk_mq_sysfs_unregister_hctxs(q);
4717 	}
4718 
4719 	prev_nr_hw_queues = set->nr_hw_queues;
4720 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4721 		goto reregister;
4722 
4723 fallback:
4724 	blk_mq_update_queue_map(set);
4725 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4726 		blk_mq_realloc_hw_ctxs(set, q);
4727 		blk_mq_update_poll_flag(q);
4728 		if (q->nr_hw_queues != set->nr_hw_queues) {
4729 			int i = prev_nr_hw_queues;
4730 
4731 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4732 					nr_hw_queues, prev_nr_hw_queues);
4733 			for (; i < set->nr_hw_queues; i++)
4734 				__blk_mq_free_map_and_rqs(set, i);
4735 
4736 			set->nr_hw_queues = prev_nr_hw_queues;
4737 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4738 			goto fallback;
4739 		}
4740 		blk_mq_map_swqueue(q);
4741 	}
4742 
4743 reregister:
4744 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4745 		blk_mq_sysfs_register_hctxs(q);
4746 		blk_mq_debugfs_register_hctxs(q);
4747 	}
4748 
4749 switch_back:
4750 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4751 		blk_mq_elv_switch_back(&head, q);
4752 
4753 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4754 		blk_mq_unfreeze_queue(q);
4755 }
4756 
4757 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4758 {
4759 	mutex_lock(&set->tag_list_lock);
4760 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4761 	mutex_unlock(&set->tag_list_lock);
4762 }
4763 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4764 
4765 /* Enable polling stats and return whether they were already enabled. */
4766 static bool blk_poll_stats_enable(struct request_queue *q)
4767 {
4768 	if (q->poll_stat)
4769 		return true;
4770 
4771 	return blk_stats_alloc_enable(q);
4772 }
4773 
4774 static void blk_mq_poll_stats_start(struct request_queue *q)
4775 {
4776 	/*
4777 	 * We don't arm the callback if polling stats are not enabled or the
4778 	 * callback is already active.
4779 	 */
4780 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4781 		return;
4782 
4783 	blk_stat_activate_msecs(q->poll_cb, 100);
4784 }
4785 
4786 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4787 {
4788 	struct request_queue *q = cb->data;
4789 	int bucket;
4790 
4791 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4792 		if (cb->stat[bucket].nr_samples)
4793 			q->poll_stat[bucket] = cb->stat[bucket];
4794 	}
4795 }
4796 
4797 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4798 				       struct request *rq)
4799 {
4800 	unsigned long ret = 0;
4801 	int bucket;
4802 
4803 	/*
4804 	 * If stats collection isn't on, don't sleep but turn it on for
4805 	 * future users
4806 	 */
4807 	if (!blk_poll_stats_enable(q))
4808 		return 0;
4809 
4810 	/*
4811 	 * As an optimistic guess, use half of the mean service time
4812 	 * for this type of request. We can (and should) make this smarter.
4813 	 * For instance, if the completion latencies are tight, we can
4814 	 * get closer than just half the mean. This is especially
4815 	 * important on devices where the completion latencies are longer
4816 	 * than ~10 usec. We do use the stats for the relevant IO size
4817 	 * if available which does lead to better estimates.
4818 	 */
4819 	bucket = blk_mq_poll_stats_bkt(rq);
4820 	if (bucket < 0)
4821 		return ret;
4822 
4823 	if (q->poll_stat[bucket].nr_samples)
4824 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4825 
4826 	return ret;
4827 }
4828 
4829 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4830 {
4831 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4832 	struct request *rq = blk_qc_to_rq(hctx, qc);
4833 	struct hrtimer_sleeper hs;
4834 	enum hrtimer_mode mode;
4835 	unsigned int nsecs;
4836 	ktime_t kt;
4837 
4838 	/*
4839 	 * If a request has completed on queue that uses an I/O scheduler, we
4840 	 * won't get back a request from blk_qc_to_rq.
4841 	 */
4842 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4843 		return false;
4844 
4845 	/*
4846 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4847 	 *
4848 	 *  0:	use half of prev avg
4849 	 * >0:	use this specific value
4850 	 */
4851 	if (q->poll_nsec > 0)
4852 		nsecs = q->poll_nsec;
4853 	else
4854 		nsecs = blk_mq_poll_nsecs(q, rq);
4855 
4856 	if (!nsecs)
4857 		return false;
4858 
4859 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4860 
4861 	/*
4862 	 * This will be replaced with the stats tracking code, using
4863 	 * 'avg_completion_time / 2' as the pre-sleep target.
4864 	 */
4865 	kt = nsecs;
4866 
4867 	mode = HRTIMER_MODE_REL;
4868 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4869 	hrtimer_set_expires(&hs.timer, kt);
4870 
4871 	do {
4872 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4873 			break;
4874 		set_current_state(TASK_UNINTERRUPTIBLE);
4875 		hrtimer_sleeper_start_expires(&hs, mode);
4876 		if (hs.task)
4877 			io_schedule();
4878 		hrtimer_cancel(&hs.timer);
4879 		mode = HRTIMER_MODE_ABS;
4880 	} while (hs.task && !signal_pending(current));
4881 
4882 	__set_current_state(TASK_RUNNING);
4883 	destroy_hrtimer_on_stack(&hs.timer);
4884 
4885 	/*
4886 	 * If we sleep, have the caller restart the poll loop to reset the
4887 	 * state.  Like for the other success return cases, the caller is
4888 	 * responsible for checking if the IO completed.  If the IO isn't
4889 	 * complete, we'll get called again and will go straight to the busy
4890 	 * poll loop.
4891 	 */
4892 	return true;
4893 }
4894 
4895 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4896 			       struct io_comp_batch *iob, unsigned int flags)
4897 {
4898 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4899 	long state = get_current_state();
4900 	int ret;
4901 
4902 	do {
4903 		ret = q->mq_ops->poll(hctx, iob);
4904 		if (ret > 0) {
4905 			__set_current_state(TASK_RUNNING);
4906 			return ret;
4907 		}
4908 
4909 		if (signal_pending_state(state, current))
4910 			__set_current_state(TASK_RUNNING);
4911 		if (task_is_running(current))
4912 			return 1;
4913 
4914 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4915 			break;
4916 		cpu_relax();
4917 	} while (!need_resched());
4918 
4919 	__set_current_state(TASK_RUNNING);
4920 	return 0;
4921 }
4922 
4923 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4924 		unsigned int flags)
4925 {
4926 	if (!(flags & BLK_POLL_NOSLEEP) &&
4927 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4928 		if (blk_mq_poll_hybrid(q, cookie))
4929 			return 1;
4930 	}
4931 	return blk_mq_poll_classic(q, cookie, iob, flags);
4932 }
4933 
4934 unsigned int blk_mq_rq_cpu(struct request *rq)
4935 {
4936 	return rq->mq_ctx->cpu;
4937 }
4938 EXPORT_SYMBOL(blk_mq_rq_cpu);
4939 
4940 void blk_mq_cancel_work_sync(struct request_queue *q)
4941 {
4942 	struct blk_mq_hw_ctx *hctx;
4943 	unsigned long i;
4944 
4945 	cancel_delayed_work_sync(&q->requeue_work);
4946 
4947 	queue_for_each_hw_ctx(q, hctx, i)
4948 		cancel_delayed_work_sync(&hctx->run_work);
4949 }
4950 
4951 static int __init blk_mq_init(void)
4952 {
4953 	int i;
4954 
4955 	for_each_possible_cpu(i)
4956 		init_llist_head(&per_cpu(blk_cpu_done, i));
4957 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4958 
4959 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4960 				  "block/softirq:dead", NULL,
4961 				  blk_softirq_cpu_dead);
4962 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4963 				blk_mq_hctx_notify_dead);
4964 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4965 				blk_mq_hctx_notify_online,
4966 				blk_mq_hctx_notify_offline);
4967 	return 0;
4968 }
4969 subsys_initcall(blk_mq_init);
4970