xref: /openbmc/linux/block/blk-mq.c (revision 609e478b)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	unsigned int i;
43 
44 	for (i = 0; i < hctx->ctx_map.map_size; i++)
45 		if (hctx->ctx_map.map[i].word)
46 			return true;
47 
48 	return false;
49 }
50 
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 					      struct blk_mq_ctx *ctx)
53 {
54 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56 
57 #define CTX_TO_BIT(hctx, ctx)	\
58 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59 
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 				     struct blk_mq_ctx *ctx)
65 {
66 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67 
68 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71 
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 				      struct blk_mq_ctx *ctx)
74 {
75 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76 
77 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79 
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 	while (true) {
83 		int ret;
84 
85 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 			return 0;
87 
88 		ret = wait_event_interruptible(q->mq_freeze_wq,
89 				!q->mq_freeze_depth || blk_queue_dying(q));
90 		if (blk_queue_dying(q))
91 			return -ENODEV;
92 		if (ret)
93 			return ret;
94 	}
95 }
96 
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 	percpu_ref_put(&q->mq_usage_counter);
100 }
101 
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 	struct request_queue *q =
105 		container_of(ref, struct request_queue, mq_usage_counter);
106 
107 	wake_up_all(&q->mq_freeze_wq);
108 }
109 
110 /*
111  * Guarantee no request is in use, so we can change any data structure of
112  * the queue afterward.
113  */
114 void blk_mq_freeze_queue(struct request_queue *q)
115 {
116 	bool freeze;
117 
118 	spin_lock_irq(q->queue_lock);
119 	freeze = !q->mq_freeze_depth++;
120 	spin_unlock_irq(q->queue_lock);
121 
122 	if (freeze) {
123 		percpu_ref_kill(&q->mq_usage_counter);
124 		blk_mq_run_queues(q, false);
125 	}
126 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 }
128 
129 static void blk_mq_unfreeze_queue(struct request_queue *q)
130 {
131 	bool wake;
132 
133 	spin_lock_irq(q->queue_lock);
134 	wake = !--q->mq_freeze_depth;
135 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
136 	spin_unlock_irq(q->queue_lock);
137 	if (wake) {
138 		percpu_ref_reinit(&q->mq_usage_counter);
139 		wake_up_all(&q->mq_freeze_wq);
140 	}
141 }
142 
143 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
144 {
145 	return blk_mq_has_free_tags(hctx->tags);
146 }
147 EXPORT_SYMBOL(blk_mq_can_queue);
148 
149 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 			       struct request *rq, unsigned int rw_flags)
151 {
152 	if (blk_queue_io_stat(q))
153 		rw_flags |= REQ_IO_STAT;
154 
155 	INIT_LIST_HEAD(&rq->queuelist);
156 	/* csd/requeue_work/fifo_time is initialized before use */
157 	rq->q = q;
158 	rq->mq_ctx = ctx;
159 	rq->cmd_flags |= rw_flags;
160 	/* do not touch atomic flags, it needs atomic ops against the timer */
161 	rq->cpu = -1;
162 	INIT_HLIST_NODE(&rq->hash);
163 	RB_CLEAR_NODE(&rq->rb_node);
164 	rq->rq_disk = NULL;
165 	rq->part = NULL;
166 	rq->start_time = jiffies;
167 #ifdef CONFIG_BLK_CGROUP
168 	rq->rl = NULL;
169 	set_start_time_ns(rq);
170 	rq->io_start_time_ns = 0;
171 #endif
172 	rq->nr_phys_segments = 0;
173 #if defined(CONFIG_BLK_DEV_INTEGRITY)
174 	rq->nr_integrity_segments = 0;
175 #endif
176 	rq->special = NULL;
177 	/* tag was already set */
178 	rq->errors = 0;
179 
180 	rq->cmd = rq->__cmd;
181 
182 	rq->extra_len = 0;
183 	rq->sense_len = 0;
184 	rq->resid_len = 0;
185 	rq->sense = NULL;
186 
187 	INIT_LIST_HEAD(&rq->timeout_list);
188 	rq->timeout = 0;
189 
190 	rq->end_io = NULL;
191 	rq->end_io_data = NULL;
192 	rq->next_rq = NULL;
193 
194 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195 }
196 
197 static struct request *
198 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
199 {
200 	struct request *rq;
201 	unsigned int tag;
202 
203 	tag = blk_mq_get_tag(data);
204 	if (tag != BLK_MQ_TAG_FAIL) {
205 		rq = data->hctx->tags->rqs[tag];
206 
207 		if (blk_mq_tag_busy(data->hctx)) {
208 			rq->cmd_flags = REQ_MQ_INFLIGHT;
209 			atomic_inc(&data->hctx->nr_active);
210 		}
211 
212 		rq->tag = tag;
213 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
214 		return rq;
215 	}
216 
217 	return NULL;
218 }
219 
220 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 		bool reserved)
222 {
223 	struct blk_mq_ctx *ctx;
224 	struct blk_mq_hw_ctx *hctx;
225 	struct request *rq;
226 	struct blk_mq_alloc_data alloc_data;
227 	int ret;
228 
229 	ret = blk_mq_queue_enter(q);
230 	if (ret)
231 		return ERR_PTR(ret);
232 
233 	ctx = blk_mq_get_ctx(q);
234 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
235 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 			reserved, ctx, hctx);
237 
238 	rq = __blk_mq_alloc_request(&alloc_data, rw);
239 	if (!rq && (gfp & __GFP_WAIT)) {
240 		__blk_mq_run_hw_queue(hctx);
241 		blk_mq_put_ctx(ctx);
242 
243 		ctx = blk_mq_get_ctx(q);
244 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 				hctx);
247 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
248 		ctx = alloc_data.ctx;
249 	}
250 	blk_mq_put_ctx(ctx);
251 	if (!rq)
252 		return ERR_PTR(-EWOULDBLOCK);
253 	return rq;
254 }
255 EXPORT_SYMBOL(blk_mq_alloc_request);
256 
257 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 				  struct blk_mq_ctx *ctx, struct request *rq)
259 {
260 	const int tag = rq->tag;
261 	struct request_queue *q = rq->q;
262 
263 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 		atomic_dec(&hctx->nr_active);
265 	rq->cmd_flags = 0;
266 
267 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
268 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
269 	blk_mq_queue_exit(q);
270 }
271 
272 void blk_mq_free_request(struct request *rq)
273 {
274 	struct blk_mq_ctx *ctx = rq->mq_ctx;
275 	struct blk_mq_hw_ctx *hctx;
276 	struct request_queue *q = rq->q;
277 
278 	ctx->rq_completed[rq_is_sync(rq)]++;
279 
280 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
281 	__blk_mq_free_request(hctx, ctx, rq);
282 }
283 
284 inline void __blk_mq_end_request(struct request *rq, int error)
285 {
286 	blk_account_io_done(rq);
287 
288 	if (rq->end_io) {
289 		rq->end_io(rq, error);
290 	} else {
291 		if (unlikely(blk_bidi_rq(rq)))
292 			blk_mq_free_request(rq->next_rq);
293 		blk_mq_free_request(rq);
294 	}
295 }
296 EXPORT_SYMBOL(__blk_mq_end_request);
297 
298 void blk_mq_end_request(struct request *rq, int error)
299 {
300 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
301 		BUG();
302 	__blk_mq_end_request(rq, error);
303 }
304 EXPORT_SYMBOL(blk_mq_end_request);
305 
306 static void __blk_mq_complete_request_remote(void *data)
307 {
308 	struct request *rq = data;
309 
310 	rq->q->softirq_done_fn(rq);
311 }
312 
313 static void blk_mq_ipi_complete_request(struct request *rq)
314 {
315 	struct blk_mq_ctx *ctx = rq->mq_ctx;
316 	bool shared = false;
317 	int cpu;
318 
319 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
320 		rq->q->softirq_done_fn(rq);
321 		return;
322 	}
323 
324 	cpu = get_cpu();
325 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
326 		shared = cpus_share_cache(cpu, ctx->cpu);
327 
328 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
329 		rq->csd.func = __blk_mq_complete_request_remote;
330 		rq->csd.info = rq;
331 		rq->csd.flags = 0;
332 		smp_call_function_single_async(ctx->cpu, &rq->csd);
333 	} else {
334 		rq->q->softirq_done_fn(rq);
335 	}
336 	put_cpu();
337 }
338 
339 void __blk_mq_complete_request(struct request *rq)
340 {
341 	struct request_queue *q = rq->q;
342 
343 	if (!q->softirq_done_fn)
344 		blk_mq_end_request(rq, rq->errors);
345 	else
346 		blk_mq_ipi_complete_request(rq);
347 }
348 
349 /**
350  * blk_mq_complete_request - end I/O on a request
351  * @rq:		the request being processed
352  *
353  * Description:
354  *	Ends all I/O on a request. It does not handle partial completions.
355  *	The actual completion happens out-of-order, through a IPI handler.
356  **/
357 void blk_mq_complete_request(struct request *rq)
358 {
359 	struct request_queue *q = rq->q;
360 
361 	if (unlikely(blk_should_fake_timeout(q)))
362 		return;
363 	if (!blk_mark_rq_complete(rq))
364 		__blk_mq_complete_request(rq);
365 }
366 EXPORT_SYMBOL(blk_mq_complete_request);
367 
368 void blk_mq_start_request(struct request *rq)
369 {
370 	struct request_queue *q = rq->q;
371 
372 	trace_block_rq_issue(q, rq);
373 
374 	rq->resid_len = blk_rq_bytes(rq);
375 	if (unlikely(blk_bidi_rq(rq)))
376 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
377 
378 	blk_add_timer(rq);
379 
380 	/*
381 	 * Ensure that ->deadline is visible before set the started
382 	 * flag and clear the completed flag.
383 	 */
384 	smp_mb__before_atomic();
385 
386 	/*
387 	 * Mark us as started and clear complete. Complete might have been
388 	 * set if requeue raced with timeout, which then marked it as
389 	 * complete. So be sure to clear complete again when we start
390 	 * the request, otherwise we'll ignore the completion event.
391 	 */
392 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
393 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
394 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
395 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
396 
397 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
398 		/*
399 		 * Make sure space for the drain appears.  We know we can do
400 		 * this because max_hw_segments has been adjusted to be one
401 		 * fewer than the device can handle.
402 		 */
403 		rq->nr_phys_segments++;
404 	}
405 }
406 EXPORT_SYMBOL(blk_mq_start_request);
407 
408 static void __blk_mq_requeue_request(struct request *rq)
409 {
410 	struct request_queue *q = rq->q;
411 
412 	trace_block_rq_requeue(q, rq);
413 
414 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
415 		if (q->dma_drain_size && blk_rq_bytes(rq))
416 			rq->nr_phys_segments--;
417 	}
418 }
419 
420 void blk_mq_requeue_request(struct request *rq)
421 {
422 	__blk_mq_requeue_request(rq);
423 
424 	BUG_ON(blk_queued_rq(rq));
425 	blk_mq_add_to_requeue_list(rq, true);
426 }
427 EXPORT_SYMBOL(blk_mq_requeue_request);
428 
429 static void blk_mq_requeue_work(struct work_struct *work)
430 {
431 	struct request_queue *q =
432 		container_of(work, struct request_queue, requeue_work);
433 	LIST_HEAD(rq_list);
434 	struct request *rq, *next;
435 	unsigned long flags;
436 
437 	spin_lock_irqsave(&q->requeue_lock, flags);
438 	list_splice_init(&q->requeue_list, &rq_list);
439 	spin_unlock_irqrestore(&q->requeue_lock, flags);
440 
441 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
442 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
443 			continue;
444 
445 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
446 		list_del_init(&rq->queuelist);
447 		blk_mq_insert_request(rq, true, false, false);
448 	}
449 
450 	while (!list_empty(&rq_list)) {
451 		rq = list_entry(rq_list.next, struct request, queuelist);
452 		list_del_init(&rq->queuelist);
453 		blk_mq_insert_request(rq, false, false, false);
454 	}
455 
456 	/*
457 	 * Use the start variant of queue running here, so that running
458 	 * the requeue work will kick stopped queues.
459 	 */
460 	blk_mq_start_hw_queues(q);
461 }
462 
463 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
464 {
465 	struct request_queue *q = rq->q;
466 	unsigned long flags;
467 
468 	/*
469 	 * We abuse this flag that is otherwise used by the I/O scheduler to
470 	 * request head insertation from the workqueue.
471 	 */
472 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
473 
474 	spin_lock_irqsave(&q->requeue_lock, flags);
475 	if (at_head) {
476 		rq->cmd_flags |= REQ_SOFTBARRIER;
477 		list_add(&rq->queuelist, &q->requeue_list);
478 	} else {
479 		list_add_tail(&rq->queuelist, &q->requeue_list);
480 	}
481 	spin_unlock_irqrestore(&q->requeue_lock, flags);
482 }
483 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
484 
485 void blk_mq_kick_requeue_list(struct request_queue *q)
486 {
487 	kblockd_schedule_work(&q->requeue_work);
488 }
489 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
490 
491 static inline bool is_flush_request(struct request *rq,
492 		struct blk_flush_queue *fq, unsigned int tag)
493 {
494 	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
495 			fq->flush_rq->tag == tag);
496 }
497 
498 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
499 {
500 	struct request *rq = tags->rqs[tag];
501 	/* mq_ctx of flush rq is always cloned from the corresponding req */
502 	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
503 
504 	if (!is_flush_request(rq, fq, tag))
505 		return rq;
506 
507 	return fq->flush_rq;
508 }
509 EXPORT_SYMBOL(blk_mq_tag_to_rq);
510 
511 struct blk_mq_timeout_data {
512 	unsigned long next;
513 	unsigned int next_set;
514 };
515 
516 void blk_mq_rq_timed_out(struct request *req, bool reserved)
517 {
518 	struct blk_mq_ops *ops = req->q->mq_ops;
519 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
520 
521 	/*
522 	 * We know that complete is set at this point. If STARTED isn't set
523 	 * anymore, then the request isn't active and the "timeout" should
524 	 * just be ignored. This can happen due to the bitflag ordering.
525 	 * Timeout first checks if STARTED is set, and if it is, assumes
526 	 * the request is active. But if we race with completion, then
527 	 * we both flags will get cleared. So check here again, and ignore
528 	 * a timeout event with a request that isn't active.
529 	 */
530 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
531 		return;
532 
533 	if (ops->timeout)
534 		ret = ops->timeout(req, reserved);
535 
536 	switch (ret) {
537 	case BLK_EH_HANDLED:
538 		__blk_mq_complete_request(req);
539 		break;
540 	case BLK_EH_RESET_TIMER:
541 		blk_add_timer(req);
542 		blk_clear_rq_complete(req);
543 		break;
544 	case BLK_EH_NOT_HANDLED:
545 		break;
546 	default:
547 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
548 		break;
549 	}
550 }
551 
552 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
553 		struct request *rq, void *priv, bool reserved)
554 {
555 	struct blk_mq_timeout_data *data = priv;
556 
557 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
558 		return;
559 
560 	if (time_after_eq(jiffies, rq->deadline)) {
561 		if (!blk_mark_rq_complete(rq))
562 			blk_mq_rq_timed_out(rq, reserved);
563 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
564 		data->next = rq->deadline;
565 		data->next_set = 1;
566 	}
567 }
568 
569 static void blk_mq_rq_timer(unsigned long priv)
570 {
571 	struct request_queue *q = (struct request_queue *)priv;
572 	struct blk_mq_timeout_data data = {
573 		.next		= 0,
574 		.next_set	= 0,
575 	};
576 	struct blk_mq_hw_ctx *hctx;
577 	int i;
578 
579 	queue_for_each_hw_ctx(q, hctx, i) {
580 		/*
581 		 * If not software queues are currently mapped to this
582 		 * hardware queue, there's nothing to check
583 		 */
584 		if (!hctx->nr_ctx || !hctx->tags)
585 			continue;
586 
587 		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
588 	}
589 
590 	if (data.next_set) {
591 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
592 		mod_timer(&q->timeout, data.next);
593 	} else {
594 		queue_for_each_hw_ctx(q, hctx, i)
595 			blk_mq_tag_idle(hctx);
596 	}
597 }
598 
599 /*
600  * Reverse check our software queue for entries that we could potentially
601  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
602  * too much time checking for merges.
603  */
604 static bool blk_mq_attempt_merge(struct request_queue *q,
605 				 struct blk_mq_ctx *ctx, struct bio *bio)
606 {
607 	struct request *rq;
608 	int checked = 8;
609 
610 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
611 		int el_ret;
612 
613 		if (!checked--)
614 			break;
615 
616 		if (!blk_rq_merge_ok(rq, bio))
617 			continue;
618 
619 		el_ret = blk_try_merge(rq, bio);
620 		if (el_ret == ELEVATOR_BACK_MERGE) {
621 			if (bio_attempt_back_merge(q, rq, bio)) {
622 				ctx->rq_merged++;
623 				return true;
624 			}
625 			break;
626 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
627 			if (bio_attempt_front_merge(q, rq, bio)) {
628 				ctx->rq_merged++;
629 				return true;
630 			}
631 			break;
632 		}
633 	}
634 
635 	return false;
636 }
637 
638 /*
639  * Process software queues that have been marked busy, splicing them
640  * to the for-dispatch
641  */
642 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
643 {
644 	struct blk_mq_ctx *ctx;
645 	int i;
646 
647 	for (i = 0; i < hctx->ctx_map.map_size; i++) {
648 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
649 		unsigned int off, bit;
650 
651 		if (!bm->word)
652 			continue;
653 
654 		bit = 0;
655 		off = i * hctx->ctx_map.bits_per_word;
656 		do {
657 			bit = find_next_bit(&bm->word, bm->depth, bit);
658 			if (bit >= bm->depth)
659 				break;
660 
661 			ctx = hctx->ctxs[bit + off];
662 			clear_bit(bit, &bm->word);
663 			spin_lock(&ctx->lock);
664 			list_splice_tail_init(&ctx->rq_list, list);
665 			spin_unlock(&ctx->lock);
666 
667 			bit++;
668 		} while (1);
669 	}
670 }
671 
672 /*
673  * Run this hardware queue, pulling any software queues mapped to it in.
674  * Note that this function currently has various problems around ordering
675  * of IO. In particular, we'd like FIFO behaviour on handling existing
676  * items on the hctx->dispatch list. Ignore that for now.
677  */
678 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
679 {
680 	struct request_queue *q = hctx->queue;
681 	struct request *rq;
682 	LIST_HEAD(rq_list);
683 	int queued;
684 
685 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
686 
687 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
688 		return;
689 
690 	hctx->run++;
691 
692 	/*
693 	 * Touch any software queue that has pending entries.
694 	 */
695 	flush_busy_ctxs(hctx, &rq_list);
696 
697 	/*
698 	 * If we have previous entries on our dispatch list, grab them
699 	 * and stuff them at the front for more fair dispatch.
700 	 */
701 	if (!list_empty_careful(&hctx->dispatch)) {
702 		spin_lock(&hctx->lock);
703 		if (!list_empty(&hctx->dispatch))
704 			list_splice_init(&hctx->dispatch, &rq_list);
705 		spin_unlock(&hctx->lock);
706 	}
707 
708 	/*
709 	 * Now process all the entries, sending them to the driver.
710 	 */
711 	queued = 0;
712 	while (!list_empty(&rq_list)) {
713 		int ret;
714 
715 		rq = list_first_entry(&rq_list, struct request, queuelist);
716 		list_del_init(&rq->queuelist);
717 
718 		ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
719 		switch (ret) {
720 		case BLK_MQ_RQ_QUEUE_OK:
721 			queued++;
722 			continue;
723 		case BLK_MQ_RQ_QUEUE_BUSY:
724 			list_add(&rq->queuelist, &rq_list);
725 			__blk_mq_requeue_request(rq);
726 			break;
727 		default:
728 			pr_err("blk-mq: bad return on queue: %d\n", ret);
729 		case BLK_MQ_RQ_QUEUE_ERROR:
730 			rq->errors = -EIO;
731 			blk_mq_end_request(rq, rq->errors);
732 			break;
733 		}
734 
735 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
736 			break;
737 	}
738 
739 	if (!queued)
740 		hctx->dispatched[0]++;
741 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
742 		hctx->dispatched[ilog2(queued) + 1]++;
743 
744 	/*
745 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
746 	 * that is where we will continue on next queue run.
747 	 */
748 	if (!list_empty(&rq_list)) {
749 		spin_lock(&hctx->lock);
750 		list_splice(&rq_list, &hctx->dispatch);
751 		spin_unlock(&hctx->lock);
752 	}
753 }
754 
755 /*
756  * It'd be great if the workqueue API had a way to pass
757  * in a mask and had some smarts for more clever placement.
758  * For now we just round-robin here, switching for every
759  * BLK_MQ_CPU_WORK_BATCH queued items.
760  */
761 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
762 {
763 	int cpu = hctx->next_cpu;
764 
765 	if (--hctx->next_cpu_batch <= 0) {
766 		int next_cpu;
767 
768 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
769 		if (next_cpu >= nr_cpu_ids)
770 			next_cpu = cpumask_first(hctx->cpumask);
771 
772 		hctx->next_cpu = next_cpu;
773 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
774 	}
775 
776 	return cpu;
777 }
778 
779 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
780 {
781 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
782 		return;
783 
784 	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
785 		__blk_mq_run_hw_queue(hctx);
786 	else if (hctx->queue->nr_hw_queues == 1)
787 		kblockd_schedule_delayed_work(&hctx->run_work, 0);
788 	else {
789 		unsigned int cpu;
790 
791 		cpu = blk_mq_hctx_next_cpu(hctx);
792 		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
793 	}
794 }
795 
796 void blk_mq_run_queues(struct request_queue *q, bool async)
797 {
798 	struct blk_mq_hw_ctx *hctx;
799 	int i;
800 
801 	queue_for_each_hw_ctx(q, hctx, i) {
802 		if ((!blk_mq_hctx_has_pending(hctx) &&
803 		    list_empty_careful(&hctx->dispatch)) ||
804 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
805 			continue;
806 
807 		preempt_disable();
808 		blk_mq_run_hw_queue(hctx, async);
809 		preempt_enable();
810 	}
811 }
812 EXPORT_SYMBOL(blk_mq_run_queues);
813 
814 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
815 {
816 	cancel_delayed_work(&hctx->run_work);
817 	cancel_delayed_work(&hctx->delay_work);
818 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
819 }
820 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
821 
822 void blk_mq_stop_hw_queues(struct request_queue *q)
823 {
824 	struct blk_mq_hw_ctx *hctx;
825 	int i;
826 
827 	queue_for_each_hw_ctx(q, hctx, i)
828 		blk_mq_stop_hw_queue(hctx);
829 }
830 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
831 
832 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
833 {
834 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
835 
836 	preempt_disable();
837 	blk_mq_run_hw_queue(hctx, false);
838 	preempt_enable();
839 }
840 EXPORT_SYMBOL(blk_mq_start_hw_queue);
841 
842 void blk_mq_start_hw_queues(struct request_queue *q)
843 {
844 	struct blk_mq_hw_ctx *hctx;
845 	int i;
846 
847 	queue_for_each_hw_ctx(q, hctx, i)
848 		blk_mq_start_hw_queue(hctx);
849 }
850 EXPORT_SYMBOL(blk_mq_start_hw_queues);
851 
852 
853 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
854 {
855 	struct blk_mq_hw_ctx *hctx;
856 	int i;
857 
858 	queue_for_each_hw_ctx(q, hctx, i) {
859 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
860 			continue;
861 
862 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
863 		preempt_disable();
864 		blk_mq_run_hw_queue(hctx, async);
865 		preempt_enable();
866 	}
867 }
868 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
869 
870 static void blk_mq_run_work_fn(struct work_struct *work)
871 {
872 	struct blk_mq_hw_ctx *hctx;
873 
874 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
875 
876 	__blk_mq_run_hw_queue(hctx);
877 }
878 
879 static void blk_mq_delay_work_fn(struct work_struct *work)
880 {
881 	struct blk_mq_hw_ctx *hctx;
882 
883 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
884 
885 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 		__blk_mq_run_hw_queue(hctx);
887 }
888 
889 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
890 {
891 	unsigned long tmo = msecs_to_jiffies(msecs);
892 
893 	if (hctx->queue->nr_hw_queues == 1)
894 		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
895 	else {
896 		unsigned int cpu;
897 
898 		cpu = blk_mq_hctx_next_cpu(hctx);
899 		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
900 	}
901 }
902 EXPORT_SYMBOL(blk_mq_delay_queue);
903 
904 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
905 				    struct request *rq, bool at_head)
906 {
907 	struct blk_mq_ctx *ctx = rq->mq_ctx;
908 
909 	trace_block_rq_insert(hctx->queue, rq);
910 
911 	if (at_head)
912 		list_add(&rq->queuelist, &ctx->rq_list);
913 	else
914 		list_add_tail(&rq->queuelist, &ctx->rq_list);
915 
916 	blk_mq_hctx_mark_pending(hctx, ctx);
917 }
918 
919 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
920 		bool async)
921 {
922 	struct request_queue *q = rq->q;
923 	struct blk_mq_hw_ctx *hctx;
924 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
925 
926 	current_ctx = blk_mq_get_ctx(q);
927 	if (!cpu_online(ctx->cpu))
928 		rq->mq_ctx = ctx = current_ctx;
929 
930 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
931 
932 	spin_lock(&ctx->lock);
933 	__blk_mq_insert_request(hctx, rq, at_head);
934 	spin_unlock(&ctx->lock);
935 
936 	if (run_queue)
937 		blk_mq_run_hw_queue(hctx, async);
938 
939 	blk_mq_put_ctx(current_ctx);
940 }
941 
942 static void blk_mq_insert_requests(struct request_queue *q,
943 				     struct blk_mq_ctx *ctx,
944 				     struct list_head *list,
945 				     int depth,
946 				     bool from_schedule)
947 
948 {
949 	struct blk_mq_hw_ctx *hctx;
950 	struct blk_mq_ctx *current_ctx;
951 
952 	trace_block_unplug(q, depth, !from_schedule);
953 
954 	current_ctx = blk_mq_get_ctx(q);
955 
956 	if (!cpu_online(ctx->cpu))
957 		ctx = current_ctx;
958 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
959 
960 	/*
961 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
962 	 * offline now
963 	 */
964 	spin_lock(&ctx->lock);
965 	while (!list_empty(list)) {
966 		struct request *rq;
967 
968 		rq = list_first_entry(list, struct request, queuelist);
969 		list_del_init(&rq->queuelist);
970 		rq->mq_ctx = ctx;
971 		__blk_mq_insert_request(hctx, rq, false);
972 	}
973 	spin_unlock(&ctx->lock);
974 
975 	blk_mq_run_hw_queue(hctx, from_schedule);
976 	blk_mq_put_ctx(current_ctx);
977 }
978 
979 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
980 {
981 	struct request *rqa = container_of(a, struct request, queuelist);
982 	struct request *rqb = container_of(b, struct request, queuelist);
983 
984 	return !(rqa->mq_ctx < rqb->mq_ctx ||
985 		 (rqa->mq_ctx == rqb->mq_ctx &&
986 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
987 }
988 
989 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
990 {
991 	struct blk_mq_ctx *this_ctx;
992 	struct request_queue *this_q;
993 	struct request *rq;
994 	LIST_HEAD(list);
995 	LIST_HEAD(ctx_list);
996 	unsigned int depth;
997 
998 	list_splice_init(&plug->mq_list, &list);
999 
1000 	list_sort(NULL, &list, plug_ctx_cmp);
1001 
1002 	this_q = NULL;
1003 	this_ctx = NULL;
1004 	depth = 0;
1005 
1006 	while (!list_empty(&list)) {
1007 		rq = list_entry_rq(list.next);
1008 		list_del_init(&rq->queuelist);
1009 		BUG_ON(!rq->q);
1010 		if (rq->mq_ctx != this_ctx) {
1011 			if (this_ctx) {
1012 				blk_mq_insert_requests(this_q, this_ctx,
1013 							&ctx_list, depth,
1014 							from_schedule);
1015 			}
1016 
1017 			this_ctx = rq->mq_ctx;
1018 			this_q = rq->q;
1019 			depth = 0;
1020 		}
1021 
1022 		depth++;
1023 		list_add_tail(&rq->queuelist, &ctx_list);
1024 	}
1025 
1026 	/*
1027 	 * If 'this_ctx' is set, we know we have entries to complete
1028 	 * on 'ctx_list'. Do those.
1029 	 */
1030 	if (this_ctx) {
1031 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1032 				       from_schedule);
1033 	}
1034 }
1035 
1036 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1037 {
1038 	init_request_from_bio(rq, bio);
1039 
1040 	if (blk_do_io_stat(rq))
1041 		blk_account_io_start(rq, 1);
1042 }
1043 
1044 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1045 {
1046 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1047 		!blk_queue_nomerges(hctx->queue);
1048 }
1049 
1050 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1051 					 struct blk_mq_ctx *ctx,
1052 					 struct request *rq, struct bio *bio)
1053 {
1054 	if (!hctx_allow_merges(hctx)) {
1055 		blk_mq_bio_to_request(rq, bio);
1056 		spin_lock(&ctx->lock);
1057 insert_rq:
1058 		__blk_mq_insert_request(hctx, rq, false);
1059 		spin_unlock(&ctx->lock);
1060 		return false;
1061 	} else {
1062 		struct request_queue *q = hctx->queue;
1063 
1064 		spin_lock(&ctx->lock);
1065 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1066 			blk_mq_bio_to_request(rq, bio);
1067 			goto insert_rq;
1068 		}
1069 
1070 		spin_unlock(&ctx->lock);
1071 		__blk_mq_free_request(hctx, ctx, rq);
1072 		return true;
1073 	}
1074 }
1075 
1076 struct blk_map_ctx {
1077 	struct blk_mq_hw_ctx *hctx;
1078 	struct blk_mq_ctx *ctx;
1079 };
1080 
1081 static struct request *blk_mq_map_request(struct request_queue *q,
1082 					  struct bio *bio,
1083 					  struct blk_map_ctx *data)
1084 {
1085 	struct blk_mq_hw_ctx *hctx;
1086 	struct blk_mq_ctx *ctx;
1087 	struct request *rq;
1088 	int rw = bio_data_dir(bio);
1089 	struct blk_mq_alloc_data alloc_data;
1090 
1091 	if (unlikely(blk_mq_queue_enter(q))) {
1092 		bio_endio(bio, -EIO);
1093 		return NULL;
1094 	}
1095 
1096 	ctx = blk_mq_get_ctx(q);
1097 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1098 
1099 	if (rw_is_sync(bio->bi_rw))
1100 		rw |= REQ_SYNC;
1101 
1102 	trace_block_getrq(q, bio, rw);
1103 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1104 			hctx);
1105 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1106 	if (unlikely(!rq)) {
1107 		__blk_mq_run_hw_queue(hctx);
1108 		blk_mq_put_ctx(ctx);
1109 		trace_block_sleeprq(q, bio, rw);
1110 
1111 		ctx = blk_mq_get_ctx(q);
1112 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1113 		blk_mq_set_alloc_data(&alloc_data, q,
1114 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1115 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1116 		ctx = alloc_data.ctx;
1117 		hctx = alloc_data.hctx;
1118 	}
1119 
1120 	hctx->queued++;
1121 	data->hctx = hctx;
1122 	data->ctx = ctx;
1123 	return rq;
1124 }
1125 
1126 /*
1127  * Multiple hardware queue variant. This will not use per-process plugs,
1128  * but will attempt to bypass the hctx queueing if we can go straight to
1129  * hardware for SYNC IO.
1130  */
1131 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1132 {
1133 	const int is_sync = rw_is_sync(bio->bi_rw);
1134 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1135 	struct blk_map_ctx data;
1136 	struct request *rq;
1137 
1138 	blk_queue_bounce(q, &bio);
1139 
1140 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1141 		bio_endio(bio, -EIO);
1142 		return;
1143 	}
1144 
1145 	rq = blk_mq_map_request(q, bio, &data);
1146 	if (unlikely(!rq))
1147 		return;
1148 
1149 	if (unlikely(is_flush_fua)) {
1150 		blk_mq_bio_to_request(rq, bio);
1151 		blk_insert_flush(rq);
1152 		goto run_queue;
1153 	}
1154 
1155 	if (is_sync) {
1156 		int ret;
1157 
1158 		blk_mq_bio_to_request(rq, bio);
1159 
1160 		/*
1161 		 * For OK queue, we are done. For error, kill it. Any other
1162 		 * error (busy), just add it to our list as we previously
1163 		 * would have done
1164 		 */
1165 		ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1166 		if (ret == BLK_MQ_RQ_QUEUE_OK)
1167 			goto done;
1168 		else {
1169 			__blk_mq_requeue_request(rq);
1170 
1171 			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1172 				rq->errors = -EIO;
1173 				blk_mq_end_request(rq, rq->errors);
1174 				goto done;
1175 			}
1176 		}
1177 	}
1178 
1179 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1180 		/*
1181 		 * For a SYNC request, send it to the hardware immediately. For
1182 		 * an ASYNC request, just ensure that we run it later on. The
1183 		 * latter allows for merging opportunities and more efficient
1184 		 * dispatching.
1185 		 */
1186 run_queue:
1187 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1188 	}
1189 done:
1190 	blk_mq_put_ctx(data.ctx);
1191 }
1192 
1193 /*
1194  * Single hardware queue variant. This will attempt to use any per-process
1195  * plug for merging and IO deferral.
1196  */
1197 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1198 {
1199 	const int is_sync = rw_is_sync(bio->bi_rw);
1200 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1201 	unsigned int use_plug, request_count = 0;
1202 	struct blk_map_ctx data;
1203 	struct request *rq;
1204 
1205 	/*
1206 	 * If we have multiple hardware queues, just go directly to
1207 	 * one of those for sync IO.
1208 	 */
1209 	use_plug = !is_flush_fua && !is_sync;
1210 
1211 	blk_queue_bounce(q, &bio);
1212 
1213 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1214 		bio_endio(bio, -EIO);
1215 		return;
1216 	}
1217 
1218 	if (use_plug && !blk_queue_nomerges(q) &&
1219 	    blk_attempt_plug_merge(q, bio, &request_count))
1220 		return;
1221 
1222 	rq = blk_mq_map_request(q, bio, &data);
1223 	if (unlikely(!rq))
1224 		return;
1225 
1226 	if (unlikely(is_flush_fua)) {
1227 		blk_mq_bio_to_request(rq, bio);
1228 		blk_insert_flush(rq);
1229 		goto run_queue;
1230 	}
1231 
1232 	/*
1233 	 * A task plug currently exists. Since this is completely lockless,
1234 	 * utilize that to temporarily store requests until the task is
1235 	 * either done or scheduled away.
1236 	 */
1237 	if (use_plug) {
1238 		struct blk_plug *plug = current->plug;
1239 
1240 		if (plug) {
1241 			blk_mq_bio_to_request(rq, bio);
1242 			if (list_empty(&plug->mq_list))
1243 				trace_block_plug(q);
1244 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1245 				blk_flush_plug_list(plug, false);
1246 				trace_block_plug(q);
1247 			}
1248 			list_add_tail(&rq->queuelist, &plug->mq_list);
1249 			blk_mq_put_ctx(data.ctx);
1250 			return;
1251 		}
1252 	}
1253 
1254 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1255 		/*
1256 		 * For a SYNC request, send it to the hardware immediately. For
1257 		 * an ASYNC request, just ensure that we run it later on. The
1258 		 * latter allows for merging opportunities and more efficient
1259 		 * dispatching.
1260 		 */
1261 run_queue:
1262 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1263 	}
1264 
1265 	blk_mq_put_ctx(data.ctx);
1266 }
1267 
1268 /*
1269  * Default mapping to a software queue, since we use one per CPU.
1270  */
1271 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1272 {
1273 	return q->queue_hw_ctx[q->mq_map[cpu]];
1274 }
1275 EXPORT_SYMBOL(blk_mq_map_queue);
1276 
1277 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1278 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1279 {
1280 	struct page *page;
1281 
1282 	if (tags->rqs && set->ops->exit_request) {
1283 		int i;
1284 
1285 		for (i = 0; i < tags->nr_tags; i++) {
1286 			if (!tags->rqs[i])
1287 				continue;
1288 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1289 						hctx_idx, i);
1290 			tags->rqs[i] = NULL;
1291 		}
1292 	}
1293 
1294 	while (!list_empty(&tags->page_list)) {
1295 		page = list_first_entry(&tags->page_list, struct page, lru);
1296 		list_del_init(&page->lru);
1297 		__free_pages(page, page->private);
1298 	}
1299 
1300 	kfree(tags->rqs);
1301 
1302 	blk_mq_free_tags(tags);
1303 }
1304 
1305 static size_t order_to_size(unsigned int order)
1306 {
1307 	return (size_t)PAGE_SIZE << order;
1308 }
1309 
1310 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1311 		unsigned int hctx_idx)
1312 {
1313 	struct blk_mq_tags *tags;
1314 	unsigned int i, j, entries_per_page, max_order = 4;
1315 	size_t rq_size, left;
1316 
1317 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1318 				set->numa_node);
1319 	if (!tags)
1320 		return NULL;
1321 
1322 	INIT_LIST_HEAD(&tags->page_list);
1323 
1324 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1325 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1326 				 set->numa_node);
1327 	if (!tags->rqs) {
1328 		blk_mq_free_tags(tags);
1329 		return NULL;
1330 	}
1331 
1332 	/*
1333 	 * rq_size is the size of the request plus driver payload, rounded
1334 	 * to the cacheline size
1335 	 */
1336 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1337 				cache_line_size());
1338 	left = rq_size * set->queue_depth;
1339 
1340 	for (i = 0; i < set->queue_depth; ) {
1341 		int this_order = max_order;
1342 		struct page *page;
1343 		int to_do;
1344 		void *p;
1345 
1346 		while (left < order_to_size(this_order - 1) && this_order)
1347 			this_order--;
1348 
1349 		do {
1350 			page = alloc_pages_node(set->numa_node,
1351 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1352 				this_order);
1353 			if (page)
1354 				break;
1355 			if (!this_order--)
1356 				break;
1357 			if (order_to_size(this_order) < rq_size)
1358 				break;
1359 		} while (1);
1360 
1361 		if (!page)
1362 			goto fail;
1363 
1364 		page->private = this_order;
1365 		list_add_tail(&page->lru, &tags->page_list);
1366 
1367 		p = page_address(page);
1368 		entries_per_page = order_to_size(this_order) / rq_size;
1369 		to_do = min(entries_per_page, set->queue_depth - i);
1370 		left -= to_do * rq_size;
1371 		for (j = 0; j < to_do; j++) {
1372 			tags->rqs[i] = p;
1373 			tags->rqs[i]->atomic_flags = 0;
1374 			tags->rqs[i]->cmd_flags = 0;
1375 			if (set->ops->init_request) {
1376 				if (set->ops->init_request(set->driver_data,
1377 						tags->rqs[i], hctx_idx, i,
1378 						set->numa_node)) {
1379 					tags->rqs[i] = NULL;
1380 					goto fail;
1381 				}
1382 			}
1383 
1384 			p += rq_size;
1385 			i++;
1386 		}
1387 	}
1388 
1389 	return tags;
1390 
1391 fail:
1392 	blk_mq_free_rq_map(set, tags, hctx_idx);
1393 	return NULL;
1394 }
1395 
1396 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1397 {
1398 	kfree(bitmap->map);
1399 }
1400 
1401 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1402 {
1403 	unsigned int bpw = 8, total, num_maps, i;
1404 
1405 	bitmap->bits_per_word = bpw;
1406 
1407 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1408 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1409 					GFP_KERNEL, node);
1410 	if (!bitmap->map)
1411 		return -ENOMEM;
1412 
1413 	bitmap->map_size = num_maps;
1414 
1415 	total = nr_cpu_ids;
1416 	for (i = 0; i < num_maps; i++) {
1417 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1418 		total -= bitmap->map[i].depth;
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1425 {
1426 	struct request_queue *q = hctx->queue;
1427 	struct blk_mq_ctx *ctx;
1428 	LIST_HEAD(tmp);
1429 
1430 	/*
1431 	 * Move ctx entries to new CPU, if this one is going away.
1432 	 */
1433 	ctx = __blk_mq_get_ctx(q, cpu);
1434 
1435 	spin_lock(&ctx->lock);
1436 	if (!list_empty(&ctx->rq_list)) {
1437 		list_splice_init(&ctx->rq_list, &tmp);
1438 		blk_mq_hctx_clear_pending(hctx, ctx);
1439 	}
1440 	spin_unlock(&ctx->lock);
1441 
1442 	if (list_empty(&tmp))
1443 		return NOTIFY_OK;
1444 
1445 	ctx = blk_mq_get_ctx(q);
1446 	spin_lock(&ctx->lock);
1447 
1448 	while (!list_empty(&tmp)) {
1449 		struct request *rq;
1450 
1451 		rq = list_first_entry(&tmp, struct request, queuelist);
1452 		rq->mq_ctx = ctx;
1453 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1454 	}
1455 
1456 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1457 	blk_mq_hctx_mark_pending(hctx, ctx);
1458 
1459 	spin_unlock(&ctx->lock);
1460 
1461 	blk_mq_run_hw_queue(hctx, true);
1462 	blk_mq_put_ctx(ctx);
1463 	return NOTIFY_OK;
1464 }
1465 
1466 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1467 {
1468 	struct request_queue *q = hctx->queue;
1469 	struct blk_mq_tag_set *set = q->tag_set;
1470 
1471 	if (set->tags[hctx->queue_num])
1472 		return NOTIFY_OK;
1473 
1474 	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1475 	if (!set->tags[hctx->queue_num])
1476 		return NOTIFY_STOP;
1477 
1478 	hctx->tags = set->tags[hctx->queue_num];
1479 	return NOTIFY_OK;
1480 }
1481 
1482 static int blk_mq_hctx_notify(void *data, unsigned long action,
1483 			      unsigned int cpu)
1484 {
1485 	struct blk_mq_hw_ctx *hctx = data;
1486 
1487 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1488 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1489 	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1490 		return blk_mq_hctx_cpu_online(hctx, cpu);
1491 
1492 	return NOTIFY_OK;
1493 }
1494 
1495 static void blk_mq_exit_hctx(struct request_queue *q,
1496 		struct blk_mq_tag_set *set,
1497 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1498 {
1499 	unsigned flush_start_tag = set->queue_depth;
1500 
1501 	blk_mq_tag_idle(hctx);
1502 
1503 	if (set->ops->exit_request)
1504 		set->ops->exit_request(set->driver_data,
1505 				       hctx->fq->flush_rq, hctx_idx,
1506 				       flush_start_tag + hctx_idx);
1507 
1508 	if (set->ops->exit_hctx)
1509 		set->ops->exit_hctx(hctx, hctx_idx);
1510 
1511 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1512 	blk_free_flush_queue(hctx->fq);
1513 	kfree(hctx->ctxs);
1514 	blk_mq_free_bitmap(&hctx->ctx_map);
1515 }
1516 
1517 static void blk_mq_exit_hw_queues(struct request_queue *q,
1518 		struct blk_mq_tag_set *set, int nr_queue)
1519 {
1520 	struct blk_mq_hw_ctx *hctx;
1521 	unsigned int i;
1522 
1523 	queue_for_each_hw_ctx(q, hctx, i) {
1524 		if (i == nr_queue)
1525 			break;
1526 		blk_mq_exit_hctx(q, set, hctx, i);
1527 	}
1528 }
1529 
1530 static void blk_mq_free_hw_queues(struct request_queue *q,
1531 		struct blk_mq_tag_set *set)
1532 {
1533 	struct blk_mq_hw_ctx *hctx;
1534 	unsigned int i;
1535 
1536 	queue_for_each_hw_ctx(q, hctx, i) {
1537 		free_cpumask_var(hctx->cpumask);
1538 		kfree(hctx);
1539 	}
1540 }
1541 
1542 static int blk_mq_init_hctx(struct request_queue *q,
1543 		struct blk_mq_tag_set *set,
1544 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1545 {
1546 	int node;
1547 	unsigned flush_start_tag = set->queue_depth;
1548 
1549 	node = hctx->numa_node;
1550 	if (node == NUMA_NO_NODE)
1551 		node = hctx->numa_node = set->numa_node;
1552 
1553 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1554 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1555 	spin_lock_init(&hctx->lock);
1556 	INIT_LIST_HEAD(&hctx->dispatch);
1557 	hctx->queue = q;
1558 	hctx->queue_num = hctx_idx;
1559 	hctx->flags = set->flags;
1560 	hctx->cmd_size = set->cmd_size;
1561 
1562 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1563 					blk_mq_hctx_notify, hctx);
1564 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1565 
1566 	hctx->tags = set->tags[hctx_idx];
1567 
1568 	/*
1569 	 * Allocate space for all possible cpus to avoid allocation at
1570 	 * runtime
1571 	 */
1572 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1573 					GFP_KERNEL, node);
1574 	if (!hctx->ctxs)
1575 		goto unregister_cpu_notifier;
1576 
1577 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1578 		goto free_ctxs;
1579 
1580 	hctx->nr_ctx = 0;
1581 
1582 	if (set->ops->init_hctx &&
1583 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1584 		goto free_bitmap;
1585 
1586 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1587 	if (!hctx->fq)
1588 		goto exit_hctx;
1589 
1590 	if (set->ops->init_request &&
1591 	    set->ops->init_request(set->driver_data,
1592 				   hctx->fq->flush_rq, hctx_idx,
1593 				   flush_start_tag + hctx_idx, node))
1594 		goto free_fq;
1595 
1596 	return 0;
1597 
1598  free_fq:
1599 	kfree(hctx->fq);
1600  exit_hctx:
1601 	if (set->ops->exit_hctx)
1602 		set->ops->exit_hctx(hctx, hctx_idx);
1603  free_bitmap:
1604 	blk_mq_free_bitmap(&hctx->ctx_map);
1605  free_ctxs:
1606 	kfree(hctx->ctxs);
1607  unregister_cpu_notifier:
1608 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1609 
1610 	return -1;
1611 }
1612 
1613 static int blk_mq_init_hw_queues(struct request_queue *q,
1614 		struct blk_mq_tag_set *set)
1615 {
1616 	struct blk_mq_hw_ctx *hctx;
1617 	unsigned int i;
1618 
1619 	/*
1620 	 * Initialize hardware queues
1621 	 */
1622 	queue_for_each_hw_ctx(q, hctx, i) {
1623 		if (blk_mq_init_hctx(q, set, hctx, i))
1624 			break;
1625 	}
1626 
1627 	if (i == q->nr_hw_queues)
1628 		return 0;
1629 
1630 	/*
1631 	 * Init failed
1632 	 */
1633 	blk_mq_exit_hw_queues(q, set, i);
1634 
1635 	return 1;
1636 }
1637 
1638 static void blk_mq_init_cpu_queues(struct request_queue *q,
1639 				   unsigned int nr_hw_queues)
1640 {
1641 	unsigned int i;
1642 
1643 	for_each_possible_cpu(i) {
1644 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1645 		struct blk_mq_hw_ctx *hctx;
1646 
1647 		memset(__ctx, 0, sizeof(*__ctx));
1648 		__ctx->cpu = i;
1649 		spin_lock_init(&__ctx->lock);
1650 		INIT_LIST_HEAD(&__ctx->rq_list);
1651 		__ctx->queue = q;
1652 
1653 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1654 		if (!cpu_online(i))
1655 			continue;
1656 
1657 		hctx = q->mq_ops->map_queue(q, i);
1658 		cpumask_set_cpu(i, hctx->cpumask);
1659 		hctx->nr_ctx++;
1660 
1661 		/*
1662 		 * Set local node, IFF we have more than one hw queue. If
1663 		 * not, we remain on the home node of the device
1664 		 */
1665 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1666 			hctx->numa_node = cpu_to_node(i);
1667 	}
1668 }
1669 
1670 static void blk_mq_map_swqueue(struct request_queue *q)
1671 {
1672 	unsigned int i;
1673 	struct blk_mq_hw_ctx *hctx;
1674 	struct blk_mq_ctx *ctx;
1675 
1676 	queue_for_each_hw_ctx(q, hctx, i) {
1677 		cpumask_clear(hctx->cpumask);
1678 		hctx->nr_ctx = 0;
1679 	}
1680 
1681 	/*
1682 	 * Map software to hardware queues
1683 	 */
1684 	queue_for_each_ctx(q, ctx, i) {
1685 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1686 		if (!cpu_online(i))
1687 			continue;
1688 
1689 		hctx = q->mq_ops->map_queue(q, i);
1690 		cpumask_set_cpu(i, hctx->cpumask);
1691 		ctx->index_hw = hctx->nr_ctx;
1692 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1693 	}
1694 
1695 	queue_for_each_hw_ctx(q, hctx, i) {
1696 		/*
1697 		 * If no software queues are mapped to this hardware queue,
1698 		 * disable it and free the request entries.
1699 		 */
1700 		if (!hctx->nr_ctx) {
1701 			struct blk_mq_tag_set *set = q->tag_set;
1702 
1703 			if (set->tags[i]) {
1704 				blk_mq_free_rq_map(set, set->tags[i], i);
1705 				set->tags[i] = NULL;
1706 				hctx->tags = NULL;
1707 			}
1708 			continue;
1709 		}
1710 
1711 		/*
1712 		 * Initialize batch roundrobin counts
1713 		 */
1714 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1715 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1716 	}
1717 }
1718 
1719 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1720 {
1721 	struct blk_mq_hw_ctx *hctx;
1722 	struct request_queue *q;
1723 	bool shared;
1724 	int i;
1725 
1726 	if (set->tag_list.next == set->tag_list.prev)
1727 		shared = false;
1728 	else
1729 		shared = true;
1730 
1731 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1732 		blk_mq_freeze_queue(q);
1733 
1734 		queue_for_each_hw_ctx(q, hctx, i) {
1735 			if (shared)
1736 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1737 			else
1738 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1739 		}
1740 		blk_mq_unfreeze_queue(q);
1741 	}
1742 }
1743 
1744 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1745 {
1746 	struct blk_mq_tag_set *set = q->tag_set;
1747 
1748 	mutex_lock(&set->tag_list_lock);
1749 	list_del_init(&q->tag_set_list);
1750 	blk_mq_update_tag_set_depth(set);
1751 	mutex_unlock(&set->tag_list_lock);
1752 }
1753 
1754 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1755 				     struct request_queue *q)
1756 {
1757 	q->tag_set = set;
1758 
1759 	mutex_lock(&set->tag_list_lock);
1760 	list_add_tail(&q->tag_set_list, &set->tag_list);
1761 	blk_mq_update_tag_set_depth(set);
1762 	mutex_unlock(&set->tag_list_lock);
1763 }
1764 
1765 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1766 {
1767 	struct blk_mq_hw_ctx **hctxs;
1768 	struct blk_mq_ctx __percpu *ctx;
1769 	struct request_queue *q;
1770 	unsigned int *map;
1771 	int i;
1772 
1773 	ctx = alloc_percpu(struct blk_mq_ctx);
1774 	if (!ctx)
1775 		return ERR_PTR(-ENOMEM);
1776 
1777 	/*
1778 	 * If a crashdump is active, then we are potentially in a very
1779 	 * memory constrained environment. Limit us to 1 queue and
1780 	 * 64 tags to prevent using too much memory.
1781 	 */
1782 	if (is_kdump_kernel()) {
1783 		set->nr_hw_queues = 1;
1784 		set->queue_depth = min(64U, set->queue_depth);
1785 	}
1786 
1787 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1788 			set->numa_node);
1789 
1790 	if (!hctxs)
1791 		goto err_percpu;
1792 
1793 	map = blk_mq_make_queue_map(set);
1794 	if (!map)
1795 		goto err_map;
1796 
1797 	for (i = 0; i < set->nr_hw_queues; i++) {
1798 		int node = blk_mq_hw_queue_to_node(map, i);
1799 
1800 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1801 					GFP_KERNEL, node);
1802 		if (!hctxs[i])
1803 			goto err_hctxs;
1804 
1805 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1806 						node))
1807 			goto err_hctxs;
1808 
1809 		atomic_set(&hctxs[i]->nr_active, 0);
1810 		hctxs[i]->numa_node = node;
1811 		hctxs[i]->queue_num = i;
1812 	}
1813 
1814 	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1815 	if (!q)
1816 		goto err_hctxs;
1817 
1818 	/*
1819 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1820 	 * See blk_register_queue() for details.
1821 	 */
1822 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1823 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1824 		goto err_map;
1825 
1826 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1827 	blk_queue_rq_timeout(q, 30000);
1828 
1829 	q->nr_queues = nr_cpu_ids;
1830 	q->nr_hw_queues = set->nr_hw_queues;
1831 	q->mq_map = map;
1832 
1833 	q->queue_ctx = ctx;
1834 	q->queue_hw_ctx = hctxs;
1835 
1836 	q->mq_ops = set->ops;
1837 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1838 
1839 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1840 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1841 
1842 	q->sg_reserved_size = INT_MAX;
1843 
1844 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1845 	INIT_LIST_HEAD(&q->requeue_list);
1846 	spin_lock_init(&q->requeue_lock);
1847 
1848 	if (q->nr_hw_queues > 1)
1849 		blk_queue_make_request(q, blk_mq_make_request);
1850 	else
1851 		blk_queue_make_request(q, blk_sq_make_request);
1852 
1853 	if (set->timeout)
1854 		blk_queue_rq_timeout(q, set->timeout);
1855 
1856 	/*
1857 	 * Do this after blk_queue_make_request() overrides it...
1858 	 */
1859 	q->nr_requests = set->queue_depth;
1860 
1861 	if (set->ops->complete)
1862 		blk_queue_softirq_done(q, set->ops->complete);
1863 
1864 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1865 
1866 	if (blk_mq_init_hw_queues(q, set))
1867 		goto err_hw;
1868 
1869 	mutex_lock(&all_q_mutex);
1870 	list_add_tail(&q->all_q_node, &all_q_list);
1871 	mutex_unlock(&all_q_mutex);
1872 
1873 	blk_mq_add_queue_tag_set(set, q);
1874 
1875 	blk_mq_map_swqueue(q);
1876 
1877 	return q;
1878 
1879 err_hw:
1880 	blk_cleanup_queue(q);
1881 err_hctxs:
1882 	kfree(map);
1883 	for (i = 0; i < set->nr_hw_queues; i++) {
1884 		if (!hctxs[i])
1885 			break;
1886 		free_cpumask_var(hctxs[i]->cpumask);
1887 		kfree(hctxs[i]);
1888 	}
1889 err_map:
1890 	kfree(hctxs);
1891 err_percpu:
1892 	free_percpu(ctx);
1893 	return ERR_PTR(-ENOMEM);
1894 }
1895 EXPORT_SYMBOL(blk_mq_init_queue);
1896 
1897 void blk_mq_free_queue(struct request_queue *q)
1898 {
1899 	struct blk_mq_tag_set	*set = q->tag_set;
1900 
1901 	blk_mq_del_queue_tag_set(q);
1902 
1903 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1904 	blk_mq_free_hw_queues(q, set);
1905 
1906 	percpu_ref_exit(&q->mq_usage_counter);
1907 
1908 	free_percpu(q->queue_ctx);
1909 	kfree(q->queue_hw_ctx);
1910 	kfree(q->mq_map);
1911 
1912 	q->queue_ctx = NULL;
1913 	q->queue_hw_ctx = NULL;
1914 	q->mq_map = NULL;
1915 
1916 	mutex_lock(&all_q_mutex);
1917 	list_del_init(&q->all_q_node);
1918 	mutex_unlock(&all_q_mutex);
1919 }
1920 
1921 /* Basically redo blk_mq_init_queue with queue frozen */
1922 static void blk_mq_queue_reinit(struct request_queue *q)
1923 {
1924 	blk_mq_freeze_queue(q);
1925 
1926 	blk_mq_sysfs_unregister(q);
1927 
1928 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1929 
1930 	/*
1931 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1932 	 * we should change hctx numa_node according to new topology (this
1933 	 * involves free and re-allocate memory, worthy doing?)
1934 	 */
1935 
1936 	blk_mq_map_swqueue(q);
1937 
1938 	blk_mq_sysfs_register(q);
1939 
1940 	blk_mq_unfreeze_queue(q);
1941 }
1942 
1943 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1944 				      unsigned long action, void *hcpu)
1945 {
1946 	struct request_queue *q;
1947 
1948 	/*
1949 	 * Before new mappings are established, hotadded cpu might already
1950 	 * start handling requests. This doesn't break anything as we map
1951 	 * offline CPUs to first hardware queue. We will re-init the queue
1952 	 * below to get optimal settings.
1953 	 */
1954 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1955 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1956 		return NOTIFY_OK;
1957 
1958 	mutex_lock(&all_q_mutex);
1959 	list_for_each_entry(q, &all_q_list, all_q_node)
1960 		blk_mq_queue_reinit(q);
1961 	mutex_unlock(&all_q_mutex);
1962 	return NOTIFY_OK;
1963 }
1964 
1965 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1966 {
1967 	int i;
1968 
1969 	for (i = 0; i < set->nr_hw_queues; i++) {
1970 		set->tags[i] = blk_mq_init_rq_map(set, i);
1971 		if (!set->tags[i])
1972 			goto out_unwind;
1973 	}
1974 
1975 	return 0;
1976 
1977 out_unwind:
1978 	while (--i >= 0)
1979 		blk_mq_free_rq_map(set, set->tags[i], i);
1980 
1981 	return -ENOMEM;
1982 }
1983 
1984 /*
1985  * Allocate the request maps associated with this tag_set. Note that this
1986  * may reduce the depth asked for, if memory is tight. set->queue_depth
1987  * will be updated to reflect the allocated depth.
1988  */
1989 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1990 {
1991 	unsigned int depth;
1992 	int err;
1993 
1994 	depth = set->queue_depth;
1995 	do {
1996 		err = __blk_mq_alloc_rq_maps(set);
1997 		if (!err)
1998 			break;
1999 
2000 		set->queue_depth >>= 1;
2001 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2002 			err = -ENOMEM;
2003 			break;
2004 		}
2005 	} while (set->queue_depth);
2006 
2007 	if (!set->queue_depth || err) {
2008 		pr_err("blk-mq: failed to allocate request map\n");
2009 		return -ENOMEM;
2010 	}
2011 
2012 	if (depth != set->queue_depth)
2013 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2014 						depth, set->queue_depth);
2015 
2016 	return 0;
2017 }
2018 
2019 /*
2020  * Alloc a tag set to be associated with one or more request queues.
2021  * May fail with EINVAL for various error conditions. May adjust the
2022  * requested depth down, if if it too large. In that case, the set
2023  * value will be stored in set->queue_depth.
2024  */
2025 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2026 {
2027 	if (!set->nr_hw_queues)
2028 		return -EINVAL;
2029 	if (!set->queue_depth)
2030 		return -EINVAL;
2031 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2032 		return -EINVAL;
2033 
2034 	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2035 		return -EINVAL;
2036 
2037 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2038 		pr_info("blk-mq: reduced tag depth to %u\n",
2039 			BLK_MQ_MAX_DEPTH);
2040 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2041 	}
2042 
2043 	set->tags = kmalloc_node(set->nr_hw_queues *
2044 				 sizeof(struct blk_mq_tags *),
2045 				 GFP_KERNEL, set->numa_node);
2046 	if (!set->tags)
2047 		return -ENOMEM;
2048 
2049 	if (blk_mq_alloc_rq_maps(set))
2050 		goto enomem;
2051 
2052 	mutex_init(&set->tag_list_lock);
2053 	INIT_LIST_HEAD(&set->tag_list);
2054 
2055 	return 0;
2056 enomem:
2057 	kfree(set->tags);
2058 	set->tags = NULL;
2059 	return -ENOMEM;
2060 }
2061 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2062 
2063 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2064 {
2065 	int i;
2066 
2067 	for (i = 0; i < set->nr_hw_queues; i++) {
2068 		if (set->tags[i])
2069 			blk_mq_free_rq_map(set, set->tags[i], i);
2070 	}
2071 
2072 	kfree(set->tags);
2073 	set->tags = NULL;
2074 }
2075 EXPORT_SYMBOL(blk_mq_free_tag_set);
2076 
2077 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2078 {
2079 	struct blk_mq_tag_set *set = q->tag_set;
2080 	struct blk_mq_hw_ctx *hctx;
2081 	int i, ret;
2082 
2083 	if (!set || nr > set->queue_depth)
2084 		return -EINVAL;
2085 
2086 	ret = 0;
2087 	queue_for_each_hw_ctx(q, hctx, i) {
2088 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2089 		if (ret)
2090 			break;
2091 	}
2092 
2093 	if (!ret)
2094 		q->nr_requests = nr;
2095 
2096 	return ret;
2097 }
2098 
2099 void blk_mq_disable_hotplug(void)
2100 {
2101 	mutex_lock(&all_q_mutex);
2102 }
2103 
2104 void blk_mq_enable_hotplug(void)
2105 {
2106 	mutex_unlock(&all_q_mutex);
2107 }
2108 
2109 static int __init blk_mq_init(void)
2110 {
2111 	blk_mq_cpu_init();
2112 
2113 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2114 
2115 	return 0;
2116 }
2117 subsys_initcall(blk_mq_init);
2118