1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 #include <linux/crash_dump.h> 24 25 #include <trace/events/block.h> 26 27 #include <linux/blk-mq.h> 28 #include "blk.h" 29 #include "blk-mq.h" 30 #include "blk-mq-tag.h" 31 32 static DEFINE_MUTEX(all_q_mutex); 33 static LIST_HEAD(all_q_list); 34 35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 36 37 /* 38 * Check if any of the ctx's have pending work in this hardware queue 39 */ 40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int i; 43 44 for (i = 0; i < hctx->ctx_map.map_size; i++) 45 if (hctx->ctx_map.map[i].word) 46 return true; 47 48 return false; 49 } 50 51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 52 struct blk_mq_ctx *ctx) 53 { 54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 55 } 56 57 #define CTX_TO_BIT(hctx, ctx) \ 58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 59 60 /* 61 * Mark this ctx as having pending work in this hardware queue 62 */ 63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 64 struct blk_mq_ctx *ctx) 65 { 66 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 67 68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 70 } 71 72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 76 77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 78 } 79 80 static int blk_mq_queue_enter(struct request_queue *q) 81 { 82 while (true) { 83 int ret; 84 85 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 86 return 0; 87 88 ret = wait_event_interruptible(q->mq_freeze_wq, 89 !q->mq_freeze_depth || blk_queue_dying(q)); 90 if (blk_queue_dying(q)) 91 return -ENODEV; 92 if (ret) 93 return ret; 94 } 95 } 96 97 static void blk_mq_queue_exit(struct request_queue *q) 98 { 99 percpu_ref_put(&q->mq_usage_counter); 100 } 101 102 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 103 { 104 struct request_queue *q = 105 container_of(ref, struct request_queue, mq_usage_counter); 106 107 wake_up_all(&q->mq_freeze_wq); 108 } 109 110 /* 111 * Guarantee no request is in use, so we can change any data structure of 112 * the queue afterward. 113 */ 114 void blk_mq_freeze_queue(struct request_queue *q) 115 { 116 bool freeze; 117 118 spin_lock_irq(q->queue_lock); 119 freeze = !q->mq_freeze_depth++; 120 spin_unlock_irq(q->queue_lock); 121 122 if (freeze) { 123 percpu_ref_kill(&q->mq_usage_counter); 124 blk_mq_run_queues(q, false); 125 } 126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 127 } 128 129 static void blk_mq_unfreeze_queue(struct request_queue *q) 130 { 131 bool wake; 132 133 spin_lock_irq(q->queue_lock); 134 wake = !--q->mq_freeze_depth; 135 WARN_ON_ONCE(q->mq_freeze_depth < 0); 136 spin_unlock_irq(q->queue_lock); 137 if (wake) { 138 percpu_ref_reinit(&q->mq_usage_counter); 139 wake_up_all(&q->mq_freeze_wq); 140 } 141 } 142 143 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 144 { 145 return blk_mq_has_free_tags(hctx->tags); 146 } 147 EXPORT_SYMBOL(blk_mq_can_queue); 148 149 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 150 struct request *rq, unsigned int rw_flags) 151 { 152 if (blk_queue_io_stat(q)) 153 rw_flags |= REQ_IO_STAT; 154 155 INIT_LIST_HEAD(&rq->queuelist); 156 /* csd/requeue_work/fifo_time is initialized before use */ 157 rq->q = q; 158 rq->mq_ctx = ctx; 159 rq->cmd_flags |= rw_flags; 160 /* do not touch atomic flags, it needs atomic ops against the timer */ 161 rq->cpu = -1; 162 INIT_HLIST_NODE(&rq->hash); 163 RB_CLEAR_NODE(&rq->rb_node); 164 rq->rq_disk = NULL; 165 rq->part = NULL; 166 rq->start_time = jiffies; 167 #ifdef CONFIG_BLK_CGROUP 168 rq->rl = NULL; 169 set_start_time_ns(rq); 170 rq->io_start_time_ns = 0; 171 #endif 172 rq->nr_phys_segments = 0; 173 #if defined(CONFIG_BLK_DEV_INTEGRITY) 174 rq->nr_integrity_segments = 0; 175 #endif 176 rq->special = NULL; 177 /* tag was already set */ 178 rq->errors = 0; 179 180 rq->cmd = rq->__cmd; 181 182 rq->extra_len = 0; 183 rq->sense_len = 0; 184 rq->resid_len = 0; 185 rq->sense = NULL; 186 187 INIT_LIST_HEAD(&rq->timeout_list); 188 rq->timeout = 0; 189 190 rq->end_io = NULL; 191 rq->end_io_data = NULL; 192 rq->next_rq = NULL; 193 194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 195 } 196 197 static struct request * 198 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 199 { 200 struct request *rq; 201 unsigned int tag; 202 203 tag = blk_mq_get_tag(data); 204 if (tag != BLK_MQ_TAG_FAIL) { 205 rq = data->hctx->tags->rqs[tag]; 206 207 if (blk_mq_tag_busy(data->hctx)) { 208 rq->cmd_flags = REQ_MQ_INFLIGHT; 209 atomic_inc(&data->hctx->nr_active); 210 } 211 212 rq->tag = tag; 213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 214 return rq; 215 } 216 217 return NULL; 218 } 219 220 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 221 bool reserved) 222 { 223 struct blk_mq_ctx *ctx; 224 struct blk_mq_hw_ctx *hctx; 225 struct request *rq; 226 struct blk_mq_alloc_data alloc_data; 227 int ret; 228 229 ret = blk_mq_queue_enter(q); 230 if (ret) 231 return ERR_PTR(ret); 232 233 ctx = blk_mq_get_ctx(q); 234 hctx = q->mq_ops->map_queue(q, ctx->cpu); 235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 236 reserved, ctx, hctx); 237 238 rq = __blk_mq_alloc_request(&alloc_data, rw); 239 if (!rq && (gfp & __GFP_WAIT)) { 240 __blk_mq_run_hw_queue(hctx); 241 blk_mq_put_ctx(ctx); 242 243 ctx = blk_mq_get_ctx(q); 244 hctx = q->mq_ops->map_queue(q, ctx->cpu); 245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 246 hctx); 247 rq = __blk_mq_alloc_request(&alloc_data, rw); 248 ctx = alloc_data.ctx; 249 } 250 blk_mq_put_ctx(ctx); 251 if (!rq) 252 return ERR_PTR(-EWOULDBLOCK); 253 return rq; 254 } 255 EXPORT_SYMBOL(blk_mq_alloc_request); 256 257 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 258 struct blk_mq_ctx *ctx, struct request *rq) 259 { 260 const int tag = rq->tag; 261 struct request_queue *q = rq->q; 262 263 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 264 atomic_dec(&hctx->nr_active); 265 rq->cmd_flags = 0; 266 267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 268 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 269 blk_mq_queue_exit(q); 270 } 271 272 void blk_mq_free_request(struct request *rq) 273 { 274 struct blk_mq_ctx *ctx = rq->mq_ctx; 275 struct blk_mq_hw_ctx *hctx; 276 struct request_queue *q = rq->q; 277 278 ctx->rq_completed[rq_is_sync(rq)]++; 279 280 hctx = q->mq_ops->map_queue(q, ctx->cpu); 281 __blk_mq_free_request(hctx, ctx, rq); 282 } 283 284 inline void __blk_mq_end_request(struct request *rq, int error) 285 { 286 blk_account_io_done(rq); 287 288 if (rq->end_io) { 289 rq->end_io(rq, error); 290 } else { 291 if (unlikely(blk_bidi_rq(rq))) 292 blk_mq_free_request(rq->next_rq); 293 blk_mq_free_request(rq); 294 } 295 } 296 EXPORT_SYMBOL(__blk_mq_end_request); 297 298 void blk_mq_end_request(struct request *rq, int error) 299 { 300 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 301 BUG(); 302 __blk_mq_end_request(rq, error); 303 } 304 EXPORT_SYMBOL(blk_mq_end_request); 305 306 static void __blk_mq_complete_request_remote(void *data) 307 { 308 struct request *rq = data; 309 310 rq->q->softirq_done_fn(rq); 311 } 312 313 static void blk_mq_ipi_complete_request(struct request *rq) 314 { 315 struct blk_mq_ctx *ctx = rq->mq_ctx; 316 bool shared = false; 317 int cpu; 318 319 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 320 rq->q->softirq_done_fn(rq); 321 return; 322 } 323 324 cpu = get_cpu(); 325 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 326 shared = cpus_share_cache(cpu, ctx->cpu); 327 328 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 329 rq->csd.func = __blk_mq_complete_request_remote; 330 rq->csd.info = rq; 331 rq->csd.flags = 0; 332 smp_call_function_single_async(ctx->cpu, &rq->csd); 333 } else { 334 rq->q->softirq_done_fn(rq); 335 } 336 put_cpu(); 337 } 338 339 void __blk_mq_complete_request(struct request *rq) 340 { 341 struct request_queue *q = rq->q; 342 343 if (!q->softirq_done_fn) 344 blk_mq_end_request(rq, rq->errors); 345 else 346 blk_mq_ipi_complete_request(rq); 347 } 348 349 /** 350 * blk_mq_complete_request - end I/O on a request 351 * @rq: the request being processed 352 * 353 * Description: 354 * Ends all I/O on a request. It does not handle partial completions. 355 * The actual completion happens out-of-order, through a IPI handler. 356 **/ 357 void blk_mq_complete_request(struct request *rq) 358 { 359 struct request_queue *q = rq->q; 360 361 if (unlikely(blk_should_fake_timeout(q))) 362 return; 363 if (!blk_mark_rq_complete(rq)) 364 __blk_mq_complete_request(rq); 365 } 366 EXPORT_SYMBOL(blk_mq_complete_request); 367 368 void blk_mq_start_request(struct request *rq) 369 { 370 struct request_queue *q = rq->q; 371 372 trace_block_rq_issue(q, rq); 373 374 rq->resid_len = blk_rq_bytes(rq); 375 if (unlikely(blk_bidi_rq(rq))) 376 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 377 378 blk_add_timer(rq); 379 380 /* 381 * Ensure that ->deadline is visible before set the started 382 * flag and clear the completed flag. 383 */ 384 smp_mb__before_atomic(); 385 386 /* 387 * Mark us as started and clear complete. Complete might have been 388 * set if requeue raced with timeout, which then marked it as 389 * complete. So be sure to clear complete again when we start 390 * the request, otherwise we'll ignore the completion event. 391 */ 392 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 393 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 394 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 395 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 396 397 if (q->dma_drain_size && blk_rq_bytes(rq)) { 398 /* 399 * Make sure space for the drain appears. We know we can do 400 * this because max_hw_segments has been adjusted to be one 401 * fewer than the device can handle. 402 */ 403 rq->nr_phys_segments++; 404 } 405 } 406 EXPORT_SYMBOL(blk_mq_start_request); 407 408 static void __blk_mq_requeue_request(struct request *rq) 409 { 410 struct request_queue *q = rq->q; 411 412 trace_block_rq_requeue(q, rq); 413 414 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 415 if (q->dma_drain_size && blk_rq_bytes(rq)) 416 rq->nr_phys_segments--; 417 } 418 } 419 420 void blk_mq_requeue_request(struct request *rq) 421 { 422 __blk_mq_requeue_request(rq); 423 424 BUG_ON(blk_queued_rq(rq)); 425 blk_mq_add_to_requeue_list(rq, true); 426 } 427 EXPORT_SYMBOL(blk_mq_requeue_request); 428 429 static void blk_mq_requeue_work(struct work_struct *work) 430 { 431 struct request_queue *q = 432 container_of(work, struct request_queue, requeue_work); 433 LIST_HEAD(rq_list); 434 struct request *rq, *next; 435 unsigned long flags; 436 437 spin_lock_irqsave(&q->requeue_lock, flags); 438 list_splice_init(&q->requeue_list, &rq_list); 439 spin_unlock_irqrestore(&q->requeue_lock, flags); 440 441 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 442 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 443 continue; 444 445 rq->cmd_flags &= ~REQ_SOFTBARRIER; 446 list_del_init(&rq->queuelist); 447 blk_mq_insert_request(rq, true, false, false); 448 } 449 450 while (!list_empty(&rq_list)) { 451 rq = list_entry(rq_list.next, struct request, queuelist); 452 list_del_init(&rq->queuelist); 453 blk_mq_insert_request(rq, false, false, false); 454 } 455 456 /* 457 * Use the start variant of queue running here, so that running 458 * the requeue work will kick stopped queues. 459 */ 460 blk_mq_start_hw_queues(q); 461 } 462 463 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 464 { 465 struct request_queue *q = rq->q; 466 unsigned long flags; 467 468 /* 469 * We abuse this flag that is otherwise used by the I/O scheduler to 470 * request head insertation from the workqueue. 471 */ 472 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 473 474 spin_lock_irqsave(&q->requeue_lock, flags); 475 if (at_head) { 476 rq->cmd_flags |= REQ_SOFTBARRIER; 477 list_add(&rq->queuelist, &q->requeue_list); 478 } else { 479 list_add_tail(&rq->queuelist, &q->requeue_list); 480 } 481 spin_unlock_irqrestore(&q->requeue_lock, flags); 482 } 483 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 484 485 void blk_mq_kick_requeue_list(struct request_queue *q) 486 { 487 kblockd_schedule_work(&q->requeue_work); 488 } 489 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 490 491 static inline bool is_flush_request(struct request *rq, 492 struct blk_flush_queue *fq, unsigned int tag) 493 { 494 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 495 fq->flush_rq->tag == tag); 496 } 497 498 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 499 { 500 struct request *rq = tags->rqs[tag]; 501 /* mq_ctx of flush rq is always cloned from the corresponding req */ 502 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx); 503 504 if (!is_flush_request(rq, fq, tag)) 505 return rq; 506 507 return fq->flush_rq; 508 } 509 EXPORT_SYMBOL(blk_mq_tag_to_rq); 510 511 struct blk_mq_timeout_data { 512 unsigned long next; 513 unsigned int next_set; 514 }; 515 516 void blk_mq_rq_timed_out(struct request *req, bool reserved) 517 { 518 struct blk_mq_ops *ops = req->q->mq_ops; 519 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 520 521 /* 522 * We know that complete is set at this point. If STARTED isn't set 523 * anymore, then the request isn't active and the "timeout" should 524 * just be ignored. This can happen due to the bitflag ordering. 525 * Timeout first checks if STARTED is set, and if it is, assumes 526 * the request is active. But if we race with completion, then 527 * we both flags will get cleared. So check here again, and ignore 528 * a timeout event with a request that isn't active. 529 */ 530 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 531 return; 532 533 if (ops->timeout) 534 ret = ops->timeout(req, reserved); 535 536 switch (ret) { 537 case BLK_EH_HANDLED: 538 __blk_mq_complete_request(req); 539 break; 540 case BLK_EH_RESET_TIMER: 541 blk_add_timer(req); 542 blk_clear_rq_complete(req); 543 break; 544 case BLK_EH_NOT_HANDLED: 545 break; 546 default: 547 printk(KERN_ERR "block: bad eh return: %d\n", ret); 548 break; 549 } 550 } 551 552 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 553 struct request *rq, void *priv, bool reserved) 554 { 555 struct blk_mq_timeout_data *data = priv; 556 557 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 558 return; 559 560 if (time_after_eq(jiffies, rq->deadline)) { 561 if (!blk_mark_rq_complete(rq)) 562 blk_mq_rq_timed_out(rq, reserved); 563 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 564 data->next = rq->deadline; 565 data->next_set = 1; 566 } 567 } 568 569 static void blk_mq_rq_timer(unsigned long priv) 570 { 571 struct request_queue *q = (struct request_queue *)priv; 572 struct blk_mq_timeout_data data = { 573 .next = 0, 574 .next_set = 0, 575 }; 576 struct blk_mq_hw_ctx *hctx; 577 int i; 578 579 queue_for_each_hw_ctx(q, hctx, i) { 580 /* 581 * If not software queues are currently mapped to this 582 * hardware queue, there's nothing to check 583 */ 584 if (!hctx->nr_ctx || !hctx->tags) 585 continue; 586 587 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data); 588 } 589 590 if (data.next_set) { 591 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 592 mod_timer(&q->timeout, data.next); 593 } else { 594 queue_for_each_hw_ctx(q, hctx, i) 595 blk_mq_tag_idle(hctx); 596 } 597 } 598 599 /* 600 * Reverse check our software queue for entries that we could potentially 601 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 602 * too much time checking for merges. 603 */ 604 static bool blk_mq_attempt_merge(struct request_queue *q, 605 struct blk_mq_ctx *ctx, struct bio *bio) 606 { 607 struct request *rq; 608 int checked = 8; 609 610 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 611 int el_ret; 612 613 if (!checked--) 614 break; 615 616 if (!blk_rq_merge_ok(rq, bio)) 617 continue; 618 619 el_ret = blk_try_merge(rq, bio); 620 if (el_ret == ELEVATOR_BACK_MERGE) { 621 if (bio_attempt_back_merge(q, rq, bio)) { 622 ctx->rq_merged++; 623 return true; 624 } 625 break; 626 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 627 if (bio_attempt_front_merge(q, rq, bio)) { 628 ctx->rq_merged++; 629 return true; 630 } 631 break; 632 } 633 } 634 635 return false; 636 } 637 638 /* 639 * Process software queues that have been marked busy, splicing them 640 * to the for-dispatch 641 */ 642 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 643 { 644 struct blk_mq_ctx *ctx; 645 int i; 646 647 for (i = 0; i < hctx->ctx_map.map_size; i++) { 648 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 649 unsigned int off, bit; 650 651 if (!bm->word) 652 continue; 653 654 bit = 0; 655 off = i * hctx->ctx_map.bits_per_word; 656 do { 657 bit = find_next_bit(&bm->word, bm->depth, bit); 658 if (bit >= bm->depth) 659 break; 660 661 ctx = hctx->ctxs[bit + off]; 662 clear_bit(bit, &bm->word); 663 spin_lock(&ctx->lock); 664 list_splice_tail_init(&ctx->rq_list, list); 665 spin_unlock(&ctx->lock); 666 667 bit++; 668 } while (1); 669 } 670 } 671 672 /* 673 * Run this hardware queue, pulling any software queues mapped to it in. 674 * Note that this function currently has various problems around ordering 675 * of IO. In particular, we'd like FIFO behaviour on handling existing 676 * items on the hctx->dispatch list. Ignore that for now. 677 */ 678 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 679 { 680 struct request_queue *q = hctx->queue; 681 struct request *rq; 682 LIST_HEAD(rq_list); 683 int queued; 684 685 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 686 687 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 688 return; 689 690 hctx->run++; 691 692 /* 693 * Touch any software queue that has pending entries. 694 */ 695 flush_busy_ctxs(hctx, &rq_list); 696 697 /* 698 * If we have previous entries on our dispatch list, grab them 699 * and stuff them at the front for more fair dispatch. 700 */ 701 if (!list_empty_careful(&hctx->dispatch)) { 702 spin_lock(&hctx->lock); 703 if (!list_empty(&hctx->dispatch)) 704 list_splice_init(&hctx->dispatch, &rq_list); 705 spin_unlock(&hctx->lock); 706 } 707 708 /* 709 * Now process all the entries, sending them to the driver. 710 */ 711 queued = 0; 712 while (!list_empty(&rq_list)) { 713 int ret; 714 715 rq = list_first_entry(&rq_list, struct request, queuelist); 716 list_del_init(&rq->queuelist); 717 718 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list)); 719 switch (ret) { 720 case BLK_MQ_RQ_QUEUE_OK: 721 queued++; 722 continue; 723 case BLK_MQ_RQ_QUEUE_BUSY: 724 list_add(&rq->queuelist, &rq_list); 725 __blk_mq_requeue_request(rq); 726 break; 727 default: 728 pr_err("blk-mq: bad return on queue: %d\n", ret); 729 case BLK_MQ_RQ_QUEUE_ERROR: 730 rq->errors = -EIO; 731 blk_mq_end_request(rq, rq->errors); 732 break; 733 } 734 735 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 736 break; 737 } 738 739 if (!queued) 740 hctx->dispatched[0]++; 741 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 742 hctx->dispatched[ilog2(queued) + 1]++; 743 744 /* 745 * Any items that need requeuing? Stuff them into hctx->dispatch, 746 * that is where we will continue on next queue run. 747 */ 748 if (!list_empty(&rq_list)) { 749 spin_lock(&hctx->lock); 750 list_splice(&rq_list, &hctx->dispatch); 751 spin_unlock(&hctx->lock); 752 } 753 } 754 755 /* 756 * It'd be great if the workqueue API had a way to pass 757 * in a mask and had some smarts for more clever placement. 758 * For now we just round-robin here, switching for every 759 * BLK_MQ_CPU_WORK_BATCH queued items. 760 */ 761 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 762 { 763 int cpu = hctx->next_cpu; 764 765 if (--hctx->next_cpu_batch <= 0) { 766 int next_cpu; 767 768 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 769 if (next_cpu >= nr_cpu_ids) 770 next_cpu = cpumask_first(hctx->cpumask); 771 772 hctx->next_cpu = next_cpu; 773 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 774 } 775 776 return cpu; 777 } 778 779 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 780 { 781 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 782 return; 783 784 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask)) 785 __blk_mq_run_hw_queue(hctx); 786 else if (hctx->queue->nr_hw_queues == 1) 787 kblockd_schedule_delayed_work(&hctx->run_work, 0); 788 else { 789 unsigned int cpu; 790 791 cpu = blk_mq_hctx_next_cpu(hctx); 792 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); 793 } 794 } 795 796 void blk_mq_run_queues(struct request_queue *q, bool async) 797 { 798 struct blk_mq_hw_ctx *hctx; 799 int i; 800 801 queue_for_each_hw_ctx(q, hctx, i) { 802 if ((!blk_mq_hctx_has_pending(hctx) && 803 list_empty_careful(&hctx->dispatch)) || 804 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 805 continue; 806 807 preempt_disable(); 808 blk_mq_run_hw_queue(hctx, async); 809 preempt_enable(); 810 } 811 } 812 EXPORT_SYMBOL(blk_mq_run_queues); 813 814 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 815 { 816 cancel_delayed_work(&hctx->run_work); 817 cancel_delayed_work(&hctx->delay_work); 818 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 819 } 820 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 821 822 void blk_mq_stop_hw_queues(struct request_queue *q) 823 { 824 struct blk_mq_hw_ctx *hctx; 825 int i; 826 827 queue_for_each_hw_ctx(q, hctx, i) 828 blk_mq_stop_hw_queue(hctx); 829 } 830 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 831 832 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 833 { 834 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 835 836 preempt_disable(); 837 blk_mq_run_hw_queue(hctx, false); 838 preempt_enable(); 839 } 840 EXPORT_SYMBOL(blk_mq_start_hw_queue); 841 842 void blk_mq_start_hw_queues(struct request_queue *q) 843 { 844 struct blk_mq_hw_ctx *hctx; 845 int i; 846 847 queue_for_each_hw_ctx(q, hctx, i) 848 blk_mq_start_hw_queue(hctx); 849 } 850 EXPORT_SYMBOL(blk_mq_start_hw_queues); 851 852 853 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 854 { 855 struct blk_mq_hw_ctx *hctx; 856 int i; 857 858 queue_for_each_hw_ctx(q, hctx, i) { 859 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 860 continue; 861 862 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 863 preempt_disable(); 864 blk_mq_run_hw_queue(hctx, async); 865 preempt_enable(); 866 } 867 } 868 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 869 870 static void blk_mq_run_work_fn(struct work_struct *work) 871 { 872 struct blk_mq_hw_ctx *hctx; 873 874 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 875 876 __blk_mq_run_hw_queue(hctx); 877 } 878 879 static void blk_mq_delay_work_fn(struct work_struct *work) 880 { 881 struct blk_mq_hw_ctx *hctx; 882 883 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 884 885 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 886 __blk_mq_run_hw_queue(hctx); 887 } 888 889 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 890 { 891 unsigned long tmo = msecs_to_jiffies(msecs); 892 893 if (hctx->queue->nr_hw_queues == 1) 894 kblockd_schedule_delayed_work(&hctx->delay_work, tmo); 895 else { 896 unsigned int cpu; 897 898 cpu = blk_mq_hctx_next_cpu(hctx); 899 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); 900 } 901 } 902 EXPORT_SYMBOL(blk_mq_delay_queue); 903 904 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 905 struct request *rq, bool at_head) 906 { 907 struct blk_mq_ctx *ctx = rq->mq_ctx; 908 909 trace_block_rq_insert(hctx->queue, rq); 910 911 if (at_head) 912 list_add(&rq->queuelist, &ctx->rq_list); 913 else 914 list_add_tail(&rq->queuelist, &ctx->rq_list); 915 916 blk_mq_hctx_mark_pending(hctx, ctx); 917 } 918 919 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 920 bool async) 921 { 922 struct request_queue *q = rq->q; 923 struct blk_mq_hw_ctx *hctx; 924 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 925 926 current_ctx = blk_mq_get_ctx(q); 927 if (!cpu_online(ctx->cpu)) 928 rq->mq_ctx = ctx = current_ctx; 929 930 hctx = q->mq_ops->map_queue(q, ctx->cpu); 931 932 spin_lock(&ctx->lock); 933 __blk_mq_insert_request(hctx, rq, at_head); 934 spin_unlock(&ctx->lock); 935 936 if (run_queue) 937 blk_mq_run_hw_queue(hctx, async); 938 939 blk_mq_put_ctx(current_ctx); 940 } 941 942 static void blk_mq_insert_requests(struct request_queue *q, 943 struct blk_mq_ctx *ctx, 944 struct list_head *list, 945 int depth, 946 bool from_schedule) 947 948 { 949 struct blk_mq_hw_ctx *hctx; 950 struct blk_mq_ctx *current_ctx; 951 952 trace_block_unplug(q, depth, !from_schedule); 953 954 current_ctx = blk_mq_get_ctx(q); 955 956 if (!cpu_online(ctx->cpu)) 957 ctx = current_ctx; 958 hctx = q->mq_ops->map_queue(q, ctx->cpu); 959 960 /* 961 * preemption doesn't flush plug list, so it's possible ctx->cpu is 962 * offline now 963 */ 964 spin_lock(&ctx->lock); 965 while (!list_empty(list)) { 966 struct request *rq; 967 968 rq = list_first_entry(list, struct request, queuelist); 969 list_del_init(&rq->queuelist); 970 rq->mq_ctx = ctx; 971 __blk_mq_insert_request(hctx, rq, false); 972 } 973 spin_unlock(&ctx->lock); 974 975 blk_mq_run_hw_queue(hctx, from_schedule); 976 blk_mq_put_ctx(current_ctx); 977 } 978 979 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 980 { 981 struct request *rqa = container_of(a, struct request, queuelist); 982 struct request *rqb = container_of(b, struct request, queuelist); 983 984 return !(rqa->mq_ctx < rqb->mq_ctx || 985 (rqa->mq_ctx == rqb->mq_ctx && 986 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 987 } 988 989 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 990 { 991 struct blk_mq_ctx *this_ctx; 992 struct request_queue *this_q; 993 struct request *rq; 994 LIST_HEAD(list); 995 LIST_HEAD(ctx_list); 996 unsigned int depth; 997 998 list_splice_init(&plug->mq_list, &list); 999 1000 list_sort(NULL, &list, plug_ctx_cmp); 1001 1002 this_q = NULL; 1003 this_ctx = NULL; 1004 depth = 0; 1005 1006 while (!list_empty(&list)) { 1007 rq = list_entry_rq(list.next); 1008 list_del_init(&rq->queuelist); 1009 BUG_ON(!rq->q); 1010 if (rq->mq_ctx != this_ctx) { 1011 if (this_ctx) { 1012 blk_mq_insert_requests(this_q, this_ctx, 1013 &ctx_list, depth, 1014 from_schedule); 1015 } 1016 1017 this_ctx = rq->mq_ctx; 1018 this_q = rq->q; 1019 depth = 0; 1020 } 1021 1022 depth++; 1023 list_add_tail(&rq->queuelist, &ctx_list); 1024 } 1025 1026 /* 1027 * If 'this_ctx' is set, we know we have entries to complete 1028 * on 'ctx_list'. Do those. 1029 */ 1030 if (this_ctx) { 1031 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1032 from_schedule); 1033 } 1034 } 1035 1036 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1037 { 1038 init_request_from_bio(rq, bio); 1039 1040 if (blk_do_io_stat(rq)) 1041 blk_account_io_start(rq, 1); 1042 } 1043 1044 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1045 { 1046 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1047 !blk_queue_nomerges(hctx->queue); 1048 } 1049 1050 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1051 struct blk_mq_ctx *ctx, 1052 struct request *rq, struct bio *bio) 1053 { 1054 if (!hctx_allow_merges(hctx)) { 1055 blk_mq_bio_to_request(rq, bio); 1056 spin_lock(&ctx->lock); 1057 insert_rq: 1058 __blk_mq_insert_request(hctx, rq, false); 1059 spin_unlock(&ctx->lock); 1060 return false; 1061 } else { 1062 struct request_queue *q = hctx->queue; 1063 1064 spin_lock(&ctx->lock); 1065 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1066 blk_mq_bio_to_request(rq, bio); 1067 goto insert_rq; 1068 } 1069 1070 spin_unlock(&ctx->lock); 1071 __blk_mq_free_request(hctx, ctx, rq); 1072 return true; 1073 } 1074 } 1075 1076 struct blk_map_ctx { 1077 struct blk_mq_hw_ctx *hctx; 1078 struct blk_mq_ctx *ctx; 1079 }; 1080 1081 static struct request *blk_mq_map_request(struct request_queue *q, 1082 struct bio *bio, 1083 struct blk_map_ctx *data) 1084 { 1085 struct blk_mq_hw_ctx *hctx; 1086 struct blk_mq_ctx *ctx; 1087 struct request *rq; 1088 int rw = bio_data_dir(bio); 1089 struct blk_mq_alloc_data alloc_data; 1090 1091 if (unlikely(blk_mq_queue_enter(q))) { 1092 bio_endio(bio, -EIO); 1093 return NULL; 1094 } 1095 1096 ctx = blk_mq_get_ctx(q); 1097 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1098 1099 if (rw_is_sync(bio->bi_rw)) 1100 rw |= REQ_SYNC; 1101 1102 trace_block_getrq(q, bio, rw); 1103 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1104 hctx); 1105 rq = __blk_mq_alloc_request(&alloc_data, rw); 1106 if (unlikely(!rq)) { 1107 __blk_mq_run_hw_queue(hctx); 1108 blk_mq_put_ctx(ctx); 1109 trace_block_sleeprq(q, bio, rw); 1110 1111 ctx = blk_mq_get_ctx(q); 1112 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1113 blk_mq_set_alloc_data(&alloc_data, q, 1114 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1115 rq = __blk_mq_alloc_request(&alloc_data, rw); 1116 ctx = alloc_data.ctx; 1117 hctx = alloc_data.hctx; 1118 } 1119 1120 hctx->queued++; 1121 data->hctx = hctx; 1122 data->ctx = ctx; 1123 return rq; 1124 } 1125 1126 /* 1127 * Multiple hardware queue variant. This will not use per-process plugs, 1128 * but will attempt to bypass the hctx queueing if we can go straight to 1129 * hardware for SYNC IO. 1130 */ 1131 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1132 { 1133 const int is_sync = rw_is_sync(bio->bi_rw); 1134 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1135 struct blk_map_ctx data; 1136 struct request *rq; 1137 1138 blk_queue_bounce(q, &bio); 1139 1140 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1141 bio_endio(bio, -EIO); 1142 return; 1143 } 1144 1145 rq = blk_mq_map_request(q, bio, &data); 1146 if (unlikely(!rq)) 1147 return; 1148 1149 if (unlikely(is_flush_fua)) { 1150 blk_mq_bio_to_request(rq, bio); 1151 blk_insert_flush(rq); 1152 goto run_queue; 1153 } 1154 1155 if (is_sync) { 1156 int ret; 1157 1158 blk_mq_bio_to_request(rq, bio); 1159 1160 /* 1161 * For OK queue, we are done. For error, kill it. Any other 1162 * error (busy), just add it to our list as we previously 1163 * would have done 1164 */ 1165 ret = q->mq_ops->queue_rq(data.hctx, rq, true); 1166 if (ret == BLK_MQ_RQ_QUEUE_OK) 1167 goto done; 1168 else { 1169 __blk_mq_requeue_request(rq); 1170 1171 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1172 rq->errors = -EIO; 1173 blk_mq_end_request(rq, rq->errors); 1174 goto done; 1175 } 1176 } 1177 } 1178 1179 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1180 /* 1181 * For a SYNC request, send it to the hardware immediately. For 1182 * an ASYNC request, just ensure that we run it later on. The 1183 * latter allows for merging opportunities and more efficient 1184 * dispatching. 1185 */ 1186 run_queue: 1187 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1188 } 1189 done: 1190 blk_mq_put_ctx(data.ctx); 1191 } 1192 1193 /* 1194 * Single hardware queue variant. This will attempt to use any per-process 1195 * plug for merging and IO deferral. 1196 */ 1197 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1198 { 1199 const int is_sync = rw_is_sync(bio->bi_rw); 1200 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1201 unsigned int use_plug, request_count = 0; 1202 struct blk_map_ctx data; 1203 struct request *rq; 1204 1205 /* 1206 * If we have multiple hardware queues, just go directly to 1207 * one of those for sync IO. 1208 */ 1209 use_plug = !is_flush_fua && !is_sync; 1210 1211 blk_queue_bounce(q, &bio); 1212 1213 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1214 bio_endio(bio, -EIO); 1215 return; 1216 } 1217 1218 if (use_plug && !blk_queue_nomerges(q) && 1219 blk_attempt_plug_merge(q, bio, &request_count)) 1220 return; 1221 1222 rq = blk_mq_map_request(q, bio, &data); 1223 if (unlikely(!rq)) 1224 return; 1225 1226 if (unlikely(is_flush_fua)) { 1227 blk_mq_bio_to_request(rq, bio); 1228 blk_insert_flush(rq); 1229 goto run_queue; 1230 } 1231 1232 /* 1233 * A task plug currently exists. Since this is completely lockless, 1234 * utilize that to temporarily store requests until the task is 1235 * either done or scheduled away. 1236 */ 1237 if (use_plug) { 1238 struct blk_plug *plug = current->plug; 1239 1240 if (plug) { 1241 blk_mq_bio_to_request(rq, bio); 1242 if (list_empty(&plug->mq_list)) 1243 trace_block_plug(q); 1244 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1245 blk_flush_plug_list(plug, false); 1246 trace_block_plug(q); 1247 } 1248 list_add_tail(&rq->queuelist, &plug->mq_list); 1249 blk_mq_put_ctx(data.ctx); 1250 return; 1251 } 1252 } 1253 1254 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1255 /* 1256 * For a SYNC request, send it to the hardware immediately. For 1257 * an ASYNC request, just ensure that we run it later on. The 1258 * latter allows for merging opportunities and more efficient 1259 * dispatching. 1260 */ 1261 run_queue: 1262 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1263 } 1264 1265 blk_mq_put_ctx(data.ctx); 1266 } 1267 1268 /* 1269 * Default mapping to a software queue, since we use one per CPU. 1270 */ 1271 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1272 { 1273 return q->queue_hw_ctx[q->mq_map[cpu]]; 1274 } 1275 EXPORT_SYMBOL(blk_mq_map_queue); 1276 1277 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1278 struct blk_mq_tags *tags, unsigned int hctx_idx) 1279 { 1280 struct page *page; 1281 1282 if (tags->rqs && set->ops->exit_request) { 1283 int i; 1284 1285 for (i = 0; i < tags->nr_tags; i++) { 1286 if (!tags->rqs[i]) 1287 continue; 1288 set->ops->exit_request(set->driver_data, tags->rqs[i], 1289 hctx_idx, i); 1290 tags->rqs[i] = NULL; 1291 } 1292 } 1293 1294 while (!list_empty(&tags->page_list)) { 1295 page = list_first_entry(&tags->page_list, struct page, lru); 1296 list_del_init(&page->lru); 1297 __free_pages(page, page->private); 1298 } 1299 1300 kfree(tags->rqs); 1301 1302 blk_mq_free_tags(tags); 1303 } 1304 1305 static size_t order_to_size(unsigned int order) 1306 { 1307 return (size_t)PAGE_SIZE << order; 1308 } 1309 1310 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1311 unsigned int hctx_idx) 1312 { 1313 struct blk_mq_tags *tags; 1314 unsigned int i, j, entries_per_page, max_order = 4; 1315 size_t rq_size, left; 1316 1317 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1318 set->numa_node); 1319 if (!tags) 1320 return NULL; 1321 1322 INIT_LIST_HEAD(&tags->page_list); 1323 1324 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1325 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1326 set->numa_node); 1327 if (!tags->rqs) { 1328 blk_mq_free_tags(tags); 1329 return NULL; 1330 } 1331 1332 /* 1333 * rq_size is the size of the request plus driver payload, rounded 1334 * to the cacheline size 1335 */ 1336 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1337 cache_line_size()); 1338 left = rq_size * set->queue_depth; 1339 1340 for (i = 0; i < set->queue_depth; ) { 1341 int this_order = max_order; 1342 struct page *page; 1343 int to_do; 1344 void *p; 1345 1346 while (left < order_to_size(this_order - 1) && this_order) 1347 this_order--; 1348 1349 do { 1350 page = alloc_pages_node(set->numa_node, 1351 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1352 this_order); 1353 if (page) 1354 break; 1355 if (!this_order--) 1356 break; 1357 if (order_to_size(this_order) < rq_size) 1358 break; 1359 } while (1); 1360 1361 if (!page) 1362 goto fail; 1363 1364 page->private = this_order; 1365 list_add_tail(&page->lru, &tags->page_list); 1366 1367 p = page_address(page); 1368 entries_per_page = order_to_size(this_order) / rq_size; 1369 to_do = min(entries_per_page, set->queue_depth - i); 1370 left -= to_do * rq_size; 1371 for (j = 0; j < to_do; j++) { 1372 tags->rqs[i] = p; 1373 tags->rqs[i]->atomic_flags = 0; 1374 tags->rqs[i]->cmd_flags = 0; 1375 if (set->ops->init_request) { 1376 if (set->ops->init_request(set->driver_data, 1377 tags->rqs[i], hctx_idx, i, 1378 set->numa_node)) { 1379 tags->rqs[i] = NULL; 1380 goto fail; 1381 } 1382 } 1383 1384 p += rq_size; 1385 i++; 1386 } 1387 } 1388 1389 return tags; 1390 1391 fail: 1392 blk_mq_free_rq_map(set, tags, hctx_idx); 1393 return NULL; 1394 } 1395 1396 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1397 { 1398 kfree(bitmap->map); 1399 } 1400 1401 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1402 { 1403 unsigned int bpw = 8, total, num_maps, i; 1404 1405 bitmap->bits_per_word = bpw; 1406 1407 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1408 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1409 GFP_KERNEL, node); 1410 if (!bitmap->map) 1411 return -ENOMEM; 1412 1413 bitmap->map_size = num_maps; 1414 1415 total = nr_cpu_ids; 1416 for (i = 0; i < num_maps; i++) { 1417 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1418 total -= bitmap->map[i].depth; 1419 } 1420 1421 return 0; 1422 } 1423 1424 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1425 { 1426 struct request_queue *q = hctx->queue; 1427 struct blk_mq_ctx *ctx; 1428 LIST_HEAD(tmp); 1429 1430 /* 1431 * Move ctx entries to new CPU, if this one is going away. 1432 */ 1433 ctx = __blk_mq_get_ctx(q, cpu); 1434 1435 spin_lock(&ctx->lock); 1436 if (!list_empty(&ctx->rq_list)) { 1437 list_splice_init(&ctx->rq_list, &tmp); 1438 blk_mq_hctx_clear_pending(hctx, ctx); 1439 } 1440 spin_unlock(&ctx->lock); 1441 1442 if (list_empty(&tmp)) 1443 return NOTIFY_OK; 1444 1445 ctx = blk_mq_get_ctx(q); 1446 spin_lock(&ctx->lock); 1447 1448 while (!list_empty(&tmp)) { 1449 struct request *rq; 1450 1451 rq = list_first_entry(&tmp, struct request, queuelist); 1452 rq->mq_ctx = ctx; 1453 list_move_tail(&rq->queuelist, &ctx->rq_list); 1454 } 1455 1456 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1457 blk_mq_hctx_mark_pending(hctx, ctx); 1458 1459 spin_unlock(&ctx->lock); 1460 1461 blk_mq_run_hw_queue(hctx, true); 1462 blk_mq_put_ctx(ctx); 1463 return NOTIFY_OK; 1464 } 1465 1466 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1467 { 1468 struct request_queue *q = hctx->queue; 1469 struct blk_mq_tag_set *set = q->tag_set; 1470 1471 if (set->tags[hctx->queue_num]) 1472 return NOTIFY_OK; 1473 1474 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1475 if (!set->tags[hctx->queue_num]) 1476 return NOTIFY_STOP; 1477 1478 hctx->tags = set->tags[hctx->queue_num]; 1479 return NOTIFY_OK; 1480 } 1481 1482 static int blk_mq_hctx_notify(void *data, unsigned long action, 1483 unsigned int cpu) 1484 { 1485 struct blk_mq_hw_ctx *hctx = data; 1486 1487 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1488 return blk_mq_hctx_cpu_offline(hctx, cpu); 1489 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1490 return blk_mq_hctx_cpu_online(hctx, cpu); 1491 1492 return NOTIFY_OK; 1493 } 1494 1495 static void blk_mq_exit_hctx(struct request_queue *q, 1496 struct blk_mq_tag_set *set, 1497 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1498 { 1499 unsigned flush_start_tag = set->queue_depth; 1500 1501 blk_mq_tag_idle(hctx); 1502 1503 if (set->ops->exit_request) 1504 set->ops->exit_request(set->driver_data, 1505 hctx->fq->flush_rq, hctx_idx, 1506 flush_start_tag + hctx_idx); 1507 1508 if (set->ops->exit_hctx) 1509 set->ops->exit_hctx(hctx, hctx_idx); 1510 1511 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1512 blk_free_flush_queue(hctx->fq); 1513 kfree(hctx->ctxs); 1514 blk_mq_free_bitmap(&hctx->ctx_map); 1515 } 1516 1517 static void blk_mq_exit_hw_queues(struct request_queue *q, 1518 struct blk_mq_tag_set *set, int nr_queue) 1519 { 1520 struct blk_mq_hw_ctx *hctx; 1521 unsigned int i; 1522 1523 queue_for_each_hw_ctx(q, hctx, i) { 1524 if (i == nr_queue) 1525 break; 1526 blk_mq_exit_hctx(q, set, hctx, i); 1527 } 1528 } 1529 1530 static void blk_mq_free_hw_queues(struct request_queue *q, 1531 struct blk_mq_tag_set *set) 1532 { 1533 struct blk_mq_hw_ctx *hctx; 1534 unsigned int i; 1535 1536 queue_for_each_hw_ctx(q, hctx, i) { 1537 free_cpumask_var(hctx->cpumask); 1538 kfree(hctx); 1539 } 1540 } 1541 1542 static int blk_mq_init_hctx(struct request_queue *q, 1543 struct blk_mq_tag_set *set, 1544 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1545 { 1546 int node; 1547 unsigned flush_start_tag = set->queue_depth; 1548 1549 node = hctx->numa_node; 1550 if (node == NUMA_NO_NODE) 1551 node = hctx->numa_node = set->numa_node; 1552 1553 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1554 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1555 spin_lock_init(&hctx->lock); 1556 INIT_LIST_HEAD(&hctx->dispatch); 1557 hctx->queue = q; 1558 hctx->queue_num = hctx_idx; 1559 hctx->flags = set->flags; 1560 hctx->cmd_size = set->cmd_size; 1561 1562 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1563 blk_mq_hctx_notify, hctx); 1564 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1565 1566 hctx->tags = set->tags[hctx_idx]; 1567 1568 /* 1569 * Allocate space for all possible cpus to avoid allocation at 1570 * runtime 1571 */ 1572 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1573 GFP_KERNEL, node); 1574 if (!hctx->ctxs) 1575 goto unregister_cpu_notifier; 1576 1577 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1578 goto free_ctxs; 1579 1580 hctx->nr_ctx = 0; 1581 1582 if (set->ops->init_hctx && 1583 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1584 goto free_bitmap; 1585 1586 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1587 if (!hctx->fq) 1588 goto exit_hctx; 1589 1590 if (set->ops->init_request && 1591 set->ops->init_request(set->driver_data, 1592 hctx->fq->flush_rq, hctx_idx, 1593 flush_start_tag + hctx_idx, node)) 1594 goto free_fq; 1595 1596 return 0; 1597 1598 free_fq: 1599 kfree(hctx->fq); 1600 exit_hctx: 1601 if (set->ops->exit_hctx) 1602 set->ops->exit_hctx(hctx, hctx_idx); 1603 free_bitmap: 1604 blk_mq_free_bitmap(&hctx->ctx_map); 1605 free_ctxs: 1606 kfree(hctx->ctxs); 1607 unregister_cpu_notifier: 1608 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1609 1610 return -1; 1611 } 1612 1613 static int blk_mq_init_hw_queues(struct request_queue *q, 1614 struct blk_mq_tag_set *set) 1615 { 1616 struct blk_mq_hw_ctx *hctx; 1617 unsigned int i; 1618 1619 /* 1620 * Initialize hardware queues 1621 */ 1622 queue_for_each_hw_ctx(q, hctx, i) { 1623 if (blk_mq_init_hctx(q, set, hctx, i)) 1624 break; 1625 } 1626 1627 if (i == q->nr_hw_queues) 1628 return 0; 1629 1630 /* 1631 * Init failed 1632 */ 1633 blk_mq_exit_hw_queues(q, set, i); 1634 1635 return 1; 1636 } 1637 1638 static void blk_mq_init_cpu_queues(struct request_queue *q, 1639 unsigned int nr_hw_queues) 1640 { 1641 unsigned int i; 1642 1643 for_each_possible_cpu(i) { 1644 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1645 struct blk_mq_hw_ctx *hctx; 1646 1647 memset(__ctx, 0, sizeof(*__ctx)); 1648 __ctx->cpu = i; 1649 spin_lock_init(&__ctx->lock); 1650 INIT_LIST_HEAD(&__ctx->rq_list); 1651 __ctx->queue = q; 1652 1653 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1654 if (!cpu_online(i)) 1655 continue; 1656 1657 hctx = q->mq_ops->map_queue(q, i); 1658 cpumask_set_cpu(i, hctx->cpumask); 1659 hctx->nr_ctx++; 1660 1661 /* 1662 * Set local node, IFF we have more than one hw queue. If 1663 * not, we remain on the home node of the device 1664 */ 1665 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1666 hctx->numa_node = cpu_to_node(i); 1667 } 1668 } 1669 1670 static void blk_mq_map_swqueue(struct request_queue *q) 1671 { 1672 unsigned int i; 1673 struct blk_mq_hw_ctx *hctx; 1674 struct blk_mq_ctx *ctx; 1675 1676 queue_for_each_hw_ctx(q, hctx, i) { 1677 cpumask_clear(hctx->cpumask); 1678 hctx->nr_ctx = 0; 1679 } 1680 1681 /* 1682 * Map software to hardware queues 1683 */ 1684 queue_for_each_ctx(q, ctx, i) { 1685 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1686 if (!cpu_online(i)) 1687 continue; 1688 1689 hctx = q->mq_ops->map_queue(q, i); 1690 cpumask_set_cpu(i, hctx->cpumask); 1691 ctx->index_hw = hctx->nr_ctx; 1692 hctx->ctxs[hctx->nr_ctx++] = ctx; 1693 } 1694 1695 queue_for_each_hw_ctx(q, hctx, i) { 1696 /* 1697 * If no software queues are mapped to this hardware queue, 1698 * disable it and free the request entries. 1699 */ 1700 if (!hctx->nr_ctx) { 1701 struct blk_mq_tag_set *set = q->tag_set; 1702 1703 if (set->tags[i]) { 1704 blk_mq_free_rq_map(set, set->tags[i], i); 1705 set->tags[i] = NULL; 1706 hctx->tags = NULL; 1707 } 1708 continue; 1709 } 1710 1711 /* 1712 * Initialize batch roundrobin counts 1713 */ 1714 hctx->next_cpu = cpumask_first(hctx->cpumask); 1715 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1716 } 1717 } 1718 1719 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1720 { 1721 struct blk_mq_hw_ctx *hctx; 1722 struct request_queue *q; 1723 bool shared; 1724 int i; 1725 1726 if (set->tag_list.next == set->tag_list.prev) 1727 shared = false; 1728 else 1729 shared = true; 1730 1731 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1732 blk_mq_freeze_queue(q); 1733 1734 queue_for_each_hw_ctx(q, hctx, i) { 1735 if (shared) 1736 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1737 else 1738 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1739 } 1740 blk_mq_unfreeze_queue(q); 1741 } 1742 } 1743 1744 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1745 { 1746 struct blk_mq_tag_set *set = q->tag_set; 1747 1748 mutex_lock(&set->tag_list_lock); 1749 list_del_init(&q->tag_set_list); 1750 blk_mq_update_tag_set_depth(set); 1751 mutex_unlock(&set->tag_list_lock); 1752 } 1753 1754 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1755 struct request_queue *q) 1756 { 1757 q->tag_set = set; 1758 1759 mutex_lock(&set->tag_list_lock); 1760 list_add_tail(&q->tag_set_list, &set->tag_list); 1761 blk_mq_update_tag_set_depth(set); 1762 mutex_unlock(&set->tag_list_lock); 1763 } 1764 1765 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1766 { 1767 struct blk_mq_hw_ctx **hctxs; 1768 struct blk_mq_ctx __percpu *ctx; 1769 struct request_queue *q; 1770 unsigned int *map; 1771 int i; 1772 1773 ctx = alloc_percpu(struct blk_mq_ctx); 1774 if (!ctx) 1775 return ERR_PTR(-ENOMEM); 1776 1777 /* 1778 * If a crashdump is active, then we are potentially in a very 1779 * memory constrained environment. Limit us to 1 queue and 1780 * 64 tags to prevent using too much memory. 1781 */ 1782 if (is_kdump_kernel()) { 1783 set->nr_hw_queues = 1; 1784 set->queue_depth = min(64U, set->queue_depth); 1785 } 1786 1787 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1788 set->numa_node); 1789 1790 if (!hctxs) 1791 goto err_percpu; 1792 1793 map = blk_mq_make_queue_map(set); 1794 if (!map) 1795 goto err_map; 1796 1797 for (i = 0; i < set->nr_hw_queues; i++) { 1798 int node = blk_mq_hw_queue_to_node(map, i); 1799 1800 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1801 GFP_KERNEL, node); 1802 if (!hctxs[i]) 1803 goto err_hctxs; 1804 1805 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1806 node)) 1807 goto err_hctxs; 1808 1809 atomic_set(&hctxs[i]->nr_active, 0); 1810 hctxs[i]->numa_node = node; 1811 hctxs[i]->queue_num = i; 1812 } 1813 1814 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1815 if (!q) 1816 goto err_hctxs; 1817 1818 /* 1819 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1820 * See blk_register_queue() for details. 1821 */ 1822 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release, 1823 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1824 goto err_map; 1825 1826 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1827 blk_queue_rq_timeout(q, 30000); 1828 1829 q->nr_queues = nr_cpu_ids; 1830 q->nr_hw_queues = set->nr_hw_queues; 1831 q->mq_map = map; 1832 1833 q->queue_ctx = ctx; 1834 q->queue_hw_ctx = hctxs; 1835 1836 q->mq_ops = set->ops; 1837 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1838 1839 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1840 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1841 1842 q->sg_reserved_size = INT_MAX; 1843 1844 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1845 INIT_LIST_HEAD(&q->requeue_list); 1846 spin_lock_init(&q->requeue_lock); 1847 1848 if (q->nr_hw_queues > 1) 1849 blk_queue_make_request(q, blk_mq_make_request); 1850 else 1851 blk_queue_make_request(q, blk_sq_make_request); 1852 1853 if (set->timeout) 1854 blk_queue_rq_timeout(q, set->timeout); 1855 1856 /* 1857 * Do this after blk_queue_make_request() overrides it... 1858 */ 1859 q->nr_requests = set->queue_depth; 1860 1861 if (set->ops->complete) 1862 blk_queue_softirq_done(q, set->ops->complete); 1863 1864 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1865 1866 if (blk_mq_init_hw_queues(q, set)) 1867 goto err_hw; 1868 1869 mutex_lock(&all_q_mutex); 1870 list_add_tail(&q->all_q_node, &all_q_list); 1871 mutex_unlock(&all_q_mutex); 1872 1873 blk_mq_add_queue_tag_set(set, q); 1874 1875 blk_mq_map_swqueue(q); 1876 1877 return q; 1878 1879 err_hw: 1880 blk_cleanup_queue(q); 1881 err_hctxs: 1882 kfree(map); 1883 for (i = 0; i < set->nr_hw_queues; i++) { 1884 if (!hctxs[i]) 1885 break; 1886 free_cpumask_var(hctxs[i]->cpumask); 1887 kfree(hctxs[i]); 1888 } 1889 err_map: 1890 kfree(hctxs); 1891 err_percpu: 1892 free_percpu(ctx); 1893 return ERR_PTR(-ENOMEM); 1894 } 1895 EXPORT_SYMBOL(blk_mq_init_queue); 1896 1897 void blk_mq_free_queue(struct request_queue *q) 1898 { 1899 struct blk_mq_tag_set *set = q->tag_set; 1900 1901 blk_mq_del_queue_tag_set(q); 1902 1903 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 1904 blk_mq_free_hw_queues(q, set); 1905 1906 percpu_ref_exit(&q->mq_usage_counter); 1907 1908 free_percpu(q->queue_ctx); 1909 kfree(q->queue_hw_ctx); 1910 kfree(q->mq_map); 1911 1912 q->queue_ctx = NULL; 1913 q->queue_hw_ctx = NULL; 1914 q->mq_map = NULL; 1915 1916 mutex_lock(&all_q_mutex); 1917 list_del_init(&q->all_q_node); 1918 mutex_unlock(&all_q_mutex); 1919 } 1920 1921 /* Basically redo blk_mq_init_queue with queue frozen */ 1922 static void blk_mq_queue_reinit(struct request_queue *q) 1923 { 1924 blk_mq_freeze_queue(q); 1925 1926 blk_mq_sysfs_unregister(q); 1927 1928 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 1929 1930 /* 1931 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 1932 * we should change hctx numa_node according to new topology (this 1933 * involves free and re-allocate memory, worthy doing?) 1934 */ 1935 1936 blk_mq_map_swqueue(q); 1937 1938 blk_mq_sysfs_register(q); 1939 1940 blk_mq_unfreeze_queue(q); 1941 } 1942 1943 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 1944 unsigned long action, void *hcpu) 1945 { 1946 struct request_queue *q; 1947 1948 /* 1949 * Before new mappings are established, hotadded cpu might already 1950 * start handling requests. This doesn't break anything as we map 1951 * offline CPUs to first hardware queue. We will re-init the queue 1952 * below to get optimal settings. 1953 */ 1954 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 1955 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 1956 return NOTIFY_OK; 1957 1958 mutex_lock(&all_q_mutex); 1959 list_for_each_entry(q, &all_q_list, all_q_node) 1960 blk_mq_queue_reinit(q); 1961 mutex_unlock(&all_q_mutex); 1962 return NOTIFY_OK; 1963 } 1964 1965 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 1966 { 1967 int i; 1968 1969 for (i = 0; i < set->nr_hw_queues; i++) { 1970 set->tags[i] = blk_mq_init_rq_map(set, i); 1971 if (!set->tags[i]) 1972 goto out_unwind; 1973 } 1974 1975 return 0; 1976 1977 out_unwind: 1978 while (--i >= 0) 1979 blk_mq_free_rq_map(set, set->tags[i], i); 1980 1981 return -ENOMEM; 1982 } 1983 1984 /* 1985 * Allocate the request maps associated with this tag_set. Note that this 1986 * may reduce the depth asked for, if memory is tight. set->queue_depth 1987 * will be updated to reflect the allocated depth. 1988 */ 1989 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 1990 { 1991 unsigned int depth; 1992 int err; 1993 1994 depth = set->queue_depth; 1995 do { 1996 err = __blk_mq_alloc_rq_maps(set); 1997 if (!err) 1998 break; 1999 2000 set->queue_depth >>= 1; 2001 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2002 err = -ENOMEM; 2003 break; 2004 } 2005 } while (set->queue_depth); 2006 2007 if (!set->queue_depth || err) { 2008 pr_err("blk-mq: failed to allocate request map\n"); 2009 return -ENOMEM; 2010 } 2011 2012 if (depth != set->queue_depth) 2013 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2014 depth, set->queue_depth); 2015 2016 return 0; 2017 } 2018 2019 /* 2020 * Alloc a tag set to be associated with one or more request queues. 2021 * May fail with EINVAL for various error conditions. May adjust the 2022 * requested depth down, if if it too large. In that case, the set 2023 * value will be stored in set->queue_depth. 2024 */ 2025 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2026 { 2027 if (!set->nr_hw_queues) 2028 return -EINVAL; 2029 if (!set->queue_depth) 2030 return -EINVAL; 2031 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2032 return -EINVAL; 2033 2034 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 2035 return -EINVAL; 2036 2037 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2038 pr_info("blk-mq: reduced tag depth to %u\n", 2039 BLK_MQ_MAX_DEPTH); 2040 set->queue_depth = BLK_MQ_MAX_DEPTH; 2041 } 2042 2043 set->tags = kmalloc_node(set->nr_hw_queues * 2044 sizeof(struct blk_mq_tags *), 2045 GFP_KERNEL, set->numa_node); 2046 if (!set->tags) 2047 return -ENOMEM; 2048 2049 if (blk_mq_alloc_rq_maps(set)) 2050 goto enomem; 2051 2052 mutex_init(&set->tag_list_lock); 2053 INIT_LIST_HEAD(&set->tag_list); 2054 2055 return 0; 2056 enomem: 2057 kfree(set->tags); 2058 set->tags = NULL; 2059 return -ENOMEM; 2060 } 2061 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2062 2063 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2064 { 2065 int i; 2066 2067 for (i = 0; i < set->nr_hw_queues; i++) { 2068 if (set->tags[i]) 2069 blk_mq_free_rq_map(set, set->tags[i], i); 2070 } 2071 2072 kfree(set->tags); 2073 set->tags = NULL; 2074 } 2075 EXPORT_SYMBOL(blk_mq_free_tag_set); 2076 2077 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2078 { 2079 struct blk_mq_tag_set *set = q->tag_set; 2080 struct blk_mq_hw_ctx *hctx; 2081 int i, ret; 2082 2083 if (!set || nr > set->queue_depth) 2084 return -EINVAL; 2085 2086 ret = 0; 2087 queue_for_each_hw_ctx(q, hctx, i) { 2088 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2089 if (ret) 2090 break; 2091 } 2092 2093 if (!ret) 2094 q->nr_requests = nr; 2095 2096 return ret; 2097 } 2098 2099 void blk_mq_disable_hotplug(void) 2100 { 2101 mutex_lock(&all_q_mutex); 2102 } 2103 2104 void blk_mq_enable_hotplug(void) 2105 { 2106 mutex_unlock(&all_q_mutex); 2107 } 2108 2109 static int __init blk_mq_init(void) 2110 { 2111 blk_mq_cpu_init(); 2112 2113 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2114 2115 return 0; 2116 } 2117 subsys_initcall(blk_mq_init); 2118