xref: /openbmc/linux/block/blk-mq.c (revision 5c73cc4b6c83e88863a5de869cc5df3b913aef4a)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	unsigned int i;
43 
44 	for (i = 0; i < hctx->ctx_map.size; i++)
45 		if (hctx->ctx_map.map[i].word)
46 			return true;
47 
48 	return false;
49 }
50 
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 					      struct blk_mq_ctx *ctx)
53 {
54 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56 
57 #define CTX_TO_BIT(hctx, ctx)	\
58 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59 
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 				     struct blk_mq_ctx *ctx)
65 {
66 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67 
68 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71 
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 				      struct blk_mq_ctx *ctx)
74 {
75 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76 
77 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79 
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82 	while (true) {
83 		int ret;
84 
85 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 			return 0;
87 
88 		if (!(gfp & __GFP_WAIT))
89 			return -EBUSY;
90 
91 		ret = wait_event_interruptible(q->mq_freeze_wq,
92 				!q->mq_freeze_depth || blk_queue_dying(q));
93 		if (blk_queue_dying(q))
94 			return -ENODEV;
95 		if (ret)
96 			return ret;
97 	}
98 }
99 
100 static void blk_mq_queue_exit(struct request_queue *q)
101 {
102 	percpu_ref_put(&q->mq_usage_counter);
103 }
104 
105 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
106 {
107 	struct request_queue *q =
108 		container_of(ref, struct request_queue, mq_usage_counter);
109 
110 	wake_up_all(&q->mq_freeze_wq);
111 }
112 
113 void blk_mq_freeze_queue_start(struct request_queue *q)
114 {
115 	bool freeze;
116 
117 	spin_lock_irq(q->queue_lock);
118 	freeze = !q->mq_freeze_depth++;
119 	spin_unlock_irq(q->queue_lock);
120 
121 	if (freeze) {
122 		percpu_ref_kill(&q->mq_usage_counter);
123 		blk_mq_run_hw_queues(q, false);
124 	}
125 }
126 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
127 
128 static void blk_mq_freeze_queue_wait(struct request_queue *q)
129 {
130 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
131 }
132 
133 /*
134  * Guarantee no request is in use, so we can change any data structure of
135  * the queue afterward.
136  */
137 void blk_mq_freeze_queue(struct request_queue *q)
138 {
139 	blk_mq_freeze_queue_start(q);
140 	blk_mq_freeze_queue_wait(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143 
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 	bool wake;
147 
148 	spin_lock_irq(q->queue_lock);
149 	wake = !--q->mq_freeze_depth;
150 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
151 	spin_unlock_irq(q->queue_lock);
152 	if (wake) {
153 		percpu_ref_reinit(&q->mq_usage_counter);
154 		wake_up_all(&q->mq_freeze_wq);
155 	}
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
158 
159 void blk_mq_wake_waiters(struct request_queue *q)
160 {
161 	struct blk_mq_hw_ctx *hctx;
162 	unsigned int i;
163 
164 	queue_for_each_hw_ctx(q, hctx, i)
165 		if (blk_mq_hw_queue_mapped(hctx))
166 			blk_mq_tag_wakeup_all(hctx->tags, true);
167 
168 	/*
169 	 * If we are called because the queue has now been marked as
170 	 * dying, we need to ensure that processes currently waiting on
171 	 * the queue are notified as well.
172 	 */
173 	wake_up_all(&q->mq_freeze_wq);
174 }
175 
176 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
177 {
178 	return blk_mq_has_free_tags(hctx->tags);
179 }
180 EXPORT_SYMBOL(blk_mq_can_queue);
181 
182 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
183 			       struct request *rq, unsigned int rw_flags)
184 {
185 	if (blk_queue_io_stat(q))
186 		rw_flags |= REQ_IO_STAT;
187 
188 	INIT_LIST_HEAD(&rq->queuelist);
189 	/* csd/requeue_work/fifo_time is initialized before use */
190 	rq->q = q;
191 	rq->mq_ctx = ctx;
192 	rq->cmd_flags |= rw_flags;
193 	/* do not touch atomic flags, it needs atomic ops against the timer */
194 	rq->cpu = -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->rq_disk = NULL;
198 	rq->part = NULL;
199 	rq->start_time = jiffies;
200 #ifdef CONFIG_BLK_CGROUP
201 	rq->rl = NULL;
202 	set_start_time_ns(rq);
203 	rq->io_start_time_ns = 0;
204 #endif
205 	rq->nr_phys_segments = 0;
206 #if defined(CONFIG_BLK_DEV_INTEGRITY)
207 	rq->nr_integrity_segments = 0;
208 #endif
209 	rq->special = NULL;
210 	/* tag was already set */
211 	rq->errors = 0;
212 
213 	rq->cmd = rq->__cmd;
214 
215 	rq->extra_len = 0;
216 	rq->sense_len = 0;
217 	rq->resid_len = 0;
218 	rq->sense = NULL;
219 
220 	INIT_LIST_HEAD(&rq->timeout_list);
221 	rq->timeout = 0;
222 
223 	rq->end_io = NULL;
224 	rq->end_io_data = NULL;
225 	rq->next_rq = NULL;
226 
227 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
228 }
229 
230 static struct request *
231 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
232 {
233 	struct request *rq;
234 	unsigned int tag;
235 
236 	tag = blk_mq_get_tag(data);
237 	if (tag != BLK_MQ_TAG_FAIL) {
238 		rq = data->hctx->tags->rqs[tag];
239 
240 		if (blk_mq_tag_busy(data->hctx)) {
241 			rq->cmd_flags = REQ_MQ_INFLIGHT;
242 			atomic_inc(&data->hctx->nr_active);
243 		}
244 
245 		rq->tag = tag;
246 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
247 		return rq;
248 	}
249 
250 	return NULL;
251 }
252 
253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
254 		bool reserved)
255 {
256 	struct blk_mq_ctx *ctx;
257 	struct blk_mq_hw_ctx *hctx;
258 	struct request *rq;
259 	struct blk_mq_alloc_data alloc_data;
260 	int ret;
261 
262 	ret = blk_mq_queue_enter(q, gfp);
263 	if (ret)
264 		return ERR_PTR(ret);
265 
266 	ctx = blk_mq_get_ctx(q);
267 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
268 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
269 			reserved, ctx, hctx);
270 
271 	rq = __blk_mq_alloc_request(&alloc_data, rw);
272 	if (!rq && (gfp & __GFP_WAIT)) {
273 		__blk_mq_run_hw_queue(hctx);
274 		blk_mq_put_ctx(ctx);
275 
276 		ctx = blk_mq_get_ctx(q);
277 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
278 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
279 				hctx);
280 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
281 		ctx = alloc_data.ctx;
282 	}
283 	blk_mq_put_ctx(ctx);
284 	if (!rq) {
285 		blk_mq_queue_exit(q);
286 		return ERR_PTR(-EWOULDBLOCK);
287 	}
288 	return rq;
289 }
290 EXPORT_SYMBOL(blk_mq_alloc_request);
291 
292 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
293 				  struct blk_mq_ctx *ctx, struct request *rq)
294 {
295 	const int tag = rq->tag;
296 	struct request_queue *q = rq->q;
297 
298 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
299 		atomic_dec(&hctx->nr_active);
300 	rq->cmd_flags = 0;
301 
302 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
303 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
304 	blk_mq_queue_exit(q);
305 }
306 
307 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
308 {
309 	struct blk_mq_ctx *ctx = rq->mq_ctx;
310 
311 	ctx->rq_completed[rq_is_sync(rq)]++;
312 	__blk_mq_free_request(hctx, ctx, rq);
313 
314 }
315 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
316 
317 void blk_mq_free_request(struct request *rq)
318 {
319 	struct blk_mq_hw_ctx *hctx;
320 	struct request_queue *q = rq->q;
321 
322 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
323 	blk_mq_free_hctx_request(hctx, rq);
324 }
325 EXPORT_SYMBOL_GPL(blk_mq_free_request);
326 
327 inline void __blk_mq_end_request(struct request *rq, int error)
328 {
329 	blk_account_io_done(rq);
330 
331 	if (rq->end_io) {
332 		rq->end_io(rq, error);
333 	} else {
334 		if (unlikely(blk_bidi_rq(rq)))
335 			blk_mq_free_request(rq->next_rq);
336 		blk_mq_free_request(rq);
337 	}
338 }
339 EXPORT_SYMBOL(__blk_mq_end_request);
340 
341 void blk_mq_end_request(struct request *rq, int error)
342 {
343 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
344 		BUG();
345 	__blk_mq_end_request(rq, error);
346 }
347 EXPORT_SYMBOL(blk_mq_end_request);
348 
349 static void __blk_mq_complete_request_remote(void *data)
350 {
351 	struct request *rq = data;
352 
353 	rq->q->softirq_done_fn(rq);
354 }
355 
356 static void blk_mq_ipi_complete_request(struct request *rq)
357 {
358 	struct blk_mq_ctx *ctx = rq->mq_ctx;
359 	bool shared = false;
360 	int cpu;
361 
362 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
363 		rq->q->softirq_done_fn(rq);
364 		return;
365 	}
366 
367 	cpu = get_cpu();
368 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
369 		shared = cpus_share_cache(cpu, ctx->cpu);
370 
371 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
372 		rq->csd.func = __blk_mq_complete_request_remote;
373 		rq->csd.info = rq;
374 		rq->csd.flags = 0;
375 		smp_call_function_single_async(ctx->cpu, &rq->csd);
376 	} else {
377 		rq->q->softirq_done_fn(rq);
378 	}
379 	put_cpu();
380 }
381 
382 void __blk_mq_complete_request(struct request *rq)
383 {
384 	struct request_queue *q = rq->q;
385 
386 	if (!q->softirq_done_fn)
387 		blk_mq_end_request(rq, rq->errors);
388 	else
389 		blk_mq_ipi_complete_request(rq);
390 }
391 
392 /**
393  * blk_mq_complete_request - end I/O on a request
394  * @rq:		the request being processed
395  *
396  * Description:
397  *	Ends all I/O on a request. It does not handle partial completions.
398  *	The actual completion happens out-of-order, through a IPI handler.
399  **/
400 void blk_mq_complete_request(struct request *rq)
401 {
402 	struct request_queue *q = rq->q;
403 
404 	if (unlikely(blk_should_fake_timeout(q)))
405 		return;
406 	if (!blk_mark_rq_complete(rq))
407 		__blk_mq_complete_request(rq);
408 }
409 EXPORT_SYMBOL(blk_mq_complete_request);
410 
411 int blk_mq_request_started(struct request *rq)
412 {
413 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414 }
415 EXPORT_SYMBOL_GPL(blk_mq_request_started);
416 
417 void blk_mq_start_request(struct request *rq)
418 {
419 	struct request_queue *q = rq->q;
420 
421 	trace_block_rq_issue(q, rq);
422 
423 	rq->resid_len = blk_rq_bytes(rq);
424 	if (unlikely(blk_bidi_rq(rq)))
425 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
426 
427 	blk_add_timer(rq);
428 
429 	/*
430 	 * Ensure that ->deadline is visible before set the started
431 	 * flag and clear the completed flag.
432 	 */
433 	smp_mb__before_atomic();
434 
435 	/*
436 	 * Mark us as started and clear complete. Complete might have been
437 	 * set if requeue raced with timeout, which then marked it as
438 	 * complete. So be sure to clear complete again when we start
439 	 * the request, otherwise we'll ignore the completion event.
440 	 */
441 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
442 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
444 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
445 
446 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
447 		/*
448 		 * Make sure space for the drain appears.  We know we can do
449 		 * this because max_hw_segments has been adjusted to be one
450 		 * fewer than the device can handle.
451 		 */
452 		rq->nr_phys_segments++;
453 	}
454 }
455 EXPORT_SYMBOL(blk_mq_start_request);
456 
457 static void __blk_mq_requeue_request(struct request *rq)
458 {
459 	struct request_queue *q = rq->q;
460 
461 	trace_block_rq_requeue(q, rq);
462 
463 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
464 		if (q->dma_drain_size && blk_rq_bytes(rq))
465 			rq->nr_phys_segments--;
466 	}
467 }
468 
469 void blk_mq_requeue_request(struct request *rq)
470 {
471 	__blk_mq_requeue_request(rq);
472 
473 	BUG_ON(blk_queued_rq(rq));
474 	blk_mq_add_to_requeue_list(rq, true);
475 }
476 EXPORT_SYMBOL(blk_mq_requeue_request);
477 
478 static void blk_mq_requeue_work(struct work_struct *work)
479 {
480 	struct request_queue *q =
481 		container_of(work, struct request_queue, requeue_work);
482 	LIST_HEAD(rq_list);
483 	struct request *rq, *next;
484 	unsigned long flags;
485 
486 	spin_lock_irqsave(&q->requeue_lock, flags);
487 	list_splice_init(&q->requeue_list, &rq_list);
488 	spin_unlock_irqrestore(&q->requeue_lock, flags);
489 
490 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
492 			continue;
493 
494 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
495 		list_del_init(&rq->queuelist);
496 		blk_mq_insert_request(rq, true, false, false);
497 	}
498 
499 	while (!list_empty(&rq_list)) {
500 		rq = list_entry(rq_list.next, struct request, queuelist);
501 		list_del_init(&rq->queuelist);
502 		blk_mq_insert_request(rq, false, false, false);
503 	}
504 
505 	/*
506 	 * Use the start variant of queue running here, so that running
507 	 * the requeue work will kick stopped queues.
508 	 */
509 	blk_mq_start_hw_queues(q);
510 }
511 
512 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
513 {
514 	struct request_queue *q = rq->q;
515 	unsigned long flags;
516 
517 	/*
518 	 * We abuse this flag that is otherwise used by the I/O scheduler to
519 	 * request head insertation from the workqueue.
520 	 */
521 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
522 
523 	spin_lock_irqsave(&q->requeue_lock, flags);
524 	if (at_head) {
525 		rq->cmd_flags |= REQ_SOFTBARRIER;
526 		list_add(&rq->queuelist, &q->requeue_list);
527 	} else {
528 		list_add_tail(&rq->queuelist, &q->requeue_list);
529 	}
530 	spin_unlock_irqrestore(&q->requeue_lock, flags);
531 }
532 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
533 
534 void blk_mq_cancel_requeue_work(struct request_queue *q)
535 {
536 	cancel_work_sync(&q->requeue_work);
537 }
538 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
539 
540 void blk_mq_kick_requeue_list(struct request_queue *q)
541 {
542 	kblockd_schedule_work(&q->requeue_work);
543 }
544 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
545 
546 void blk_mq_abort_requeue_list(struct request_queue *q)
547 {
548 	unsigned long flags;
549 	LIST_HEAD(rq_list);
550 
551 	spin_lock_irqsave(&q->requeue_lock, flags);
552 	list_splice_init(&q->requeue_list, &rq_list);
553 	spin_unlock_irqrestore(&q->requeue_lock, flags);
554 
555 	while (!list_empty(&rq_list)) {
556 		struct request *rq;
557 
558 		rq = list_first_entry(&rq_list, struct request, queuelist);
559 		list_del_init(&rq->queuelist);
560 		rq->errors = -EIO;
561 		blk_mq_end_request(rq, rq->errors);
562 	}
563 }
564 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
565 
566 static inline bool is_flush_request(struct request *rq,
567 		struct blk_flush_queue *fq, unsigned int tag)
568 {
569 	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
570 			fq->flush_rq->tag == tag);
571 }
572 
573 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
574 {
575 	struct request *rq = tags->rqs[tag];
576 	/* mq_ctx of flush rq is always cloned from the corresponding req */
577 	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
578 
579 	if (!is_flush_request(rq, fq, tag))
580 		return rq;
581 
582 	return fq->flush_rq;
583 }
584 EXPORT_SYMBOL(blk_mq_tag_to_rq);
585 
586 struct blk_mq_timeout_data {
587 	unsigned long next;
588 	unsigned int next_set;
589 };
590 
591 void blk_mq_rq_timed_out(struct request *req, bool reserved)
592 {
593 	struct blk_mq_ops *ops = req->q->mq_ops;
594 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
595 
596 	/*
597 	 * We know that complete is set at this point. If STARTED isn't set
598 	 * anymore, then the request isn't active and the "timeout" should
599 	 * just be ignored. This can happen due to the bitflag ordering.
600 	 * Timeout first checks if STARTED is set, and if it is, assumes
601 	 * the request is active. But if we race with completion, then
602 	 * we both flags will get cleared. So check here again, and ignore
603 	 * a timeout event with a request that isn't active.
604 	 */
605 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606 		return;
607 
608 	if (ops->timeout)
609 		ret = ops->timeout(req, reserved);
610 
611 	switch (ret) {
612 	case BLK_EH_HANDLED:
613 		__blk_mq_complete_request(req);
614 		break;
615 	case BLK_EH_RESET_TIMER:
616 		blk_add_timer(req);
617 		blk_clear_rq_complete(req);
618 		break;
619 	case BLK_EH_NOT_HANDLED:
620 		break;
621 	default:
622 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
623 		break;
624 	}
625 }
626 
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628 		struct request *rq, void *priv, bool reserved)
629 {
630 	struct blk_mq_timeout_data *data = priv;
631 
632 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
633 		/*
634 		 * If a request wasn't started before the queue was
635 		 * marked dying, kill it here or it'll go unnoticed.
636 		 */
637 		if (unlikely(blk_queue_dying(rq->q))) {
638 			rq->errors = -EIO;
639 			blk_mq_complete_request(rq);
640 		}
641 		return;
642 	}
643 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
644 		return;
645 
646 	if (time_after_eq(jiffies, rq->deadline)) {
647 		if (!blk_mark_rq_complete(rq))
648 			blk_mq_rq_timed_out(rq, reserved);
649 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
650 		data->next = rq->deadline;
651 		data->next_set = 1;
652 	}
653 }
654 
655 static void blk_mq_rq_timer(unsigned long priv)
656 {
657 	struct request_queue *q = (struct request_queue *)priv;
658 	struct blk_mq_timeout_data data = {
659 		.next		= 0,
660 		.next_set	= 0,
661 	};
662 	struct blk_mq_hw_ctx *hctx;
663 	int i;
664 
665 	queue_for_each_hw_ctx(q, hctx, i) {
666 		/*
667 		 * If not software queues are currently mapped to this
668 		 * hardware queue, there's nothing to check
669 		 */
670 		if (!blk_mq_hw_queue_mapped(hctx))
671 			continue;
672 
673 		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
674 	}
675 
676 	if (data.next_set) {
677 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
678 		mod_timer(&q->timeout, data.next);
679 	} else {
680 		queue_for_each_hw_ctx(q, hctx, i)
681 			blk_mq_tag_idle(hctx);
682 	}
683 }
684 
685 /*
686  * Reverse check our software queue for entries that we could potentially
687  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
688  * too much time checking for merges.
689  */
690 static bool blk_mq_attempt_merge(struct request_queue *q,
691 				 struct blk_mq_ctx *ctx, struct bio *bio)
692 {
693 	struct request *rq;
694 	int checked = 8;
695 
696 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
697 		int el_ret;
698 
699 		if (!checked--)
700 			break;
701 
702 		if (!blk_rq_merge_ok(rq, bio))
703 			continue;
704 
705 		el_ret = blk_try_merge(rq, bio);
706 		if (el_ret == ELEVATOR_BACK_MERGE) {
707 			if (bio_attempt_back_merge(q, rq, bio)) {
708 				ctx->rq_merged++;
709 				return true;
710 			}
711 			break;
712 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
713 			if (bio_attempt_front_merge(q, rq, bio)) {
714 				ctx->rq_merged++;
715 				return true;
716 			}
717 			break;
718 		}
719 	}
720 
721 	return false;
722 }
723 
724 /*
725  * Process software queues that have been marked busy, splicing them
726  * to the for-dispatch
727  */
728 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
729 {
730 	struct blk_mq_ctx *ctx;
731 	int i;
732 
733 	for (i = 0; i < hctx->ctx_map.size; i++) {
734 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
735 		unsigned int off, bit;
736 
737 		if (!bm->word)
738 			continue;
739 
740 		bit = 0;
741 		off = i * hctx->ctx_map.bits_per_word;
742 		do {
743 			bit = find_next_bit(&bm->word, bm->depth, bit);
744 			if (bit >= bm->depth)
745 				break;
746 
747 			ctx = hctx->ctxs[bit + off];
748 			clear_bit(bit, &bm->word);
749 			spin_lock(&ctx->lock);
750 			list_splice_tail_init(&ctx->rq_list, list);
751 			spin_unlock(&ctx->lock);
752 
753 			bit++;
754 		} while (1);
755 	}
756 }
757 
758 /*
759  * Run this hardware queue, pulling any software queues mapped to it in.
760  * Note that this function currently has various problems around ordering
761  * of IO. In particular, we'd like FIFO behaviour on handling existing
762  * items on the hctx->dispatch list. Ignore that for now.
763  */
764 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
765 {
766 	struct request_queue *q = hctx->queue;
767 	struct request *rq;
768 	LIST_HEAD(rq_list);
769 	LIST_HEAD(driver_list);
770 	struct list_head *dptr;
771 	int queued;
772 
773 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
774 
775 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
776 		return;
777 
778 	hctx->run++;
779 
780 	/*
781 	 * Touch any software queue that has pending entries.
782 	 */
783 	flush_busy_ctxs(hctx, &rq_list);
784 
785 	/*
786 	 * If we have previous entries on our dispatch list, grab them
787 	 * and stuff them at the front for more fair dispatch.
788 	 */
789 	if (!list_empty_careful(&hctx->dispatch)) {
790 		spin_lock(&hctx->lock);
791 		if (!list_empty(&hctx->dispatch))
792 			list_splice_init(&hctx->dispatch, &rq_list);
793 		spin_unlock(&hctx->lock);
794 	}
795 
796 	/*
797 	 * Start off with dptr being NULL, so we start the first request
798 	 * immediately, even if we have more pending.
799 	 */
800 	dptr = NULL;
801 
802 	/*
803 	 * Now process all the entries, sending them to the driver.
804 	 */
805 	queued = 0;
806 	while (!list_empty(&rq_list)) {
807 		struct blk_mq_queue_data bd;
808 		int ret;
809 
810 		rq = list_first_entry(&rq_list, struct request, queuelist);
811 		list_del_init(&rq->queuelist);
812 
813 		bd.rq = rq;
814 		bd.list = dptr;
815 		bd.last = list_empty(&rq_list);
816 
817 		ret = q->mq_ops->queue_rq(hctx, &bd);
818 		switch (ret) {
819 		case BLK_MQ_RQ_QUEUE_OK:
820 			queued++;
821 			continue;
822 		case BLK_MQ_RQ_QUEUE_BUSY:
823 			list_add(&rq->queuelist, &rq_list);
824 			__blk_mq_requeue_request(rq);
825 			break;
826 		default:
827 			pr_err("blk-mq: bad return on queue: %d\n", ret);
828 		case BLK_MQ_RQ_QUEUE_ERROR:
829 			rq->errors = -EIO;
830 			blk_mq_end_request(rq, rq->errors);
831 			break;
832 		}
833 
834 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
835 			break;
836 
837 		/*
838 		 * We've done the first request. If we have more than 1
839 		 * left in the list, set dptr to defer issue.
840 		 */
841 		if (!dptr && rq_list.next != rq_list.prev)
842 			dptr = &driver_list;
843 	}
844 
845 	if (!queued)
846 		hctx->dispatched[0]++;
847 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
848 		hctx->dispatched[ilog2(queued) + 1]++;
849 
850 	/*
851 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
852 	 * that is where we will continue on next queue run.
853 	 */
854 	if (!list_empty(&rq_list)) {
855 		spin_lock(&hctx->lock);
856 		list_splice(&rq_list, &hctx->dispatch);
857 		spin_unlock(&hctx->lock);
858 	}
859 }
860 
861 /*
862  * It'd be great if the workqueue API had a way to pass
863  * in a mask and had some smarts for more clever placement.
864  * For now we just round-robin here, switching for every
865  * BLK_MQ_CPU_WORK_BATCH queued items.
866  */
867 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
868 {
869 	if (hctx->queue->nr_hw_queues == 1)
870 		return WORK_CPU_UNBOUND;
871 
872 	if (--hctx->next_cpu_batch <= 0) {
873 		int cpu = hctx->next_cpu, next_cpu;
874 
875 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
876 		if (next_cpu >= nr_cpu_ids)
877 			next_cpu = cpumask_first(hctx->cpumask);
878 
879 		hctx->next_cpu = next_cpu;
880 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
881 
882 		return cpu;
883 	}
884 
885 	return hctx->next_cpu;
886 }
887 
888 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
889 {
890 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
891 	    !blk_mq_hw_queue_mapped(hctx)))
892 		return;
893 
894 	if (!async) {
895 		int cpu = get_cpu();
896 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
897 			__blk_mq_run_hw_queue(hctx);
898 			put_cpu();
899 			return;
900 		}
901 
902 		put_cpu();
903 	}
904 
905 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
906 			&hctx->run_work, 0);
907 }
908 
909 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
910 {
911 	struct blk_mq_hw_ctx *hctx;
912 	int i;
913 
914 	queue_for_each_hw_ctx(q, hctx, i) {
915 		if ((!blk_mq_hctx_has_pending(hctx) &&
916 		    list_empty_careful(&hctx->dispatch)) ||
917 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
918 			continue;
919 
920 		blk_mq_run_hw_queue(hctx, async);
921 	}
922 }
923 EXPORT_SYMBOL(blk_mq_run_hw_queues);
924 
925 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
926 {
927 	cancel_delayed_work(&hctx->run_work);
928 	cancel_delayed_work(&hctx->delay_work);
929 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
930 }
931 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
932 
933 void blk_mq_stop_hw_queues(struct request_queue *q)
934 {
935 	struct blk_mq_hw_ctx *hctx;
936 	int i;
937 
938 	queue_for_each_hw_ctx(q, hctx, i)
939 		blk_mq_stop_hw_queue(hctx);
940 }
941 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
942 
943 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
944 {
945 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
946 
947 	blk_mq_run_hw_queue(hctx, false);
948 }
949 EXPORT_SYMBOL(blk_mq_start_hw_queue);
950 
951 void blk_mq_start_hw_queues(struct request_queue *q)
952 {
953 	struct blk_mq_hw_ctx *hctx;
954 	int i;
955 
956 	queue_for_each_hw_ctx(q, hctx, i)
957 		blk_mq_start_hw_queue(hctx);
958 }
959 EXPORT_SYMBOL(blk_mq_start_hw_queues);
960 
961 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
962 {
963 	struct blk_mq_hw_ctx *hctx;
964 	int i;
965 
966 	queue_for_each_hw_ctx(q, hctx, i) {
967 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
968 			continue;
969 
970 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
971 		blk_mq_run_hw_queue(hctx, async);
972 	}
973 }
974 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
975 
976 static void blk_mq_run_work_fn(struct work_struct *work)
977 {
978 	struct blk_mq_hw_ctx *hctx;
979 
980 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
981 
982 	__blk_mq_run_hw_queue(hctx);
983 }
984 
985 static void blk_mq_delay_work_fn(struct work_struct *work)
986 {
987 	struct blk_mq_hw_ctx *hctx;
988 
989 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
990 
991 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
992 		__blk_mq_run_hw_queue(hctx);
993 }
994 
995 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
996 {
997 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
998 		return;
999 
1000 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1001 			&hctx->delay_work, msecs_to_jiffies(msecs));
1002 }
1003 EXPORT_SYMBOL(blk_mq_delay_queue);
1004 
1005 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1006 				    struct request *rq, bool at_head)
1007 {
1008 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1009 
1010 	trace_block_rq_insert(hctx->queue, rq);
1011 
1012 	if (at_head)
1013 		list_add(&rq->queuelist, &ctx->rq_list);
1014 	else
1015 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1016 
1017 	blk_mq_hctx_mark_pending(hctx, ctx);
1018 }
1019 
1020 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1021 		bool async)
1022 {
1023 	struct request_queue *q = rq->q;
1024 	struct blk_mq_hw_ctx *hctx;
1025 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1026 
1027 	current_ctx = blk_mq_get_ctx(q);
1028 	if (!cpu_online(ctx->cpu))
1029 		rq->mq_ctx = ctx = current_ctx;
1030 
1031 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1032 
1033 	spin_lock(&ctx->lock);
1034 	__blk_mq_insert_request(hctx, rq, at_head);
1035 	spin_unlock(&ctx->lock);
1036 
1037 	if (run_queue)
1038 		blk_mq_run_hw_queue(hctx, async);
1039 
1040 	blk_mq_put_ctx(current_ctx);
1041 }
1042 
1043 static void blk_mq_insert_requests(struct request_queue *q,
1044 				     struct blk_mq_ctx *ctx,
1045 				     struct list_head *list,
1046 				     int depth,
1047 				     bool from_schedule)
1048 
1049 {
1050 	struct blk_mq_hw_ctx *hctx;
1051 	struct blk_mq_ctx *current_ctx;
1052 
1053 	trace_block_unplug(q, depth, !from_schedule);
1054 
1055 	current_ctx = blk_mq_get_ctx(q);
1056 
1057 	if (!cpu_online(ctx->cpu))
1058 		ctx = current_ctx;
1059 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1060 
1061 	/*
1062 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1063 	 * offline now
1064 	 */
1065 	spin_lock(&ctx->lock);
1066 	while (!list_empty(list)) {
1067 		struct request *rq;
1068 
1069 		rq = list_first_entry(list, struct request, queuelist);
1070 		list_del_init(&rq->queuelist);
1071 		rq->mq_ctx = ctx;
1072 		__blk_mq_insert_request(hctx, rq, false);
1073 	}
1074 	spin_unlock(&ctx->lock);
1075 
1076 	blk_mq_run_hw_queue(hctx, from_schedule);
1077 	blk_mq_put_ctx(current_ctx);
1078 }
1079 
1080 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1081 {
1082 	struct request *rqa = container_of(a, struct request, queuelist);
1083 	struct request *rqb = container_of(b, struct request, queuelist);
1084 
1085 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1086 		 (rqa->mq_ctx == rqb->mq_ctx &&
1087 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1088 }
1089 
1090 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1091 {
1092 	struct blk_mq_ctx *this_ctx;
1093 	struct request_queue *this_q;
1094 	struct request *rq;
1095 	LIST_HEAD(list);
1096 	LIST_HEAD(ctx_list);
1097 	unsigned int depth;
1098 
1099 	list_splice_init(&plug->mq_list, &list);
1100 
1101 	list_sort(NULL, &list, plug_ctx_cmp);
1102 
1103 	this_q = NULL;
1104 	this_ctx = NULL;
1105 	depth = 0;
1106 
1107 	while (!list_empty(&list)) {
1108 		rq = list_entry_rq(list.next);
1109 		list_del_init(&rq->queuelist);
1110 		BUG_ON(!rq->q);
1111 		if (rq->mq_ctx != this_ctx) {
1112 			if (this_ctx) {
1113 				blk_mq_insert_requests(this_q, this_ctx,
1114 							&ctx_list, depth,
1115 							from_schedule);
1116 			}
1117 
1118 			this_ctx = rq->mq_ctx;
1119 			this_q = rq->q;
1120 			depth = 0;
1121 		}
1122 
1123 		depth++;
1124 		list_add_tail(&rq->queuelist, &ctx_list);
1125 	}
1126 
1127 	/*
1128 	 * If 'this_ctx' is set, we know we have entries to complete
1129 	 * on 'ctx_list'. Do those.
1130 	 */
1131 	if (this_ctx) {
1132 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1133 				       from_schedule);
1134 	}
1135 }
1136 
1137 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1138 {
1139 	init_request_from_bio(rq, bio);
1140 
1141 	if (blk_do_io_stat(rq))
1142 		blk_account_io_start(rq, 1);
1143 }
1144 
1145 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1146 {
1147 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1148 		!blk_queue_nomerges(hctx->queue);
1149 }
1150 
1151 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1152 					 struct blk_mq_ctx *ctx,
1153 					 struct request *rq, struct bio *bio)
1154 {
1155 	if (!hctx_allow_merges(hctx)) {
1156 		blk_mq_bio_to_request(rq, bio);
1157 		spin_lock(&ctx->lock);
1158 insert_rq:
1159 		__blk_mq_insert_request(hctx, rq, false);
1160 		spin_unlock(&ctx->lock);
1161 		return false;
1162 	} else {
1163 		struct request_queue *q = hctx->queue;
1164 
1165 		spin_lock(&ctx->lock);
1166 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1167 			blk_mq_bio_to_request(rq, bio);
1168 			goto insert_rq;
1169 		}
1170 
1171 		spin_unlock(&ctx->lock);
1172 		__blk_mq_free_request(hctx, ctx, rq);
1173 		return true;
1174 	}
1175 }
1176 
1177 struct blk_map_ctx {
1178 	struct blk_mq_hw_ctx *hctx;
1179 	struct blk_mq_ctx *ctx;
1180 };
1181 
1182 static struct request *blk_mq_map_request(struct request_queue *q,
1183 					  struct bio *bio,
1184 					  struct blk_map_ctx *data)
1185 {
1186 	struct blk_mq_hw_ctx *hctx;
1187 	struct blk_mq_ctx *ctx;
1188 	struct request *rq;
1189 	int rw = bio_data_dir(bio);
1190 	struct blk_mq_alloc_data alloc_data;
1191 
1192 	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1193 		bio_endio(bio, -EIO);
1194 		return NULL;
1195 	}
1196 
1197 	ctx = blk_mq_get_ctx(q);
1198 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1199 
1200 	if (rw_is_sync(bio->bi_rw))
1201 		rw |= REQ_SYNC;
1202 
1203 	trace_block_getrq(q, bio, rw);
1204 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1205 			hctx);
1206 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1207 	if (unlikely(!rq)) {
1208 		__blk_mq_run_hw_queue(hctx);
1209 		blk_mq_put_ctx(ctx);
1210 		trace_block_sleeprq(q, bio, rw);
1211 
1212 		ctx = blk_mq_get_ctx(q);
1213 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1214 		blk_mq_set_alloc_data(&alloc_data, q,
1215 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1216 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1217 		ctx = alloc_data.ctx;
1218 		hctx = alloc_data.hctx;
1219 	}
1220 
1221 	hctx->queued++;
1222 	data->hctx = hctx;
1223 	data->ctx = ctx;
1224 	return rq;
1225 }
1226 
1227 /*
1228  * Multiple hardware queue variant. This will not use per-process plugs,
1229  * but will attempt to bypass the hctx queueing if we can go straight to
1230  * hardware for SYNC IO.
1231  */
1232 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1233 {
1234 	const int is_sync = rw_is_sync(bio->bi_rw);
1235 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1236 	struct blk_map_ctx data;
1237 	struct request *rq;
1238 
1239 	blk_queue_bounce(q, &bio);
1240 
1241 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1242 		bio_endio(bio, -EIO);
1243 		return;
1244 	}
1245 
1246 	rq = blk_mq_map_request(q, bio, &data);
1247 	if (unlikely(!rq))
1248 		return;
1249 
1250 	if (unlikely(is_flush_fua)) {
1251 		blk_mq_bio_to_request(rq, bio);
1252 		blk_insert_flush(rq);
1253 		goto run_queue;
1254 	}
1255 
1256 	/*
1257 	 * If the driver supports defer issued based on 'last', then
1258 	 * queue it up like normal since we can potentially save some
1259 	 * CPU this way.
1260 	 */
1261 	if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1262 		struct blk_mq_queue_data bd = {
1263 			.rq = rq,
1264 			.list = NULL,
1265 			.last = 1
1266 		};
1267 		int ret;
1268 
1269 		blk_mq_bio_to_request(rq, bio);
1270 
1271 		/*
1272 		 * For OK queue, we are done. For error, kill it. Any other
1273 		 * error (busy), just add it to our list as we previously
1274 		 * would have done
1275 		 */
1276 		ret = q->mq_ops->queue_rq(data.hctx, &bd);
1277 		if (ret == BLK_MQ_RQ_QUEUE_OK)
1278 			goto done;
1279 		else {
1280 			__blk_mq_requeue_request(rq);
1281 
1282 			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1283 				rq->errors = -EIO;
1284 				blk_mq_end_request(rq, rq->errors);
1285 				goto done;
1286 			}
1287 		}
1288 	}
1289 
1290 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1291 		/*
1292 		 * For a SYNC request, send it to the hardware immediately. For
1293 		 * an ASYNC request, just ensure that we run it later on. The
1294 		 * latter allows for merging opportunities and more efficient
1295 		 * dispatching.
1296 		 */
1297 run_queue:
1298 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1299 	}
1300 done:
1301 	blk_mq_put_ctx(data.ctx);
1302 }
1303 
1304 /*
1305  * Single hardware queue variant. This will attempt to use any per-process
1306  * plug for merging and IO deferral.
1307  */
1308 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1309 {
1310 	const int is_sync = rw_is_sync(bio->bi_rw);
1311 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1312 	unsigned int use_plug, request_count = 0;
1313 	struct blk_map_ctx data;
1314 	struct request *rq;
1315 
1316 	/*
1317 	 * If we have multiple hardware queues, just go directly to
1318 	 * one of those for sync IO.
1319 	 */
1320 	use_plug = !is_flush_fua && !is_sync;
1321 
1322 	blk_queue_bounce(q, &bio);
1323 
1324 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1325 		bio_endio(bio, -EIO);
1326 		return;
1327 	}
1328 
1329 	if (use_plug && !blk_queue_nomerges(q) &&
1330 	    blk_attempt_plug_merge(q, bio, &request_count))
1331 		return;
1332 
1333 	rq = blk_mq_map_request(q, bio, &data);
1334 	if (unlikely(!rq))
1335 		return;
1336 
1337 	if (unlikely(is_flush_fua)) {
1338 		blk_mq_bio_to_request(rq, bio);
1339 		blk_insert_flush(rq);
1340 		goto run_queue;
1341 	}
1342 
1343 	/*
1344 	 * A task plug currently exists. Since this is completely lockless,
1345 	 * utilize that to temporarily store requests until the task is
1346 	 * either done or scheduled away.
1347 	 */
1348 	if (use_plug) {
1349 		struct blk_plug *plug = current->plug;
1350 
1351 		if (plug) {
1352 			blk_mq_bio_to_request(rq, bio);
1353 			if (list_empty(&plug->mq_list))
1354 				trace_block_plug(q);
1355 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1356 				blk_flush_plug_list(plug, false);
1357 				trace_block_plug(q);
1358 			}
1359 			list_add_tail(&rq->queuelist, &plug->mq_list);
1360 			blk_mq_put_ctx(data.ctx);
1361 			return;
1362 		}
1363 	}
1364 
1365 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1366 		/*
1367 		 * For a SYNC request, send it to the hardware immediately. For
1368 		 * an ASYNC request, just ensure that we run it later on. The
1369 		 * latter allows for merging opportunities and more efficient
1370 		 * dispatching.
1371 		 */
1372 run_queue:
1373 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1374 	}
1375 
1376 	blk_mq_put_ctx(data.ctx);
1377 }
1378 
1379 /*
1380  * Default mapping to a software queue, since we use one per CPU.
1381  */
1382 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1383 {
1384 	return q->queue_hw_ctx[q->mq_map[cpu]];
1385 }
1386 EXPORT_SYMBOL(blk_mq_map_queue);
1387 
1388 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1389 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1390 {
1391 	struct page *page;
1392 
1393 	if (tags->rqs && set->ops->exit_request) {
1394 		int i;
1395 
1396 		for (i = 0; i < tags->nr_tags; i++) {
1397 			if (!tags->rqs[i])
1398 				continue;
1399 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1400 						hctx_idx, i);
1401 			tags->rqs[i] = NULL;
1402 		}
1403 	}
1404 
1405 	while (!list_empty(&tags->page_list)) {
1406 		page = list_first_entry(&tags->page_list, struct page, lru);
1407 		list_del_init(&page->lru);
1408 		__free_pages(page, page->private);
1409 	}
1410 
1411 	kfree(tags->rqs);
1412 
1413 	blk_mq_free_tags(tags);
1414 }
1415 
1416 static size_t order_to_size(unsigned int order)
1417 {
1418 	return (size_t)PAGE_SIZE << order;
1419 }
1420 
1421 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1422 		unsigned int hctx_idx)
1423 {
1424 	struct blk_mq_tags *tags;
1425 	unsigned int i, j, entries_per_page, max_order = 4;
1426 	size_t rq_size, left;
1427 
1428 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1429 				set->numa_node,
1430 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1431 	if (!tags)
1432 		return NULL;
1433 
1434 	INIT_LIST_HEAD(&tags->page_list);
1435 
1436 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1437 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1438 				 set->numa_node);
1439 	if (!tags->rqs) {
1440 		blk_mq_free_tags(tags);
1441 		return NULL;
1442 	}
1443 
1444 	/*
1445 	 * rq_size is the size of the request plus driver payload, rounded
1446 	 * to the cacheline size
1447 	 */
1448 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1449 				cache_line_size());
1450 	left = rq_size * set->queue_depth;
1451 
1452 	for (i = 0; i < set->queue_depth; ) {
1453 		int this_order = max_order;
1454 		struct page *page;
1455 		int to_do;
1456 		void *p;
1457 
1458 		while (left < order_to_size(this_order - 1) && this_order)
1459 			this_order--;
1460 
1461 		do {
1462 			page = alloc_pages_node(set->numa_node,
1463 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1464 				this_order);
1465 			if (page)
1466 				break;
1467 			if (!this_order--)
1468 				break;
1469 			if (order_to_size(this_order) < rq_size)
1470 				break;
1471 		} while (1);
1472 
1473 		if (!page)
1474 			goto fail;
1475 
1476 		page->private = this_order;
1477 		list_add_tail(&page->lru, &tags->page_list);
1478 
1479 		p = page_address(page);
1480 		entries_per_page = order_to_size(this_order) / rq_size;
1481 		to_do = min(entries_per_page, set->queue_depth - i);
1482 		left -= to_do * rq_size;
1483 		for (j = 0; j < to_do; j++) {
1484 			tags->rqs[i] = p;
1485 			if (set->ops->init_request) {
1486 				if (set->ops->init_request(set->driver_data,
1487 						tags->rqs[i], hctx_idx, i,
1488 						set->numa_node)) {
1489 					tags->rqs[i] = NULL;
1490 					goto fail;
1491 				}
1492 			}
1493 
1494 			p += rq_size;
1495 			i++;
1496 		}
1497 	}
1498 
1499 	return tags;
1500 
1501 fail:
1502 	blk_mq_free_rq_map(set, tags, hctx_idx);
1503 	return NULL;
1504 }
1505 
1506 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1507 {
1508 	kfree(bitmap->map);
1509 }
1510 
1511 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1512 {
1513 	unsigned int bpw = 8, total, num_maps, i;
1514 
1515 	bitmap->bits_per_word = bpw;
1516 
1517 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1518 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1519 					GFP_KERNEL, node);
1520 	if (!bitmap->map)
1521 		return -ENOMEM;
1522 
1523 	total = nr_cpu_ids;
1524 	for (i = 0; i < num_maps; i++) {
1525 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1526 		total -= bitmap->map[i].depth;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1533 {
1534 	struct request_queue *q = hctx->queue;
1535 	struct blk_mq_ctx *ctx;
1536 	LIST_HEAD(tmp);
1537 
1538 	/*
1539 	 * Move ctx entries to new CPU, if this one is going away.
1540 	 */
1541 	ctx = __blk_mq_get_ctx(q, cpu);
1542 
1543 	spin_lock(&ctx->lock);
1544 	if (!list_empty(&ctx->rq_list)) {
1545 		list_splice_init(&ctx->rq_list, &tmp);
1546 		blk_mq_hctx_clear_pending(hctx, ctx);
1547 	}
1548 	spin_unlock(&ctx->lock);
1549 
1550 	if (list_empty(&tmp))
1551 		return NOTIFY_OK;
1552 
1553 	ctx = blk_mq_get_ctx(q);
1554 	spin_lock(&ctx->lock);
1555 
1556 	while (!list_empty(&tmp)) {
1557 		struct request *rq;
1558 
1559 		rq = list_first_entry(&tmp, struct request, queuelist);
1560 		rq->mq_ctx = ctx;
1561 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1562 	}
1563 
1564 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1565 	blk_mq_hctx_mark_pending(hctx, ctx);
1566 
1567 	spin_unlock(&ctx->lock);
1568 
1569 	blk_mq_run_hw_queue(hctx, true);
1570 	blk_mq_put_ctx(ctx);
1571 	return NOTIFY_OK;
1572 }
1573 
1574 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1575 {
1576 	struct request_queue *q = hctx->queue;
1577 	struct blk_mq_tag_set *set = q->tag_set;
1578 
1579 	if (set->tags[hctx->queue_num])
1580 		return NOTIFY_OK;
1581 
1582 	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1583 	if (!set->tags[hctx->queue_num])
1584 		return NOTIFY_STOP;
1585 
1586 	hctx->tags = set->tags[hctx->queue_num];
1587 	return NOTIFY_OK;
1588 }
1589 
1590 static int blk_mq_hctx_notify(void *data, unsigned long action,
1591 			      unsigned int cpu)
1592 {
1593 	struct blk_mq_hw_ctx *hctx = data;
1594 
1595 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1596 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1597 	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1598 		return blk_mq_hctx_cpu_online(hctx, cpu);
1599 
1600 	return NOTIFY_OK;
1601 }
1602 
1603 static void blk_mq_exit_hctx(struct request_queue *q,
1604 		struct blk_mq_tag_set *set,
1605 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1606 {
1607 	unsigned flush_start_tag = set->queue_depth;
1608 
1609 	blk_mq_tag_idle(hctx);
1610 
1611 	if (set->ops->exit_request)
1612 		set->ops->exit_request(set->driver_data,
1613 				       hctx->fq->flush_rq, hctx_idx,
1614 				       flush_start_tag + hctx_idx);
1615 
1616 	if (set->ops->exit_hctx)
1617 		set->ops->exit_hctx(hctx, hctx_idx);
1618 
1619 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1620 	blk_free_flush_queue(hctx->fq);
1621 	kfree(hctx->ctxs);
1622 	blk_mq_free_bitmap(&hctx->ctx_map);
1623 }
1624 
1625 static void blk_mq_exit_hw_queues(struct request_queue *q,
1626 		struct blk_mq_tag_set *set, int nr_queue)
1627 {
1628 	struct blk_mq_hw_ctx *hctx;
1629 	unsigned int i;
1630 
1631 	queue_for_each_hw_ctx(q, hctx, i) {
1632 		if (i == nr_queue)
1633 			break;
1634 		blk_mq_exit_hctx(q, set, hctx, i);
1635 	}
1636 }
1637 
1638 static void blk_mq_free_hw_queues(struct request_queue *q,
1639 		struct blk_mq_tag_set *set)
1640 {
1641 	struct blk_mq_hw_ctx *hctx;
1642 	unsigned int i;
1643 
1644 	queue_for_each_hw_ctx(q, hctx, i)
1645 		free_cpumask_var(hctx->cpumask);
1646 }
1647 
1648 static int blk_mq_init_hctx(struct request_queue *q,
1649 		struct blk_mq_tag_set *set,
1650 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1651 {
1652 	int node;
1653 	unsigned flush_start_tag = set->queue_depth;
1654 
1655 	node = hctx->numa_node;
1656 	if (node == NUMA_NO_NODE)
1657 		node = hctx->numa_node = set->numa_node;
1658 
1659 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1660 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1661 	spin_lock_init(&hctx->lock);
1662 	INIT_LIST_HEAD(&hctx->dispatch);
1663 	hctx->queue = q;
1664 	hctx->queue_num = hctx_idx;
1665 	hctx->flags = set->flags;
1666 
1667 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1668 					blk_mq_hctx_notify, hctx);
1669 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1670 
1671 	hctx->tags = set->tags[hctx_idx];
1672 
1673 	/*
1674 	 * Allocate space for all possible cpus to avoid allocation at
1675 	 * runtime
1676 	 */
1677 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1678 					GFP_KERNEL, node);
1679 	if (!hctx->ctxs)
1680 		goto unregister_cpu_notifier;
1681 
1682 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1683 		goto free_ctxs;
1684 
1685 	hctx->nr_ctx = 0;
1686 
1687 	if (set->ops->init_hctx &&
1688 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1689 		goto free_bitmap;
1690 
1691 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1692 	if (!hctx->fq)
1693 		goto exit_hctx;
1694 
1695 	if (set->ops->init_request &&
1696 	    set->ops->init_request(set->driver_data,
1697 				   hctx->fq->flush_rq, hctx_idx,
1698 				   flush_start_tag + hctx_idx, node))
1699 		goto free_fq;
1700 
1701 	return 0;
1702 
1703  free_fq:
1704 	kfree(hctx->fq);
1705  exit_hctx:
1706 	if (set->ops->exit_hctx)
1707 		set->ops->exit_hctx(hctx, hctx_idx);
1708  free_bitmap:
1709 	blk_mq_free_bitmap(&hctx->ctx_map);
1710  free_ctxs:
1711 	kfree(hctx->ctxs);
1712  unregister_cpu_notifier:
1713 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1714 
1715 	return -1;
1716 }
1717 
1718 static int blk_mq_init_hw_queues(struct request_queue *q,
1719 		struct blk_mq_tag_set *set)
1720 {
1721 	struct blk_mq_hw_ctx *hctx;
1722 	unsigned int i;
1723 
1724 	/*
1725 	 * Initialize hardware queues
1726 	 */
1727 	queue_for_each_hw_ctx(q, hctx, i) {
1728 		if (blk_mq_init_hctx(q, set, hctx, i))
1729 			break;
1730 	}
1731 
1732 	if (i == q->nr_hw_queues)
1733 		return 0;
1734 
1735 	/*
1736 	 * Init failed
1737 	 */
1738 	blk_mq_exit_hw_queues(q, set, i);
1739 
1740 	return 1;
1741 }
1742 
1743 static void blk_mq_init_cpu_queues(struct request_queue *q,
1744 				   unsigned int nr_hw_queues)
1745 {
1746 	unsigned int i;
1747 
1748 	for_each_possible_cpu(i) {
1749 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1750 		struct blk_mq_hw_ctx *hctx;
1751 
1752 		memset(__ctx, 0, sizeof(*__ctx));
1753 		__ctx->cpu = i;
1754 		spin_lock_init(&__ctx->lock);
1755 		INIT_LIST_HEAD(&__ctx->rq_list);
1756 		__ctx->queue = q;
1757 
1758 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1759 		if (!cpu_online(i))
1760 			continue;
1761 
1762 		hctx = q->mq_ops->map_queue(q, i);
1763 
1764 		/*
1765 		 * Set local node, IFF we have more than one hw queue. If
1766 		 * not, we remain on the home node of the device
1767 		 */
1768 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1769 			hctx->numa_node = cpu_to_node(i);
1770 	}
1771 }
1772 
1773 static void blk_mq_map_swqueue(struct request_queue *q)
1774 {
1775 	unsigned int i;
1776 	struct blk_mq_hw_ctx *hctx;
1777 	struct blk_mq_ctx *ctx;
1778 
1779 	queue_for_each_hw_ctx(q, hctx, i) {
1780 		cpumask_clear(hctx->cpumask);
1781 		hctx->nr_ctx = 0;
1782 	}
1783 
1784 	/*
1785 	 * Map software to hardware queues
1786 	 */
1787 	queue_for_each_ctx(q, ctx, i) {
1788 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1789 		if (!cpu_online(i))
1790 			continue;
1791 
1792 		hctx = q->mq_ops->map_queue(q, i);
1793 		cpumask_set_cpu(i, hctx->cpumask);
1794 		ctx->index_hw = hctx->nr_ctx;
1795 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1796 	}
1797 
1798 	queue_for_each_hw_ctx(q, hctx, i) {
1799 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1800 
1801 		/*
1802 		 * If no software queues are mapped to this hardware queue,
1803 		 * disable it and free the request entries.
1804 		 */
1805 		if (!hctx->nr_ctx) {
1806 			struct blk_mq_tag_set *set = q->tag_set;
1807 
1808 			if (set->tags[i]) {
1809 				blk_mq_free_rq_map(set, set->tags[i], i);
1810 				set->tags[i] = NULL;
1811 				hctx->tags = NULL;
1812 			}
1813 			continue;
1814 		}
1815 
1816 		/*
1817 		 * Set the map size to the number of mapped software queues.
1818 		 * This is more accurate and more efficient than looping
1819 		 * over all possibly mapped software queues.
1820 		 */
1821 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1822 
1823 		/*
1824 		 * Initialize batch roundrobin counts
1825 		 */
1826 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1827 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1828 	}
1829 }
1830 
1831 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1832 {
1833 	struct blk_mq_hw_ctx *hctx;
1834 	struct request_queue *q;
1835 	bool shared;
1836 	int i;
1837 
1838 	if (set->tag_list.next == set->tag_list.prev)
1839 		shared = false;
1840 	else
1841 		shared = true;
1842 
1843 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1844 		blk_mq_freeze_queue(q);
1845 
1846 		queue_for_each_hw_ctx(q, hctx, i) {
1847 			if (shared)
1848 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1849 			else
1850 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1851 		}
1852 		blk_mq_unfreeze_queue(q);
1853 	}
1854 }
1855 
1856 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1857 {
1858 	struct blk_mq_tag_set *set = q->tag_set;
1859 
1860 	mutex_lock(&set->tag_list_lock);
1861 	list_del_init(&q->tag_set_list);
1862 	blk_mq_update_tag_set_depth(set);
1863 	mutex_unlock(&set->tag_list_lock);
1864 }
1865 
1866 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1867 				     struct request_queue *q)
1868 {
1869 	q->tag_set = set;
1870 
1871 	mutex_lock(&set->tag_list_lock);
1872 	list_add_tail(&q->tag_set_list, &set->tag_list);
1873 	blk_mq_update_tag_set_depth(set);
1874 	mutex_unlock(&set->tag_list_lock);
1875 }
1876 
1877 /*
1878  * It is the actual release handler for mq, but we do it from
1879  * request queue's release handler for avoiding use-after-free
1880  * and headache because q->mq_kobj shouldn't have been introduced,
1881  * but we can't group ctx/kctx kobj without it.
1882  */
1883 void blk_mq_release(struct request_queue *q)
1884 {
1885 	struct blk_mq_hw_ctx *hctx;
1886 	unsigned int i;
1887 
1888 	/* hctx kobj stays in hctx */
1889 	queue_for_each_hw_ctx(q, hctx, i)
1890 		kfree(hctx);
1891 
1892 	kfree(q->queue_hw_ctx);
1893 
1894 	/* ctx kobj stays in queue_ctx */
1895 	free_percpu(q->queue_ctx);
1896 }
1897 
1898 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1899 {
1900 	struct request_queue *uninit_q, *q;
1901 
1902 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1903 	if (!uninit_q)
1904 		return ERR_PTR(-ENOMEM);
1905 
1906 	q = blk_mq_init_allocated_queue(set, uninit_q);
1907 	if (IS_ERR(q))
1908 		blk_cleanup_queue(uninit_q);
1909 
1910 	return q;
1911 }
1912 EXPORT_SYMBOL(blk_mq_init_queue);
1913 
1914 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1915 						  struct request_queue *q)
1916 {
1917 	struct blk_mq_hw_ctx **hctxs;
1918 	struct blk_mq_ctx __percpu *ctx;
1919 	unsigned int *map;
1920 	int i;
1921 
1922 	ctx = alloc_percpu(struct blk_mq_ctx);
1923 	if (!ctx)
1924 		return ERR_PTR(-ENOMEM);
1925 
1926 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1927 			set->numa_node);
1928 
1929 	if (!hctxs)
1930 		goto err_percpu;
1931 
1932 	map = blk_mq_make_queue_map(set);
1933 	if (!map)
1934 		goto err_map;
1935 
1936 	for (i = 0; i < set->nr_hw_queues; i++) {
1937 		int node = blk_mq_hw_queue_to_node(map, i);
1938 
1939 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1940 					GFP_KERNEL, node);
1941 		if (!hctxs[i])
1942 			goto err_hctxs;
1943 
1944 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1945 						node))
1946 			goto err_hctxs;
1947 
1948 		atomic_set(&hctxs[i]->nr_active, 0);
1949 		hctxs[i]->numa_node = node;
1950 		hctxs[i]->queue_num = i;
1951 	}
1952 
1953 	/*
1954 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1955 	 * See blk_register_queue() for details.
1956 	 */
1957 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1958 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1959 		goto err_hctxs;
1960 
1961 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1962 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000);
1963 
1964 	q->nr_queues = nr_cpu_ids;
1965 	q->nr_hw_queues = set->nr_hw_queues;
1966 	q->mq_map = map;
1967 
1968 	q->queue_ctx = ctx;
1969 	q->queue_hw_ctx = hctxs;
1970 
1971 	q->mq_ops = set->ops;
1972 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1973 
1974 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1975 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1976 
1977 	q->sg_reserved_size = INT_MAX;
1978 
1979 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1980 	INIT_LIST_HEAD(&q->requeue_list);
1981 	spin_lock_init(&q->requeue_lock);
1982 
1983 	if (q->nr_hw_queues > 1)
1984 		blk_queue_make_request(q, blk_mq_make_request);
1985 	else
1986 		blk_queue_make_request(q, blk_sq_make_request);
1987 
1988 	/*
1989 	 * Do this after blk_queue_make_request() overrides it...
1990 	 */
1991 	q->nr_requests = set->queue_depth;
1992 
1993 	if (set->ops->complete)
1994 		blk_queue_softirq_done(q, set->ops->complete);
1995 
1996 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1997 
1998 	if (blk_mq_init_hw_queues(q, set))
1999 		goto err_hctxs;
2000 
2001 	mutex_lock(&all_q_mutex);
2002 	list_add_tail(&q->all_q_node, &all_q_list);
2003 	mutex_unlock(&all_q_mutex);
2004 
2005 	blk_mq_add_queue_tag_set(set, q);
2006 
2007 	blk_mq_map_swqueue(q);
2008 
2009 	return q;
2010 
2011 err_hctxs:
2012 	kfree(map);
2013 	for (i = 0; i < set->nr_hw_queues; i++) {
2014 		if (!hctxs[i])
2015 			break;
2016 		free_cpumask_var(hctxs[i]->cpumask);
2017 		kfree(hctxs[i]);
2018 	}
2019 err_map:
2020 	kfree(hctxs);
2021 err_percpu:
2022 	free_percpu(ctx);
2023 	return ERR_PTR(-ENOMEM);
2024 }
2025 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2026 
2027 void blk_mq_free_queue(struct request_queue *q)
2028 {
2029 	struct blk_mq_tag_set	*set = q->tag_set;
2030 
2031 	blk_mq_del_queue_tag_set(q);
2032 
2033 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2034 	blk_mq_free_hw_queues(q, set);
2035 
2036 	percpu_ref_exit(&q->mq_usage_counter);
2037 
2038 	kfree(q->mq_map);
2039 
2040 	q->mq_map = NULL;
2041 
2042 	mutex_lock(&all_q_mutex);
2043 	list_del_init(&q->all_q_node);
2044 	mutex_unlock(&all_q_mutex);
2045 }
2046 
2047 /* Basically redo blk_mq_init_queue with queue frozen */
2048 static void blk_mq_queue_reinit(struct request_queue *q)
2049 {
2050 	WARN_ON_ONCE(!q->mq_freeze_depth);
2051 
2052 	blk_mq_sysfs_unregister(q);
2053 
2054 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2055 
2056 	/*
2057 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2058 	 * we should change hctx numa_node according to new topology (this
2059 	 * involves free and re-allocate memory, worthy doing?)
2060 	 */
2061 
2062 	blk_mq_map_swqueue(q);
2063 
2064 	blk_mq_sysfs_register(q);
2065 }
2066 
2067 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2068 				      unsigned long action, void *hcpu)
2069 {
2070 	struct request_queue *q;
2071 
2072 	/*
2073 	 * Before new mappings are established, hotadded cpu might already
2074 	 * start handling requests. This doesn't break anything as we map
2075 	 * offline CPUs to first hardware queue. We will re-init the queue
2076 	 * below to get optimal settings.
2077 	 */
2078 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2079 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2080 		return NOTIFY_OK;
2081 
2082 	mutex_lock(&all_q_mutex);
2083 
2084 	/*
2085 	 * We need to freeze and reinit all existing queues.  Freezing
2086 	 * involves synchronous wait for an RCU grace period and doing it
2087 	 * one by one may take a long time.  Start freezing all queues in
2088 	 * one swoop and then wait for the completions so that freezing can
2089 	 * take place in parallel.
2090 	 */
2091 	list_for_each_entry(q, &all_q_list, all_q_node)
2092 		blk_mq_freeze_queue_start(q);
2093 	list_for_each_entry(q, &all_q_list, all_q_node)
2094 		blk_mq_freeze_queue_wait(q);
2095 
2096 	list_for_each_entry(q, &all_q_list, all_q_node)
2097 		blk_mq_queue_reinit(q);
2098 
2099 	list_for_each_entry(q, &all_q_list, all_q_node)
2100 		blk_mq_unfreeze_queue(q);
2101 
2102 	mutex_unlock(&all_q_mutex);
2103 	return NOTIFY_OK;
2104 }
2105 
2106 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2107 {
2108 	int i;
2109 
2110 	for (i = 0; i < set->nr_hw_queues; i++) {
2111 		set->tags[i] = blk_mq_init_rq_map(set, i);
2112 		if (!set->tags[i])
2113 			goto out_unwind;
2114 	}
2115 
2116 	return 0;
2117 
2118 out_unwind:
2119 	while (--i >= 0)
2120 		blk_mq_free_rq_map(set, set->tags[i], i);
2121 
2122 	return -ENOMEM;
2123 }
2124 
2125 /*
2126  * Allocate the request maps associated with this tag_set. Note that this
2127  * may reduce the depth asked for, if memory is tight. set->queue_depth
2128  * will be updated to reflect the allocated depth.
2129  */
2130 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2131 {
2132 	unsigned int depth;
2133 	int err;
2134 
2135 	depth = set->queue_depth;
2136 	do {
2137 		err = __blk_mq_alloc_rq_maps(set);
2138 		if (!err)
2139 			break;
2140 
2141 		set->queue_depth >>= 1;
2142 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2143 			err = -ENOMEM;
2144 			break;
2145 		}
2146 	} while (set->queue_depth);
2147 
2148 	if (!set->queue_depth || err) {
2149 		pr_err("blk-mq: failed to allocate request map\n");
2150 		return -ENOMEM;
2151 	}
2152 
2153 	if (depth != set->queue_depth)
2154 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2155 						depth, set->queue_depth);
2156 
2157 	return 0;
2158 }
2159 
2160 /*
2161  * Alloc a tag set to be associated with one or more request queues.
2162  * May fail with EINVAL for various error conditions. May adjust the
2163  * requested depth down, if if it too large. In that case, the set
2164  * value will be stored in set->queue_depth.
2165  */
2166 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2167 {
2168 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2169 
2170 	if (!set->nr_hw_queues)
2171 		return -EINVAL;
2172 	if (!set->queue_depth)
2173 		return -EINVAL;
2174 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2175 		return -EINVAL;
2176 
2177 	if (!set->ops->queue_rq || !set->ops->map_queue)
2178 		return -EINVAL;
2179 
2180 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2181 		pr_info("blk-mq: reduced tag depth to %u\n",
2182 			BLK_MQ_MAX_DEPTH);
2183 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2184 	}
2185 
2186 	/*
2187 	 * If a crashdump is active, then we are potentially in a very
2188 	 * memory constrained environment. Limit us to 1 queue and
2189 	 * 64 tags to prevent using too much memory.
2190 	 */
2191 	if (is_kdump_kernel()) {
2192 		set->nr_hw_queues = 1;
2193 		set->queue_depth = min(64U, set->queue_depth);
2194 	}
2195 
2196 	set->tags = kmalloc_node(set->nr_hw_queues *
2197 				 sizeof(struct blk_mq_tags *),
2198 				 GFP_KERNEL, set->numa_node);
2199 	if (!set->tags)
2200 		return -ENOMEM;
2201 
2202 	if (blk_mq_alloc_rq_maps(set))
2203 		goto enomem;
2204 
2205 	mutex_init(&set->tag_list_lock);
2206 	INIT_LIST_HEAD(&set->tag_list);
2207 
2208 	return 0;
2209 enomem:
2210 	kfree(set->tags);
2211 	set->tags = NULL;
2212 	return -ENOMEM;
2213 }
2214 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2215 
2216 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2217 {
2218 	int i;
2219 
2220 	for (i = 0; i < set->nr_hw_queues; i++) {
2221 		if (set->tags[i])
2222 			blk_mq_free_rq_map(set, set->tags[i], i);
2223 	}
2224 
2225 	kfree(set->tags);
2226 	set->tags = NULL;
2227 }
2228 EXPORT_SYMBOL(blk_mq_free_tag_set);
2229 
2230 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2231 {
2232 	struct blk_mq_tag_set *set = q->tag_set;
2233 	struct blk_mq_hw_ctx *hctx;
2234 	int i, ret;
2235 
2236 	if (!set || nr > set->queue_depth)
2237 		return -EINVAL;
2238 
2239 	ret = 0;
2240 	queue_for_each_hw_ctx(q, hctx, i) {
2241 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2242 		if (ret)
2243 			break;
2244 	}
2245 
2246 	if (!ret)
2247 		q->nr_requests = nr;
2248 
2249 	return ret;
2250 }
2251 
2252 void blk_mq_disable_hotplug(void)
2253 {
2254 	mutex_lock(&all_q_mutex);
2255 }
2256 
2257 void blk_mq_enable_hotplug(void)
2258 {
2259 	mutex_unlock(&all_q_mutex);
2260 }
2261 
2262 static int __init blk_mq_init(void)
2263 {
2264 	blk_mq_cpu_init();
2265 
2266 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2267 
2268 	return 0;
2269 }
2270 subsys_initcall(blk_mq_init);
2271