xref: /openbmc/linux/block/blk-mq.c (revision 519b58bbfa825f042fcf80261cc18e1e35f85ffd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 	if (blk_queue_has_srcu(q))
265 		synchronize_srcu(q->srcu);
266 	else
267 		synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270 
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 	blk_mq_quiesce_queue_nowait(q);
283 	blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286 
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 	unsigned long flags;
297 	bool run_queue = false;
298 
299 	spin_lock_irqsave(&q->queue_lock, flags);
300 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 		;
302 	} else if (!--q->quiesce_depth) {
303 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 		run_queue = true;
305 	}
306 	spin_unlock_irqrestore(&q->queue_lock, flags);
307 
308 	/* dispatch requests which are inserted during quiescing */
309 	if (run_queue)
310 		blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313 
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 	struct blk_mq_hw_ctx *hctx;
317 	unsigned long i;
318 
319 	queue_for_each_hw_ctx(q, hctx, i)
320 		if (blk_mq_hw_queue_mapped(hctx))
321 			blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323 
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 	memset(rq, 0, sizeof(*rq));
327 
328 	INIT_LIST_HEAD(&rq->queuelist);
329 	rq->q = q;
330 	rq->__sector = (sector_t) -1;
331 	INIT_HLIST_NODE(&rq->hash);
332 	RB_CLEAR_NODE(&rq->rb_node);
333 	rq->tag = BLK_MQ_NO_TAG;
334 	rq->internal_tag = BLK_MQ_NO_TAG;
335 	rq->start_time_ns = ktime_get_ns();
336 	rq->part = NULL;
337 	blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340 
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 	struct blk_mq_ctx *ctx = data->ctx;
345 	struct blk_mq_hw_ctx *hctx = data->hctx;
346 	struct request_queue *q = data->q;
347 	struct request *rq = tags->static_rqs[tag];
348 
349 	rq->q = q;
350 	rq->mq_ctx = ctx;
351 	rq->mq_hctx = hctx;
352 	rq->cmd_flags = data->cmd_flags;
353 
354 	if (data->flags & BLK_MQ_REQ_PM)
355 		data->rq_flags |= RQF_PM;
356 	if (blk_queue_io_stat(q))
357 		data->rq_flags |= RQF_IO_STAT;
358 	rq->rq_flags = data->rq_flags;
359 
360 	if (!(data->rq_flags & RQF_ELV)) {
361 		rq->tag = tag;
362 		rq->internal_tag = BLK_MQ_NO_TAG;
363 	} else {
364 		rq->tag = BLK_MQ_NO_TAG;
365 		rq->internal_tag = tag;
366 	}
367 	rq->timeout = 0;
368 
369 	if (blk_mq_need_time_stamp(rq))
370 		rq->start_time_ns = ktime_get_ns();
371 	else
372 		rq->start_time_ns = 0;
373 	rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 	rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_ELV) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (!op_is_flush(data->cmd_flags) &&
399 		    e->type->ops.prepare_request) {
400 			e->type->ops.prepare_request(rq);
401 			rq->rq_flags |= RQF_ELVPRIV;
402 		}
403 	}
404 
405 	return rq;
406 }
407 
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 		u64 alloc_time_ns)
411 {
412 	unsigned int tag, tag_offset;
413 	struct blk_mq_tags *tags;
414 	struct request *rq;
415 	unsigned long tag_mask;
416 	int i, nr = 0;
417 
418 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 	if (unlikely(!tag_mask))
420 		return NULL;
421 
422 	tags = blk_mq_tags_from_data(data);
423 	for (i = 0; tag_mask; i++) {
424 		if (!(tag_mask & (1UL << i)))
425 			continue;
426 		tag = tag_offset + i;
427 		prefetch(tags->static_rqs[tag]);
428 		tag_mask &= ~(1UL << i);
429 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 		rq_list_add(data->cached_rq, rq);
431 		nr++;
432 	}
433 	/* caller already holds a reference, add for remainder */
434 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 	data->nr_tags -= nr;
436 
437 	return rq_list_pop(data->cached_rq);
438 }
439 
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 	struct request_queue *q = data->q;
443 	u64 alloc_time_ns = 0;
444 	struct request *rq;
445 	unsigned int tag;
446 
447 	/* alloc_time includes depth and tag waits */
448 	if (blk_queue_rq_alloc_time(q))
449 		alloc_time_ns = ktime_get_ns();
450 
451 	if (data->cmd_flags & REQ_NOWAIT)
452 		data->flags |= BLK_MQ_REQ_NOWAIT;
453 
454 	if (q->elevator) {
455 		struct elevator_queue *e = q->elevator;
456 
457 		data->rq_flags |= RQF_ELV;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list. Don't include reserved tags in the
462 		 * limiting, as it isn't useful.
463 		 */
464 		if (!op_is_flush(data->cmd_flags) &&
465 		    !blk_op_is_passthrough(data->cmd_flags) &&
466 		    e->type->ops.limit_depth &&
467 		    !(data->flags & BLK_MQ_REQ_RESERVED))
468 			e->type->ops.limit_depth(data->cmd_flags, data);
469 	}
470 
471 retry:
472 	data->ctx = blk_mq_get_ctx(q);
473 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 	if (!(data->rq_flags & RQF_ELV))
475 		blk_mq_tag_busy(data->hctx);
476 
477 	if (data->flags & BLK_MQ_REQ_RESERVED)
478 		data->rq_flags |= RQF_RESV;
479 
480 	/*
481 	 * Try batched alloc if we want more than 1 tag.
482 	 */
483 	if (data->nr_tags > 1) {
484 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485 		if (rq)
486 			return rq;
487 		data->nr_tags = 1;
488 	}
489 
490 	/*
491 	 * Waiting allocations only fail because of an inactive hctx.  In that
492 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
493 	 * should have migrated us to an online CPU by now.
494 	 */
495 	tag = blk_mq_get_tag(data);
496 	if (tag == BLK_MQ_NO_TAG) {
497 		if (data->flags & BLK_MQ_REQ_NOWAIT)
498 			return NULL;
499 		/*
500 		 * Give up the CPU and sleep for a random short time to
501 		 * ensure that thread using a realtime scheduling class
502 		 * are migrated off the CPU, and thus off the hctx that
503 		 * is going away.
504 		 */
505 		msleep(3);
506 		goto retry;
507 	}
508 
509 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510 					alloc_time_ns);
511 }
512 
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514 					    struct blk_plug *plug,
515 					    blk_opf_t opf,
516 					    blk_mq_req_flags_t flags)
517 {
518 	struct blk_mq_alloc_data data = {
519 		.q		= q,
520 		.flags		= flags,
521 		.cmd_flags	= opf,
522 		.nr_tags	= plug->nr_ios,
523 		.cached_rq	= &plug->cached_rq,
524 	};
525 	struct request *rq;
526 
527 	if (blk_queue_enter(q, flags))
528 		return NULL;
529 
530 	plug->nr_ios = 1;
531 
532 	rq = __blk_mq_alloc_requests(&data);
533 	if (unlikely(!rq))
534 		blk_queue_exit(q);
535 	return rq;
536 }
537 
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539 						   blk_opf_t opf,
540 						   blk_mq_req_flags_t flags)
541 {
542 	struct blk_plug *plug = current->plug;
543 	struct request *rq;
544 
545 	if (!plug)
546 		return NULL;
547 	if (rq_list_empty(plug->cached_rq)) {
548 		if (plug->nr_ios == 1)
549 			return NULL;
550 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551 		if (rq)
552 			goto got_it;
553 		return NULL;
554 	}
555 	rq = rq_list_peek(&plug->cached_rq);
556 	if (!rq || rq->q != q)
557 		return NULL;
558 
559 	if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560 		return NULL;
561 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562 		return NULL;
563 
564 	plug->cached_rq = rq_list_next(rq);
565 got_it:
566 	rq->cmd_flags = opf;
567 	INIT_LIST_HEAD(&rq->queuelist);
568 	return rq;
569 }
570 
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572 		blk_mq_req_flags_t flags)
573 {
574 	struct request *rq;
575 
576 	rq = blk_mq_alloc_cached_request(q, opf, flags);
577 	if (!rq) {
578 		struct blk_mq_alloc_data data = {
579 			.q		= q,
580 			.flags		= flags,
581 			.cmd_flags	= opf,
582 			.nr_tags	= 1,
583 		};
584 		int ret;
585 
586 		ret = blk_queue_enter(q, flags);
587 		if (ret)
588 			return ERR_PTR(ret);
589 
590 		rq = __blk_mq_alloc_requests(&data);
591 		if (!rq)
592 			goto out_queue_exit;
593 	}
594 	rq->__data_len = 0;
595 	rq->__sector = (sector_t) -1;
596 	rq->bio = rq->biotail = NULL;
597 	return rq;
598 out_queue_exit:
599 	blk_queue_exit(q);
600 	return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603 
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607 	struct blk_mq_alloc_data data = {
608 		.q		= q,
609 		.flags		= flags,
610 		.cmd_flags	= opf,
611 		.nr_tags	= 1,
612 	};
613 	u64 alloc_time_ns = 0;
614 	struct request *rq;
615 	unsigned int cpu;
616 	unsigned int tag;
617 	int ret;
618 
619 	/* alloc_time includes depth and tag waits */
620 	if (blk_queue_rq_alloc_time(q))
621 		alloc_time_ns = ktime_get_ns();
622 
623 	/*
624 	 * If the tag allocator sleeps we could get an allocation for a
625 	 * different hardware context.  No need to complicate the low level
626 	 * allocator for this for the rare use case of a command tied to
627 	 * a specific queue.
628 	 */
629 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
630 		return ERR_PTR(-EINVAL);
631 
632 	if (hctx_idx >= q->nr_hw_queues)
633 		return ERR_PTR(-EIO);
634 
635 	ret = blk_queue_enter(q, flags);
636 	if (ret)
637 		return ERR_PTR(ret);
638 
639 	/*
640 	 * Check if the hardware context is actually mapped to anything.
641 	 * If not tell the caller that it should skip this queue.
642 	 */
643 	ret = -EXDEV;
644 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
645 	if (!blk_mq_hw_queue_mapped(data.hctx))
646 		goto out_queue_exit;
647 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
648 	if (cpu >= nr_cpu_ids)
649 		goto out_queue_exit;
650 	data.ctx = __blk_mq_get_ctx(q, cpu);
651 
652 	if (!q->elevator)
653 		blk_mq_tag_busy(data.hctx);
654 	else
655 		data.rq_flags |= RQF_ELV;
656 
657 	if (flags & BLK_MQ_REQ_RESERVED)
658 		data.rq_flags |= RQF_RESV;
659 
660 	ret = -EWOULDBLOCK;
661 	tag = blk_mq_get_tag(&data);
662 	if (tag == BLK_MQ_NO_TAG)
663 		goto out_queue_exit;
664 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
665 					alloc_time_ns);
666 	rq->__data_len = 0;
667 	rq->__sector = (sector_t) -1;
668 	rq->bio = rq->biotail = NULL;
669 	return rq;
670 
671 out_queue_exit:
672 	blk_queue_exit(q);
673 	return ERR_PTR(ret);
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
676 
677 static void __blk_mq_free_request(struct request *rq)
678 {
679 	struct request_queue *q = rq->q;
680 	struct blk_mq_ctx *ctx = rq->mq_ctx;
681 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
682 	const int sched_tag = rq->internal_tag;
683 
684 	blk_crypto_free_request(rq);
685 	blk_pm_mark_last_busy(rq);
686 	rq->mq_hctx = NULL;
687 	if (rq->tag != BLK_MQ_NO_TAG)
688 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
689 	if (sched_tag != BLK_MQ_NO_TAG)
690 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
691 	blk_mq_sched_restart(hctx);
692 	blk_queue_exit(q);
693 }
694 
695 void blk_mq_free_request(struct request *rq)
696 {
697 	struct request_queue *q = rq->q;
698 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
699 
700 	if ((rq->rq_flags & RQF_ELVPRIV) &&
701 	    q->elevator->type->ops.finish_request)
702 		q->elevator->type->ops.finish_request(rq);
703 
704 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
705 		__blk_mq_dec_active_requests(hctx);
706 
707 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
708 		laptop_io_completion(q->disk->bdi);
709 
710 	rq_qos_done(q, rq);
711 
712 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
713 	if (req_ref_put_and_test(rq))
714 		__blk_mq_free_request(rq);
715 }
716 EXPORT_SYMBOL_GPL(blk_mq_free_request);
717 
718 void blk_mq_free_plug_rqs(struct blk_plug *plug)
719 {
720 	struct request *rq;
721 
722 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
723 		blk_mq_free_request(rq);
724 }
725 
726 void blk_dump_rq_flags(struct request *rq, char *msg)
727 {
728 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
729 		rq->q->disk ? rq->q->disk->disk_name : "?",
730 		(__force unsigned long long) rq->cmd_flags);
731 
732 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
733 	       (unsigned long long)blk_rq_pos(rq),
734 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
735 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
736 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
737 }
738 EXPORT_SYMBOL(blk_dump_rq_flags);
739 
740 static void req_bio_endio(struct request *rq, struct bio *bio,
741 			  unsigned int nbytes, blk_status_t error)
742 {
743 	if (unlikely(error)) {
744 		bio->bi_status = error;
745 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
746 		/*
747 		 * Partial zone append completions cannot be supported as the
748 		 * BIO fragments may end up not being written sequentially.
749 		 */
750 		if (bio->bi_iter.bi_size != nbytes)
751 			bio->bi_status = BLK_STS_IOERR;
752 		else
753 			bio->bi_iter.bi_sector = rq->__sector;
754 	}
755 
756 	bio_advance(bio, nbytes);
757 
758 	if (unlikely(rq->rq_flags & RQF_QUIET))
759 		bio_set_flag(bio, BIO_QUIET);
760 	/* don't actually finish bio if it's part of flush sequence */
761 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
762 		bio_endio(bio);
763 }
764 
765 static void blk_account_io_completion(struct request *req, unsigned int bytes)
766 {
767 	if (req->part && blk_do_io_stat(req)) {
768 		const int sgrp = op_stat_group(req_op(req));
769 
770 		part_stat_lock();
771 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
772 		part_stat_unlock();
773 	}
774 }
775 
776 static void blk_print_req_error(struct request *req, blk_status_t status)
777 {
778 	printk_ratelimited(KERN_ERR
779 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
780 		"phys_seg %u prio class %u\n",
781 		blk_status_to_str(status),
782 		req->q->disk ? req->q->disk->disk_name : "?",
783 		blk_rq_pos(req), (__force u32)req_op(req),
784 		blk_op_str(req_op(req)),
785 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
786 		req->nr_phys_segments,
787 		IOPRIO_PRIO_CLASS(req->ioprio));
788 }
789 
790 /*
791  * Fully end IO on a request. Does not support partial completions, or
792  * errors.
793  */
794 static void blk_complete_request(struct request *req)
795 {
796 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
797 	int total_bytes = blk_rq_bytes(req);
798 	struct bio *bio = req->bio;
799 
800 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
801 
802 	if (!bio)
803 		return;
804 
805 #ifdef CONFIG_BLK_DEV_INTEGRITY
806 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
807 		req->q->integrity.profile->complete_fn(req, total_bytes);
808 #endif
809 
810 	blk_account_io_completion(req, total_bytes);
811 
812 	do {
813 		struct bio *next = bio->bi_next;
814 
815 		/* Completion has already been traced */
816 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
817 
818 		if (req_op(req) == REQ_OP_ZONE_APPEND)
819 			bio->bi_iter.bi_sector = req->__sector;
820 
821 		if (!is_flush)
822 			bio_endio(bio);
823 		bio = next;
824 	} while (bio);
825 
826 	/*
827 	 * Reset counters so that the request stacking driver
828 	 * can find how many bytes remain in the request
829 	 * later.
830 	 */
831 	if (!req->end_io) {
832 		req->bio = NULL;
833 		req->__data_len = 0;
834 	}
835 }
836 
837 /**
838  * blk_update_request - Complete multiple bytes without completing the request
839  * @req:      the request being processed
840  * @error:    block status code
841  * @nr_bytes: number of bytes to complete for @req
842  *
843  * Description:
844  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
845  *     the request structure even if @req doesn't have leftover.
846  *     If @req has leftover, sets it up for the next range of segments.
847  *
848  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
849  *     %false return from this function.
850  *
851  * Note:
852  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
853  *      except in the consistency check at the end of this function.
854  *
855  * Return:
856  *     %false - this request doesn't have any more data
857  *     %true  - this request has more data
858  **/
859 bool blk_update_request(struct request *req, blk_status_t error,
860 		unsigned int nr_bytes)
861 {
862 	int total_bytes;
863 
864 	trace_block_rq_complete(req, error, nr_bytes);
865 
866 	if (!req->bio)
867 		return false;
868 
869 #ifdef CONFIG_BLK_DEV_INTEGRITY
870 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
871 	    error == BLK_STS_OK)
872 		req->q->integrity.profile->complete_fn(req, nr_bytes);
873 #endif
874 
875 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
876 		     !(req->rq_flags & RQF_QUIET)) &&
877 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
878 		blk_print_req_error(req, error);
879 		trace_block_rq_error(req, error, nr_bytes);
880 	}
881 
882 	blk_account_io_completion(req, nr_bytes);
883 
884 	total_bytes = 0;
885 	while (req->bio) {
886 		struct bio *bio = req->bio;
887 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
888 
889 		if (bio_bytes == bio->bi_iter.bi_size)
890 			req->bio = bio->bi_next;
891 
892 		/* Completion has already been traced */
893 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
894 		req_bio_endio(req, bio, bio_bytes, error);
895 
896 		total_bytes += bio_bytes;
897 		nr_bytes -= bio_bytes;
898 
899 		if (!nr_bytes)
900 			break;
901 	}
902 
903 	/*
904 	 * completely done
905 	 */
906 	if (!req->bio) {
907 		/*
908 		 * Reset counters so that the request stacking driver
909 		 * can find how many bytes remain in the request
910 		 * later.
911 		 */
912 		req->__data_len = 0;
913 		return false;
914 	}
915 
916 	req->__data_len -= total_bytes;
917 
918 	/* update sector only for requests with clear definition of sector */
919 	if (!blk_rq_is_passthrough(req))
920 		req->__sector += total_bytes >> 9;
921 
922 	/* mixed attributes always follow the first bio */
923 	if (req->rq_flags & RQF_MIXED_MERGE) {
924 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
925 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
926 	}
927 
928 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
929 		/*
930 		 * If total number of sectors is less than the first segment
931 		 * size, something has gone terribly wrong.
932 		 */
933 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
934 			blk_dump_rq_flags(req, "request botched");
935 			req->__data_len = blk_rq_cur_bytes(req);
936 		}
937 
938 		/* recalculate the number of segments */
939 		req->nr_phys_segments = blk_recalc_rq_segments(req);
940 	}
941 
942 	return true;
943 }
944 EXPORT_SYMBOL_GPL(blk_update_request);
945 
946 static void __blk_account_io_done(struct request *req, u64 now)
947 {
948 	const int sgrp = op_stat_group(req_op(req));
949 
950 	part_stat_lock();
951 	update_io_ticks(req->part, jiffies, true);
952 	part_stat_inc(req->part, ios[sgrp]);
953 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
954 	part_stat_unlock();
955 }
956 
957 static inline void blk_account_io_done(struct request *req, u64 now)
958 {
959 	/*
960 	 * Account IO completion.  flush_rq isn't accounted as a
961 	 * normal IO on queueing nor completion.  Accounting the
962 	 * containing request is enough.
963 	 */
964 	if (blk_do_io_stat(req) && req->part &&
965 	    !(req->rq_flags & RQF_FLUSH_SEQ))
966 		__blk_account_io_done(req, now);
967 }
968 
969 static void __blk_account_io_start(struct request *rq)
970 {
971 	/*
972 	 * All non-passthrough requests are created from a bio with one
973 	 * exception: when a flush command that is part of a flush sequence
974 	 * generated by the state machine in blk-flush.c is cloned onto the
975 	 * lower device by dm-multipath we can get here without a bio.
976 	 */
977 	if (rq->bio)
978 		rq->part = rq->bio->bi_bdev;
979 	else
980 		rq->part = rq->q->disk->part0;
981 
982 	part_stat_lock();
983 	update_io_ticks(rq->part, jiffies, false);
984 	part_stat_unlock();
985 }
986 
987 static inline void blk_account_io_start(struct request *req)
988 {
989 	if (blk_do_io_stat(req))
990 		__blk_account_io_start(req);
991 }
992 
993 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
994 {
995 	if (rq->rq_flags & RQF_STATS) {
996 		blk_mq_poll_stats_start(rq->q);
997 		blk_stat_add(rq, now);
998 	}
999 
1000 	blk_mq_sched_completed_request(rq, now);
1001 	blk_account_io_done(rq, now);
1002 }
1003 
1004 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1005 {
1006 	if (blk_mq_need_time_stamp(rq))
1007 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1008 
1009 	if (rq->end_io) {
1010 		rq_qos_done(rq->q, rq);
1011 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1012 			blk_mq_free_request(rq);
1013 	} else {
1014 		blk_mq_free_request(rq);
1015 	}
1016 }
1017 EXPORT_SYMBOL(__blk_mq_end_request);
1018 
1019 void blk_mq_end_request(struct request *rq, blk_status_t error)
1020 {
1021 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1022 		BUG();
1023 	__blk_mq_end_request(rq, error);
1024 }
1025 EXPORT_SYMBOL(blk_mq_end_request);
1026 
1027 #define TAG_COMP_BATCH		32
1028 
1029 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1030 					  int *tag_array, int nr_tags)
1031 {
1032 	struct request_queue *q = hctx->queue;
1033 
1034 	/*
1035 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1036 	 * update hctx->nr_active in batch
1037 	 */
1038 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1039 		__blk_mq_sub_active_requests(hctx, nr_tags);
1040 
1041 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1042 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1043 }
1044 
1045 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1046 {
1047 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1048 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1049 	struct request *rq;
1050 	u64 now = 0;
1051 
1052 	if (iob->need_ts)
1053 		now = ktime_get_ns();
1054 
1055 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1056 		prefetch(rq->bio);
1057 		prefetch(rq->rq_next);
1058 
1059 		blk_complete_request(rq);
1060 		if (iob->need_ts)
1061 			__blk_mq_end_request_acct(rq, now);
1062 
1063 		rq_qos_done(rq->q, rq);
1064 
1065 		/*
1066 		 * If end_io handler returns NONE, then it still has
1067 		 * ownership of the request.
1068 		 */
1069 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1070 			continue;
1071 
1072 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1073 		if (!req_ref_put_and_test(rq))
1074 			continue;
1075 
1076 		blk_crypto_free_request(rq);
1077 		blk_pm_mark_last_busy(rq);
1078 
1079 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1080 			if (cur_hctx)
1081 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1082 			nr_tags = 0;
1083 			cur_hctx = rq->mq_hctx;
1084 		}
1085 		tags[nr_tags++] = rq->tag;
1086 	}
1087 
1088 	if (nr_tags)
1089 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1090 }
1091 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1092 
1093 static void blk_complete_reqs(struct llist_head *list)
1094 {
1095 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1096 	struct request *rq, *next;
1097 
1098 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1099 		rq->q->mq_ops->complete(rq);
1100 }
1101 
1102 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1103 {
1104 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1105 }
1106 
1107 static int blk_softirq_cpu_dead(unsigned int cpu)
1108 {
1109 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1110 	return 0;
1111 }
1112 
1113 static void __blk_mq_complete_request_remote(void *data)
1114 {
1115 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1116 }
1117 
1118 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1119 {
1120 	int cpu = raw_smp_processor_id();
1121 
1122 	if (!IS_ENABLED(CONFIG_SMP) ||
1123 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1124 		return false;
1125 	/*
1126 	 * With force threaded interrupts enabled, raising softirq from an SMP
1127 	 * function call will always result in waking the ksoftirqd thread.
1128 	 * This is probably worse than completing the request on a different
1129 	 * cache domain.
1130 	 */
1131 	if (force_irqthreads())
1132 		return false;
1133 
1134 	/* same CPU or cache domain?  Complete locally */
1135 	if (cpu == rq->mq_ctx->cpu ||
1136 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1137 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1138 		return false;
1139 
1140 	/* don't try to IPI to an offline CPU */
1141 	return cpu_online(rq->mq_ctx->cpu);
1142 }
1143 
1144 static void blk_mq_complete_send_ipi(struct request *rq)
1145 {
1146 	struct llist_head *list;
1147 	unsigned int cpu;
1148 
1149 	cpu = rq->mq_ctx->cpu;
1150 	list = &per_cpu(blk_cpu_done, cpu);
1151 	if (llist_add(&rq->ipi_list, list)) {
1152 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1153 		smp_call_function_single_async(cpu, &rq->csd);
1154 	}
1155 }
1156 
1157 static void blk_mq_raise_softirq(struct request *rq)
1158 {
1159 	struct llist_head *list;
1160 
1161 	preempt_disable();
1162 	list = this_cpu_ptr(&blk_cpu_done);
1163 	if (llist_add(&rq->ipi_list, list))
1164 		raise_softirq(BLOCK_SOFTIRQ);
1165 	preempt_enable();
1166 }
1167 
1168 bool blk_mq_complete_request_remote(struct request *rq)
1169 {
1170 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1171 
1172 	/*
1173 	 * For request which hctx has only one ctx mapping,
1174 	 * or a polled request, always complete locally,
1175 	 * it's pointless to redirect the completion.
1176 	 */
1177 	if (rq->mq_hctx->nr_ctx == 1 ||
1178 		rq->cmd_flags & REQ_POLLED)
1179 		return false;
1180 
1181 	if (blk_mq_complete_need_ipi(rq)) {
1182 		blk_mq_complete_send_ipi(rq);
1183 		return true;
1184 	}
1185 
1186 	if (rq->q->nr_hw_queues == 1) {
1187 		blk_mq_raise_softirq(rq);
1188 		return true;
1189 	}
1190 	return false;
1191 }
1192 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1193 
1194 /**
1195  * blk_mq_complete_request - end I/O on a request
1196  * @rq:		the request being processed
1197  *
1198  * Description:
1199  *	Complete a request by scheduling the ->complete_rq operation.
1200  **/
1201 void blk_mq_complete_request(struct request *rq)
1202 {
1203 	if (!blk_mq_complete_request_remote(rq))
1204 		rq->q->mq_ops->complete(rq);
1205 }
1206 EXPORT_SYMBOL(blk_mq_complete_request);
1207 
1208 /**
1209  * blk_mq_start_request - Start processing a request
1210  * @rq: Pointer to request to be started
1211  *
1212  * Function used by device drivers to notify the block layer that a request
1213  * is going to be processed now, so blk layer can do proper initializations
1214  * such as starting the timeout timer.
1215  */
1216 void blk_mq_start_request(struct request *rq)
1217 {
1218 	struct request_queue *q = rq->q;
1219 
1220 	trace_block_rq_issue(rq);
1221 
1222 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1223 		rq->io_start_time_ns = ktime_get_ns();
1224 		rq->stats_sectors = blk_rq_sectors(rq);
1225 		rq->rq_flags |= RQF_STATS;
1226 		rq_qos_issue(q, rq);
1227 	}
1228 
1229 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1230 
1231 	blk_add_timer(rq);
1232 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1233 
1234 #ifdef CONFIG_BLK_DEV_INTEGRITY
1235 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1236 		q->integrity.profile->prepare_fn(rq);
1237 #endif
1238 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1239 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1240 }
1241 EXPORT_SYMBOL(blk_mq_start_request);
1242 
1243 /*
1244  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1245  * queues. This is important for md arrays to benefit from merging
1246  * requests.
1247  */
1248 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1249 {
1250 	if (plug->multiple_queues)
1251 		return BLK_MAX_REQUEST_COUNT * 2;
1252 	return BLK_MAX_REQUEST_COUNT;
1253 }
1254 
1255 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1256 {
1257 	struct request *last = rq_list_peek(&plug->mq_list);
1258 
1259 	if (!plug->rq_count) {
1260 		trace_block_plug(rq->q);
1261 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1262 		   (!blk_queue_nomerges(rq->q) &&
1263 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1264 		blk_mq_flush_plug_list(plug, false);
1265 		trace_block_plug(rq->q);
1266 	}
1267 
1268 	if (!plug->multiple_queues && last && last->q != rq->q)
1269 		plug->multiple_queues = true;
1270 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1271 		plug->has_elevator = true;
1272 	rq->rq_next = NULL;
1273 	rq_list_add(&plug->mq_list, rq);
1274 	plug->rq_count++;
1275 }
1276 
1277 /**
1278  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1279  * @rq:		request to insert
1280  * @at_head:    insert request at head or tail of queue
1281  *
1282  * Description:
1283  *    Insert a fully prepared request at the back of the I/O scheduler queue
1284  *    for execution.  Don't wait for completion.
1285  *
1286  * Note:
1287  *    This function will invoke @done directly if the queue is dead.
1288  */
1289 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1290 {
1291 	WARN_ON(irqs_disabled());
1292 	WARN_ON(!blk_rq_is_passthrough(rq));
1293 
1294 	blk_account_io_start(rq);
1295 
1296 	/*
1297 	 * As plugging can be enabled for passthrough requests on a zoned
1298 	 * device, directly accessing the plug instead of using blk_mq_plug()
1299 	 * should not have any consequences.
1300 	 */
1301 	if (current->plug)
1302 		blk_add_rq_to_plug(current->plug, rq);
1303 	else
1304 		blk_mq_sched_insert_request(rq, at_head, true, false);
1305 }
1306 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1307 
1308 struct blk_rq_wait {
1309 	struct completion done;
1310 	blk_status_t ret;
1311 };
1312 
1313 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1314 {
1315 	struct blk_rq_wait *wait = rq->end_io_data;
1316 
1317 	wait->ret = ret;
1318 	complete(&wait->done);
1319 	return RQ_END_IO_NONE;
1320 }
1321 
1322 bool blk_rq_is_poll(struct request *rq)
1323 {
1324 	if (!rq->mq_hctx)
1325 		return false;
1326 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1327 		return false;
1328 	if (WARN_ON_ONCE(!rq->bio))
1329 		return false;
1330 	return true;
1331 }
1332 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1333 
1334 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1335 {
1336 	do {
1337 		bio_poll(rq->bio, NULL, 0);
1338 		cond_resched();
1339 	} while (!completion_done(wait));
1340 }
1341 
1342 /**
1343  * blk_execute_rq - insert a request into queue for execution
1344  * @rq:		request to insert
1345  * @at_head:    insert request at head or tail of queue
1346  *
1347  * Description:
1348  *    Insert a fully prepared request at the back of the I/O scheduler queue
1349  *    for execution and wait for completion.
1350  * Return: The blk_status_t result provided to blk_mq_end_request().
1351  */
1352 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1353 {
1354 	struct blk_rq_wait wait = {
1355 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1356 	};
1357 
1358 	WARN_ON(irqs_disabled());
1359 	WARN_ON(!blk_rq_is_passthrough(rq));
1360 
1361 	rq->end_io_data = &wait;
1362 	rq->end_io = blk_end_sync_rq;
1363 
1364 	blk_account_io_start(rq);
1365 	blk_mq_sched_insert_request(rq, at_head, true, false);
1366 
1367 	if (blk_rq_is_poll(rq)) {
1368 		blk_rq_poll_completion(rq, &wait.done);
1369 	} else {
1370 		/*
1371 		 * Prevent hang_check timer from firing at us during very long
1372 		 * I/O
1373 		 */
1374 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1375 
1376 		if (hang_check)
1377 			while (!wait_for_completion_io_timeout(&wait.done,
1378 					hang_check * (HZ/2)))
1379 				;
1380 		else
1381 			wait_for_completion_io(&wait.done);
1382 	}
1383 
1384 	return wait.ret;
1385 }
1386 EXPORT_SYMBOL(blk_execute_rq);
1387 
1388 static void __blk_mq_requeue_request(struct request *rq)
1389 {
1390 	struct request_queue *q = rq->q;
1391 
1392 	blk_mq_put_driver_tag(rq);
1393 
1394 	trace_block_rq_requeue(rq);
1395 	rq_qos_requeue(q, rq);
1396 
1397 	if (blk_mq_request_started(rq)) {
1398 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1399 		rq->rq_flags &= ~RQF_TIMED_OUT;
1400 	}
1401 }
1402 
1403 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1404 {
1405 	__blk_mq_requeue_request(rq);
1406 
1407 	/* this request will be re-inserted to io scheduler queue */
1408 	blk_mq_sched_requeue_request(rq);
1409 
1410 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1411 }
1412 EXPORT_SYMBOL(blk_mq_requeue_request);
1413 
1414 static void blk_mq_requeue_work(struct work_struct *work)
1415 {
1416 	struct request_queue *q =
1417 		container_of(work, struct request_queue, requeue_work.work);
1418 	LIST_HEAD(rq_list);
1419 	struct request *rq, *next;
1420 
1421 	spin_lock_irq(&q->requeue_lock);
1422 	list_splice_init(&q->requeue_list, &rq_list);
1423 	spin_unlock_irq(&q->requeue_lock);
1424 
1425 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1426 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1427 			continue;
1428 
1429 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1430 		list_del_init(&rq->queuelist);
1431 		/*
1432 		 * If RQF_DONTPREP, rq has contained some driver specific
1433 		 * data, so insert it to hctx dispatch list to avoid any
1434 		 * merge.
1435 		 */
1436 		if (rq->rq_flags & RQF_DONTPREP)
1437 			blk_mq_request_bypass_insert(rq, false, false);
1438 		else
1439 			blk_mq_sched_insert_request(rq, true, false, false);
1440 	}
1441 
1442 	while (!list_empty(&rq_list)) {
1443 		rq = list_entry(rq_list.next, struct request, queuelist);
1444 		list_del_init(&rq->queuelist);
1445 		blk_mq_sched_insert_request(rq, false, false, false);
1446 	}
1447 
1448 	blk_mq_run_hw_queues(q, false);
1449 }
1450 
1451 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1452 				bool kick_requeue_list)
1453 {
1454 	struct request_queue *q = rq->q;
1455 	unsigned long flags;
1456 
1457 	/*
1458 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1459 	 * request head insertion from the workqueue.
1460 	 */
1461 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1462 
1463 	spin_lock_irqsave(&q->requeue_lock, flags);
1464 	if (at_head) {
1465 		rq->rq_flags |= RQF_SOFTBARRIER;
1466 		list_add(&rq->queuelist, &q->requeue_list);
1467 	} else {
1468 		list_add_tail(&rq->queuelist, &q->requeue_list);
1469 	}
1470 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1471 
1472 	if (kick_requeue_list)
1473 		blk_mq_kick_requeue_list(q);
1474 }
1475 
1476 void blk_mq_kick_requeue_list(struct request_queue *q)
1477 {
1478 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1479 }
1480 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1481 
1482 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1483 				    unsigned long msecs)
1484 {
1485 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1486 				    msecs_to_jiffies(msecs));
1487 }
1488 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1489 
1490 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1491 {
1492 	/*
1493 	 * If we find a request that isn't idle we know the queue is busy
1494 	 * as it's checked in the iter.
1495 	 * Return false to stop the iteration.
1496 	 */
1497 	if (blk_mq_request_started(rq)) {
1498 		bool *busy = priv;
1499 
1500 		*busy = true;
1501 		return false;
1502 	}
1503 
1504 	return true;
1505 }
1506 
1507 bool blk_mq_queue_inflight(struct request_queue *q)
1508 {
1509 	bool busy = false;
1510 
1511 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1512 	return busy;
1513 }
1514 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1515 
1516 static void blk_mq_rq_timed_out(struct request *req)
1517 {
1518 	req->rq_flags |= RQF_TIMED_OUT;
1519 	if (req->q->mq_ops->timeout) {
1520 		enum blk_eh_timer_return ret;
1521 
1522 		ret = req->q->mq_ops->timeout(req);
1523 		if (ret == BLK_EH_DONE)
1524 			return;
1525 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1526 	}
1527 
1528 	blk_add_timer(req);
1529 }
1530 
1531 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1532 {
1533 	unsigned long deadline;
1534 
1535 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1536 		return false;
1537 	if (rq->rq_flags & RQF_TIMED_OUT)
1538 		return false;
1539 
1540 	deadline = READ_ONCE(rq->deadline);
1541 	if (time_after_eq(jiffies, deadline))
1542 		return true;
1543 
1544 	if (*next == 0)
1545 		*next = deadline;
1546 	else if (time_after(*next, deadline))
1547 		*next = deadline;
1548 	return false;
1549 }
1550 
1551 void blk_mq_put_rq_ref(struct request *rq)
1552 {
1553 	if (is_flush_rq(rq)) {
1554 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1555 			blk_mq_free_request(rq);
1556 	} else if (req_ref_put_and_test(rq)) {
1557 		__blk_mq_free_request(rq);
1558 	}
1559 }
1560 
1561 static bool blk_mq_check_expired(struct request *rq, void *priv)
1562 {
1563 	unsigned long *next = priv;
1564 
1565 	/*
1566 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1567 	 * be reallocated underneath the timeout handler's processing, then
1568 	 * the expire check is reliable. If the request is not expired, then
1569 	 * it was completed and reallocated as a new request after returning
1570 	 * from blk_mq_check_expired().
1571 	 */
1572 	if (blk_mq_req_expired(rq, next))
1573 		blk_mq_rq_timed_out(rq);
1574 	return true;
1575 }
1576 
1577 static void blk_mq_timeout_work(struct work_struct *work)
1578 {
1579 	struct request_queue *q =
1580 		container_of(work, struct request_queue, timeout_work);
1581 	unsigned long next = 0;
1582 	struct blk_mq_hw_ctx *hctx;
1583 	unsigned long i;
1584 
1585 	/* A deadlock might occur if a request is stuck requiring a
1586 	 * timeout at the same time a queue freeze is waiting
1587 	 * completion, since the timeout code would not be able to
1588 	 * acquire the queue reference here.
1589 	 *
1590 	 * That's why we don't use blk_queue_enter here; instead, we use
1591 	 * percpu_ref_tryget directly, because we need to be able to
1592 	 * obtain a reference even in the short window between the queue
1593 	 * starting to freeze, by dropping the first reference in
1594 	 * blk_freeze_queue_start, and the moment the last request is
1595 	 * consumed, marked by the instant q_usage_counter reaches
1596 	 * zero.
1597 	 */
1598 	if (!percpu_ref_tryget(&q->q_usage_counter))
1599 		return;
1600 
1601 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1602 
1603 	if (next != 0) {
1604 		mod_timer(&q->timeout, next);
1605 	} else {
1606 		/*
1607 		 * Request timeouts are handled as a forward rolling timer. If
1608 		 * we end up here it means that no requests are pending and
1609 		 * also that no request has been pending for a while. Mark
1610 		 * each hctx as idle.
1611 		 */
1612 		queue_for_each_hw_ctx(q, hctx, i) {
1613 			/* the hctx may be unmapped, so check it here */
1614 			if (blk_mq_hw_queue_mapped(hctx))
1615 				blk_mq_tag_idle(hctx);
1616 		}
1617 	}
1618 	blk_queue_exit(q);
1619 }
1620 
1621 struct flush_busy_ctx_data {
1622 	struct blk_mq_hw_ctx *hctx;
1623 	struct list_head *list;
1624 };
1625 
1626 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1627 {
1628 	struct flush_busy_ctx_data *flush_data = data;
1629 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1630 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1631 	enum hctx_type type = hctx->type;
1632 
1633 	spin_lock(&ctx->lock);
1634 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1635 	sbitmap_clear_bit(sb, bitnr);
1636 	spin_unlock(&ctx->lock);
1637 	return true;
1638 }
1639 
1640 /*
1641  * Process software queues that have been marked busy, splicing them
1642  * to the for-dispatch
1643  */
1644 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1645 {
1646 	struct flush_busy_ctx_data data = {
1647 		.hctx = hctx,
1648 		.list = list,
1649 	};
1650 
1651 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1652 }
1653 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1654 
1655 struct dispatch_rq_data {
1656 	struct blk_mq_hw_ctx *hctx;
1657 	struct request *rq;
1658 };
1659 
1660 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1661 		void *data)
1662 {
1663 	struct dispatch_rq_data *dispatch_data = data;
1664 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1665 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1666 	enum hctx_type type = hctx->type;
1667 
1668 	spin_lock(&ctx->lock);
1669 	if (!list_empty(&ctx->rq_lists[type])) {
1670 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1671 		list_del_init(&dispatch_data->rq->queuelist);
1672 		if (list_empty(&ctx->rq_lists[type]))
1673 			sbitmap_clear_bit(sb, bitnr);
1674 	}
1675 	spin_unlock(&ctx->lock);
1676 
1677 	return !dispatch_data->rq;
1678 }
1679 
1680 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1681 					struct blk_mq_ctx *start)
1682 {
1683 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1684 	struct dispatch_rq_data data = {
1685 		.hctx = hctx,
1686 		.rq   = NULL,
1687 	};
1688 
1689 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1690 			       dispatch_rq_from_ctx, &data);
1691 
1692 	return data.rq;
1693 }
1694 
1695 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1696 {
1697 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1698 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1699 	int tag;
1700 
1701 	blk_mq_tag_busy(rq->mq_hctx);
1702 
1703 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1704 		bt = &rq->mq_hctx->tags->breserved_tags;
1705 		tag_offset = 0;
1706 	} else {
1707 		if (!hctx_may_queue(rq->mq_hctx, bt))
1708 			return false;
1709 	}
1710 
1711 	tag = __sbitmap_queue_get(bt);
1712 	if (tag == BLK_MQ_NO_TAG)
1713 		return false;
1714 
1715 	rq->tag = tag + tag_offset;
1716 	return true;
1717 }
1718 
1719 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1720 {
1721 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1722 		return false;
1723 
1724 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1725 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1726 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1727 		__blk_mq_inc_active_requests(hctx);
1728 	}
1729 	hctx->tags->rqs[rq->tag] = rq;
1730 	return true;
1731 }
1732 
1733 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1734 				int flags, void *key)
1735 {
1736 	struct blk_mq_hw_ctx *hctx;
1737 
1738 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1739 
1740 	spin_lock(&hctx->dispatch_wait_lock);
1741 	if (!list_empty(&wait->entry)) {
1742 		struct sbitmap_queue *sbq;
1743 
1744 		list_del_init(&wait->entry);
1745 		sbq = &hctx->tags->bitmap_tags;
1746 		atomic_dec(&sbq->ws_active);
1747 	}
1748 	spin_unlock(&hctx->dispatch_wait_lock);
1749 
1750 	blk_mq_run_hw_queue(hctx, true);
1751 	return 1;
1752 }
1753 
1754 /*
1755  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1756  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1757  * restart. For both cases, take care to check the condition again after
1758  * marking us as waiting.
1759  */
1760 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1761 				 struct request *rq)
1762 {
1763 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1764 	struct wait_queue_head *wq;
1765 	wait_queue_entry_t *wait;
1766 	bool ret;
1767 
1768 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1769 		blk_mq_sched_mark_restart_hctx(hctx);
1770 
1771 		/*
1772 		 * It's possible that a tag was freed in the window between the
1773 		 * allocation failure and adding the hardware queue to the wait
1774 		 * queue.
1775 		 *
1776 		 * Don't clear RESTART here, someone else could have set it.
1777 		 * At most this will cost an extra queue run.
1778 		 */
1779 		return blk_mq_get_driver_tag(rq);
1780 	}
1781 
1782 	wait = &hctx->dispatch_wait;
1783 	if (!list_empty_careful(&wait->entry))
1784 		return false;
1785 
1786 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1787 
1788 	spin_lock_irq(&wq->lock);
1789 	spin_lock(&hctx->dispatch_wait_lock);
1790 	if (!list_empty(&wait->entry)) {
1791 		spin_unlock(&hctx->dispatch_wait_lock);
1792 		spin_unlock_irq(&wq->lock);
1793 		return false;
1794 	}
1795 
1796 	atomic_inc(&sbq->ws_active);
1797 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1798 	__add_wait_queue(wq, wait);
1799 
1800 	/*
1801 	 * It's possible that a tag was freed in the window between the
1802 	 * allocation failure and adding the hardware queue to the wait
1803 	 * queue.
1804 	 */
1805 	ret = blk_mq_get_driver_tag(rq);
1806 	if (!ret) {
1807 		spin_unlock(&hctx->dispatch_wait_lock);
1808 		spin_unlock_irq(&wq->lock);
1809 		return false;
1810 	}
1811 
1812 	/*
1813 	 * We got a tag, remove ourselves from the wait queue to ensure
1814 	 * someone else gets the wakeup.
1815 	 */
1816 	list_del_init(&wait->entry);
1817 	atomic_dec(&sbq->ws_active);
1818 	spin_unlock(&hctx->dispatch_wait_lock);
1819 	spin_unlock_irq(&wq->lock);
1820 
1821 	return true;
1822 }
1823 
1824 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1825 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1826 /*
1827  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1828  * - EWMA is one simple way to compute running average value
1829  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1830  * - take 4 as factor for avoiding to get too small(0) result, and this
1831  *   factor doesn't matter because EWMA decreases exponentially
1832  */
1833 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1834 {
1835 	unsigned int ewma;
1836 
1837 	ewma = hctx->dispatch_busy;
1838 
1839 	if (!ewma && !busy)
1840 		return;
1841 
1842 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1843 	if (busy)
1844 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1845 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1846 
1847 	hctx->dispatch_busy = ewma;
1848 }
1849 
1850 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1851 
1852 static void blk_mq_handle_dev_resource(struct request *rq,
1853 				       struct list_head *list)
1854 {
1855 	struct request *next =
1856 		list_first_entry_or_null(list, struct request, queuelist);
1857 
1858 	/*
1859 	 * If an I/O scheduler has been configured and we got a driver tag for
1860 	 * the next request already, free it.
1861 	 */
1862 	if (next)
1863 		blk_mq_put_driver_tag(next);
1864 
1865 	list_add(&rq->queuelist, list);
1866 	__blk_mq_requeue_request(rq);
1867 }
1868 
1869 static void blk_mq_handle_zone_resource(struct request *rq,
1870 					struct list_head *zone_list)
1871 {
1872 	/*
1873 	 * If we end up here it is because we cannot dispatch a request to a
1874 	 * specific zone due to LLD level zone-write locking or other zone
1875 	 * related resource not being available. In this case, set the request
1876 	 * aside in zone_list for retrying it later.
1877 	 */
1878 	list_add(&rq->queuelist, zone_list);
1879 	__blk_mq_requeue_request(rq);
1880 }
1881 
1882 enum prep_dispatch {
1883 	PREP_DISPATCH_OK,
1884 	PREP_DISPATCH_NO_TAG,
1885 	PREP_DISPATCH_NO_BUDGET,
1886 };
1887 
1888 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1889 						  bool need_budget)
1890 {
1891 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1892 	int budget_token = -1;
1893 
1894 	if (need_budget) {
1895 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1896 		if (budget_token < 0) {
1897 			blk_mq_put_driver_tag(rq);
1898 			return PREP_DISPATCH_NO_BUDGET;
1899 		}
1900 		blk_mq_set_rq_budget_token(rq, budget_token);
1901 	}
1902 
1903 	if (!blk_mq_get_driver_tag(rq)) {
1904 		/*
1905 		 * The initial allocation attempt failed, so we need to
1906 		 * rerun the hardware queue when a tag is freed. The
1907 		 * waitqueue takes care of that. If the queue is run
1908 		 * before we add this entry back on the dispatch list,
1909 		 * we'll re-run it below.
1910 		 */
1911 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1912 			/*
1913 			 * All budgets not got from this function will be put
1914 			 * together during handling partial dispatch
1915 			 */
1916 			if (need_budget)
1917 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1918 			return PREP_DISPATCH_NO_TAG;
1919 		}
1920 	}
1921 
1922 	return PREP_DISPATCH_OK;
1923 }
1924 
1925 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1926 static void blk_mq_release_budgets(struct request_queue *q,
1927 		struct list_head *list)
1928 {
1929 	struct request *rq;
1930 
1931 	list_for_each_entry(rq, list, queuelist) {
1932 		int budget_token = blk_mq_get_rq_budget_token(rq);
1933 
1934 		if (budget_token >= 0)
1935 			blk_mq_put_dispatch_budget(q, budget_token);
1936 	}
1937 }
1938 
1939 /*
1940  * Returns true if we did some work AND can potentially do more.
1941  */
1942 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1943 			     unsigned int nr_budgets)
1944 {
1945 	enum prep_dispatch prep;
1946 	struct request_queue *q = hctx->queue;
1947 	struct request *rq, *nxt;
1948 	int errors, queued;
1949 	blk_status_t ret = BLK_STS_OK;
1950 	LIST_HEAD(zone_list);
1951 	bool needs_resource = false;
1952 
1953 	if (list_empty(list))
1954 		return false;
1955 
1956 	/*
1957 	 * Now process all the entries, sending them to the driver.
1958 	 */
1959 	errors = queued = 0;
1960 	do {
1961 		struct blk_mq_queue_data bd;
1962 
1963 		rq = list_first_entry(list, struct request, queuelist);
1964 
1965 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1966 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1967 		if (prep != PREP_DISPATCH_OK)
1968 			break;
1969 
1970 		list_del_init(&rq->queuelist);
1971 
1972 		bd.rq = rq;
1973 
1974 		/*
1975 		 * Flag last if we have no more requests, or if we have more
1976 		 * but can't assign a driver tag to it.
1977 		 */
1978 		if (list_empty(list))
1979 			bd.last = true;
1980 		else {
1981 			nxt = list_first_entry(list, struct request, queuelist);
1982 			bd.last = !blk_mq_get_driver_tag(nxt);
1983 		}
1984 
1985 		/*
1986 		 * once the request is queued to lld, no need to cover the
1987 		 * budget any more
1988 		 */
1989 		if (nr_budgets)
1990 			nr_budgets--;
1991 		ret = q->mq_ops->queue_rq(hctx, &bd);
1992 		switch (ret) {
1993 		case BLK_STS_OK:
1994 			queued++;
1995 			break;
1996 		case BLK_STS_RESOURCE:
1997 			needs_resource = true;
1998 			fallthrough;
1999 		case BLK_STS_DEV_RESOURCE:
2000 			blk_mq_handle_dev_resource(rq, list);
2001 			goto out;
2002 		case BLK_STS_ZONE_RESOURCE:
2003 			/*
2004 			 * Move the request to zone_list and keep going through
2005 			 * the dispatch list to find more requests the drive can
2006 			 * accept.
2007 			 */
2008 			blk_mq_handle_zone_resource(rq, &zone_list);
2009 			needs_resource = true;
2010 			break;
2011 		default:
2012 			errors++;
2013 			blk_mq_end_request(rq, ret);
2014 		}
2015 	} while (!list_empty(list));
2016 out:
2017 	if (!list_empty(&zone_list))
2018 		list_splice_tail_init(&zone_list, list);
2019 
2020 	/* If we didn't flush the entire list, we could have told the driver
2021 	 * there was more coming, but that turned out to be a lie.
2022 	 */
2023 	if ((!list_empty(list) || errors || needs_resource ||
2024 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2025 		q->mq_ops->commit_rqs(hctx);
2026 	/*
2027 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2028 	 * that is where we will continue on next queue run.
2029 	 */
2030 	if (!list_empty(list)) {
2031 		bool needs_restart;
2032 		/* For non-shared tags, the RESTART check will suffice */
2033 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2034 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2035 
2036 		if (nr_budgets)
2037 			blk_mq_release_budgets(q, list);
2038 
2039 		spin_lock(&hctx->lock);
2040 		list_splice_tail_init(list, &hctx->dispatch);
2041 		spin_unlock(&hctx->lock);
2042 
2043 		/*
2044 		 * Order adding requests to hctx->dispatch and checking
2045 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2046 		 * in blk_mq_sched_restart(). Avoid restart code path to
2047 		 * miss the new added requests to hctx->dispatch, meantime
2048 		 * SCHED_RESTART is observed here.
2049 		 */
2050 		smp_mb();
2051 
2052 		/*
2053 		 * If SCHED_RESTART was set by the caller of this function and
2054 		 * it is no longer set that means that it was cleared by another
2055 		 * thread and hence that a queue rerun is needed.
2056 		 *
2057 		 * If 'no_tag' is set, that means that we failed getting
2058 		 * a driver tag with an I/O scheduler attached. If our dispatch
2059 		 * waitqueue is no longer active, ensure that we run the queue
2060 		 * AFTER adding our entries back to the list.
2061 		 *
2062 		 * If no I/O scheduler has been configured it is possible that
2063 		 * the hardware queue got stopped and restarted before requests
2064 		 * were pushed back onto the dispatch list. Rerun the queue to
2065 		 * avoid starvation. Notes:
2066 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2067 		 *   been stopped before rerunning a queue.
2068 		 * - Some but not all block drivers stop a queue before
2069 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2070 		 *   and dm-rq.
2071 		 *
2072 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2073 		 * bit is set, run queue after a delay to avoid IO stalls
2074 		 * that could otherwise occur if the queue is idle.  We'll do
2075 		 * similar if we couldn't get budget or couldn't lock a zone
2076 		 * and SCHED_RESTART is set.
2077 		 */
2078 		needs_restart = blk_mq_sched_needs_restart(hctx);
2079 		if (prep == PREP_DISPATCH_NO_BUDGET)
2080 			needs_resource = true;
2081 		if (!needs_restart ||
2082 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2083 			blk_mq_run_hw_queue(hctx, true);
2084 		else if (needs_resource)
2085 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2086 
2087 		blk_mq_update_dispatch_busy(hctx, true);
2088 		return false;
2089 	} else
2090 		blk_mq_update_dispatch_busy(hctx, false);
2091 
2092 	return (queued + errors) != 0;
2093 }
2094 
2095 /**
2096  * __blk_mq_run_hw_queue - Run a hardware queue.
2097  * @hctx: Pointer to the hardware queue to run.
2098  *
2099  * Send pending requests to the hardware.
2100  */
2101 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2102 {
2103 	/*
2104 	 * We can't run the queue inline with ints disabled. Ensure that
2105 	 * we catch bad users of this early.
2106 	 */
2107 	WARN_ON_ONCE(in_interrupt());
2108 
2109 	blk_mq_run_dispatch_ops(hctx->queue,
2110 			blk_mq_sched_dispatch_requests(hctx));
2111 }
2112 
2113 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2114 {
2115 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2116 
2117 	if (cpu >= nr_cpu_ids)
2118 		cpu = cpumask_first(hctx->cpumask);
2119 	return cpu;
2120 }
2121 
2122 /*
2123  * It'd be great if the workqueue API had a way to pass
2124  * in a mask and had some smarts for more clever placement.
2125  * For now we just round-robin here, switching for every
2126  * BLK_MQ_CPU_WORK_BATCH queued items.
2127  */
2128 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2129 {
2130 	bool tried = false;
2131 	int next_cpu = hctx->next_cpu;
2132 
2133 	if (hctx->queue->nr_hw_queues == 1)
2134 		return WORK_CPU_UNBOUND;
2135 
2136 	if (--hctx->next_cpu_batch <= 0) {
2137 select_cpu:
2138 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2139 				cpu_online_mask);
2140 		if (next_cpu >= nr_cpu_ids)
2141 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2142 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2143 	}
2144 
2145 	/*
2146 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2147 	 * and it should only happen in the path of handling CPU DEAD.
2148 	 */
2149 	if (!cpu_online(next_cpu)) {
2150 		if (!tried) {
2151 			tried = true;
2152 			goto select_cpu;
2153 		}
2154 
2155 		/*
2156 		 * Make sure to re-select CPU next time once after CPUs
2157 		 * in hctx->cpumask become online again.
2158 		 */
2159 		hctx->next_cpu = next_cpu;
2160 		hctx->next_cpu_batch = 1;
2161 		return WORK_CPU_UNBOUND;
2162 	}
2163 
2164 	hctx->next_cpu = next_cpu;
2165 	return next_cpu;
2166 }
2167 
2168 /**
2169  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2170  * @hctx: Pointer to the hardware queue to run.
2171  * @async: If we want to run the queue asynchronously.
2172  * @msecs: Milliseconds of delay to wait before running the queue.
2173  *
2174  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2175  * with a delay of @msecs.
2176  */
2177 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2178 					unsigned long msecs)
2179 {
2180 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2181 		return;
2182 
2183 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2184 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2185 			__blk_mq_run_hw_queue(hctx);
2186 			return;
2187 		}
2188 	}
2189 
2190 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2191 				    msecs_to_jiffies(msecs));
2192 }
2193 
2194 /**
2195  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2196  * @hctx: Pointer to the hardware queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queue.
2198  *
2199  * Run a hardware queue asynchronously with a delay of @msecs.
2200  */
2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2202 {
2203 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2204 }
2205 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2206 
2207 /**
2208  * blk_mq_run_hw_queue - Start to run a hardware queue.
2209  * @hctx: Pointer to the hardware queue to run.
2210  * @async: If we want to run the queue asynchronously.
2211  *
2212  * Check if the request queue is not in a quiesced state and if there are
2213  * pending requests to be sent. If this is true, run the queue to send requests
2214  * to hardware.
2215  */
2216 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2217 {
2218 	bool need_run;
2219 
2220 	/*
2221 	 * When queue is quiesced, we may be switching io scheduler, or
2222 	 * updating nr_hw_queues, or other things, and we can't run queue
2223 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2224 	 *
2225 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2226 	 * quiesced.
2227 	 */
2228 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2229 		need_run = !blk_queue_quiesced(hctx->queue) &&
2230 		blk_mq_hctx_has_pending(hctx));
2231 
2232 	if (need_run)
2233 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2234 }
2235 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2236 
2237 /*
2238  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2239  * scheduler.
2240  */
2241 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2242 {
2243 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2244 	/*
2245 	 * If the IO scheduler does not respect hardware queues when
2246 	 * dispatching, we just don't bother with multiple HW queues and
2247 	 * dispatch from hctx for the current CPU since running multiple queues
2248 	 * just causes lock contention inside the scheduler and pointless cache
2249 	 * bouncing.
2250 	 */
2251 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2252 
2253 	if (!blk_mq_hctx_stopped(hctx))
2254 		return hctx;
2255 	return NULL;
2256 }
2257 
2258 /**
2259  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2260  * @q: Pointer to the request queue to run.
2261  * @async: If we want to run the queue asynchronously.
2262  */
2263 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2264 {
2265 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2266 	unsigned long i;
2267 
2268 	sq_hctx = NULL;
2269 	if (blk_queue_sq_sched(q))
2270 		sq_hctx = blk_mq_get_sq_hctx(q);
2271 	queue_for_each_hw_ctx(q, hctx, i) {
2272 		if (blk_mq_hctx_stopped(hctx))
2273 			continue;
2274 		/*
2275 		 * Dispatch from this hctx either if there's no hctx preferred
2276 		 * by IO scheduler or if it has requests that bypass the
2277 		 * scheduler.
2278 		 */
2279 		if (!sq_hctx || sq_hctx == hctx ||
2280 		    !list_empty_careful(&hctx->dispatch))
2281 			blk_mq_run_hw_queue(hctx, async);
2282 	}
2283 }
2284 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2285 
2286 /**
2287  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2288  * @q: Pointer to the request queue to run.
2289  * @msecs: Milliseconds of delay to wait before running the queues.
2290  */
2291 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2292 {
2293 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2294 	unsigned long i;
2295 
2296 	sq_hctx = NULL;
2297 	if (blk_queue_sq_sched(q))
2298 		sq_hctx = blk_mq_get_sq_hctx(q);
2299 	queue_for_each_hw_ctx(q, hctx, i) {
2300 		if (blk_mq_hctx_stopped(hctx))
2301 			continue;
2302 		/*
2303 		 * If there is already a run_work pending, leave the
2304 		 * pending delay untouched. Otherwise, a hctx can stall
2305 		 * if another hctx is re-delaying the other's work
2306 		 * before the work executes.
2307 		 */
2308 		if (delayed_work_pending(&hctx->run_work))
2309 			continue;
2310 		/*
2311 		 * Dispatch from this hctx either if there's no hctx preferred
2312 		 * by IO scheduler or if it has requests that bypass the
2313 		 * scheduler.
2314 		 */
2315 		if (!sq_hctx || sq_hctx == hctx ||
2316 		    !list_empty_careful(&hctx->dispatch))
2317 			blk_mq_delay_run_hw_queue(hctx, msecs);
2318 	}
2319 }
2320 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2321 
2322 /*
2323  * This function is often used for pausing .queue_rq() by driver when
2324  * there isn't enough resource or some conditions aren't satisfied, and
2325  * BLK_STS_RESOURCE is usually returned.
2326  *
2327  * We do not guarantee that dispatch can be drained or blocked
2328  * after blk_mq_stop_hw_queue() returns. Please use
2329  * blk_mq_quiesce_queue() for that requirement.
2330  */
2331 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2332 {
2333 	cancel_delayed_work(&hctx->run_work);
2334 
2335 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2336 }
2337 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2338 
2339 /*
2340  * This function is often used for pausing .queue_rq() by driver when
2341  * there isn't enough resource or some conditions aren't satisfied, and
2342  * BLK_STS_RESOURCE is usually returned.
2343  *
2344  * We do not guarantee that dispatch can be drained or blocked
2345  * after blk_mq_stop_hw_queues() returns. Please use
2346  * blk_mq_quiesce_queue() for that requirement.
2347  */
2348 void blk_mq_stop_hw_queues(struct request_queue *q)
2349 {
2350 	struct blk_mq_hw_ctx *hctx;
2351 	unsigned long i;
2352 
2353 	queue_for_each_hw_ctx(q, hctx, i)
2354 		blk_mq_stop_hw_queue(hctx);
2355 }
2356 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2357 
2358 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2359 {
2360 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2361 
2362 	blk_mq_run_hw_queue(hctx, false);
2363 }
2364 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2365 
2366 void blk_mq_start_hw_queues(struct request_queue *q)
2367 {
2368 	struct blk_mq_hw_ctx *hctx;
2369 	unsigned long i;
2370 
2371 	queue_for_each_hw_ctx(q, hctx, i)
2372 		blk_mq_start_hw_queue(hctx);
2373 }
2374 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2375 
2376 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2377 {
2378 	if (!blk_mq_hctx_stopped(hctx))
2379 		return;
2380 
2381 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2382 	blk_mq_run_hw_queue(hctx, async);
2383 }
2384 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2385 
2386 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2387 {
2388 	struct blk_mq_hw_ctx *hctx;
2389 	unsigned long i;
2390 
2391 	queue_for_each_hw_ctx(q, hctx, i)
2392 		blk_mq_start_stopped_hw_queue(hctx, async);
2393 }
2394 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2395 
2396 static void blk_mq_run_work_fn(struct work_struct *work)
2397 {
2398 	struct blk_mq_hw_ctx *hctx;
2399 
2400 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2401 
2402 	/*
2403 	 * If we are stopped, don't run the queue.
2404 	 */
2405 	if (blk_mq_hctx_stopped(hctx))
2406 		return;
2407 
2408 	__blk_mq_run_hw_queue(hctx);
2409 }
2410 
2411 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2412 					    struct request *rq,
2413 					    bool at_head)
2414 {
2415 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2416 	enum hctx_type type = hctx->type;
2417 
2418 	lockdep_assert_held(&ctx->lock);
2419 
2420 	trace_block_rq_insert(rq);
2421 
2422 	if (at_head)
2423 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2424 	else
2425 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2426 }
2427 
2428 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2429 			     bool at_head)
2430 {
2431 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2432 
2433 	lockdep_assert_held(&ctx->lock);
2434 
2435 	__blk_mq_insert_req_list(hctx, rq, at_head);
2436 	blk_mq_hctx_mark_pending(hctx, ctx);
2437 }
2438 
2439 /**
2440  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2441  * @rq: Pointer to request to be inserted.
2442  * @at_head: true if the request should be inserted at the head of the list.
2443  * @run_queue: If we should run the hardware queue after inserting the request.
2444  *
2445  * Should only be used carefully, when the caller knows we want to
2446  * bypass a potential IO scheduler on the target device.
2447  */
2448 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2449 				  bool run_queue)
2450 {
2451 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2452 
2453 	spin_lock(&hctx->lock);
2454 	if (at_head)
2455 		list_add(&rq->queuelist, &hctx->dispatch);
2456 	else
2457 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2458 	spin_unlock(&hctx->lock);
2459 
2460 	if (run_queue)
2461 		blk_mq_run_hw_queue(hctx, false);
2462 }
2463 
2464 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2465 			    struct list_head *list)
2466 
2467 {
2468 	struct request *rq;
2469 	enum hctx_type type = hctx->type;
2470 
2471 	/*
2472 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2473 	 * offline now
2474 	 */
2475 	list_for_each_entry(rq, list, queuelist) {
2476 		BUG_ON(rq->mq_ctx != ctx);
2477 		trace_block_rq_insert(rq);
2478 	}
2479 
2480 	spin_lock(&ctx->lock);
2481 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2482 	blk_mq_hctx_mark_pending(hctx, ctx);
2483 	spin_unlock(&ctx->lock);
2484 }
2485 
2486 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2487 			      bool from_schedule)
2488 {
2489 	if (hctx->queue->mq_ops->commit_rqs) {
2490 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2491 		hctx->queue->mq_ops->commit_rqs(hctx);
2492 	}
2493 	*queued = 0;
2494 }
2495 
2496 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2497 		unsigned int nr_segs)
2498 {
2499 	int err;
2500 
2501 	if (bio->bi_opf & REQ_RAHEAD)
2502 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2503 
2504 	rq->__sector = bio->bi_iter.bi_sector;
2505 	blk_rq_bio_prep(rq, bio, nr_segs);
2506 
2507 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2508 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2509 	WARN_ON_ONCE(err);
2510 
2511 	blk_account_io_start(rq);
2512 }
2513 
2514 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2515 					    struct request *rq, bool last)
2516 {
2517 	struct request_queue *q = rq->q;
2518 	struct blk_mq_queue_data bd = {
2519 		.rq = rq,
2520 		.last = last,
2521 	};
2522 	blk_status_t ret;
2523 
2524 	/*
2525 	 * For OK queue, we are done. For error, caller may kill it.
2526 	 * Any other error (busy), just add it to our list as we
2527 	 * previously would have done.
2528 	 */
2529 	ret = q->mq_ops->queue_rq(hctx, &bd);
2530 	switch (ret) {
2531 	case BLK_STS_OK:
2532 		blk_mq_update_dispatch_busy(hctx, false);
2533 		break;
2534 	case BLK_STS_RESOURCE:
2535 	case BLK_STS_DEV_RESOURCE:
2536 		blk_mq_update_dispatch_busy(hctx, true);
2537 		__blk_mq_requeue_request(rq);
2538 		break;
2539 	default:
2540 		blk_mq_update_dispatch_busy(hctx, false);
2541 		break;
2542 	}
2543 
2544 	return ret;
2545 }
2546 
2547 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2548 						struct request *rq,
2549 						bool bypass_insert, bool last)
2550 {
2551 	struct request_queue *q = rq->q;
2552 	bool run_queue = true;
2553 	int budget_token;
2554 
2555 	/*
2556 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2557 	 *
2558 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2559 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2560 	 * and avoid driver to try to dispatch again.
2561 	 */
2562 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2563 		run_queue = false;
2564 		bypass_insert = false;
2565 		goto insert;
2566 	}
2567 
2568 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2569 		goto insert;
2570 
2571 	budget_token = blk_mq_get_dispatch_budget(q);
2572 	if (budget_token < 0)
2573 		goto insert;
2574 
2575 	blk_mq_set_rq_budget_token(rq, budget_token);
2576 
2577 	if (!blk_mq_get_driver_tag(rq)) {
2578 		blk_mq_put_dispatch_budget(q, budget_token);
2579 		goto insert;
2580 	}
2581 
2582 	return __blk_mq_issue_directly(hctx, rq, last);
2583 insert:
2584 	if (bypass_insert)
2585 		return BLK_STS_RESOURCE;
2586 
2587 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2588 
2589 	return BLK_STS_OK;
2590 }
2591 
2592 /**
2593  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2594  * @hctx: Pointer of the associated hardware queue.
2595  * @rq: Pointer to request to be sent.
2596  *
2597  * If the device has enough resources to accept a new request now, send the
2598  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2599  * we can try send it another time in the future. Requests inserted at this
2600  * queue have higher priority.
2601  */
2602 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2603 		struct request *rq)
2604 {
2605 	blk_status_t ret =
2606 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2607 
2608 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2609 		blk_mq_request_bypass_insert(rq, false, true);
2610 	else if (ret != BLK_STS_OK)
2611 		blk_mq_end_request(rq, ret);
2612 }
2613 
2614 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2615 {
2616 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2617 }
2618 
2619 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2620 {
2621 	struct blk_mq_hw_ctx *hctx = NULL;
2622 	struct request *rq;
2623 	int queued = 0;
2624 	int errors = 0;
2625 
2626 	while ((rq = rq_list_pop(&plug->mq_list))) {
2627 		bool last = rq_list_empty(plug->mq_list);
2628 		blk_status_t ret;
2629 
2630 		if (hctx != rq->mq_hctx) {
2631 			if (hctx)
2632 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2633 			hctx = rq->mq_hctx;
2634 		}
2635 
2636 		ret = blk_mq_request_issue_directly(rq, last);
2637 		switch (ret) {
2638 		case BLK_STS_OK:
2639 			queued++;
2640 			break;
2641 		case BLK_STS_RESOURCE:
2642 		case BLK_STS_DEV_RESOURCE:
2643 			blk_mq_request_bypass_insert(rq, false, true);
2644 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2645 			return;
2646 		default:
2647 			blk_mq_end_request(rq, ret);
2648 			errors++;
2649 			break;
2650 		}
2651 	}
2652 
2653 	/*
2654 	 * If we didn't flush the entire list, we could have told the driver
2655 	 * there was more coming, but that turned out to be a lie.
2656 	 */
2657 	if (errors)
2658 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2659 }
2660 
2661 static void __blk_mq_flush_plug_list(struct request_queue *q,
2662 				     struct blk_plug *plug)
2663 {
2664 	if (blk_queue_quiesced(q))
2665 		return;
2666 	q->mq_ops->queue_rqs(&plug->mq_list);
2667 }
2668 
2669 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2670 {
2671 	struct blk_mq_hw_ctx *this_hctx = NULL;
2672 	struct blk_mq_ctx *this_ctx = NULL;
2673 	struct request *requeue_list = NULL;
2674 	unsigned int depth = 0;
2675 	LIST_HEAD(list);
2676 
2677 	do {
2678 		struct request *rq = rq_list_pop(&plug->mq_list);
2679 
2680 		if (!this_hctx) {
2681 			this_hctx = rq->mq_hctx;
2682 			this_ctx = rq->mq_ctx;
2683 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2684 			rq_list_add(&requeue_list, rq);
2685 			continue;
2686 		}
2687 		list_add_tail(&rq->queuelist, &list);
2688 		depth++;
2689 	} while (!rq_list_empty(plug->mq_list));
2690 
2691 	plug->mq_list = requeue_list;
2692 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2693 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2694 }
2695 
2696 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2697 {
2698 	struct request *rq;
2699 
2700 	if (rq_list_empty(plug->mq_list))
2701 		return;
2702 	plug->rq_count = 0;
2703 
2704 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2705 		struct request_queue *q;
2706 
2707 		rq = rq_list_peek(&plug->mq_list);
2708 		q = rq->q;
2709 
2710 		/*
2711 		 * Peek first request and see if we have a ->queue_rqs() hook.
2712 		 * If we do, we can dispatch the whole plug list in one go. We
2713 		 * already know at this point that all requests belong to the
2714 		 * same queue, caller must ensure that's the case.
2715 		 *
2716 		 * Since we pass off the full list to the driver at this point,
2717 		 * we do not increment the active request count for the queue.
2718 		 * Bypass shared tags for now because of that.
2719 		 */
2720 		if (q->mq_ops->queue_rqs &&
2721 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2722 			blk_mq_run_dispatch_ops(q,
2723 				__blk_mq_flush_plug_list(q, plug));
2724 			if (rq_list_empty(plug->mq_list))
2725 				return;
2726 		}
2727 
2728 		blk_mq_run_dispatch_ops(q,
2729 				blk_mq_plug_issue_direct(plug, false));
2730 		if (rq_list_empty(plug->mq_list))
2731 			return;
2732 	}
2733 
2734 	do {
2735 		blk_mq_dispatch_plug_list(plug, from_schedule);
2736 	} while (!rq_list_empty(plug->mq_list));
2737 }
2738 
2739 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2740 		struct list_head *list)
2741 {
2742 	int queued = 0;
2743 	int errors = 0;
2744 
2745 	while (!list_empty(list)) {
2746 		blk_status_t ret;
2747 		struct request *rq = list_first_entry(list, struct request,
2748 				queuelist);
2749 
2750 		list_del_init(&rq->queuelist);
2751 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2752 		if (ret != BLK_STS_OK) {
2753 			errors++;
2754 			if (ret == BLK_STS_RESOURCE ||
2755 					ret == BLK_STS_DEV_RESOURCE) {
2756 				blk_mq_request_bypass_insert(rq, false,
2757 							list_empty(list));
2758 				break;
2759 			}
2760 			blk_mq_end_request(rq, ret);
2761 		} else
2762 			queued++;
2763 	}
2764 
2765 	/*
2766 	 * If we didn't flush the entire list, we could have told
2767 	 * the driver there was more coming, but that turned out to
2768 	 * be a lie.
2769 	 */
2770 	if ((!list_empty(list) || errors) &&
2771 	     hctx->queue->mq_ops->commit_rqs && queued)
2772 		hctx->queue->mq_ops->commit_rqs(hctx);
2773 }
2774 
2775 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2776 				     struct bio *bio, unsigned int nr_segs)
2777 {
2778 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2779 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2780 			return true;
2781 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2782 			return true;
2783 	}
2784 	return false;
2785 }
2786 
2787 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2788 					       struct blk_plug *plug,
2789 					       struct bio *bio,
2790 					       unsigned int nsegs)
2791 {
2792 	struct blk_mq_alloc_data data = {
2793 		.q		= q,
2794 		.nr_tags	= 1,
2795 		.cmd_flags	= bio->bi_opf,
2796 	};
2797 	struct request *rq;
2798 
2799 	if (unlikely(bio_queue_enter(bio)))
2800 		return NULL;
2801 
2802 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2803 		goto queue_exit;
2804 
2805 	rq_qos_throttle(q, bio);
2806 
2807 	if (plug) {
2808 		data.nr_tags = plug->nr_ios;
2809 		plug->nr_ios = 1;
2810 		data.cached_rq = &plug->cached_rq;
2811 	}
2812 
2813 	rq = __blk_mq_alloc_requests(&data);
2814 	if (rq)
2815 		return rq;
2816 	rq_qos_cleanup(q, bio);
2817 	if (bio->bi_opf & REQ_NOWAIT)
2818 		bio_wouldblock_error(bio);
2819 queue_exit:
2820 	blk_queue_exit(q);
2821 	return NULL;
2822 }
2823 
2824 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2825 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2826 {
2827 	struct request *rq;
2828 
2829 	if (!plug)
2830 		return NULL;
2831 	rq = rq_list_peek(&plug->cached_rq);
2832 	if (!rq || rq->q != q)
2833 		return NULL;
2834 
2835 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2836 		*bio = NULL;
2837 		return NULL;
2838 	}
2839 
2840 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2841 		return NULL;
2842 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2843 		return NULL;
2844 
2845 	/*
2846 	 * If any qos ->throttle() end up blocking, we will have flushed the
2847 	 * plug and hence killed the cached_rq list as well. Pop this entry
2848 	 * before we throttle.
2849 	 */
2850 	plug->cached_rq = rq_list_next(rq);
2851 	rq_qos_throttle(q, *bio);
2852 
2853 	rq->cmd_flags = (*bio)->bi_opf;
2854 	INIT_LIST_HEAD(&rq->queuelist);
2855 	return rq;
2856 }
2857 
2858 static void bio_set_ioprio(struct bio *bio)
2859 {
2860 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2861 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2862 		bio->bi_ioprio = get_current_ioprio();
2863 	blkcg_set_ioprio(bio);
2864 }
2865 
2866 /**
2867  * blk_mq_submit_bio - Create and send a request to block device.
2868  * @bio: Bio pointer.
2869  *
2870  * Builds up a request structure from @q and @bio and send to the device. The
2871  * request may not be queued directly to hardware if:
2872  * * This request can be merged with another one
2873  * * We want to place request at plug queue for possible future merging
2874  * * There is an IO scheduler active at this queue
2875  *
2876  * It will not queue the request if there is an error with the bio, or at the
2877  * request creation.
2878  */
2879 void blk_mq_submit_bio(struct bio *bio)
2880 {
2881 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2882 	struct blk_plug *plug = blk_mq_plug(bio);
2883 	const int is_sync = op_is_sync(bio->bi_opf);
2884 	struct request *rq;
2885 	unsigned int nr_segs = 1;
2886 	blk_status_t ret;
2887 
2888 	bio = blk_queue_bounce(bio, q);
2889 	if (bio_may_exceed_limits(bio, &q->limits))
2890 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2891 
2892 	if (!bio_integrity_prep(bio))
2893 		return;
2894 
2895 	bio_set_ioprio(bio);
2896 
2897 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2898 	if (!rq) {
2899 		if (!bio)
2900 			return;
2901 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2902 		if (unlikely(!rq))
2903 			return;
2904 	}
2905 
2906 	trace_block_getrq(bio);
2907 
2908 	rq_qos_track(q, rq, bio);
2909 
2910 	blk_mq_bio_to_request(rq, bio, nr_segs);
2911 
2912 	ret = blk_crypto_init_request(rq);
2913 	if (ret != BLK_STS_OK) {
2914 		bio->bi_status = ret;
2915 		bio_endio(bio);
2916 		blk_mq_free_request(rq);
2917 		return;
2918 	}
2919 
2920 	if (op_is_flush(bio->bi_opf)) {
2921 		blk_insert_flush(rq);
2922 		return;
2923 	}
2924 
2925 	if (plug)
2926 		blk_add_rq_to_plug(plug, rq);
2927 	else if ((rq->rq_flags & RQF_ELV) ||
2928 		 (rq->mq_hctx->dispatch_busy &&
2929 		  (q->nr_hw_queues == 1 || !is_sync)))
2930 		blk_mq_sched_insert_request(rq, false, true, true);
2931 	else
2932 		blk_mq_run_dispatch_ops(rq->q,
2933 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2934 }
2935 
2936 #ifdef CONFIG_BLK_MQ_STACKING
2937 /**
2938  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2939  * @rq: the request being queued
2940  */
2941 blk_status_t blk_insert_cloned_request(struct request *rq)
2942 {
2943 	struct request_queue *q = rq->q;
2944 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2945 	blk_status_t ret;
2946 
2947 	if (blk_rq_sectors(rq) > max_sectors) {
2948 		/*
2949 		 * SCSI device does not have a good way to return if
2950 		 * Write Same/Zero is actually supported. If a device rejects
2951 		 * a non-read/write command (discard, write same,etc.) the
2952 		 * low-level device driver will set the relevant queue limit to
2953 		 * 0 to prevent blk-lib from issuing more of the offending
2954 		 * operations. Commands queued prior to the queue limit being
2955 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2956 		 * errors being propagated to upper layers.
2957 		 */
2958 		if (max_sectors == 0)
2959 			return BLK_STS_NOTSUPP;
2960 
2961 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2962 			__func__, blk_rq_sectors(rq), max_sectors);
2963 		return BLK_STS_IOERR;
2964 	}
2965 
2966 	/*
2967 	 * The queue settings related to segment counting may differ from the
2968 	 * original queue.
2969 	 */
2970 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2971 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2972 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2973 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2974 		return BLK_STS_IOERR;
2975 	}
2976 
2977 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2978 		return BLK_STS_IOERR;
2979 
2980 	if (blk_crypto_insert_cloned_request(rq))
2981 		return BLK_STS_IOERR;
2982 
2983 	blk_account_io_start(rq);
2984 
2985 	/*
2986 	 * Since we have a scheduler attached on the top device,
2987 	 * bypass a potential scheduler on the bottom device for
2988 	 * insert.
2989 	 */
2990 	blk_mq_run_dispatch_ops(q,
2991 			ret = blk_mq_request_issue_directly(rq, true));
2992 	if (ret)
2993 		blk_account_io_done(rq, ktime_get_ns());
2994 	return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2997 
2998 /**
2999  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3000  * @rq: the clone request to be cleaned up
3001  *
3002  * Description:
3003  *     Free all bios in @rq for a cloned request.
3004  */
3005 void blk_rq_unprep_clone(struct request *rq)
3006 {
3007 	struct bio *bio;
3008 
3009 	while ((bio = rq->bio) != NULL) {
3010 		rq->bio = bio->bi_next;
3011 
3012 		bio_put(bio);
3013 	}
3014 }
3015 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3016 
3017 /**
3018  * blk_rq_prep_clone - Helper function to setup clone request
3019  * @rq: the request to be setup
3020  * @rq_src: original request to be cloned
3021  * @bs: bio_set that bios for clone are allocated from
3022  * @gfp_mask: memory allocation mask for bio
3023  * @bio_ctr: setup function to be called for each clone bio.
3024  *           Returns %0 for success, non %0 for failure.
3025  * @data: private data to be passed to @bio_ctr
3026  *
3027  * Description:
3028  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3029  *     Also, pages which the original bios are pointing to are not copied
3030  *     and the cloned bios just point same pages.
3031  *     So cloned bios must be completed before original bios, which means
3032  *     the caller must complete @rq before @rq_src.
3033  */
3034 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3035 		      struct bio_set *bs, gfp_t gfp_mask,
3036 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3037 		      void *data)
3038 {
3039 	struct bio *bio, *bio_src;
3040 
3041 	if (!bs)
3042 		bs = &fs_bio_set;
3043 
3044 	__rq_for_each_bio(bio_src, rq_src) {
3045 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3046 				      bs);
3047 		if (!bio)
3048 			goto free_and_out;
3049 
3050 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3051 			goto free_and_out;
3052 
3053 		if (rq->bio) {
3054 			rq->biotail->bi_next = bio;
3055 			rq->biotail = bio;
3056 		} else {
3057 			rq->bio = rq->biotail = bio;
3058 		}
3059 		bio = NULL;
3060 	}
3061 
3062 	/* Copy attributes of the original request to the clone request. */
3063 	rq->__sector = blk_rq_pos(rq_src);
3064 	rq->__data_len = blk_rq_bytes(rq_src);
3065 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3066 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3067 		rq->special_vec = rq_src->special_vec;
3068 	}
3069 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3070 	rq->ioprio = rq_src->ioprio;
3071 
3072 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3073 		goto free_and_out;
3074 
3075 	return 0;
3076 
3077 free_and_out:
3078 	if (bio)
3079 		bio_put(bio);
3080 	blk_rq_unprep_clone(rq);
3081 
3082 	return -ENOMEM;
3083 }
3084 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3085 #endif /* CONFIG_BLK_MQ_STACKING */
3086 
3087 /*
3088  * Steal bios from a request and add them to a bio list.
3089  * The request must not have been partially completed before.
3090  */
3091 void blk_steal_bios(struct bio_list *list, struct request *rq)
3092 {
3093 	if (rq->bio) {
3094 		if (list->tail)
3095 			list->tail->bi_next = rq->bio;
3096 		else
3097 			list->head = rq->bio;
3098 		list->tail = rq->biotail;
3099 
3100 		rq->bio = NULL;
3101 		rq->biotail = NULL;
3102 	}
3103 
3104 	rq->__data_len = 0;
3105 }
3106 EXPORT_SYMBOL_GPL(blk_steal_bios);
3107 
3108 static size_t order_to_size(unsigned int order)
3109 {
3110 	return (size_t)PAGE_SIZE << order;
3111 }
3112 
3113 /* called before freeing request pool in @tags */
3114 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3115 				    struct blk_mq_tags *tags)
3116 {
3117 	struct page *page;
3118 	unsigned long flags;
3119 
3120 	/*
3121 	 * There is no need to clear mapping if driver tags is not initialized
3122 	 * or the mapping belongs to the driver tags.
3123 	 */
3124 	if (!drv_tags || drv_tags == tags)
3125 		return;
3126 
3127 	list_for_each_entry(page, &tags->page_list, lru) {
3128 		unsigned long start = (unsigned long)page_address(page);
3129 		unsigned long end = start + order_to_size(page->private);
3130 		int i;
3131 
3132 		for (i = 0; i < drv_tags->nr_tags; i++) {
3133 			struct request *rq = drv_tags->rqs[i];
3134 			unsigned long rq_addr = (unsigned long)rq;
3135 
3136 			if (rq_addr >= start && rq_addr < end) {
3137 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3138 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3139 			}
3140 		}
3141 	}
3142 
3143 	/*
3144 	 * Wait until all pending iteration is done.
3145 	 *
3146 	 * Request reference is cleared and it is guaranteed to be observed
3147 	 * after the ->lock is released.
3148 	 */
3149 	spin_lock_irqsave(&drv_tags->lock, flags);
3150 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3151 }
3152 
3153 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3154 		     unsigned int hctx_idx)
3155 {
3156 	struct blk_mq_tags *drv_tags;
3157 	struct page *page;
3158 
3159 	if (list_empty(&tags->page_list))
3160 		return;
3161 
3162 	if (blk_mq_is_shared_tags(set->flags))
3163 		drv_tags = set->shared_tags;
3164 	else
3165 		drv_tags = set->tags[hctx_idx];
3166 
3167 	if (tags->static_rqs && set->ops->exit_request) {
3168 		int i;
3169 
3170 		for (i = 0; i < tags->nr_tags; i++) {
3171 			struct request *rq = tags->static_rqs[i];
3172 
3173 			if (!rq)
3174 				continue;
3175 			set->ops->exit_request(set, rq, hctx_idx);
3176 			tags->static_rqs[i] = NULL;
3177 		}
3178 	}
3179 
3180 	blk_mq_clear_rq_mapping(drv_tags, tags);
3181 
3182 	while (!list_empty(&tags->page_list)) {
3183 		page = list_first_entry(&tags->page_list, struct page, lru);
3184 		list_del_init(&page->lru);
3185 		/*
3186 		 * Remove kmemleak object previously allocated in
3187 		 * blk_mq_alloc_rqs().
3188 		 */
3189 		kmemleak_free(page_address(page));
3190 		__free_pages(page, page->private);
3191 	}
3192 }
3193 
3194 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3195 {
3196 	kfree(tags->rqs);
3197 	tags->rqs = NULL;
3198 	kfree(tags->static_rqs);
3199 	tags->static_rqs = NULL;
3200 
3201 	blk_mq_free_tags(tags);
3202 }
3203 
3204 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3205 		unsigned int hctx_idx)
3206 {
3207 	int i;
3208 
3209 	for (i = 0; i < set->nr_maps; i++) {
3210 		unsigned int start = set->map[i].queue_offset;
3211 		unsigned int end = start + set->map[i].nr_queues;
3212 
3213 		if (hctx_idx >= start && hctx_idx < end)
3214 			break;
3215 	}
3216 
3217 	if (i >= set->nr_maps)
3218 		i = HCTX_TYPE_DEFAULT;
3219 
3220 	return i;
3221 }
3222 
3223 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3224 		unsigned int hctx_idx)
3225 {
3226 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3227 
3228 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3229 }
3230 
3231 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3232 					       unsigned int hctx_idx,
3233 					       unsigned int nr_tags,
3234 					       unsigned int reserved_tags)
3235 {
3236 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3237 	struct blk_mq_tags *tags;
3238 
3239 	if (node == NUMA_NO_NODE)
3240 		node = set->numa_node;
3241 
3242 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3243 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3244 	if (!tags)
3245 		return NULL;
3246 
3247 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3248 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3249 				 node);
3250 	if (!tags->rqs) {
3251 		blk_mq_free_tags(tags);
3252 		return NULL;
3253 	}
3254 
3255 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3256 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3257 					node);
3258 	if (!tags->static_rqs) {
3259 		kfree(tags->rqs);
3260 		blk_mq_free_tags(tags);
3261 		return NULL;
3262 	}
3263 
3264 	return tags;
3265 }
3266 
3267 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3268 			       unsigned int hctx_idx, int node)
3269 {
3270 	int ret;
3271 
3272 	if (set->ops->init_request) {
3273 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3274 		if (ret)
3275 			return ret;
3276 	}
3277 
3278 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3279 	return 0;
3280 }
3281 
3282 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3283 			    struct blk_mq_tags *tags,
3284 			    unsigned int hctx_idx, unsigned int depth)
3285 {
3286 	unsigned int i, j, entries_per_page, max_order = 4;
3287 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3288 	size_t rq_size, left;
3289 
3290 	if (node == NUMA_NO_NODE)
3291 		node = set->numa_node;
3292 
3293 	INIT_LIST_HEAD(&tags->page_list);
3294 
3295 	/*
3296 	 * rq_size is the size of the request plus driver payload, rounded
3297 	 * to the cacheline size
3298 	 */
3299 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3300 				cache_line_size());
3301 	left = rq_size * depth;
3302 
3303 	for (i = 0; i < depth; ) {
3304 		int this_order = max_order;
3305 		struct page *page;
3306 		int to_do;
3307 		void *p;
3308 
3309 		while (this_order && left < order_to_size(this_order - 1))
3310 			this_order--;
3311 
3312 		do {
3313 			page = alloc_pages_node(node,
3314 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3315 				this_order);
3316 			if (page)
3317 				break;
3318 			if (!this_order--)
3319 				break;
3320 			if (order_to_size(this_order) < rq_size)
3321 				break;
3322 		} while (1);
3323 
3324 		if (!page)
3325 			goto fail;
3326 
3327 		page->private = this_order;
3328 		list_add_tail(&page->lru, &tags->page_list);
3329 
3330 		p = page_address(page);
3331 		/*
3332 		 * Allow kmemleak to scan these pages as they contain pointers
3333 		 * to additional allocations like via ops->init_request().
3334 		 */
3335 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3336 		entries_per_page = order_to_size(this_order) / rq_size;
3337 		to_do = min(entries_per_page, depth - i);
3338 		left -= to_do * rq_size;
3339 		for (j = 0; j < to_do; j++) {
3340 			struct request *rq = p;
3341 
3342 			tags->static_rqs[i] = rq;
3343 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3344 				tags->static_rqs[i] = NULL;
3345 				goto fail;
3346 			}
3347 
3348 			p += rq_size;
3349 			i++;
3350 		}
3351 	}
3352 	return 0;
3353 
3354 fail:
3355 	blk_mq_free_rqs(set, tags, hctx_idx);
3356 	return -ENOMEM;
3357 }
3358 
3359 struct rq_iter_data {
3360 	struct blk_mq_hw_ctx *hctx;
3361 	bool has_rq;
3362 };
3363 
3364 static bool blk_mq_has_request(struct request *rq, void *data)
3365 {
3366 	struct rq_iter_data *iter_data = data;
3367 
3368 	if (rq->mq_hctx != iter_data->hctx)
3369 		return true;
3370 	iter_data->has_rq = true;
3371 	return false;
3372 }
3373 
3374 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3375 {
3376 	struct blk_mq_tags *tags = hctx->sched_tags ?
3377 			hctx->sched_tags : hctx->tags;
3378 	struct rq_iter_data data = {
3379 		.hctx	= hctx,
3380 	};
3381 
3382 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3383 	return data.has_rq;
3384 }
3385 
3386 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3387 		struct blk_mq_hw_ctx *hctx)
3388 {
3389 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3390 		return false;
3391 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3392 		return false;
3393 	return true;
3394 }
3395 
3396 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3397 {
3398 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3399 			struct blk_mq_hw_ctx, cpuhp_online);
3400 
3401 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3402 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3403 		return 0;
3404 
3405 	/*
3406 	 * Prevent new request from being allocated on the current hctx.
3407 	 *
3408 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3409 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3410 	 * seen once we return from the tag allocator.
3411 	 */
3412 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3413 	smp_mb__after_atomic();
3414 
3415 	/*
3416 	 * Try to grab a reference to the queue and wait for any outstanding
3417 	 * requests.  If we could not grab a reference the queue has been
3418 	 * frozen and there are no requests.
3419 	 */
3420 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3421 		while (blk_mq_hctx_has_requests(hctx))
3422 			msleep(5);
3423 		percpu_ref_put(&hctx->queue->q_usage_counter);
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3430 {
3431 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3432 			struct blk_mq_hw_ctx, cpuhp_online);
3433 
3434 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3435 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3436 	return 0;
3437 }
3438 
3439 /*
3440  * 'cpu' is going away. splice any existing rq_list entries from this
3441  * software queue to the hw queue dispatch list, and ensure that it
3442  * gets run.
3443  */
3444 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3445 {
3446 	struct blk_mq_hw_ctx *hctx;
3447 	struct blk_mq_ctx *ctx;
3448 	LIST_HEAD(tmp);
3449 	enum hctx_type type;
3450 
3451 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3452 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3453 		return 0;
3454 
3455 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3456 	type = hctx->type;
3457 
3458 	spin_lock(&ctx->lock);
3459 	if (!list_empty(&ctx->rq_lists[type])) {
3460 		list_splice_init(&ctx->rq_lists[type], &tmp);
3461 		blk_mq_hctx_clear_pending(hctx, ctx);
3462 	}
3463 	spin_unlock(&ctx->lock);
3464 
3465 	if (list_empty(&tmp))
3466 		return 0;
3467 
3468 	spin_lock(&hctx->lock);
3469 	list_splice_tail_init(&tmp, &hctx->dispatch);
3470 	spin_unlock(&hctx->lock);
3471 
3472 	blk_mq_run_hw_queue(hctx, true);
3473 	return 0;
3474 }
3475 
3476 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3477 {
3478 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3479 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3480 						    &hctx->cpuhp_online);
3481 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3482 					    &hctx->cpuhp_dead);
3483 }
3484 
3485 /*
3486  * Before freeing hw queue, clearing the flush request reference in
3487  * tags->rqs[] for avoiding potential UAF.
3488  */
3489 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3490 		unsigned int queue_depth, struct request *flush_rq)
3491 {
3492 	int i;
3493 	unsigned long flags;
3494 
3495 	/* The hw queue may not be mapped yet */
3496 	if (!tags)
3497 		return;
3498 
3499 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3500 
3501 	for (i = 0; i < queue_depth; i++)
3502 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3503 
3504 	/*
3505 	 * Wait until all pending iteration is done.
3506 	 *
3507 	 * Request reference is cleared and it is guaranteed to be observed
3508 	 * after the ->lock is released.
3509 	 */
3510 	spin_lock_irqsave(&tags->lock, flags);
3511 	spin_unlock_irqrestore(&tags->lock, flags);
3512 }
3513 
3514 /* hctx->ctxs will be freed in queue's release handler */
3515 static void blk_mq_exit_hctx(struct request_queue *q,
3516 		struct blk_mq_tag_set *set,
3517 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3518 {
3519 	struct request *flush_rq = hctx->fq->flush_rq;
3520 
3521 	if (blk_mq_hw_queue_mapped(hctx))
3522 		blk_mq_tag_idle(hctx);
3523 
3524 	if (blk_queue_init_done(q))
3525 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3526 				set->queue_depth, flush_rq);
3527 	if (set->ops->exit_request)
3528 		set->ops->exit_request(set, flush_rq, hctx_idx);
3529 
3530 	if (set->ops->exit_hctx)
3531 		set->ops->exit_hctx(hctx, hctx_idx);
3532 
3533 	blk_mq_remove_cpuhp(hctx);
3534 
3535 	xa_erase(&q->hctx_table, hctx_idx);
3536 
3537 	spin_lock(&q->unused_hctx_lock);
3538 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3539 	spin_unlock(&q->unused_hctx_lock);
3540 }
3541 
3542 static void blk_mq_exit_hw_queues(struct request_queue *q,
3543 		struct blk_mq_tag_set *set, int nr_queue)
3544 {
3545 	struct blk_mq_hw_ctx *hctx;
3546 	unsigned long i;
3547 
3548 	queue_for_each_hw_ctx(q, hctx, i) {
3549 		if (i == nr_queue)
3550 			break;
3551 		blk_mq_exit_hctx(q, set, hctx, i);
3552 	}
3553 }
3554 
3555 static int blk_mq_init_hctx(struct request_queue *q,
3556 		struct blk_mq_tag_set *set,
3557 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3558 {
3559 	hctx->queue_num = hctx_idx;
3560 
3561 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3562 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3563 				&hctx->cpuhp_online);
3564 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3565 
3566 	hctx->tags = set->tags[hctx_idx];
3567 
3568 	if (set->ops->init_hctx &&
3569 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3570 		goto unregister_cpu_notifier;
3571 
3572 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3573 				hctx->numa_node))
3574 		goto exit_hctx;
3575 
3576 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3577 		goto exit_flush_rq;
3578 
3579 	return 0;
3580 
3581  exit_flush_rq:
3582 	if (set->ops->exit_request)
3583 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3584  exit_hctx:
3585 	if (set->ops->exit_hctx)
3586 		set->ops->exit_hctx(hctx, hctx_idx);
3587  unregister_cpu_notifier:
3588 	blk_mq_remove_cpuhp(hctx);
3589 	return -1;
3590 }
3591 
3592 static struct blk_mq_hw_ctx *
3593 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3594 		int node)
3595 {
3596 	struct blk_mq_hw_ctx *hctx;
3597 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3598 
3599 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3600 	if (!hctx)
3601 		goto fail_alloc_hctx;
3602 
3603 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3604 		goto free_hctx;
3605 
3606 	atomic_set(&hctx->nr_active, 0);
3607 	if (node == NUMA_NO_NODE)
3608 		node = set->numa_node;
3609 	hctx->numa_node = node;
3610 
3611 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3612 	spin_lock_init(&hctx->lock);
3613 	INIT_LIST_HEAD(&hctx->dispatch);
3614 	hctx->queue = q;
3615 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3616 
3617 	INIT_LIST_HEAD(&hctx->hctx_list);
3618 
3619 	/*
3620 	 * Allocate space for all possible cpus to avoid allocation at
3621 	 * runtime
3622 	 */
3623 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3624 			gfp, node);
3625 	if (!hctx->ctxs)
3626 		goto free_cpumask;
3627 
3628 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3629 				gfp, node, false, false))
3630 		goto free_ctxs;
3631 	hctx->nr_ctx = 0;
3632 
3633 	spin_lock_init(&hctx->dispatch_wait_lock);
3634 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3635 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3636 
3637 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3638 	if (!hctx->fq)
3639 		goto free_bitmap;
3640 
3641 	blk_mq_hctx_kobj_init(hctx);
3642 
3643 	return hctx;
3644 
3645  free_bitmap:
3646 	sbitmap_free(&hctx->ctx_map);
3647  free_ctxs:
3648 	kfree(hctx->ctxs);
3649  free_cpumask:
3650 	free_cpumask_var(hctx->cpumask);
3651  free_hctx:
3652 	kfree(hctx);
3653  fail_alloc_hctx:
3654 	return NULL;
3655 }
3656 
3657 static void blk_mq_init_cpu_queues(struct request_queue *q,
3658 				   unsigned int nr_hw_queues)
3659 {
3660 	struct blk_mq_tag_set *set = q->tag_set;
3661 	unsigned int i, j;
3662 
3663 	for_each_possible_cpu(i) {
3664 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3665 		struct blk_mq_hw_ctx *hctx;
3666 		int k;
3667 
3668 		__ctx->cpu = i;
3669 		spin_lock_init(&__ctx->lock);
3670 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3671 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3672 
3673 		__ctx->queue = q;
3674 
3675 		/*
3676 		 * Set local node, IFF we have more than one hw queue. If
3677 		 * not, we remain on the home node of the device
3678 		 */
3679 		for (j = 0; j < set->nr_maps; j++) {
3680 			hctx = blk_mq_map_queue_type(q, j, i);
3681 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3682 				hctx->numa_node = cpu_to_node(i);
3683 		}
3684 	}
3685 }
3686 
3687 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3688 					     unsigned int hctx_idx,
3689 					     unsigned int depth)
3690 {
3691 	struct blk_mq_tags *tags;
3692 	int ret;
3693 
3694 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3695 	if (!tags)
3696 		return NULL;
3697 
3698 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3699 	if (ret) {
3700 		blk_mq_free_rq_map(tags);
3701 		return NULL;
3702 	}
3703 
3704 	return tags;
3705 }
3706 
3707 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3708 				       int hctx_idx)
3709 {
3710 	if (blk_mq_is_shared_tags(set->flags)) {
3711 		set->tags[hctx_idx] = set->shared_tags;
3712 
3713 		return true;
3714 	}
3715 
3716 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3717 						       set->queue_depth);
3718 
3719 	return set->tags[hctx_idx];
3720 }
3721 
3722 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3723 			     struct blk_mq_tags *tags,
3724 			     unsigned int hctx_idx)
3725 {
3726 	if (tags) {
3727 		blk_mq_free_rqs(set, tags, hctx_idx);
3728 		blk_mq_free_rq_map(tags);
3729 	}
3730 }
3731 
3732 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3733 				      unsigned int hctx_idx)
3734 {
3735 	if (!blk_mq_is_shared_tags(set->flags))
3736 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3737 
3738 	set->tags[hctx_idx] = NULL;
3739 }
3740 
3741 static void blk_mq_map_swqueue(struct request_queue *q)
3742 {
3743 	unsigned int j, hctx_idx;
3744 	unsigned long i;
3745 	struct blk_mq_hw_ctx *hctx;
3746 	struct blk_mq_ctx *ctx;
3747 	struct blk_mq_tag_set *set = q->tag_set;
3748 
3749 	queue_for_each_hw_ctx(q, hctx, i) {
3750 		cpumask_clear(hctx->cpumask);
3751 		hctx->nr_ctx = 0;
3752 		hctx->dispatch_from = NULL;
3753 	}
3754 
3755 	/*
3756 	 * Map software to hardware queues.
3757 	 *
3758 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3759 	 */
3760 	for_each_possible_cpu(i) {
3761 
3762 		ctx = per_cpu_ptr(q->queue_ctx, i);
3763 		for (j = 0; j < set->nr_maps; j++) {
3764 			if (!set->map[j].nr_queues) {
3765 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3766 						HCTX_TYPE_DEFAULT, i);
3767 				continue;
3768 			}
3769 			hctx_idx = set->map[j].mq_map[i];
3770 			/* unmapped hw queue can be remapped after CPU topo changed */
3771 			if (!set->tags[hctx_idx] &&
3772 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3773 				/*
3774 				 * If tags initialization fail for some hctx,
3775 				 * that hctx won't be brought online.  In this
3776 				 * case, remap the current ctx to hctx[0] which
3777 				 * is guaranteed to always have tags allocated
3778 				 */
3779 				set->map[j].mq_map[i] = 0;
3780 			}
3781 
3782 			hctx = blk_mq_map_queue_type(q, j, i);
3783 			ctx->hctxs[j] = hctx;
3784 			/*
3785 			 * If the CPU is already set in the mask, then we've
3786 			 * mapped this one already. This can happen if
3787 			 * devices share queues across queue maps.
3788 			 */
3789 			if (cpumask_test_cpu(i, hctx->cpumask))
3790 				continue;
3791 
3792 			cpumask_set_cpu(i, hctx->cpumask);
3793 			hctx->type = j;
3794 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3795 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3796 
3797 			/*
3798 			 * If the nr_ctx type overflows, we have exceeded the
3799 			 * amount of sw queues we can support.
3800 			 */
3801 			BUG_ON(!hctx->nr_ctx);
3802 		}
3803 
3804 		for (; j < HCTX_MAX_TYPES; j++)
3805 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3806 					HCTX_TYPE_DEFAULT, i);
3807 	}
3808 
3809 	queue_for_each_hw_ctx(q, hctx, i) {
3810 		/*
3811 		 * If no software queues are mapped to this hardware queue,
3812 		 * disable it and free the request entries.
3813 		 */
3814 		if (!hctx->nr_ctx) {
3815 			/* Never unmap queue 0.  We need it as a
3816 			 * fallback in case of a new remap fails
3817 			 * allocation
3818 			 */
3819 			if (i)
3820 				__blk_mq_free_map_and_rqs(set, i);
3821 
3822 			hctx->tags = NULL;
3823 			continue;
3824 		}
3825 
3826 		hctx->tags = set->tags[i];
3827 		WARN_ON(!hctx->tags);
3828 
3829 		/*
3830 		 * Set the map size to the number of mapped software queues.
3831 		 * This is more accurate and more efficient than looping
3832 		 * over all possibly mapped software queues.
3833 		 */
3834 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3835 
3836 		/*
3837 		 * Initialize batch roundrobin counts
3838 		 */
3839 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3840 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3841 	}
3842 }
3843 
3844 /*
3845  * Caller needs to ensure that we're either frozen/quiesced, or that
3846  * the queue isn't live yet.
3847  */
3848 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3849 {
3850 	struct blk_mq_hw_ctx *hctx;
3851 	unsigned long i;
3852 
3853 	queue_for_each_hw_ctx(q, hctx, i) {
3854 		if (shared) {
3855 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3856 		} else {
3857 			blk_mq_tag_idle(hctx);
3858 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3859 		}
3860 	}
3861 }
3862 
3863 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3864 					 bool shared)
3865 {
3866 	struct request_queue *q;
3867 
3868 	lockdep_assert_held(&set->tag_list_lock);
3869 
3870 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3871 		blk_mq_freeze_queue(q);
3872 		queue_set_hctx_shared(q, shared);
3873 		blk_mq_unfreeze_queue(q);
3874 	}
3875 }
3876 
3877 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3878 {
3879 	struct blk_mq_tag_set *set = q->tag_set;
3880 
3881 	mutex_lock(&set->tag_list_lock);
3882 	list_del(&q->tag_set_list);
3883 	if (list_is_singular(&set->tag_list)) {
3884 		/* just transitioned to unshared */
3885 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3886 		/* update existing queue */
3887 		blk_mq_update_tag_set_shared(set, false);
3888 	}
3889 	mutex_unlock(&set->tag_list_lock);
3890 	INIT_LIST_HEAD(&q->tag_set_list);
3891 }
3892 
3893 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3894 				     struct request_queue *q)
3895 {
3896 	mutex_lock(&set->tag_list_lock);
3897 
3898 	/*
3899 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3900 	 */
3901 	if (!list_empty(&set->tag_list) &&
3902 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3903 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3904 		/* update existing queue */
3905 		blk_mq_update_tag_set_shared(set, true);
3906 	}
3907 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3908 		queue_set_hctx_shared(q, true);
3909 	list_add_tail(&q->tag_set_list, &set->tag_list);
3910 
3911 	mutex_unlock(&set->tag_list_lock);
3912 }
3913 
3914 /* All allocations will be freed in release handler of q->mq_kobj */
3915 static int blk_mq_alloc_ctxs(struct request_queue *q)
3916 {
3917 	struct blk_mq_ctxs *ctxs;
3918 	int cpu;
3919 
3920 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3921 	if (!ctxs)
3922 		return -ENOMEM;
3923 
3924 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3925 	if (!ctxs->queue_ctx)
3926 		goto fail;
3927 
3928 	for_each_possible_cpu(cpu) {
3929 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3930 		ctx->ctxs = ctxs;
3931 	}
3932 
3933 	q->mq_kobj = &ctxs->kobj;
3934 	q->queue_ctx = ctxs->queue_ctx;
3935 
3936 	return 0;
3937  fail:
3938 	kfree(ctxs);
3939 	return -ENOMEM;
3940 }
3941 
3942 /*
3943  * It is the actual release handler for mq, but we do it from
3944  * request queue's release handler for avoiding use-after-free
3945  * and headache because q->mq_kobj shouldn't have been introduced,
3946  * but we can't group ctx/kctx kobj without it.
3947  */
3948 void blk_mq_release(struct request_queue *q)
3949 {
3950 	struct blk_mq_hw_ctx *hctx, *next;
3951 	unsigned long i;
3952 
3953 	queue_for_each_hw_ctx(q, hctx, i)
3954 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3955 
3956 	/* all hctx are in .unused_hctx_list now */
3957 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3958 		list_del_init(&hctx->hctx_list);
3959 		kobject_put(&hctx->kobj);
3960 	}
3961 
3962 	xa_destroy(&q->hctx_table);
3963 
3964 	/*
3965 	 * release .mq_kobj and sw queue's kobject now because
3966 	 * both share lifetime with request queue.
3967 	 */
3968 	blk_mq_sysfs_deinit(q);
3969 }
3970 
3971 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3972 		void *queuedata)
3973 {
3974 	struct request_queue *q;
3975 	int ret;
3976 
3977 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3978 	if (!q)
3979 		return ERR_PTR(-ENOMEM);
3980 	q->queuedata = queuedata;
3981 	ret = blk_mq_init_allocated_queue(set, q);
3982 	if (ret) {
3983 		blk_put_queue(q);
3984 		return ERR_PTR(ret);
3985 	}
3986 	return q;
3987 }
3988 
3989 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3990 {
3991 	return blk_mq_init_queue_data(set, NULL);
3992 }
3993 EXPORT_SYMBOL(blk_mq_init_queue);
3994 
3995 /**
3996  * blk_mq_destroy_queue - shutdown a request queue
3997  * @q: request queue to shutdown
3998  *
3999  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4000  * the initial reference.  All future requests will failed with -ENODEV.
4001  *
4002  * Context: can sleep
4003  */
4004 void blk_mq_destroy_queue(struct request_queue *q)
4005 {
4006 	WARN_ON_ONCE(!queue_is_mq(q));
4007 	WARN_ON_ONCE(blk_queue_registered(q));
4008 
4009 	might_sleep();
4010 
4011 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4012 	blk_queue_start_drain(q);
4013 	blk_freeze_queue(q);
4014 
4015 	blk_sync_queue(q);
4016 	blk_mq_cancel_work_sync(q);
4017 	blk_mq_exit_queue(q);
4018 
4019 	/* @q is and will stay empty, shutdown and put */
4020 	blk_put_queue(q);
4021 }
4022 EXPORT_SYMBOL(blk_mq_destroy_queue);
4023 
4024 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4025 		struct lock_class_key *lkclass)
4026 {
4027 	struct request_queue *q;
4028 	struct gendisk *disk;
4029 
4030 	q = blk_mq_init_queue_data(set, queuedata);
4031 	if (IS_ERR(q))
4032 		return ERR_CAST(q);
4033 
4034 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4035 	if (!disk) {
4036 		blk_mq_destroy_queue(q);
4037 		return ERR_PTR(-ENOMEM);
4038 	}
4039 	set_bit(GD_OWNS_QUEUE, &disk->state);
4040 	return disk;
4041 }
4042 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4043 
4044 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4045 		struct lock_class_key *lkclass)
4046 {
4047 	if (!blk_get_queue(q))
4048 		return NULL;
4049 	return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4050 }
4051 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4052 
4053 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4054 		struct blk_mq_tag_set *set, struct request_queue *q,
4055 		int hctx_idx, int node)
4056 {
4057 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4058 
4059 	/* reuse dead hctx first */
4060 	spin_lock(&q->unused_hctx_lock);
4061 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4062 		if (tmp->numa_node == node) {
4063 			hctx = tmp;
4064 			break;
4065 		}
4066 	}
4067 	if (hctx)
4068 		list_del_init(&hctx->hctx_list);
4069 	spin_unlock(&q->unused_hctx_lock);
4070 
4071 	if (!hctx)
4072 		hctx = blk_mq_alloc_hctx(q, set, node);
4073 	if (!hctx)
4074 		goto fail;
4075 
4076 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4077 		goto free_hctx;
4078 
4079 	return hctx;
4080 
4081  free_hctx:
4082 	kobject_put(&hctx->kobj);
4083  fail:
4084 	return NULL;
4085 }
4086 
4087 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4088 						struct request_queue *q)
4089 {
4090 	struct blk_mq_hw_ctx *hctx;
4091 	unsigned long i, j;
4092 
4093 	/* protect against switching io scheduler  */
4094 	mutex_lock(&q->sysfs_lock);
4095 	for (i = 0; i < set->nr_hw_queues; i++) {
4096 		int old_node;
4097 		int node = blk_mq_get_hctx_node(set, i);
4098 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4099 
4100 		if (old_hctx) {
4101 			old_node = old_hctx->numa_node;
4102 			blk_mq_exit_hctx(q, set, old_hctx, i);
4103 		}
4104 
4105 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4106 			if (!old_hctx)
4107 				break;
4108 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4109 					node, old_node);
4110 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4111 			WARN_ON_ONCE(!hctx);
4112 		}
4113 	}
4114 	/*
4115 	 * Increasing nr_hw_queues fails. Free the newly allocated
4116 	 * hctxs and keep the previous q->nr_hw_queues.
4117 	 */
4118 	if (i != set->nr_hw_queues) {
4119 		j = q->nr_hw_queues;
4120 	} else {
4121 		j = i;
4122 		q->nr_hw_queues = set->nr_hw_queues;
4123 	}
4124 
4125 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4126 		blk_mq_exit_hctx(q, set, hctx, j);
4127 	mutex_unlock(&q->sysfs_lock);
4128 }
4129 
4130 static void blk_mq_update_poll_flag(struct request_queue *q)
4131 {
4132 	struct blk_mq_tag_set *set = q->tag_set;
4133 
4134 	if (set->nr_maps > HCTX_TYPE_POLL &&
4135 	    set->map[HCTX_TYPE_POLL].nr_queues)
4136 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4137 	else
4138 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4139 }
4140 
4141 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4142 		struct request_queue *q)
4143 {
4144 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4145 			!!(set->flags & BLK_MQ_F_BLOCKING));
4146 
4147 	/* mark the queue as mq asap */
4148 	q->mq_ops = set->ops;
4149 
4150 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4151 					     blk_mq_poll_stats_bkt,
4152 					     BLK_MQ_POLL_STATS_BKTS, q);
4153 	if (!q->poll_cb)
4154 		goto err_exit;
4155 
4156 	if (blk_mq_alloc_ctxs(q))
4157 		goto err_poll;
4158 
4159 	/* init q->mq_kobj and sw queues' kobjects */
4160 	blk_mq_sysfs_init(q);
4161 
4162 	INIT_LIST_HEAD(&q->unused_hctx_list);
4163 	spin_lock_init(&q->unused_hctx_lock);
4164 
4165 	xa_init(&q->hctx_table);
4166 
4167 	blk_mq_realloc_hw_ctxs(set, q);
4168 	if (!q->nr_hw_queues)
4169 		goto err_hctxs;
4170 
4171 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4172 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4173 
4174 	q->tag_set = set;
4175 
4176 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4177 	blk_mq_update_poll_flag(q);
4178 
4179 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4180 	INIT_LIST_HEAD(&q->requeue_list);
4181 	spin_lock_init(&q->requeue_lock);
4182 
4183 	q->nr_requests = set->queue_depth;
4184 
4185 	/*
4186 	 * Default to classic polling
4187 	 */
4188 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4189 
4190 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4191 	blk_mq_add_queue_tag_set(set, q);
4192 	blk_mq_map_swqueue(q);
4193 	return 0;
4194 
4195 err_hctxs:
4196 	xa_destroy(&q->hctx_table);
4197 	q->nr_hw_queues = 0;
4198 	blk_mq_sysfs_deinit(q);
4199 err_poll:
4200 	blk_stat_free_callback(q->poll_cb);
4201 	q->poll_cb = NULL;
4202 err_exit:
4203 	q->mq_ops = NULL;
4204 	return -ENOMEM;
4205 }
4206 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4207 
4208 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4209 void blk_mq_exit_queue(struct request_queue *q)
4210 {
4211 	struct blk_mq_tag_set *set = q->tag_set;
4212 
4213 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4214 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4215 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4216 	blk_mq_del_queue_tag_set(q);
4217 }
4218 
4219 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4220 {
4221 	int i;
4222 
4223 	if (blk_mq_is_shared_tags(set->flags)) {
4224 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4225 						BLK_MQ_NO_HCTX_IDX,
4226 						set->queue_depth);
4227 		if (!set->shared_tags)
4228 			return -ENOMEM;
4229 	}
4230 
4231 	for (i = 0; i < set->nr_hw_queues; i++) {
4232 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4233 			goto out_unwind;
4234 		cond_resched();
4235 	}
4236 
4237 	return 0;
4238 
4239 out_unwind:
4240 	while (--i >= 0)
4241 		__blk_mq_free_map_and_rqs(set, i);
4242 
4243 	if (blk_mq_is_shared_tags(set->flags)) {
4244 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4245 					BLK_MQ_NO_HCTX_IDX);
4246 	}
4247 
4248 	return -ENOMEM;
4249 }
4250 
4251 /*
4252  * Allocate the request maps associated with this tag_set. Note that this
4253  * may reduce the depth asked for, if memory is tight. set->queue_depth
4254  * will be updated to reflect the allocated depth.
4255  */
4256 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4257 {
4258 	unsigned int depth;
4259 	int err;
4260 
4261 	depth = set->queue_depth;
4262 	do {
4263 		err = __blk_mq_alloc_rq_maps(set);
4264 		if (!err)
4265 			break;
4266 
4267 		set->queue_depth >>= 1;
4268 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4269 			err = -ENOMEM;
4270 			break;
4271 		}
4272 	} while (set->queue_depth);
4273 
4274 	if (!set->queue_depth || err) {
4275 		pr_err("blk-mq: failed to allocate request map\n");
4276 		return -ENOMEM;
4277 	}
4278 
4279 	if (depth != set->queue_depth)
4280 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4281 						depth, set->queue_depth);
4282 
4283 	return 0;
4284 }
4285 
4286 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4287 {
4288 	/*
4289 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4290 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4291 	 * number of hardware queues.
4292 	 */
4293 	if (set->nr_maps == 1)
4294 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4295 
4296 	if (set->ops->map_queues && !is_kdump_kernel()) {
4297 		int i;
4298 
4299 		/*
4300 		 * transport .map_queues is usually done in the following
4301 		 * way:
4302 		 *
4303 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4304 		 * 	mask = get_cpu_mask(queue)
4305 		 * 	for_each_cpu(cpu, mask)
4306 		 * 		set->map[x].mq_map[cpu] = queue;
4307 		 * }
4308 		 *
4309 		 * When we need to remap, the table has to be cleared for
4310 		 * killing stale mapping since one CPU may not be mapped
4311 		 * to any hw queue.
4312 		 */
4313 		for (i = 0; i < set->nr_maps; i++)
4314 			blk_mq_clear_mq_map(&set->map[i]);
4315 
4316 		set->ops->map_queues(set);
4317 	} else {
4318 		BUG_ON(set->nr_maps > 1);
4319 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4320 	}
4321 }
4322 
4323 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4324 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4325 {
4326 	struct blk_mq_tags **new_tags;
4327 
4328 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4329 		return 0;
4330 
4331 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4332 				GFP_KERNEL, set->numa_node);
4333 	if (!new_tags)
4334 		return -ENOMEM;
4335 
4336 	if (set->tags)
4337 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4338 		       sizeof(*set->tags));
4339 	kfree(set->tags);
4340 	set->tags = new_tags;
4341 	set->nr_hw_queues = new_nr_hw_queues;
4342 
4343 	return 0;
4344 }
4345 
4346 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4347 				int new_nr_hw_queues)
4348 {
4349 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4350 }
4351 
4352 /*
4353  * Alloc a tag set to be associated with one or more request queues.
4354  * May fail with EINVAL for various error conditions. May adjust the
4355  * requested depth down, if it's too large. In that case, the set
4356  * value will be stored in set->queue_depth.
4357  */
4358 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4359 {
4360 	int i, ret;
4361 
4362 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4363 
4364 	if (!set->nr_hw_queues)
4365 		return -EINVAL;
4366 	if (!set->queue_depth)
4367 		return -EINVAL;
4368 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4369 		return -EINVAL;
4370 
4371 	if (!set->ops->queue_rq)
4372 		return -EINVAL;
4373 
4374 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4375 		return -EINVAL;
4376 
4377 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4378 		pr_info("blk-mq: reduced tag depth to %u\n",
4379 			BLK_MQ_MAX_DEPTH);
4380 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4381 	}
4382 
4383 	if (!set->nr_maps)
4384 		set->nr_maps = 1;
4385 	else if (set->nr_maps > HCTX_MAX_TYPES)
4386 		return -EINVAL;
4387 
4388 	/*
4389 	 * If a crashdump is active, then we are potentially in a very
4390 	 * memory constrained environment. Limit us to 1 queue and
4391 	 * 64 tags to prevent using too much memory.
4392 	 */
4393 	if (is_kdump_kernel()) {
4394 		set->nr_hw_queues = 1;
4395 		set->nr_maps = 1;
4396 		set->queue_depth = min(64U, set->queue_depth);
4397 	}
4398 	/*
4399 	 * There is no use for more h/w queues than cpus if we just have
4400 	 * a single map
4401 	 */
4402 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4403 		set->nr_hw_queues = nr_cpu_ids;
4404 
4405 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4406 		return -ENOMEM;
4407 
4408 	ret = -ENOMEM;
4409 	for (i = 0; i < set->nr_maps; i++) {
4410 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4411 						  sizeof(set->map[i].mq_map[0]),
4412 						  GFP_KERNEL, set->numa_node);
4413 		if (!set->map[i].mq_map)
4414 			goto out_free_mq_map;
4415 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4416 	}
4417 
4418 	blk_mq_update_queue_map(set);
4419 
4420 	ret = blk_mq_alloc_set_map_and_rqs(set);
4421 	if (ret)
4422 		goto out_free_mq_map;
4423 
4424 	mutex_init(&set->tag_list_lock);
4425 	INIT_LIST_HEAD(&set->tag_list);
4426 
4427 	return 0;
4428 
4429 out_free_mq_map:
4430 	for (i = 0; i < set->nr_maps; i++) {
4431 		kfree(set->map[i].mq_map);
4432 		set->map[i].mq_map = NULL;
4433 	}
4434 	kfree(set->tags);
4435 	set->tags = NULL;
4436 	return ret;
4437 }
4438 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4439 
4440 /* allocate and initialize a tagset for a simple single-queue device */
4441 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4442 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4443 		unsigned int set_flags)
4444 {
4445 	memset(set, 0, sizeof(*set));
4446 	set->ops = ops;
4447 	set->nr_hw_queues = 1;
4448 	set->nr_maps = 1;
4449 	set->queue_depth = queue_depth;
4450 	set->numa_node = NUMA_NO_NODE;
4451 	set->flags = set_flags;
4452 	return blk_mq_alloc_tag_set(set);
4453 }
4454 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4455 
4456 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4457 {
4458 	int i, j;
4459 
4460 	for (i = 0; i < set->nr_hw_queues; i++)
4461 		__blk_mq_free_map_and_rqs(set, i);
4462 
4463 	if (blk_mq_is_shared_tags(set->flags)) {
4464 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4465 					BLK_MQ_NO_HCTX_IDX);
4466 	}
4467 
4468 	for (j = 0; j < set->nr_maps; j++) {
4469 		kfree(set->map[j].mq_map);
4470 		set->map[j].mq_map = NULL;
4471 	}
4472 
4473 	kfree(set->tags);
4474 	set->tags = NULL;
4475 }
4476 EXPORT_SYMBOL(blk_mq_free_tag_set);
4477 
4478 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4479 {
4480 	struct blk_mq_tag_set *set = q->tag_set;
4481 	struct blk_mq_hw_ctx *hctx;
4482 	int ret;
4483 	unsigned long i;
4484 
4485 	if (!set)
4486 		return -EINVAL;
4487 
4488 	if (q->nr_requests == nr)
4489 		return 0;
4490 
4491 	blk_mq_freeze_queue(q);
4492 	blk_mq_quiesce_queue(q);
4493 
4494 	ret = 0;
4495 	queue_for_each_hw_ctx(q, hctx, i) {
4496 		if (!hctx->tags)
4497 			continue;
4498 		/*
4499 		 * If we're using an MQ scheduler, just update the scheduler
4500 		 * queue depth. This is similar to what the old code would do.
4501 		 */
4502 		if (hctx->sched_tags) {
4503 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4504 						      nr, true);
4505 		} else {
4506 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4507 						      false);
4508 		}
4509 		if (ret)
4510 			break;
4511 		if (q->elevator && q->elevator->type->ops.depth_updated)
4512 			q->elevator->type->ops.depth_updated(hctx);
4513 	}
4514 	if (!ret) {
4515 		q->nr_requests = nr;
4516 		if (blk_mq_is_shared_tags(set->flags)) {
4517 			if (q->elevator)
4518 				blk_mq_tag_update_sched_shared_tags(q);
4519 			else
4520 				blk_mq_tag_resize_shared_tags(set, nr);
4521 		}
4522 	}
4523 
4524 	blk_mq_unquiesce_queue(q);
4525 	blk_mq_unfreeze_queue(q);
4526 
4527 	return ret;
4528 }
4529 
4530 /*
4531  * request_queue and elevator_type pair.
4532  * It is just used by __blk_mq_update_nr_hw_queues to cache
4533  * the elevator_type associated with a request_queue.
4534  */
4535 struct blk_mq_qe_pair {
4536 	struct list_head node;
4537 	struct request_queue *q;
4538 	struct elevator_type *type;
4539 };
4540 
4541 /*
4542  * Cache the elevator_type in qe pair list and switch the
4543  * io scheduler to 'none'
4544  */
4545 static bool blk_mq_elv_switch_none(struct list_head *head,
4546 		struct request_queue *q)
4547 {
4548 	struct blk_mq_qe_pair *qe;
4549 
4550 	if (!q->elevator)
4551 		return true;
4552 
4553 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4554 	if (!qe)
4555 		return false;
4556 
4557 	/* q->elevator needs protection from ->sysfs_lock */
4558 	mutex_lock(&q->sysfs_lock);
4559 
4560 	INIT_LIST_HEAD(&qe->node);
4561 	qe->q = q;
4562 	qe->type = q->elevator->type;
4563 	list_add(&qe->node, head);
4564 
4565 	/*
4566 	 * After elevator_switch, the previous elevator_queue will be
4567 	 * released by elevator_release. The reference of the io scheduler
4568 	 * module get by elevator_get will also be put. So we need to get
4569 	 * a reference of the io scheduler module here to prevent it to be
4570 	 * removed.
4571 	 */
4572 	__module_get(qe->type->elevator_owner);
4573 	elevator_switch(q, NULL);
4574 	mutex_unlock(&q->sysfs_lock);
4575 
4576 	return true;
4577 }
4578 
4579 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4580 						struct request_queue *q)
4581 {
4582 	struct blk_mq_qe_pair *qe;
4583 
4584 	list_for_each_entry(qe, head, node)
4585 		if (qe->q == q)
4586 			return qe;
4587 
4588 	return NULL;
4589 }
4590 
4591 static void blk_mq_elv_switch_back(struct list_head *head,
4592 				  struct request_queue *q)
4593 {
4594 	struct blk_mq_qe_pair *qe;
4595 	struct elevator_type *t;
4596 
4597 	qe = blk_lookup_qe_pair(head, q);
4598 	if (!qe)
4599 		return;
4600 	t = qe->type;
4601 	list_del(&qe->node);
4602 	kfree(qe);
4603 
4604 	mutex_lock(&q->sysfs_lock);
4605 	elevator_switch(q, t);
4606 	mutex_unlock(&q->sysfs_lock);
4607 }
4608 
4609 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4610 							int nr_hw_queues)
4611 {
4612 	struct request_queue *q;
4613 	LIST_HEAD(head);
4614 	int prev_nr_hw_queues;
4615 
4616 	lockdep_assert_held(&set->tag_list_lock);
4617 
4618 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4619 		nr_hw_queues = nr_cpu_ids;
4620 	if (nr_hw_queues < 1)
4621 		return;
4622 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4623 		return;
4624 
4625 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4626 		blk_mq_freeze_queue(q);
4627 	/*
4628 	 * Switch IO scheduler to 'none', cleaning up the data associated
4629 	 * with the previous scheduler. We will switch back once we are done
4630 	 * updating the new sw to hw queue mappings.
4631 	 */
4632 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4633 		if (!blk_mq_elv_switch_none(&head, q))
4634 			goto switch_back;
4635 
4636 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4637 		blk_mq_debugfs_unregister_hctxs(q);
4638 		blk_mq_sysfs_unregister_hctxs(q);
4639 	}
4640 
4641 	prev_nr_hw_queues = set->nr_hw_queues;
4642 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4643 	    0)
4644 		goto reregister;
4645 
4646 	set->nr_hw_queues = nr_hw_queues;
4647 fallback:
4648 	blk_mq_update_queue_map(set);
4649 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4650 		blk_mq_realloc_hw_ctxs(set, q);
4651 		blk_mq_update_poll_flag(q);
4652 		if (q->nr_hw_queues != set->nr_hw_queues) {
4653 			int i = prev_nr_hw_queues;
4654 
4655 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4656 					nr_hw_queues, prev_nr_hw_queues);
4657 			for (; i < set->nr_hw_queues; i++)
4658 				__blk_mq_free_map_and_rqs(set, i);
4659 
4660 			set->nr_hw_queues = prev_nr_hw_queues;
4661 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4662 			goto fallback;
4663 		}
4664 		blk_mq_map_swqueue(q);
4665 	}
4666 
4667 reregister:
4668 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4669 		blk_mq_sysfs_register_hctxs(q);
4670 		blk_mq_debugfs_register_hctxs(q);
4671 	}
4672 
4673 switch_back:
4674 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4675 		blk_mq_elv_switch_back(&head, q);
4676 
4677 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4678 		blk_mq_unfreeze_queue(q);
4679 }
4680 
4681 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4682 {
4683 	mutex_lock(&set->tag_list_lock);
4684 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4685 	mutex_unlock(&set->tag_list_lock);
4686 }
4687 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4688 
4689 /* Enable polling stats and return whether they were already enabled. */
4690 static bool blk_poll_stats_enable(struct request_queue *q)
4691 {
4692 	if (q->poll_stat)
4693 		return true;
4694 
4695 	return blk_stats_alloc_enable(q);
4696 }
4697 
4698 static void blk_mq_poll_stats_start(struct request_queue *q)
4699 {
4700 	/*
4701 	 * We don't arm the callback if polling stats are not enabled or the
4702 	 * callback is already active.
4703 	 */
4704 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4705 		return;
4706 
4707 	blk_stat_activate_msecs(q->poll_cb, 100);
4708 }
4709 
4710 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4711 {
4712 	struct request_queue *q = cb->data;
4713 	int bucket;
4714 
4715 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4716 		if (cb->stat[bucket].nr_samples)
4717 			q->poll_stat[bucket] = cb->stat[bucket];
4718 	}
4719 }
4720 
4721 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4722 				       struct request *rq)
4723 {
4724 	unsigned long ret = 0;
4725 	int bucket;
4726 
4727 	/*
4728 	 * If stats collection isn't on, don't sleep but turn it on for
4729 	 * future users
4730 	 */
4731 	if (!blk_poll_stats_enable(q))
4732 		return 0;
4733 
4734 	/*
4735 	 * As an optimistic guess, use half of the mean service time
4736 	 * for this type of request. We can (and should) make this smarter.
4737 	 * For instance, if the completion latencies are tight, we can
4738 	 * get closer than just half the mean. This is especially
4739 	 * important on devices where the completion latencies are longer
4740 	 * than ~10 usec. We do use the stats for the relevant IO size
4741 	 * if available which does lead to better estimates.
4742 	 */
4743 	bucket = blk_mq_poll_stats_bkt(rq);
4744 	if (bucket < 0)
4745 		return ret;
4746 
4747 	if (q->poll_stat[bucket].nr_samples)
4748 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4749 
4750 	return ret;
4751 }
4752 
4753 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4754 {
4755 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4756 	struct request *rq = blk_qc_to_rq(hctx, qc);
4757 	struct hrtimer_sleeper hs;
4758 	enum hrtimer_mode mode;
4759 	unsigned int nsecs;
4760 	ktime_t kt;
4761 
4762 	/*
4763 	 * If a request has completed on queue that uses an I/O scheduler, we
4764 	 * won't get back a request from blk_qc_to_rq.
4765 	 */
4766 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4767 		return false;
4768 
4769 	/*
4770 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4771 	 *
4772 	 *  0:	use half of prev avg
4773 	 * >0:	use this specific value
4774 	 */
4775 	if (q->poll_nsec > 0)
4776 		nsecs = q->poll_nsec;
4777 	else
4778 		nsecs = blk_mq_poll_nsecs(q, rq);
4779 
4780 	if (!nsecs)
4781 		return false;
4782 
4783 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4784 
4785 	/*
4786 	 * This will be replaced with the stats tracking code, using
4787 	 * 'avg_completion_time / 2' as the pre-sleep target.
4788 	 */
4789 	kt = nsecs;
4790 
4791 	mode = HRTIMER_MODE_REL;
4792 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4793 	hrtimer_set_expires(&hs.timer, kt);
4794 
4795 	do {
4796 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4797 			break;
4798 		set_current_state(TASK_UNINTERRUPTIBLE);
4799 		hrtimer_sleeper_start_expires(&hs, mode);
4800 		if (hs.task)
4801 			io_schedule();
4802 		hrtimer_cancel(&hs.timer);
4803 		mode = HRTIMER_MODE_ABS;
4804 	} while (hs.task && !signal_pending(current));
4805 
4806 	__set_current_state(TASK_RUNNING);
4807 	destroy_hrtimer_on_stack(&hs.timer);
4808 
4809 	/*
4810 	 * If we sleep, have the caller restart the poll loop to reset the
4811 	 * state.  Like for the other success return cases, the caller is
4812 	 * responsible for checking if the IO completed.  If the IO isn't
4813 	 * complete, we'll get called again and will go straight to the busy
4814 	 * poll loop.
4815 	 */
4816 	return true;
4817 }
4818 
4819 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4820 			       struct io_comp_batch *iob, unsigned int flags)
4821 {
4822 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4823 	long state = get_current_state();
4824 	int ret;
4825 
4826 	do {
4827 		ret = q->mq_ops->poll(hctx, iob);
4828 		if (ret > 0) {
4829 			__set_current_state(TASK_RUNNING);
4830 			return ret;
4831 		}
4832 
4833 		if (signal_pending_state(state, current))
4834 			__set_current_state(TASK_RUNNING);
4835 		if (task_is_running(current))
4836 			return 1;
4837 
4838 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4839 			break;
4840 		cpu_relax();
4841 	} while (!need_resched());
4842 
4843 	__set_current_state(TASK_RUNNING);
4844 	return 0;
4845 }
4846 
4847 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4848 		unsigned int flags)
4849 {
4850 	if (!(flags & BLK_POLL_NOSLEEP) &&
4851 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4852 		if (blk_mq_poll_hybrid(q, cookie))
4853 			return 1;
4854 	}
4855 	return blk_mq_poll_classic(q, cookie, iob, flags);
4856 }
4857 
4858 unsigned int blk_mq_rq_cpu(struct request *rq)
4859 {
4860 	return rq->mq_ctx->cpu;
4861 }
4862 EXPORT_SYMBOL(blk_mq_rq_cpu);
4863 
4864 void blk_mq_cancel_work_sync(struct request_queue *q)
4865 {
4866 	if (queue_is_mq(q)) {
4867 		struct blk_mq_hw_ctx *hctx;
4868 		unsigned long i;
4869 
4870 		cancel_delayed_work_sync(&q->requeue_work);
4871 
4872 		queue_for_each_hw_ctx(q, hctx, i)
4873 			cancel_delayed_work_sync(&hctx->run_work);
4874 	}
4875 }
4876 
4877 static int __init blk_mq_init(void)
4878 {
4879 	int i;
4880 
4881 	for_each_possible_cpu(i)
4882 		init_llist_head(&per_cpu(blk_cpu_done, i));
4883 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4884 
4885 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4886 				  "block/softirq:dead", NULL,
4887 				  blk_softirq_cpu_dead);
4888 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4889 				blk_mq_hctx_notify_dead);
4890 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4891 				blk_mq_hctx_notify_online,
4892 				blk_mq_hctx_notify_offline);
4893 	return 0;
4894 }
4895 subsys_initcall(blk_mq_init);
4896