xref: /openbmc/linux/block/blk-mq.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38 
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41 
42 /*
43  * Check if any of the ctx's have pending work in this hardware queue
44  */
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46 {
47 	return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 			!list_empty_careful(&hctx->dispatch) ||
49 			blk_mq_sched_has_work(hctx);
50 }
51 
52 /*
53  * Mark this ctx as having pending work in this hardware queue
54  */
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 				     struct blk_mq_ctx *ctx)
57 {
58 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 }
61 
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 				      struct blk_mq_ctx *ctx)
64 {
65 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 }
67 
68 void blk_mq_freeze_queue_start(struct request_queue *q)
69 {
70 	int freeze_depth;
71 
72 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 	if (freeze_depth == 1) {
74 		percpu_ref_kill(&q->q_usage_counter);
75 		blk_mq_run_hw_queues(q, false);
76 	}
77 }
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79 
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
81 {
82 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83 }
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85 
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 				     unsigned long timeout)
88 {
89 	return wait_event_timeout(q->mq_freeze_wq,
90 					percpu_ref_is_zero(&q->q_usage_counter),
91 					timeout);
92 }
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94 
95 /*
96  * Guarantee no request is in use, so we can change any data structure of
97  * the queue afterward.
98  */
99 void blk_freeze_queue(struct request_queue *q)
100 {
101 	/*
102 	 * In the !blk_mq case we are only calling this to kill the
103 	 * q_usage_counter, otherwise this increases the freeze depth
104 	 * and waits for it to return to zero.  For this reason there is
105 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 	 * exported to drivers as the only user for unfreeze is blk_mq.
107 	 */
108 	blk_mq_freeze_queue_start(q);
109 	blk_mq_freeze_queue_wait(q);
110 }
111 
112 void blk_mq_freeze_queue(struct request_queue *q)
113 {
114 	/*
115 	 * ...just an alias to keep freeze and unfreeze actions balanced
116 	 * in the blk_mq_* namespace
117 	 */
118 	blk_freeze_queue(q);
119 }
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121 
122 void blk_mq_unfreeze_queue(struct request_queue *q)
123 {
124 	int freeze_depth;
125 
126 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 	WARN_ON_ONCE(freeze_depth < 0);
128 	if (!freeze_depth) {
129 		percpu_ref_reinit(&q->q_usage_counter);
130 		wake_up_all(&q->mq_freeze_wq);
131 	}
132 }
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134 
135 /**
136  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137  * @q: request queue.
138  *
139  * Note: this function does not prevent that the struct request end_io()
140  * callback function is invoked. Additionally, it is not prevented that
141  * new queue_rq() calls occur unless the queue has been stopped first.
142  */
143 void blk_mq_quiesce_queue(struct request_queue *q)
144 {
145 	struct blk_mq_hw_ctx *hctx;
146 	unsigned int i;
147 	bool rcu = false;
148 
149 	blk_mq_stop_hw_queues(q);
150 
151 	queue_for_each_hw_ctx(q, hctx, i) {
152 		if (hctx->flags & BLK_MQ_F_BLOCKING)
153 			synchronize_srcu(&hctx->queue_rq_srcu);
154 		else
155 			rcu = true;
156 	}
157 	if (rcu)
158 		synchronize_rcu();
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161 
162 void blk_mq_wake_waiters(struct request_queue *q)
163 {
164 	struct blk_mq_hw_ctx *hctx;
165 	unsigned int i;
166 
167 	queue_for_each_hw_ctx(q, hctx, i)
168 		if (blk_mq_hw_queue_mapped(hctx))
169 			blk_mq_tag_wakeup_all(hctx->tags, true);
170 
171 	/*
172 	 * If we are called because the queue has now been marked as
173 	 * dying, we need to ensure that processes currently waiting on
174 	 * the queue are notified as well.
175 	 */
176 	wake_up_all(&q->mq_freeze_wq);
177 }
178 
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181 	return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184 
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 			struct request *rq, unsigned int op)
187 {
188 	INIT_LIST_HEAD(&rq->queuelist);
189 	/* csd/requeue_work/fifo_time is initialized before use */
190 	rq->q = q;
191 	rq->mq_ctx = ctx;
192 	rq->cmd_flags = op;
193 	if (blk_queue_io_stat(q))
194 		rq->rq_flags |= RQF_IO_STAT;
195 	/* do not touch atomic flags, it needs atomic ops against the timer */
196 	rq->cpu = -1;
197 	INIT_HLIST_NODE(&rq->hash);
198 	RB_CLEAR_NODE(&rq->rb_node);
199 	rq->rq_disk = NULL;
200 	rq->part = NULL;
201 	rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203 	rq->rl = NULL;
204 	set_start_time_ns(rq);
205 	rq->io_start_time_ns = 0;
206 #endif
207 	rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209 	rq->nr_integrity_segments = 0;
210 #endif
211 	rq->special = NULL;
212 	/* tag was already set */
213 	rq->errors = 0;
214 	rq->extra_len = 0;
215 
216 	INIT_LIST_HEAD(&rq->timeout_list);
217 	rq->timeout = 0;
218 
219 	rq->end_io = NULL;
220 	rq->end_io_data = NULL;
221 	rq->next_rq = NULL;
222 
223 	ctx->rq_dispatched[op_is_sync(op)]++;
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226 
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 				       unsigned int op)
229 {
230 	struct request *rq;
231 	unsigned int tag;
232 
233 	tag = blk_mq_get_tag(data);
234 	if (tag != BLK_MQ_TAG_FAIL) {
235 		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236 
237 		rq = tags->static_rqs[tag];
238 
239 		if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 			rq->tag = -1;
241 			rq->internal_tag = tag;
242 		} else {
243 			if (blk_mq_tag_busy(data->hctx)) {
244 				rq->rq_flags = RQF_MQ_INFLIGHT;
245 				atomic_inc(&data->hctx->nr_active);
246 			}
247 			rq->tag = tag;
248 			rq->internal_tag = -1;
249 			data->hctx->tags->rqs[rq->tag] = rq;
250 		}
251 
252 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 		return rq;
254 	}
255 
256 	return NULL;
257 }
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259 
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 		unsigned int flags)
262 {
263 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
264 	struct request *rq;
265 	int ret;
266 
267 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 	if (ret)
269 		return ERR_PTR(ret);
270 
271 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272 
273 	blk_mq_put_ctx(alloc_data.ctx);
274 	blk_queue_exit(q);
275 
276 	if (!rq)
277 		return ERR_PTR(-EWOULDBLOCK);
278 
279 	rq->__data_len = 0;
280 	rq->__sector = (sector_t) -1;
281 	rq->bio = rq->biotail = NULL;
282 	return rq;
283 }
284 EXPORT_SYMBOL(blk_mq_alloc_request);
285 
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 		unsigned int flags, unsigned int hctx_idx)
288 {
289 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
290 	struct request *rq;
291 	unsigned int cpu;
292 	int ret;
293 
294 	/*
295 	 * If the tag allocator sleeps we could get an allocation for a
296 	 * different hardware context.  No need to complicate the low level
297 	 * allocator for this for the rare use case of a command tied to
298 	 * a specific queue.
299 	 */
300 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 		return ERR_PTR(-EINVAL);
302 
303 	if (hctx_idx >= q->nr_hw_queues)
304 		return ERR_PTR(-EIO);
305 
306 	ret = blk_queue_enter(q, true);
307 	if (ret)
308 		return ERR_PTR(ret);
309 
310 	/*
311 	 * Check if the hardware context is actually mapped to anything.
312 	 * If not tell the caller that it should skip this queue.
313 	 */
314 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 		blk_queue_exit(q);
317 		return ERR_PTR(-EXDEV);
318 	}
319 	cpu = cpumask_first(alloc_data.hctx->cpumask);
320 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
321 
322 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323 
324 	blk_mq_put_ctx(alloc_data.ctx);
325 	blk_queue_exit(q);
326 
327 	if (!rq)
328 		return ERR_PTR(-EWOULDBLOCK);
329 
330 	return rq;
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333 
334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
335 			     struct request *rq)
336 {
337 	const int sched_tag = rq->internal_tag;
338 	struct request_queue *q = rq->q;
339 
340 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
341 		atomic_dec(&hctx->nr_active);
342 
343 	wbt_done(q->rq_wb, &rq->issue_stat);
344 	rq->rq_flags = 0;
345 
346 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
347 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
348 	if (rq->tag != -1)
349 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
350 	if (sched_tag != -1)
351 		blk_mq_sched_completed_request(hctx, rq);
352 	blk_mq_sched_restart_queues(hctx);
353 	blk_queue_exit(q);
354 }
355 
356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
357 				     struct request *rq)
358 {
359 	struct blk_mq_ctx *ctx = rq->mq_ctx;
360 
361 	ctx->rq_completed[rq_is_sync(rq)]++;
362 	__blk_mq_finish_request(hctx, ctx, rq);
363 }
364 
365 void blk_mq_finish_request(struct request *rq)
366 {
367 	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
368 }
369 
370 void blk_mq_free_request(struct request *rq)
371 {
372 	blk_mq_sched_put_request(rq);
373 }
374 EXPORT_SYMBOL_GPL(blk_mq_free_request);
375 
376 inline void __blk_mq_end_request(struct request *rq, int error)
377 {
378 	blk_account_io_done(rq);
379 
380 	if (rq->end_io) {
381 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
382 		rq->end_io(rq, error);
383 	} else {
384 		if (unlikely(blk_bidi_rq(rq)))
385 			blk_mq_free_request(rq->next_rq);
386 		blk_mq_free_request(rq);
387 	}
388 }
389 EXPORT_SYMBOL(__blk_mq_end_request);
390 
391 void blk_mq_end_request(struct request *rq, int error)
392 {
393 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
394 		BUG();
395 	__blk_mq_end_request(rq, error);
396 }
397 EXPORT_SYMBOL(blk_mq_end_request);
398 
399 static void __blk_mq_complete_request_remote(void *data)
400 {
401 	struct request *rq = data;
402 
403 	rq->q->softirq_done_fn(rq);
404 }
405 
406 static void blk_mq_ipi_complete_request(struct request *rq)
407 {
408 	struct blk_mq_ctx *ctx = rq->mq_ctx;
409 	bool shared = false;
410 	int cpu;
411 
412 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
413 		rq->q->softirq_done_fn(rq);
414 		return;
415 	}
416 
417 	cpu = get_cpu();
418 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
419 		shared = cpus_share_cache(cpu, ctx->cpu);
420 
421 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
422 		rq->csd.func = __blk_mq_complete_request_remote;
423 		rq->csd.info = rq;
424 		rq->csd.flags = 0;
425 		smp_call_function_single_async(ctx->cpu, &rq->csd);
426 	} else {
427 		rq->q->softirq_done_fn(rq);
428 	}
429 	put_cpu();
430 }
431 
432 static void blk_mq_stat_add(struct request *rq)
433 {
434 	if (rq->rq_flags & RQF_STATS) {
435 		/*
436 		 * We could rq->mq_ctx here, but there's less of a risk
437 		 * of races if we have the completion event add the stats
438 		 * to the local software queue.
439 		 */
440 		struct blk_mq_ctx *ctx;
441 
442 		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
443 		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
444 	}
445 }
446 
447 static void __blk_mq_complete_request(struct request *rq)
448 {
449 	struct request_queue *q = rq->q;
450 
451 	blk_mq_stat_add(rq);
452 
453 	if (!q->softirq_done_fn)
454 		blk_mq_end_request(rq, rq->errors);
455 	else
456 		blk_mq_ipi_complete_request(rq);
457 }
458 
459 /**
460  * blk_mq_complete_request - end I/O on a request
461  * @rq:		the request being processed
462  *
463  * Description:
464  *	Ends all I/O on a request. It does not handle partial completions.
465  *	The actual completion happens out-of-order, through a IPI handler.
466  **/
467 void blk_mq_complete_request(struct request *rq, int error)
468 {
469 	struct request_queue *q = rq->q;
470 
471 	if (unlikely(blk_should_fake_timeout(q)))
472 		return;
473 	if (!blk_mark_rq_complete(rq)) {
474 		rq->errors = error;
475 		__blk_mq_complete_request(rq);
476 	}
477 }
478 EXPORT_SYMBOL(blk_mq_complete_request);
479 
480 int blk_mq_request_started(struct request *rq)
481 {
482 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_request_started);
485 
486 void blk_mq_start_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 
490 	blk_mq_sched_started_request(rq);
491 
492 	trace_block_rq_issue(q, rq);
493 
494 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 		blk_stat_set_issue_time(&rq->issue_stat);
496 		rq->rq_flags |= RQF_STATS;
497 		wbt_issue(q->rq_wb, &rq->issue_stat);
498 	}
499 
500 	blk_add_timer(rq);
501 
502 	/*
503 	 * Ensure that ->deadline is visible before set the started
504 	 * flag and clear the completed flag.
505 	 */
506 	smp_mb__before_atomic();
507 
508 	/*
509 	 * Mark us as started and clear complete. Complete might have been
510 	 * set if requeue raced with timeout, which then marked it as
511 	 * complete. So be sure to clear complete again when we start
512 	 * the request, otherwise we'll ignore the completion event.
513 	 */
514 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518 
519 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 		/*
521 		 * Make sure space for the drain appears.  We know we can do
522 		 * this because max_hw_segments has been adjusted to be one
523 		 * fewer than the device can handle.
524 		 */
525 		rq->nr_phys_segments++;
526 	}
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529 
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 	struct request_queue *q = rq->q;
533 
534 	trace_block_rq_requeue(q, rq);
535 	wbt_requeue(q->rq_wb, &rq->issue_stat);
536 	blk_mq_sched_requeue_request(rq);
537 
538 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 		if (q->dma_drain_size && blk_rq_bytes(rq))
540 			rq->nr_phys_segments--;
541 	}
542 }
543 
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 	__blk_mq_requeue_request(rq);
547 
548 	BUG_ON(blk_queued_rq(rq));
549 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552 
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 	struct request_queue *q =
556 		container_of(work, struct request_queue, requeue_work.work);
557 	LIST_HEAD(rq_list);
558 	struct request *rq, *next;
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&q->requeue_lock, flags);
562 	list_splice_init(&q->requeue_list, &rq_list);
563 	spin_unlock_irqrestore(&q->requeue_lock, flags);
564 
565 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 			continue;
568 
569 		rq->rq_flags &= ~RQF_SOFTBARRIER;
570 		list_del_init(&rq->queuelist);
571 		blk_mq_sched_insert_request(rq, true, false, false, true);
572 	}
573 
574 	while (!list_empty(&rq_list)) {
575 		rq = list_entry(rq_list.next, struct request, queuelist);
576 		list_del_init(&rq->queuelist);
577 		blk_mq_sched_insert_request(rq, false, false, false, true);
578 	}
579 
580 	blk_mq_run_hw_queues(q, false);
581 }
582 
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 				bool kick_requeue_list)
585 {
586 	struct request_queue *q = rq->q;
587 	unsigned long flags;
588 
589 	/*
590 	 * We abuse this flag that is otherwise used by the I/O scheduler to
591 	 * request head insertation from the workqueue.
592 	 */
593 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594 
595 	spin_lock_irqsave(&q->requeue_lock, flags);
596 	if (at_head) {
597 		rq->rq_flags |= RQF_SOFTBARRIER;
598 		list_add(&rq->queuelist, &q->requeue_list);
599 	} else {
600 		list_add_tail(&rq->queuelist, &q->requeue_list);
601 	}
602 	spin_unlock_irqrestore(&q->requeue_lock, flags);
603 
604 	if (kick_requeue_list)
605 		blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608 
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614 
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 				    unsigned long msecs)
617 {
618 	kblockd_schedule_delayed_work(&q->requeue_work,
619 				      msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622 
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 	unsigned long flags;
626 	LIST_HEAD(rq_list);
627 
628 	spin_lock_irqsave(&q->requeue_lock, flags);
629 	list_splice_init(&q->requeue_list, &rq_list);
630 	spin_unlock_irqrestore(&q->requeue_lock, flags);
631 
632 	while (!list_empty(&rq_list)) {
633 		struct request *rq;
634 
635 		rq = list_first_entry(&rq_list, struct request, queuelist);
636 		list_del_init(&rq->queuelist);
637 		rq->errors = -EIO;
638 		blk_mq_end_request(rq, rq->errors);
639 	}
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642 
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 	if (tag < tags->nr_tags) {
646 		prefetch(tags->rqs[tag]);
647 		return tags->rqs[tag];
648 	}
649 
650 	return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653 
654 struct blk_mq_timeout_data {
655 	unsigned long next;
656 	unsigned int next_set;
657 };
658 
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 	const struct blk_mq_ops *ops = req->q->mq_ops;
662 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663 
664 	/*
665 	 * We know that complete is set at this point. If STARTED isn't set
666 	 * anymore, then the request isn't active and the "timeout" should
667 	 * just be ignored. This can happen due to the bitflag ordering.
668 	 * Timeout first checks if STARTED is set, and if it is, assumes
669 	 * the request is active. But if we race with completion, then
670 	 * we both flags will get cleared. So check here again, and ignore
671 	 * a timeout event with a request that isn't active.
672 	 */
673 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 		return;
675 
676 	if (ops->timeout)
677 		ret = ops->timeout(req, reserved);
678 
679 	switch (ret) {
680 	case BLK_EH_HANDLED:
681 		__blk_mq_complete_request(req);
682 		break;
683 	case BLK_EH_RESET_TIMER:
684 		blk_add_timer(req);
685 		blk_clear_rq_complete(req);
686 		break;
687 	case BLK_EH_NOT_HANDLED:
688 		break;
689 	default:
690 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 		break;
692 	}
693 }
694 
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 		struct request *rq, void *priv, bool reserved)
697 {
698 	struct blk_mq_timeout_data *data = priv;
699 
700 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
701 		return;
702 
703 	if (time_after_eq(jiffies, rq->deadline)) {
704 		if (!blk_mark_rq_complete(rq))
705 			blk_mq_rq_timed_out(rq, reserved);
706 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
707 		data->next = rq->deadline;
708 		data->next_set = 1;
709 	}
710 }
711 
712 static void blk_mq_timeout_work(struct work_struct *work)
713 {
714 	struct request_queue *q =
715 		container_of(work, struct request_queue, timeout_work);
716 	struct blk_mq_timeout_data data = {
717 		.next		= 0,
718 		.next_set	= 0,
719 	};
720 	int i;
721 
722 	/* A deadlock might occur if a request is stuck requiring a
723 	 * timeout at the same time a queue freeze is waiting
724 	 * completion, since the timeout code would not be able to
725 	 * acquire the queue reference here.
726 	 *
727 	 * That's why we don't use blk_queue_enter here; instead, we use
728 	 * percpu_ref_tryget directly, because we need to be able to
729 	 * obtain a reference even in the short window between the queue
730 	 * starting to freeze, by dropping the first reference in
731 	 * blk_mq_freeze_queue_start, and the moment the last request is
732 	 * consumed, marked by the instant q_usage_counter reaches
733 	 * zero.
734 	 */
735 	if (!percpu_ref_tryget(&q->q_usage_counter))
736 		return;
737 
738 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739 
740 	if (data.next_set) {
741 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
742 		mod_timer(&q->timeout, data.next);
743 	} else {
744 		struct blk_mq_hw_ctx *hctx;
745 
746 		queue_for_each_hw_ctx(q, hctx, i) {
747 			/* the hctx may be unmapped, so check it here */
748 			if (blk_mq_hw_queue_mapped(hctx))
749 				blk_mq_tag_idle(hctx);
750 		}
751 	}
752 	blk_queue_exit(q);
753 }
754 
755 /*
756  * Reverse check our software queue for entries that we could potentially
757  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
758  * too much time checking for merges.
759  */
760 static bool blk_mq_attempt_merge(struct request_queue *q,
761 				 struct blk_mq_ctx *ctx, struct bio *bio)
762 {
763 	struct request *rq;
764 	int checked = 8;
765 
766 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
767 		bool merged = false;
768 
769 		if (!checked--)
770 			break;
771 
772 		if (!blk_rq_merge_ok(rq, bio))
773 			continue;
774 
775 		switch (blk_try_merge(rq, bio)) {
776 		case ELEVATOR_BACK_MERGE:
777 			if (blk_mq_sched_allow_merge(q, rq, bio))
778 				merged = bio_attempt_back_merge(q, rq, bio);
779 			break;
780 		case ELEVATOR_FRONT_MERGE:
781 			if (blk_mq_sched_allow_merge(q, rq, bio))
782 				merged = bio_attempt_front_merge(q, rq, bio);
783 			break;
784 		case ELEVATOR_DISCARD_MERGE:
785 			merged = bio_attempt_discard_merge(q, rq, bio);
786 			break;
787 		default:
788 			continue;
789 		}
790 
791 		if (merged)
792 			ctx->rq_merged++;
793 		return merged;
794 	}
795 
796 	return false;
797 }
798 
799 struct flush_busy_ctx_data {
800 	struct blk_mq_hw_ctx *hctx;
801 	struct list_head *list;
802 };
803 
804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 {
806 	struct flush_busy_ctx_data *flush_data = data;
807 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809 
810 	sbitmap_clear_bit(sb, bitnr);
811 	spin_lock(&ctx->lock);
812 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
813 	spin_unlock(&ctx->lock);
814 	return true;
815 }
816 
817 /*
818  * Process software queues that have been marked busy, splicing them
819  * to the for-dispatch
820  */
821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 {
823 	struct flush_busy_ctx_data data = {
824 		.hctx = hctx,
825 		.list = list,
826 	};
827 
828 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 }
830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831 
832 static inline unsigned int queued_to_index(unsigned int queued)
833 {
834 	if (!queued)
835 		return 0;
836 
837 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 }
839 
840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841 			   bool wait)
842 {
843 	struct blk_mq_alloc_data data = {
844 		.q = rq->q,
845 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847 	};
848 
849 	if (rq->tag != -1) {
850 done:
851 		if (hctx)
852 			*hctx = data.hctx;
853 		return true;
854 	}
855 
856 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
857 		data.flags |= BLK_MQ_REQ_RESERVED;
858 
859 	rq->tag = blk_mq_get_tag(&data);
860 	if (rq->tag >= 0) {
861 		if (blk_mq_tag_busy(data.hctx)) {
862 			rq->rq_flags |= RQF_MQ_INFLIGHT;
863 			atomic_inc(&data.hctx->nr_active);
864 		}
865 		data.hctx->tags->rqs[rq->tag] = rq;
866 		goto done;
867 	}
868 
869 	return false;
870 }
871 
872 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
873 				    struct request *rq)
874 {
875 	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876 	rq->tag = -1;
877 
878 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880 		atomic_dec(&hctx->nr_active);
881 	}
882 }
883 
884 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
885 				       struct request *rq)
886 {
887 	if (rq->tag == -1 || rq->internal_tag == -1)
888 		return;
889 
890 	__blk_mq_put_driver_tag(hctx, rq);
891 }
892 
893 static void blk_mq_put_driver_tag(struct request *rq)
894 {
895 	struct blk_mq_hw_ctx *hctx;
896 
897 	if (rq->tag == -1 || rq->internal_tag == -1)
898 		return;
899 
900 	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
901 	__blk_mq_put_driver_tag(hctx, rq);
902 }
903 
904 /*
905  * If we fail getting a driver tag because all the driver tags are already
906  * assigned and on the dispatch list, BUT the first entry does not have a
907  * tag, then we could deadlock. For that case, move entries with assigned
908  * driver tags to the front, leaving the set of tagged requests in the
909  * same order, and the untagged set in the same order.
910  */
911 static bool reorder_tags_to_front(struct list_head *list)
912 {
913 	struct request *rq, *tmp, *first = NULL;
914 
915 	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
916 		if (rq == first)
917 			break;
918 		if (rq->tag != -1) {
919 			list_move(&rq->queuelist, list);
920 			if (!first)
921 				first = rq;
922 		}
923 	}
924 
925 	return first != NULL;
926 }
927 
928 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
929 				void *key)
930 {
931 	struct blk_mq_hw_ctx *hctx;
932 
933 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
934 
935 	list_del(&wait->task_list);
936 	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
937 	blk_mq_run_hw_queue(hctx, true);
938 	return 1;
939 }
940 
941 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
942 {
943 	struct sbq_wait_state *ws;
944 
945 	/*
946 	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
947 	 * The thread which wins the race to grab this bit adds the hardware
948 	 * queue to the wait queue.
949 	 */
950 	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
951 	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
952 		return false;
953 
954 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
955 	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
956 
957 	/*
958 	 * As soon as this returns, it's no longer safe to fiddle with
959 	 * hctx->dispatch_wait, since a completion can wake up the wait queue
960 	 * and unlock the bit.
961 	 */
962 	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
963 	return true;
964 }
965 
966 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
967 {
968 	struct request_queue *q = hctx->queue;
969 	struct request *rq;
970 	LIST_HEAD(driver_list);
971 	struct list_head *dptr;
972 	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
973 
974 	/*
975 	 * Start off with dptr being NULL, so we start the first request
976 	 * immediately, even if we have more pending.
977 	 */
978 	dptr = NULL;
979 
980 	/*
981 	 * Now process all the entries, sending them to the driver.
982 	 */
983 	errors = queued = 0;
984 	while (!list_empty(list)) {
985 		struct blk_mq_queue_data bd;
986 
987 		rq = list_first_entry(list, struct request, queuelist);
988 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
989 			if (!queued && reorder_tags_to_front(list))
990 				continue;
991 
992 			/*
993 			 * The initial allocation attempt failed, so we need to
994 			 * rerun the hardware queue when a tag is freed.
995 			 */
996 			if (blk_mq_dispatch_wait_add(hctx)) {
997 				/*
998 				 * It's possible that a tag was freed in the
999 				 * window between the allocation failure and
1000 				 * adding the hardware queue to the wait queue.
1001 				 */
1002 				if (!blk_mq_get_driver_tag(rq, &hctx, false))
1003 					break;
1004 			} else {
1005 				break;
1006 			}
1007 		}
1008 
1009 		list_del_init(&rq->queuelist);
1010 
1011 		bd.rq = rq;
1012 		bd.list = dptr;
1013 
1014 		/*
1015 		 * Flag last if we have no more requests, or if we have more
1016 		 * but can't assign a driver tag to it.
1017 		 */
1018 		if (list_empty(list))
1019 			bd.last = true;
1020 		else {
1021 			struct request *nxt;
1022 
1023 			nxt = list_first_entry(list, struct request, queuelist);
1024 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1025 		}
1026 
1027 		ret = q->mq_ops->queue_rq(hctx, &bd);
1028 		switch (ret) {
1029 		case BLK_MQ_RQ_QUEUE_OK:
1030 			queued++;
1031 			break;
1032 		case BLK_MQ_RQ_QUEUE_BUSY:
1033 			blk_mq_put_driver_tag_hctx(hctx, rq);
1034 			list_add(&rq->queuelist, list);
1035 			__blk_mq_requeue_request(rq);
1036 			break;
1037 		default:
1038 			pr_err("blk-mq: bad return on queue: %d\n", ret);
1039 		case BLK_MQ_RQ_QUEUE_ERROR:
1040 			errors++;
1041 			rq->errors = -EIO;
1042 			blk_mq_end_request(rq, rq->errors);
1043 			break;
1044 		}
1045 
1046 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1047 			break;
1048 
1049 		/*
1050 		 * We've done the first request. If we have more than 1
1051 		 * left in the list, set dptr to defer issue.
1052 		 */
1053 		if (!dptr && list->next != list->prev)
1054 			dptr = &driver_list;
1055 	}
1056 
1057 	hctx->dispatched[queued_to_index(queued)]++;
1058 
1059 	/*
1060 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1061 	 * that is where we will continue on next queue run.
1062 	 */
1063 	if (!list_empty(list)) {
1064 		/*
1065 		 * If we got a driver tag for the next request already,
1066 		 * free it again.
1067 		 */
1068 		rq = list_first_entry(list, struct request, queuelist);
1069 		blk_mq_put_driver_tag(rq);
1070 
1071 		spin_lock(&hctx->lock);
1072 		list_splice_init(list, &hctx->dispatch);
1073 		spin_unlock(&hctx->lock);
1074 
1075 		/*
1076 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1077 		 * it's possible the queue is stopped and restarted again
1078 		 * before this. Queue restart will dispatch requests. And since
1079 		 * requests in rq_list aren't added into hctx->dispatch yet,
1080 		 * the requests in rq_list might get lost.
1081 		 *
1082 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1083 		 *
1084 		 * If RESTART or TAG_WAITING is set, then let completion restart
1085 		 * the queue instead of potentially looping here.
1086 		 */
1087 		if (!blk_mq_sched_needs_restart(hctx) &&
1088 		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1089 			blk_mq_run_hw_queue(hctx, true);
1090 	}
1091 
1092 	return (queued + errors) != 0;
1093 }
1094 
1095 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1096 {
1097 	int srcu_idx;
1098 
1099 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1100 		cpu_online(hctx->next_cpu));
1101 
1102 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1103 		rcu_read_lock();
1104 		blk_mq_sched_dispatch_requests(hctx);
1105 		rcu_read_unlock();
1106 	} else {
1107 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1108 		blk_mq_sched_dispatch_requests(hctx);
1109 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1110 	}
1111 }
1112 
1113 /*
1114  * It'd be great if the workqueue API had a way to pass
1115  * in a mask and had some smarts for more clever placement.
1116  * For now we just round-robin here, switching for every
1117  * BLK_MQ_CPU_WORK_BATCH queued items.
1118  */
1119 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1120 {
1121 	if (hctx->queue->nr_hw_queues == 1)
1122 		return WORK_CPU_UNBOUND;
1123 
1124 	if (--hctx->next_cpu_batch <= 0) {
1125 		int next_cpu;
1126 
1127 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1128 		if (next_cpu >= nr_cpu_ids)
1129 			next_cpu = cpumask_first(hctx->cpumask);
1130 
1131 		hctx->next_cpu = next_cpu;
1132 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1133 	}
1134 
1135 	return hctx->next_cpu;
1136 }
1137 
1138 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1139 {
1140 	if (unlikely(blk_mq_hctx_stopped(hctx) ||
1141 		     !blk_mq_hw_queue_mapped(hctx)))
1142 		return;
1143 
1144 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1145 		int cpu = get_cpu();
1146 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1147 			__blk_mq_run_hw_queue(hctx);
1148 			put_cpu();
1149 			return;
1150 		}
1151 
1152 		put_cpu();
1153 	}
1154 
1155 	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1156 }
1157 
1158 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1159 {
1160 	struct blk_mq_hw_ctx *hctx;
1161 	int i;
1162 
1163 	queue_for_each_hw_ctx(q, hctx, i) {
1164 		if (!blk_mq_hctx_has_pending(hctx) ||
1165 		    blk_mq_hctx_stopped(hctx))
1166 			continue;
1167 
1168 		blk_mq_run_hw_queue(hctx, async);
1169 	}
1170 }
1171 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1172 
1173 /**
1174  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1175  * @q: request queue.
1176  *
1177  * The caller is responsible for serializing this function against
1178  * blk_mq_{start,stop}_hw_queue().
1179  */
1180 bool blk_mq_queue_stopped(struct request_queue *q)
1181 {
1182 	struct blk_mq_hw_ctx *hctx;
1183 	int i;
1184 
1185 	queue_for_each_hw_ctx(q, hctx, i)
1186 		if (blk_mq_hctx_stopped(hctx))
1187 			return true;
1188 
1189 	return false;
1190 }
1191 EXPORT_SYMBOL(blk_mq_queue_stopped);
1192 
1193 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1194 {
1195 	cancel_work(&hctx->run_work);
1196 	cancel_delayed_work(&hctx->delay_work);
1197 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1198 }
1199 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1200 
1201 void blk_mq_stop_hw_queues(struct request_queue *q)
1202 {
1203 	struct blk_mq_hw_ctx *hctx;
1204 	int i;
1205 
1206 	queue_for_each_hw_ctx(q, hctx, i)
1207 		blk_mq_stop_hw_queue(hctx);
1208 }
1209 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1210 
1211 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1212 {
1213 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1214 
1215 	blk_mq_run_hw_queue(hctx, false);
1216 }
1217 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1218 
1219 void blk_mq_start_hw_queues(struct request_queue *q)
1220 {
1221 	struct blk_mq_hw_ctx *hctx;
1222 	int i;
1223 
1224 	queue_for_each_hw_ctx(q, hctx, i)
1225 		blk_mq_start_hw_queue(hctx);
1226 }
1227 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1228 
1229 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1230 {
1231 	if (!blk_mq_hctx_stopped(hctx))
1232 		return;
1233 
1234 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235 	blk_mq_run_hw_queue(hctx, async);
1236 }
1237 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1238 
1239 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1240 {
1241 	struct blk_mq_hw_ctx *hctx;
1242 	int i;
1243 
1244 	queue_for_each_hw_ctx(q, hctx, i)
1245 		blk_mq_start_stopped_hw_queue(hctx, async);
1246 }
1247 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1248 
1249 static void blk_mq_run_work_fn(struct work_struct *work)
1250 {
1251 	struct blk_mq_hw_ctx *hctx;
1252 
1253 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1254 
1255 	__blk_mq_run_hw_queue(hctx);
1256 }
1257 
1258 static void blk_mq_delay_work_fn(struct work_struct *work)
1259 {
1260 	struct blk_mq_hw_ctx *hctx;
1261 
1262 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1263 
1264 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1265 		__blk_mq_run_hw_queue(hctx);
1266 }
1267 
1268 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1269 {
1270 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1271 		return;
1272 
1273 	blk_mq_stop_hw_queue(hctx);
1274 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1275 			&hctx->delay_work, msecs_to_jiffies(msecs));
1276 }
1277 EXPORT_SYMBOL(blk_mq_delay_queue);
1278 
1279 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1280 					    struct request *rq,
1281 					    bool at_head)
1282 {
1283 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1284 
1285 	trace_block_rq_insert(hctx->queue, rq);
1286 
1287 	if (at_head)
1288 		list_add(&rq->queuelist, &ctx->rq_list);
1289 	else
1290 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1291 }
1292 
1293 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1294 			     bool at_head)
1295 {
1296 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1297 
1298 	__blk_mq_insert_req_list(hctx, rq, at_head);
1299 	blk_mq_hctx_mark_pending(hctx, ctx);
1300 }
1301 
1302 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1303 			    struct list_head *list)
1304 
1305 {
1306 	/*
1307 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1308 	 * offline now
1309 	 */
1310 	spin_lock(&ctx->lock);
1311 	while (!list_empty(list)) {
1312 		struct request *rq;
1313 
1314 		rq = list_first_entry(list, struct request, queuelist);
1315 		BUG_ON(rq->mq_ctx != ctx);
1316 		list_del_init(&rq->queuelist);
1317 		__blk_mq_insert_req_list(hctx, rq, false);
1318 	}
1319 	blk_mq_hctx_mark_pending(hctx, ctx);
1320 	spin_unlock(&ctx->lock);
1321 }
1322 
1323 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1324 {
1325 	struct request *rqa = container_of(a, struct request, queuelist);
1326 	struct request *rqb = container_of(b, struct request, queuelist);
1327 
1328 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1329 		 (rqa->mq_ctx == rqb->mq_ctx &&
1330 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1331 }
1332 
1333 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1334 {
1335 	struct blk_mq_ctx *this_ctx;
1336 	struct request_queue *this_q;
1337 	struct request *rq;
1338 	LIST_HEAD(list);
1339 	LIST_HEAD(ctx_list);
1340 	unsigned int depth;
1341 
1342 	list_splice_init(&plug->mq_list, &list);
1343 
1344 	list_sort(NULL, &list, plug_ctx_cmp);
1345 
1346 	this_q = NULL;
1347 	this_ctx = NULL;
1348 	depth = 0;
1349 
1350 	while (!list_empty(&list)) {
1351 		rq = list_entry_rq(list.next);
1352 		list_del_init(&rq->queuelist);
1353 		BUG_ON(!rq->q);
1354 		if (rq->mq_ctx != this_ctx) {
1355 			if (this_ctx) {
1356 				trace_block_unplug(this_q, depth, from_schedule);
1357 				blk_mq_sched_insert_requests(this_q, this_ctx,
1358 								&ctx_list,
1359 								from_schedule);
1360 			}
1361 
1362 			this_ctx = rq->mq_ctx;
1363 			this_q = rq->q;
1364 			depth = 0;
1365 		}
1366 
1367 		depth++;
1368 		list_add_tail(&rq->queuelist, &ctx_list);
1369 	}
1370 
1371 	/*
1372 	 * If 'this_ctx' is set, we know we have entries to complete
1373 	 * on 'ctx_list'. Do those.
1374 	 */
1375 	if (this_ctx) {
1376 		trace_block_unplug(this_q, depth, from_schedule);
1377 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1378 						from_schedule);
1379 	}
1380 }
1381 
1382 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1383 {
1384 	init_request_from_bio(rq, bio);
1385 
1386 	blk_account_io_start(rq, true);
1387 }
1388 
1389 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1390 {
1391 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1392 		!blk_queue_nomerges(hctx->queue);
1393 }
1394 
1395 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1396 					 struct blk_mq_ctx *ctx,
1397 					 struct request *rq, struct bio *bio)
1398 {
1399 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1400 		blk_mq_bio_to_request(rq, bio);
1401 		spin_lock(&ctx->lock);
1402 insert_rq:
1403 		__blk_mq_insert_request(hctx, rq, false);
1404 		spin_unlock(&ctx->lock);
1405 		return false;
1406 	} else {
1407 		struct request_queue *q = hctx->queue;
1408 
1409 		spin_lock(&ctx->lock);
1410 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1411 			blk_mq_bio_to_request(rq, bio);
1412 			goto insert_rq;
1413 		}
1414 
1415 		spin_unlock(&ctx->lock);
1416 		__blk_mq_finish_request(hctx, ctx, rq);
1417 		return true;
1418 	}
1419 }
1420 
1421 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1422 {
1423 	if (rq->tag != -1)
1424 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1425 
1426 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1427 }
1428 
1429 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1430 				      bool may_sleep)
1431 {
1432 	struct request_queue *q = rq->q;
1433 	struct blk_mq_queue_data bd = {
1434 		.rq = rq,
1435 		.list = NULL,
1436 		.last = 1
1437 	};
1438 	struct blk_mq_hw_ctx *hctx;
1439 	blk_qc_t new_cookie;
1440 	int ret;
1441 
1442 	if (q->elevator)
1443 		goto insert;
1444 
1445 	if (!blk_mq_get_driver_tag(rq, &hctx, false))
1446 		goto insert;
1447 
1448 	new_cookie = request_to_qc_t(hctx, rq);
1449 
1450 	/*
1451 	 * For OK queue, we are done. For error, kill it. Any other
1452 	 * error (busy), just add it to our list as we previously
1453 	 * would have done
1454 	 */
1455 	ret = q->mq_ops->queue_rq(hctx, &bd);
1456 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1457 		*cookie = new_cookie;
1458 		return;
1459 	}
1460 
1461 	__blk_mq_requeue_request(rq);
1462 
1463 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1464 		*cookie = BLK_QC_T_NONE;
1465 		rq->errors = -EIO;
1466 		blk_mq_end_request(rq, rq->errors);
1467 		return;
1468 	}
1469 
1470 insert:
1471 	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1472 }
1473 
1474 /*
1475  * Multiple hardware queue variant. This will not use per-process plugs,
1476  * but will attempt to bypass the hctx queueing if we can go straight to
1477  * hardware for SYNC IO.
1478  */
1479 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1480 {
1481 	const int is_sync = op_is_sync(bio->bi_opf);
1482 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1483 	struct blk_mq_alloc_data data = { .flags = 0 };
1484 	struct request *rq;
1485 	unsigned int request_count = 0, srcu_idx;
1486 	struct blk_plug *plug;
1487 	struct request *same_queue_rq = NULL;
1488 	blk_qc_t cookie;
1489 	unsigned int wb_acct;
1490 
1491 	blk_queue_bounce(q, &bio);
1492 
1493 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1494 		bio_io_error(bio);
1495 		return BLK_QC_T_NONE;
1496 	}
1497 
1498 	blk_queue_split(q, &bio, q->bio_split);
1499 
1500 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1501 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1502 		return BLK_QC_T_NONE;
1503 
1504 	if (blk_mq_sched_bio_merge(q, bio))
1505 		return BLK_QC_T_NONE;
1506 
1507 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1508 
1509 	trace_block_getrq(q, bio, bio->bi_opf);
1510 
1511 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1512 	if (unlikely(!rq)) {
1513 		__wbt_done(q->rq_wb, wb_acct);
1514 		return BLK_QC_T_NONE;
1515 	}
1516 
1517 	wbt_track(&rq->issue_stat, wb_acct);
1518 
1519 	cookie = request_to_qc_t(data.hctx, rq);
1520 
1521 	if (unlikely(is_flush_fua)) {
1522 		if (q->elevator)
1523 			goto elv_insert;
1524 		blk_mq_bio_to_request(rq, bio);
1525 		blk_insert_flush(rq);
1526 		goto run_queue;
1527 	}
1528 
1529 	plug = current->plug;
1530 	/*
1531 	 * If the driver supports defer issued based on 'last', then
1532 	 * queue it up like normal since we can potentially save some
1533 	 * CPU this way.
1534 	 */
1535 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1536 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1537 		struct request *old_rq = NULL;
1538 
1539 		blk_mq_bio_to_request(rq, bio);
1540 
1541 		/*
1542 		 * We do limited plugging. If the bio can be merged, do that.
1543 		 * Otherwise the existing request in the plug list will be
1544 		 * issued. So the plug list will have one request at most
1545 		 */
1546 		if (plug) {
1547 			/*
1548 			 * The plug list might get flushed before this. If that
1549 			 * happens, same_queue_rq is invalid and plug list is
1550 			 * empty
1551 			 */
1552 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1553 				old_rq = same_queue_rq;
1554 				list_del_init(&old_rq->queuelist);
1555 			}
1556 			list_add_tail(&rq->queuelist, &plug->mq_list);
1557 		} else /* is_sync */
1558 			old_rq = rq;
1559 		blk_mq_put_ctx(data.ctx);
1560 		if (!old_rq)
1561 			goto done;
1562 
1563 		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1564 			rcu_read_lock();
1565 			blk_mq_try_issue_directly(old_rq, &cookie, false);
1566 			rcu_read_unlock();
1567 		} else {
1568 			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1569 			blk_mq_try_issue_directly(old_rq, &cookie, true);
1570 			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1571 		}
1572 		goto done;
1573 	}
1574 
1575 	if (q->elevator) {
1576 elv_insert:
1577 		blk_mq_put_ctx(data.ctx);
1578 		blk_mq_bio_to_request(rq, bio);
1579 		blk_mq_sched_insert_request(rq, false, true,
1580 						!is_sync || is_flush_fua, true);
1581 		goto done;
1582 	}
1583 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1584 		/*
1585 		 * For a SYNC request, send it to the hardware immediately. For
1586 		 * an ASYNC request, just ensure that we run it later on. The
1587 		 * latter allows for merging opportunities and more efficient
1588 		 * dispatching.
1589 		 */
1590 run_queue:
1591 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1592 	}
1593 	blk_mq_put_ctx(data.ctx);
1594 done:
1595 	return cookie;
1596 }
1597 
1598 /*
1599  * Single hardware queue variant. This will attempt to use any per-process
1600  * plug for merging and IO deferral.
1601  */
1602 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1603 {
1604 	const int is_sync = op_is_sync(bio->bi_opf);
1605 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1606 	struct blk_plug *plug;
1607 	unsigned int request_count = 0;
1608 	struct blk_mq_alloc_data data = { .flags = 0 };
1609 	struct request *rq;
1610 	blk_qc_t cookie;
1611 	unsigned int wb_acct;
1612 
1613 	blk_queue_bounce(q, &bio);
1614 
1615 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1616 		bio_io_error(bio);
1617 		return BLK_QC_T_NONE;
1618 	}
1619 
1620 	blk_queue_split(q, &bio, q->bio_split);
1621 
1622 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1623 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1624 			return BLK_QC_T_NONE;
1625 	} else
1626 		request_count = blk_plug_queued_count(q);
1627 
1628 	if (blk_mq_sched_bio_merge(q, bio))
1629 		return BLK_QC_T_NONE;
1630 
1631 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1632 
1633 	trace_block_getrq(q, bio, bio->bi_opf);
1634 
1635 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1636 	if (unlikely(!rq)) {
1637 		__wbt_done(q->rq_wb, wb_acct);
1638 		return BLK_QC_T_NONE;
1639 	}
1640 
1641 	wbt_track(&rq->issue_stat, wb_acct);
1642 
1643 	cookie = request_to_qc_t(data.hctx, rq);
1644 
1645 	if (unlikely(is_flush_fua)) {
1646 		if (q->elevator)
1647 			goto elv_insert;
1648 		blk_mq_bio_to_request(rq, bio);
1649 		blk_insert_flush(rq);
1650 		goto run_queue;
1651 	}
1652 
1653 	/*
1654 	 * A task plug currently exists. Since this is completely lockless,
1655 	 * utilize that to temporarily store requests until the task is
1656 	 * either done or scheduled away.
1657 	 */
1658 	plug = current->plug;
1659 	if (plug) {
1660 		struct request *last = NULL;
1661 
1662 		blk_mq_bio_to_request(rq, bio);
1663 
1664 		/*
1665 		 * @request_count may become stale because of schedule
1666 		 * out, so check the list again.
1667 		 */
1668 		if (list_empty(&plug->mq_list))
1669 			request_count = 0;
1670 		if (!request_count)
1671 			trace_block_plug(q);
1672 		else
1673 			last = list_entry_rq(plug->mq_list.prev);
1674 
1675 		blk_mq_put_ctx(data.ctx);
1676 
1677 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1678 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1679 			blk_flush_plug_list(plug, false);
1680 			trace_block_plug(q);
1681 		}
1682 
1683 		list_add_tail(&rq->queuelist, &plug->mq_list);
1684 		return cookie;
1685 	}
1686 
1687 	if (q->elevator) {
1688 elv_insert:
1689 		blk_mq_put_ctx(data.ctx);
1690 		blk_mq_bio_to_request(rq, bio);
1691 		blk_mq_sched_insert_request(rq, false, true,
1692 						!is_sync || is_flush_fua, true);
1693 		goto done;
1694 	}
1695 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1696 		/*
1697 		 * For a SYNC request, send it to the hardware immediately. For
1698 		 * an ASYNC request, just ensure that we run it later on. The
1699 		 * latter allows for merging opportunities and more efficient
1700 		 * dispatching.
1701 		 */
1702 run_queue:
1703 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1704 	}
1705 
1706 	blk_mq_put_ctx(data.ctx);
1707 done:
1708 	return cookie;
1709 }
1710 
1711 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1712 		     unsigned int hctx_idx)
1713 {
1714 	struct page *page;
1715 
1716 	if (tags->rqs && set->ops->exit_request) {
1717 		int i;
1718 
1719 		for (i = 0; i < tags->nr_tags; i++) {
1720 			struct request *rq = tags->static_rqs[i];
1721 
1722 			if (!rq)
1723 				continue;
1724 			set->ops->exit_request(set->driver_data, rq,
1725 						hctx_idx, i);
1726 			tags->static_rqs[i] = NULL;
1727 		}
1728 	}
1729 
1730 	while (!list_empty(&tags->page_list)) {
1731 		page = list_first_entry(&tags->page_list, struct page, lru);
1732 		list_del_init(&page->lru);
1733 		/*
1734 		 * Remove kmemleak object previously allocated in
1735 		 * blk_mq_init_rq_map().
1736 		 */
1737 		kmemleak_free(page_address(page));
1738 		__free_pages(page, page->private);
1739 	}
1740 }
1741 
1742 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1743 {
1744 	kfree(tags->rqs);
1745 	tags->rqs = NULL;
1746 	kfree(tags->static_rqs);
1747 	tags->static_rqs = NULL;
1748 
1749 	blk_mq_free_tags(tags);
1750 }
1751 
1752 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1753 					unsigned int hctx_idx,
1754 					unsigned int nr_tags,
1755 					unsigned int reserved_tags)
1756 {
1757 	struct blk_mq_tags *tags;
1758 	int node;
1759 
1760 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1761 	if (node == NUMA_NO_NODE)
1762 		node = set->numa_node;
1763 
1764 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1765 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1766 	if (!tags)
1767 		return NULL;
1768 
1769 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1770 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1771 				 node);
1772 	if (!tags->rqs) {
1773 		blk_mq_free_tags(tags);
1774 		return NULL;
1775 	}
1776 
1777 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779 				 node);
1780 	if (!tags->static_rqs) {
1781 		kfree(tags->rqs);
1782 		blk_mq_free_tags(tags);
1783 		return NULL;
1784 	}
1785 
1786 	return tags;
1787 }
1788 
1789 static size_t order_to_size(unsigned int order)
1790 {
1791 	return (size_t)PAGE_SIZE << order;
1792 }
1793 
1794 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1795 		     unsigned int hctx_idx, unsigned int depth)
1796 {
1797 	unsigned int i, j, entries_per_page, max_order = 4;
1798 	size_t rq_size, left;
1799 	int node;
1800 
1801 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1802 	if (node == NUMA_NO_NODE)
1803 		node = set->numa_node;
1804 
1805 	INIT_LIST_HEAD(&tags->page_list);
1806 
1807 	/*
1808 	 * rq_size is the size of the request plus driver payload, rounded
1809 	 * to the cacheline size
1810 	 */
1811 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1812 				cache_line_size());
1813 	left = rq_size * depth;
1814 
1815 	for (i = 0; i < depth; ) {
1816 		int this_order = max_order;
1817 		struct page *page;
1818 		int to_do;
1819 		void *p;
1820 
1821 		while (this_order && left < order_to_size(this_order - 1))
1822 			this_order--;
1823 
1824 		do {
1825 			page = alloc_pages_node(node,
1826 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1827 				this_order);
1828 			if (page)
1829 				break;
1830 			if (!this_order--)
1831 				break;
1832 			if (order_to_size(this_order) < rq_size)
1833 				break;
1834 		} while (1);
1835 
1836 		if (!page)
1837 			goto fail;
1838 
1839 		page->private = this_order;
1840 		list_add_tail(&page->lru, &tags->page_list);
1841 
1842 		p = page_address(page);
1843 		/*
1844 		 * Allow kmemleak to scan these pages as they contain pointers
1845 		 * to additional allocations like via ops->init_request().
1846 		 */
1847 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1848 		entries_per_page = order_to_size(this_order) / rq_size;
1849 		to_do = min(entries_per_page, depth - i);
1850 		left -= to_do * rq_size;
1851 		for (j = 0; j < to_do; j++) {
1852 			struct request *rq = p;
1853 
1854 			tags->static_rqs[i] = rq;
1855 			if (set->ops->init_request) {
1856 				if (set->ops->init_request(set->driver_data,
1857 						rq, hctx_idx, i,
1858 						node)) {
1859 					tags->static_rqs[i] = NULL;
1860 					goto fail;
1861 				}
1862 			}
1863 
1864 			p += rq_size;
1865 			i++;
1866 		}
1867 	}
1868 	return 0;
1869 
1870 fail:
1871 	blk_mq_free_rqs(set, tags, hctx_idx);
1872 	return -ENOMEM;
1873 }
1874 
1875 /*
1876  * 'cpu' is going away. splice any existing rq_list entries from this
1877  * software queue to the hw queue dispatch list, and ensure that it
1878  * gets run.
1879  */
1880 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1881 {
1882 	struct blk_mq_hw_ctx *hctx;
1883 	struct blk_mq_ctx *ctx;
1884 	LIST_HEAD(tmp);
1885 
1886 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1887 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1888 
1889 	spin_lock(&ctx->lock);
1890 	if (!list_empty(&ctx->rq_list)) {
1891 		list_splice_init(&ctx->rq_list, &tmp);
1892 		blk_mq_hctx_clear_pending(hctx, ctx);
1893 	}
1894 	spin_unlock(&ctx->lock);
1895 
1896 	if (list_empty(&tmp))
1897 		return 0;
1898 
1899 	spin_lock(&hctx->lock);
1900 	list_splice_tail_init(&tmp, &hctx->dispatch);
1901 	spin_unlock(&hctx->lock);
1902 
1903 	blk_mq_run_hw_queue(hctx, true);
1904 	return 0;
1905 }
1906 
1907 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1908 {
1909 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1910 					    &hctx->cpuhp_dead);
1911 }
1912 
1913 /* hctx->ctxs will be freed in queue's release handler */
1914 static void blk_mq_exit_hctx(struct request_queue *q,
1915 		struct blk_mq_tag_set *set,
1916 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1917 {
1918 	unsigned flush_start_tag = set->queue_depth;
1919 
1920 	blk_mq_tag_idle(hctx);
1921 
1922 	if (set->ops->exit_request)
1923 		set->ops->exit_request(set->driver_data,
1924 				       hctx->fq->flush_rq, hctx_idx,
1925 				       flush_start_tag + hctx_idx);
1926 
1927 	if (set->ops->exit_hctx)
1928 		set->ops->exit_hctx(hctx, hctx_idx);
1929 
1930 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1931 		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1932 
1933 	blk_mq_remove_cpuhp(hctx);
1934 	blk_free_flush_queue(hctx->fq);
1935 	sbitmap_free(&hctx->ctx_map);
1936 }
1937 
1938 static void blk_mq_exit_hw_queues(struct request_queue *q,
1939 		struct blk_mq_tag_set *set, int nr_queue)
1940 {
1941 	struct blk_mq_hw_ctx *hctx;
1942 	unsigned int i;
1943 
1944 	queue_for_each_hw_ctx(q, hctx, i) {
1945 		if (i == nr_queue)
1946 			break;
1947 		blk_mq_exit_hctx(q, set, hctx, i);
1948 	}
1949 }
1950 
1951 static int blk_mq_init_hctx(struct request_queue *q,
1952 		struct blk_mq_tag_set *set,
1953 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1954 {
1955 	int node;
1956 	unsigned flush_start_tag = set->queue_depth;
1957 
1958 	node = hctx->numa_node;
1959 	if (node == NUMA_NO_NODE)
1960 		node = hctx->numa_node = set->numa_node;
1961 
1962 	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1963 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1964 	spin_lock_init(&hctx->lock);
1965 	INIT_LIST_HEAD(&hctx->dispatch);
1966 	hctx->queue = q;
1967 	hctx->queue_num = hctx_idx;
1968 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1969 
1970 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1971 
1972 	hctx->tags = set->tags[hctx_idx];
1973 
1974 	/*
1975 	 * Allocate space for all possible cpus to avoid allocation at
1976 	 * runtime
1977 	 */
1978 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1979 					GFP_KERNEL, node);
1980 	if (!hctx->ctxs)
1981 		goto unregister_cpu_notifier;
1982 
1983 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1984 			      node))
1985 		goto free_ctxs;
1986 
1987 	hctx->nr_ctx = 0;
1988 
1989 	if (set->ops->init_hctx &&
1990 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1991 		goto free_bitmap;
1992 
1993 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1994 	if (!hctx->fq)
1995 		goto exit_hctx;
1996 
1997 	if (set->ops->init_request &&
1998 	    set->ops->init_request(set->driver_data,
1999 				   hctx->fq->flush_rq, hctx_idx,
2000 				   flush_start_tag + hctx_idx, node))
2001 		goto free_fq;
2002 
2003 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2004 		init_srcu_struct(&hctx->queue_rq_srcu);
2005 
2006 	return 0;
2007 
2008  free_fq:
2009 	kfree(hctx->fq);
2010  exit_hctx:
2011 	if (set->ops->exit_hctx)
2012 		set->ops->exit_hctx(hctx, hctx_idx);
2013  free_bitmap:
2014 	sbitmap_free(&hctx->ctx_map);
2015  free_ctxs:
2016 	kfree(hctx->ctxs);
2017  unregister_cpu_notifier:
2018 	blk_mq_remove_cpuhp(hctx);
2019 	return -1;
2020 }
2021 
2022 static void blk_mq_init_cpu_queues(struct request_queue *q,
2023 				   unsigned int nr_hw_queues)
2024 {
2025 	unsigned int i;
2026 
2027 	for_each_possible_cpu(i) {
2028 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2029 		struct blk_mq_hw_ctx *hctx;
2030 
2031 		__ctx->cpu = i;
2032 		spin_lock_init(&__ctx->lock);
2033 		INIT_LIST_HEAD(&__ctx->rq_list);
2034 		__ctx->queue = q;
2035 		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2036 		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2037 
2038 		/* If the cpu isn't online, the cpu is mapped to first hctx */
2039 		if (!cpu_online(i))
2040 			continue;
2041 
2042 		hctx = blk_mq_map_queue(q, i);
2043 
2044 		/*
2045 		 * Set local node, IFF we have more than one hw queue. If
2046 		 * not, we remain on the home node of the device
2047 		 */
2048 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2049 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2050 	}
2051 }
2052 
2053 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2054 {
2055 	int ret = 0;
2056 
2057 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2058 					set->queue_depth, set->reserved_tags);
2059 	if (!set->tags[hctx_idx])
2060 		return false;
2061 
2062 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2063 				set->queue_depth);
2064 	if (!ret)
2065 		return true;
2066 
2067 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2068 	set->tags[hctx_idx] = NULL;
2069 	return false;
2070 }
2071 
2072 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2073 					 unsigned int hctx_idx)
2074 {
2075 	if (set->tags[hctx_idx]) {
2076 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2077 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2078 		set->tags[hctx_idx] = NULL;
2079 	}
2080 }
2081 
2082 static void blk_mq_map_swqueue(struct request_queue *q,
2083 			       const struct cpumask *online_mask)
2084 {
2085 	unsigned int i, hctx_idx;
2086 	struct blk_mq_hw_ctx *hctx;
2087 	struct blk_mq_ctx *ctx;
2088 	struct blk_mq_tag_set *set = q->tag_set;
2089 
2090 	/*
2091 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2092 	 */
2093 	mutex_lock(&q->sysfs_lock);
2094 
2095 	queue_for_each_hw_ctx(q, hctx, i) {
2096 		cpumask_clear(hctx->cpumask);
2097 		hctx->nr_ctx = 0;
2098 	}
2099 
2100 	/*
2101 	 * Map software to hardware queues
2102 	 */
2103 	for_each_possible_cpu(i) {
2104 		/* If the cpu isn't online, the cpu is mapped to first hctx */
2105 		if (!cpumask_test_cpu(i, online_mask))
2106 			continue;
2107 
2108 		hctx_idx = q->mq_map[i];
2109 		/* unmapped hw queue can be remapped after CPU topo changed */
2110 		if (!set->tags[hctx_idx] &&
2111 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2112 			/*
2113 			 * If tags initialization fail for some hctx,
2114 			 * that hctx won't be brought online.  In this
2115 			 * case, remap the current ctx to hctx[0] which
2116 			 * is guaranteed to always have tags allocated
2117 			 */
2118 			q->mq_map[i] = 0;
2119 		}
2120 
2121 		ctx = per_cpu_ptr(q->queue_ctx, i);
2122 		hctx = blk_mq_map_queue(q, i);
2123 
2124 		cpumask_set_cpu(i, hctx->cpumask);
2125 		ctx->index_hw = hctx->nr_ctx;
2126 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2127 	}
2128 
2129 	mutex_unlock(&q->sysfs_lock);
2130 
2131 	queue_for_each_hw_ctx(q, hctx, i) {
2132 		/*
2133 		 * If no software queues are mapped to this hardware queue,
2134 		 * disable it and free the request entries.
2135 		 */
2136 		if (!hctx->nr_ctx) {
2137 			/* Never unmap queue 0.  We need it as a
2138 			 * fallback in case of a new remap fails
2139 			 * allocation
2140 			 */
2141 			if (i && set->tags[i])
2142 				blk_mq_free_map_and_requests(set, i);
2143 
2144 			hctx->tags = NULL;
2145 			continue;
2146 		}
2147 
2148 		hctx->tags = set->tags[i];
2149 		WARN_ON(!hctx->tags);
2150 
2151 		/*
2152 		 * Set the map size to the number of mapped software queues.
2153 		 * This is more accurate and more efficient than looping
2154 		 * over all possibly mapped software queues.
2155 		 */
2156 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2157 
2158 		/*
2159 		 * Initialize batch roundrobin counts
2160 		 */
2161 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2162 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2163 	}
2164 }
2165 
2166 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2167 {
2168 	struct blk_mq_hw_ctx *hctx;
2169 	int i;
2170 
2171 	queue_for_each_hw_ctx(q, hctx, i) {
2172 		if (shared)
2173 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2174 		else
2175 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2176 	}
2177 }
2178 
2179 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2180 {
2181 	struct request_queue *q;
2182 
2183 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2184 		blk_mq_freeze_queue(q);
2185 		queue_set_hctx_shared(q, shared);
2186 		blk_mq_unfreeze_queue(q);
2187 	}
2188 }
2189 
2190 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2191 {
2192 	struct blk_mq_tag_set *set = q->tag_set;
2193 
2194 	mutex_lock(&set->tag_list_lock);
2195 	list_del_init(&q->tag_set_list);
2196 	if (list_is_singular(&set->tag_list)) {
2197 		/* just transitioned to unshared */
2198 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2199 		/* update existing queue */
2200 		blk_mq_update_tag_set_depth(set, false);
2201 	}
2202 	mutex_unlock(&set->tag_list_lock);
2203 }
2204 
2205 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2206 				     struct request_queue *q)
2207 {
2208 	q->tag_set = set;
2209 
2210 	mutex_lock(&set->tag_list_lock);
2211 
2212 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2213 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2214 		set->flags |= BLK_MQ_F_TAG_SHARED;
2215 		/* update existing queue */
2216 		blk_mq_update_tag_set_depth(set, true);
2217 	}
2218 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2219 		queue_set_hctx_shared(q, true);
2220 	list_add_tail(&q->tag_set_list, &set->tag_list);
2221 
2222 	mutex_unlock(&set->tag_list_lock);
2223 }
2224 
2225 /*
2226  * It is the actual release handler for mq, but we do it from
2227  * request queue's release handler for avoiding use-after-free
2228  * and headache because q->mq_kobj shouldn't have been introduced,
2229  * but we can't group ctx/kctx kobj without it.
2230  */
2231 void blk_mq_release(struct request_queue *q)
2232 {
2233 	struct blk_mq_hw_ctx *hctx;
2234 	unsigned int i;
2235 
2236 	blk_mq_sched_teardown(q);
2237 
2238 	/* hctx kobj stays in hctx */
2239 	queue_for_each_hw_ctx(q, hctx, i) {
2240 		if (!hctx)
2241 			continue;
2242 		kobject_put(&hctx->kobj);
2243 	}
2244 
2245 	q->mq_map = NULL;
2246 
2247 	kfree(q->queue_hw_ctx);
2248 
2249 	/*
2250 	 * release .mq_kobj and sw queue's kobject now because
2251 	 * both share lifetime with request queue.
2252 	 */
2253 	blk_mq_sysfs_deinit(q);
2254 
2255 	free_percpu(q->queue_ctx);
2256 }
2257 
2258 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2259 {
2260 	struct request_queue *uninit_q, *q;
2261 
2262 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2263 	if (!uninit_q)
2264 		return ERR_PTR(-ENOMEM);
2265 
2266 	q = blk_mq_init_allocated_queue(set, uninit_q);
2267 	if (IS_ERR(q))
2268 		blk_cleanup_queue(uninit_q);
2269 
2270 	return q;
2271 }
2272 EXPORT_SYMBOL(blk_mq_init_queue);
2273 
2274 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2275 						struct request_queue *q)
2276 {
2277 	int i, j;
2278 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2279 
2280 	blk_mq_sysfs_unregister(q);
2281 	for (i = 0; i < set->nr_hw_queues; i++) {
2282 		int node;
2283 
2284 		if (hctxs[i])
2285 			continue;
2286 
2287 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2288 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2289 					GFP_KERNEL, node);
2290 		if (!hctxs[i])
2291 			break;
2292 
2293 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2294 						node)) {
2295 			kfree(hctxs[i]);
2296 			hctxs[i] = NULL;
2297 			break;
2298 		}
2299 
2300 		atomic_set(&hctxs[i]->nr_active, 0);
2301 		hctxs[i]->numa_node = node;
2302 		hctxs[i]->queue_num = i;
2303 
2304 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2305 			free_cpumask_var(hctxs[i]->cpumask);
2306 			kfree(hctxs[i]);
2307 			hctxs[i] = NULL;
2308 			break;
2309 		}
2310 		blk_mq_hctx_kobj_init(hctxs[i]);
2311 	}
2312 	for (j = i; j < q->nr_hw_queues; j++) {
2313 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2314 
2315 		if (hctx) {
2316 			if (hctx->tags)
2317 				blk_mq_free_map_and_requests(set, j);
2318 			blk_mq_exit_hctx(q, set, hctx, j);
2319 			kobject_put(&hctx->kobj);
2320 			hctxs[j] = NULL;
2321 
2322 		}
2323 	}
2324 	q->nr_hw_queues = i;
2325 	blk_mq_sysfs_register(q);
2326 }
2327 
2328 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2329 						  struct request_queue *q)
2330 {
2331 	/* mark the queue as mq asap */
2332 	q->mq_ops = set->ops;
2333 
2334 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2335 	if (!q->queue_ctx)
2336 		goto err_exit;
2337 
2338 	/* init q->mq_kobj and sw queues' kobjects */
2339 	blk_mq_sysfs_init(q);
2340 
2341 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2342 						GFP_KERNEL, set->numa_node);
2343 	if (!q->queue_hw_ctx)
2344 		goto err_percpu;
2345 
2346 	q->mq_map = set->mq_map;
2347 
2348 	blk_mq_realloc_hw_ctxs(set, q);
2349 	if (!q->nr_hw_queues)
2350 		goto err_hctxs;
2351 
2352 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2353 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2354 
2355 	q->nr_queues = nr_cpu_ids;
2356 
2357 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2358 
2359 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2360 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2361 
2362 	q->sg_reserved_size = INT_MAX;
2363 
2364 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2365 	INIT_LIST_HEAD(&q->requeue_list);
2366 	spin_lock_init(&q->requeue_lock);
2367 
2368 	if (q->nr_hw_queues > 1)
2369 		blk_queue_make_request(q, blk_mq_make_request);
2370 	else
2371 		blk_queue_make_request(q, blk_sq_make_request);
2372 
2373 	/*
2374 	 * Do this after blk_queue_make_request() overrides it...
2375 	 */
2376 	q->nr_requests = set->queue_depth;
2377 
2378 	/*
2379 	 * Default to classic polling
2380 	 */
2381 	q->poll_nsec = -1;
2382 
2383 	if (set->ops->complete)
2384 		blk_queue_softirq_done(q, set->ops->complete);
2385 
2386 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2387 
2388 	get_online_cpus();
2389 	mutex_lock(&all_q_mutex);
2390 
2391 	list_add_tail(&q->all_q_node, &all_q_list);
2392 	blk_mq_add_queue_tag_set(set, q);
2393 	blk_mq_map_swqueue(q, cpu_online_mask);
2394 
2395 	mutex_unlock(&all_q_mutex);
2396 	put_online_cpus();
2397 
2398 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2399 		int ret;
2400 
2401 		ret = blk_mq_sched_init(q);
2402 		if (ret)
2403 			return ERR_PTR(ret);
2404 	}
2405 
2406 	return q;
2407 
2408 err_hctxs:
2409 	kfree(q->queue_hw_ctx);
2410 err_percpu:
2411 	free_percpu(q->queue_ctx);
2412 err_exit:
2413 	q->mq_ops = NULL;
2414 	return ERR_PTR(-ENOMEM);
2415 }
2416 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2417 
2418 void blk_mq_free_queue(struct request_queue *q)
2419 {
2420 	struct blk_mq_tag_set	*set = q->tag_set;
2421 
2422 	mutex_lock(&all_q_mutex);
2423 	list_del_init(&q->all_q_node);
2424 	mutex_unlock(&all_q_mutex);
2425 
2426 	wbt_exit(q);
2427 
2428 	blk_mq_del_queue_tag_set(q);
2429 
2430 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2431 }
2432 
2433 /* Basically redo blk_mq_init_queue with queue frozen */
2434 static void blk_mq_queue_reinit(struct request_queue *q,
2435 				const struct cpumask *online_mask)
2436 {
2437 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2438 
2439 	blk_mq_sysfs_unregister(q);
2440 
2441 	/*
2442 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2443 	 * we should change hctx numa_node according to new topology (this
2444 	 * involves free and re-allocate memory, worthy doing?)
2445 	 */
2446 
2447 	blk_mq_map_swqueue(q, online_mask);
2448 
2449 	blk_mq_sysfs_register(q);
2450 }
2451 
2452 /*
2453  * New online cpumask which is going to be set in this hotplug event.
2454  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2455  * one-by-one and dynamically allocating this could result in a failure.
2456  */
2457 static struct cpumask cpuhp_online_new;
2458 
2459 static void blk_mq_queue_reinit_work(void)
2460 {
2461 	struct request_queue *q;
2462 
2463 	mutex_lock(&all_q_mutex);
2464 	/*
2465 	 * We need to freeze and reinit all existing queues.  Freezing
2466 	 * involves synchronous wait for an RCU grace period and doing it
2467 	 * one by one may take a long time.  Start freezing all queues in
2468 	 * one swoop and then wait for the completions so that freezing can
2469 	 * take place in parallel.
2470 	 */
2471 	list_for_each_entry(q, &all_q_list, all_q_node)
2472 		blk_mq_freeze_queue_start(q);
2473 	list_for_each_entry(q, &all_q_list, all_q_node)
2474 		blk_mq_freeze_queue_wait(q);
2475 
2476 	list_for_each_entry(q, &all_q_list, all_q_node)
2477 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2478 
2479 	list_for_each_entry(q, &all_q_list, all_q_node)
2480 		blk_mq_unfreeze_queue(q);
2481 
2482 	mutex_unlock(&all_q_mutex);
2483 }
2484 
2485 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2486 {
2487 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2488 	blk_mq_queue_reinit_work();
2489 	return 0;
2490 }
2491 
2492 /*
2493  * Before hotadded cpu starts handling requests, new mappings must be
2494  * established.  Otherwise, these requests in hw queue might never be
2495  * dispatched.
2496  *
2497  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2498  * for CPU0, and ctx1 for CPU1).
2499  *
2500  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2501  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2502  *
2503  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2504  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2505  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2506  * ignored.
2507  */
2508 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2509 {
2510 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2511 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2512 	blk_mq_queue_reinit_work();
2513 	return 0;
2514 }
2515 
2516 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2517 {
2518 	int i;
2519 
2520 	for (i = 0; i < set->nr_hw_queues; i++)
2521 		if (!__blk_mq_alloc_rq_map(set, i))
2522 			goto out_unwind;
2523 
2524 	return 0;
2525 
2526 out_unwind:
2527 	while (--i >= 0)
2528 		blk_mq_free_rq_map(set->tags[i]);
2529 
2530 	return -ENOMEM;
2531 }
2532 
2533 /*
2534  * Allocate the request maps associated with this tag_set. Note that this
2535  * may reduce the depth asked for, if memory is tight. set->queue_depth
2536  * will be updated to reflect the allocated depth.
2537  */
2538 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2539 {
2540 	unsigned int depth;
2541 	int err;
2542 
2543 	depth = set->queue_depth;
2544 	do {
2545 		err = __blk_mq_alloc_rq_maps(set);
2546 		if (!err)
2547 			break;
2548 
2549 		set->queue_depth >>= 1;
2550 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2551 			err = -ENOMEM;
2552 			break;
2553 		}
2554 	} while (set->queue_depth);
2555 
2556 	if (!set->queue_depth || err) {
2557 		pr_err("blk-mq: failed to allocate request map\n");
2558 		return -ENOMEM;
2559 	}
2560 
2561 	if (depth != set->queue_depth)
2562 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2563 						depth, set->queue_depth);
2564 
2565 	return 0;
2566 }
2567 
2568 /*
2569  * Alloc a tag set to be associated with one or more request queues.
2570  * May fail with EINVAL for various error conditions. May adjust the
2571  * requested depth down, if if it too large. In that case, the set
2572  * value will be stored in set->queue_depth.
2573  */
2574 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2575 {
2576 	int ret;
2577 
2578 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2579 
2580 	if (!set->nr_hw_queues)
2581 		return -EINVAL;
2582 	if (!set->queue_depth)
2583 		return -EINVAL;
2584 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2585 		return -EINVAL;
2586 
2587 	if (!set->ops->queue_rq)
2588 		return -EINVAL;
2589 
2590 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2591 		pr_info("blk-mq: reduced tag depth to %u\n",
2592 			BLK_MQ_MAX_DEPTH);
2593 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2594 	}
2595 
2596 	/*
2597 	 * If a crashdump is active, then we are potentially in a very
2598 	 * memory constrained environment. Limit us to 1 queue and
2599 	 * 64 tags to prevent using too much memory.
2600 	 */
2601 	if (is_kdump_kernel()) {
2602 		set->nr_hw_queues = 1;
2603 		set->queue_depth = min(64U, set->queue_depth);
2604 	}
2605 	/*
2606 	 * There is no use for more h/w queues than cpus.
2607 	 */
2608 	if (set->nr_hw_queues > nr_cpu_ids)
2609 		set->nr_hw_queues = nr_cpu_ids;
2610 
2611 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2612 				 GFP_KERNEL, set->numa_node);
2613 	if (!set->tags)
2614 		return -ENOMEM;
2615 
2616 	ret = -ENOMEM;
2617 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2618 			GFP_KERNEL, set->numa_node);
2619 	if (!set->mq_map)
2620 		goto out_free_tags;
2621 
2622 	if (set->ops->map_queues)
2623 		ret = set->ops->map_queues(set);
2624 	else
2625 		ret = blk_mq_map_queues(set);
2626 	if (ret)
2627 		goto out_free_mq_map;
2628 
2629 	ret = blk_mq_alloc_rq_maps(set);
2630 	if (ret)
2631 		goto out_free_mq_map;
2632 
2633 	mutex_init(&set->tag_list_lock);
2634 	INIT_LIST_HEAD(&set->tag_list);
2635 
2636 	return 0;
2637 
2638 out_free_mq_map:
2639 	kfree(set->mq_map);
2640 	set->mq_map = NULL;
2641 out_free_tags:
2642 	kfree(set->tags);
2643 	set->tags = NULL;
2644 	return ret;
2645 }
2646 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2647 
2648 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2649 {
2650 	int i;
2651 
2652 	for (i = 0; i < nr_cpu_ids; i++)
2653 		blk_mq_free_map_and_requests(set, i);
2654 
2655 	kfree(set->mq_map);
2656 	set->mq_map = NULL;
2657 
2658 	kfree(set->tags);
2659 	set->tags = NULL;
2660 }
2661 EXPORT_SYMBOL(blk_mq_free_tag_set);
2662 
2663 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2664 {
2665 	struct blk_mq_tag_set *set = q->tag_set;
2666 	struct blk_mq_hw_ctx *hctx;
2667 	int i, ret;
2668 
2669 	if (!set)
2670 		return -EINVAL;
2671 
2672 	blk_mq_freeze_queue(q);
2673 	blk_mq_quiesce_queue(q);
2674 
2675 	ret = 0;
2676 	queue_for_each_hw_ctx(q, hctx, i) {
2677 		if (!hctx->tags)
2678 			continue;
2679 		/*
2680 		 * If we're using an MQ scheduler, just update the scheduler
2681 		 * queue depth. This is similar to what the old code would do.
2682 		 */
2683 		if (!hctx->sched_tags) {
2684 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2685 							min(nr, set->queue_depth),
2686 							false);
2687 		} else {
2688 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2689 							nr, true);
2690 		}
2691 		if (ret)
2692 			break;
2693 	}
2694 
2695 	if (!ret)
2696 		q->nr_requests = nr;
2697 
2698 	blk_mq_unfreeze_queue(q);
2699 	blk_mq_start_stopped_hw_queues(q, true);
2700 
2701 	return ret;
2702 }
2703 
2704 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2705 {
2706 	struct request_queue *q;
2707 
2708 	if (nr_hw_queues > nr_cpu_ids)
2709 		nr_hw_queues = nr_cpu_ids;
2710 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2711 		return;
2712 
2713 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2714 		blk_mq_freeze_queue(q);
2715 
2716 	set->nr_hw_queues = nr_hw_queues;
2717 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2718 		blk_mq_realloc_hw_ctxs(set, q);
2719 
2720 		/*
2721 		 * Manually set the make_request_fn as blk_queue_make_request
2722 		 * resets a lot of the queue settings.
2723 		 */
2724 		if (q->nr_hw_queues > 1)
2725 			q->make_request_fn = blk_mq_make_request;
2726 		else
2727 			q->make_request_fn = blk_sq_make_request;
2728 
2729 		blk_mq_queue_reinit(q, cpu_online_mask);
2730 	}
2731 
2732 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2733 		blk_mq_unfreeze_queue(q);
2734 }
2735 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2736 
2737 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2738 				       struct blk_mq_hw_ctx *hctx,
2739 				       struct request *rq)
2740 {
2741 	struct blk_rq_stat stat[2];
2742 	unsigned long ret = 0;
2743 
2744 	/*
2745 	 * If stats collection isn't on, don't sleep but turn it on for
2746 	 * future users
2747 	 */
2748 	if (!blk_stat_enable(q))
2749 		return 0;
2750 
2751 	/*
2752 	 * We don't have to do this once per IO, should optimize this
2753 	 * to just use the current window of stats until it changes
2754 	 */
2755 	memset(&stat, 0, sizeof(stat));
2756 	blk_hctx_stat_get(hctx, stat);
2757 
2758 	/*
2759 	 * As an optimistic guess, use half of the mean service time
2760 	 * for this type of request. We can (and should) make this smarter.
2761 	 * For instance, if the completion latencies are tight, we can
2762 	 * get closer than just half the mean. This is especially
2763 	 * important on devices where the completion latencies are longer
2764 	 * than ~10 usec.
2765 	 */
2766 	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2767 		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2768 	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2769 		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2770 
2771 	return ret;
2772 }
2773 
2774 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2775 				     struct blk_mq_hw_ctx *hctx,
2776 				     struct request *rq)
2777 {
2778 	struct hrtimer_sleeper hs;
2779 	enum hrtimer_mode mode;
2780 	unsigned int nsecs;
2781 	ktime_t kt;
2782 
2783 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2784 		return false;
2785 
2786 	/*
2787 	 * poll_nsec can be:
2788 	 *
2789 	 * -1:	don't ever hybrid sleep
2790 	 *  0:	use half of prev avg
2791 	 * >0:	use this specific value
2792 	 */
2793 	if (q->poll_nsec == -1)
2794 		return false;
2795 	else if (q->poll_nsec > 0)
2796 		nsecs = q->poll_nsec;
2797 	else
2798 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2799 
2800 	if (!nsecs)
2801 		return false;
2802 
2803 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2804 
2805 	/*
2806 	 * This will be replaced with the stats tracking code, using
2807 	 * 'avg_completion_time / 2' as the pre-sleep target.
2808 	 */
2809 	kt = nsecs;
2810 
2811 	mode = HRTIMER_MODE_REL;
2812 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2813 	hrtimer_set_expires(&hs.timer, kt);
2814 
2815 	hrtimer_init_sleeper(&hs, current);
2816 	do {
2817 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2818 			break;
2819 		set_current_state(TASK_UNINTERRUPTIBLE);
2820 		hrtimer_start_expires(&hs.timer, mode);
2821 		if (hs.task)
2822 			io_schedule();
2823 		hrtimer_cancel(&hs.timer);
2824 		mode = HRTIMER_MODE_ABS;
2825 	} while (hs.task && !signal_pending(current));
2826 
2827 	__set_current_state(TASK_RUNNING);
2828 	destroy_hrtimer_on_stack(&hs.timer);
2829 	return true;
2830 }
2831 
2832 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2833 {
2834 	struct request_queue *q = hctx->queue;
2835 	long state;
2836 
2837 	/*
2838 	 * If we sleep, have the caller restart the poll loop to reset
2839 	 * the state. Like for the other success return cases, the
2840 	 * caller is responsible for checking if the IO completed. If
2841 	 * the IO isn't complete, we'll get called again and will go
2842 	 * straight to the busy poll loop.
2843 	 */
2844 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2845 		return true;
2846 
2847 	hctx->poll_considered++;
2848 
2849 	state = current->state;
2850 	while (!need_resched()) {
2851 		int ret;
2852 
2853 		hctx->poll_invoked++;
2854 
2855 		ret = q->mq_ops->poll(hctx, rq->tag);
2856 		if (ret > 0) {
2857 			hctx->poll_success++;
2858 			set_current_state(TASK_RUNNING);
2859 			return true;
2860 		}
2861 
2862 		if (signal_pending_state(state, current))
2863 			set_current_state(TASK_RUNNING);
2864 
2865 		if (current->state == TASK_RUNNING)
2866 			return true;
2867 		if (ret < 0)
2868 			break;
2869 		cpu_relax();
2870 	}
2871 
2872 	return false;
2873 }
2874 
2875 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2876 {
2877 	struct blk_mq_hw_ctx *hctx;
2878 	struct blk_plug *plug;
2879 	struct request *rq;
2880 
2881 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2882 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2883 		return false;
2884 
2885 	plug = current->plug;
2886 	if (plug)
2887 		blk_flush_plug_list(plug, false);
2888 
2889 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2890 	if (!blk_qc_t_is_internal(cookie))
2891 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2892 	else
2893 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2894 
2895 	return __blk_mq_poll(hctx, rq);
2896 }
2897 EXPORT_SYMBOL_GPL(blk_mq_poll);
2898 
2899 void blk_mq_disable_hotplug(void)
2900 {
2901 	mutex_lock(&all_q_mutex);
2902 }
2903 
2904 void blk_mq_enable_hotplug(void)
2905 {
2906 	mutex_unlock(&all_q_mutex);
2907 }
2908 
2909 static int __init blk_mq_init(void)
2910 {
2911 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2912 				blk_mq_hctx_notify_dead);
2913 
2914 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2915 				  blk_mq_queue_reinit_prepare,
2916 				  blk_mq_queue_reinit_dead);
2917 	return 0;
2918 }
2919 subsys_initcall(blk_mq_init);
2920