1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-tag.h" 35 #include "blk-stat.h" 36 #include "blk-wbt.h" 37 #include "blk-mq-sched.h" 38 39 static DEFINE_MUTEX(all_q_mutex); 40 static LIST_HEAD(all_q_list); 41 42 /* 43 * Check if any of the ctx's have pending work in this hardware queue 44 */ 45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 46 { 47 return sbitmap_any_bit_set(&hctx->ctx_map) || 48 !list_empty_careful(&hctx->dispatch) || 49 blk_mq_sched_has_work(hctx); 50 } 51 52 /* 53 * Mark this ctx as having pending work in this hardware queue 54 */ 55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 56 struct blk_mq_ctx *ctx) 57 { 58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 60 } 61 62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 63 struct blk_mq_ctx *ctx) 64 { 65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 66 } 67 68 void blk_mq_freeze_queue_start(struct request_queue *q) 69 { 70 int freeze_depth; 71 72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 73 if (freeze_depth == 1) { 74 percpu_ref_kill(&q->q_usage_counter); 75 blk_mq_run_hw_queues(q, false); 76 } 77 } 78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 79 80 void blk_mq_freeze_queue_wait(struct request_queue *q) 81 { 82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 83 } 84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 85 86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 87 unsigned long timeout) 88 { 89 return wait_event_timeout(q->mq_freeze_wq, 90 percpu_ref_is_zero(&q->q_usage_counter), 91 timeout); 92 } 93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 94 95 /* 96 * Guarantee no request is in use, so we can change any data structure of 97 * the queue afterward. 98 */ 99 void blk_freeze_queue(struct request_queue *q) 100 { 101 /* 102 * In the !blk_mq case we are only calling this to kill the 103 * q_usage_counter, otherwise this increases the freeze depth 104 * and waits for it to return to zero. For this reason there is 105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 106 * exported to drivers as the only user for unfreeze is blk_mq. 107 */ 108 blk_mq_freeze_queue_start(q); 109 blk_mq_freeze_queue_wait(q); 110 } 111 112 void blk_mq_freeze_queue(struct request_queue *q) 113 { 114 /* 115 * ...just an alias to keep freeze and unfreeze actions balanced 116 * in the blk_mq_* namespace 117 */ 118 blk_freeze_queue(q); 119 } 120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 121 122 void blk_mq_unfreeze_queue(struct request_queue *q) 123 { 124 int freeze_depth; 125 126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 127 WARN_ON_ONCE(freeze_depth < 0); 128 if (!freeze_depth) { 129 percpu_ref_reinit(&q->q_usage_counter); 130 wake_up_all(&q->mq_freeze_wq); 131 } 132 } 133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 134 135 /** 136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 137 * @q: request queue. 138 * 139 * Note: this function does not prevent that the struct request end_io() 140 * callback function is invoked. Additionally, it is not prevented that 141 * new queue_rq() calls occur unless the queue has been stopped first. 142 */ 143 void blk_mq_quiesce_queue(struct request_queue *q) 144 { 145 struct blk_mq_hw_ctx *hctx; 146 unsigned int i; 147 bool rcu = false; 148 149 blk_mq_stop_hw_queues(q); 150 151 queue_for_each_hw_ctx(q, hctx, i) { 152 if (hctx->flags & BLK_MQ_F_BLOCKING) 153 synchronize_srcu(&hctx->queue_rq_srcu); 154 else 155 rcu = true; 156 } 157 if (rcu) 158 synchronize_rcu(); 159 } 160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 161 162 void blk_mq_wake_waiters(struct request_queue *q) 163 { 164 struct blk_mq_hw_ctx *hctx; 165 unsigned int i; 166 167 queue_for_each_hw_ctx(q, hctx, i) 168 if (blk_mq_hw_queue_mapped(hctx)) 169 blk_mq_tag_wakeup_all(hctx->tags, true); 170 171 /* 172 * If we are called because the queue has now been marked as 173 * dying, we need to ensure that processes currently waiting on 174 * the queue are notified as well. 175 */ 176 wake_up_all(&q->mq_freeze_wq); 177 } 178 179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 180 { 181 return blk_mq_has_free_tags(hctx->tags); 182 } 183 EXPORT_SYMBOL(blk_mq_can_queue); 184 185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 186 struct request *rq, unsigned int op) 187 { 188 INIT_LIST_HEAD(&rq->queuelist); 189 /* csd/requeue_work/fifo_time is initialized before use */ 190 rq->q = q; 191 rq->mq_ctx = ctx; 192 rq->cmd_flags = op; 193 if (blk_queue_io_stat(q)) 194 rq->rq_flags |= RQF_IO_STAT; 195 /* do not touch atomic flags, it needs atomic ops against the timer */ 196 rq->cpu = -1; 197 INIT_HLIST_NODE(&rq->hash); 198 RB_CLEAR_NODE(&rq->rb_node); 199 rq->rq_disk = NULL; 200 rq->part = NULL; 201 rq->start_time = jiffies; 202 #ifdef CONFIG_BLK_CGROUP 203 rq->rl = NULL; 204 set_start_time_ns(rq); 205 rq->io_start_time_ns = 0; 206 #endif 207 rq->nr_phys_segments = 0; 208 #if defined(CONFIG_BLK_DEV_INTEGRITY) 209 rq->nr_integrity_segments = 0; 210 #endif 211 rq->special = NULL; 212 /* tag was already set */ 213 rq->errors = 0; 214 rq->extra_len = 0; 215 216 INIT_LIST_HEAD(&rq->timeout_list); 217 rq->timeout = 0; 218 219 rq->end_io = NULL; 220 rq->end_io_data = NULL; 221 rq->next_rq = NULL; 222 223 ctx->rq_dispatched[op_is_sync(op)]++; 224 } 225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init); 226 227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data, 228 unsigned int op) 229 { 230 struct request *rq; 231 unsigned int tag; 232 233 tag = blk_mq_get_tag(data); 234 if (tag != BLK_MQ_TAG_FAIL) { 235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 236 237 rq = tags->static_rqs[tag]; 238 239 if (data->flags & BLK_MQ_REQ_INTERNAL) { 240 rq->tag = -1; 241 rq->internal_tag = tag; 242 } else { 243 if (blk_mq_tag_busy(data->hctx)) { 244 rq->rq_flags = RQF_MQ_INFLIGHT; 245 atomic_inc(&data->hctx->nr_active); 246 } 247 rq->tag = tag; 248 rq->internal_tag = -1; 249 data->hctx->tags->rqs[rq->tag] = rq; 250 } 251 252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 253 return rq; 254 } 255 256 return NULL; 257 } 258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request); 259 260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 261 unsigned int flags) 262 { 263 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 264 struct request *rq; 265 int ret; 266 267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 268 if (ret) 269 return ERR_PTR(ret); 270 271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 272 273 blk_mq_put_ctx(alloc_data.ctx); 274 blk_queue_exit(q); 275 276 if (!rq) 277 return ERR_PTR(-EWOULDBLOCK); 278 279 rq->__data_len = 0; 280 rq->__sector = (sector_t) -1; 281 rq->bio = rq->biotail = NULL; 282 return rq; 283 } 284 EXPORT_SYMBOL(blk_mq_alloc_request); 285 286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 287 unsigned int flags, unsigned int hctx_idx) 288 { 289 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 290 struct request *rq; 291 unsigned int cpu; 292 int ret; 293 294 /* 295 * If the tag allocator sleeps we could get an allocation for a 296 * different hardware context. No need to complicate the low level 297 * allocator for this for the rare use case of a command tied to 298 * a specific queue. 299 */ 300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 301 return ERR_PTR(-EINVAL); 302 303 if (hctx_idx >= q->nr_hw_queues) 304 return ERR_PTR(-EIO); 305 306 ret = blk_queue_enter(q, true); 307 if (ret) 308 return ERR_PTR(ret); 309 310 /* 311 * Check if the hardware context is actually mapped to anything. 312 * If not tell the caller that it should skip this queue. 313 */ 314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 316 blk_queue_exit(q); 317 return ERR_PTR(-EXDEV); 318 } 319 cpu = cpumask_first(alloc_data.hctx->cpumask); 320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 321 322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 323 324 blk_mq_put_ctx(alloc_data.ctx); 325 blk_queue_exit(q); 326 327 if (!rq) 328 return ERR_PTR(-EWOULDBLOCK); 329 330 return rq; 331 } 332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 333 334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 335 struct request *rq) 336 { 337 const int sched_tag = rq->internal_tag; 338 struct request_queue *q = rq->q; 339 340 if (rq->rq_flags & RQF_MQ_INFLIGHT) 341 atomic_dec(&hctx->nr_active); 342 343 wbt_done(q->rq_wb, &rq->issue_stat); 344 rq->rq_flags = 0; 345 346 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 347 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 348 if (rq->tag != -1) 349 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 350 if (sched_tag != -1) 351 blk_mq_sched_completed_request(hctx, rq); 352 blk_mq_sched_restart_queues(hctx); 353 blk_queue_exit(q); 354 } 355 356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx, 357 struct request *rq) 358 { 359 struct blk_mq_ctx *ctx = rq->mq_ctx; 360 361 ctx->rq_completed[rq_is_sync(rq)]++; 362 __blk_mq_finish_request(hctx, ctx, rq); 363 } 364 365 void blk_mq_finish_request(struct request *rq) 366 { 367 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 368 } 369 370 void blk_mq_free_request(struct request *rq) 371 { 372 blk_mq_sched_put_request(rq); 373 } 374 EXPORT_SYMBOL_GPL(blk_mq_free_request); 375 376 inline void __blk_mq_end_request(struct request *rq, int error) 377 { 378 blk_account_io_done(rq); 379 380 if (rq->end_io) { 381 wbt_done(rq->q->rq_wb, &rq->issue_stat); 382 rq->end_io(rq, error); 383 } else { 384 if (unlikely(blk_bidi_rq(rq))) 385 blk_mq_free_request(rq->next_rq); 386 blk_mq_free_request(rq); 387 } 388 } 389 EXPORT_SYMBOL(__blk_mq_end_request); 390 391 void blk_mq_end_request(struct request *rq, int error) 392 { 393 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 394 BUG(); 395 __blk_mq_end_request(rq, error); 396 } 397 EXPORT_SYMBOL(blk_mq_end_request); 398 399 static void __blk_mq_complete_request_remote(void *data) 400 { 401 struct request *rq = data; 402 403 rq->q->softirq_done_fn(rq); 404 } 405 406 static void blk_mq_ipi_complete_request(struct request *rq) 407 { 408 struct blk_mq_ctx *ctx = rq->mq_ctx; 409 bool shared = false; 410 int cpu; 411 412 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 413 rq->q->softirq_done_fn(rq); 414 return; 415 } 416 417 cpu = get_cpu(); 418 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 419 shared = cpus_share_cache(cpu, ctx->cpu); 420 421 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 422 rq->csd.func = __blk_mq_complete_request_remote; 423 rq->csd.info = rq; 424 rq->csd.flags = 0; 425 smp_call_function_single_async(ctx->cpu, &rq->csd); 426 } else { 427 rq->q->softirq_done_fn(rq); 428 } 429 put_cpu(); 430 } 431 432 static void blk_mq_stat_add(struct request *rq) 433 { 434 if (rq->rq_flags & RQF_STATS) { 435 /* 436 * We could rq->mq_ctx here, but there's less of a risk 437 * of races if we have the completion event add the stats 438 * to the local software queue. 439 */ 440 struct blk_mq_ctx *ctx; 441 442 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); 443 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); 444 } 445 } 446 447 static void __blk_mq_complete_request(struct request *rq) 448 { 449 struct request_queue *q = rq->q; 450 451 blk_mq_stat_add(rq); 452 453 if (!q->softirq_done_fn) 454 blk_mq_end_request(rq, rq->errors); 455 else 456 blk_mq_ipi_complete_request(rq); 457 } 458 459 /** 460 * blk_mq_complete_request - end I/O on a request 461 * @rq: the request being processed 462 * 463 * Description: 464 * Ends all I/O on a request. It does not handle partial completions. 465 * The actual completion happens out-of-order, through a IPI handler. 466 **/ 467 void blk_mq_complete_request(struct request *rq, int error) 468 { 469 struct request_queue *q = rq->q; 470 471 if (unlikely(blk_should_fake_timeout(q))) 472 return; 473 if (!blk_mark_rq_complete(rq)) { 474 rq->errors = error; 475 __blk_mq_complete_request(rq); 476 } 477 } 478 EXPORT_SYMBOL(blk_mq_complete_request); 479 480 int blk_mq_request_started(struct request *rq) 481 { 482 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 483 } 484 EXPORT_SYMBOL_GPL(blk_mq_request_started); 485 486 void blk_mq_start_request(struct request *rq) 487 { 488 struct request_queue *q = rq->q; 489 490 blk_mq_sched_started_request(rq); 491 492 trace_block_rq_issue(q, rq); 493 494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 495 blk_stat_set_issue_time(&rq->issue_stat); 496 rq->rq_flags |= RQF_STATS; 497 wbt_issue(q->rq_wb, &rq->issue_stat); 498 } 499 500 blk_add_timer(rq); 501 502 /* 503 * Ensure that ->deadline is visible before set the started 504 * flag and clear the completed flag. 505 */ 506 smp_mb__before_atomic(); 507 508 /* 509 * Mark us as started and clear complete. Complete might have been 510 * set if requeue raced with timeout, which then marked it as 511 * complete. So be sure to clear complete again when we start 512 * the request, otherwise we'll ignore the completion event. 513 */ 514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 518 519 if (q->dma_drain_size && blk_rq_bytes(rq)) { 520 /* 521 * Make sure space for the drain appears. We know we can do 522 * this because max_hw_segments has been adjusted to be one 523 * fewer than the device can handle. 524 */ 525 rq->nr_phys_segments++; 526 } 527 } 528 EXPORT_SYMBOL(blk_mq_start_request); 529 530 static void __blk_mq_requeue_request(struct request *rq) 531 { 532 struct request_queue *q = rq->q; 533 534 trace_block_rq_requeue(q, rq); 535 wbt_requeue(q->rq_wb, &rq->issue_stat); 536 blk_mq_sched_requeue_request(rq); 537 538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 539 if (q->dma_drain_size && blk_rq_bytes(rq)) 540 rq->nr_phys_segments--; 541 } 542 } 543 544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 545 { 546 __blk_mq_requeue_request(rq); 547 548 BUG_ON(blk_queued_rq(rq)); 549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 550 } 551 EXPORT_SYMBOL(blk_mq_requeue_request); 552 553 static void blk_mq_requeue_work(struct work_struct *work) 554 { 555 struct request_queue *q = 556 container_of(work, struct request_queue, requeue_work.work); 557 LIST_HEAD(rq_list); 558 struct request *rq, *next; 559 unsigned long flags; 560 561 spin_lock_irqsave(&q->requeue_lock, flags); 562 list_splice_init(&q->requeue_list, &rq_list); 563 spin_unlock_irqrestore(&q->requeue_lock, flags); 564 565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 566 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 567 continue; 568 569 rq->rq_flags &= ~RQF_SOFTBARRIER; 570 list_del_init(&rq->queuelist); 571 blk_mq_sched_insert_request(rq, true, false, false, true); 572 } 573 574 while (!list_empty(&rq_list)) { 575 rq = list_entry(rq_list.next, struct request, queuelist); 576 list_del_init(&rq->queuelist); 577 blk_mq_sched_insert_request(rq, false, false, false, true); 578 } 579 580 blk_mq_run_hw_queues(q, false); 581 } 582 583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 584 bool kick_requeue_list) 585 { 586 struct request_queue *q = rq->q; 587 unsigned long flags; 588 589 /* 590 * We abuse this flag that is otherwise used by the I/O scheduler to 591 * request head insertation from the workqueue. 592 */ 593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 594 595 spin_lock_irqsave(&q->requeue_lock, flags); 596 if (at_head) { 597 rq->rq_flags |= RQF_SOFTBARRIER; 598 list_add(&rq->queuelist, &q->requeue_list); 599 } else { 600 list_add_tail(&rq->queuelist, &q->requeue_list); 601 } 602 spin_unlock_irqrestore(&q->requeue_lock, flags); 603 604 if (kick_requeue_list) 605 blk_mq_kick_requeue_list(q); 606 } 607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 608 609 void blk_mq_kick_requeue_list(struct request_queue *q) 610 { 611 kblockd_schedule_delayed_work(&q->requeue_work, 0); 612 } 613 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 614 615 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 616 unsigned long msecs) 617 { 618 kblockd_schedule_delayed_work(&q->requeue_work, 619 msecs_to_jiffies(msecs)); 620 } 621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 622 623 void blk_mq_abort_requeue_list(struct request_queue *q) 624 { 625 unsigned long flags; 626 LIST_HEAD(rq_list); 627 628 spin_lock_irqsave(&q->requeue_lock, flags); 629 list_splice_init(&q->requeue_list, &rq_list); 630 spin_unlock_irqrestore(&q->requeue_lock, flags); 631 632 while (!list_empty(&rq_list)) { 633 struct request *rq; 634 635 rq = list_first_entry(&rq_list, struct request, queuelist); 636 list_del_init(&rq->queuelist); 637 rq->errors = -EIO; 638 blk_mq_end_request(rq, rq->errors); 639 } 640 } 641 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 642 643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 644 { 645 if (tag < tags->nr_tags) { 646 prefetch(tags->rqs[tag]); 647 return tags->rqs[tag]; 648 } 649 650 return NULL; 651 } 652 EXPORT_SYMBOL(blk_mq_tag_to_rq); 653 654 struct blk_mq_timeout_data { 655 unsigned long next; 656 unsigned int next_set; 657 }; 658 659 void blk_mq_rq_timed_out(struct request *req, bool reserved) 660 { 661 const struct blk_mq_ops *ops = req->q->mq_ops; 662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 663 664 /* 665 * We know that complete is set at this point. If STARTED isn't set 666 * anymore, then the request isn't active and the "timeout" should 667 * just be ignored. This can happen due to the bitflag ordering. 668 * Timeout first checks if STARTED is set, and if it is, assumes 669 * the request is active. But if we race with completion, then 670 * we both flags will get cleared. So check here again, and ignore 671 * a timeout event with a request that isn't active. 672 */ 673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 674 return; 675 676 if (ops->timeout) 677 ret = ops->timeout(req, reserved); 678 679 switch (ret) { 680 case BLK_EH_HANDLED: 681 __blk_mq_complete_request(req); 682 break; 683 case BLK_EH_RESET_TIMER: 684 blk_add_timer(req); 685 blk_clear_rq_complete(req); 686 break; 687 case BLK_EH_NOT_HANDLED: 688 break; 689 default: 690 printk(KERN_ERR "block: bad eh return: %d\n", ret); 691 break; 692 } 693 } 694 695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 696 struct request *rq, void *priv, bool reserved) 697 { 698 struct blk_mq_timeout_data *data = priv; 699 700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 701 return; 702 703 if (time_after_eq(jiffies, rq->deadline)) { 704 if (!blk_mark_rq_complete(rq)) 705 blk_mq_rq_timed_out(rq, reserved); 706 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 707 data->next = rq->deadline; 708 data->next_set = 1; 709 } 710 } 711 712 static void blk_mq_timeout_work(struct work_struct *work) 713 { 714 struct request_queue *q = 715 container_of(work, struct request_queue, timeout_work); 716 struct blk_mq_timeout_data data = { 717 .next = 0, 718 .next_set = 0, 719 }; 720 int i; 721 722 /* A deadlock might occur if a request is stuck requiring a 723 * timeout at the same time a queue freeze is waiting 724 * completion, since the timeout code would not be able to 725 * acquire the queue reference here. 726 * 727 * That's why we don't use blk_queue_enter here; instead, we use 728 * percpu_ref_tryget directly, because we need to be able to 729 * obtain a reference even in the short window between the queue 730 * starting to freeze, by dropping the first reference in 731 * blk_mq_freeze_queue_start, and the moment the last request is 732 * consumed, marked by the instant q_usage_counter reaches 733 * zero. 734 */ 735 if (!percpu_ref_tryget(&q->q_usage_counter)) 736 return; 737 738 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 739 740 if (data.next_set) { 741 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 742 mod_timer(&q->timeout, data.next); 743 } else { 744 struct blk_mq_hw_ctx *hctx; 745 746 queue_for_each_hw_ctx(q, hctx, i) { 747 /* the hctx may be unmapped, so check it here */ 748 if (blk_mq_hw_queue_mapped(hctx)) 749 blk_mq_tag_idle(hctx); 750 } 751 } 752 blk_queue_exit(q); 753 } 754 755 /* 756 * Reverse check our software queue for entries that we could potentially 757 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 758 * too much time checking for merges. 759 */ 760 static bool blk_mq_attempt_merge(struct request_queue *q, 761 struct blk_mq_ctx *ctx, struct bio *bio) 762 { 763 struct request *rq; 764 int checked = 8; 765 766 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 767 bool merged = false; 768 769 if (!checked--) 770 break; 771 772 if (!blk_rq_merge_ok(rq, bio)) 773 continue; 774 775 switch (blk_try_merge(rq, bio)) { 776 case ELEVATOR_BACK_MERGE: 777 if (blk_mq_sched_allow_merge(q, rq, bio)) 778 merged = bio_attempt_back_merge(q, rq, bio); 779 break; 780 case ELEVATOR_FRONT_MERGE: 781 if (blk_mq_sched_allow_merge(q, rq, bio)) 782 merged = bio_attempt_front_merge(q, rq, bio); 783 break; 784 case ELEVATOR_DISCARD_MERGE: 785 merged = bio_attempt_discard_merge(q, rq, bio); 786 break; 787 default: 788 continue; 789 } 790 791 if (merged) 792 ctx->rq_merged++; 793 return merged; 794 } 795 796 return false; 797 } 798 799 struct flush_busy_ctx_data { 800 struct blk_mq_hw_ctx *hctx; 801 struct list_head *list; 802 }; 803 804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 805 { 806 struct flush_busy_ctx_data *flush_data = data; 807 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 808 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 809 810 sbitmap_clear_bit(sb, bitnr); 811 spin_lock(&ctx->lock); 812 list_splice_tail_init(&ctx->rq_list, flush_data->list); 813 spin_unlock(&ctx->lock); 814 return true; 815 } 816 817 /* 818 * Process software queues that have been marked busy, splicing them 819 * to the for-dispatch 820 */ 821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 822 { 823 struct flush_busy_ctx_data data = { 824 .hctx = hctx, 825 .list = list, 826 }; 827 828 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 829 } 830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 831 832 static inline unsigned int queued_to_index(unsigned int queued) 833 { 834 if (!queued) 835 return 0; 836 837 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 838 } 839 840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 841 bool wait) 842 { 843 struct blk_mq_alloc_data data = { 844 .q = rq->q, 845 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 846 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 847 }; 848 849 if (rq->tag != -1) { 850 done: 851 if (hctx) 852 *hctx = data.hctx; 853 return true; 854 } 855 856 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 857 data.flags |= BLK_MQ_REQ_RESERVED; 858 859 rq->tag = blk_mq_get_tag(&data); 860 if (rq->tag >= 0) { 861 if (blk_mq_tag_busy(data.hctx)) { 862 rq->rq_flags |= RQF_MQ_INFLIGHT; 863 atomic_inc(&data.hctx->nr_active); 864 } 865 data.hctx->tags->rqs[rq->tag] = rq; 866 goto done; 867 } 868 869 return false; 870 } 871 872 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 873 struct request *rq) 874 { 875 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 876 rq->tag = -1; 877 878 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 879 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 880 atomic_dec(&hctx->nr_active); 881 } 882 } 883 884 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx, 885 struct request *rq) 886 { 887 if (rq->tag == -1 || rq->internal_tag == -1) 888 return; 889 890 __blk_mq_put_driver_tag(hctx, rq); 891 } 892 893 static void blk_mq_put_driver_tag(struct request *rq) 894 { 895 struct blk_mq_hw_ctx *hctx; 896 897 if (rq->tag == -1 || rq->internal_tag == -1) 898 return; 899 900 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 901 __blk_mq_put_driver_tag(hctx, rq); 902 } 903 904 /* 905 * If we fail getting a driver tag because all the driver tags are already 906 * assigned and on the dispatch list, BUT the first entry does not have a 907 * tag, then we could deadlock. For that case, move entries with assigned 908 * driver tags to the front, leaving the set of tagged requests in the 909 * same order, and the untagged set in the same order. 910 */ 911 static bool reorder_tags_to_front(struct list_head *list) 912 { 913 struct request *rq, *tmp, *first = NULL; 914 915 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 916 if (rq == first) 917 break; 918 if (rq->tag != -1) { 919 list_move(&rq->queuelist, list); 920 if (!first) 921 first = rq; 922 } 923 } 924 925 return first != NULL; 926 } 927 928 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags, 929 void *key) 930 { 931 struct blk_mq_hw_ctx *hctx; 932 933 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 934 935 list_del(&wait->task_list); 936 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state); 937 blk_mq_run_hw_queue(hctx, true); 938 return 1; 939 } 940 941 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx) 942 { 943 struct sbq_wait_state *ws; 944 945 /* 946 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait. 947 * The thread which wins the race to grab this bit adds the hardware 948 * queue to the wait queue. 949 */ 950 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) || 951 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state)) 952 return false; 953 954 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 955 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx); 956 957 /* 958 * As soon as this returns, it's no longer safe to fiddle with 959 * hctx->dispatch_wait, since a completion can wake up the wait queue 960 * and unlock the bit. 961 */ 962 add_wait_queue(&ws->wait, &hctx->dispatch_wait); 963 return true; 964 } 965 966 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) 967 { 968 struct request_queue *q = hctx->queue; 969 struct request *rq; 970 LIST_HEAD(driver_list); 971 struct list_head *dptr; 972 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK; 973 974 /* 975 * Start off with dptr being NULL, so we start the first request 976 * immediately, even if we have more pending. 977 */ 978 dptr = NULL; 979 980 /* 981 * Now process all the entries, sending them to the driver. 982 */ 983 errors = queued = 0; 984 while (!list_empty(list)) { 985 struct blk_mq_queue_data bd; 986 987 rq = list_first_entry(list, struct request, queuelist); 988 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 989 if (!queued && reorder_tags_to_front(list)) 990 continue; 991 992 /* 993 * The initial allocation attempt failed, so we need to 994 * rerun the hardware queue when a tag is freed. 995 */ 996 if (blk_mq_dispatch_wait_add(hctx)) { 997 /* 998 * It's possible that a tag was freed in the 999 * window between the allocation failure and 1000 * adding the hardware queue to the wait queue. 1001 */ 1002 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1003 break; 1004 } else { 1005 break; 1006 } 1007 } 1008 1009 list_del_init(&rq->queuelist); 1010 1011 bd.rq = rq; 1012 bd.list = dptr; 1013 1014 /* 1015 * Flag last if we have no more requests, or if we have more 1016 * but can't assign a driver tag to it. 1017 */ 1018 if (list_empty(list)) 1019 bd.last = true; 1020 else { 1021 struct request *nxt; 1022 1023 nxt = list_first_entry(list, struct request, queuelist); 1024 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1025 } 1026 1027 ret = q->mq_ops->queue_rq(hctx, &bd); 1028 switch (ret) { 1029 case BLK_MQ_RQ_QUEUE_OK: 1030 queued++; 1031 break; 1032 case BLK_MQ_RQ_QUEUE_BUSY: 1033 blk_mq_put_driver_tag_hctx(hctx, rq); 1034 list_add(&rq->queuelist, list); 1035 __blk_mq_requeue_request(rq); 1036 break; 1037 default: 1038 pr_err("blk-mq: bad return on queue: %d\n", ret); 1039 case BLK_MQ_RQ_QUEUE_ERROR: 1040 errors++; 1041 rq->errors = -EIO; 1042 blk_mq_end_request(rq, rq->errors); 1043 break; 1044 } 1045 1046 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 1047 break; 1048 1049 /* 1050 * We've done the first request. If we have more than 1 1051 * left in the list, set dptr to defer issue. 1052 */ 1053 if (!dptr && list->next != list->prev) 1054 dptr = &driver_list; 1055 } 1056 1057 hctx->dispatched[queued_to_index(queued)]++; 1058 1059 /* 1060 * Any items that need requeuing? Stuff them into hctx->dispatch, 1061 * that is where we will continue on next queue run. 1062 */ 1063 if (!list_empty(list)) { 1064 /* 1065 * If we got a driver tag for the next request already, 1066 * free it again. 1067 */ 1068 rq = list_first_entry(list, struct request, queuelist); 1069 blk_mq_put_driver_tag(rq); 1070 1071 spin_lock(&hctx->lock); 1072 list_splice_init(list, &hctx->dispatch); 1073 spin_unlock(&hctx->lock); 1074 1075 /* 1076 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 1077 * it's possible the queue is stopped and restarted again 1078 * before this. Queue restart will dispatch requests. And since 1079 * requests in rq_list aren't added into hctx->dispatch yet, 1080 * the requests in rq_list might get lost. 1081 * 1082 * blk_mq_run_hw_queue() already checks the STOPPED bit 1083 * 1084 * If RESTART or TAG_WAITING is set, then let completion restart 1085 * the queue instead of potentially looping here. 1086 */ 1087 if (!blk_mq_sched_needs_restart(hctx) && 1088 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) 1089 blk_mq_run_hw_queue(hctx, true); 1090 } 1091 1092 return (queued + errors) != 0; 1093 } 1094 1095 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1096 { 1097 int srcu_idx; 1098 1099 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1100 cpu_online(hctx->next_cpu)); 1101 1102 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1103 rcu_read_lock(); 1104 blk_mq_sched_dispatch_requests(hctx); 1105 rcu_read_unlock(); 1106 } else { 1107 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 1108 blk_mq_sched_dispatch_requests(hctx); 1109 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 1110 } 1111 } 1112 1113 /* 1114 * It'd be great if the workqueue API had a way to pass 1115 * in a mask and had some smarts for more clever placement. 1116 * For now we just round-robin here, switching for every 1117 * BLK_MQ_CPU_WORK_BATCH queued items. 1118 */ 1119 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1120 { 1121 if (hctx->queue->nr_hw_queues == 1) 1122 return WORK_CPU_UNBOUND; 1123 1124 if (--hctx->next_cpu_batch <= 0) { 1125 int next_cpu; 1126 1127 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1128 if (next_cpu >= nr_cpu_ids) 1129 next_cpu = cpumask_first(hctx->cpumask); 1130 1131 hctx->next_cpu = next_cpu; 1132 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1133 } 1134 1135 return hctx->next_cpu; 1136 } 1137 1138 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1139 { 1140 if (unlikely(blk_mq_hctx_stopped(hctx) || 1141 !blk_mq_hw_queue_mapped(hctx))) 1142 return; 1143 1144 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1145 int cpu = get_cpu(); 1146 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1147 __blk_mq_run_hw_queue(hctx); 1148 put_cpu(); 1149 return; 1150 } 1151 1152 put_cpu(); 1153 } 1154 1155 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); 1156 } 1157 1158 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1159 { 1160 struct blk_mq_hw_ctx *hctx; 1161 int i; 1162 1163 queue_for_each_hw_ctx(q, hctx, i) { 1164 if (!blk_mq_hctx_has_pending(hctx) || 1165 blk_mq_hctx_stopped(hctx)) 1166 continue; 1167 1168 blk_mq_run_hw_queue(hctx, async); 1169 } 1170 } 1171 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1172 1173 /** 1174 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1175 * @q: request queue. 1176 * 1177 * The caller is responsible for serializing this function against 1178 * blk_mq_{start,stop}_hw_queue(). 1179 */ 1180 bool blk_mq_queue_stopped(struct request_queue *q) 1181 { 1182 struct blk_mq_hw_ctx *hctx; 1183 int i; 1184 1185 queue_for_each_hw_ctx(q, hctx, i) 1186 if (blk_mq_hctx_stopped(hctx)) 1187 return true; 1188 1189 return false; 1190 } 1191 EXPORT_SYMBOL(blk_mq_queue_stopped); 1192 1193 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1194 { 1195 cancel_work(&hctx->run_work); 1196 cancel_delayed_work(&hctx->delay_work); 1197 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1198 } 1199 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1200 1201 void blk_mq_stop_hw_queues(struct request_queue *q) 1202 { 1203 struct blk_mq_hw_ctx *hctx; 1204 int i; 1205 1206 queue_for_each_hw_ctx(q, hctx, i) 1207 blk_mq_stop_hw_queue(hctx); 1208 } 1209 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1210 1211 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1212 { 1213 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1214 1215 blk_mq_run_hw_queue(hctx, false); 1216 } 1217 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1218 1219 void blk_mq_start_hw_queues(struct request_queue *q) 1220 { 1221 struct blk_mq_hw_ctx *hctx; 1222 int i; 1223 1224 queue_for_each_hw_ctx(q, hctx, i) 1225 blk_mq_start_hw_queue(hctx); 1226 } 1227 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1228 1229 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1230 { 1231 if (!blk_mq_hctx_stopped(hctx)) 1232 return; 1233 1234 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1235 blk_mq_run_hw_queue(hctx, async); 1236 } 1237 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1238 1239 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1240 { 1241 struct blk_mq_hw_ctx *hctx; 1242 int i; 1243 1244 queue_for_each_hw_ctx(q, hctx, i) 1245 blk_mq_start_stopped_hw_queue(hctx, async); 1246 } 1247 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1248 1249 static void blk_mq_run_work_fn(struct work_struct *work) 1250 { 1251 struct blk_mq_hw_ctx *hctx; 1252 1253 hctx = container_of(work, struct blk_mq_hw_ctx, run_work); 1254 1255 __blk_mq_run_hw_queue(hctx); 1256 } 1257 1258 static void blk_mq_delay_work_fn(struct work_struct *work) 1259 { 1260 struct blk_mq_hw_ctx *hctx; 1261 1262 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1263 1264 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1265 __blk_mq_run_hw_queue(hctx); 1266 } 1267 1268 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1269 { 1270 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1271 return; 1272 1273 blk_mq_stop_hw_queue(hctx); 1274 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1275 &hctx->delay_work, msecs_to_jiffies(msecs)); 1276 } 1277 EXPORT_SYMBOL(blk_mq_delay_queue); 1278 1279 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1280 struct request *rq, 1281 bool at_head) 1282 { 1283 struct blk_mq_ctx *ctx = rq->mq_ctx; 1284 1285 trace_block_rq_insert(hctx->queue, rq); 1286 1287 if (at_head) 1288 list_add(&rq->queuelist, &ctx->rq_list); 1289 else 1290 list_add_tail(&rq->queuelist, &ctx->rq_list); 1291 } 1292 1293 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1294 bool at_head) 1295 { 1296 struct blk_mq_ctx *ctx = rq->mq_ctx; 1297 1298 __blk_mq_insert_req_list(hctx, rq, at_head); 1299 blk_mq_hctx_mark_pending(hctx, ctx); 1300 } 1301 1302 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1303 struct list_head *list) 1304 1305 { 1306 /* 1307 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1308 * offline now 1309 */ 1310 spin_lock(&ctx->lock); 1311 while (!list_empty(list)) { 1312 struct request *rq; 1313 1314 rq = list_first_entry(list, struct request, queuelist); 1315 BUG_ON(rq->mq_ctx != ctx); 1316 list_del_init(&rq->queuelist); 1317 __blk_mq_insert_req_list(hctx, rq, false); 1318 } 1319 blk_mq_hctx_mark_pending(hctx, ctx); 1320 spin_unlock(&ctx->lock); 1321 } 1322 1323 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1324 { 1325 struct request *rqa = container_of(a, struct request, queuelist); 1326 struct request *rqb = container_of(b, struct request, queuelist); 1327 1328 return !(rqa->mq_ctx < rqb->mq_ctx || 1329 (rqa->mq_ctx == rqb->mq_ctx && 1330 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1331 } 1332 1333 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1334 { 1335 struct blk_mq_ctx *this_ctx; 1336 struct request_queue *this_q; 1337 struct request *rq; 1338 LIST_HEAD(list); 1339 LIST_HEAD(ctx_list); 1340 unsigned int depth; 1341 1342 list_splice_init(&plug->mq_list, &list); 1343 1344 list_sort(NULL, &list, plug_ctx_cmp); 1345 1346 this_q = NULL; 1347 this_ctx = NULL; 1348 depth = 0; 1349 1350 while (!list_empty(&list)) { 1351 rq = list_entry_rq(list.next); 1352 list_del_init(&rq->queuelist); 1353 BUG_ON(!rq->q); 1354 if (rq->mq_ctx != this_ctx) { 1355 if (this_ctx) { 1356 trace_block_unplug(this_q, depth, from_schedule); 1357 blk_mq_sched_insert_requests(this_q, this_ctx, 1358 &ctx_list, 1359 from_schedule); 1360 } 1361 1362 this_ctx = rq->mq_ctx; 1363 this_q = rq->q; 1364 depth = 0; 1365 } 1366 1367 depth++; 1368 list_add_tail(&rq->queuelist, &ctx_list); 1369 } 1370 1371 /* 1372 * If 'this_ctx' is set, we know we have entries to complete 1373 * on 'ctx_list'. Do those. 1374 */ 1375 if (this_ctx) { 1376 trace_block_unplug(this_q, depth, from_schedule); 1377 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1378 from_schedule); 1379 } 1380 } 1381 1382 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1383 { 1384 init_request_from_bio(rq, bio); 1385 1386 blk_account_io_start(rq, true); 1387 } 1388 1389 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1390 { 1391 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1392 !blk_queue_nomerges(hctx->queue); 1393 } 1394 1395 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1396 struct blk_mq_ctx *ctx, 1397 struct request *rq, struct bio *bio) 1398 { 1399 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1400 blk_mq_bio_to_request(rq, bio); 1401 spin_lock(&ctx->lock); 1402 insert_rq: 1403 __blk_mq_insert_request(hctx, rq, false); 1404 spin_unlock(&ctx->lock); 1405 return false; 1406 } else { 1407 struct request_queue *q = hctx->queue; 1408 1409 spin_lock(&ctx->lock); 1410 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1411 blk_mq_bio_to_request(rq, bio); 1412 goto insert_rq; 1413 } 1414 1415 spin_unlock(&ctx->lock); 1416 __blk_mq_finish_request(hctx, ctx, rq); 1417 return true; 1418 } 1419 } 1420 1421 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1422 { 1423 if (rq->tag != -1) 1424 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1425 1426 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1427 } 1428 1429 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie, 1430 bool may_sleep) 1431 { 1432 struct request_queue *q = rq->q; 1433 struct blk_mq_queue_data bd = { 1434 .rq = rq, 1435 .list = NULL, 1436 .last = 1 1437 }; 1438 struct blk_mq_hw_ctx *hctx; 1439 blk_qc_t new_cookie; 1440 int ret; 1441 1442 if (q->elevator) 1443 goto insert; 1444 1445 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1446 goto insert; 1447 1448 new_cookie = request_to_qc_t(hctx, rq); 1449 1450 /* 1451 * For OK queue, we are done. For error, kill it. Any other 1452 * error (busy), just add it to our list as we previously 1453 * would have done 1454 */ 1455 ret = q->mq_ops->queue_rq(hctx, &bd); 1456 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1457 *cookie = new_cookie; 1458 return; 1459 } 1460 1461 __blk_mq_requeue_request(rq); 1462 1463 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1464 *cookie = BLK_QC_T_NONE; 1465 rq->errors = -EIO; 1466 blk_mq_end_request(rq, rq->errors); 1467 return; 1468 } 1469 1470 insert: 1471 blk_mq_sched_insert_request(rq, false, true, false, may_sleep); 1472 } 1473 1474 /* 1475 * Multiple hardware queue variant. This will not use per-process plugs, 1476 * but will attempt to bypass the hctx queueing if we can go straight to 1477 * hardware for SYNC IO. 1478 */ 1479 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1480 { 1481 const int is_sync = op_is_sync(bio->bi_opf); 1482 const int is_flush_fua = op_is_flush(bio->bi_opf); 1483 struct blk_mq_alloc_data data = { .flags = 0 }; 1484 struct request *rq; 1485 unsigned int request_count = 0, srcu_idx; 1486 struct blk_plug *plug; 1487 struct request *same_queue_rq = NULL; 1488 blk_qc_t cookie; 1489 unsigned int wb_acct; 1490 1491 blk_queue_bounce(q, &bio); 1492 1493 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1494 bio_io_error(bio); 1495 return BLK_QC_T_NONE; 1496 } 1497 1498 blk_queue_split(q, &bio, q->bio_split); 1499 1500 if (!is_flush_fua && !blk_queue_nomerges(q) && 1501 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1502 return BLK_QC_T_NONE; 1503 1504 if (blk_mq_sched_bio_merge(q, bio)) 1505 return BLK_QC_T_NONE; 1506 1507 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1508 1509 trace_block_getrq(q, bio, bio->bi_opf); 1510 1511 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1512 if (unlikely(!rq)) { 1513 __wbt_done(q->rq_wb, wb_acct); 1514 return BLK_QC_T_NONE; 1515 } 1516 1517 wbt_track(&rq->issue_stat, wb_acct); 1518 1519 cookie = request_to_qc_t(data.hctx, rq); 1520 1521 if (unlikely(is_flush_fua)) { 1522 if (q->elevator) 1523 goto elv_insert; 1524 blk_mq_bio_to_request(rq, bio); 1525 blk_insert_flush(rq); 1526 goto run_queue; 1527 } 1528 1529 plug = current->plug; 1530 /* 1531 * If the driver supports defer issued based on 'last', then 1532 * queue it up like normal since we can potentially save some 1533 * CPU this way. 1534 */ 1535 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1536 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1537 struct request *old_rq = NULL; 1538 1539 blk_mq_bio_to_request(rq, bio); 1540 1541 /* 1542 * We do limited plugging. If the bio can be merged, do that. 1543 * Otherwise the existing request in the plug list will be 1544 * issued. So the plug list will have one request at most 1545 */ 1546 if (plug) { 1547 /* 1548 * The plug list might get flushed before this. If that 1549 * happens, same_queue_rq is invalid and plug list is 1550 * empty 1551 */ 1552 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1553 old_rq = same_queue_rq; 1554 list_del_init(&old_rq->queuelist); 1555 } 1556 list_add_tail(&rq->queuelist, &plug->mq_list); 1557 } else /* is_sync */ 1558 old_rq = rq; 1559 blk_mq_put_ctx(data.ctx); 1560 if (!old_rq) 1561 goto done; 1562 1563 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { 1564 rcu_read_lock(); 1565 blk_mq_try_issue_directly(old_rq, &cookie, false); 1566 rcu_read_unlock(); 1567 } else { 1568 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); 1569 blk_mq_try_issue_directly(old_rq, &cookie, true); 1570 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); 1571 } 1572 goto done; 1573 } 1574 1575 if (q->elevator) { 1576 elv_insert: 1577 blk_mq_put_ctx(data.ctx); 1578 blk_mq_bio_to_request(rq, bio); 1579 blk_mq_sched_insert_request(rq, false, true, 1580 !is_sync || is_flush_fua, true); 1581 goto done; 1582 } 1583 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1584 /* 1585 * For a SYNC request, send it to the hardware immediately. For 1586 * an ASYNC request, just ensure that we run it later on. The 1587 * latter allows for merging opportunities and more efficient 1588 * dispatching. 1589 */ 1590 run_queue: 1591 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1592 } 1593 blk_mq_put_ctx(data.ctx); 1594 done: 1595 return cookie; 1596 } 1597 1598 /* 1599 * Single hardware queue variant. This will attempt to use any per-process 1600 * plug for merging and IO deferral. 1601 */ 1602 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1603 { 1604 const int is_sync = op_is_sync(bio->bi_opf); 1605 const int is_flush_fua = op_is_flush(bio->bi_opf); 1606 struct blk_plug *plug; 1607 unsigned int request_count = 0; 1608 struct blk_mq_alloc_data data = { .flags = 0 }; 1609 struct request *rq; 1610 blk_qc_t cookie; 1611 unsigned int wb_acct; 1612 1613 blk_queue_bounce(q, &bio); 1614 1615 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1616 bio_io_error(bio); 1617 return BLK_QC_T_NONE; 1618 } 1619 1620 blk_queue_split(q, &bio, q->bio_split); 1621 1622 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1623 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1624 return BLK_QC_T_NONE; 1625 } else 1626 request_count = blk_plug_queued_count(q); 1627 1628 if (blk_mq_sched_bio_merge(q, bio)) 1629 return BLK_QC_T_NONE; 1630 1631 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1632 1633 trace_block_getrq(q, bio, bio->bi_opf); 1634 1635 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1636 if (unlikely(!rq)) { 1637 __wbt_done(q->rq_wb, wb_acct); 1638 return BLK_QC_T_NONE; 1639 } 1640 1641 wbt_track(&rq->issue_stat, wb_acct); 1642 1643 cookie = request_to_qc_t(data.hctx, rq); 1644 1645 if (unlikely(is_flush_fua)) { 1646 if (q->elevator) 1647 goto elv_insert; 1648 blk_mq_bio_to_request(rq, bio); 1649 blk_insert_flush(rq); 1650 goto run_queue; 1651 } 1652 1653 /* 1654 * A task plug currently exists. Since this is completely lockless, 1655 * utilize that to temporarily store requests until the task is 1656 * either done or scheduled away. 1657 */ 1658 plug = current->plug; 1659 if (plug) { 1660 struct request *last = NULL; 1661 1662 blk_mq_bio_to_request(rq, bio); 1663 1664 /* 1665 * @request_count may become stale because of schedule 1666 * out, so check the list again. 1667 */ 1668 if (list_empty(&plug->mq_list)) 1669 request_count = 0; 1670 if (!request_count) 1671 trace_block_plug(q); 1672 else 1673 last = list_entry_rq(plug->mq_list.prev); 1674 1675 blk_mq_put_ctx(data.ctx); 1676 1677 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1678 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1679 blk_flush_plug_list(plug, false); 1680 trace_block_plug(q); 1681 } 1682 1683 list_add_tail(&rq->queuelist, &plug->mq_list); 1684 return cookie; 1685 } 1686 1687 if (q->elevator) { 1688 elv_insert: 1689 blk_mq_put_ctx(data.ctx); 1690 blk_mq_bio_to_request(rq, bio); 1691 blk_mq_sched_insert_request(rq, false, true, 1692 !is_sync || is_flush_fua, true); 1693 goto done; 1694 } 1695 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1696 /* 1697 * For a SYNC request, send it to the hardware immediately. For 1698 * an ASYNC request, just ensure that we run it later on. The 1699 * latter allows for merging opportunities and more efficient 1700 * dispatching. 1701 */ 1702 run_queue: 1703 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1704 } 1705 1706 blk_mq_put_ctx(data.ctx); 1707 done: 1708 return cookie; 1709 } 1710 1711 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1712 unsigned int hctx_idx) 1713 { 1714 struct page *page; 1715 1716 if (tags->rqs && set->ops->exit_request) { 1717 int i; 1718 1719 for (i = 0; i < tags->nr_tags; i++) { 1720 struct request *rq = tags->static_rqs[i]; 1721 1722 if (!rq) 1723 continue; 1724 set->ops->exit_request(set->driver_data, rq, 1725 hctx_idx, i); 1726 tags->static_rqs[i] = NULL; 1727 } 1728 } 1729 1730 while (!list_empty(&tags->page_list)) { 1731 page = list_first_entry(&tags->page_list, struct page, lru); 1732 list_del_init(&page->lru); 1733 /* 1734 * Remove kmemleak object previously allocated in 1735 * blk_mq_init_rq_map(). 1736 */ 1737 kmemleak_free(page_address(page)); 1738 __free_pages(page, page->private); 1739 } 1740 } 1741 1742 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1743 { 1744 kfree(tags->rqs); 1745 tags->rqs = NULL; 1746 kfree(tags->static_rqs); 1747 tags->static_rqs = NULL; 1748 1749 blk_mq_free_tags(tags); 1750 } 1751 1752 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1753 unsigned int hctx_idx, 1754 unsigned int nr_tags, 1755 unsigned int reserved_tags) 1756 { 1757 struct blk_mq_tags *tags; 1758 int node; 1759 1760 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1761 if (node == NUMA_NO_NODE) 1762 node = set->numa_node; 1763 1764 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1765 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1766 if (!tags) 1767 return NULL; 1768 1769 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1770 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1771 node); 1772 if (!tags->rqs) { 1773 blk_mq_free_tags(tags); 1774 return NULL; 1775 } 1776 1777 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1778 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1779 node); 1780 if (!tags->static_rqs) { 1781 kfree(tags->rqs); 1782 blk_mq_free_tags(tags); 1783 return NULL; 1784 } 1785 1786 return tags; 1787 } 1788 1789 static size_t order_to_size(unsigned int order) 1790 { 1791 return (size_t)PAGE_SIZE << order; 1792 } 1793 1794 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1795 unsigned int hctx_idx, unsigned int depth) 1796 { 1797 unsigned int i, j, entries_per_page, max_order = 4; 1798 size_t rq_size, left; 1799 int node; 1800 1801 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1802 if (node == NUMA_NO_NODE) 1803 node = set->numa_node; 1804 1805 INIT_LIST_HEAD(&tags->page_list); 1806 1807 /* 1808 * rq_size is the size of the request plus driver payload, rounded 1809 * to the cacheline size 1810 */ 1811 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1812 cache_line_size()); 1813 left = rq_size * depth; 1814 1815 for (i = 0; i < depth; ) { 1816 int this_order = max_order; 1817 struct page *page; 1818 int to_do; 1819 void *p; 1820 1821 while (this_order && left < order_to_size(this_order - 1)) 1822 this_order--; 1823 1824 do { 1825 page = alloc_pages_node(node, 1826 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1827 this_order); 1828 if (page) 1829 break; 1830 if (!this_order--) 1831 break; 1832 if (order_to_size(this_order) < rq_size) 1833 break; 1834 } while (1); 1835 1836 if (!page) 1837 goto fail; 1838 1839 page->private = this_order; 1840 list_add_tail(&page->lru, &tags->page_list); 1841 1842 p = page_address(page); 1843 /* 1844 * Allow kmemleak to scan these pages as they contain pointers 1845 * to additional allocations like via ops->init_request(). 1846 */ 1847 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1848 entries_per_page = order_to_size(this_order) / rq_size; 1849 to_do = min(entries_per_page, depth - i); 1850 left -= to_do * rq_size; 1851 for (j = 0; j < to_do; j++) { 1852 struct request *rq = p; 1853 1854 tags->static_rqs[i] = rq; 1855 if (set->ops->init_request) { 1856 if (set->ops->init_request(set->driver_data, 1857 rq, hctx_idx, i, 1858 node)) { 1859 tags->static_rqs[i] = NULL; 1860 goto fail; 1861 } 1862 } 1863 1864 p += rq_size; 1865 i++; 1866 } 1867 } 1868 return 0; 1869 1870 fail: 1871 blk_mq_free_rqs(set, tags, hctx_idx); 1872 return -ENOMEM; 1873 } 1874 1875 /* 1876 * 'cpu' is going away. splice any existing rq_list entries from this 1877 * software queue to the hw queue dispatch list, and ensure that it 1878 * gets run. 1879 */ 1880 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1881 { 1882 struct blk_mq_hw_ctx *hctx; 1883 struct blk_mq_ctx *ctx; 1884 LIST_HEAD(tmp); 1885 1886 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1887 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1888 1889 spin_lock(&ctx->lock); 1890 if (!list_empty(&ctx->rq_list)) { 1891 list_splice_init(&ctx->rq_list, &tmp); 1892 blk_mq_hctx_clear_pending(hctx, ctx); 1893 } 1894 spin_unlock(&ctx->lock); 1895 1896 if (list_empty(&tmp)) 1897 return 0; 1898 1899 spin_lock(&hctx->lock); 1900 list_splice_tail_init(&tmp, &hctx->dispatch); 1901 spin_unlock(&hctx->lock); 1902 1903 blk_mq_run_hw_queue(hctx, true); 1904 return 0; 1905 } 1906 1907 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1908 { 1909 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1910 &hctx->cpuhp_dead); 1911 } 1912 1913 /* hctx->ctxs will be freed in queue's release handler */ 1914 static void blk_mq_exit_hctx(struct request_queue *q, 1915 struct blk_mq_tag_set *set, 1916 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1917 { 1918 unsigned flush_start_tag = set->queue_depth; 1919 1920 blk_mq_tag_idle(hctx); 1921 1922 if (set->ops->exit_request) 1923 set->ops->exit_request(set->driver_data, 1924 hctx->fq->flush_rq, hctx_idx, 1925 flush_start_tag + hctx_idx); 1926 1927 if (set->ops->exit_hctx) 1928 set->ops->exit_hctx(hctx, hctx_idx); 1929 1930 if (hctx->flags & BLK_MQ_F_BLOCKING) 1931 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1932 1933 blk_mq_remove_cpuhp(hctx); 1934 blk_free_flush_queue(hctx->fq); 1935 sbitmap_free(&hctx->ctx_map); 1936 } 1937 1938 static void blk_mq_exit_hw_queues(struct request_queue *q, 1939 struct blk_mq_tag_set *set, int nr_queue) 1940 { 1941 struct blk_mq_hw_ctx *hctx; 1942 unsigned int i; 1943 1944 queue_for_each_hw_ctx(q, hctx, i) { 1945 if (i == nr_queue) 1946 break; 1947 blk_mq_exit_hctx(q, set, hctx, i); 1948 } 1949 } 1950 1951 static int blk_mq_init_hctx(struct request_queue *q, 1952 struct blk_mq_tag_set *set, 1953 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1954 { 1955 int node; 1956 unsigned flush_start_tag = set->queue_depth; 1957 1958 node = hctx->numa_node; 1959 if (node == NUMA_NO_NODE) 1960 node = hctx->numa_node = set->numa_node; 1961 1962 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); 1963 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1964 spin_lock_init(&hctx->lock); 1965 INIT_LIST_HEAD(&hctx->dispatch); 1966 hctx->queue = q; 1967 hctx->queue_num = hctx_idx; 1968 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1969 1970 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1971 1972 hctx->tags = set->tags[hctx_idx]; 1973 1974 /* 1975 * Allocate space for all possible cpus to avoid allocation at 1976 * runtime 1977 */ 1978 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1979 GFP_KERNEL, node); 1980 if (!hctx->ctxs) 1981 goto unregister_cpu_notifier; 1982 1983 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1984 node)) 1985 goto free_ctxs; 1986 1987 hctx->nr_ctx = 0; 1988 1989 if (set->ops->init_hctx && 1990 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1991 goto free_bitmap; 1992 1993 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1994 if (!hctx->fq) 1995 goto exit_hctx; 1996 1997 if (set->ops->init_request && 1998 set->ops->init_request(set->driver_data, 1999 hctx->fq->flush_rq, hctx_idx, 2000 flush_start_tag + hctx_idx, node)) 2001 goto free_fq; 2002 2003 if (hctx->flags & BLK_MQ_F_BLOCKING) 2004 init_srcu_struct(&hctx->queue_rq_srcu); 2005 2006 return 0; 2007 2008 free_fq: 2009 kfree(hctx->fq); 2010 exit_hctx: 2011 if (set->ops->exit_hctx) 2012 set->ops->exit_hctx(hctx, hctx_idx); 2013 free_bitmap: 2014 sbitmap_free(&hctx->ctx_map); 2015 free_ctxs: 2016 kfree(hctx->ctxs); 2017 unregister_cpu_notifier: 2018 blk_mq_remove_cpuhp(hctx); 2019 return -1; 2020 } 2021 2022 static void blk_mq_init_cpu_queues(struct request_queue *q, 2023 unsigned int nr_hw_queues) 2024 { 2025 unsigned int i; 2026 2027 for_each_possible_cpu(i) { 2028 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2029 struct blk_mq_hw_ctx *hctx; 2030 2031 __ctx->cpu = i; 2032 spin_lock_init(&__ctx->lock); 2033 INIT_LIST_HEAD(&__ctx->rq_list); 2034 __ctx->queue = q; 2035 blk_stat_init(&__ctx->stat[BLK_STAT_READ]); 2036 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); 2037 2038 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2039 if (!cpu_online(i)) 2040 continue; 2041 2042 hctx = blk_mq_map_queue(q, i); 2043 2044 /* 2045 * Set local node, IFF we have more than one hw queue. If 2046 * not, we remain on the home node of the device 2047 */ 2048 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2049 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2050 } 2051 } 2052 2053 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2054 { 2055 int ret = 0; 2056 2057 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2058 set->queue_depth, set->reserved_tags); 2059 if (!set->tags[hctx_idx]) 2060 return false; 2061 2062 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2063 set->queue_depth); 2064 if (!ret) 2065 return true; 2066 2067 blk_mq_free_rq_map(set->tags[hctx_idx]); 2068 set->tags[hctx_idx] = NULL; 2069 return false; 2070 } 2071 2072 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2073 unsigned int hctx_idx) 2074 { 2075 if (set->tags[hctx_idx]) { 2076 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2077 blk_mq_free_rq_map(set->tags[hctx_idx]); 2078 set->tags[hctx_idx] = NULL; 2079 } 2080 } 2081 2082 static void blk_mq_map_swqueue(struct request_queue *q, 2083 const struct cpumask *online_mask) 2084 { 2085 unsigned int i, hctx_idx; 2086 struct blk_mq_hw_ctx *hctx; 2087 struct blk_mq_ctx *ctx; 2088 struct blk_mq_tag_set *set = q->tag_set; 2089 2090 /* 2091 * Avoid others reading imcomplete hctx->cpumask through sysfs 2092 */ 2093 mutex_lock(&q->sysfs_lock); 2094 2095 queue_for_each_hw_ctx(q, hctx, i) { 2096 cpumask_clear(hctx->cpumask); 2097 hctx->nr_ctx = 0; 2098 } 2099 2100 /* 2101 * Map software to hardware queues 2102 */ 2103 for_each_possible_cpu(i) { 2104 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2105 if (!cpumask_test_cpu(i, online_mask)) 2106 continue; 2107 2108 hctx_idx = q->mq_map[i]; 2109 /* unmapped hw queue can be remapped after CPU topo changed */ 2110 if (!set->tags[hctx_idx] && 2111 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2112 /* 2113 * If tags initialization fail for some hctx, 2114 * that hctx won't be brought online. In this 2115 * case, remap the current ctx to hctx[0] which 2116 * is guaranteed to always have tags allocated 2117 */ 2118 q->mq_map[i] = 0; 2119 } 2120 2121 ctx = per_cpu_ptr(q->queue_ctx, i); 2122 hctx = blk_mq_map_queue(q, i); 2123 2124 cpumask_set_cpu(i, hctx->cpumask); 2125 ctx->index_hw = hctx->nr_ctx; 2126 hctx->ctxs[hctx->nr_ctx++] = ctx; 2127 } 2128 2129 mutex_unlock(&q->sysfs_lock); 2130 2131 queue_for_each_hw_ctx(q, hctx, i) { 2132 /* 2133 * If no software queues are mapped to this hardware queue, 2134 * disable it and free the request entries. 2135 */ 2136 if (!hctx->nr_ctx) { 2137 /* Never unmap queue 0. We need it as a 2138 * fallback in case of a new remap fails 2139 * allocation 2140 */ 2141 if (i && set->tags[i]) 2142 blk_mq_free_map_and_requests(set, i); 2143 2144 hctx->tags = NULL; 2145 continue; 2146 } 2147 2148 hctx->tags = set->tags[i]; 2149 WARN_ON(!hctx->tags); 2150 2151 /* 2152 * Set the map size to the number of mapped software queues. 2153 * This is more accurate and more efficient than looping 2154 * over all possibly mapped software queues. 2155 */ 2156 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2157 2158 /* 2159 * Initialize batch roundrobin counts 2160 */ 2161 hctx->next_cpu = cpumask_first(hctx->cpumask); 2162 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2163 } 2164 } 2165 2166 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2167 { 2168 struct blk_mq_hw_ctx *hctx; 2169 int i; 2170 2171 queue_for_each_hw_ctx(q, hctx, i) { 2172 if (shared) 2173 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2174 else 2175 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2176 } 2177 } 2178 2179 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 2180 { 2181 struct request_queue *q; 2182 2183 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2184 blk_mq_freeze_queue(q); 2185 queue_set_hctx_shared(q, shared); 2186 blk_mq_unfreeze_queue(q); 2187 } 2188 } 2189 2190 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2191 { 2192 struct blk_mq_tag_set *set = q->tag_set; 2193 2194 mutex_lock(&set->tag_list_lock); 2195 list_del_init(&q->tag_set_list); 2196 if (list_is_singular(&set->tag_list)) { 2197 /* just transitioned to unshared */ 2198 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2199 /* update existing queue */ 2200 blk_mq_update_tag_set_depth(set, false); 2201 } 2202 mutex_unlock(&set->tag_list_lock); 2203 } 2204 2205 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2206 struct request_queue *q) 2207 { 2208 q->tag_set = set; 2209 2210 mutex_lock(&set->tag_list_lock); 2211 2212 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2213 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2214 set->flags |= BLK_MQ_F_TAG_SHARED; 2215 /* update existing queue */ 2216 blk_mq_update_tag_set_depth(set, true); 2217 } 2218 if (set->flags & BLK_MQ_F_TAG_SHARED) 2219 queue_set_hctx_shared(q, true); 2220 list_add_tail(&q->tag_set_list, &set->tag_list); 2221 2222 mutex_unlock(&set->tag_list_lock); 2223 } 2224 2225 /* 2226 * It is the actual release handler for mq, but we do it from 2227 * request queue's release handler for avoiding use-after-free 2228 * and headache because q->mq_kobj shouldn't have been introduced, 2229 * but we can't group ctx/kctx kobj without it. 2230 */ 2231 void blk_mq_release(struct request_queue *q) 2232 { 2233 struct blk_mq_hw_ctx *hctx; 2234 unsigned int i; 2235 2236 blk_mq_sched_teardown(q); 2237 2238 /* hctx kobj stays in hctx */ 2239 queue_for_each_hw_ctx(q, hctx, i) { 2240 if (!hctx) 2241 continue; 2242 kobject_put(&hctx->kobj); 2243 } 2244 2245 q->mq_map = NULL; 2246 2247 kfree(q->queue_hw_ctx); 2248 2249 /* 2250 * release .mq_kobj and sw queue's kobject now because 2251 * both share lifetime with request queue. 2252 */ 2253 blk_mq_sysfs_deinit(q); 2254 2255 free_percpu(q->queue_ctx); 2256 } 2257 2258 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2259 { 2260 struct request_queue *uninit_q, *q; 2261 2262 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2263 if (!uninit_q) 2264 return ERR_PTR(-ENOMEM); 2265 2266 q = blk_mq_init_allocated_queue(set, uninit_q); 2267 if (IS_ERR(q)) 2268 blk_cleanup_queue(uninit_q); 2269 2270 return q; 2271 } 2272 EXPORT_SYMBOL(blk_mq_init_queue); 2273 2274 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2275 struct request_queue *q) 2276 { 2277 int i, j; 2278 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2279 2280 blk_mq_sysfs_unregister(q); 2281 for (i = 0; i < set->nr_hw_queues; i++) { 2282 int node; 2283 2284 if (hctxs[i]) 2285 continue; 2286 2287 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2288 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2289 GFP_KERNEL, node); 2290 if (!hctxs[i]) 2291 break; 2292 2293 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2294 node)) { 2295 kfree(hctxs[i]); 2296 hctxs[i] = NULL; 2297 break; 2298 } 2299 2300 atomic_set(&hctxs[i]->nr_active, 0); 2301 hctxs[i]->numa_node = node; 2302 hctxs[i]->queue_num = i; 2303 2304 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2305 free_cpumask_var(hctxs[i]->cpumask); 2306 kfree(hctxs[i]); 2307 hctxs[i] = NULL; 2308 break; 2309 } 2310 blk_mq_hctx_kobj_init(hctxs[i]); 2311 } 2312 for (j = i; j < q->nr_hw_queues; j++) { 2313 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2314 2315 if (hctx) { 2316 if (hctx->tags) 2317 blk_mq_free_map_and_requests(set, j); 2318 blk_mq_exit_hctx(q, set, hctx, j); 2319 kobject_put(&hctx->kobj); 2320 hctxs[j] = NULL; 2321 2322 } 2323 } 2324 q->nr_hw_queues = i; 2325 blk_mq_sysfs_register(q); 2326 } 2327 2328 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2329 struct request_queue *q) 2330 { 2331 /* mark the queue as mq asap */ 2332 q->mq_ops = set->ops; 2333 2334 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2335 if (!q->queue_ctx) 2336 goto err_exit; 2337 2338 /* init q->mq_kobj and sw queues' kobjects */ 2339 blk_mq_sysfs_init(q); 2340 2341 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2342 GFP_KERNEL, set->numa_node); 2343 if (!q->queue_hw_ctx) 2344 goto err_percpu; 2345 2346 q->mq_map = set->mq_map; 2347 2348 blk_mq_realloc_hw_ctxs(set, q); 2349 if (!q->nr_hw_queues) 2350 goto err_hctxs; 2351 2352 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2353 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2354 2355 q->nr_queues = nr_cpu_ids; 2356 2357 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2358 2359 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2360 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2361 2362 q->sg_reserved_size = INT_MAX; 2363 2364 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2365 INIT_LIST_HEAD(&q->requeue_list); 2366 spin_lock_init(&q->requeue_lock); 2367 2368 if (q->nr_hw_queues > 1) 2369 blk_queue_make_request(q, blk_mq_make_request); 2370 else 2371 blk_queue_make_request(q, blk_sq_make_request); 2372 2373 /* 2374 * Do this after blk_queue_make_request() overrides it... 2375 */ 2376 q->nr_requests = set->queue_depth; 2377 2378 /* 2379 * Default to classic polling 2380 */ 2381 q->poll_nsec = -1; 2382 2383 if (set->ops->complete) 2384 blk_queue_softirq_done(q, set->ops->complete); 2385 2386 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2387 2388 get_online_cpus(); 2389 mutex_lock(&all_q_mutex); 2390 2391 list_add_tail(&q->all_q_node, &all_q_list); 2392 blk_mq_add_queue_tag_set(set, q); 2393 blk_mq_map_swqueue(q, cpu_online_mask); 2394 2395 mutex_unlock(&all_q_mutex); 2396 put_online_cpus(); 2397 2398 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2399 int ret; 2400 2401 ret = blk_mq_sched_init(q); 2402 if (ret) 2403 return ERR_PTR(ret); 2404 } 2405 2406 return q; 2407 2408 err_hctxs: 2409 kfree(q->queue_hw_ctx); 2410 err_percpu: 2411 free_percpu(q->queue_ctx); 2412 err_exit: 2413 q->mq_ops = NULL; 2414 return ERR_PTR(-ENOMEM); 2415 } 2416 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2417 2418 void blk_mq_free_queue(struct request_queue *q) 2419 { 2420 struct blk_mq_tag_set *set = q->tag_set; 2421 2422 mutex_lock(&all_q_mutex); 2423 list_del_init(&q->all_q_node); 2424 mutex_unlock(&all_q_mutex); 2425 2426 wbt_exit(q); 2427 2428 blk_mq_del_queue_tag_set(q); 2429 2430 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2431 } 2432 2433 /* Basically redo blk_mq_init_queue with queue frozen */ 2434 static void blk_mq_queue_reinit(struct request_queue *q, 2435 const struct cpumask *online_mask) 2436 { 2437 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2438 2439 blk_mq_sysfs_unregister(q); 2440 2441 /* 2442 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2443 * we should change hctx numa_node according to new topology (this 2444 * involves free and re-allocate memory, worthy doing?) 2445 */ 2446 2447 blk_mq_map_swqueue(q, online_mask); 2448 2449 blk_mq_sysfs_register(q); 2450 } 2451 2452 /* 2453 * New online cpumask which is going to be set in this hotplug event. 2454 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2455 * one-by-one and dynamically allocating this could result in a failure. 2456 */ 2457 static struct cpumask cpuhp_online_new; 2458 2459 static void blk_mq_queue_reinit_work(void) 2460 { 2461 struct request_queue *q; 2462 2463 mutex_lock(&all_q_mutex); 2464 /* 2465 * We need to freeze and reinit all existing queues. Freezing 2466 * involves synchronous wait for an RCU grace period and doing it 2467 * one by one may take a long time. Start freezing all queues in 2468 * one swoop and then wait for the completions so that freezing can 2469 * take place in parallel. 2470 */ 2471 list_for_each_entry(q, &all_q_list, all_q_node) 2472 blk_mq_freeze_queue_start(q); 2473 list_for_each_entry(q, &all_q_list, all_q_node) 2474 blk_mq_freeze_queue_wait(q); 2475 2476 list_for_each_entry(q, &all_q_list, all_q_node) 2477 blk_mq_queue_reinit(q, &cpuhp_online_new); 2478 2479 list_for_each_entry(q, &all_q_list, all_q_node) 2480 blk_mq_unfreeze_queue(q); 2481 2482 mutex_unlock(&all_q_mutex); 2483 } 2484 2485 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2486 { 2487 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2488 blk_mq_queue_reinit_work(); 2489 return 0; 2490 } 2491 2492 /* 2493 * Before hotadded cpu starts handling requests, new mappings must be 2494 * established. Otherwise, these requests in hw queue might never be 2495 * dispatched. 2496 * 2497 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2498 * for CPU0, and ctx1 for CPU1). 2499 * 2500 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2501 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2502 * 2503 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set 2504 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2505 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is 2506 * ignored. 2507 */ 2508 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2509 { 2510 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2511 cpumask_set_cpu(cpu, &cpuhp_online_new); 2512 blk_mq_queue_reinit_work(); 2513 return 0; 2514 } 2515 2516 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2517 { 2518 int i; 2519 2520 for (i = 0; i < set->nr_hw_queues; i++) 2521 if (!__blk_mq_alloc_rq_map(set, i)) 2522 goto out_unwind; 2523 2524 return 0; 2525 2526 out_unwind: 2527 while (--i >= 0) 2528 blk_mq_free_rq_map(set->tags[i]); 2529 2530 return -ENOMEM; 2531 } 2532 2533 /* 2534 * Allocate the request maps associated with this tag_set. Note that this 2535 * may reduce the depth asked for, if memory is tight. set->queue_depth 2536 * will be updated to reflect the allocated depth. 2537 */ 2538 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2539 { 2540 unsigned int depth; 2541 int err; 2542 2543 depth = set->queue_depth; 2544 do { 2545 err = __blk_mq_alloc_rq_maps(set); 2546 if (!err) 2547 break; 2548 2549 set->queue_depth >>= 1; 2550 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2551 err = -ENOMEM; 2552 break; 2553 } 2554 } while (set->queue_depth); 2555 2556 if (!set->queue_depth || err) { 2557 pr_err("blk-mq: failed to allocate request map\n"); 2558 return -ENOMEM; 2559 } 2560 2561 if (depth != set->queue_depth) 2562 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2563 depth, set->queue_depth); 2564 2565 return 0; 2566 } 2567 2568 /* 2569 * Alloc a tag set to be associated with one or more request queues. 2570 * May fail with EINVAL for various error conditions. May adjust the 2571 * requested depth down, if if it too large. In that case, the set 2572 * value will be stored in set->queue_depth. 2573 */ 2574 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2575 { 2576 int ret; 2577 2578 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2579 2580 if (!set->nr_hw_queues) 2581 return -EINVAL; 2582 if (!set->queue_depth) 2583 return -EINVAL; 2584 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2585 return -EINVAL; 2586 2587 if (!set->ops->queue_rq) 2588 return -EINVAL; 2589 2590 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2591 pr_info("blk-mq: reduced tag depth to %u\n", 2592 BLK_MQ_MAX_DEPTH); 2593 set->queue_depth = BLK_MQ_MAX_DEPTH; 2594 } 2595 2596 /* 2597 * If a crashdump is active, then we are potentially in a very 2598 * memory constrained environment. Limit us to 1 queue and 2599 * 64 tags to prevent using too much memory. 2600 */ 2601 if (is_kdump_kernel()) { 2602 set->nr_hw_queues = 1; 2603 set->queue_depth = min(64U, set->queue_depth); 2604 } 2605 /* 2606 * There is no use for more h/w queues than cpus. 2607 */ 2608 if (set->nr_hw_queues > nr_cpu_ids) 2609 set->nr_hw_queues = nr_cpu_ids; 2610 2611 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2612 GFP_KERNEL, set->numa_node); 2613 if (!set->tags) 2614 return -ENOMEM; 2615 2616 ret = -ENOMEM; 2617 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2618 GFP_KERNEL, set->numa_node); 2619 if (!set->mq_map) 2620 goto out_free_tags; 2621 2622 if (set->ops->map_queues) 2623 ret = set->ops->map_queues(set); 2624 else 2625 ret = blk_mq_map_queues(set); 2626 if (ret) 2627 goto out_free_mq_map; 2628 2629 ret = blk_mq_alloc_rq_maps(set); 2630 if (ret) 2631 goto out_free_mq_map; 2632 2633 mutex_init(&set->tag_list_lock); 2634 INIT_LIST_HEAD(&set->tag_list); 2635 2636 return 0; 2637 2638 out_free_mq_map: 2639 kfree(set->mq_map); 2640 set->mq_map = NULL; 2641 out_free_tags: 2642 kfree(set->tags); 2643 set->tags = NULL; 2644 return ret; 2645 } 2646 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2647 2648 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2649 { 2650 int i; 2651 2652 for (i = 0; i < nr_cpu_ids; i++) 2653 blk_mq_free_map_and_requests(set, i); 2654 2655 kfree(set->mq_map); 2656 set->mq_map = NULL; 2657 2658 kfree(set->tags); 2659 set->tags = NULL; 2660 } 2661 EXPORT_SYMBOL(blk_mq_free_tag_set); 2662 2663 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2664 { 2665 struct blk_mq_tag_set *set = q->tag_set; 2666 struct blk_mq_hw_ctx *hctx; 2667 int i, ret; 2668 2669 if (!set) 2670 return -EINVAL; 2671 2672 blk_mq_freeze_queue(q); 2673 blk_mq_quiesce_queue(q); 2674 2675 ret = 0; 2676 queue_for_each_hw_ctx(q, hctx, i) { 2677 if (!hctx->tags) 2678 continue; 2679 /* 2680 * If we're using an MQ scheduler, just update the scheduler 2681 * queue depth. This is similar to what the old code would do. 2682 */ 2683 if (!hctx->sched_tags) { 2684 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, 2685 min(nr, set->queue_depth), 2686 false); 2687 } else { 2688 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2689 nr, true); 2690 } 2691 if (ret) 2692 break; 2693 } 2694 2695 if (!ret) 2696 q->nr_requests = nr; 2697 2698 blk_mq_unfreeze_queue(q); 2699 blk_mq_start_stopped_hw_queues(q, true); 2700 2701 return ret; 2702 } 2703 2704 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2705 { 2706 struct request_queue *q; 2707 2708 if (nr_hw_queues > nr_cpu_ids) 2709 nr_hw_queues = nr_cpu_ids; 2710 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2711 return; 2712 2713 list_for_each_entry(q, &set->tag_list, tag_set_list) 2714 blk_mq_freeze_queue(q); 2715 2716 set->nr_hw_queues = nr_hw_queues; 2717 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2718 blk_mq_realloc_hw_ctxs(set, q); 2719 2720 /* 2721 * Manually set the make_request_fn as blk_queue_make_request 2722 * resets a lot of the queue settings. 2723 */ 2724 if (q->nr_hw_queues > 1) 2725 q->make_request_fn = blk_mq_make_request; 2726 else 2727 q->make_request_fn = blk_sq_make_request; 2728 2729 blk_mq_queue_reinit(q, cpu_online_mask); 2730 } 2731 2732 list_for_each_entry(q, &set->tag_list, tag_set_list) 2733 blk_mq_unfreeze_queue(q); 2734 } 2735 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2736 2737 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2738 struct blk_mq_hw_ctx *hctx, 2739 struct request *rq) 2740 { 2741 struct blk_rq_stat stat[2]; 2742 unsigned long ret = 0; 2743 2744 /* 2745 * If stats collection isn't on, don't sleep but turn it on for 2746 * future users 2747 */ 2748 if (!blk_stat_enable(q)) 2749 return 0; 2750 2751 /* 2752 * We don't have to do this once per IO, should optimize this 2753 * to just use the current window of stats until it changes 2754 */ 2755 memset(&stat, 0, sizeof(stat)); 2756 blk_hctx_stat_get(hctx, stat); 2757 2758 /* 2759 * As an optimistic guess, use half of the mean service time 2760 * for this type of request. We can (and should) make this smarter. 2761 * For instance, if the completion latencies are tight, we can 2762 * get closer than just half the mean. This is especially 2763 * important on devices where the completion latencies are longer 2764 * than ~10 usec. 2765 */ 2766 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) 2767 ret = (stat[BLK_STAT_READ].mean + 1) / 2; 2768 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) 2769 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; 2770 2771 return ret; 2772 } 2773 2774 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2775 struct blk_mq_hw_ctx *hctx, 2776 struct request *rq) 2777 { 2778 struct hrtimer_sleeper hs; 2779 enum hrtimer_mode mode; 2780 unsigned int nsecs; 2781 ktime_t kt; 2782 2783 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2784 return false; 2785 2786 /* 2787 * poll_nsec can be: 2788 * 2789 * -1: don't ever hybrid sleep 2790 * 0: use half of prev avg 2791 * >0: use this specific value 2792 */ 2793 if (q->poll_nsec == -1) 2794 return false; 2795 else if (q->poll_nsec > 0) 2796 nsecs = q->poll_nsec; 2797 else 2798 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2799 2800 if (!nsecs) 2801 return false; 2802 2803 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2804 2805 /* 2806 * This will be replaced with the stats tracking code, using 2807 * 'avg_completion_time / 2' as the pre-sleep target. 2808 */ 2809 kt = nsecs; 2810 2811 mode = HRTIMER_MODE_REL; 2812 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2813 hrtimer_set_expires(&hs.timer, kt); 2814 2815 hrtimer_init_sleeper(&hs, current); 2816 do { 2817 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2818 break; 2819 set_current_state(TASK_UNINTERRUPTIBLE); 2820 hrtimer_start_expires(&hs.timer, mode); 2821 if (hs.task) 2822 io_schedule(); 2823 hrtimer_cancel(&hs.timer); 2824 mode = HRTIMER_MODE_ABS; 2825 } while (hs.task && !signal_pending(current)); 2826 2827 __set_current_state(TASK_RUNNING); 2828 destroy_hrtimer_on_stack(&hs.timer); 2829 return true; 2830 } 2831 2832 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2833 { 2834 struct request_queue *q = hctx->queue; 2835 long state; 2836 2837 /* 2838 * If we sleep, have the caller restart the poll loop to reset 2839 * the state. Like for the other success return cases, the 2840 * caller is responsible for checking if the IO completed. If 2841 * the IO isn't complete, we'll get called again and will go 2842 * straight to the busy poll loop. 2843 */ 2844 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2845 return true; 2846 2847 hctx->poll_considered++; 2848 2849 state = current->state; 2850 while (!need_resched()) { 2851 int ret; 2852 2853 hctx->poll_invoked++; 2854 2855 ret = q->mq_ops->poll(hctx, rq->tag); 2856 if (ret > 0) { 2857 hctx->poll_success++; 2858 set_current_state(TASK_RUNNING); 2859 return true; 2860 } 2861 2862 if (signal_pending_state(state, current)) 2863 set_current_state(TASK_RUNNING); 2864 2865 if (current->state == TASK_RUNNING) 2866 return true; 2867 if (ret < 0) 2868 break; 2869 cpu_relax(); 2870 } 2871 2872 return false; 2873 } 2874 2875 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2876 { 2877 struct blk_mq_hw_ctx *hctx; 2878 struct blk_plug *plug; 2879 struct request *rq; 2880 2881 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2882 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2883 return false; 2884 2885 plug = current->plug; 2886 if (plug) 2887 blk_flush_plug_list(plug, false); 2888 2889 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2890 if (!blk_qc_t_is_internal(cookie)) 2891 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2892 else 2893 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2894 2895 return __blk_mq_poll(hctx, rq); 2896 } 2897 EXPORT_SYMBOL_GPL(blk_mq_poll); 2898 2899 void blk_mq_disable_hotplug(void) 2900 { 2901 mutex_lock(&all_q_mutex); 2902 } 2903 2904 void blk_mq_enable_hotplug(void) 2905 { 2906 mutex_unlock(&all_q_mutex); 2907 } 2908 2909 static int __init blk_mq_init(void) 2910 { 2911 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2912 blk_mq_hctx_notify_dead); 2913 2914 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2915 blk_mq_queue_reinit_prepare, 2916 blk_mq_queue_reinit_dead); 2917 return 0; 2918 } 2919 subsys_initcall(blk_mq_init); 2920