1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 79 } 80 81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 82 struct blk_mq_ctx *ctx) 83 { 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 85 } 86 87 struct mq_inflight { 88 struct hd_struct *part; 89 unsigned int *inflight; 90 }; 91 92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 93 struct request *rq, void *priv, 94 bool reserved) 95 { 96 struct mq_inflight *mi = priv; 97 98 /* 99 * index[0] counts the specific partition that was asked for. index[1] 100 * counts the ones that are active on the whole device, so increment 101 * that if mi->part is indeed a partition, and not a whole device. 102 */ 103 if (rq->part == mi->part) 104 mi->inflight[0]++; 105 if (mi->part->partno) 106 mi->inflight[1]++; 107 } 108 109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 110 unsigned int inflight[2]) 111 { 112 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 113 114 inflight[0] = inflight[1] = 0; 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 } 117 118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 119 struct request *rq, void *priv, 120 bool reserved) 121 { 122 struct mq_inflight *mi = priv; 123 124 if (rq->part == mi->part) 125 mi->inflight[rq_data_dir(rq)]++; 126 } 127 128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 129 unsigned int inflight[2]) 130 { 131 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 132 133 inflight[0] = inflight[1] = 0; 134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 135 } 136 137 void blk_freeze_queue_start(struct request_queue *q) 138 { 139 int freeze_depth; 140 141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 142 if (freeze_depth == 1) { 143 percpu_ref_kill(&q->q_usage_counter); 144 if (q->mq_ops) 145 blk_mq_run_hw_queues(q, false); 146 } 147 } 148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 149 150 void blk_mq_freeze_queue_wait(struct request_queue *q) 151 { 152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 153 } 154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 155 156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 157 unsigned long timeout) 158 { 159 return wait_event_timeout(q->mq_freeze_wq, 160 percpu_ref_is_zero(&q->q_usage_counter), 161 timeout); 162 } 163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 164 165 /* 166 * Guarantee no request is in use, so we can change any data structure of 167 * the queue afterward. 168 */ 169 void blk_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * In the !blk_mq case we are only calling this to kill the 173 * q_usage_counter, otherwise this increases the freeze depth 174 * and waits for it to return to zero. For this reason there is 175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 176 * exported to drivers as the only user for unfreeze is blk_mq. 177 */ 178 blk_freeze_queue_start(q); 179 if (!q->mq_ops) 180 blk_drain_queue(q); 181 blk_mq_freeze_queue_wait(q); 182 } 183 184 void blk_mq_freeze_queue(struct request_queue *q) 185 { 186 /* 187 * ...just an alias to keep freeze and unfreeze actions balanced 188 * in the blk_mq_* namespace 189 */ 190 blk_freeze_queue(q); 191 } 192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 int freeze_depth; 197 198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 199 WARN_ON_ONCE(freeze_depth < 0); 200 if (!freeze_depth) { 201 percpu_ref_reinit(&q->q_usage_counter); 202 wake_up_all(&q->mq_freeze_wq); 203 } 204 } 205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 206 207 /* 208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 209 * mpt3sas driver such that this function can be removed. 210 */ 211 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 212 { 213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 214 } 215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 216 217 /** 218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 219 * @q: request queue. 220 * 221 * Note: this function does not prevent that the struct request end_io() 222 * callback function is invoked. Once this function is returned, we make 223 * sure no dispatch can happen until the queue is unquiesced via 224 * blk_mq_unquiesce_queue(). 225 */ 226 void blk_mq_quiesce_queue(struct request_queue *q) 227 { 228 struct blk_mq_hw_ctx *hctx; 229 unsigned int i; 230 bool rcu = false; 231 232 blk_mq_quiesce_queue_nowait(q); 233 234 queue_for_each_hw_ctx(q, hctx, i) { 235 if (hctx->flags & BLK_MQ_F_BLOCKING) 236 synchronize_srcu(hctx->srcu); 237 else 238 rcu = true; 239 } 240 if (rcu) 241 synchronize_rcu(); 242 } 243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 244 245 /* 246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 247 * @q: request queue. 248 * 249 * This function recovers queue into the state before quiescing 250 * which is done by blk_mq_quiesce_queue. 251 */ 252 void blk_mq_unquiesce_queue(struct request_queue *q) 253 { 254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 255 256 /* dispatch requests which are inserted during quiescing */ 257 blk_mq_run_hw_queues(q, true); 258 } 259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 260 261 void blk_mq_wake_waiters(struct request_queue *q) 262 { 263 struct blk_mq_hw_ctx *hctx; 264 unsigned int i; 265 266 queue_for_each_hw_ctx(q, hctx, i) 267 if (blk_mq_hw_queue_mapped(hctx)) 268 blk_mq_tag_wakeup_all(hctx->tags, true); 269 } 270 271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 272 { 273 return blk_mq_has_free_tags(hctx->tags); 274 } 275 EXPORT_SYMBOL(blk_mq_can_queue); 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, unsigned int op) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 req_flags_t rq_flags = 0; 283 284 if (data->flags & BLK_MQ_REQ_INTERNAL) { 285 rq->tag = -1; 286 rq->internal_tag = tag; 287 } else { 288 if (blk_mq_tag_busy(data->hctx)) { 289 rq_flags = RQF_MQ_INFLIGHT; 290 atomic_inc(&data->hctx->nr_active); 291 } 292 rq->tag = tag; 293 rq->internal_tag = -1; 294 data->hctx->tags->rqs[rq->tag] = rq; 295 } 296 297 /* csd/requeue_work/fifo_time is initialized before use */ 298 rq->q = data->q; 299 rq->mq_ctx = data->ctx; 300 rq->rq_flags = rq_flags; 301 rq->cpu = -1; 302 rq->cmd_flags = op; 303 if (data->flags & BLK_MQ_REQ_PREEMPT) 304 rq->rq_flags |= RQF_PREEMPT; 305 if (blk_queue_io_stat(data->q)) 306 rq->rq_flags |= RQF_IO_STAT; 307 INIT_LIST_HEAD(&rq->queuelist); 308 INIT_HLIST_NODE(&rq->hash); 309 RB_CLEAR_NODE(&rq->rb_node); 310 rq->rq_disk = NULL; 311 rq->part = NULL; 312 rq->start_time = jiffies; 313 rq->nr_phys_segments = 0; 314 #if defined(CONFIG_BLK_DEV_INTEGRITY) 315 rq->nr_integrity_segments = 0; 316 #endif 317 rq->special = NULL; 318 /* tag was already set */ 319 rq->extra_len = 0; 320 rq->__deadline = 0; 321 322 INIT_LIST_HEAD(&rq->timeout_list); 323 rq->timeout = 0; 324 325 rq->end_io = NULL; 326 rq->end_io_data = NULL; 327 rq->next_rq = NULL; 328 329 #ifdef CONFIG_BLK_CGROUP 330 rq->rl = NULL; 331 set_start_time_ns(rq); 332 rq->io_start_time_ns = 0; 333 #endif 334 335 data->ctx->rq_dispatched[op_is_sync(op)]++; 336 return rq; 337 } 338 339 static struct request *blk_mq_get_request(struct request_queue *q, 340 struct bio *bio, unsigned int op, 341 struct blk_mq_alloc_data *data) 342 { 343 struct elevator_queue *e = q->elevator; 344 struct request *rq; 345 unsigned int tag; 346 bool put_ctx_on_error = false; 347 348 blk_queue_enter_live(q); 349 data->q = q; 350 if (likely(!data->ctx)) { 351 data->ctx = blk_mq_get_ctx(q); 352 put_ctx_on_error = true; 353 } 354 if (likely(!data->hctx)) 355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 356 if (op & REQ_NOWAIT) 357 data->flags |= BLK_MQ_REQ_NOWAIT; 358 359 if (e) { 360 data->flags |= BLK_MQ_REQ_INTERNAL; 361 362 /* 363 * Flush requests are special and go directly to the 364 * dispatch list. 365 */ 366 if (!op_is_flush(op) && e->type->ops.mq.limit_depth) 367 e->type->ops.mq.limit_depth(op, data); 368 } 369 370 tag = blk_mq_get_tag(data); 371 if (tag == BLK_MQ_TAG_FAIL) { 372 if (put_ctx_on_error) { 373 blk_mq_put_ctx(data->ctx); 374 data->ctx = NULL; 375 } 376 blk_queue_exit(q); 377 return NULL; 378 } 379 380 rq = blk_mq_rq_ctx_init(data, tag, op); 381 if (!op_is_flush(op)) { 382 rq->elv.icq = NULL; 383 if (e && e->type->ops.mq.prepare_request) { 384 if (e->type->icq_cache && rq_ioc(bio)) 385 blk_mq_sched_assign_ioc(rq, bio); 386 387 e->type->ops.mq.prepare_request(rq, bio); 388 rq->rq_flags |= RQF_ELVPRIV; 389 } 390 } 391 data->hctx->queued++; 392 return rq; 393 } 394 395 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 396 blk_mq_req_flags_t flags) 397 { 398 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 399 struct request *rq; 400 int ret; 401 402 ret = blk_queue_enter(q, flags); 403 if (ret) 404 return ERR_PTR(ret); 405 406 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 407 blk_queue_exit(q); 408 409 if (!rq) 410 return ERR_PTR(-EWOULDBLOCK); 411 412 blk_mq_put_ctx(alloc_data.ctx); 413 414 rq->__data_len = 0; 415 rq->__sector = (sector_t) -1; 416 rq->bio = rq->biotail = NULL; 417 return rq; 418 } 419 EXPORT_SYMBOL(blk_mq_alloc_request); 420 421 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 422 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 423 { 424 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 425 struct request *rq; 426 unsigned int cpu; 427 int ret; 428 429 /* 430 * If the tag allocator sleeps we could get an allocation for a 431 * different hardware context. No need to complicate the low level 432 * allocator for this for the rare use case of a command tied to 433 * a specific queue. 434 */ 435 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 436 return ERR_PTR(-EINVAL); 437 438 if (hctx_idx >= q->nr_hw_queues) 439 return ERR_PTR(-EIO); 440 441 ret = blk_queue_enter(q, flags); 442 if (ret) 443 return ERR_PTR(ret); 444 445 /* 446 * Check if the hardware context is actually mapped to anything. 447 * If not tell the caller that it should skip this queue. 448 */ 449 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 450 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 451 blk_queue_exit(q); 452 return ERR_PTR(-EXDEV); 453 } 454 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 455 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 456 457 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 458 blk_queue_exit(q); 459 460 if (!rq) 461 return ERR_PTR(-EWOULDBLOCK); 462 463 return rq; 464 } 465 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 466 467 void blk_mq_free_request(struct request *rq) 468 { 469 struct request_queue *q = rq->q; 470 struct elevator_queue *e = q->elevator; 471 struct blk_mq_ctx *ctx = rq->mq_ctx; 472 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 473 const int sched_tag = rq->internal_tag; 474 475 if (rq->rq_flags & RQF_ELVPRIV) { 476 if (e && e->type->ops.mq.finish_request) 477 e->type->ops.mq.finish_request(rq); 478 if (rq->elv.icq) { 479 put_io_context(rq->elv.icq->ioc); 480 rq->elv.icq = NULL; 481 } 482 } 483 484 ctx->rq_completed[rq_is_sync(rq)]++; 485 if (rq->rq_flags & RQF_MQ_INFLIGHT) 486 atomic_dec(&hctx->nr_active); 487 488 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 489 laptop_io_completion(q->backing_dev_info); 490 491 wbt_done(q->rq_wb, &rq->issue_stat); 492 493 if (blk_rq_rl(rq)) 494 blk_put_rl(blk_rq_rl(rq)); 495 496 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 497 if (rq->tag != -1) 498 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 499 if (sched_tag != -1) 500 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 501 blk_mq_sched_restart(hctx); 502 blk_queue_exit(q); 503 } 504 EXPORT_SYMBOL_GPL(blk_mq_free_request); 505 506 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 507 { 508 blk_account_io_done(rq); 509 510 if (rq->end_io) { 511 wbt_done(rq->q->rq_wb, &rq->issue_stat); 512 rq->end_io(rq, error); 513 } else { 514 if (unlikely(blk_bidi_rq(rq))) 515 blk_mq_free_request(rq->next_rq); 516 blk_mq_free_request(rq); 517 } 518 } 519 EXPORT_SYMBOL(__blk_mq_end_request); 520 521 void blk_mq_end_request(struct request *rq, blk_status_t error) 522 { 523 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 524 BUG(); 525 __blk_mq_end_request(rq, error); 526 } 527 EXPORT_SYMBOL(blk_mq_end_request); 528 529 static void __blk_mq_complete_request_remote(void *data) 530 { 531 struct request *rq = data; 532 533 rq->q->softirq_done_fn(rq); 534 } 535 536 static void __blk_mq_complete_request(struct request *rq) 537 { 538 struct blk_mq_ctx *ctx = rq->mq_ctx; 539 bool shared = false; 540 int cpu; 541 542 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT); 543 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE); 544 545 if (rq->internal_tag != -1) 546 blk_mq_sched_completed_request(rq); 547 if (rq->rq_flags & RQF_STATS) { 548 blk_mq_poll_stats_start(rq->q); 549 blk_stat_add(rq); 550 } 551 552 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 553 rq->q->softirq_done_fn(rq); 554 return; 555 } 556 557 cpu = get_cpu(); 558 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 559 shared = cpus_share_cache(cpu, ctx->cpu); 560 561 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 562 rq->csd.func = __blk_mq_complete_request_remote; 563 rq->csd.info = rq; 564 rq->csd.flags = 0; 565 smp_call_function_single_async(ctx->cpu, &rq->csd); 566 } else { 567 rq->q->softirq_done_fn(rq); 568 } 569 put_cpu(); 570 } 571 572 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 573 __releases(hctx->srcu) 574 { 575 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 576 rcu_read_unlock(); 577 else 578 srcu_read_unlock(hctx->srcu, srcu_idx); 579 } 580 581 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 582 __acquires(hctx->srcu) 583 { 584 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 585 /* shut up gcc false positive */ 586 *srcu_idx = 0; 587 rcu_read_lock(); 588 } else 589 *srcu_idx = srcu_read_lock(hctx->srcu); 590 } 591 592 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate) 593 { 594 unsigned long flags; 595 596 /* 597 * blk_mq_rq_aborted_gstate() is used from the completion path and 598 * can thus be called from irq context. u64_stats_fetch in the 599 * middle of update on the same CPU leads to lockup. Disable irq 600 * while updating. 601 */ 602 local_irq_save(flags); 603 u64_stats_update_begin(&rq->aborted_gstate_sync); 604 rq->aborted_gstate = gstate; 605 u64_stats_update_end(&rq->aborted_gstate_sync); 606 local_irq_restore(flags); 607 } 608 609 static u64 blk_mq_rq_aborted_gstate(struct request *rq) 610 { 611 unsigned int start; 612 u64 aborted_gstate; 613 614 do { 615 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync); 616 aborted_gstate = rq->aborted_gstate; 617 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start)); 618 619 return aborted_gstate; 620 } 621 622 /** 623 * blk_mq_complete_request - end I/O on a request 624 * @rq: the request being processed 625 * 626 * Description: 627 * Ends all I/O on a request. It does not handle partial completions. 628 * The actual completion happens out-of-order, through a IPI handler. 629 **/ 630 void blk_mq_complete_request(struct request *rq) 631 { 632 struct request_queue *q = rq->q; 633 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 634 int srcu_idx; 635 636 if (unlikely(blk_should_fake_timeout(q))) 637 return; 638 639 /* 640 * If @rq->aborted_gstate equals the current instance, timeout is 641 * claiming @rq and we lost. This is synchronized through 642 * hctx_lock(). See blk_mq_timeout_work() for details. 643 * 644 * Completion path never blocks and we can directly use RCU here 645 * instead of hctx_lock() which can be either RCU or SRCU. 646 * However, that would complicate paths which want to synchronize 647 * against us. Let stay in sync with the issue path so that 648 * hctx_lock() covers both issue and completion paths. 649 */ 650 hctx_lock(hctx, &srcu_idx); 651 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate) 652 __blk_mq_complete_request(rq); 653 hctx_unlock(hctx, srcu_idx); 654 } 655 EXPORT_SYMBOL(blk_mq_complete_request); 656 657 int blk_mq_request_started(struct request *rq) 658 { 659 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 660 } 661 EXPORT_SYMBOL_GPL(blk_mq_request_started); 662 663 void blk_mq_start_request(struct request *rq) 664 { 665 struct request_queue *q = rq->q; 666 667 blk_mq_sched_started_request(rq); 668 669 trace_block_rq_issue(q, rq); 670 671 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 672 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq)); 673 rq->rq_flags |= RQF_STATS; 674 wbt_issue(q->rq_wb, &rq->issue_stat); 675 } 676 677 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 678 679 /* 680 * Mark @rq in-flight which also advances the generation number, 681 * and register for timeout. Protect with a seqcount to allow the 682 * timeout path to read both @rq->gstate and @rq->deadline 683 * coherently. 684 * 685 * This is the only place where a request is marked in-flight. If 686 * the timeout path reads an in-flight @rq->gstate, the 687 * @rq->deadline it reads together under @rq->gstate_seq is 688 * guaranteed to be the matching one. 689 */ 690 preempt_disable(); 691 write_seqcount_begin(&rq->gstate_seq); 692 693 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT); 694 blk_add_timer(rq); 695 696 write_seqcount_end(&rq->gstate_seq); 697 preempt_enable(); 698 699 if (q->dma_drain_size && blk_rq_bytes(rq)) { 700 /* 701 * Make sure space for the drain appears. We know we can do 702 * this because max_hw_segments has been adjusted to be one 703 * fewer than the device can handle. 704 */ 705 rq->nr_phys_segments++; 706 } 707 } 708 EXPORT_SYMBOL(blk_mq_start_request); 709 710 /* 711 * When we reach here because queue is busy, it's safe to change the state 712 * to IDLE without checking @rq->aborted_gstate because we should still be 713 * holding the RCU read lock and thus protected against timeout. 714 */ 715 static void __blk_mq_requeue_request(struct request *rq) 716 { 717 struct request_queue *q = rq->q; 718 719 blk_mq_put_driver_tag(rq); 720 721 trace_block_rq_requeue(q, rq); 722 wbt_requeue(q->rq_wb, &rq->issue_stat); 723 724 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) { 725 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 726 if (q->dma_drain_size && blk_rq_bytes(rq)) 727 rq->nr_phys_segments--; 728 } 729 } 730 731 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 732 { 733 __blk_mq_requeue_request(rq); 734 735 /* this request will be re-inserted to io scheduler queue */ 736 blk_mq_sched_requeue_request(rq); 737 738 BUG_ON(blk_queued_rq(rq)); 739 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 740 } 741 EXPORT_SYMBOL(blk_mq_requeue_request); 742 743 static void blk_mq_requeue_work(struct work_struct *work) 744 { 745 struct request_queue *q = 746 container_of(work, struct request_queue, requeue_work.work); 747 LIST_HEAD(rq_list); 748 struct request *rq, *next; 749 750 spin_lock_irq(&q->requeue_lock); 751 list_splice_init(&q->requeue_list, &rq_list); 752 spin_unlock_irq(&q->requeue_lock); 753 754 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 755 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 756 continue; 757 758 rq->rq_flags &= ~RQF_SOFTBARRIER; 759 list_del_init(&rq->queuelist); 760 blk_mq_sched_insert_request(rq, true, false, false); 761 } 762 763 while (!list_empty(&rq_list)) { 764 rq = list_entry(rq_list.next, struct request, queuelist); 765 list_del_init(&rq->queuelist); 766 blk_mq_sched_insert_request(rq, false, false, false); 767 } 768 769 blk_mq_run_hw_queues(q, false); 770 } 771 772 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 773 bool kick_requeue_list) 774 { 775 struct request_queue *q = rq->q; 776 unsigned long flags; 777 778 /* 779 * We abuse this flag that is otherwise used by the I/O scheduler to 780 * request head insertion from the workqueue. 781 */ 782 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 783 784 spin_lock_irqsave(&q->requeue_lock, flags); 785 if (at_head) { 786 rq->rq_flags |= RQF_SOFTBARRIER; 787 list_add(&rq->queuelist, &q->requeue_list); 788 } else { 789 list_add_tail(&rq->queuelist, &q->requeue_list); 790 } 791 spin_unlock_irqrestore(&q->requeue_lock, flags); 792 793 if (kick_requeue_list) 794 blk_mq_kick_requeue_list(q); 795 } 796 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 797 798 void blk_mq_kick_requeue_list(struct request_queue *q) 799 { 800 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 801 } 802 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 803 804 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 805 unsigned long msecs) 806 { 807 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 808 msecs_to_jiffies(msecs)); 809 } 810 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 811 812 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 813 { 814 if (tag < tags->nr_tags) { 815 prefetch(tags->rqs[tag]); 816 return tags->rqs[tag]; 817 } 818 819 return NULL; 820 } 821 EXPORT_SYMBOL(blk_mq_tag_to_rq); 822 823 struct blk_mq_timeout_data { 824 unsigned long next; 825 unsigned int next_set; 826 unsigned int nr_expired; 827 }; 828 829 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 830 { 831 const struct blk_mq_ops *ops = req->q->mq_ops; 832 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 833 834 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED; 835 836 if (ops->timeout) 837 ret = ops->timeout(req, reserved); 838 839 switch (ret) { 840 case BLK_EH_HANDLED: 841 __blk_mq_complete_request(req); 842 break; 843 case BLK_EH_RESET_TIMER: 844 /* 845 * As nothing prevents from completion happening while 846 * ->aborted_gstate is set, this may lead to ignored 847 * completions and further spurious timeouts. 848 */ 849 blk_mq_rq_update_aborted_gstate(req, 0); 850 blk_add_timer(req); 851 break; 852 case BLK_EH_NOT_HANDLED: 853 break; 854 default: 855 printk(KERN_ERR "block: bad eh return: %d\n", ret); 856 break; 857 } 858 } 859 860 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 861 struct request *rq, void *priv, bool reserved) 862 { 863 struct blk_mq_timeout_data *data = priv; 864 unsigned long gstate, deadline; 865 int start; 866 867 might_sleep(); 868 869 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) 870 return; 871 872 /* read coherent snapshots of @rq->state_gen and @rq->deadline */ 873 while (true) { 874 start = read_seqcount_begin(&rq->gstate_seq); 875 gstate = READ_ONCE(rq->gstate); 876 deadline = blk_rq_deadline(rq); 877 if (!read_seqcount_retry(&rq->gstate_seq, start)) 878 break; 879 cond_resched(); 880 } 881 882 /* if in-flight && overdue, mark for abortion */ 883 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT && 884 time_after_eq(jiffies, deadline)) { 885 blk_mq_rq_update_aborted_gstate(rq, gstate); 886 data->nr_expired++; 887 hctx->nr_expired++; 888 } else if (!data->next_set || time_after(data->next, deadline)) { 889 data->next = deadline; 890 data->next_set = 1; 891 } 892 } 893 894 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx, 895 struct request *rq, void *priv, bool reserved) 896 { 897 /* 898 * We marked @rq->aborted_gstate and waited for RCU. If there were 899 * completions that we lost to, they would have finished and 900 * updated @rq->gstate by now; otherwise, the completion path is 901 * now guaranteed to see @rq->aborted_gstate and yield. If 902 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours. 903 */ 904 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) && 905 READ_ONCE(rq->gstate) == rq->aborted_gstate) 906 blk_mq_rq_timed_out(rq, reserved); 907 } 908 909 static void blk_mq_timeout_work(struct work_struct *work) 910 { 911 struct request_queue *q = 912 container_of(work, struct request_queue, timeout_work); 913 struct blk_mq_timeout_data data = { 914 .next = 0, 915 .next_set = 0, 916 .nr_expired = 0, 917 }; 918 struct blk_mq_hw_ctx *hctx; 919 int i; 920 921 /* A deadlock might occur if a request is stuck requiring a 922 * timeout at the same time a queue freeze is waiting 923 * completion, since the timeout code would not be able to 924 * acquire the queue reference here. 925 * 926 * That's why we don't use blk_queue_enter here; instead, we use 927 * percpu_ref_tryget directly, because we need to be able to 928 * obtain a reference even in the short window between the queue 929 * starting to freeze, by dropping the first reference in 930 * blk_freeze_queue_start, and the moment the last request is 931 * consumed, marked by the instant q_usage_counter reaches 932 * zero. 933 */ 934 if (!percpu_ref_tryget(&q->q_usage_counter)) 935 return; 936 937 /* scan for the expired ones and set their ->aborted_gstate */ 938 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 939 940 if (data.nr_expired) { 941 bool has_rcu = false; 942 943 /* 944 * Wait till everyone sees ->aborted_gstate. The 945 * sequential waits for SRCUs aren't ideal. If this ever 946 * becomes a problem, we can add per-hw_ctx rcu_head and 947 * wait in parallel. 948 */ 949 queue_for_each_hw_ctx(q, hctx, i) { 950 if (!hctx->nr_expired) 951 continue; 952 953 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 954 has_rcu = true; 955 else 956 synchronize_srcu(hctx->srcu); 957 958 hctx->nr_expired = 0; 959 } 960 if (has_rcu) 961 synchronize_rcu(); 962 963 /* terminate the ones we won */ 964 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL); 965 } 966 967 if (data.next_set) { 968 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 969 mod_timer(&q->timeout, data.next); 970 } else { 971 /* 972 * Request timeouts are handled as a forward rolling timer. If 973 * we end up here it means that no requests are pending and 974 * also that no request has been pending for a while. Mark 975 * each hctx as idle. 976 */ 977 queue_for_each_hw_ctx(q, hctx, i) { 978 /* the hctx may be unmapped, so check it here */ 979 if (blk_mq_hw_queue_mapped(hctx)) 980 blk_mq_tag_idle(hctx); 981 } 982 } 983 blk_queue_exit(q); 984 } 985 986 struct flush_busy_ctx_data { 987 struct blk_mq_hw_ctx *hctx; 988 struct list_head *list; 989 }; 990 991 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 992 { 993 struct flush_busy_ctx_data *flush_data = data; 994 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 995 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 996 997 spin_lock(&ctx->lock); 998 list_splice_tail_init(&ctx->rq_list, flush_data->list); 999 sbitmap_clear_bit(sb, bitnr); 1000 spin_unlock(&ctx->lock); 1001 return true; 1002 } 1003 1004 /* 1005 * Process software queues that have been marked busy, splicing them 1006 * to the for-dispatch 1007 */ 1008 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1009 { 1010 struct flush_busy_ctx_data data = { 1011 .hctx = hctx, 1012 .list = list, 1013 }; 1014 1015 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1016 } 1017 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1018 1019 struct dispatch_rq_data { 1020 struct blk_mq_hw_ctx *hctx; 1021 struct request *rq; 1022 }; 1023 1024 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1025 void *data) 1026 { 1027 struct dispatch_rq_data *dispatch_data = data; 1028 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1029 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1030 1031 spin_lock(&ctx->lock); 1032 if (unlikely(!list_empty(&ctx->rq_list))) { 1033 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 1034 list_del_init(&dispatch_data->rq->queuelist); 1035 if (list_empty(&ctx->rq_list)) 1036 sbitmap_clear_bit(sb, bitnr); 1037 } 1038 spin_unlock(&ctx->lock); 1039 1040 return !dispatch_data->rq; 1041 } 1042 1043 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1044 struct blk_mq_ctx *start) 1045 { 1046 unsigned off = start ? start->index_hw : 0; 1047 struct dispatch_rq_data data = { 1048 .hctx = hctx, 1049 .rq = NULL, 1050 }; 1051 1052 __sbitmap_for_each_set(&hctx->ctx_map, off, 1053 dispatch_rq_from_ctx, &data); 1054 1055 return data.rq; 1056 } 1057 1058 static inline unsigned int queued_to_index(unsigned int queued) 1059 { 1060 if (!queued) 1061 return 0; 1062 1063 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1064 } 1065 1066 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 1067 bool wait) 1068 { 1069 struct blk_mq_alloc_data data = { 1070 .q = rq->q, 1071 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 1072 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 1073 }; 1074 1075 might_sleep_if(wait); 1076 1077 if (rq->tag != -1) 1078 goto done; 1079 1080 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1081 data.flags |= BLK_MQ_REQ_RESERVED; 1082 1083 rq->tag = blk_mq_get_tag(&data); 1084 if (rq->tag >= 0) { 1085 if (blk_mq_tag_busy(data.hctx)) { 1086 rq->rq_flags |= RQF_MQ_INFLIGHT; 1087 atomic_inc(&data.hctx->nr_active); 1088 } 1089 data.hctx->tags->rqs[rq->tag] = rq; 1090 } 1091 1092 done: 1093 if (hctx) 1094 *hctx = data.hctx; 1095 return rq->tag != -1; 1096 } 1097 1098 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1099 int flags, void *key) 1100 { 1101 struct blk_mq_hw_ctx *hctx; 1102 1103 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1104 1105 list_del_init(&wait->entry); 1106 blk_mq_run_hw_queue(hctx, true); 1107 return 1; 1108 } 1109 1110 /* 1111 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1112 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1113 * restart. For both cases, take care to check the condition again after 1114 * marking us as waiting. 1115 */ 1116 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx, 1117 struct request *rq) 1118 { 1119 struct blk_mq_hw_ctx *this_hctx = *hctx; 1120 struct sbq_wait_state *ws; 1121 wait_queue_entry_t *wait; 1122 bool ret; 1123 1124 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1125 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state)) 1126 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state); 1127 1128 /* 1129 * It's possible that a tag was freed in the window between the 1130 * allocation failure and adding the hardware queue to the wait 1131 * queue. 1132 * 1133 * Don't clear RESTART here, someone else could have set it. 1134 * At most this will cost an extra queue run. 1135 */ 1136 return blk_mq_get_driver_tag(rq, hctx, false); 1137 } 1138 1139 wait = &this_hctx->dispatch_wait; 1140 if (!list_empty_careful(&wait->entry)) 1141 return false; 1142 1143 spin_lock(&this_hctx->lock); 1144 if (!list_empty(&wait->entry)) { 1145 spin_unlock(&this_hctx->lock); 1146 return false; 1147 } 1148 1149 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx); 1150 add_wait_queue(&ws->wait, wait); 1151 1152 /* 1153 * It's possible that a tag was freed in the window between the 1154 * allocation failure and adding the hardware queue to the wait 1155 * queue. 1156 */ 1157 ret = blk_mq_get_driver_tag(rq, hctx, false); 1158 if (!ret) { 1159 spin_unlock(&this_hctx->lock); 1160 return false; 1161 } 1162 1163 /* 1164 * We got a tag, remove ourselves from the wait queue to ensure 1165 * someone else gets the wakeup. 1166 */ 1167 spin_lock_irq(&ws->wait.lock); 1168 list_del_init(&wait->entry); 1169 spin_unlock_irq(&ws->wait.lock); 1170 spin_unlock(&this_hctx->lock); 1171 1172 return true; 1173 } 1174 1175 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1176 1177 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1178 bool got_budget) 1179 { 1180 struct blk_mq_hw_ctx *hctx; 1181 struct request *rq, *nxt; 1182 bool no_tag = false; 1183 int errors, queued; 1184 blk_status_t ret = BLK_STS_OK; 1185 1186 if (list_empty(list)) 1187 return false; 1188 1189 WARN_ON(!list_is_singular(list) && got_budget); 1190 1191 /* 1192 * Now process all the entries, sending them to the driver. 1193 */ 1194 errors = queued = 0; 1195 do { 1196 struct blk_mq_queue_data bd; 1197 1198 rq = list_first_entry(list, struct request, queuelist); 1199 1200 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 1201 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1202 break; 1203 1204 if (!blk_mq_get_driver_tag(rq, NULL, false)) { 1205 /* 1206 * The initial allocation attempt failed, so we need to 1207 * rerun the hardware queue when a tag is freed. The 1208 * waitqueue takes care of that. If the queue is run 1209 * before we add this entry back on the dispatch list, 1210 * we'll re-run it below. 1211 */ 1212 if (!blk_mq_mark_tag_wait(&hctx, rq)) { 1213 blk_mq_put_dispatch_budget(hctx); 1214 /* 1215 * For non-shared tags, the RESTART check 1216 * will suffice. 1217 */ 1218 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1219 no_tag = true; 1220 break; 1221 } 1222 } 1223 1224 list_del_init(&rq->queuelist); 1225 1226 bd.rq = rq; 1227 1228 /* 1229 * Flag last if we have no more requests, or if we have more 1230 * but can't assign a driver tag to it. 1231 */ 1232 if (list_empty(list)) 1233 bd.last = true; 1234 else { 1235 nxt = list_first_entry(list, struct request, queuelist); 1236 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1237 } 1238 1239 ret = q->mq_ops->queue_rq(hctx, &bd); 1240 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1241 /* 1242 * If an I/O scheduler has been configured and we got a 1243 * driver tag for the next request already, free it 1244 * again. 1245 */ 1246 if (!list_empty(list)) { 1247 nxt = list_first_entry(list, struct request, queuelist); 1248 blk_mq_put_driver_tag(nxt); 1249 } 1250 list_add(&rq->queuelist, list); 1251 __blk_mq_requeue_request(rq); 1252 break; 1253 } 1254 1255 if (unlikely(ret != BLK_STS_OK)) { 1256 errors++; 1257 blk_mq_end_request(rq, BLK_STS_IOERR); 1258 continue; 1259 } 1260 1261 queued++; 1262 } while (!list_empty(list)); 1263 1264 hctx->dispatched[queued_to_index(queued)]++; 1265 1266 /* 1267 * Any items that need requeuing? Stuff them into hctx->dispatch, 1268 * that is where we will continue on next queue run. 1269 */ 1270 if (!list_empty(list)) { 1271 bool needs_restart; 1272 1273 spin_lock(&hctx->lock); 1274 list_splice_init(list, &hctx->dispatch); 1275 spin_unlock(&hctx->lock); 1276 1277 /* 1278 * If SCHED_RESTART was set by the caller of this function and 1279 * it is no longer set that means that it was cleared by another 1280 * thread and hence that a queue rerun is needed. 1281 * 1282 * If 'no_tag' is set, that means that we failed getting 1283 * a driver tag with an I/O scheduler attached. If our dispatch 1284 * waitqueue is no longer active, ensure that we run the queue 1285 * AFTER adding our entries back to the list. 1286 * 1287 * If no I/O scheduler has been configured it is possible that 1288 * the hardware queue got stopped and restarted before requests 1289 * were pushed back onto the dispatch list. Rerun the queue to 1290 * avoid starvation. Notes: 1291 * - blk_mq_run_hw_queue() checks whether or not a queue has 1292 * been stopped before rerunning a queue. 1293 * - Some but not all block drivers stop a queue before 1294 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1295 * and dm-rq. 1296 * 1297 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1298 * bit is set, run queue after a delay to avoid IO stalls 1299 * that could otherwise occur if the queue is idle. 1300 */ 1301 needs_restart = blk_mq_sched_needs_restart(hctx); 1302 if (!needs_restart || 1303 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1304 blk_mq_run_hw_queue(hctx, true); 1305 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1306 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1307 } 1308 1309 return (queued + errors) != 0; 1310 } 1311 1312 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1313 { 1314 int srcu_idx; 1315 1316 /* 1317 * We should be running this queue from one of the CPUs that 1318 * are mapped to it. 1319 * 1320 * There are at least two related races now between setting 1321 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1322 * __blk_mq_run_hw_queue(): 1323 * 1324 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1325 * but later it becomes online, then this warning is harmless 1326 * at all 1327 * 1328 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1329 * but later it becomes offline, then the warning can't be 1330 * triggered, and we depend on blk-mq timeout handler to 1331 * handle dispatched requests to this hctx 1332 */ 1333 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1334 cpu_online(hctx->next_cpu)) { 1335 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1336 raw_smp_processor_id(), 1337 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1338 dump_stack(); 1339 } 1340 1341 /* 1342 * We can't run the queue inline with ints disabled. Ensure that 1343 * we catch bad users of this early. 1344 */ 1345 WARN_ON_ONCE(in_interrupt()); 1346 1347 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1348 1349 hctx_lock(hctx, &srcu_idx); 1350 blk_mq_sched_dispatch_requests(hctx); 1351 hctx_unlock(hctx, srcu_idx); 1352 } 1353 1354 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1355 { 1356 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1357 1358 if (cpu >= nr_cpu_ids) 1359 cpu = cpumask_first(hctx->cpumask); 1360 return cpu; 1361 } 1362 1363 /* 1364 * It'd be great if the workqueue API had a way to pass 1365 * in a mask and had some smarts for more clever placement. 1366 * For now we just round-robin here, switching for every 1367 * BLK_MQ_CPU_WORK_BATCH queued items. 1368 */ 1369 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1370 { 1371 bool tried = false; 1372 int next_cpu = hctx->next_cpu; 1373 1374 if (hctx->queue->nr_hw_queues == 1) 1375 return WORK_CPU_UNBOUND; 1376 1377 if (--hctx->next_cpu_batch <= 0) { 1378 select_cpu: 1379 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1380 cpu_online_mask); 1381 if (next_cpu >= nr_cpu_ids) 1382 next_cpu = blk_mq_first_mapped_cpu(hctx); 1383 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1384 } 1385 1386 /* 1387 * Do unbound schedule if we can't find a online CPU for this hctx, 1388 * and it should only happen in the path of handling CPU DEAD. 1389 */ 1390 if (!cpu_online(next_cpu)) { 1391 if (!tried) { 1392 tried = true; 1393 goto select_cpu; 1394 } 1395 1396 /* 1397 * Make sure to re-select CPU next time once after CPUs 1398 * in hctx->cpumask become online again. 1399 */ 1400 hctx->next_cpu = next_cpu; 1401 hctx->next_cpu_batch = 1; 1402 return WORK_CPU_UNBOUND; 1403 } 1404 1405 hctx->next_cpu = next_cpu; 1406 return next_cpu; 1407 } 1408 1409 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1410 unsigned long msecs) 1411 { 1412 if (unlikely(blk_mq_hctx_stopped(hctx))) 1413 return; 1414 1415 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1416 int cpu = get_cpu(); 1417 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1418 __blk_mq_run_hw_queue(hctx); 1419 put_cpu(); 1420 return; 1421 } 1422 1423 put_cpu(); 1424 } 1425 1426 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1427 msecs_to_jiffies(msecs)); 1428 } 1429 1430 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1431 { 1432 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1433 } 1434 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1435 1436 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1437 { 1438 int srcu_idx; 1439 bool need_run; 1440 1441 /* 1442 * When queue is quiesced, we may be switching io scheduler, or 1443 * updating nr_hw_queues, or other things, and we can't run queue 1444 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1445 * 1446 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1447 * quiesced. 1448 */ 1449 hctx_lock(hctx, &srcu_idx); 1450 need_run = !blk_queue_quiesced(hctx->queue) && 1451 blk_mq_hctx_has_pending(hctx); 1452 hctx_unlock(hctx, srcu_idx); 1453 1454 if (need_run) { 1455 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1456 return true; 1457 } 1458 1459 return false; 1460 } 1461 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1462 1463 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1464 { 1465 struct blk_mq_hw_ctx *hctx; 1466 int i; 1467 1468 queue_for_each_hw_ctx(q, hctx, i) { 1469 if (blk_mq_hctx_stopped(hctx)) 1470 continue; 1471 1472 blk_mq_run_hw_queue(hctx, async); 1473 } 1474 } 1475 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1476 1477 /** 1478 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1479 * @q: request queue. 1480 * 1481 * The caller is responsible for serializing this function against 1482 * blk_mq_{start,stop}_hw_queue(). 1483 */ 1484 bool blk_mq_queue_stopped(struct request_queue *q) 1485 { 1486 struct blk_mq_hw_ctx *hctx; 1487 int i; 1488 1489 queue_for_each_hw_ctx(q, hctx, i) 1490 if (blk_mq_hctx_stopped(hctx)) 1491 return true; 1492 1493 return false; 1494 } 1495 EXPORT_SYMBOL(blk_mq_queue_stopped); 1496 1497 /* 1498 * This function is often used for pausing .queue_rq() by driver when 1499 * there isn't enough resource or some conditions aren't satisfied, and 1500 * BLK_STS_RESOURCE is usually returned. 1501 * 1502 * We do not guarantee that dispatch can be drained or blocked 1503 * after blk_mq_stop_hw_queue() returns. Please use 1504 * blk_mq_quiesce_queue() for that requirement. 1505 */ 1506 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1507 { 1508 cancel_delayed_work(&hctx->run_work); 1509 1510 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1511 } 1512 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1513 1514 /* 1515 * This function is often used for pausing .queue_rq() by driver when 1516 * there isn't enough resource or some conditions aren't satisfied, and 1517 * BLK_STS_RESOURCE is usually returned. 1518 * 1519 * We do not guarantee that dispatch can be drained or blocked 1520 * after blk_mq_stop_hw_queues() returns. Please use 1521 * blk_mq_quiesce_queue() for that requirement. 1522 */ 1523 void blk_mq_stop_hw_queues(struct request_queue *q) 1524 { 1525 struct blk_mq_hw_ctx *hctx; 1526 int i; 1527 1528 queue_for_each_hw_ctx(q, hctx, i) 1529 blk_mq_stop_hw_queue(hctx); 1530 } 1531 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1532 1533 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1534 { 1535 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1536 1537 blk_mq_run_hw_queue(hctx, false); 1538 } 1539 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1540 1541 void blk_mq_start_hw_queues(struct request_queue *q) 1542 { 1543 struct blk_mq_hw_ctx *hctx; 1544 int i; 1545 1546 queue_for_each_hw_ctx(q, hctx, i) 1547 blk_mq_start_hw_queue(hctx); 1548 } 1549 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1550 1551 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1552 { 1553 if (!blk_mq_hctx_stopped(hctx)) 1554 return; 1555 1556 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1557 blk_mq_run_hw_queue(hctx, async); 1558 } 1559 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1560 1561 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1562 { 1563 struct blk_mq_hw_ctx *hctx; 1564 int i; 1565 1566 queue_for_each_hw_ctx(q, hctx, i) 1567 blk_mq_start_stopped_hw_queue(hctx, async); 1568 } 1569 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1570 1571 static void blk_mq_run_work_fn(struct work_struct *work) 1572 { 1573 struct blk_mq_hw_ctx *hctx; 1574 1575 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1576 1577 /* 1578 * If we are stopped, don't run the queue. 1579 */ 1580 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1581 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1582 1583 __blk_mq_run_hw_queue(hctx); 1584 } 1585 1586 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1587 struct request *rq, 1588 bool at_head) 1589 { 1590 struct blk_mq_ctx *ctx = rq->mq_ctx; 1591 1592 lockdep_assert_held(&ctx->lock); 1593 1594 trace_block_rq_insert(hctx->queue, rq); 1595 1596 if (at_head) 1597 list_add(&rq->queuelist, &ctx->rq_list); 1598 else 1599 list_add_tail(&rq->queuelist, &ctx->rq_list); 1600 } 1601 1602 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1603 bool at_head) 1604 { 1605 struct blk_mq_ctx *ctx = rq->mq_ctx; 1606 1607 lockdep_assert_held(&ctx->lock); 1608 1609 __blk_mq_insert_req_list(hctx, rq, at_head); 1610 blk_mq_hctx_mark_pending(hctx, ctx); 1611 } 1612 1613 /* 1614 * Should only be used carefully, when the caller knows we want to 1615 * bypass a potential IO scheduler on the target device. 1616 */ 1617 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1618 { 1619 struct blk_mq_ctx *ctx = rq->mq_ctx; 1620 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1621 1622 spin_lock(&hctx->lock); 1623 list_add_tail(&rq->queuelist, &hctx->dispatch); 1624 spin_unlock(&hctx->lock); 1625 1626 if (run_queue) 1627 blk_mq_run_hw_queue(hctx, false); 1628 } 1629 1630 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1631 struct list_head *list) 1632 1633 { 1634 /* 1635 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1636 * offline now 1637 */ 1638 spin_lock(&ctx->lock); 1639 while (!list_empty(list)) { 1640 struct request *rq; 1641 1642 rq = list_first_entry(list, struct request, queuelist); 1643 BUG_ON(rq->mq_ctx != ctx); 1644 list_del_init(&rq->queuelist); 1645 __blk_mq_insert_req_list(hctx, rq, false); 1646 } 1647 blk_mq_hctx_mark_pending(hctx, ctx); 1648 spin_unlock(&ctx->lock); 1649 } 1650 1651 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1652 { 1653 struct request *rqa = container_of(a, struct request, queuelist); 1654 struct request *rqb = container_of(b, struct request, queuelist); 1655 1656 return !(rqa->mq_ctx < rqb->mq_ctx || 1657 (rqa->mq_ctx == rqb->mq_ctx && 1658 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1659 } 1660 1661 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1662 { 1663 struct blk_mq_ctx *this_ctx; 1664 struct request_queue *this_q; 1665 struct request *rq; 1666 LIST_HEAD(list); 1667 LIST_HEAD(ctx_list); 1668 unsigned int depth; 1669 1670 list_splice_init(&plug->mq_list, &list); 1671 1672 list_sort(NULL, &list, plug_ctx_cmp); 1673 1674 this_q = NULL; 1675 this_ctx = NULL; 1676 depth = 0; 1677 1678 while (!list_empty(&list)) { 1679 rq = list_entry_rq(list.next); 1680 list_del_init(&rq->queuelist); 1681 BUG_ON(!rq->q); 1682 if (rq->mq_ctx != this_ctx) { 1683 if (this_ctx) { 1684 trace_block_unplug(this_q, depth, from_schedule); 1685 blk_mq_sched_insert_requests(this_q, this_ctx, 1686 &ctx_list, 1687 from_schedule); 1688 } 1689 1690 this_ctx = rq->mq_ctx; 1691 this_q = rq->q; 1692 depth = 0; 1693 } 1694 1695 depth++; 1696 list_add_tail(&rq->queuelist, &ctx_list); 1697 } 1698 1699 /* 1700 * If 'this_ctx' is set, we know we have entries to complete 1701 * on 'ctx_list'. Do those. 1702 */ 1703 if (this_ctx) { 1704 trace_block_unplug(this_q, depth, from_schedule); 1705 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1706 from_schedule); 1707 } 1708 } 1709 1710 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1711 { 1712 blk_init_request_from_bio(rq, bio); 1713 1714 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1715 1716 blk_account_io_start(rq, true); 1717 } 1718 1719 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx, 1720 struct blk_mq_ctx *ctx, 1721 struct request *rq) 1722 { 1723 spin_lock(&ctx->lock); 1724 __blk_mq_insert_request(hctx, rq, false); 1725 spin_unlock(&ctx->lock); 1726 } 1727 1728 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1729 { 1730 if (rq->tag != -1) 1731 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1732 1733 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1734 } 1735 1736 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1737 struct request *rq, 1738 blk_qc_t *cookie) 1739 { 1740 struct request_queue *q = rq->q; 1741 struct blk_mq_queue_data bd = { 1742 .rq = rq, 1743 .last = true, 1744 }; 1745 blk_qc_t new_cookie; 1746 blk_status_t ret; 1747 1748 new_cookie = request_to_qc_t(hctx, rq); 1749 1750 /* 1751 * For OK queue, we are done. For error, caller may kill it. 1752 * Any other error (busy), just add it to our list as we 1753 * previously would have done. 1754 */ 1755 ret = q->mq_ops->queue_rq(hctx, &bd); 1756 switch (ret) { 1757 case BLK_STS_OK: 1758 *cookie = new_cookie; 1759 break; 1760 case BLK_STS_RESOURCE: 1761 case BLK_STS_DEV_RESOURCE: 1762 __blk_mq_requeue_request(rq); 1763 break; 1764 default: 1765 *cookie = BLK_QC_T_NONE; 1766 break; 1767 } 1768 1769 return ret; 1770 } 1771 1772 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1773 struct request *rq, 1774 blk_qc_t *cookie, 1775 bool bypass_insert) 1776 { 1777 struct request_queue *q = rq->q; 1778 bool run_queue = true; 1779 1780 /* 1781 * RCU or SRCU read lock is needed before checking quiesced flag. 1782 * 1783 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1784 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1785 * and avoid driver to try to dispatch again. 1786 */ 1787 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1788 run_queue = false; 1789 bypass_insert = false; 1790 goto insert; 1791 } 1792 1793 if (q->elevator && !bypass_insert) 1794 goto insert; 1795 1796 if (!blk_mq_get_dispatch_budget(hctx)) 1797 goto insert; 1798 1799 if (!blk_mq_get_driver_tag(rq, NULL, false)) { 1800 blk_mq_put_dispatch_budget(hctx); 1801 goto insert; 1802 } 1803 1804 return __blk_mq_issue_directly(hctx, rq, cookie); 1805 insert: 1806 if (bypass_insert) 1807 return BLK_STS_RESOURCE; 1808 1809 blk_mq_sched_insert_request(rq, false, run_queue, false); 1810 return BLK_STS_OK; 1811 } 1812 1813 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1814 struct request *rq, blk_qc_t *cookie) 1815 { 1816 blk_status_t ret; 1817 int srcu_idx; 1818 1819 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1820 1821 hctx_lock(hctx, &srcu_idx); 1822 1823 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1824 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1825 blk_mq_sched_insert_request(rq, false, true, false); 1826 else if (ret != BLK_STS_OK) 1827 blk_mq_end_request(rq, ret); 1828 1829 hctx_unlock(hctx, srcu_idx); 1830 } 1831 1832 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1833 { 1834 blk_status_t ret; 1835 int srcu_idx; 1836 blk_qc_t unused_cookie; 1837 struct blk_mq_ctx *ctx = rq->mq_ctx; 1838 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1839 1840 hctx_lock(hctx, &srcu_idx); 1841 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1842 hctx_unlock(hctx, srcu_idx); 1843 1844 return ret; 1845 } 1846 1847 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1848 { 1849 const int is_sync = op_is_sync(bio->bi_opf); 1850 const int is_flush_fua = op_is_flush(bio->bi_opf); 1851 struct blk_mq_alloc_data data = { .flags = 0 }; 1852 struct request *rq; 1853 unsigned int request_count = 0; 1854 struct blk_plug *plug; 1855 struct request *same_queue_rq = NULL; 1856 blk_qc_t cookie; 1857 unsigned int wb_acct; 1858 1859 blk_queue_bounce(q, &bio); 1860 1861 blk_queue_split(q, &bio); 1862 1863 if (!bio_integrity_prep(bio)) 1864 return BLK_QC_T_NONE; 1865 1866 if (!is_flush_fua && !blk_queue_nomerges(q) && 1867 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1868 return BLK_QC_T_NONE; 1869 1870 if (blk_mq_sched_bio_merge(q, bio)) 1871 return BLK_QC_T_NONE; 1872 1873 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1874 1875 trace_block_getrq(q, bio, bio->bi_opf); 1876 1877 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1878 if (unlikely(!rq)) { 1879 __wbt_done(q->rq_wb, wb_acct); 1880 if (bio->bi_opf & REQ_NOWAIT) 1881 bio_wouldblock_error(bio); 1882 return BLK_QC_T_NONE; 1883 } 1884 1885 wbt_track(&rq->issue_stat, wb_acct); 1886 1887 cookie = request_to_qc_t(data.hctx, rq); 1888 1889 plug = current->plug; 1890 if (unlikely(is_flush_fua)) { 1891 blk_mq_put_ctx(data.ctx); 1892 blk_mq_bio_to_request(rq, bio); 1893 1894 /* bypass scheduler for flush rq */ 1895 blk_insert_flush(rq); 1896 blk_mq_run_hw_queue(data.hctx, true); 1897 } else if (plug && q->nr_hw_queues == 1) { 1898 struct request *last = NULL; 1899 1900 blk_mq_put_ctx(data.ctx); 1901 blk_mq_bio_to_request(rq, bio); 1902 1903 /* 1904 * @request_count may become stale because of schedule 1905 * out, so check the list again. 1906 */ 1907 if (list_empty(&plug->mq_list)) 1908 request_count = 0; 1909 else if (blk_queue_nomerges(q)) 1910 request_count = blk_plug_queued_count(q); 1911 1912 if (!request_count) 1913 trace_block_plug(q); 1914 else 1915 last = list_entry_rq(plug->mq_list.prev); 1916 1917 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1918 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1919 blk_flush_plug_list(plug, false); 1920 trace_block_plug(q); 1921 } 1922 1923 list_add_tail(&rq->queuelist, &plug->mq_list); 1924 } else if (plug && !blk_queue_nomerges(q)) { 1925 blk_mq_bio_to_request(rq, bio); 1926 1927 /* 1928 * We do limited plugging. If the bio can be merged, do that. 1929 * Otherwise the existing request in the plug list will be 1930 * issued. So the plug list will have one request at most 1931 * The plug list might get flushed before this. If that happens, 1932 * the plug list is empty, and same_queue_rq is invalid. 1933 */ 1934 if (list_empty(&plug->mq_list)) 1935 same_queue_rq = NULL; 1936 if (same_queue_rq) 1937 list_del_init(&same_queue_rq->queuelist); 1938 list_add_tail(&rq->queuelist, &plug->mq_list); 1939 1940 blk_mq_put_ctx(data.ctx); 1941 1942 if (same_queue_rq) { 1943 data.hctx = blk_mq_map_queue(q, 1944 same_queue_rq->mq_ctx->cpu); 1945 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1946 &cookie); 1947 } 1948 } else if (q->nr_hw_queues > 1 && is_sync) { 1949 blk_mq_put_ctx(data.ctx); 1950 blk_mq_bio_to_request(rq, bio); 1951 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1952 } else if (q->elevator) { 1953 blk_mq_put_ctx(data.ctx); 1954 blk_mq_bio_to_request(rq, bio); 1955 blk_mq_sched_insert_request(rq, false, true, true); 1956 } else { 1957 blk_mq_put_ctx(data.ctx); 1958 blk_mq_bio_to_request(rq, bio); 1959 blk_mq_queue_io(data.hctx, data.ctx, rq); 1960 blk_mq_run_hw_queue(data.hctx, true); 1961 } 1962 1963 return cookie; 1964 } 1965 1966 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1967 unsigned int hctx_idx) 1968 { 1969 struct page *page; 1970 1971 if (tags->rqs && set->ops->exit_request) { 1972 int i; 1973 1974 for (i = 0; i < tags->nr_tags; i++) { 1975 struct request *rq = tags->static_rqs[i]; 1976 1977 if (!rq) 1978 continue; 1979 set->ops->exit_request(set, rq, hctx_idx); 1980 tags->static_rqs[i] = NULL; 1981 } 1982 } 1983 1984 while (!list_empty(&tags->page_list)) { 1985 page = list_first_entry(&tags->page_list, struct page, lru); 1986 list_del_init(&page->lru); 1987 /* 1988 * Remove kmemleak object previously allocated in 1989 * blk_mq_init_rq_map(). 1990 */ 1991 kmemleak_free(page_address(page)); 1992 __free_pages(page, page->private); 1993 } 1994 } 1995 1996 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1997 { 1998 kfree(tags->rqs); 1999 tags->rqs = NULL; 2000 kfree(tags->static_rqs); 2001 tags->static_rqs = NULL; 2002 2003 blk_mq_free_tags(tags); 2004 } 2005 2006 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2007 unsigned int hctx_idx, 2008 unsigned int nr_tags, 2009 unsigned int reserved_tags) 2010 { 2011 struct blk_mq_tags *tags; 2012 int node; 2013 2014 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2015 if (node == NUMA_NO_NODE) 2016 node = set->numa_node; 2017 2018 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2019 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2020 if (!tags) 2021 return NULL; 2022 2023 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2024 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2025 node); 2026 if (!tags->rqs) { 2027 blk_mq_free_tags(tags); 2028 return NULL; 2029 } 2030 2031 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2032 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2033 node); 2034 if (!tags->static_rqs) { 2035 kfree(tags->rqs); 2036 blk_mq_free_tags(tags); 2037 return NULL; 2038 } 2039 2040 return tags; 2041 } 2042 2043 static size_t order_to_size(unsigned int order) 2044 { 2045 return (size_t)PAGE_SIZE << order; 2046 } 2047 2048 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2049 unsigned int hctx_idx, int node) 2050 { 2051 int ret; 2052 2053 if (set->ops->init_request) { 2054 ret = set->ops->init_request(set, rq, hctx_idx, node); 2055 if (ret) 2056 return ret; 2057 } 2058 2059 seqcount_init(&rq->gstate_seq); 2060 u64_stats_init(&rq->aborted_gstate_sync); 2061 /* 2062 * start gstate with gen 1 instead of 0, otherwise it will be equal 2063 * to aborted_gstate, and be identified timed out by 2064 * blk_mq_terminate_expired. 2065 */ 2066 WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC); 2067 2068 return 0; 2069 } 2070 2071 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2072 unsigned int hctx_idx, unsigned int depth) 2073 { 2074 unsigned int i, j, entries_per_page, max_order = 4; 2075 size_t rq_size, left; 2076 int node; 2077 2078 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2079 if (node == NUMA_NO_NODE) 2080 node = set->numa_node; 2081 2082 INIT_LIST_HEAD(&tags->page_list); 2083 2084 /* 2085 * rq_size is the size of the request plus driver payload, rounded 2086 * to the cacheline size 2087 */ 2088 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2089 cache_line_size()); 2090 left = rq_size * depth; 2091 2092 for (i = 0; i < depth; ) { 2093 int this_order = max_order; 2094 struct page *page; 2095 int to_do; 2096 void *p; 2097 2098 while (this_order && left < order_to_size(this_order - 1)) 2099 this_order--; 2100 2101 do { 2102 page = alloc_pages_node(node, 2103 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2104 this_order); 2105 if (page) 2106 break; 2107 if (!this_order--) 2108 break; 2109 if (order_to_size(this_order) < rq_size) 2110 break; 2111 } while (1); 2112 2113 if (!page) 2114 goto fail; 2115 2116 page->private = this_order; 2117 list_add_tail(&page->lru, &tags->page_list); 2118 2119 p = page_address(page); 2120 /* 2121 * Allow kmemleak to scan these pages as they contain pointers 2122 * to additional allocations like via ops->init_request(). 2123 */ 2124 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2125 entries_per_page = order_to_size(this_order) / rq_size; 2126 to_do = min(entries_per_page, depth - i); 2127 left -= to_do * rq_size; 2128 for (j = 0; j < to_do; j++) { 2129 struct request *rq = p; 2130 2131 tags->static_rqs[i] = rq; 2132 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2133 tags->static_rqs[i] = NULL; 2134 goto fail; 2135 } 2136 2137 p += rq_size; 2138 i++; 2139 } 2140 } 2141 return 0; 2142 2143 fail: 2144 blk_mq_free_rqs(set, tags, hctx_idx); 2145 return -ENOMEM; 2146 } 2147 2148 /* 2149 * 'cpu' is going away. splice any existing rq_list entries from this 2150 * software queue to the hw queue dispatch list, and ensure that it 2151 * gets run. 2152 */ 2153 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2154 { 2155 struct blk_mq_hw_ctx *hctx; 2156 struct blk_mq_ctx *ctx; 2157 LIST_HEAD(tmp); 2158 2159 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2160 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2161 2162 spin_lock(&ctx->lock); 2163 if (!list_empty(&ctx->rq_list)) { 2164 list_splice_init(&ctx->rq_list, &tmp); 2165 blk_mq_hctx_clear_pending(hctx, ctx); 2166 } 2167 spin_unlock(&ctx->lock); 2168 2169 if (list_empty(&tmp)) 2170 return 0; 2171 2172 spin_lock(&hctx->lock); 2173 list_splice_tail_init(&tmp, &hctx->dispatch); 2174 spin_unlock(&hctx->lock); 2175 2176 blk_mq_run_hw_queue(hctx, true); 2177 return 0; 2178 } 2179 2180 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2181 { 2182 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2183 &hctx->cpuhp_dead); 2184 } 2185 2186 /* hctx->ctxs will be freed in queue's release handler */ 2187 static void blk_mq_exit_hctx(struct request_queue *q, 2188 struct blk_mq_tag_set *set, 2189 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2190 { 2191 blk_mq_debugfs_unregister_hctx(hctx); 2192 2193 if (blk_mq_hw_queue_mapped(hctx)) 2194 blk_mq_tag_idle(hctx); 2195 2196 if (set->ops->exit_request) 2197 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2198 2199 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2200 2201 if (set->ops->exit_hctx) 2202 set->ops->exit_hctx(hctx, hctx_idx); 2203 2204 if (hctx->flags & BLK_MQ_F_BLOCKING) 2205 cleanup_srcu_struct(hctx->srcu); 2206 2207 blk_mq_remove_cpuhp(hctx); 2208 blk_free_flush_queue(hctx->fq); 2209 sbitmap_free(&hctx->ctx_map); 2210 } 2211 2212 static void blk_mq_exit_hw_queues(struct request_queue *q, 2213 struct blk_mq_tag_set *set, int nr_queue) 2214 { 2215 struct blk_mq_hw_ctx *hctx; 2216 unsigned int i; 2217 2218 queue_for_each_hw_ctx(q, hctx, i) { 2219 if (i == nr_queue) 2220 break; 2221 blk_mq_exit_hctx(q, set, hctx, i); 2222 } 2223 } 2224 2225 static int blk_mq_init_hctx(struct request_queue *q, 2226 struct blk_mq_tag_set *set, 2227 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2228 { 2229 int node; 2230 2231 node = hctx->numa_node; 2232 if (node == NUMA_NO_NODE) 2233 node = hctx->numa_node = set->numa_node; 2234 2235 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2236 spin_lock_init(&hctx->lock); 2237 INIT_LIST_HEAD(&hctx->dispatch); 2238 hctx->queue = q; 2239 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2240 2241 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2242 2243 hctx->tags = set->tags[hctx_idx]; 2244 2245 /* 2246 * Allocate space for all possible cpus to avoid allocation at 2247 * runtime 2248 */ 2249 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2250 GFP_KERNEL, node); 2251 if (!hctx->ctxs) 2252 goto unregister_cpu_notifier; 2253 2254 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2255 node)) 2256 goto free_ctxs; 2257 2258 hctx->nr_ctx = 0; 2259 2260 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2261 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2262 2263 if (set->ops->init_hctx && 2264 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2265 goto free_bitmap; 2266 2267 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 2268 goto exit_hctx; 2269 2270 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2271 if (!hctx->fq) 2272 goto sched_exit_hctx; 2273 2274 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2275 goto free_fq; 2276 2277 if (hctx->flags & BLK_MQ_F_BLOCKING) 2278 init_srcu_struct(hctx->srcu); 2279 2280 blk_mq_debugfs_register_hctx(q, hctx); 2281 2282 return 0; 2283 2284 free_fq: 2285 kfree(hctx->fq); 2286 sched_exit_hctx: 2287 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2288 exit_hctx: 2289 if (set->ops->exit_hctx) 2290 set->ops->exit_hctx(hctx, hctx_idx); 2291 free_bitmap: 2292 sbitmap_free(&hctx->ctx_map); 2293 free_ctxs: 2294 kfree(hctx->ctxs); 2295 unregister_cpu_notifier: 2296 blk_mq_remove_cpuhp(hctx); 2297 return -1; 2298 } 2299 2300 static void blk_mq_init_cpu_queues(struct request_queue *q, 2301 unsigned int nr_hw_queues) 2302 { 2303 unsigned int i; 2304 2305 for_each_possible_cpu(i) { 2306 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2307 struct blk_mq_hw_ctx *hctx; 2308 2309 __ctx->cpu = i; 2310 spin_lock_init(&__ctx->lock); 2311 INIT_LIST_HEAD(&__ctx->rq_list); 2312 __ctx->queue = q; 2313 2314 /* 2315 * Set local node, IFF we have more than one hw queue. If 2316 * not, we remain on the home node of the device 2317 */ 2318 hctx = blk_mq_map_queue(q, i); 2319 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2320 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2321 } 2322 } 2323 2324 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2325 { 2326 int ret = 0; 2327 2328 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2329 set->queue_depth, set->reserved_tags); 2330 if (!set->tags[hctx_idx]) 2331 return false; 2332 2333 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2334 set->queue_depth); 2335 if (!ret) 2336 return true; 2337 2338 blk_mq_free_rq_map(set->tags[hctx_idx]); 2339 set->tags[hctx_idx] = NULL; 2340 return false; 2341 } 2342 2343 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2344 unsigned int hctx_idx) 2345 { 2346 if (set->tags[hctx_idx]) { 2347 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2348 blk_mq_free_rq_map(set->tags[hctx_idx]); 2349 set->tags[hctx_idx] = NULL; 2350 } 2351 } 2352 2353 static void blk_mq_map_swqueue(struct request_queue *q) 2354 { 2355 unsigned int i, hctx_idx; 2356 struct blk_mq_hw_ctx *hctx; 2357 struct blk_mq_ctx *ctx; 2358 struct blk_mq_tag_set *set = q->tag_set; 2359 2360 /* 2361 * Avoid others reading imcomplete hctx->cpumask through sysfs 2362 */ 2363 mutex_lock(&q->sysfs_lock); 2364 2365 queue_for_each_hw_ctx(q, hctx, i) { 2366 cpumask_clear(hctx->cpumask); 2367 hctx->nr_ctx = 0; 2368 } 2369 2370 /* 2371 * Map software to hardware queues. 2372 * 2373 * If the cpu isn't present, the cpu is mapped to first hctx. 2374 */ 2375 for_each_possible_cpu(i) { 2376 hctx_idx = q->mq_map[i]; 2377 /* unmapped hw queue can be remapped after CPU topo changed */ 2378 if (!set->tags[hctx_idx] && 2379 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2380 /* 2381 * If tags initialization fail for some hctx, 2382 * that hctx won't be brought online. In this 2383 * case, remap the current ctx to hctx[0] which 2384 * is guaranteed to always have tags allocated 2385 */ 2386 q->mq_map[i] = 0; 2387 } 2388 2389 ctx = per_cpu_ptr(q->queue_ctx, i); 2390 hctx = blk_mq_map_queue(q, i); 2391 2392 cpumask_set_cpu(i, hctx->cpumask); 2393 ctx->index_hw = hctx->nr_ctx; 2394 hctx->ctxs[hctx->nr_ctx++] = ctx; 2395 } 2396 2397 mutex_unlock(&q->sysfs_lock); 2398 2399 queue_for_each_hw_ctx(q, hctx, i) { 2400 /* 2401 * If no software queues are mapped to this hardware queue, 2402 * disable it and free the request entries. 2403 */ 2404 if (!hctx->nr_ctx) { 2405 /* Never unmap queue 0. We need it as a 2406 * fallback in case of a new remap fails 2407 * allocation 2408 */ 2409 if (i && set->tags[i]) 2410 blk_mq_free_map_and_requests(set, i); 2411 2412 hctx->tags = NULL; 2413 continue; 2414 } 2415 2416 hctx->tags = set->tags[i]; 2417 WARN_ON(!hctx->tags); 2418 2419 /* 2420 * Set the map size to the number of mapped software queues. 2421 * This is more accurate and more efficient than looping 2422 * over all possibly mapped software queues. 2423 */ 2424 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2425 2426 /* 2427 * Initialize batch roundrobin counts 2428 */ 2429 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2430 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2431 } 2432 } 2433 2434 /* 2435 * Caller needs to ensure that we're either frozen/quiesced, or that 2436 * the queue isn't live yet. 2437 */ 2438 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2439 { 2440 struct blk_mq_hw_ctx *hctx; 2441 int i; 2442 2443 queue_for_each_hw_ctx(q, hctx, i) { 2444 if (shared) { 2445 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2446 atomic_inc(&q->shared_hctx_restart); 2447 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2448 } else { 2449 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2450 atomic_dec(&q->shared_hctx_restart); 2451 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2452 } 2453 } 2454 } 2455 2456 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2457 bool shared) 2458 { 2459 struct request_queue *q; 2460 2461 lockdep_assert_held(&set->tag_list_lock); 2462 2463 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2464 blk_mq_freeze_queue(q); 2465 queue_set_hctx_shared(q, shared); 2466 blk_mq_unfreeze_queue(q); 2467 } 2468 } 2469 2470 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2471 { 2472 struct blk_mq_tag_set *set = q->tag_set; 2473 2474 mutex_lock(&set->tag_list_lock); 2475 list_del_rcu(&q->tag_set_list); 2476 INIT_LIST_HEAD(&q->tag_set_list); 2477 if (list_is_singular(&set->tag_list)) { 2478 /* just transitioned to unshared */ 2479 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2480 /* update existing queue */ 2481 blk_mq_update_tag_set_depth(set, false); 2482 } 2483 mutex_unlock(&set->tag_list_lock); 2484 2485 synchronize_rcu(); 2486 } 2487 2488 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2489 struct request_queue *q) 2490 { 2491 q->tag_set = set; 2492 2493 mutex_lock(&set->tag_list_lock); 2494 2495 /* 2496 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2497 */ 2498 if (!list_empty(&set->tag_list) && 2499 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2500 set->flags |= BLK_MQ_F_TAG_SHARED; 2501 /* update existing queue */ 2502 blk_mq_update_tag_set_depth(set, true); 2503 } 2504 if (set->flags & BLK_MQ_F_TAG_SHARED) 2505 queue_set_hctx_shared(q, true); 2506 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2507 2508 mutex_unlock(&set->tag_list_lock); 2509 } 2510 2511 /* 2512 * It is the actual release handler for mq, but we do it from 2513 * request queue's release handler for avoiding use-after-free 2514 * and headache because q->mq_kobj shouldn't have been introduced, 2515 * but we can't group ctx/kctx kobj without it. 2516 */ 2517 void blk_mq_release(struct request_queue *q) 2518 { 2519 struct blk_mq_hw_ctx *hctx; 2520 unsigned int i; 2521 2522 /* hctx kobj stays in hctx */ 2523 queue_for_each_hw_ctx(q, hctx, i) { 2524 if (!hctx) 2525 continue; 2526 kobject_put(&hctx->kobj); 2527 } 2528 2529 q->mq_map = NULL; 2530 2531 kfree(q->queue_hw_ctx); 2532 2533 /* 2534 * release .mq_kobj and sw queue's kobject now because 2535 * both share lifetime with request queue. 2536 */ 2537 blk_mq_sysfs_deinit(q); 2538 2539 free_percpu(q->queue_ctx); 2540 } 2541 2542 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2543 { 2544 struct request_queue *uninit_q, *q; 2545 2546 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL); 2547 if (!uninit_q) 2548 return ERR_PTR(-ENOMEM); 2549 2550 q = blk_mq_init_allocated_queue(set, uninit_q); 2551 if (IS_ERR(q)) 2552 blk_cleanup_queue(uninit_q); 2553 2554 return q; 2555 } 2556 EXPORT_SYMBOL(blk_mq_init_queue); 2557 2558 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2559 { 2560 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2561 2562 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2563 __alignof__(struct blk_mq_hw_ctx)) != 2564 sizeof(struct blk_mq_hw_ctx)); 2565 2566 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2567 hw_ctx_size += sizeof(struct srcu_struct); 2568 2569 return hw_ctx_size; 2570 } 2571 2572 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2573 struct request_queue *q) 2574 { 2575 int i, j; 2576 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2577 2578 blk_mq_sysfs_unregister(q); 2579 2580 /* protect against switching io scheduler */ 2581 mutex_lock(&q->sysfs_lock); 2582 for (i = 0; i < set->nr_hw_queues; i++) { 2583 int node; 2584 2585 if (hctxs[i]) 2586 continue; 2587 2588 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2589 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2590 GFP_KERNEL, node); 2591 if (!hctxs[i]) 2592 break; 2593 2594 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2595 node)) { 2596 kfree(hctxs[i]); 2597 hctxs[i] = NULL; 2598 break; 2599 } 2600 2601 atomic_set(&hctxs[i]->nr_active, 0); 2602 hctxs[i]->numa_node = node; 2603 hctxs[i]->queue_num = i; 2604 2605 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2606 free_cpumask_var(hctxs[i]->cpumask); 2607 kfree(hctxs[i]); 2608 hctxs[i] = NULL; 2609 break; 2610 } 2611 blk_mq_hctx_kobj_init(hctxs[i]); 2612 } 2613 for (j = i; j < q->nr_hw_queues; j++) { 2614 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2615 2616 if (hctx) { 2617 if (hctx->tags) 2618 blk_mq_free_map_and_requests(set, j); 2619 blk_mq_exit_hctx(q, set, hctx, j); 2620 kobject_put(&hctx->kobj); 2621 hctxs[j] = NULL; 2622 2623 } 2624 } 2625 q->nr_hw_queues = i; 2626 mutex_unlock(&q->sysfs_lock); 2627 blk_mq_sysfs_register(q); 2628 } 2629 2630 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2631 struct request_queue *q) 2632 { 2633 /* mark the queue as mq asap */ 2634 q->mq_ops = set->ops; 2635 2636 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2637 blk_mq_poll_stats_bkt, 2638 BLK_MQ_POLL_STATS_BKTS, q); 2639 if (!q->poll_cb) 2640 goto err_exit; 2641 2642 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2643 if (!q->queue_ctx) 2644 goto err_exit; 2645 2646 /* init q->mq_kobj and sw queues' kobjects */ 2647 blk_mq_sysfs_init(q); 2648 2649 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2650 GFP_KERNEL, set->numa_node); 2651 if (!q->queue_hw_ctx) 2652 goto err_percpu; 2653 2654 q->mq_map = set->mq_map; 2655 2656 blk_mq_realloc_hw_ctxs(set, q); 2657 if (!q->nr_hw_queues) 2658 goto err_hctxs; 2659 2660 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2661 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2662 2663 q->nr_queues = nr_cpu_ids; 2664 2665 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2666 2667 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2668 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 2669 2670 q->sg_reserved_size = INT_MAX; 2671 2672 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2673 INIT_LIST_HEAD(&q->requeue_list); 2674 spin_lock_init(&q->requeue_lock); 2675 2676 blk_queue_make_request(q, blk_mq_make_request); 2677 if (q->mq_ops->poll) 2678 q->poll_fn = blk_mq_poll; 2679 2680 /* 2681 * Do this after blk_queue_make_request() overrides it... 2682 */ 2683 q->nr_requests = set->queue_depth; 2684 2685 /* 2686 * Default to classic polling 2687 */ 2688 q->poll_nsec = -1; 2689 2690 if (set->ops->complete) 2691 blk_queue_softirq_done(q, set->ops->complete); 2692 2693 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2694 blk_mq_add_queue_tag_set(set, q); 2695 blk_mq_map_swqueue(q); 2696 2697 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2698 int ret; 2699 2700 ret = blk_mq_sched_init(q); 2701 if (ret) 2702 return ERR_PTR(ret); 2703 } 2704 2705 return q; 2706 2707 err_hctxs: 2708 kfree(q->queue_hw_ctx); 2709 err_percpu: 2710 free_percpu(q->queue_ctx); 2711 err_exit: 2712 q->mq_ops = NULL; 2713 return ERR_PTR(-ENOMEM); 2714 } 2715 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2716 2717 void blk_mq_free_queue(struct request_queue *q) 2718 { 2719 struct blk_mq_tag_set *set = q->tag_set; 2720 2721 blk_mq_del_queue_tag_set(q); 2722 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2723 } 2724 2725 /* Basically redo blk_mq_init_queue with queue frozen */ 2726 static void blk_mq_queue_reinit(struct request_queue *q) 2727 { 2728 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2729 2730 blk_mq_debugfs_unregister_hctxs(q); 2731 blk_mq_sysfs_unregister(q); 2732 2733 /* 2734 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2735 * we should change hctx numa_node according to the new topology (this 2736 * involves freeing and re-allocating memory, worth doing?) 2737 */ 2738 blk_mq_map_swqueue(q); 2739 2740 blk_mq_sysfs_register(q); 2741 blk_mq_debugfs_register_hctxs(q); 2742 } 2743 2744 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2745 { 2746 int i; 2747 2748 for (i = 0; i < set->nr_hw_queues; i++) 2749 if (!__blk_mq_alloc_rq_map(set, i)) 2750 goto out_unwind; 2751 2752 return 0; 2753 2754 out_unwind: 2755 while (--i >= 0) 2756 blk_mq_free_rq_map(set->tags[i]); 2757 2758 return -ENOMEM; 2759 } 2760 2761 /* 2762 * Allocate the request maps associated with this tag_set. Note that this 2763 * may reduce the depth asked for, if memory is tight. set->queue_depth 2764 * will be updated to reflect the allocated depth. 2765 */ 2766 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2767 { 2768 unsigned int depth; 2769 int err; 2770 2771 depth = set->queue_depth; 2772 do { 2773 err = __blk_mq_alloc_rq_maps(set); 2774 if (!err) 2775 break; 2776 2777 set->queue_depth >>= 1; 2778 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2779 err = -ENOMEM; 2780 break; 2781 } 2782 } while (set->queue_depth); 2783 2784 if (!set->queue_depth || err) { 2785 pr_err("blk-mq: failed to allocate request map\n"); 2786 return -ENOMEM; 2787 } 2788 2789 if (depth != set->queue_depth) 2790 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2791 depth, set->queue_depth); 2792 2793 return 0; 2794 } 2795 2796 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2797 { 2798 if (set->ops->map_queues) { 2799 int cpu; 2800 /* 2801 * transport .map_queues is usually done in the following 2802 * way: 2803 * 2804 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2805 * mask = get_cpu_mask(queue) 2806 * for_each_cpu(cpu, mask) 2807 * set->mq_map[cpu] = queue; 2808 * } 2809 * 2810 * When we need to remap, the table has to be cleared for 2811 * killing stale mapping since one CPU may not be mapped 2812 * to any hw queue. 2813 */ 2814 for_each_possible_cpu(cpu) 2815 set->mq_map[cpu] = 0; 2816 2817 return set->ops->map_queues(set); 2818 } else 2819 return blk_mq_map_queues(set); 2820 } 2821 2822 /* 2823 * Alloc a tag set to be associated with one or more request queues. 2824 * May fail with EINVAL for various error conditions. May adjust the 2825 * requested depth down, if if it too large. In that case, the set 2826 * value will be stored in set->queue_depth. 2827 */ 2828 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2829 { 2830 int ret; 2831 2832 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2833 2834 if (!set->nr_hw_queues) 2835 return -EINVAL; 2836 if (!set->queue_depth) 2837 return -EINVAL; 2838 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2839 return -EINVAL; 2840 2841 if (!set->ops->queue_rq) 2842 return -EINVAL; 2843 2844 if (!set->ops->get_budget ^ !set->ops->put_budget) 2845 return -EINVAL; 2846 2847 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2848 pr_info("blk-mq: reduced tag depth to %u\n", 2849 BLK_MQ_MAX_DEPTH); 2850 set->queue_depth = BLK_MQ_MAX_DEPTH; 2851 } 2852 2853 /* 2854 * If a crashdump is active, then we are potentially in a very 2855 * memory constrained environment. Limit us to 1 queue and 2856 * 64 tags to prevent using too much memory. 2857 */ 2858 if (is_kdump_kernel()) { 2859 set->nr_hw_queues = 1; 2860 set->queue_depth = min(64U, set->queue_depth); 2861 } 2862 /* 2863 * There is no use for more h/w queues than cpus. 2864 */ 2865 if (set->nr_hw_queues > nr_cpu_ids) 2866 set->nr_hw_queues = nr_cpu_ids; 2867 2868 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2869 GFP_KERNEL, set->numa_node); 2870 if (!set->tags) 2871 return -ENOMEM; 2872 2873 ret = -ENOMEM; 2874 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2875 GFP_KERNEL, set->numa_node); 2876 if (!set->mq_map) 2877 goto out_free_tags; 2878 2879 ret = blk_mq_update_queue_map(set); 2880 if (ret) 2881 goto out_free_mq_map; 2882 2883 ret = blk_mq_alloc_rq_maps(set); 2884 if (ret) 2885 goto out_free_mq_map; 2886 2887 mutex_init(&set->tag_list_lock); 2888 INIT_LIST_HEAD(&set->tag_list); 2889 2890 return 0; 2891 2892 out_free_mq_map: 2893 kfree(set->mq_map); 2894 set->mq_map = NULL; 2895 out_free_tags: 2896 kfree(set->tags); 2897 set->tags = NULL; 2898 return ret; 2899 } 2900 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2901 2902 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2903 { 2904 int i; 2905 2906 for (i = 0; i < nr_cpu_ids; i++) 2907 blk_mq_free_map_and_requests(set, i); 2908 2909 kfree(set->mq_map); 2910 set->mq_map = NULL; 2911 2912 kfree(set->tags); 2913 set->tags = NULL; 2914 } 2915 EXPORT_SYMBOL(blk_mq_free_tag_set); 2916 2917 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2918 { 2919 struct blk_mq_tag_set *set = q->tag_set; 2920 struct blk_mq_hw_ctx *hctx; 2921 int i, ret; 2922 2923 if (!set) 2924 return -EINVAL; 2925 2926 blk_mq_freeze_queue(q); 2927 blk_mq_quiesce_queue(q); 2928 2929 ret = 0; 2930 queue_for_each_hw_ctx(q, hctx, i) { 2931 if (!hctx->tags) 2932 continue; 2933 /* 2934 * If we're using an MQ scheduler, just update the scheduler 2935 * queue depth. This is similar to what the old code would do. 2936 */ 2937 if (!hctx->sched_tags) { 2938 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2939 false); 2940 } else { 2941 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2942 nr, true); 2943 } 2944 if (ret) 2945 break; 2946 } 2947 2948 if (!ret) 2949 q->nr_requests = nr; 2950 2951 blk_mq_unquiesce_queue(q); 2952 blk_mq_unfreeze_queue(q); 2953 2954 return ret; 2955 } 2956 2957 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2958 int nr_hw_queues) 2959 { 2960 struct request_queue *q; 2961 2962 lockdep_assert_held(&set->tag_list_lock); 2963 2964 if (nr_hw_queues > nr_cpu_ids) 2965 nr_hw_queues = nr_cpu_ids; 2966 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2967 return; 2968 2969 list_for_each_entry(q, &set->tag_list, tag_set_list) 2970 blk_mq_freeze_queue(q); 2971 2972 set->nr_hw_queues = nr_hw_queues; 2973 blk_mq_update_queue_map(set); 2974 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2975 blk_mq_realloc_hw_ctxs(set, q); 2976 blk_mq_queue_reinit(q); 2977 } 2978 2979 list_for_each_entry(q, &set->tag_list, tag_set_list) 2980 blk_mq_unfreeze_queue(q); 2981 } 2982 2983 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2984 { 2985 mutex_lock(&set->tag_list_lock); 2986 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 2987 mutex_unlock(&set->tag_list_lock); 2988 } 2989 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2990 2991 /* Enable polling stats and return whether they were already enabled. */ 2992 static bool blk_poll_stats_enable(struct request_queue *q) 2993 { 2994 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2995 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 2996 return true; 2997 blk_stat_add_callback(q, q->poll_cb); 2998 return false; 2999 } 3000 3001 static void blk_mq_poll_stats_start(struct request_queue *q) 3002 { 3003 /* 3004 * We don't arm the callback if polling stats are not enabled or the 3005 * callback is already active. 3006 */ 3007 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3008 blk_stat_is_active(q->poll_cb)) 3009 return; 3010 3011 blk_stat_activate_msecs(q->poll_cb, 100); 3012 } 3013 3014 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3015 { 3016 struct request_queue *q = cb->data; 3017 int bucket; 3018 3019 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3020 if (cb->stat[bucket].nr_samples) 3021 q->poll_stat[bucket] = cb->stat[bucket]; 3022 } 3023 } 3024 3025 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3026 struct blk_mq_hw_ctx *hctx, 3027 struct request *rq) 3028 { 3029 unsigned long ret = 0; 3030 int bucket; 3031 3032 /* 3033 * If stats collection isn't on, don't sleep but turn it on for 3034 * future users 3035 */ 3036 if (!blk_poll_stats_enable(q)) 3037 return 0; 3038 3039 /* 3040 * As an optimistic guess, use half of the mean service time 3041 * for this type of request. We can (and should) make this smarter. 3042 * For instance, if the completion latencies are tight, we can 3043 * get closer than just half the mean. This is especially 3044 * important on devices where the completion latencies are longer 3045 * than ~10 usec. We do use the stats for the relevant IO size 3046 * if available which does lead to better estimates. 3047 */ 3048 bucket = blk_mq_poll_stats_bkt(rq); 3049 if (bucket < 0) 3050 return ret; 3051 3052 if (q->poll_stat[bucket].nr_samples) 3053 ret = (q->poll_stat[bucket].mean + 1) / 2; 3054 3055 return ret; 3056 } 3057 3058 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3059 struct blk_mq_hw_ctx *hctx, 3060 struct request *rq) 3061 { 3062 struct hrtimer_sleeper hs; 3063 enum hrtimer_mode mode; 3064 unsigned int nsecs; 3065 ktime_t kt; 3066 3067 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3068 return false; 3069 3070 /* 3071 * poll_nsec can be: 3072 * 3073 * -1: don't ever hybrid sleep 3074 * 0: use half of prev avg 3075 * >0: use this specific value 3076 */ 3077 if (q->poll_nsec == -1) 3078 return false; 3079 else if (q->poll_nsec > 0) 3080 nsecs = q->poll_nsec; 3081 else 3082 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3083 3084 if (!nsecs) 3085 return false; 3086 3087 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3088 3089 /* 3090 * This will be replaced with the stats tracking code, using 3091 * 'avg_completion_time / 2' as the pre-sleep target. 3092 */ 3093 kt = nsecs; 3094 3095 mode = HRTIMER_MODE_REL; 3096 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3097 hrtimer_set_expires(&hs.timer, kt); 3098 3099 hrtimer_init_sleeper(&hs, current); 3100 do { 3101 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3102 break; 3103 set_current_state(TASK_UNINTERRUPTIBLE); 3104 hrtimer_start_expires(&hs.timer, mode); 3105 if (hs.task) 3106 io_schedule(); 3107 hrtimer_cancel(&hs.timer); 3108 mode = HRTIMER_MODE_ABS; 3109 } while (hs.task && !signal_pending(current)); 3110 3111 __set_current_state(TASK_RUNNING); 3112 destroy_hrtimer_on_stack(&hs.timer); 3113 return true; 3114 } 3115 3116 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 3117 { 3118 struct request_queue *q = hctx->queue; 3119 long state; 3120 3121 /* 3122 * If we sleep, have the caller restart the poll loop to reset 3123 * the state. Like for the other success return cases, the 3124 * caller is responsible for checking if the IO completed. If 3125 * the IO isn't complete, we'll get called again and will go 3126 * straight to the busy poll loop. 3127 */ 3128 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3129 return true; 3130 3131 hctx->poll_considered++; 3132 3133 state = current->state; 3134 while (!need_resched()) { 3135 int ret; 3136 3137 hctx->poll_invoked++; 3138 3139 ret = q->mq_ops->poll(hctx, rq->tag); 3140 if (ret > 0) { 3141 hctx->poll_success++; 3142 set_current_state(TASK_RUNNING); 3143 return true; 3144 } 3145 3146 if (signal_pending_state(state, current)) 3147 set_current_state(TASK_RUNNING); 3148 3149 if (current->state == TASK_RUNNING) 3150 return true; 3151 if (ret < 0) 3152 break; 3153 cpu_relax(); 3154 } 3155 3156 __set_current_state(TASK_RUNNING); 3157 return false; 3158 } 3159 3160 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3161 { 3162 struct blk_mq_hw_ctx *hctx; 3163 struct request *rq; 3164 3165 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3166 return false; 3167 3168 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3169 if (!blk_qc_t_is_internal(cookie)) 3170 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3171 else { 3172 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3173 /* 3174 * With scheduling, if the request has completed, we'll 3175 * get a NULL return here, as we clear the sched tag when 3176 * that happens. The request still remains valid, like always, 3177 * so we should be safe with just the NULL check. 3178 */ 3179 if (!rq) 3180 return false; 3181 } 3182 3183 return __blk_mq_poll(hctx, rq); 3184 } 3185 3186 static int __init blk_mq_init(void) 3187 { 3188 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3189 blk_mq_hctx_notify_dead); 3190 return 0; 3191 } 3192 subsys_initcall(blk_mq_init); 3193