xref: /openbmc/linux/block/blk-mq.c (revision 4cff79e9)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	/*
99 	 * index[0] counts the specific partition that was asked for. index[1]
100 	 * counts the ones that are active on the whole device, so increment
101 	 * that if mi->part is indeed a partition, and not a whole device.
102 	 */
103 	if (rq->part == mi->part)
104 		mi->inflight[0]++;
105 	if (mi->part->partno)
106 		mi->inflight[1]++;
107 }
108 
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 		      unsigned int inflight[2])
111 {
112 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
113 
114 	inflight[0] = inflight[1] = 0;
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117 
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 				     struct request *rq, void *priv,
120 				     bool reserved)
121 {
122 	struct mq_inflight *mi = priv;
123 
124 	if (rq->part == mi->part)
125 		mi->inflight[rq_data_dir(rq)]++;
126 }
127 
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 			 unsigned int inflight[2])
130 {
131 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
132 
133 	inflight[0] = inflight[1] = 0;
134 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136 
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 	int freeze_depth;
140 
141 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 	if (freeze_depth == 1) {
143 		percpu_ref_kill(&q->q_usage_counter);
144 		if (q->mq_ops)
145 			blk_mq_run_hw_queues(q, false);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	if (!q->mq_ops)
180 		blk_drain_queue(q);
181 	blk_mq_freeze_queue_wait(q);
182 }
183 
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 	/*
187 	 * ...just an alias to keep freeze and unfreeze actions balanced
188 	 * in the blk_mq_* namespace
189 	 */
190 	blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	int freeze_depth;
197 
198 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 	WARN_ON_ONCE(freeze_depth < 0);
200 	if (!freeze_depth) {
201 		percpu_ref_reinit(&q->q_usage_counter);
202 		wake_up_all(&q->mq_freeze_wq);
203 	}
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206 
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216 
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 	struct blk_mq_hw_ctx *hctx;
229 	unsigned int i;
230 	bool rcu = false;
231 
232 	blk_mq_quiesce_queue_nowait(q);
233 
234 	queue_for_each_hw_ctx(q, hctx, i) {
235 		if (hctx->flags & BLK_MQ_F_BLOCKING)
236 			synchronize_srcu(hctx->srcu);
237 		else
238 			rcu = true;
239 	}
240 	if (rcu)
241 		synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244 
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255 
256 	/* dispatch requests which are inserted during quiescing */
257 	blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260 
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 	struct blk_mq_hw_ctx *hctx;
264 	unsigned int i;
265 
266 	queue_for_each_hw_ctx(q, hctx, i)
267 		if (blk_mq_hw_queue_mapped(hctx))
268 			blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270 
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 	return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, unsigned int op)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 	req_flags_t rq_flags = 0;
283 
284 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 		rq->tag = -1;
286 		rq->internal_tag = tag;
287 	} else {
288 		if (blk_mq_tag_busy(data->hctx)) {
289 			rq_flags = RQF_MQ_INFLIGHT;
290 			atomic_inc(&data->hctx->nr_active);
291 		}
292 		rq->tag = tag;
293 		rq->internal_tag = -1;
294 		data->hctx->tags->rqs[rq->tag] = rq;
295 	}
296 
297 	/* csd/requeue_work/fifo_time is initialized before use */
298 	rq->q = data->q;
299 	rq->mq_ctx = data->ctx;
300 	rq->rq_flags = rq_flags;
301 	rq->cpu = -1;
302 	rq->cmd_flags = op;
303 	if (data->flags & BLK_MQ_REQ_PREEMPT)
304 		rq->rq_flags |= RQF_PREEMPT;
305 	if (blk_queue_io_stat(data->q))
306 		rq->rq_flags |= RQF_IO_STAT;
307 	INIT_LIST_HEAD(&rq->queuelist);
308 	INIT_HLIST_NODE(&rq->hash);
309 	RB_CLEAR_NODE(&rq->rb_node);
310 	rq->rq_disk = NULL;
311 	rq->part = NULL;
312 	rq->start_time = jiffies;
313 	rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 	rq->nr_integrity_segments = 0;
316 #endif
317 	rq->special = NULL;
318 	/* tag was already set */
319 	rq->extra_len = 0;
320 	rq->__deadline = 0;
321 
322 	INIT_LIST_HEAD(&rq->timeout_list);
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 	rq->next_rq = NULL;
328 
329 #ifdef CONFIG_BLK_CGROUP
330 	rq->rl = NULL;
331 	set_start_time_ns(rq);
332 	rq->io_start_time_ns = 0;
333 #endif
334 
335 	data->ctx->rq_dispatched[op_is_sync(op)]++;
336 	return rq;
337 }
338 
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 		struct bio *bio, unsigned int op,
341 		struct blk_mq_alloc_data *data)
342 {
343 	struct elevator_queue *e = q->elevator;
344 	struct request *rq;
345 	unsigned int tag;
346 	bool put_ctx_on_error = false;
347 
348 	blk_queue_enter_live(q);
349 	data->q = q;
350 	if (likely(!data->ctx)) {
351 		data->ctx = blk_mq_get_ctx(q);
352 		put_ctx_on_error = true;
353 	}
354 	if (likely(!data->hctx))
355 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 	if (op & REQ_NOWAIT)
357 		data->flags |= BLK_MQ_REQ_NOWAIT;
358 
359 	if (e) {
360 		data->flags |= BLK_MQ_REQ_INTERNAL;
361 
362 		/*
363 		 * Flush requests are special and go directly to the
364 		 * dispatch list.
365 		 */
366 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
367 			e->type->ops.mq.limit_depth(op, data);
368 	}
369 
370 	tag = blk_mq_get_tag(data);
371 	if (tag == BLK_MQ_TAG_FAIL) {
372 		if (put_ctx_on_error) {
373 			blk_mq_put_ctx(data->ctx);
374 			data->ctx = NULL;
375 		}
376 		blk_queue_exit(q);
377 		return NULL;
378 	}
379 
380 	rq = blk_mq_rq_ctx_init(data, tag, op);
381 	if (!op_is_flush(op)) {
382 		rq->elv.icq = NULL;
383 		if (e && e->type->ops.mq.prepare_request) {
384 			if (e->type->icq_cache && rq_ioc(bio))
385 				blk_mq_sched_assign_ioc(rq, bio);
386 
387 			e->type->ops.mq.prepare_request(rq, bio);
388 			rq->rq_flags |= RQF_ELVPRIV;
389 		}
390 	}
391 	data->hctx->queued++;
392 	return rq;
393 }
394 
395 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
396 		blk_mq_req_flags_t flags)
397 {
398 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
399 	struct request *rq;
400 	int ret;
401 
402 	ret = blk_queue_enter(q, flags);
403 	if (ret)
404 		return ERR_PTR(ret);
405 
406 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
407 	blk_queue_exit(q);
408 
409 	if (!rq)
410 		return ERR_PTR(-EWOULDBLOCK);
411 
412 	blk_mq_put_ctx(alloc_data.ctx);
413 
414 	rq->__data_len = 0;
415 	rq->__sector = (sector_t) -1;
416 	rq->bio = rq->biotail = NULL;
417 	return rq;
418 }
419 EXPORT_SYMBOL(blk_mq_alloc_request);
420 
421 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
422 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
423 {
424 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
425 	struct request *rq;
426 	unsigned int cpu;
427 	int ret;
428 
429 	/*
430 	 * If the tag allocator sleeps we could get an allocation for a
431 	 * different hardware context.  No need to complicate the low level
432 	 * allocator for this for the rare use case of a command tied to
433 	 * a specific queue.
434 	 */
435 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
436 		return ERR_PTR(-EINVAL);
437 
438 	if (hctx_idx >= q->nr_hw_queues)
439 		return ERR_PTR(-EIO);
440 
441 	ret = blk_queue_enter(q, flags);
442 	if (ret)
443 		return ERR_PTR(ret);
444 
445 	/*
446 	 * Check if the hardware context is actually mapped to anything.
447 	 * If not tell the caller that it should skip this queue.
448 	 */
449 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
450 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
451 		blk_queue_exit(q);
452 		return ERR_PTR(-EXDEV);
453 	}
454 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
455 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
456 
457 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
458 	blk_queue_exit(q);
459 
460 	if (!rq)
461 		return ERR_PTR(-EWOULDBLOCK);
462 
463 	return rq;
464 }
465 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
466 
467 void blk_mq_free_request(struct request *rq)
468 {
469 	struct request_queue *q = rq->q;
470 	struct elevator_queue *e = q->elevator;
471 	struct blk_mq_ctx *ctx = rq->mq_ctx;
472 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
473 	const int sched_tag = rq->internal_tag;
474 
475 	if (rq->rq_flags & RQF_ELVPRIV) {
476 		if (e && e->type->ops.mq.finish_request)
477 			e->type->ops.mq.finish_request(rq);
478 		if (rq->elv.icq) {
479 			put_io_context(rq->elv.icq->ioc);
480 			rq->elv.icq = NULL;
481 		}
482 	}
483 
484 	ctx->rq_completed[rq_is_sync(rq)]++;
485 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
486 		atomic_dec(&hctx->nr_active);
487 
488 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
489 		laptop_io_completion(q->backing_dev_info);
490 
491 	wbt_done(q->rq_wb, &rq->issue_stat);
492 
493 	if (blk_rq_rl(rq))
494 		blk_put_rl(blk_rq_rl(rq));
495 
496 	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
497 	if (rq->tag != -1)
498 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
499 	if (sched_tag != -1)
500 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
501 	blk_mq_sched_restart(hctx);
502 	blk_queue_exit(q);
503 }
504 EXPORT_SYMBOL_GPL(blk_mq_free_request);
505 
506 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
507 {
508 	blk_account_io_done(rq);
509 
510 	if (rq->end_io) {
511 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
512 		rq->end_io(rq, error);
513 	} else {
514 		if (unlikely(blk_bidi_rq(rq)))
515 			blk_mq_free_request(rq->next_rq);
516 		blk_mq_free_request(rq);
517 	}
518 }
519 EXPORT_SYMBOL(__blk_mq_end_request);
520 
521 void blk_mq_end_request(struct request *rq, blk_status_t error)
522 {
523 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
524 		BUG();
525 	__blk_mq_end_request(rq, error);
526 }
527 EXPORT_SYMBOL(blk_mq_end_request);
528 
529 static void __blk_mq_complete_request_remote(void *data)
530 {
531 	struct request *rq = data;
532 
533 	rq->q->softirq_done_fn(rq);
534 }
535 
536 static void __blk_mq_complete_request(struct request *rq)
537 {
538 	struct blk_mq_ctx *ctx = rq->mq_ctx;
539 	bool shared = false;
540 	int cpu;
541 
542 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
543 	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
544 
545 	if (rq->internal_tag != -1)
546 		blk_mq_sched_completed_request(rq);
547 	if (rq->rq_flags & RQF_STATS) {
548 		blk_mq_poll_stats_start(rq->q);
549 		blk_stat_add(rq);
550 	}
551 
552 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
553 		rq->q->softirq_done_fn(rq);
554 		return;
555 	}
556 
557 	cpu = get_cpu();
558 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
559 		shared = cpus_share_cache(cpu, ctx->cpu);
560 
561 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
562 		rq->csd.func = __blk_mq_complete_request_remote;
563 		rq->csd.info = rq;
564 		rq->csd.flags = 0;
565 		smp_call_function_single_async(ctx->cpu, &rq->csd);
566 	} else {
567 		rq->q->softirq_done_fn(rq);
568 	}
569 	put_cpu();
570 }
571 
572 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
573 	__releases(hctx->srcu)
574 {
575 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
576 		rcu_read_unlock();
577 	else
578 		srcu_read_unlock(hctx->srcu, srcu_idx);
579 }
580 
581 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
582 	__acquires(hctx->srcu)
583 {
584 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
585 		/* shut up gcc false positive */
586 		*srcu_idx = 0;
587 		rcu_read_lock();
588 	} else
589 		*srcu_idx = srcu_read_lock(hctx->srcu);
590 }
591 
592 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
593 {
594 	unsigned long flags;
595 
596 	/*
597 	 * blk_mq_rq_aborted_gstate() is used from the completion path and
598 	 * can thus be called from irq context.  u64_stats_fetch in the
599 	 * middle of update on the same CPU leads to lockup.  Disable irq
600 	 * while updating.
601 	 */
602 	local_irq_save(flags);
603 	u64_stats_update_begin(&rq->aborted_gstate_sync);
604 	rq->aborted_gstate = gstate;
605 	u64_stats_update_end(&rq->aborted_gstate_sync);
606 	local_irq_restore(flags);
607 }
608 
609 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
610 {
611 	unsigned int start;
612 	u64 aborted_gstate;
613 
614 	do {
615 		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
616 		aborted_gstate = rq->aborted_gstate;
617 	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
618 
619 	return aborted_gstate;
620 }
621 
622 /**
623  * blk_mq_complete_request - end I/O on a request
624  * @rq:		the request being processed
625  *
626  * Description:
627  *	Ends all I/O on a request. It does not handle partial completions.
628  *	The actual completion happens out-of-order, through a IPI handler.
629  **/
630 void blk_mq_complete_request(struct request *rq)
631 {
632 	struct request_queue *q = rq->q;
633 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
634 	int srcu_idx;
635 
636 	if (unlikely(blk_should_fake_timeout(q)))
637 		return;
638 
639 	/*
640 	 * If @rq->aborted_gstate equals the current instance, timeout is
641 	 * claiming @rq and we lost.  This is synchronized through
642 	 * hctx_lock().  See blk_mq_timeout_work() for details.
643 	 *
644 	 * Completion path never blocks and we can directly use RCU here
645 	 * instead of hctx_lock() which can be either RCU or SRCU.
646 	 * However, that would complicate paths which want to synchronize
647 	 * against us.  Let stay in sync with the issue path so that
648 	 * hctx_lock() covers both issue and completion paths.
649 	 */
650 	hctx_lock(hctx, &srcu_idx);
651 	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
652 		__blk_mq_complete_request(rq);
653 	hctx_unlock(hctx, srcu_idx);
654 }
655 EXPORT_SYMBOL(blk_mq_complete_request);
656 
657 int blk_mq_request_started(struct request *rq)
658 {
659 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
660 }
661 EXPORT_SYMBOL_GPL(blk_mq_request_started);
662 
663 void blk_mq_start_request(struct request *rq)
664 {
665 	struct request_queue *q = rq->q;
666 
667 	blk_mq_sched_started_request(rq);
668 
669 	trace_block_rq_issue(q, rq);
670 
671 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
672 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
673 		rq->rq_flags |= RQF_STATS;
674 		wbt_issue(q->rq_wb, &rq->issue_stat);
675 	}
676 
677 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
678 
679 	/*
680 	 * Mark @rq in-flight which also advances the generation number,
681 	 * and register for timeout.  Protect with a seqcount to allow the
682 	 * timeout path to read both @rq->gstate and @rq->deadline
683 	 * coherently.
684 	 *
685 	 * This is the only place where a request is marked in-flight.  If
686 	 * the timeout path reads an in-flight @rq->gstate, the
687 	 * @rq->deadline it reads together under @rq->gstate_seq is
688 	 * guaranteed to be the matching one.
689 	 */
690 	preempt_disable();
691 	write_seqcount_begin(&rq->gstate_seq);
692 
693 	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
694 	blk_add_timer(rq);
695 
696 	write_seqcount_end(&rq->gstate_seq);
697 	preempt_enable();
698 
699 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
700 		/*
701 		 * Make sure space for the drain appears.  We know we can do
702 		 * this because max_hw_segments has been adjusted to be one
703 		 * fewer than the device can handle.
704 		 */
705 		rq->nr_phys_segments++;
706 	}
707 }
708 EXPORT_SYMBOL(blk_mq_start_request);
709 
710 /*
711  * When we reach here because queue is busy, it's safe to change the state
712  * to IDLE without checking @rq->aborted_gstate because we should still be
713  * holding the RCU read lock and thus protected against timeout.
714  */
715 static void __blk_mq_requeue_request(struct request *rq)
716 {
717 	struct request_queue *q = rq->q;
718 
719 	blk_mq_put_driver_tag(rq);
720 
721 	trace_block_rq_requeue(q, rq);
722 	wbt_requeue(q->rq_wb, &rq->issue_stat);
723 
724 	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
725 		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
726 		if (q->dma_drain_size && blk_rq_bytes(rq))
727 			rq->nr_phys_segments--;
728 	}
729 }
730 
731 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
732 {
733 	__blk_mq_requeue_request(rq);
734 
735 	/* this request will be re-inserted to io scheduler queue */
736 	blk_mq_sched_requeue_request(rq);
737 
738 	BUG_ON(blk_queued_rq(rq));
739 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
740 }
741 EXPORT_SYMBOL(blk_mq_requeue_request);
742 
743 static void blk_mq_requeue_work(struct work_struct *work)
744 {
745 	struct request_queue *q =
746 		container_of(work, struct request_queue, requeue_work.work);
747 	LIST_HEAD(rq_list);
748 	struct request *rq, *next;
749 
750 	spin_lock_irq(&q->requeue_lock);
751 	list_splice_init(&q->requeue_list, &rq_list);
752 	spin_unlock_irq(&q->requeue_lock);
753 
754 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
755 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
756 			continue;
757 
758 		rq->rq_flags &= ~RQF_SOFTBARRIER;
759 		list_del_init(&rq->queuelist);
760 		blk_mq_sched_insert_request(rq, true, false, false);
761 	}
762 
763 	while (!list_empty(&rq_list)) {
764 		rq = list_entry(rq_list.next, struct request, queuelist);
765 		list_del_init(&rq->queuelist);
766 		blk_mq_sched_insert_request(rq, false, false, false);
767 	}
768 
769 	blk_mq_run_hw_queues(q, false);
770 }
771 
772 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
773 				bool kick_requeue_list)
774 {
775 	struct request_queue *q = rq->q;
776 	unsigned long flags;
777 
778 	/*
779 	 * We abuse this flag that is otherwise used by the I/O scheduler to
780 	 * request head insertion from the workqueue.
781 	 */
782 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
783 
784 	spin_lock_irqsave(&q->requeue_lock, flags);
785 	if (at_head) {
786 		rq->rq_flags |= RQF_SOFTBARRIER;
787 		list_add(&rq->queuelist, &q->requeue_list);
788 	} else {
789 		list_add_tail(&rq->queuelist, &q->requeue_list);
790 	}
791 	spin_unlock_irqrestore(&q->requeue_lock, flags);
792 
793 	if (kick_requeue_list)
794 		blk_mq_kick_requeue_list(q);
795 }
796 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
797 
798 void blk_mq_kick_requeue_list(struct request_queue *q)
799 {
800 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
801 }
802 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
803 
804 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
805 				    unsigned long msecs)
806 {
807 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
808 				    msecs_to_jiffies(msecs));
809 }
810 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
811 
812 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
813 {
814 	if (tag < tags->nr_tags) {
815 		prefetch(tags->rqs[tag]);
816 		return tags->rqs[tag];
817 	}
818 
819 	return NULL;
820 }
821 EXPORT_SYMBOL(blk_mq_tag_to_rq);
822 
823 struct blk_mq_timeout_data {
824 	unsigned long next;
825 	unsigned int next_set;
826 	unsigned int nr_expired;
827 };
828 
829 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
830 {
831 	const struct blk_mq_ops *ops = req->q->mq_ops;
832 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
833 
834 	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
835 
836 	if (ops->timeout)
837 		ret = ops->timeout(req, reserved);
838 
839 	switch (ret) {
840 	case BLK_EH_HANDLED:
841 		__blk_mq_complete_request(req);
842 		break;
843 	case BLK_EH_RESET_TIMER:
844 		/*
845 		 * As nothing prevents from completion happening while
846 		 * ->aborted_gstate is set, this may lead to ignored
847 		 * completions and further spurious timeouts.
848 		 */
849 		blk_mq_rq_update_aborted_gstate(req, 0);
850 		blk_add_timer(req);
851 		break;
852 	case BLK_EH_NOT_HANDLED:
853 		break;
854 	default:
855 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
856 		break;
857 	}
858 }
859 
860 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
861 		struct request *rq, void *priv, bool reserved)
862 {
863 	struct blk_mq_timeout_data *data = priv;
864 	unsigned long gstate, deadline;
865 	int start;
866 
867 	might_sleep();
868 
869 	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
870 		return;
871 
872 	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
873 	while (true) {
874 		start = read_seqcount_begin(&rq->gstate_seq);
875 		gstate = READ_ONCE(rq->gstate);
876 		deadline = blk_rq_deadline(rq);
877 		if (!read_seqcount_retry(&rq->gstate_seq, start))
878 			break;
879 		cond_resched();
880 	}
881 
882 	/* if in-flight && overdue, mark for abortion */
883 	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
884 	    time_after_eq(jiffies, deadline)) {
885 		blk_mq_rq_update_aborted_gstate(rq, gstate);
886 		data->nr_expired++;
887 		hctx->nr_expired++;
888 	} else if (!data->next_set || time_after(data->next, deadline)) {
889 		data->next = deadline;
890 		data->next_set = 1;
891 	}
892 }
893 
894 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
895 		struct request *rq, void *priv, bool reserved)
896 {
897 	/*
898 	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
899 	 * completions that we lost to, they would have finished and
900 	 * updated @rq->gstate by now; otherwise, the completion path is
901 	 * now guaranteed to see @rq->aborted_gstate and yield.  If
902 	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
903 	 */
904 	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
905 	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
906 		blk_mq_rq_timed_out(rq, reserved);
907 }
908 
909 static void blk_mq_timeout_work(struct work_struct *work)
910 {
911 	struct request_queue *q =
912 		container_of(work, struct request_queue, timeout_work);
913 	struct blk_mq_timeout_data data = {
914 		.next		= 0,
915 		.next_set	= 0,
916 		.nr_expired	= 0,
917 	};
918 	struct blk_mq_hw_ctx *hctx;
919 	int i;
920 
921 	/* A deadlock might occur if a request is stuck requiring a
922 	 * timeout at the same time a queue freeze is waiting
923 	 * completion, since the timeout code would not be able to
924 	 * acquire the queue reference here.
925 	 *
926 	 * That's why we don't use blk_queue_enter here; instead, we use
927 	 * percpu_ref_tryget directly, because we need to be able to
928 	 * obtain a reference even in the short window between the queue
929 	 * starting to freeze, by dropping the first reference in
930 	 * blk_freeze_queue_start, and the moment the last request is
931 	 * consumed, marked by the instant q_usage_counter reaches
932 	 * zero.
933 	 */
934 	if (!percpu_ref_tryget(&q->q_usage_counter))
935 		return;
936 
937 	/* scan for the expired ones and set their ->aborted_gstate */
938 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
939 
940 	if (data.nr_expired) {
941 		bool has_rcu = false;
942 
943 		/*
944 		 * Wait till everyone sees ->aborted_gstate.  The
945 		 * sequential waits for SRCUs aren't ideal.  If this ever
946 		 * becomes a problem, we can add per-hw_ctx rcu_head and
947 		 * wait in parallel.
948 		 */
949 		queue_for_each_hw_ctx(q, hctx, i) {
950 			if (!hctx->nr_expired)
951 				continue;
952 
953 			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
954 				has_rcu = true;
955 			else
956 				synchronize_srcu(hctx->srcu);
957 
958 			hctx->nr_expired = 0;
959 		}
960 		if (has_rcu)
961 			synchronize_rcu();
962 
963 		/* terminate the ones we won */
964 		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
965 	}
966 
967 	if (data.next_set) {
968 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
969 		mod_timer(&q->timeout, data.next);
970 	} else {
971 		/*
972 		 * Request timeouts are handled as a forward rolling timer. If
973 		 * we end up here it means that no requests are pending and
974 		 * also that no request has been pending for a while. Mark
975 		 * each hctx as idle.
976 		 */
977 		queue_for_each_hw_ctx(q, hctx, i) {
978 			/* the hctx may be unmapped, so check it here */
979 			if (blk_mq_hw_queue_mapped(hctx))
980 				blk_mq_tag_idle(hctx);
981 		}
982 	}
983 	blk_queue_exit(q);
984 }
985 
986 struct flush_busy_ctx_data {
987 	struct blk_mq_hw_ctx *hctx;
988 	struct list_head *list;
989 };
990 
991 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
992 {
993 	struct flush_busy_ctx_data *flush_data = data;
994 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
995 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
996 
997 	spin_lock(&ctx->lock);
998 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
999 	sbitmap_clear_bit(sb, bitnr);
1000 	spin_unlock(&ctx->lock);
1001 	return true;
1002 }
1003 
1004 /*
1005  * Process software queues that have been marked busy, splicing them
1006  * to the for-dispatch
1007  */
1008 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1009 {
1010 	struct flush_busy_ctx_data data = {
1011 		.hctx = hctx,
1012 		.list = list,
1013 	};
1014 
1015 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1016 }
1017 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1018 
1019 struct dispatch_rq_data {
1020 	struct blk_mq_hw_ctx *hctx;
1021 	struct request *rq;
1022 };
1023 
1024 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1025 		void *data)
1026 {
1027 	struct dispatch_rq_data *dispatch_data = data;
1028 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1029 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1030 
1031 	spin_lock(&ctx->lock);
1032 	if (unlikely(!list_empty(&ctx->rq_list))) {
1033 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1034 		list_del_init(&dispatch_data->rq->queuelist);
1035 		if (list_empty(&ctx->rq_list))
1036 			sbitmap_clear_bit(sb, bitnr);
1037 	}
1038 	spin_unlock(&ctx->lock);
1039 
1040 	return !dispatch_data->rq;
1041 }
1042 
1043 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1044 					struct blk_mq_ctx *start)
1045 {
1046 	unsigned off = start ? start->index_hw : 0;
1047 	struct dispatch_rq_data data = {
1048 		.hctx = hctx,
1049 		.rq   = NULL,
1050 	};
1051 
1052 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1053 			       dispatch_rq_from_ctx, &data);
1054 
1055 	return data.rq;
1056 }
1057 
1058 static inline unsigned int queued_to_index(unsigned int queued)
1059 {
1060 	if (!queued)
1061 		return 0;
1062 
1063 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1064 }
1065 
1066 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1067 			   bool wait)
1068 {
1069 	struct blk_mq_alloc_data data = {
1070 		.q = rq->q,
1071 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1072 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1073 	};
1074 
1075 	might_sleep_if(wait);
1076 
1077 	if (rq->tag != -1)
1078 		goto done;
1079 
1080 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1081 		data.flags |= BLK_MQ_REQ_RESERVED;
1082 
1083 	rq->tag = blk_mq_get_tag(&data);
1084 	if (rq->tag >= 0) {
1085 		if (blk_mq_tag_busy(data.hctx)) {
1086 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1087 			atomic_inc(&data.hctx->nr_active);
1088 		}
1089 		data.hctx->tags->rqs[rq->tag] = rq;
1090 	}
1091 
1092 done:
1093 	if (hctx)
1094 		*hctx = data.hctx;
1095 	return rq->tag != -1;
1096 }
1097 
1098 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1099 				int flags, void *key)
1100 {
1101 	struct blk_mq_hw_ctx *hctx;
1102 
1103 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1104 
1105 	list_del_init(&wait->entry);
1106 	blk_mq_run_hw_queue(hctx, true);
1107 	return 1;
1108 }
1109 
1110 /*
1111  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1112  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1113  * restart. For both cases, take care to check the condition again after
1114  * marking us as waiting.
1115  */
1116 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1117 				 struct request *rq)
1118 {
1119 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1120 	struct sbq_wait_state *ws;
1121 	wait_queue_entry_t *wait;
1122 	bool ret;
1123 
1124 	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1125 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1126 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1127 
1128 		/*
1129 		 * It's possible that a tag was freed in the window between the
1130 		 * allocation failure and adding the hardware queue to the wait
1131 		 * queue.
1132 		 *
1133 		 * Don't clear RESTART here, someone else could have set it.
1134 		 * At most this will cost an extra queue run.
1135 		 */
1136 		return blk_mq_get_driver_tag(rq, hctx, false);
1137 	}
1138 
1139 	wait = &this_hctx->dispatch_wait;
1140 	if (!list_empty_careful(&wait->entry))
1141 		return false;
1142 
1143 	spin_lock(&this_hctx->lock);
1144 	if (!list_empty(&wait->entry)) {
1145 		spin_unlock(&this_hctx->lock);
1146 		return false;
1147 	}
1148 
1149 	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1150 	add_wait_queue(&ws->wait, wait);
1151 
1152 	/*
1153 	 * It's possible that a tag was freed in the window between the
1154 	 * allocation failure and adding the hardware queue to the wait
1155 	 * queue.
1156 	 */
1157 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1158 	if (!ret) {
1159 		spin_unlock(&this_hctx->lock);
1160 		return false;
1161 	}
1162 
1163 	/*
1164 	 * We got a tag, remove ourselves from the wait queue to ensure
1165 	 * someone else gets the wakeup.
1166 	 */
1167 	spin_lock_irq(&ws->wait.lock);
1168 	list_del_init(&wait->entry);
1169 	spin_unlock_irq(&ws->wait.lock);
1170 	spin_unlock(&this_hctx->lock);
1171 
1172 	return true;
1173 }
1174 
1175 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1176 
1177 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1178 			     bool got_budget)
1179 {
1180 	struct blk_mq_hw_ctx *hctx;
1181 	struct request *rq, *nxt;
1182 	bool no_tag = false;
1183 	int errors, queued;
1184 	blk_status_t ret = BLK_STS_OK;
1185 
1186 	if (list_empty(list))
1187 		return false;
1188 
1189 	WARN_ON(!list_is_singular(list) && got_budget);
1190 
1191 	/*
1192 	 * Now process all the entries, sending them to the driver.
1193 	 */
1194 	errors = queued = 0;
1195 	do {
1196 		struct blk_mq_queue_data bd;
1197 
1198 		rq = list_first_entry(list, struct request, queuelist);
1199 
1200 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1201 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1202 			break;
1203 
1204 		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1205 			/*
1206 			 * The initial allocation attempt failed, so we need to
1207 			 * rerun the hardware queue when a tag is freed. The
1208 			 * waitqueue takes care of that. If the queue is run
1209 			 * before we add this entry back on the dispatch list,
1210 			 * we'll re-run it below.
1211 			 */
1212 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1213 				blk_mq_put_dispatch_budget(hctx);
1214 				/*
1215 				 * For non-shared tags, the RESTART check
1216 				 * will suffice.
1217 				 */
1218 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1219 					no_tag = true;
1220 				break;
1221 			}
1222 		}
1223 
1224 		list_del_init(&rq->queuelist);
1225 
1226 		bd.rq = rq;
1227 
1228 		/*
1229 		 * Flag last if we have no more requests, or if we have more
1230 		 * but can't assign a driver tag to it.
1231 		 */
1232 		if (list_empty(list))
1233 			bd.last = true;
1234 		else {
1235 			nxt = list_first_entry(list, struct request, queuelist);
1236 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1237 		}
1238 
1239 		ret = q->mq_ops->queue_rq(hctx, &bd);
1240 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1241 			/*
1242 			 * If an I/O scheduler has been configured and we got a
1243 			 * driver tag for the next request already, free it
1244 			 * again.
1245 			 */
1246 			if (!list_empty(list)) {
1247 				nxt = list_first_entry(list, struct request, queuelist);
1248 				blk_mq_put_driver_tag(nxt);
1249 			}
1250 			list_add(&rq->queuelist, list);
1251 			__blk_mq_requeue_request(rq);
1252 			break;
1253 		}
1254 
1255 		if (unlikely(ret != BLK_STS_OK)) {
1256 			errors++;
1257 			blk_mq_end_request(rq, BLK_STS_IOERR);
1258 			continue;
1259 		}
1260 
1261 		queued++;
1262 	} while (!list_empty(list));
1263 
1264 	hctx->dispatched[queued_to_index(queued)]++;
1265 
1266 	/*
1267 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1268 	 * that is where we will continue on next queue run.
1269 	 */
1270 	if (!list_empty(list)) {
1271 		bool needs_restart;
1272 
1273 		spin_lock(&hctx->lock);
1274 		list_splice_init(list, &hctx->dispatch);
1275 		spin_unlock(&hctx->lock);
1276 
1277 		/*
1278 		 * If SCHED_RESTART was set by the caller of this function and
1279 		 * it is no longer set that means that it was cleared by another
1280 		 * thread and hence that a queue rerun is needed.
1281 		 *
1282 		 * If 'no_tag' is set, that means that we failed getting
1283 		 * a driver tag with an I/O scheduler attached. If our dispatch
1284 		 * waitqueue is no longer active, ensure that we run the queue
1285 		 * AFTER adding our entries back to the list.
1286 		 *
1287 		 * If no I/O scheduler has been configured it is possible that
1288 		 * the hardware queue got stopped and restarted before requests
1289 		 * were pushed back onto the dispatch list. Rerun the queue to
1290 		 * avoid starvation. Notes:
1291 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1292 		 *   been stopped before rerunning a queue.
1293 		 * - Some but not all block drivers stop a queue before
1294 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1295 		 *   and dm-rq.
1296 		 *
1297 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1298 		 * bit is set, run queue after a delay to avoid IO stalls
1299 		 * that could otherwise occur if the queue is idle.
1300 		 */
1301 		needs_restart = blk_mq_sched_needs_restart(hctx);
1302 		if (!needs_restart ||
1303 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1304 			blk_mq_run_hw_queue(hctx, true);
1305 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1306 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1307 	}
1308 
1309 	return (queued + errors) != 0;
1310 }
1311 
1312 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1313 {
1314 	int srcu_idx;
1315 
1316 	/*
1317 	 * We should be running this queue from one of the CPUs that
1318 	 * are mapped to it.
1319 	 *
1320 	 * There are at least two related races now between setting
1321 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1322 	 * __blk_mq_run_hw_queue():
1323 	 *
1324 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1325 	 *   but later it becomes online, then this warning is harmless
1326 	 *   at all
1327 	 *
1328 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1329 	 *   but later it becomes offline, then the warning can't be
1330 	 *   triggered, and we depend on blk-mq timeout handler to
1331 	 *   handle dispatched requests to this hctx
1332 	 */
1333 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1334 		cpu_online(hctx->next_cpu)) {
1335 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1336 			raw_smp_processor_id(),
1337 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1338 		dump_stack();
1339 	}
1340 
1341 	/*
1342 	 * We can't run the queue inline with ints disabled. Ensure that
1343 	 * we catch bad users of this early.
1344 	 */
1345 	WARN_ON_ONCE(in_interrupt());
1346 
1347 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1348 
1349 	hctx_lock(hctx, &srcu_idx);
1350 	blk_mq_sched_dispatch_requests(hctx);
1351 	hctx_unlock(hctx, srcu_idx);
1352 }
1353 
1354 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1355 {
1356 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1357 
1358 	if (cpu >= nr_cpu_ids)
1359 		cpu = cpumask_first(hctx->cpumask);
1360 	return cpu;
1361 }
1362 
1363 /*
1364  * It'd be great if the workqueue API had a way to pass
1365  * in a mask and had some smarts for more clever placement.
1366  * For now we just round-robin here, switching for every
1367  * BLK_MQ_CPU_WORK_BATCH queued items.
1368  */
1369 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1370 {
1371 	bool tried = false;
1372 	int next_cpu = hctx->next_cpu;
1373 
1374 	if (hctx->queue->nr_hw_queues == 1)
1375 		return WORK_CPU_UNBOUND;
1376 
1377 	if (--hctx->next_cpu_batch <= 0) {
1378 select_cpu:
1379 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1380 				cpu_online_mask);
1381 		if (next_cpu >= nr_cpu_ids)
1382 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1383 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1384 	}
1385 
1386 	/*
1387 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1388 	 * and it should only happen in the path of handling CPU DEAD.
1389 	 */
1390 	if (!cpu_online(next_cpu)) {
1391 		if (!tried) {
1392 			tried = true;
1393 			goto select_cpu;
1394 		}
1395 
1396 		/*
1397 		 * Make sure to re-select CPU next time once after CPUs
1398 		 * in hctx->cpumask become online again.
1399 		 */
1400 		hctx->next_cpu = next_cpu;
1401 		hctx->next_cpu_batch = 1;
1402 		return WORK_CPU_UNBOUND;
1403 	}
1404 
1405 	hctx->next_cpu = next_cpu;
1406 	return next_cpu;
1407 }
1408 
1409 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1410 					unsigned long msecs)
1411 {
1412 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1413 		return;
1414 
1415 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1416 		int cpu = get_cpu();
1417 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1418 			__blk_mq_run_hw_queue(hctx);
1419 			put_cpu();
1420 			return;
1421 		}
1422 
1423 		put_cpu();
1424 	}
1425 
1426 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1427 				    msecs_to_jiffies(msecs));
1428 }
1429 
1430 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1431 {
1432 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1433 }
1434 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1435 
1436 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1437 {
1438 	int srcu_idx;
1439 	bool need_run;
1440 
1441 	/*
1442 	 * When queue is quiesced, we may be switching io scheduler, or
1443 	 * updating nr_hw_queues, or other things, and we can't run queue
1444 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1445 	 *
1446 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1447 	 * quiesced.
1448 	 */
1449 	hctx_lock(hctx, &srcu_idx);
1450 	need_run = !blk_queue_quiesced(hctx->queue) &&
1451 		blk_mq_hctx_has_pending(hctx);
1452 	hctx_unlock(hctx, srcu_idx);
1453 
1454 	if (need_run) {
1455 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1456 		return true;
1457 	}
1458 
1459 	return false;
1460 }
1461 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1462 
1463 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1464 {
1465 	struct blk_mq_hw_ctx *hctx;
1466 	int i;
1467 
1468 	queue_for_each_hw_ctx(q, hctx, i) {
1469 		if (blk_mq_hctx_stopped(hctx))
1470 			continue;
1471 
1472 		blk_mq_run_hw_queue(hctx, async);
1473 	}
1474 }
1475 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1476 
1477 /**
1478  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1479  * @q: request queue.
1480  *
1481  * The caller is responsible for serializing this function against
1482  * blk_mq_{start,stop}_hw_queue().
1483  */
1484 bool blk_mq_queue_stopped(struct request_queue *q)
1485 {
1486 	struct blk_mq_hw_ctx *hctx;
1487 	int i;
1488 
1489 	queue_for_each_hw_ctx(q, hctx, i)
1490 		if (blk_mq_hctx_stopped(hctx))
1491 			return true;
1492 
1493 	return false;
1494 }
1495 EXPORT_SYMBOL(blk_mq_queue_stopped);
1496 
1497 /*
1498  * This function is often used for pausing .queue_rq() by driver when
1499  * there isn't enough resource or some conditions aren't satisfied, and
1500  * BLK_STS_RESOURCE is usually returned.
1501  *
1502  * We do not guarantee that dispatch can be drained or blocked
1503  * after blk_mq_stop_hw_queue() returns. Please use
1504  * blk_mq_quiesce_queue() for that requirement.
1505  */
1506 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1507 {
1508 	cancel_delayed_work(&hctx->run_work);
1509 
1510 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1511 }
1512 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1513 
1514 /*
1515  * This function is often used for pausing .queue_rq() by driver when
1516  * there isn't enough resource or some conditions aren't satisfied, and
1517  * BLK_STS_RESOURCE is usually returned.
1518  *
1519  * We do not guarantee that dispatch can be drained or blocked
1520  * after blk_mq_stop_hw_queues() returns. Please use
1521  * blk_mq_quiesce_queue() for that requirement.
1522  */
1523 void blk_mq_stop_hw_queues(struct request_queue *q)
1524 {
1525 	struct blk_mq_hw_ctx *hctx;
1526 	int i;
1527 
1528 	queue_for_each_hw_ctx(q, hctx, i)
1529 		blk_mq_stop_hw_queue(hctx);
1530 }
1531 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1532 
1533 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1534 {
1535 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1536 
1537 	blk_mq_run_hw_queue(hctx, false);
1538 }
1539 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1540 
1541 void blk_mq_start_hw_queues(struct request_queue *q)
1542 {
1543 	struct blk_mq_hw_ctx *hctx;
1544 	int i;
1545 
1546 	queue_for_each_hw_ctx(q, hctx, i)
1547 		blk_mq_start_hw_queue(hctx);
1548 }
1549 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1550 
1551 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1552 {
1553 	if (!blk_mq_hctx_stopped(hctx))
1554 		return;
1555 
1556 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1557 	blk_mq_run_hw_queue(hctx, async);
1558 }
1559 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1560 
1561 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1562 {
1563 	struct blk_mq_hw_ctx *hctx;
1564 	int i;
1565 
1566 	queue_for_each_hw_ctx(q, hctx, i)
1567 		blk_mq_start_stopped_hw_queue(hctx, async);
1568 }
1569 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1570 
1571 static void blk_mq_run_work_fn(struct work_struct *work)
1572 {
1573 	struct blk_mq_hw_ctx *hctx;
1574 
1575 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1576 
1577 	/*
1578 	 * If we are stopped, don't run the queue.
1579 	 */
1580 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1581 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1582 
1583 	__blk_mq_run_hw_queue(hctx);
1584 }
1585 
1586 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1587 					    struct request *rq,
1588 					    bool at_head)
1589 {
1590 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1591 
1592 	lockdep_assert_held(&ctx->lock);
1593 
1594 	trace_block_rq_insert(hctx->queue, rq);
1595 
1596 	if (at_head)
1597 		list_add(&rq->queuelist, &ctx->rq_list);
1598 	else
1599 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1600 }
1601 
1602 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1603 			     bool at_head)
1604 {
1605 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1606 
1607 	lockdep_assert_held(&ctx->lock);
1608 
1609 	__blk_mq_insert_req_list(hctx, rq, at_head);
1610 	blk_mq_hctx_mark_pending(hctx, ctx);
1611 }
1612 
1613 /*
1614  * Should only be used carefully, when the caller knows we want to
1615  * bypass a potential IO scheduler on the target device.
1616  */
1617 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1618 {
1619 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1620 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1621 
1622 	spin_lock(&hctx->lock);
1623 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1624 	spin_unlock(&hctx->lock);
1625 
1626 	if (run_queue)
1627 		blk_mq_run_hw_queue(hctx, false);
1628 }
1629 
1630 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1631 			    struct list_head *list)
1632 
1633 {
1634 	/*
1635 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1636 	 * offline now
1637 	 */
1638 	spin_lock(&ctx->lock);
1639 	while (!list_empty(list)) {
1640 		struct request *rq;
1641 
1642 		rq = list_first_entry(list, struct request, queuelist);
1643 		BUG_ON(rq->mq_ctx != ctx);
1644 		list_del_init(&rq->queuelist);
1645 		__blk_mq_insert_req_list(hctx, rq, false);
1646 	}
1647 	blk_mq_hctx_mark_pending(hctx, ctx);
1648 	spin_unlock(&ctx->lock);
1649 }
1650 
1651 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1652 {
1653 	struct request *rqa = container_of(a, struct request, queuelist);
1654 	struct request *rqb = container_of(b, struct request, queuelist);
1655 
1656 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1657 		 (rqa->mq_ctx == rqb->mq_ctx &&
1658 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1659 }
1660 
1661 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1662 {
1663 	struct blk_mq_ctx *this_ctx;
1664 	struct request_queue *this_q;
1665 	struct request *rq;
1666 	LIST_HEAD(list);
1667 	LIST_HEAD(ctx_list);
1668 	unsigned int depth;
1669 
1670 	list_splice_init(&plug->mq_list, &list);
1671 
1672 	list_sort(NULL, &list, plug_ctx_cmp);
1673 
1674 	this_q = NULL;
1675 	this_ctx = NULL;
1676 	depth = 0;
1677 
1678 	while (!list_empty(&list)) {
1679 		rq = list_entry_rq(list.next);
1680 		list_del_init(&rq->queuelist);
1681 		BUG_ON(!rq->q);
1682 		if (rq->mq_ctx != this_ctx) {
1683 			if (this_ctx) {
1684 				trace_block_unplug(this_q, depth, from_schedule);
1685 				blk_mq_sched_insert_requests(this_q, this_ctx,
1686 								&ctx_list,
1687 								from_schedule);
1688 			}
1689 
1690 			this_ctx = rq->mq_ctx;
1691 			this_q = rq->q;
1692 			depth = 0;
1693 		}
1694 
1695 		depth++;
1696 		list_add_tail(&rq->queuelist, &ctx_list);
1697 	}
1698 
1699 	/*
1700 	 * If 'this_ctx' is set, we know we have entries to complete
1701 	 * on 'ctx_list'. Do those.
1702 	 */
1703 	if (this_ctx) {
1704 		trace_block_unplug(this_q, depth, from_schedule);
1705 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1706 						from_schedule);
1707 	}
1708 }
1709 
1710 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1711 {
1712 	blk_init_request_from_bio(rq, bio);
1713 
1714 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1715 
1716 	blk_account_io_start(rq, true);
1717 }
1718 
1719 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1720 				   struct blk_mq_ctx *ctx,
1721 				   struct request *rq)
1722 {
1723 	spin_lock(&ctx->lock);
1724 	__blk_mq_insert_request(hctx, rq, false);
1725 	spin_unlock(&ctx->lock);
1726 }
1727 
1728 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1729 {
1730 	if (rq->tag != -1)
1731 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1732 
1733 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1734 }
1735 
1736 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1737 					    struct request *rq,
1738 					    blk_qc_t *cookie)
1739 {
1740 	struct request_queue *q = rq->q;
1741 	struct blk_mq_queue_data bd = {
1742 		.rq = rq,
1743 		.last = true,
1744 	};
1745 	blk_qc_t new_cookie;
1746 	blk_status_t ret;
1747 
1748 	new_cookie = request_to_qc_t(hctx, rq);
1749 
1750 	/*
1751 	 * For OK queue, we are done. For error, caller may kill it.
1752 	 * Any other error (busy), just add it to our list as we
1753 	 * previously would have done.
1754 	 */
1755 	ret = q->mq_ops->queue_rq(hctx, &bd);
1756 	switch (ret) {
1757 	case BLK_STS_OK:
1758 		*cookie = new_cookie;
1759 		break;
1760 	case BLK_STS_RESOURCE:
1761 	case BLK_STS_DEV_RESOURCE:
1762 		__blk_mq_requeue_request(rq);
1763 		break;
1764 	default:
1765 		*cookie = BLK_QC_T_NONE;
1766 		break;
1767 	}
1768 
1769 	return ret;
1770 }
1771 
1772 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1773 						struct request *rq,
1774 						blk_qc_t *cookie,
1775 						bool bypass_insert)
1776 {
1777 	struct request_queue *q = rq->q;
1778 	bool run_queue = true;
1779 
1780 	/*
1781 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1782 	 *
1783 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1784 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1785 	 * and avoid driver to try to dispatch again.
1786 	 */
1787 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1788 		run_queue = false;
1789 		bypass_insert = false;
1790 		goto insert;
1791 	}
1792 
1793 	if (q->elevator && !bypass_insert)
1794 		goto insert;
1795 
1796 	if (!blk_mq_get_dispatch_budget(hctx))
1797 		goto insert;
1798 
1799 	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1800 		blk_mq_put_dispatch_budget(hctx);
1801 		goto insert;
1802 	}
1803 
1804 	return __blk_mq_issue_directly(hctx, rq, cookie);
1805 insert:
1806 	if (bypass_insert)
1807 		return BLK_STS_RESOURCE;
1808 
1809 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1810 	return BLK_STS_OK;
1811 }
1812 
1813 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814 		struct request *rq, blk_qc_t *cookie)
1815 {
1816 	blk_status_t ret;
1817 	int srcu_idx;
1818 
1819 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1820 
1821 	hctx_lock(hctx, &srcu_idx);
1822 
1823 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1824 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1825 		blk_mq_sched_insert_request(rq, false, true, false);
1826 	else if (ret != BLK_STS_OK)
1827 		blk_mq_end_request(rq, ret);
1828 
1829 	hctx_unlock(hctx, srcu_idx);
1830 }
1831 
1832 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1833 {
1834 	blk_status_t ret;
1835 	int srcu_idx;
1836 	blk_qc_t unused_cookie;
1837 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1838 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1839 
1840 	hctx_lock(hctx, &srcu_idx);
1841 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1842 	hctx_unlock(hctx, srcu_idx);
1843 
1844 	return ret;
1845 }
1846 
1847 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1848 {
1849 	const int is_sync = op_is_sync(bio->bi_opf);
1850 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1851 	struct blk_mq_alloc_data data = { .flags = 0 };
1852 	struct request *rq;
1853 	unsigned int request_count = 0;
1854 	struct blk_plug *plug;
1855 	struct request *same_queue_rq = NULL;
1856 	blk_qc_t cookie;
1857 	unsigned int wb_acct;
1858 
1859 	blk_queue_bounce(q, &bio);
1860 
1861 	blk_queue_split(q, &bio);
1862 
1863 	if (!bio_integrity_prep(bio))
1864 		return BLK_QC_T_NONE;
1865 
1866 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1867 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1868 		return BLK_QC_T_NONE;
1869 
1870 	if (blk_mq_sched_bio_merge(q, bio))
1871 		return BLK_QC_T_NONE;
1872 
1873 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1874 
1875 	trace_block_getrq(q, bio, bio->bi_opf);
1876 
1877 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1878 	if (unlikely(!rq)) {
1879 		__wbt_done(q->rq_wb, wb_acct);
1880 		if (bio->bi_opf & REQ_NOWAIT)
1881 			bio_wouldblock_error(bio);
1882 		return BLK_QC_T_NONE;
1883 	}
1884 
1885 	wbt_track(&rq->issue_stat, wb_acct);
1886 
1887 	cookie = request_to_qc_t(data.hctx, rq);
1888 
1889 	plug = current->plug;
1890 	if (unlikely(is_flush_fua)) {
1891 		blk_mq_put_ctx(data.ctx);
1892 		blk_mq_bio_to_request(rq, bio);
1893 
1894 		/* bypass scheduler for flush rq */
1895 		blk_insert_flush(rq);
1896 		blk_mq_run_hw_queue(data.hctx, true);
1897 	} else if (plug && q->nr_hw_queues == 1) {
1898 		struct request *last = NULL;
1899 
1900 		blk_mq_put_ctx(data.ctx);
1901 		blk_mq_bio_to_request(rq, bio);
1902 
1903 		/*
1904 		 * @request_count may become stale because of schedule
1905 		 * out, so check the list again.
1906 		 */
1907 		if (list_empty(&plug->mq_list))
1908 			request_count = 0;
1909 		else if (blk_queue_nomerges(q))
1910 			request_count = blk_plug_queued_count(q);
1911 
1912 		if (!request_count)
1913 			trace_block_plug(q);
1914 		else
1915 			last = list_entry_rq(plug->mq_list.prev);
1916 
1917 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1918 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1919 			blk_flush_plug_list(plug, false);
1920 			trace_block_plug(q);
1921 		}
1922 
1923 		list_add_tail(&rq->queuelist, &plug->mq_list);
1924 	} else if (plug && !blk_queue_nomerges(q)) {
1925 		blk_mq_bio_to_request(rq, bio);
1926 
1927 		/*
1928 		 * We do limited plugging. If the bio can be merged, do that.
1929 		 * Otherwise the existing request in the plug list will be
1930 		 * issued. So the plug list will have one request at most
1931 		 * The plug list might get flushed before this. If that happens,
1932 		 * the plug list is empty, and same_queue_rq is invalid.
1933 		 */
1934 		if (list_empty(&plug->mq_list))
1935 			same_queue_rq = NULL;
1936 		if (same_queue_rq)
1937 			list_del_init(&same_queue_rq->queuelist);
1938 		list_add_tail(&rq->queuelist, &plug->mq_list);
1939 
1940 		blk_mq_put_ctx(data.ctx);
1941 
1942 		if (same_queue_rq) {
1943 			data.hctx = blk_mq_map_queue(q,
1944 					same_queue_rq->mq_ctx->cpu);
1945 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1946 					&cookie);
1947 		}
1948 	} else if (q->nr_hw_queues > 1 && is_sync) {
1949 		blk_mq_put_ctx(data.ctx);
1950 		blk_mq_bio_to_request(rq, bio);
1951 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1952 	} else if (q->elevator) {
1953 		blk_mq_put_ctx(data.ctx);
1954 		blk_mq_bio_to_request(rq, bio);
1955 		blk_mq_sched_insert_request(rq, false, true, true);
1956 	} else {
1957 		blk_mq_put_ctx(data.ctx);
1958 		blk_mq_bio_to_request(rq, bio);
1959 		blk_mq_queue_io(data.hctx, data.ctx, rq);
1960 		blk_mq_run_hw_queue(data.hctx, true);
1961 	}
1962 
1963 	return cookie;
1964 }
1965 
1966 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1967 		     unsigned int hctx_idx)
1968 {
1969 	struct page *page;
1970 
1971 	if (tags->rqs && set->ops->exit_request) {
1972 		int i;
1973 
1974 		for (i = 0; i < tags->nr_tags; i++) {
1975 			struct request *rq = tags->static_rqs[i];
1976 
1977 			if (!rq)
1978 				continue;
1979 			set->ops->exit_request(set, rq, hctx_idx);
1980 			tags->static_rqs[i] = NULL;
1981 		}
1982 	}
1983 
1984 	while (!list_empty(&tags->page_list)) {
1985 		page = list_first_entry(&tags->page_list, struct page, lru);
1986 		list_del_init(&page->lru);
1987 		/*
1988 		 * Remove kmemleak object previously allocated in
1989 		 * blk_mq_init_rq_map().
1990 		 */
1991 		kmemleak_free(page_address(page));
1992 		__free_pages(page, page->private);
1993 	}
1994 }
1995 
1996 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1997 {
1998 	kfree(tags->rqs);
1999 	tags->rqs = NULL;
2000 	kfree(tags->static_rqs);
2001 	tags->static_rqs = NULL;
2002 
2003 	blk_mq_free_tags(tags);
2004 }
2005 
2006 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2007 					unsigned int hctx_idx,
2008 					unsigned int nr_tags,
2009 					unsigned int reserved_tags)
2010 {
2011 	struct blk_mq_tags *tags;
2012 	int node;
2013 
2014 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2015 	if (node == NUMA_NO_NODE)
2016 		node = set->numa_node;
2017 
2018 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2019 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2020 	if (!tags)
2021 		return NULL;
2022 
2023 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2024 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2025 				 node);
2026 	if (!tags->rqs) {
2027 		blk_mq_free_tags(tags);
2028 		return NULL;
2029 	}
2030 
2031 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2032 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2033 				 node);
2034 	if (!tags->static_rqs) {
2035 		kfree(tags->rqs);
2036 		blk_mq_free_tags(tags);
2037 		return NULL;
2038 	}
2039 
2040 	return tags;
2041 }
2042 
2043 static size_t order_to_size(unsigned int order)
2044 {
2045 	return (size_t)PAGE_SIZE << order;
2046 }
2047 
2048 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2049 			       unsigned int hctx_idx, int node)
2050 {
2051 	int ret;
2052 
2053 	if (set->ops->init_request) {
2054 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2055 		if (ret)
2056 			return ret;
2057 	}
2058 
2059 	seqcount_init(&rq->gstate_seq);
2060 	u64_stats_init(&rq->aborted_gstate_sync);
2061 	/*
2062 	 * start gstate with gen 1 instead of 0, otherwise it will be equal
2063 	 * to aborted_gstate, and be identified timed out by
2064 	 * blk_mq_terminate_expired.
2065 	 */
2066 	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2067 
2068 	return 0;
2069 }
2070 
2071 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2072 		     unsigned int hctx_idx, unsigned int depth)
2073 {
2074 	unsigned int i, j, entries_per_page, max_order = 4;
2075 	size_t rq_size, left;
2076 	int node;
2077 
2078 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2079 	if (node == NUMA_NO_NODE)
2080 		node = set->numa_node;
2081 
2082 	INIT_LIST_HEAD(&tags->page_list);
2083 
2084 	/*
2085 	 * rq_size is the size of the request plus driver payload, rounded
2086 	 * to the cacheline size
2087 	 */
2088 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2089 				cache_line_size());
2090 	left = rq_size * depth;
2091 
2092 	for (i = 0; i < depth; ) {
2093 		int this_order = max_order;
2094 		struct page *page;
2095 		int to_do;
2096 		void *p;
2097 
2098 		while (this_order && left < order_to_size(this_order - 1))
2099 			this_order--;
2100 
2101 		do {
2102 			page = alloc_pages_node(node,
2103 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2104 				this_order);
2105 			if (page)
2106 				break;
2107 			if (!this_order--)
2108 				break;
2109 			if (order_to_size(this_order) < rq_size)
2110 				break;
2111 		} while (1);
2112 
2113 		if (!page)
2114 			goto fail;
2115 
2116 		page->private = this_order;
2117 		list_add_tail(&page->lru, &tags->page_list);
2118 
2119 		p = page_address(page);
2120 		/*
2121 		 * Allow kmemleak to scan these pages as they contain pointers
2122 		 * to additional allocations like via ops->init_request().
2123 		 */
2124 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2125 		entries_per_page = order_to_size(this_order) / rq_size;
2126 		to_do = min(entries_per_page, depth - i);
2127 		left -= to_do * rq_size;
2128 		for (j = 0; j < to_do; j++) {
2129 			struct request *rq = p;
2130 
2131 			tags->static_rqs[i] = rq;
2132 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2133 				tags->static_rqs[i] = NULL;
2134 				goto fail;
2135 			}
2136 
2137 			p += rq_size;
2138 			i++;
2139 		}
2140 	}
2141 	return 0;
2142 
2143 fail:
2144 	blk_mq_free_rqs(set, tags, hctx_idx);
2145 	return -ENOMEM;
2146 }
2147 
2148 /*
2149  * 'cpu' is going away. splice any existing rq_list entries from this
2150  * software queue to the hw queue dispatch list, and ensure that it
2151  * gets run.
2152  */
2153 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2154 {
2155 	struct blk_mq_hw_ctx *hctx;
2156 	struct blk_mq_ctx *ctx;
2157 	LIST_HEAD(tmp);
2158 
2159 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2160 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2161 
2162 	spin_lock(&ctx->lock);
2163 	if (!list_empty(&ctx->rq_list)) {
2164 		list_splice_init(&ctx->rq_list, &tmp);
2165 		blk_mq_hctx_clear_pending(hctx, ctx);
2166 	}
2167 	spin_unlock(&ctx->lock);
2168 
2169 	if (list_empty(&tmp))
2170 		return 0;
2171 
2172 	spin_lock(&hctx->lock);
2173 	list_splice_tail_init(&tmp, &hctx->dispatch);
2174 	spin_unlock(&hctx->lock);
2175 
2176 	blk_mq_run_hw_queue(hctx, true);
2177 	return 0;
2178 }
2179 
2180 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2181 {
2182 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2183 					    &hctx->cpuhp_dead);
2184 }
2185 
2186 /* hctx->ctxs will be freed in queue's release handler */
2187 static void blk_mq_exit_hctx(struct request_queue *q,
2188 		struct blk_mq_tag_set *set,
2189 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2190 {
2191 	blk_mq_debugfs_unregister_hctx(hctx);
2192 
2193 	if (blk_mq_hw_queue_mapped(hctx))
2194 		blk_mq_tag_idle(hctx);
2195 
2196 	if (set->ops->exit_request)
2197 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2198 
2199 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2200 
2201 	if (set->ops->exit_hctx)
2202 		set->ops->exit_hctx(hctx, hctx_idx);
2203 
2204 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2205 		cleanup_srcu_struct(hctx->srcu);
2206 
2207 	blk_mq_remove_cpuhp(hctx);
2208 	blk_free_flush_queue(hctx->fq);
2209 	sbitmap_free(&hctx->ctx_map);
2210 }
2211 
2212 static void blk_mq_exit_hw_queues(struct request_queue *q,
2213 		struct blk_mq_tag_set *set, int nr_queue)
2214 {
2215 	struct blk_mq_hw_ctx *hctx;
2216 	unsigned int i;
2217 
2218 	queue_for_each_hw_ctx(q, hctx, i) {
2219 		if (i == nr_queue)
2220 			break;
2221 		blk_mq_exit_hctx(q, set, hctx, i);
2222 	}
2223 }
2224 
2225 static int blk_mq_init_hctx(struct request_queue *q,
2226 		struct blk_mq_tag_set *set,
2227 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2228 {
2229 	int node;
2230 
2231 	node = hctx->numa_node;
2232 	if (node == NUMA_NO_NODE)
2233 		node = hctx->numa_node = set->numa_node;
2234 
2235 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2236 	spin_lock_init(&hctx->lock);
2237 	INIT_LIST_HEAD(&hctx->dispatch);
2238 	hctx->queue = q;
2239 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2240 
2241 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2242 
2243 	hctx->tags = set->tags[hctx_idx];
2244 
2245 	/*
2246 	 * Allocate space for all possible cpus to avoid allocation at
2247 	 * runtime
2248 	 */
2249 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2250 					GFP_KERNEL, node);
2251 	if (!hctx->ctxs)
2252 		goto unregister_cpu_notifier;
2253 
2254 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2255 			      node))
2256 		goto free_ctxs;
2257 
2258 	hctx->nr_ctx = 0;
2259 
2260 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2261 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2262 
2263 	if (set->ops->init_hctx &&
2264 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2265 		goto free_bitmap;
2266 
2267 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2268 		goto exit_hctx;
2269 
2270 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2271 	if (!hctx->fq)
2272 		goto sched_exit_hctx;
2273 
2274 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2275 		goto free_fq;
2276 
2277 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2278 		init_srcu_struct(hctx->srcu);
2279 
2280 	blk_mq_debugfs_register_hctx(q, hctx);
2281 
2282 	return 0;
2283 
2284  free_fq:
2285 	kfree(hctx->fq);
2286  sched_exit_hctx:
2287 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2288  exit_hctx:
2289 	if (set->ops->exit_hctx)
2290 		set->ops->exit_hctx(hctx, hctx_idx);
2291  free_bitmap:
2292 	sbitmap_free(&hctx->ctx_map);
2293  free_ctxs:
2294 	kfree(hctx->ctxs);
2295  unregister_cpu_notifier:
2296 	blk_mq_remove_cpuhp(hctx);
2297 	return -1;
2298 }
2299 
2300 static void blk_mq_init_cpu_queues(struct request_queue *q,
2301 				   unsigned int nr_hw_queues)
2302 {
2303 	unsigned int i;
2304 
2305 	for_each_possible_cpu(i) {
2306 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2307 		struct blk_mq_hw_ctx *hctx;
2308 
2309 		__ctx->cpu = i;
2310 		spin_lock_init(&__ctx->lock);
2311 		INIT_LIST_HEAD(&__ctx->rq_list);
2312 		__ctx->queue = q;
2313 
2314 		/*
2315 		 * Set local node, IFF we have more than one hw queue. If
2316 		 * not, we remain on the home node of the device
2317 		 */
2318 		hctx = blk_mq_map_queue(q, i);
2319 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2320 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2321 	}
2322 }
2323 
2324 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2325 {
2326 	int ret = 0;
2327 
2328 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2329 					set->queue_depth, set->reserved_tags);
2330 	if (!set->tags[hctx_idx])
2331 		return false;
2332 
2333 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2334 				set->queue_depth);
2335 	if (!ret)
2336 		return true;
2337 
2338 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2339 	set->tags[hctx_idx] = NULL;
2340 	return false;
2341 }
2342 
2343 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2344 					 unsigned int hctx_idx)
2345 {
2346 	if (set->tags[hctx_idx]) {
2347 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2348 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2349 		set->tags[hctx_idx] = NULL;
2350 	}
2351 }
2352 
2353 static void blk_mq_map_swqueue(struct request_queue *q)
2354 {
2355 	unsigned int i, hctx_idx;
2356 	struct blk_mq_hw_ctx *hctx;
2357 	struct blk_mq_ctx *ctx;
2358 	struct blk_mq_tag_set *set = q->tag_set;
2359 
2360 	/*
2361 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2362 	 */
2363 	mutex_lock(&q->sysfs_lock);
2364 
2365 	queue_for_each_hw_ctx(q, hctx, i) {
2366 		cpumask_clear(hctx->cpumask);
2367 		hctx->nr_ctx = 0;
2368 	}
2369 
2370 	/*
2371 	 * Map software to hardware queues.
2372 	 *
2373 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2374 	 */
2375 	for_each_possible_cpu(i) {
2376 		hctx_idx = q->mq_map[i];
2377 		/* unmapped hw queue can be remapped after CPU topo changed */
2378 		if (!set->tags[hctx_idx] &&
2379 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2380 			/*
2381 			 * If tags initialization fail for some hctx,
2382 			 * that hctx won't be brought online.  In this
2383 			 * case, remap the current ctx to hctx[0] which
2384 			 * is guaranteed to always have tags allocated
2385 			 */
2386 			q->mq_map[i] = 0;
2387 		}
2388 
2389 		ctx = per_cpu_ptr(q->queue_ctx, i);
2390 		hctx = blk_mq_map_queue(q, i);
2391 
2392 		cpumask_set_cpu(i, hctx->cpumask);
2393 		ctx->index_hw = hctx->nr_ctx;
2394 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2395 	}
2396 
2397 	mutex_unlock(&q->sysfs_lock);
2398 
2399 	queue_for_each_hw_ctx(q, hctx, i) {
2400 		/*
2401 		 * If no software queues are mapped to this hardware queue,
2402 		 * disable it and free the request entries.
2403 		 */
2404 		if (!hctx->nr_ctx) {
2405 			/* Never unmap queue 0.  We need it as a
2406 			 * fallback in case of a new remap fails
2407 			 * allocation
2408 			 */
2409 			if (i && set->tags[i])
2410 				blk_mq_free_map_and_requests(set, i);
2411 
2412 			hctx->tags = NULL;
2413 			continue;
2414 		}
2415 
2416 		hctx->tags = set->tags[i];
2417 		WARN_ON(!hctx->tags);
2418 
2419 		/*
2420 		 * Set the map size to the number of mapped software queues.
2421 		 * This is more accurate and more efficient than looping
2422 		 * over all possibly mapped software queues.
2423 		 */
2424 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2425 
2426 		/*
2427 		 * Initialize batch roundrobin counts
2428 		 */
2429 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2430 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2431 	}
2432 }
2433 
2434 /*
2435  * Caller needs to ensure that we're either frozen/quiesced, or that
2436  * the queue isn't live yet.
2437  */
2438 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2439 {
2440 	struct blk_mq_hw_ctx *hctx;
2441 	int i;
2442 
2443 	queue_for_each_hw_ctx(q, hctx, i) {
2444 		if (shared) {
2445 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2446 				atomic_inc(&q->shared_hctx_restart);
2447 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2448 		} else {
2449 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2450 				atomic_dec(&q->shared_hctx_restart);
2451 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2452 		}
2453 	}
2454 }
2455 
2456 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2457 					bool shared)
2458 {
2459 	struct request_queue *q;
2460 
2461 	lockdep_assert_held(&set->tag_list_lock);
2462 
2463 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2464 		blk_mq_freeze_queue(q);
2465 		queue_set_hctx_shared(q, shared);
2466 		blk_mq_unfreeze_queue(q);
2467 	}
2468 }
2469 
2470 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2471 {
2472 	struct blk_mq_tag_set *set = q->tag_set;
2473 
2474 	mutex_lock(&set->tag_list_lock);
2475 	list_del_rcu(&q->tag_set_list);
2476 	INIT_LIST_HEAD(&q->tag_set_list);
2477 	if (list_is_singular(&set->tag_list)) {
2478 		/* just transitioned to unshared */
2479 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2480 		/* update existing queue */
2481 		blk_mq_update_tag_set_depth(set, false);
2482 	}
2483 	mutex_unlock(&set->tag_list_lock);
2484 
2485 	synchronize_rcu();
2486 }
2487 
2488 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2489 				     struct request_queue *q)
2490 {
2491 	q->tag_set = set;
2492 
2493 	mutex_lock(&set->tag_list_lock);
2494 
2495 	/*
2496 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2497 	 */
2498 	if (!list_empty(&set->tag_list) &&
2499 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2500 		set->flags |= BLK_MQ_F_TAG_SHARED;
2501 		/* update existing queue */
2502 		blk_mq_update_tag_set_depth(set, true);
2503 	}
2504 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2505 		queue_set_hctx_shared(q, true);
2506 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2507 
2508 	mutex_unlock(&set->tag_list_lock);
2509 }
2510 
2511 /*
2512  * It is the actual release handler for mq, but we do it from
2513  * request queue's release handler for avoiding use-after-free
2514  * and headache because q->mq_kobj shouldn't have been introduced,
2515  * but we can't group ctx/kctx kobj without it.
2516  */
2517 void blk_mq_release(struct request_queue *q)
2518 {
2519 	struct blk_mq_hw_ctx *hctx;
2520 	unsigned int i;
2521 
2522 	/* hctx kobj stays in hctx */
2523 	queue_for_each_hw_ctx(q, hctx, i) {
2524 		if (!hctx)
2525 			continue;
2526 		kobject_put(&hctx->kobj);
2527 	}
2528 
2529 	q->mq_map = NULL;
2530 
2531 	kfree(q->queue_hw_ctx);
2532 
2533 	/*
2534 	 * release .mq_kobj and sw queue's kobject now because
2535 	 * both share lifetime with request queue.
2536 	 */
2537 	blk_mq_sysfs_deinit(q);
2538 
2539 	free_percpu(q->queue_ctx);
2540 }
2541 
2542 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2543 {
2544 	struct request_queue *uninit_q, *q;
2545 
2546 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2547 	if (!uninit_q)
2548 		return ERR_PTR(-ENOMEM);
2549 
2550 	q = blk_mq_init_allocated_queue(set, uninit_q);
2551 	if (IS_ERR(q))
2552 		blk_cleanup_queue(uninit_q);
2553 
2554 	return q;
2555 }
2556 EXPORT_SYMBOL(blk_mq_init_queue);
2557 
2558 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2559 {
2560 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2561 
2562 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2563 			   __alignof__(struct blk_mq_hw_ctx)) !=
2564 		     sizeof(struct blk_mq_hw_ctx));
2565 
2566 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2567 		hw_ctx_size += sizeof(struct srcu_struct);
2568 
2569 	return hw_ctx_size;
2570 }
2571 
2572 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2573 						struct request_queue *q)
2574 {
2575 	int i, j;
2576 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2577 
2578 	blk_mq_sysfs_unregister(q);
2579 
2580 	/* protect against switching io scheduler  */
2581 	mutex_lock(&q->sysfs_lock);
2582 	for (i = 0; i < set->nr_hw_queues; i++) {
2583 		int node;
2584 
2585 		if (hctxs[i])
2586 			continue;
2587 
2588 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2589 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2590 					GFP_KERNEL, node);
2591 		if (!hctxs[i])
2592 			break;
2593 
2594 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2595 						node)) {
2596 			kfree(hctxs[i]);
2597 			hctxs[i] = NULL;
2598 			break;
2599 		}
2600 
2601 		atomic_set(&hctxs[i]->nr_active, 0);
2602 		hctxs[i]->numa_node = node;
2603 		hctxs[i]->queue_num = i;
2604 
2605 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2606 			free_cpumask_var(hctxs[i]->cpumask);
2607 			kfree(hctxs[i]);
2608 			hctxs[i] = NULL;
2609 			break;
2610 		}
2611 		blk_mq_hctx_kobj_init(hctxs[i]);
2612 	}
2613 	for (j = i; j < q->nr_hw_queues; j++) {
2614 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2615 
2616 		if (hctx) {
2617 			if (hctx->tags)
2618 				blk_mq_free_map_and_requests(set, j);
2619 			blk_mq_exit_hctx(q, set, hctx, j);
2620 			kobject_put(&hctx->kobj);
2621 			hctxs[j] = NULL;
2622 
2623 		}
2624 	}
2625 	q->nr_hw_queues = i;
2626 	mutex_unlock(&q->sysfs_lock);
2627 	blk_mq_sysfs_register(q);
2628 }
2629 
2630 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2631 						  struct request_queue *q)
2632 {
2633 	/* mark the queue as mq asap */
2634 	q->mq_ops = set->ops;
2635 
2636 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2637 					     blk_mq_poll_stats_bkt,
2638 					     BLK_MQ_POLL_STATS_BKTS, q);
2639 	if (!q->poll_cb)
2640 		goto err_exit;
2641 
2642 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2643 	if (!q->queue_ctx)
2644 		goto err_exit;
2645 
2646 	/* init q->mq_kobj and sw queues' kobjects */
2647 	blk_mq_sysfs_init(q);
2648 
2649 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2650 						GFP_KERNEL, set->numa_node);
2651 	if (!q->queue_hw_ctx)
2652 		goto err_percpu;
2653 
2654 	q->mq_map = set->mq_map;
2655 
2656 	blk_mq_realloc_hw_ctxs(set, q);
2657 	if (!q->nr_hw_queues)
2658 		goto err_hctxs;
2659 
2660 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2661 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2662 
2663 	q->nr_queues = nr_cpu_ids;
2664 
2665 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2666 
2667 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2668 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2669 
2670 	q->sg_reserved_size = INT_MAX;
2671 
2672 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2673 	INIT_LIST_HEAD(&q->requeue_list);
2674 	spin_lock_init(&q->requeue_lock);
2675 
2676 	blk_queue_make_request(q, blk_mq_make_request);
2677 	if (q->mq_ops->poll)
2678 		q->poll_fn = blk_mq_poll;
2679 
2680 	/*
2681 	 * Do this after blk_queue_make_request() overrides it...
2682 	 */
2683 	q->nr_requests = set->queue_depth;
2684 
2685 	/*
2686 	 * Default to classic polling
2687 	 */
2688 	q->poll_nsec = -1;
2689 
2690 	if (set->ops->complete)
2691 		blk_queue_softirq_done(q, set->ops->complete);
2692 
2693 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2694 	blk_mq_add_queue_tag_set(set, q);
2695 	blk_mq_map_swqueue(q);
2696 
2697 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2698 		int ret;
2699 
2700 		ret = blk_mq_sched_init(q);
2701 		if (ret)
2702 			return ERR_PTR(ret);
2703 	}
2704 
2705 	return q;
2706 
2707 err_hctxs:
2708 	kfree(q->queue_hw_ctx);
2709 err_percpu:
2710 	free_percpu(q->queue_ctx);
2711 err_exit:
2712 	q->mq_ops = NULL;
2713 	return ERR_PTR(-ENOMEM);
2714 }
2715 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2716 
2717 void blk_mq_free_queue(struct request_queue *q)
2718 {
2719 	struct blk_mq_tag_set	*set = q->tag_set;
2720 
2721 	blk_mq_del_queue_tag_set(q);
2722 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2723 }
2724 
2725 /* Basically redo blk_mq_init_queue with queue frozen */
2726 static void blk_mq_queue_reinit(struct request_queue *q)
2727 {
2728 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2729 
2730 	blk_mq_debugfs_unregister_hctxs(q);
2731 	blk_mq_sysfs_unregister(q);
2732 
2733 	/*
2734 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2735 	 * we should change hctx numa_node according to the new topology (this
2736 	 * involves freeing and re-allocating memory, worth doing?)
2737 	 */
2738 	blk_mq_map_swqueue(q);
2739 
2740 	blk_mq_sysfs_register(q);
2741 	blk_mq_debugfs_register_hctxs(q);
2742 }
2743 
2744 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2745 {
2746 	int i;
2747 
2748 	for (i = 0; i < set->nr_hw_queues; i++)
2749 		if (!__blk_mq_alloc_rq_map(set, i))
2750 			goto out_unwind;
2751 
2752 	return 0;
2753 
2754 out_unwind:
2755 	while (--i >= 0)
2756 		blk_mq_free_rq_map(set->tags[i]);
2757 
2758 	return -ENOMEM;
2759 }
2760 
2761 /*
2762  * Allocate the request maps associated with this tag_set. Note that this
2763  * may reduce the depth asked for, if memory is tight. set->queue_depth
2764  * will be updated to reflect the allocated depth.
2765  */
2766 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2767 {
2768 	unsigned int depth;
2769 	int err;
2770 
2771 	depth = set->queue_depth;
2772 	do {
2773 		err = __blk_mq_alloc_rq_maps(set);
2774 		if (!err)
2775 			break;
2776 
2777 		set->queue_depth >>= 1;
2778 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2779 			err = -ENOMEM;
2780 			break;
2781 		}
2782 	} while (set->queue_depth);
2783 
2784 	if (!set->queue_depth || err) {
2785 		pr_err("blk-mq: failed to allocate request map\n");
2786 		return -ENOMEM;
2787 	}
2788 
2789 	if (depth != set->queue_depth)
2790 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2791 						depth, set->queue_depth);
2792 
2793 	return 0;
2794 }
2795 
2796 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2797 {
2798 	if (set->ops->map_queues) {
2799 		int cpu;
2800 		/*
2801 		 * transport .map_queues is usually done in the following
2802 		 * way:
2803 		 *
2804 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2805 		 * 	mask = get_cpu_mask(queue)
2806 		 * 	for_each_cpu(cpu, mask)
2807 		 * 		set->mq_map[cpu] = queue;
2808 		 * }
2809 		 *
2810 		 * When we need to remap, the table has to be cleared for
2811 		 * killing stale mapping since one CPU may not be mapped
2812 		 * to any hw queue.
2813 		 */
2814 		for_each_possible_cpu(cpu)
2815 			set->mq_map[cpu] = 0;
2816 
2817 		return set->ops->map_queues(set);
2818 	} else
2819 		return blk_mq_map_queues(set);
2820 }
2821 
2822 /*
2823  * Alloc a tag set to be associated with one or more request queues.
2824  * May fail with EINVAL for various error conditions. May adjust the
2825  * requested depth down, if if it too large. In that case, the set
2826  * value will be stored in set->queue_depth.
2827  */
2828 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2829 {
2830 	int ret;
2831 
2832 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2833 
2834 	if (!set->nr_hw_queues)
2835 		return -EINVAL;
2836 	if (!set->queue_depth)
2837 		return -EINVAL;
2838 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2839 		return -EINVAL;
2840 
2841 	if (!set->ops->queue_rq)
2842 		return -EINVAL;
2843 
2844 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2845 		return -EINVAL;
2846 
2847 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2848 		pr_info("blk-mq: reduced tag depth to %u\n",
2849 			BLK_MQ_MAX_DEPTH);
2850 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2851 	}
2852 
2853 	/*
2854 	 * If a crashdump is active, then we are potentially in a very
2855 	 * memory constrained environment. Limit us to 1 queue and
2856 	 * 64 tags to prevent using too much memory.
2857 	 */
2858 	if (is_kdump_kernel()) {
2859 		set->nr_hw_queues = 1;
2860 		set->queue_depth = min(64U, set->queue_depth);
2861 	}
2862 	/*
2863 	 * There is no use for more h/w queues than cpus.
2864 	 */
2865 	if (set->nr_hw_queues > nr_cpu_ids)
2866 		set->nr_hw_queues = nr_cpu_ids;
2867 
2868 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2869 				 GFP_KERNEL, set->numa_node);
2870 	if (!set->tags)
2871 		return -ENOMEM;
2872 
2873 	ret = -ENOMEM;
2874 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2875 			GFP_KERNEL, set->numa_node);
2876 	if (!set->mq_map)
2877 		goto out_free_tags;
2878 
2879 	ret = blk_mq_update_queue_map(set);
2880 	if (ret)
2881 		goto out_free_mq_map;
2882 
2883 	ret = blk_mq_alloc_rq_maps(set);
2884 	if (ret)
2885 		goto out_free_mq_map;
2886 
2887 	mutex_init(&set->tag_list_lock);
2888 	INIT_LIST_HEAD(&set->tag_list);
2889 
2890 	return 0;
2891 
2892 out_free_mq_map:
2893 	kfree(set->mq_map);
2894 	set->mq_map = NULL;
2895 out_free_tags:
2896 	kfree(set->tags);
2897 	set->tags = NULL;
2898 	return ret;
2899 }
2900 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2901 
2902 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2903 {
2904 	int i;
2905 
2906 	for (i = 0; i < nr_cpu_ids; i++)
2907 		blk_mq_free_map_and_requests(set, i);
2908 
2909 	kfree(set->mq_map);
2910 	set->mq_map = NULL;
2911 
2912 	kfree(set->tags);
2913 	set->tags = NULL;
2914 }
2915 EXPORT_SYMBOL(blk_mq_free_tag_set);
2916 
2917 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2918 {
2919 	struct blk_mq_tag_set *set = q->tag_set;
2920 	struct blk_mq_hw_ctx *hctx;
2921 	int i, ret;
2922 
2923 	if (!set)
2924 		return -EINVAL;
2925 
2926 	blk_mq_freeze_queue(q);
2927 	blk_mq_quiesce_queue(q);
2928 
2929 	ret = 0;
2930 	queue_for_each_hw_ctx(q, hctx, i) {
2931 		if (!hctx->tags)
2932 			continue;
2933 		/*
2934 		 * If we're using an MQ scheduler, just update the scheduler
2935 		 * queue depth. This is similar to what the old code would do.
2936 		 */
2937 		if (!hctx->sched_tags) {
2938 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2939 							false);
2940 		} else {
2941 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2942 							nr, true);
2943 		}
2944 		if (ret)
2945 			break;
2946 	}
2947 
2948 	if (!ret)
2949 		q->nr_requests = nr;
2950 
2951 	blk_mq_unquiesce_queue(q);
2952 	blk_mq_unfreeze_queue(q);
2953 
2954 	return ret;
2955 }
2956 
2957 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2958 							int nr_hw_queues)
2959 {
2960 	struct request_queue *q;
2961 
2962 	lockdep_assert_held(&set->tag_list_lock);
2963 
2964 	if (nr_hw_queues > nr_cpu_ids)
2965 		nr_hw_queues = nr_cpu_ids;
2966 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2967 		return;
2968 
2969 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2970 		blk_mq_freeze_queue(q);
2971 
2972 	set->nr_hw_queues = nr_hw_queues;
2973 	blk_mq_update_queue_map(set);
2974 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2975 		blk_mq_realloc_hw_ctxs(set, q);
2976 		blk_mq_queue_reinit(q);
2977 	}
2978 
2979 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2980 		blk_mq_unfreeze_queue(q);
2981 }
2982 
2983 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2984 {
2985 	mutex_lock(&set->tag_list_lock);
2986 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2987 	mutex_unlock(&set->tag_list_lock);
2988 }
2989 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2990 
2991 /* Enable polling stats and return whether they were already enabled. */
2992 static bool blk_poll_stats_enable(struct request_queue *q)
2993 {
2994 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2995 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2996 		return true;
2997 	blk_stat_add_callback(q, q->poll_cb);
2998 	return false;
2999 }
3000 
3001 static void blk_mq_poll_stats_start(struct request_queue *q)
3002 {
3003 	/*
3004 	 * We don't arm the callback if polling stats are not enabled or the
3005 	 * callback is already active.
3006 	 */
3007 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3008 	    blk_stat_is_active(q->poll_cb))
3009 		return;
3010 
3011 	blk_stat_activate_msecs(q->poll_cb, 100);
3012 }
3013 
3014 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3015 {
3016 	struct request_queue *q = cb->data;
3017 	int bucket;
3018 
3019 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3020 		if (cb->stat[bucket].nr_samples)
3021 			q->poll_stat[bucket] = cb->stat[bucket];
3022 	}
3023 }
3024 
3025 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3026 				       struct blk_mq_hw_ctx *hctx,
3027 				       struct request *rq)
3028 {
3029 	unsigned long ret = 0;
3030 	int bucket;
3031 
3032 	/*
3033 	 * If stats collection isn't on, don't sleep but turn it on for
3034 	 * future users
3035 	 */
3036 	if (!blk_poll_stats_enable(q))
3037 		return 0;
3038 
3039 	/*
3040 	 * As an optimistic guess, use half of the mean service time
3041 	 * for this type of request. We can (and should) make this smarter.
3042 	 * For instance, if the completion latencies are tight, we can
3043 	 * get closer than just half the mean. This is especially
3044 	 * important on devices where the completion latencies are longer
3045 	 * than ~10 usec. We do use the stats for the relevant IO size
3046 	 * if available which does lead to better estimates.
3047 	 */
3048 	bucket = blk_mq_poll_stats_bkt(rq);
3049 	if (bucket < 0)
3050 		return ret;
3051 
3052 	if (q->poll_stat[bucket].nr_samples)
3053 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3054 
3055 	return ret;
3056 }
3057 
3058 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3059 				     struct blk_mq_hw_ctx *hctx,
3060 				     struct request *rq)
3061 {
3062 	struct hrtimer_sleeper hs;
3063 	enum hrtimer_mode mode;
3064 	unsigned int nsecs;
3065 	ktime_t kt;
3066 
3067 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3068 		return false;
3069 
3070 	/*
3071 	 * poll_nsec can be:
3072 	 *
3073 	 * -1:	don't ever hybrid sleep
3074 	 *  0:	use half of prev avg
3075 	 * >0:	use this specific value
3076 	 */
3077 	if (q->poll_nsec == -1)
3078 		return false;
3079 	else if (q->poll_nsec > 0)
3080 		nsecs = q->poll_nsec;
3081 	else
3082 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3083 
3084 	if (!nsecs)
3085 		return false;
3086 
3087 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3088 
3089 	/*
3090 	 * This will be replaced with the stats tracking code, using
3091 	 * 'avg_completion_time / 2' as the pre-sleep target.
3092 	 */
3093 	kt = nsecs;
3094 
3095 	mode = HRTIMER_MODE_REL;
3096 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3097 	hrtimer_set_expires(&hs.timer, kt);
3098 
3099 	hrtimer_init_sleeper(&hs, current);
3100 	do {
3101 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3102 			break;
3103 		set_current_state(TASK_UNINTERRUPTIBLE);
3104 		hrtimer_start_expires(&hs.timer, mode);
3105 		if (hs.task)
3106 			io_schedule();
3107 		hrtimer_cancel(&hs.timer);
3108 		mode = HRTIMER_MODE_ABS;
3109 	} while (hs.task && !signal_pending(current));
3110 
3111 	__set_current_state(TASK_RUNNING);
3112 	destroy_hrtimer_on_stack(&hs.timer);
3113 	return true;
3114 }
3115 
3116 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3117 {
3118 	struct request_queue *q = hctx->queue;
3119 	long state;
3120 
3121 	/*
3122 	 * If we sleep, have the caller restart the poll loop to reset
3123 	 * the state. Like for the other success return cases, the
3124 	 * caller is responsible for checking if the IO completed. If
3125 	 * the IO isn't complete, we'll get called again and will go
3126 	 * straight to the busy poll loop.
3127 	 */
3128 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3129 		return true;
3130 
3131 	hctx->poll_considered++;
3132 
3133 	state = current->state;
3134 	while (!need_resched()) {
3135 		int ret;
3136 
3137 		hctx->poll_invoked++;
3138 
3139 		ret = q->mq_ops->poll(hctx, rq->tag);
3140 		if (ret > 0) {
3141 			hctx->poll_success++;
3142 			set_current_state(TASK_RUNNING);
3143 			return true;
3144 		}
3145 
3146 		if (signal_pending_state(state, current))
3147 			set_current_state(TASK_RUNNING);
3148 
3149 		if (current->state == TASK_RUNNING)
3150 			return true;
3151 		if (ret < 0)
3152 			break;
3153 		cpu_relax();
3154 	}
3155 
3156 	__set_current_state(TASK_RUNNING);
3157 	return false;
3158 }
3159 
3160 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3161 {
3162 	struct blk_mq_hw_ctx *hctx;
3163 	struct request *rq;
3164 
3165 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3166 		return false;
3167 
3168 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3169 	if (!blk_qc_t_is_internal(cookie))
3170 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3171 	else {
3172 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3173 		/*
3174 		 * With scheduling, if the request has completed, we'll
3175 		 * get a NULL return here, as we clear the sched tag when
3176 		 * that happens. The request still remains valid, like always,
3177 		 * so we should be safe with just the NULL check.
3178 		 */
3179 		if (!rq)
3180 			return false;
3181 	}
3182 
3183 	return __blk_mq_poll(hctx, rq);
3184 }
3185 
3186 static int __init blk_mq_init(void)
3187 {
3188 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3189 				blk_mq_hctx_notify_dead);
3190 	return 0;
3191 }
3192 subsys_initcall(blk_mq_init);
3193