1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-mq-sched.h" 38 #include "blk-rq-qos.h" 39 40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 79 } 80 81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 82 struct blk_mq_ctx *ctx) 83 { 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 85 } 86 87 struct mq_inflight { 88 struct hd_struct *part; 89 unsigned int *inflight; 90 }; 91 92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 93 struct request *rq, void *priv, 94 bool reserved) 95 { 96 struct mq_inflight *mi = priv; 97 98 /* 99 * index[0] counts the specific partition that was asked for. index[1] 100 * counts the ones that are active on the whole device, so increment 101 * that if mi->part is indeed a partition, and not a whole device. 102 */ 103 if (rq->part == mi->part) 104 mi->inflight[0]++; 105 if (mi->part->partno) 106 mi->inflight[1]++; 107 } 108 109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 110 unsigned int inflight[2]) 111 { 112 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 113 114 inflight[0] = inflight[1] = 0; 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 } 117 118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 119 struct request *rq, void *priv, 120 bool reserved) 121 { 122 struct mq_inflight *mi = priv; 123 124 if (rq->part == mi->part) 125 mi->inflight[rq_data_dir(rq)]++; 126 } 127 128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 129 unsigned int inflight[2]) 130 { 131 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 132 133 inflight[0] = inflight[1] = 0; 134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 135 } 136 137 void blk_freeze_queue_start(struct request_queue *q) 138 { 139 int freeze_depth; 140 141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 142 if (freeze_depth == 1) { 143 percpu_ref_kill(&q->q_usage_counter); 144 if (q->mq_ops) 145 blk_mq_run_hw_queues(q, false); 146 } 147 } 148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 149 150 void blk_mq_freeze_queue_wait(struct request_queue *q) 151 { 152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 153 } 154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 155 156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 157 unsigned long timeout) 158 { 159 return wait_event_timeout(q->mq_freeze_wq, 160 percpu_ref_is_zero(&q->q_usage_counter), 161 timeout); 162 } 163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 164 165 /* 166 * Guarantee no request is in use, so we can change any data structure of 167 * the queue afterward. 168 */ 169 void blk_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * In the !blk_mq case we are only calling this to kill the 173 * q_usage_counter, otherwise this increases the freeze depth 174 * and waits for it to return to zero. For this reason there is 175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 176 * exported to drivers as the only user for unfreeze is blk_mq. 177 */ 178 blk_freeze_queue_start(q); 179 if (!q->mq_ops) 180 blk_drain_queue(q); 181 blk_mq_freeze_queue_wait(q); 182 } 183 184 void blk_mq_freeze_queue(struct request_queue *q) 185 { 186 /* 187 * ...just an alias to keep freeze and unfreeze actions balanced 188 * in the blk_mq_* namespace 189 */ 190 blk_freeze_queue(q); 191 } 192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 int freeze_depth; 197 198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 199 WARN_ON_ONCE(freeze_depth < 0); 200 if (!freeze_depth) { 201 percpu_ref_reinit(&q->q_usage_counter); 202 wake_up_all(&q->mq_freeze_wq); 203 } 204 } 205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 206 207 /* 208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 209 * mpt3sas driver such that this function can be removed. 210 */ 211 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 212 { 213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 214 } 215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 216 217 /** 218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 219 * @q: request queue. 220 * 221 * Note: this function does not prevent that the struct request end_io() 222 * callback function is invoked. Once this function is returned, we make 223 * sure no dispatch can happen until the queue is unquiesced via 224 * blk_mq_unquiesce_queue(). 225 */ 226 void blk_mq_quiesce_queue(struct request_queue *q) 227 { 228 struct blk_mq_hw_ctx *hctx; 229 unsigned int i; 230 bool rcu = false; 231 232 blk_mq_quiesce_queue_nowait(q); 233 234 queue_for_each_hw_ctx(q, hctx, i) { 235 if (hctx->flags & BLK_MQ_F_BLOCKING) 236 synchronize_srcu(hctx->srcu); 237 else 238 rcu = true; 239 } 240 if (rcu) 241 synchronize_rcu(); 242 } 243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 244 245 /* 246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 247 * @q: request queue. 248 * 249 * This function recovers queue into the state before quiescing 250 * which is done by blk_mq_quiesce_queue. 251 */ 252 void blk_mq_unquiesce_queue(struct request_queue *q) 253 { 254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 255 256 /* dispatch requests which are inserted during quiescing */ 257 blk_mq_run_hw_queues(q, true); 258 } 259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 260 261 void blk_mq_wake_waiters(struct request_queue *q) 262 { 263 struct blk_mq_hw_ctx *hctx; 264 unsigned int i; 265 266 queue_for_each_hw_ctx(q, hctx, i) 267 if (blk_mq_hw_queue_mapped(hctx)) 268 blk_mq_tag_wakeup_all(hctx->tags, true); 269 } 270 271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 272 { 273 return blk_mq_has_free_tags(hctx->tags); 274 } 275 EXPORT_SYMBOL(blk_mq_can_queue); 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, unsigned int op) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 req_flags_t rq_flags = 0; 283 284 if (data->flags & BLK_MQ_REQ_INTERNAL) { 285 rq->tag = -1; 286 rq->internal_tag = tag; 287 } else { 288 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 289 rq_flags = RQF_MQ_INFLIGHT; 290 atomic_inc(&data->hctx->nr_active); 291 } 292 rq->tag = tag; 293 rq->internal_tag = -1; 294 data->hctx->tags->rqs[rq->tag] = rq; 295 } 296 297 /* csd/requeue_work/fifo_time is initialized before use */ 298 rq->q = data->q; 299 rq->mq_ctx = data->ctx; 300 rq->rq_flags = rq_flags; 301 rq->cpu = -1; 302 rq->cmd_flags = op; 303 if (data->flags & BLK_MQ_REQ_PREEMPT) 304 rq->rq_flags |= RQF_PREEMPT; 305 if (blk_queue_io_stat(data->q)) 306 rq->rq_flags |= RQF_IO_STAT; 307 INIT_LIST_HEAD(&rq->queuelist); 308 INIT_HLIST_NODE(&rq->hash); 309 RB_CLEAR_NODE(&rq->rb_node); 310 rq->rq_disk = NULL; 311 rq->part = NULL; 312 rq->start_time_ns = ktime_get_ns(); 313 rq->io_start_time_ns = 0; 314 rq->nr_phys_segments = 0; 315 #if defined(CONFIG_BLK_DEV_INTEGRITY) 316 rq->nr_integrity_segments = 0; 317 #endif 318 rq->special = NULL; 319 /* tag was already set */ 320 rq->extra_len = 0; 321 rq->__deadline = 0; 322 323 INIT_LIST_HEAD(&rq->timeout_list); 324 rq->timeout = 0; 325 326 rq->end_io = NULL; 327 rq->end_io_data = NULL; 328 rq->next_rq = NULL; 329 330 #ifdef CONFIG_BLK_CGROUP 331 rq->rl = NULL; 332 #endif 333 334 data->ctx->rq_dispatched[op_is_sync(op)]++; 335 refcount_set(&rq->ref, 1); 336 return rq; 337 } 338 339 static struct request *blk_mq_get_request(struct request_queue *q, 340 struct bio *bio, unsigned int op, 341 struct blk_mq_alloc_data *data) 342 { 343 struct elevator_queue *e = q->elevator; 344 struct request *rq; 345 unsigned int tag; 346 bool put_ctx_on_error = false; 347 348 blk_queue_enter_live(q); 349 data->q = q; 350 if (likely(!data->ctx)) { 351 data->ctx = blk_mq_get_ctx(q); 352 put_ctx_on_error = true; 353 } 354 if (likely(!data->hctx)) 355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 356 if (op & REQ_NOWAIT) 357 data->flags |= BLK_MQ_REQ_NOWAIT; 358 359 if (e) { 360 data->flags |= BLK_MQ_REQ_INTERNAL; 361 362 /* 363 * Flush requests are special and go directly to the 364 * dispatch list. Don't include reserved tags in the 365 * limiting, as it isn't useful. 366 */ 367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth && 368 !(data->flags & BLK_MQ_REQ_RESERVED)) 369 e->type->ops.mq.limit_depth(op, data); 370 } else { 371 blk_mq_tag_busy(data->hctx); 372 } 373 374 tag = blk_mq_get_tag(data); 375 if (tag == BLK_MQ_TAG_FAIL) { 376 if (put_ctx_on_error) { 377 blk_mq_put_ctx(data->ctx); 378 data->ctx = NULL; 379 } 380 blk_queue_exit(q); 381 return NULL; 382 } 383 384 rq = blk_mq_rq_ctx_init(data, tag, op); 385 if (!op_is_flush(op)) { 386 rq->elv.icq = NULL; 387 if (e && e->type->ops.mq.prepare_request) { 388 if (e->type->icq_cache && rq_ioc(bio)) 389 blk_mq_sched_assign_ioc(rq, bio); 390 391 e->type->ops.mq.prepare_request(rq, bio); 392 rq->rq_flags |= RQF_ELVPRIV; 393 } 394 } 395 data->hctx->queued++; 396 return rq; 397 } 398 399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 400 blk_mq_req_flags_t flags) 401 { 402 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 403 struct request *rq; 404 int ret; 405 406 ret = blk_queue_enter(q, flags); 407 if (ret) 408 return ERR_PTR(ret); 409 410 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 411 blk_queue_exit(q); 412 413 if (!rq) 414 return ERR_PTR(-EWOULDBLOCK); 415 416 blk_mq_put_ctx(alloc_data.ctx); 417 418 rq->__data_len = 0; 419 rq->__sector = (sector_t) -1; 420 rq->bio = rq->biotail = NULL; 421 return rq; 422 } 423 EXPORT_SYMBOL(blk_mq_alloc_request); 424 425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 427 { 428 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 429 struct request *rq; 430 unsigned int cpu; 431 int ret; 432 433 /* 434 * If the tag allocator sleeps we could get an allocation for a 435 * different hardware context. No need to complicate the low level 436 * allocator for this for the rare use case of a command tied to 437 * a specific queue. 438 */ 439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 440 return ERR_PTR(-EINVAL); 441 442 if (hctx_idx >= q->nr_hw_queues) 443 return ERR_PTR(-EIO); 444 445 ret = blk_queue_enter(q, flags); 446 if (ret) 447 return ERR_PTR(ret); 448 449 /* 450 * Check if the hardware context is actually mapped to anything. 451 * If not tell the caller that it should skip this queue. 452 */ 453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 455 blk_queue_exit(q); 456 return ERR_PTR(-EXDEV); 457 } 458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 460 461 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 462 blk_queue_exit(q); 463 464 if (!rq) 465 return ERR_PTR(-EWOULDBLOCK); 466 467 return rq; 468 } 469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 470 471 static void __blk_mq_free_request(struct request *rq) 472 { 473 struct request_queue *q = rq->q; 474 struct blk_mq_ctx *ctx = rq->mq_ctx; 475 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 476 const int sched_tag = rq->internal_tag; 477 478 if (rq->tag != -1) 479 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 480 if (sched_tag != -1) 481 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 482 blk_mq_sched_restart(hctx); 483 blk_queue_exit(q); 484 } 485 486 void blk_mq_free_request(struct request *rq) 487 { 488 struct request_queue *q = rq->q; 489 struct elevator_queue *e = q->elevator; 490 struct blk_mq_ctx *ctx = rq->mq_ctx; 491 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 492 493 if (rq->rq_flags & RQF_ELVPRIV) { 494 if (e && e->type->ops.mq.finish_request) 495 e->type->ops.mq.finish_request(rq); 496 if (rq->elv.icq) { 497 put_io_context(rq->elv.icq->ioc); 498 rq->elv.icq = NULL; 499 } 500 } 501 502 ctx->rq_completed[rq_is_sync(rq)]++; 503 if (rq->rq_flags & RQF_MQ_INFLIGHT) 504 atomic_dec(&hctx->nr_active); 505 506 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 507 laptop_io_completion(q->backing_dev_info); 508 509 rq_qos_done(q, rq); 510 511 if (blk_rq_rl(rq)) 512 blk_put_rl(blk_rq_rl(rq)); 513 514 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 515 if (refcount_dec_and_test(&rq->ref)) 516 __blk_mq_free_request(rq); 517 } 518 EXPORT_SYMBOL_GPL(blk_mq_free_request); 519 520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 521 { 522 u64 now = ktime_get_ns(); 523 524 if (rq->rq_flags & RQF_STATS) { 525 blk_mq_poll_stats_start(rq->q); 526 blk_stat_add(rq, now); 527 } 528 529 blk_account_io_done(rq, now); 530 531 if (rq->end_io) { 532 rq_qos_done(rq->q, rq); 533 rq->end_io(rq, error); 534 } else { 535 if (unlikely(blk_bidi_rq(rq))) 536 blk_mq_free_request(rq->next_rq); 537 blk_mq_free_request(rq); 538 } 539 } 540 EXPORT_SYMBOL(__blk_mq_end_request); 541 542 void blk_mq_end_request(struct request *rq, blk_status_t error) 543 { 544 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 545 BUG(); 546 __blk_mq_end_request(rq, error); 547 } 548 EXPORT_SYMBOL(blk_mq_end_request); 549 550 static void __blk_mq_complete_request_remote(void *data) 551 { 552 struct request *rq = data; 553 554 rq->q->softirq_done_fn(rq); 555 } 556 557 static void __blk_mq_complete_request(struct request *rq) 558 { 559 struct blk_mq_ctx *ctx = rq->mq_ctx; 560 bool shared = false; 561 int cpu; 562 563 if (!blk_mq_mark_complete(rq)) 564 return; 565 if (rq->internal_tag != -1) 566 blk_mq_sched_completed_request(rq); 567 568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 569 rq->q->softirq_done_fn(rq); 570 return; 571 } 572 573 cpu = get_cpu(); 574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 575 shared = cpus_share_cache(cpu, ctx->cpu); 576 577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 578 rq->csd.func = __blk_mq_complete_request_remote; 579 rq->csd.info = rq; 580 rq->csd.flags = 0; 581 smp_call_function_single_async(ctx->cpu, &rq->csd); 582 } else { 583 rq->q->softirq_done_fn(rq); 584 } 585 put_cpu(); 586 } 587 588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 589 __releases(hctx->srcu) 590 { 591 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 592 rcu_read_unlock(); 593 else 594 srcu_read_unlock(hctx->srcu, srcu_idx); 595 } 596 597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 598 __acquires(hctx->srcu) 599 { 600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 601 /* shut up gcc false positive */ 602 *srcu_idx = 0; 603 rcu_read_lock(); 604 } else 605 *srcu_idx = srcu_read_lock(hctx->srcu); 606 } 607 608 /** 609 * blk_mq_complete_request - end I/O on a request 610 * @rq: the request being processed 611 * 612 * Description: 613 * Ends all I/O on a request. It does not handle partial completions. 614 * The actual completion happens out-of-order, through a IPI handler. 615 **/ 616 void blk_mq_complete_request(struct request *rq) 617 { 618 if (unlikely(blk_should_fake_timeout(rq->q))) 619 return; 620 __blk_mq_complete_request(rq); 621 } 622 EXPORT_SYMBOL(blk_mq_complete_request); 623 624 int blk_mq_request_started(struct request *rq) 625 { 626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 627 } 628 EXPORT_SYMBOL_GPL(blk_mq_request_started); 629 630 void blk_mq_start_request(struct request *rq) 631 { 632 struct request_queue *q = rq->q; 633 634 blk_mq_sched_started_request(rq); 635 636 trace_block_rq_issue(q, rq); 637 638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 639 rq->io_start_time_ns = ktime_get_ns(); 640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 641 rq->throtl_size = blk_rq_sectors(rq); 642 #endif 643 rq->rq_flags |= RQF_STATS; 644 rq_qos_issue(q, rq); 645 } 646 647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 648 649 blk_add_timer(rq); 650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 651 652 if (q->dma_drain_size && blk_rq_bytes(rq)) { 653 /* 654 * Make sure space for the drain appears. We know we can do 655 * this because max_hw_segments has been adjusted to be one 656 * fewer than the device can handle. 657 */ 658 rq->nr_phys_segments++; 659 } 660 } 661 EXPORT_SYMBOL(blk_mq_start_request); 662 663 static void __blk_mq_requeue_request(struct request *rq) 664 { 665 struct request_queue *q = rq->q; 666 667 blk_mq_put_driver_tag(rq); 668 669 trace_block_rq_requeue(q, rq); 670 rq_qos_requeue(q, rq); 671 672 if (blk_mq_request_started(rq)) { 673 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 674 rq->rq_flags &= ~RQF_TIMED_OUT; 675 if (q->dma_drain_size && blk_rq_bytes(rq)) 676 rq->nr_phys_segments--; 677 } 678 } 679 680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 681 { 682 __blk_mq_requeue_request(rq); 683 684 /* this request will be re-inserted to io scheduler queue */ 685 blk_mq_sched_requeue_request(rq); 686 687 BUG_ON(blk_queued_rq(rq)); 688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 689 } 690 EXPORT_SYMBOL(blk_mq_requeue_request); 691 692 static void blk_mq_requeue_work(struct work_struct *work) 693 { 694 struct request_queue *q = 695 container_of(work, struct request_queue, requeue_work.work); 696 LIST_HEAD(rq_list); 697 struct request *rq, *next; 698 699 spin_lock_irq(&q->requeue_lock); 700 list_splice_init(&q->requeue_list, &rq_list); 701 spin_unlock_irq(&q->requeue_lock); 702 703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 704 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 705 continue; 706 707 rq->rq_flags &= ~RQF_SOFTBARRIER; 708 list_del_init(&rq->queuelist); 709 blk_mq_sched_insert_request(rq, true, false, false); 710 } 711 712 while (!list_empty(&rq_list)) { 713 rq = list_entry(rq_list.next, struct request, queuelist); 714 list_del_init(&rq->queuelist); 715 blk_mq_sched_insert_request(rq, false, false, false); 716 } 717 718 blk_mq_run_hw_queues(q, false); 719 } 720 721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 722 bool kick_requeue_list) 723 { 724 struct request_queue *q = rq->q; 725 unsigned long flags; 726 727 /* 728 * We abuse this flag that is otherwise used by the I/O scheduler to 729 * request head insertion from the workqueue. 730 */ 731 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 732 733 spin_lock_irqsave(&q->requeue_lock, flags); 734 if (at_head) { 735 rq->rq_flags |= RQF_SOFTBARRIER; 736 list_add(&rq->queuelist, &q->requeue_list); 737 } else { 738 list_add_tail(&rq->queuelist, &q->requeue_list); 739 } 740 spin_unlock_irqrestore(&q->requeue_lock, flags); 741 742 if (kick_requeue_list) 743 blk_mq_kick_requeue_list(q); 744 } 745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 746 747 void blk_mq_kick_requeue_list(struct request_queue *q) 748 { 749 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 750 } 751 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 752 753 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 754 unsigned long msecs) 755 { 756 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 757 msecs_to_jiffies(msecs)); 758 } 759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 760 761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 762 { 763 if (tag < tags->nr_tags) { 764 prefetch(tags->rqs[tag]); 765 return tags->rqs[tag]; 766 } 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(blk_mq_tag_to_rq); 771 772 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 773 { 774 req->rq_flags |= RQF_TIMED_OUT; 775 if (req->q->mq_ops->timeout) { 776 enum blk_eh_timer_return ret; 777 778 ret = req->q->mq_ops->timeout(req, reserved); 779 if (ret == BLK_EH_DONE) 780 return; 781 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 782 } 783 784 blk_add_timer(req); 785 } 786 787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 788 { 789 unsigned long deadline; 790 791 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 792 return false; 793 if (rq->rq_flags & RQF_TIMED_OUT) 794 return false; 795 796 deadline = blk_rq_deadline(rq); 797 if (time_after_eq(jiffies, deadline)) 798 return true; 799 800 if (*next == 0) 801 *next = deadline; 802 else if (time_after(*next, deadline)) 803 *next = deadline; 804 return false; 805 } 806 807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 808 struct request *rq, void *priv, bool reserved) 809 { 810 unsigned long *next = priv; 811 812 /* 813 * Just do a quick check if it is expired before locking the request in 814 * so we're not unnecessarilly synchronizing across CPUs. 815 */ 816 if (!blk_mq_req_expired(rq, next)) 817 return; 818 819 /* 820 * We have reason to believe the request may be expired. Take a 821 * reference on the request to lock this request lifetime into its 822 * currently allocated context to prevent it from being reallocated in 823 * the event the completion by-passes this timeout handler. 824 * 825 * If the reference was already released, then the driver beat the 826 * timeout handler to posting a natural completion. 827 */ 828 if (!refcount_inc_not_zero(&rq->ref)) 829 return; 830 831 /* 832 * The request is now locked and cannot be reallocated underneath the 833 * timeout handler's processing. Re-verify this exact request is truly 834 * expired; if it is not expired, then the request was completed and 835 * reallocated as a new request. 836 */ 837 if (blk_mq_req_expired(rq, next)) 838 blk_mq_rq_timed_out(rq, reserved); 839 if (refcount_dec_and_test(&rq->ref)) 840 __blk_mq_free_request(rq); 841 } 842 843 static void blk_mq_timeout_work(struct work_struct *work) 844 { 845 struct request_queue *q = 846 container_of(work, struct request_queue, timeout_work); 847 unsigned long next = 0; 848 struct blk_mq_hw_ctx *hctx; 849 int i; 850 851 /* A deadlock might occur if a request is stuck requiring a 852 * timeout at the same time a queue freeze is waiting 853 * completion, since the timeout code would not be able to 854 * acquire the queue reference here. 855 * 856 * That's why we don't use blk_queue_enter here; instead, we use 857 * percpu_ref_tryget directly, because we need to be able to 858 * obtain a reference even in the short window between the queue 859 * starting to freeze, by dropping the first reference in 860 * blk_freeze_queue_start, and the moment the last request is 861 * consumed, marked by the instant q_usage_counter reaches 862 * zero. 863 */ 864 if (!percpu_ref_tryget(&q->q_usage_counter)) 865 return; 866 867 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 868 869 if (next != 0) { 870 mod_timer(&q->timeout, next); 871 } else { 872 /* 873 * Request timeouts are handled as a forward rolling timer. If 874 * we end up here it means that no requests are pending and 875 * also that no request has been pending for a while. Mark 876 * each hctx as idle. 877 */ 878 queue_for_each_hw_ctx(q, hctx, i) { 879 /* the hctx may be unmapped, so check it here */ 880 if (blk_mq_hw_queue_mapped(hctx)) 881 blk_mq_tag_idle(hctx); 882 } 883 } 884 blk_queue_exit(q); 885 } 886 887 struct flush_busy_ctx_data { 888 struct blk_mq_hw_ctx *hctx; 889 struct list_head *list; 890 }; 891 892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 893 { 894 struct flush_busy_ctx_data *flush_data = data; 895 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 896 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 897 898 spin_lock(&ctx->lock); 899 list_splice_tail_init(&ctx->rq_list, flush_data->list); 900 sbitmap_clear_bit(sb, bitnr); 901 spin_unlock(&ctx->lock); 902 return true; 903 } 904 905 /* 906 * Process software queues that have been marked busy, splicing them 907 * to the for-dispatch 908 */ 909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 910 { 911 struct flush_busy_ctx_data data = { 912 .hctx = hctx, 913 .list = list, 914 }; 915 916 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 917 } 918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 919 920 struct dispatch_rq_data { 921 struct blk_mq_hw_ctx *hctx; 922 struct request *rq; 923 }; 924 925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 926 void *data) 927 { 928 struct dispatch_rq_data *dispatch_data = data; 929 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 930 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 931 932 spin_lock(&ctx->lock); 933 if (!list_empty(&ctx->rq_list)) { 934 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 935 list_del_init(&dispatch_data->rq->queuelist); 936 if (list_empty(&ctx->rq_list)) 937 sbitmap_clear_bit(sb, bitnr); 938 } 939 spin_unlock(&ctx->lock); 940 941 return !dispatch_data->rq; 942 } 943 944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 945 struct blk_mq_ctx *start) 946 { 947 unsigned off = start ? start->index_hw : 0; 948 struct dispatch_rq_data data = { 949 .hctx = hctx, 950 .rq = NULL, 951 }; 952 953 __sbitmap_for_each_set(&hctx->ctx_map, off, 954 dispatch_rq_from_ctx, &data); 955 956 return data.rq; 957 } 958 959 static inline unsigned int queued_to_index(unsigned int queued) 960 { 961 if (!queued) 962 return 0; 963 964 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 965 } 966 967 bool blk_mq_get_driver_tag(struct request *rq) 968 { 969 struct blk_mq_alloc_data data = { 970 .q = rq->q, 971 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 972 .flags = BLK_MQ_REQ_NOWAIT, 973 }; 974 bool shared; 975 976 if (rq->tag != -1) 977 goto done; 978 979 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 980 data.flags |= BLK_MQ_REQ_RESERVED; 981 982 shared = blk_mq_tag_busy(data.hctx); 983 rq->tag = blk_mq_get_tag(&data); 984 if (rq->tag >= 0) { 985 if (shared) { 986 rq->rq_flags |= RQF_MQ_INFLIGHT; 987 atomic_inc(&data.hctx->nr_active); 988 } 989 data.hctx->tags->rqs[rq->tag] = rq; 990 } 991 992 done: 993 return rq->tag != -1; 994 } 995 996 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 997 int flags, void *key) 998 { 999 struct blk_mq_hw_ctx *hctx; 1000 1001 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1002 1003 spin_lock(&hctx->dispatch_wait_lock); 1004 list_del_init(&wait->entry); 1005 spin_unlock(&hctx->dispatch_wait_lock); 1006 1007 blk_mq_run_hw_queue(hctx, true); 1008 return 1; 1009 } 1010 1011 /* 1012 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1013 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1014 * restart. For both cases, take care to check the condition again after 1015 * marking us as waiting. 1016 */ 1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1018 struct request *rq) 1019 { 1020 struct wait_queue_head *wq; 1021 wait_queue_entry_t *wait; 1022 bool ret; 1023 1024 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1025 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 1026 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 1027 1028 /* 1029 * It's possible that a tag was freed in the window between the 1030 * allocation failure and adding the hardware queue to the wait 1031 * queue. 1032 * 1033 * Don't clear RESTART here, someone else could have set it. 1034 * At most this will cost an extra queue run. 1035 */ 1036 return blk_mq_get_driver_tag(rq); 1037 } 1038 1039 wait = &hctx->dispatch_wait; 1040 if (!list_empty_careful(&wait->entry)) 1041 return false; 1042 1043 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait; 1044 1045 spin_lock_irq(&wq->lock); 1046 spin_lock(&hctx->dispatch_wait_lock); 1047 if (!list_empty(&wait->entry)) { 1048 spin_unlock(&hctx->dispatch_wait_lock); 1049 spin_unlock_irq(&wq->lock); 1050 return false; 1051 } 1052 1053 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1054 __add_wait_queue(wq, wait); 1055 1056 /* 1057 * It's possible that a tag was freed in the window between the 1058 * allocation failure and adding the hardware queue to the wait 1059 * queue. 1060 */ 1061 ret = blk_mq_get_driver_tag(rq); 1062 if (!ret) { 1063 spin_unlock(&hctx->dispatch_wait_lock); 1064 spin_unlock_irq(&wq->lock); 1065 return false; 1066 } 1067 1068 /* 1069 * We got a tag, remove ourselves from the wait queue to ensure 1070 * someone else gets the wakeup. 1071 */ 1072 list_del_init(&wait->entry); 1073 spin_unlock(&hctx->dispatch_wait_lock); 1074 spin_unlock_irq(&wq->lock); 1075 1076 return true; 1077 } 1078 1079 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1080 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1081 /* 1082 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1083 * - EWMA is one simple way to compute running average value 1084 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1085 * - take 4 as factor for avoiding to get too small(0) result, and this 1086 * factor doesn't matter because EWMA decreases exponentially 1087 */ 1088 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1089 { 1090 unsigned int ewma; 1091 1092 if (hctx->queue->elevator) 1093 return; 1094 1095 ewma = hctx->dispatch_busy; 1096 1097 if (!ewma && !busy) 1098 return; 1099 1100 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1101 if (busy) 1102 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1103 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1104 1105 hctx->dispatch_busy = ewma; 1106 } 1107 1108 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1109 1110 /* 1111 * Returns true if we did some work AND can potentially do more. 1112 */ 1113 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1114 bool got_budget) 1115 { 1116 struct blk_mq_hw_ctx *hctx; 1117 struct request *rq, *nxt; 1118 bool no_tag = false; 1119 int errors, queued; 1120 blk_status_t ret = BLK_STS_OK; 1121 1122 if (list_empty(list)) 1123 return false; 1124 1125 WARN_ON(!list_is_singular(list) && got_budget); 1126 1127 /* 1128 * Now process all the entries, sending them to the driver. 1129 */ 1130 errors = queued = 0; 1131 do { 1132 struct blk_mq_queue_data bd; 1133 1134 rq = list_first_entry(list, struct request, queuelist); 1135 1136 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 1137 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1138 break; 1139 1140 if (!blk_mq_get_driver_tag(rq)) { 1141 /* 1142 * The initial allocation attempt failed, so we need to 1143 * rerun the hardware queue when a tag is freed. The 1144 * waitqueue takes care of that. If the queue is run 1145 * before we add this entry back on the dispatch list, 1146 * we'll re-run it below. 1147 */ 1148 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1149 blk_mq_put_dispatch_budget(hctx); 1150 /* 1151 * For non-shared tags, the RESTART check 1152 * will suffice. 1153 */ 1154 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1155 no_tag = true; 1156 break; 1157 } 1158 } 1159 1160 list_del_init(&rq->queuelist); 1161 1162 bd.rq = rq; 1163 1164 /* 1165 * Flag last if we have no more requests, or if we have more 1166 * but can't assign a driver tag to it. 1167 */ 1168 if (list_empty(list)) 1169 bd.last = true; 1170 else { 1171 nxt = list_first_entry(list, struct request, queuelist); 1172 bd.last = !blk_mq_get_driver_tag(nxt); 1173 } 1174 1175 ret = q->mq_ops->queue_rq(hctx, &bd); 1176 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1177 /* 1178 * If an I/O scheduler has been configured and we got a 1179 * driver tag for the next request already, free it 1180 * again. 1181 */ 1182 if (!list_empty(list)) { 1183 nxt = list_first_entry(list, struct request, queuelist); 1184 blk_mq_put_driver_tag(nxt); 1185 } 1186 list_add(&rq->queuelist, list); 1187 __blk_mq_requeue_request(rq); 1188 break; 1189 } 1190 1191 if (unlikely(ret != BLK_STS_OK)) { 1192 errors++; 1193 blk_mq_end_request(rq, BLK_STS_IOERR); 1194 continue; 1195 } 1196 1197 queued++; 1198 } while (!list_empty(list)); 1199 1200 hctx->dispatched[queued_to_index(queued)]++; 1201 1202 /* 1203 * Any items that need requeuing? Stuff them into hctx->dispatch, 1204 * that is where we will continue on next queue run. 1205 */ 1206 if (!list_empty(list)) { 1207 bool needs_restart; 1208 1209 spin_lock(&hctx->lock); 1210 list_splice_init(list, &hctx->dispatch); 1211 spin_unlock(&hctx->lock); 1212 1213 /* 1214 * If SCHED_RESTART was set by the caller of this function and 1215 * it is no longer set that means that it was cleared by another 1216 * thread and hence that a queue rerun is needed. 1217 * 1218 * If 'no_tag' is set, that means that we failed getting 1219 * a driver tag with an I/O scheduler attached. If our dispatch 1220 * waitqueue is no longer active, ensure that we run the queue 1221 * AFTER adding our entries back to the list. 1222 * 1223 * If no I/O scheduler has been configured it is possible that 1224 * the hardware queue got stopped and restarted before requests 1225 * were pushed back onto the dispatch list. Rerun the queue to 1226 * avoid starvation. Notes: 1227 * - blk_mq_run_hw_queue() checks whether or not a queue has 1228 * been stopped before rerunning a queue. 1229 * - Some but not all block drivers stop a queue before 1230 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1231 * and dm-rq. 1232 * 1233 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1234 * bit is set, run queue after a delay to avoid IO stalls 1235 * that could otherwise occur if the queue is idle. 1236 */ 1237 needs_restart = blk_mq_sched_needs_restart(hctx); 1238 if (!needs_restart || 1239 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1240 blk_mq_run_hw_queue(hctx, true); 1241 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1242 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1243 1244 blk_mq_update_dispatch_busy(hctx, true); 1245 return false; 1246 } else 1247 blk_mq_update_dispatch_busy(hctx, false); 1248 1249 /* 1250 * If the host/device is unable to accept more work, inform the 1251 * caller of that. 1252 */ 1253 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1254 return false; 1255 1256 return (queued + errors) != 0; 1257 } 1258 1259 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1260 { 1261 int srcu_idx; 1262 1263 /* 1264 * We should be running this queue from one of the CPUs that 1265 * are mapped to it. 1266 * 1267 * There are at least two related races now between setting 1268 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1269 * __blk_mq_run_hw_queue(): 1270 * 1271 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1272 * but later it becomes online, then this warning is harmless 1273 * at all 1274 * 1275 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1276 * but later it becomes offline, then the warning can't be 1277 * triggered, and we depend on blk-mq timeout handler to 1278 * handle dispatched requests to this hctx 1279 */ 1280 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1281 cpu_online(hctx->next_cpu)) { 1282 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1283 raw_smp_processor_id(), 1284 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1285 dump_stack(); 1286 } 1287 1288 /* 1289 * We can't run the queue inline with ints disabled. Ensure that 1290 * we catch bad users of this early. 1291 */ 1292 WARN_ON_ONCE(in_interrupt()); 1293 1294 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1295 1296 hctx_lock(hctx, &srcu_idx); 1297 blk_mq_sched_dispatch_requests(hctx); 1298 hctx_unlock(hctx, srcu_idx); 1299 } 1300 1301 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1302 { 1303 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1304 1305 if (cpu >= nr_cpu_ids) 1306 cpu = cpumask_first(hctx->cpumask); 1307 return cpu; 1308 } 1309 1310 /* 1311 * It'd be great if the workqueue API had a way to pass 1312 * in a mask and had some smarts for more clever placement. 1313 * For now we just round-robin here, switching for every 1314 * BLK_MQ_CPU_WORK_BATCH queued items. 1315 */ 1316 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1317 { 1318 bool tried = false; 1319 int next_cpu = hctx->next_cpu; 1320 1321 if (hctx->queue->nr_hw_queues == 1) 1322 return WORK_CPU_UNBOUND; 1323 1324 if (--hctx->next_cpu_batch <= 0) { 1325 select_cpu: 1326 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1327 cpu_online_mask); 1328 if (next_cpu >= nr_cpu_ids) 1329 next_cpu = blk_mq_first_mapped_cpu(hctx); 1330 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1331 } 1332 1333 /* 1334 * Do unbound schedule if we can't find a online CPU for this hctx, 1335 * and it should only happen in the path of handling CPU DEAD. 1336 */ 1337 if (!cpu_online(next_cpu)) { 1338 if (!tried) { 1339 tried = true; 1340 goto select_cpu; 1341 } 1342 1343 /* 1344 * Make sure to re-select CPU next time once after CPUs 1345 * in hctx->cpumask become online again. 1346 */ 1347 hctx->next_cpu = next_cpu; 1348 hctx->next_cpu_batch = 1; 1349 return WORK_CPU_UNBOUND; 1350 } 1351 1352 hctx->next_cpu = next_cpu; 1353 return next_cpu; 1354 } 1355 1356 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1357 unsigned long msecs) 1358 { 1359 if (unlikely(blk_mq_hctx_stopped(hctx))) 1360 return; 1361 1362 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1363 int cpu = get_cpu(); 1364 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1365 __blk_mq_run_hw_queue(hctx); 1366 put_cpu(); 1367 return; 1368 } 1369 1370 put_cpu(); 1371 } 1372 1373 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1374 msecs_to_jiffies(msecs)); 1375 } 1376 1377 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1378 { 1379 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1380 } 1381 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1382 1383 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1384 { 1385 int srcu_idx; 1386 bool need_run; 1387 1388 /* 1389 * When queue is quiesced, we may be switching io scheduler, or 1390 * updating nr_hw_queues, or other things, and we can't run queue 1391 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1392 * 1393 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1394 * quiesced. 1395 */ 1396 hctx_lock(hctx, &srcu_idx); 1397 need_run = !blk_queue_quiesced(hctx->queue) && 1398 blk_mq_hctx_has_pending(hctx); 1399 hctx_unlock(hctx, srcu_idx); 1400 1401 if (need_run) { 1402 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1403 return true; 1404 } 1405 1406 return false; 1407 } 1408 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1409 1410 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1411 { 1412 struct blk_mq_hw_ctx *hctx; 1413 int i; 1414 1415 queue_for_each_hw_ctx(q, hctx, i) { 1416 if (blk_mq_hctx_stopped(hctx)) 1417 continue; 1418 1419 blk_mq_run_hw_queue(hctx, async); 1420 } 1421 } 1422 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1423 1424 /** 1425 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1426 * @q: request queue. 1427 * 1428 * The caller is responsible for serializing this function against 1429 * blk_mq_{start,stop}_hw_queue(). 1430 */ 1431 bool blk_mq_queue_stopped(struct request_queue *q) 1432 { 1433 struct blk_mq_hw_ctx *hctx; 1434 int i; 1435 1436 queue_for_each_hw_ctx(q, hctx, i) 1437 if (blk_mq_hctx_stopped(hctx)) 1438 return true; 1439 1440 return false; 1441 } 1442 EXPORT_SYMBOL(blk_mq_queue_stopped); 1443 1444 /* 1445 * This function is often used for pausing .queue_rq() by driver when 1446 * there isn't enough resource or some conditions aren't satisfied, and 1447 * BLK_STS_RESOURCE is usually returned. 1448 * 1449 * We do not guarantee that dispatch can be drained or blocked 1450 * after blk_mq_stop_hw_queue() returns. Please use 1451 * blk_mq_quiesce_queue() for that requirement. 1452 */ 1453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1454 { 1455 cancel_delayed_work(&hctx->run_work); 1456 1457 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1458 } 1459 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1460 1461 /* 1462 * This function is often used for pausing .queue_rq() by driver when 1463 * there isn't enough resource or some conditions aren't satisfied, and 1464 * BLK_STS_RESOURCE is usually returned. 1465 * 1466 * We do not guarantee that dispatch can be drained or blocked 1467 * after blk_mq_stop_hw_queues() returns. Please use 1468 * blk_mq_quiesce_queue() for that requirement. 1469 */ 1470 void blk_mq_stop_hw_queues(struct request_queue *q) 1471 { 1472 struct blk_mq_hw_ctx *hctx; 1473 int i; 1474 1475 queue_for_each_hw_ctx(q, hctx, i) 1476 blk_mq_stop_hw_queue(hctx); 1477 } 1478 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1479 1480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1481 { 1482 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1483 1484 blk_mq_run_hw_queue(hctx, false); 1485 } 1486 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1487 1488 void blk_mq_start_hw_queues(struct request_queue *q) 1489 { 1490 struct blk_mq_hw_ctx *hctx; 1491 int i; 1492 1493 queue_for_each_hw_ctx(q, hctx, i) 1494 blk_mq_start_hw_queue(hctx); 1495 } 1496 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1497 1498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1499 { 1500 if (!blk_mq_hctx_stopped(hctx)) 1501 return; 1502 1503 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1504 blk_mq_run_hw_queue(hctx, async); 1505 } 1506 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1507 1508 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1509 { 1510 struct blk_mq_hw_ctx *hctx; 1511 int i; 1512 1513 queue_for_each_hw_ctx(q, hctx, i) 1514 blk_mq_start_stopped_hw_queue(hctx, async); 1515 } 1516 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1517 1518 static void blk_mq_run_work_fn(struct work_struct *work) 1519 { 1520 struct blk_mq_hw_ctx *hctx; 1521 1522 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1523 1524 /* 1525 * If we are stopped, don't run the queue. 1526 */ 1527 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1528 return; 1529 1530 __blk_mq_run_hw_queue(hctx); 1531 } 1532 1533 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1534 struct request *rq, 1535 bool at_head) 1536 { 1537 struct blk_mq_ctx *ctx = rq->mq_ctx; 1538 1539 lockdep_assert_held(&ctx->lock); 1540 1541 trace_block_rq_insert(hctx->queue, rq); 1542 1543 if (at_head) 1544 list_add(&rq->queuelist, &ctx->rq_list); 1545 else 1546 list_add_tail(&rq->queuelist, &ctx->rq_list); 1547 } 1548 1549 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1550 bool at_head) 1551 { 1552 struct blk_mq_ctx *ctx = rq->mq_ctx; 1553 1554 lockdep_assert_held(&ctx->lock); 1555 1556 __blk_mq_insert_req_list(hctx, rq, at_head); 1557 blk_mq_hctx_mark_pending(hctx, ctx); 1558 } 1559 1560 /* 1561 * Should only be used carefully, when the caller knows we want to 1562 * bypass a potential IO scheduler on the target device. 1563 */ 1564 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1565 { 1566 struct blk_mq_ctx *ctx = rq->mq_ctx; 1567 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1568 1569 spin_lock(&hctx->lock); 1570 list_add_tail(&rq->queuelist, &hctx->dispatch); 1571 spin_unlock(&hctx->lock); 1572 1573 if (run_queue) 1574 blk_mq_run_hw_queue(hctx, false); 1575 } 1576 1577 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1578 struct list_head *list) 1579 1580 { 1581 struct request *rq; 1582 1583 /* 1584 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1585 * offline now 1586 */ 1587 list_for_each_entry(rq, list, queuelist) { 1588 BUG_ON(rq->mq_ctx != ctx); 1589 trace_block_rq_insert(hctx->queue, rq); 1590 } 1591 1592 spin_lock(&ctx->lock); 1593 list_splice_tail_init(list, &ctx->rq_list); 1594 blk_mq_hctx_mark_pending(hctx, ctx); 1595 spin_unlock(&ctx->lock); 1596 } 1597 1598 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1599 { 1600 struct request *rqa = container_of(a, struct request, queuelist); 1601 struct request *rqb = container_of(b, struct request, queuelist); 1602 1603 return !(rqa->mq_ctx < rqb->mq_ctx || 1604 (rqa->mq_ctx == rqb->mq_ctx && 1605 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1606 } 1607 1608 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1609 { 1610 struct blk_mq_ctx *this_ctx; 1611 struct request_queue *this_q; 1612 struct request *rq; 1613 LIST_HEAD(list); 1614 LIST_HEAD(ctx_list); 1615 unsigned int depth; 1616 1617 list_splice_init(&plug->mq_list, &list); 1618 1619 list_sort(NULL, &list, plug_ctx_cmp); 1620 1621 this_q = NULL; 1622 this_ctx = NULL; 1623 depth = 0; 1624 1625 while (!list_empty(&list)) { 1626 rq = list_entry_rq(list.next); 1627 list_del_init(&rq->queuelist); 1628 BUG_ON(!rq->q); 1629 if (rq->mq_ctx != this_ctx) { 1630 if (this_ctx) { 1631 trace_block_unplug(this_q, depth, !from_schedule); 1632 blk_mq_sched_insert_requests(this_q, this_ctx, 1633 &ctx_list, 1634 from_schedule); 1635 } 1636 1637 this_ctx = rq->mq_ctx; 1638 this_q = rq->q; 1639 depth = 0; 1640 } 1641 1642 depth++; 1643 list_add_tail(&rq->queuelist, &ctx_list); 1644 } 1645 1646 /* 1647 * If 'this_ctx' is set, we know we have entries to complete 1648 * on 'ctx_list'. Do those. 1649 */ 1650 if (this_ctx) { 1651 trace_block_unplug(this_q, depth, !from_schedule); 1652 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1653 from_schedule); 1654 } 1655 } 1656 1657 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1658 { 1659 blk_init_request_from_bio(rq, bio); 1660 1661 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1662 1663 blk_account_io_start(rq, true); 1664 } 1665 1666 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1667 { 1668 if (rq->tag != -1) 1669 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1670 1671 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1672 } 1673 1674 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1675 struct request *rq, 1676 blk_qc_t *cookie) 1677 { 1678 struct request_queue *q = rq->q; 1679 struct blk_mq_queue_data bd = { 1680 .rq = rq, 1681 .last = true, 1682 }; 1683 blk_qc_t new_cookie; 1684 blk_status_t ret; 1685 1686 new_cookie = request_to_qc_t(hctx, rq); 1687 1688 /* 1689 * For OK queue, we are done. For error, caller may kill it. 1690 * Any other error (busy), just add it to our list as we 1691 * previously would have done. 1692 */ 1693 ret = q->mq_ops->queue_rq(hctx, &bd); 1694 switch (ret) { 1695 case BLK_STS_OK: 1696 blk_mq_update_dispatch_busy(hctx, false); 1697 *cookie = new_cookie; 1698 break; 1699 case BLK_STS_RESOURCE: 1700 case BLK_STS_DEV_RESOURCE: 1701 blk_mq_update_dispatch_busy(hctx, true); 1702 __blk_mq_requeue_request(rq); 1703 break; 1704 default: 1705 blk_mq_update_dispatch_busy(hctx, false); 1706 *cookie = BLK_QC_T_NONE; 1707 break; 1708 } 1709 1710 return ret; 1711 } 1712 1713 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1714 struct request *rq, 1715 blk_qc_t *cookie, 1716 bool bypass_insert) 1717 { 1718 struct request_queue *q = rq->q; 1719 bool run_queue = true; 1720 1721 /* 1722 * RCU or SRCU read lock is needed before checking quiesced flag. 1723 * 1724 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1725 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1726 * and avoid driver to try to dispatch again. 1727 */ 1728 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1729 run_queue = false; 1730 bypass_insert = false; 1731 goto insert; 1732 } 1733 1734 if (q->elevator && !bypass_insert) 1735 goto insert; 1736 1737 if (!blk_mq_get_dispatch_budget(hctx)) 1738 goto insert; 1739 1740 if (!blk_mq_get_driver_tag(rq)) { 1741 blk_mq_put_dispatch_budget(hctx); 1742 goto insert; 1743 } 1744 1745 return __blk_mq_issue_directly(hctx, rq, cookie); 1746 insert: 1747 if (bypass_insert) 1748 return BLK_STS_RESOURCE; 1749 1750 blk_mq_sched_insert_request(rq, false, run_queue, false); 1751 return BLK_STS_OK; 1752 } 1753 1754 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1755 struct request *rq, blk_qc_t *cookie) 1756 { 1757 blk_status_t ret; 1758 int srcu_idx; 1759 1760 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1761 1762 hctx_lock(hctx, &srcu_idx); 1763 1764 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1765 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1766 blk_mq_sched_insert_request(rq, false, true, false); 1767 else if (ret != BLK_STS_OK) 1768 blk_mq_end_request(rq, ret); 1769 1770 hctx_unlock(hctx, srcu_idx); 1771 } 1772 1773 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1774 { 1775 blk_status_t ret; 1776 int srcu_idx; 1777 blk_qc_t unused_cookie; 1778 struct blk_mq_ctx *ctx = rq->mq_ctx; 1779 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1780 1781 hctx_lock(hctx, &srcu_idx); 1782 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1783 hctx_unlock(hctx, srcu_idx); 1784 1785 return ret; 1786 } 1787 1788 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1789 struct list_head *list) 1790 { 1791 while (!list_empty(list)) { 1792 blk_status_t ret; 1793 struct request *rq = list_first_entry(list, struct request, 1794 queuelist); 1795 1796 list_del_init(&rq->queuelist); 1797 ret = blk_mq_request_issue_directly(rq); 1798 if (ret != BLK_STS_OK) { 1799 if (ret == BLK_STS_RESOURCE || 1800 ret == BLK_STS_DEV_RESOURCE) { 1801 list_add(&rq->queuelist, list); 1802 break; 1803 } 1804 blk_mq_end_request(rq, ret); 1805 } 1806 } 1807 } 1808 1809 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1810 { 1811 const int is_sync = op_is_sync(bio->bi_opf); 1812 const int is_flush_fua = op_is_flush(bio->bi_opf); 1813 struct blk_mq_alloc_data data = { .flags = 0 }; 1814 struct request *rq; 1815 unsigned int request_count = 0; 1816 struct blk_plug *plug; 1817 struct request *same_queue_rq = NULL; 1818 blk_qc_t cookie; 1819 1820 blk_queue_bounce(q, &bio); 1821 1822 blk_queue_split(q, &bio); 1823 1824 if (!bio_integrity_prep(bio)) 1825 return BLK_QC_T_NONE; 1826 1827 if (!is_flush_fua && !blk_queue_nomerges(q) && 1828 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1829 return BLK_QC_T_NONE; 1830 1831 if (blk_mq_sched_bio_merge(q, bio)) 1832 return BLK_QC_T_NONE; 1833 1834 rq_qos_throttle(q, bio, NULL); 1835 1836 trace_block_getrq(q, bio, bio->bi_opf); 1837 1838 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1839 if (unlikely(!rq)) { 1840 rq_qos_cleanup(q, bio); 1841 if (bio->bi_opf & REQ_NOWAIT) 1842 bio_wouldblock_error(bio); 1843 return BLK_QC_T_NONE; 1844 } 1845 1846 rq_qos_track(q, rq, bio); 1847 1848 cookie = request_to_qc_t(data.hctx, rq); 1849 1850 plug = current->plug; 1851 if (unlikely(is_flush_fua)) { 1852 blk_mq_put_ctx(data.ctx); 1853 blk_mq_bio_to_request(rq, bio); 1854 1855 /* bypass scheduler for flush rq */ 1856 blk_insert_flush(rq); 1857 blk_mq_run_hw_queue(data.hctx, true); 1858 } else if (plug && q->nr_hw_queues == 1) { 1859 struct request *last = NULL; 1860 1861 blk_mq_put_ctx(data.ctx); 1862 blk_mq_bio_to_request(rq, bio); 1863 1864 /* 1865 * @request_count may become stale because of schedule 1866 * out, so check the list again. 1867 */ 1868 if (list_empty(&plug->mq_list)) 1869 request_count = 0; 1870 else if (blk_queue_nomerges(q)) 1871 request_count = blk_plug_queued_count(q); 1872 1873 if (!request_count) 1874 trace_block_plug(q); 1875 else 1876 last = list_entry_rq(plug->mq_list.prev); 1877 1878 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1879 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1880 blk_flush_plug_list(plug, false); 1881 trace_block_plug(q); 1882 } 1883 1884 list_add_tail(&rq->queuelist, &plug->mq_list); 1885 } else if (plug && !blk_queue_nomerges(q)) { 1886 blk_mq_bio_to_request(rq, bio); 1887 1888 /* 1889 * We do limited plugging. If the bio can be merged, do that. 1890 * Otherwise the existing request in the plug list will be 1891 * issued. So the plug list will have one request at most 1892 * The plug list might get flushed before this. If that happens, 1893 * the plug list is empty, and same_queue_rq is invalid. 1894 */ 1895 if (list_empty(&plug->mq_list)) 1896 same_queue_rq = NULL; 1897 if (same_queue_rq) 1898 list_del_init(&same_queue_rq->queuelist); 1899 list_add_tail(&rq->queuelist, &plug->mq_list); 1900 1901 blk_mq_put_ctx(data.ctx); 1902 1903 if (same_queue_rq) { 1904 data.hctx = blk_mq_map_queue(q, 1905 same_queue_rq->mq_ctx->cpu); 1906 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1907 &cookie); 1908 } 1909 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 1910 !data.hctx->dispatch_busy)) { 1911 blk_mq_put_ctx(data.ctx); 1912 blk_mq_bio_to_request(rq, bio); 1913 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1914 } else { 1915 blk_mq_put_ctx(data.ctx); 1916 blk_mq_bio_to_request(rq, bio); 1917 blk_mq_sched_insert_request(rq, false, true, true); 1918 } 1919 1920 return cookie; 1921 } 1922 1923 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1924 unsigned int hctx_idx) 1925 { 1926 struct page *page; 1927 1928 if (tags->rqs && set->ops->exit_request) { 1929 int i; 1930 1931 for (i = 0; i < tags->nr_tags; i++) { 1932 struct request *rq = tags->static_rqs[i]; 1933 1934 if (!rq) 1935 continue; 1936 set->ops->exit_request(set, rq, hctx_idx); 1937 tags->static_rqs[i] = NULL; 1938 } 1939 } 1940 1941 while (!list_empty(&tags->page_list)) { 1942 page = list_first_entry(&tags->page_list, struct page, lru); 1943 list_del_init(&page->lru); 1944 /* 1945 * Remove kmemleak object previously allocated in 1946 * blk_mq_init_rq_map(). 1947 */ 1948 kmemleak_free(page_address(page)); 1949 __free_pages(page, page->private); 1950 } 1951 } 1952 1953 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1954 { 1955 kfree(tags->rqs); 1956 tags->rqs = NULL; 1957 kfree(tags->static_rqs); 1958 tags->static_rqs = NULL; 1959 1960 blk_mq_free_tags(tags); 1961 } 1962 1963 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1964 unsigned int hctx_idx, 1965 unsigned int nr_tags, 1966 unsigned int reserved_tags) 1967 { 1968 struct blk_mq_tags *tags; 1969 int node; 1970 1971 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1972 if (node == NUMA_NO_NODE) 1973 node = set->numa_node; 1974 1975 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1976 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1977 if (!tags) 1978 return NULL; 1979 1980 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 1981 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1982 node); 1983 if (!tags->rqs) { 1984 blk_mq_free_tags(tags); 1985 return NULL; 1986 } 1987 1988 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 1989 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1990 node); 1991 if (!tags->static_rqs) { 1992 kfree(tags->rqs); 1993 blk_mq_free_tags(tags); 1994 return NULL; 1995 } 1996 1997 return tags; 1998 } 1999 2000 static size_t order_to_size(unsigned int order) 2001 { 2002 return (size_t)PAGE_SIZE << order; 2003 } 2004 2005 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2006 unsigned int hctx_idx, int node) 2007 { 2008 int ret; 2009 2010 if (set->ops->init_request) { 2011 ret = set->ops->init_request(set, rq, hctx_idx, node); 2012 if (ret) 2013 return ret; 2014 } 2015 2016 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2017 return 0; 2018 } 2019 2020 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2021 unsigned int hctx_idx, unsigned int depth) 2022 { 2023 unsigned int i, j, entries_per_page, max_order = 4; 2024 size_t rq_size, left; 2025 int node; 2026 2027 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2028 if (node == NUMA_NO_NODE) 2029 node = set->numa_node; 2030 2031 INIT_LIST_HEAD(&tags->page_list); 2032 2033 /* 2034 * rq_size is the size of the request plus driver payload, rounded 2035 * to the cacheline size 2036 */ 2037 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2038 cache_line_size()); 2039 left = rq_size * depth; 2040 2041 for (i = 0; i < depth; ) { 2042 int this_order = max_order; 2043 struct page *page; 2044 int to_do; 2045 void *p; 2046 2047 while (this_order && left < order_to_size(this_order - 1)) 2048 this_order--; 2049 2050 do { 2051 page = alloc_pages_node(node, 2052 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2053 this_order); 2054 if (page) 2055 break; 2056 if (!this_order--) 2057 break; 2058 if (order_to_size(this_order) < rq_size) 2059 break; 2060 } while (1); 2061 2062 if (!page) 2063 goto fail; 2064 2065 page->private = this_order; 2066 list_add_tail(&page->lru, &tags->page_list); 2067 2068 p = page_address(page); 2069 /* 2070 * Allow kmemleak to scan these pages as they contain pointers 2071 * to additional allocations like via ops->init_request(). 2072 */ 2073 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2074 entries_per_page = order_to_size(this_order) / rq_size; 2075 to_do = min(entries_per_page, depth - i); 2076 left -= to_do * rq_size; 2077 for (j = 0; j < to_do; j++) { 2078 struct request *rq = p; 2079 2080 tags->static_rqs[i] = rq; 2081 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2082 tags->static_rqs[i] = NULL; 2083 goto fail; 2084 } 2085 2086 p += rq_size; 2087 i++; 2088 } 2089 } 2090 return 0; 2091 2092 fail: 2093 blk_mq_free_rqs(set, tags, hctx_idx); 2094 return -ENOMEM; 2095 } 2096 2097 /* 2098 * 'cpu' is going away. splice any existing rq_list entries from this 2099 * software queue to the hw queue dispatch list, and ensure that it 2100 * gets run. 2101 */ 2102 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2103 { 2104 struct blk_mq_hw_ctx *hctx; 2105 struct blk_mq_ctx *ctx; 2106 LIST_HEAD(tmp); 2107 2108 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2109 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2110 2111 spin_lock(&ctx->lock); 2112 if (!list_empty(&ctx->rq_list)) { 2113 list_splice_init(&ctx->rq_list, &tmp); 2114 blk_mq_hctx_clear_pending(hctx, ctx); 2115 } 2116 spin_unlock(&ctx->lock); 2117 2118 if (list_empty(&tmp)) 2119 return 0; 2120 2121 spin_lock(&hctx->lock); 2122 list_splice_tail_init(&tmp, &hctx->dispatch); 2123 spin_unlock(&hctx->lock); 2124 2125 blk_mq_run_hw_queue(hctx, true); 2126 return 0; 2127 } 2128 2129 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2130 { 2131 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2132 &hctx->cpuhp_dead); 2133 } 2134 2135 /* hctx->ctxs will be freed in queue's release handler */ 2136 static void blk_mq_exit_hctx(struct request_queue *q, 2137 struct blk_mq_tag_set *set, 2138 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2139 { 2140 blk_mq_debugfs_unregister_hctx(hctx); 2141 2142 if (blk_mq_hw_queue_mapped(hctx)) 2143 blk_mq_tag_idle(hctx); 2144 2145 if (set->ops->exit_request) 2146 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2147 2148 if (set->ops->exit_hctx) 2149 set->ops->exit_hctx(hctx, hctx_idx); 2150 2151 if (hctx->flags & BLK_MQ_F_BLOCKING) 2152 cleanup_srcu_struct(hctx->srcu); 2153 2154 blk_mq_remove_cpuhp(hctx); 2155 blk_free_flush_queue(hctx->fq); 2156 sbitmap_free(&hctx->ctx_map); 2157 } 2158 2159 static void blk_mq_exit_hw_queues(struct request_queue *q, 2160 struct blk_mq_tag_set *set, int nr_queue) 2161 { 2162 struct blk_mq_hw_ctx *hctx; 2163 unsigned int i; 2164 2165 queue_for_each_hw_ctx(q, hctx, i) { 2166 if (i == nr_queue) 2167 break; 2168 blk_mq_exit_hctx(q, set, hctx, i); 2169 } 2170 } 2171 2172 static int blk_mq_init_hctx(struct request_queue *q, 2173 struct blk_mq_tag_set *set, 2174 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2175 { 2176 int node; 2177 2178 node = hctx->numa_node; 2179 if (node == NUMA_NO_NODE) 2180 node = hctx->numa_node = set->numa_node; 2181 2182 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2183 spin_lock_init(&hctx->lock); 2184 INIT_LIST_HEAD(&hctx->dispatch); 2185 hctx->queue = q; 2186 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2187 2188 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2189 2190 hctx->tags = set->tags[hctx_idx]; 2191 2192 /* 2193 * Allocate space for all possible cpus to avoid allocation at 2194 * runtime 2195 */ 2196 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2197 GFP_KERNEL, node); 2198 if (!hctx->ctxs) 2199 goto unregister_cpu_notifier; 2200 2201 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2202 node)) 2203 goto free_ctxs; 2204 2205 hctx->nr_ctx = 0; 2206 2207 spin_lock_init(&hctx->dispatch_wait_lock); 2208 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2209 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2210 2211 if (set->ops->init_hctx && 2212 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2213 goto free_bitmap; 2214 2215 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2216 if (!hctx->fq) 2217 goto exit_hctx; 2218 2219 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2220 goto free_fq; 2221 2222 if (hctx->flags & BLK_MQ_F_BLOCKING) 2223 init_srcu_struct(hctx->srcu); 2224 2225 blk_mq_debugfs_register_hctx(q, hctx); 2226 2227 return 0; 2228 2229 free_fq: 2230 kfree(hctx->fq); 2231 exit_hctx: 2232 if (set->ops->exit_hctx) 2233 set->ops->exit_hctx(hctx, hctx_idx); 2234 free_bitmap: 2235 sbitmap_free(&hctx->ctx_map); 2236 free_ctxs: 2237 kfree(hctx->ctxs); 2238 unregister_cpu_notifier: 2239 blk_mq_remove_cpuhp(hctx); 2240 return -1; 2241 } 2242 2243 static void blk_mq_init_cpu_queues(struct request_queue *q, 2244 unsigned int nr_hw_queues) 2245 { 2246 unsigned int i; 2247 2248 for_each_possible_cpu(i) { 2249 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2250 struct blk_mq_hw_ctx *hctx; 2251 2252 __ctx->cpu = i; 2253 spin_lock_init(&__ctx->lock); 2254 INIT_LIST_HEAD(&__ctx->rq_list); 2255 __ctx->queue = q; 2256 2257 /* 2258 * Set local node, IFF we have more than one hw queue. If 2259 * not, we remain on the home node of the device 2260 */ 2261 hctx = blk_mq_map_queue(q, i); 2262 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2263 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2264 } 2265 } 2266 2267 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2268 { 2269 int ret = 0; 2270 2271 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2272 set->queue_depth, set->reserved_tags); 2273 if (!set->tags[hctx_idx]) 2274 return false; 2275 2276 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2277 set->queue_depth); 2278 if (!ret) 2279 return true; 2280 2281 blk_mq_free_rq_map(set->tags[hctx_idx]); 2282 set->tags[hctx_idx] = NULL; 2283 return false; 2284 } 2285 2286 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2287 unsigned int hctx_idx) 2288 { 2289 if (set->tags[hctx_idx]) { 2290 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2291 blk_mq_free_rq_map(set->tags[hctx_idx]); 2292 set->tags[hctx_idx] = NULL; 2293 } 2294 } 2295 2296 static void blk_mq_map_swqueue(struct request_queue *q) 2297 { 2298 unsigned int i, hctx_idx; 2299 struct blk_mq_hw_ctx *hctx; 2300 struct blk_mq_ctx *ctx; 2301 struct blk_mq_tag_set *set = q->tag_set; 2302 2303 /* 2304 * Avoid others reading imcomplete hctx->cpumask through sysfs 2305 */ 2306 mutex_lock(&q->sysfs_lock); 2307 2308 queue_for_each_hw_ctx(q, hctx, i) { 2309 cpumask_clear(hctx->cpumask); 2310 hctx->nr_ctx = 0; 2311 hctx->dispatch_from = NULL; 2312 } 2313 2314 /* 2315 * Map software to hardware queues. 2316 * 2317 * If the cpu isn't present, the cpu is mapped to first hctx. 2318 */ 2319 for_each_possible_cpu(i) { 2320 hctx_idx = q->mq_map[i]; 2321 /* unmapped hw queue can be remapped after CPU topo changed */ 2322 if (!set->tags[hctx_idx] && 2323 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2324 /* 2325 * If tags initialization fail for some hctx, 2326 * that hctx won't be brought online. In this 2327 * case, remap the current ctx to hctx[0] which 2328 * is guaranteed to always have tags allocated 2329 */ 2330 q->mq_map[i] = 0; 2331 } 2332 2333 ctx = per_cpu_ptr(q->queue_ctx, i); 2334 hctx = blk_mq_map_queue(q, i); 2335 2336 cpumask_set_cpu(i, hctx->cpumask); 2337 ctx->index_hw = hctx->nr_ctx; 2338 hctx->ctxs[hctx->nr_ctx++] = ctx; 2339 } 2340 2341 mutex_unlock(&q->sysfs_lock); 2342 2343 queue_for_each_hw_ctx(q, hctx, i) { 2344 /* 2345 * If no software queues are mapped to this hardware queue, 2346 * disable it and free the request entries. 2347 */ 2348 if (!hctx->nr_ctx) { 2349 /* Never unmap queue 0. We need it as a 2350 * fallback in case of a new remap fails 2351 * allocation 2352 */ 2353 if (i && set->tags[i]) 2354 blk_mq_free_map_and_requests(set, i); 2355 2356 hctx->tags = NULL; 2357 continue; 2358 } 2359 2360 hctx->tags = set->tags[i]; 2361 WARN_ON(!hctx->tags); 2362 2363 /* 2364 * Set the map size to the number of mapped software queues. 2365 * This is more accurate and more efficient than looping 2366 * over all possibly mapped software queues. 2367 */ 2368 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2369 2370 /* 2371 * Initialize batch roundrobin counts 2372 */ 2373 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2374 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2375 } 2376 } 2377 2378 /* 2379 * Caller needs to ensure that we're either frozen/quiesced, or that 2380 * the queue isn't live yet. 2381 */ 2382 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2383 { 2384 struct blk_mq_hw_ctx *hctx; 2385 int i; 2386 2387 queue_for_each_hw_ctx(q, hctx, i) { 2388 if (shared) 2389 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2390 else 2391 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2392 } 2393 } 2394 2395 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2396 bool shared) 2397 { 2398 struct request_queue *q; 2399 2400 lockdep_assert_held(&set->tag_list_lock); 2401 2402 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2403 blk_mq_freeze_queue(q); 2404 queue_set_hctx_shared(q, shared); 2405 blk_mq_unfreeze_queue(q); 2406 } 2407 } 2408 2409 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2410 { 2411 struct blk_mq_tag_set *set = q->tag_set; 2412 2413 mutex_lock(&set->tag_list_lock); 2414 list_del_rcu(&q->tag_set_list); 2415 if (list_is_singular(&set->tag_list)) { 2416 /* just transitioned to unshared */ 2417 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2418 /* update existing queue */ 2419 blk_mq_update_tag_set_depth(set, false); 2420 } 2421 mutex_unlock(&set->tag_list_lock); 2422 INIT_LIST_HEAD(&q->tag_set_list); 2423 } 2424 2425 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2426 struct request_queue *q) 2427 { 2428 q->tag_set = set; 2429 2430 mutex_lock(&set->tag_list_lock); 2431 2432 /* 2433 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2434 */ 2435 if (!list_empty(&set->tag_list) && 2436 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2437 set->flags |= BLK_MQ_F_TAG_SHARED; 2438 /* update existing queue */ 2439 blk_mq_update_tag_set_depth(set, true); 2440 } 2441 if (set->flags & BLK_MQ_F_TAG_SHARED) 2442 queue_set_hctx_shared(q, true); 2443 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2444 2445 mutex_unlock(&set->tag_list_lock); 2446 } 2447 2448 /* 2449 * It is the actual release handler for mq, but we do it from 2450 * request queue's release handler for avoiding use-after-free 2451 * and headache because q->mq_kobj shouldn't have been introduced, 2452 * but we can't group ctx/kctx kobj without it. 2453 */ 2454 void blk_mq_release(struct request_queue *q) 2455 { 2456 struct blk_mq_hw_ctx *hctx; 2457 unsigned int i; 2458 2459 /* hctx kobj stays in hctx */ 2460 queue_for_each_hw_ctx(q, hctx, i) { 2461 if (!hctx) 2462 continue; 2463 kobject_put(&hctx->kobj); 2464 } 2465 2466 q->mq_map = NULL; 2467 2468 kfree(q->queue_hw_ctx); 2469 2470 /* 2471 * release .mq_kobj and sw queue's kobject now because 2472 * both share lifetime with request queue. 2473 */ 2474 blk_mq_sysfs_deinit(q); 2475 2476 free_percpu(q->queue_ctx); 2477 } 2478 2479 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2480 { 2481 struct request_queue *uninit_q, *q; 2482 2483 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL); 2484 if (!uninit_q) 2485 return ERR_PTR(-ENOMEM); 2486 2487 q = blk_mq_init_allocated_queue(set, uninit_q); 2488 if (IS_ERR(q)) 2489 blk_cleanup_queue(uninit_q); 2490 2491 return q; 2492 } 2493 EXPORT_SYMBOL(blk_mq_init_queue); 2494 2495 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2496 { 2497 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2498 2499 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2500 __alignof__(struct blk_mq_hw_ctx)) != 2501 sizeof(struct blk_mq_hw_ctx)); 2502 2503 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2504 hw_ctx_size += sizeof(struct srcu_struct); 2505 2506 return hw_ctx_size; 2507 } 2508 2509 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2510 struct request_queue *q) 2511 { 2512 int i, j; 2513 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2514 2515 blk_mq_sysfs_unregister(q); 2516 2517 /* protect against switching io scheduler */ 2518 mutex_lock(&q->sysfs_lock); 2519 for (i = 0; i < set->nr_hw_queues; i++) { 2520 int node; 2521 2522 if (hctxs[i]) 2523 continue; 2524 2525 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2526 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2527 GFP_KERNEL, node); 2528 if (!hctxs[i]) 2529 break; 2530 2531 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2532 node)) { 2533 kfree(hctxs[i]); 2534 hctxs[i] = NULL; 2535 break; 2536 } 2537 2538 atomic_set(&hctxs[i]->nr_active, 0); 2539 hctxs[i]->numa_node = node; 2540 hctxs[i]->queue_num = i; 2541 2542 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2543 free_cpumask_var(hctxs[i]->cpumask); 2544 kfree(hctxs[i]); 2545 hctxs[i] = NULL; 2546 break; 2547 } 2548 blk_mq_hctx_kobj_init(hctxs[i]); 2549 } 2550 for (j = i; j < q->nr_hw_queues; j++) { 2551 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2552 2553 if (hctx) { 2554 if (hctx->tags) 2555 blk_mq_free_map_and_requests(set, j); 2556 blk_mq_exit_hctx(q, set, hctx, j); 2557 kobject_put(&hctx->kobj); 2558 hctxs[j] = NULL; 2559 2560 } 2561 } 2562 q->nr_hw_queues = i; 2563 mutex_unlock(&q->sysfs_lock); 2564 blk_mq_sysfs_register(q); 2565 } 2566 2567 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2568 struct request_queue *q) 2569 { 2570 /* mark the queue as mq asap */ 2571 q->mq_ops = set->ops; 2572 2573 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2574 blk_mq_poll_stats_bkt, 2575 BLK_MQ_POLL_STATS_BKTS, q); 2576 if (!q->poll_cb) 2577 goto err_exit; 2578 2579 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2580 if (!q->queue_ctx) 2581 goto err_exit; 2582 2583 /* init q->mq_kobj and sw queues' kobjects */ 2584 blk_mq_sysfs_init(q); 2585 2586 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)), 2587 GFP_KERNEL, set->numa_node); 2588 if (!q->queue_hw_ctx) 2589 goto err_percpu; 2590 2591 q->mq_map = set->mq_map; 2592 2593 blk_mq_realloc_hw_ctxs(set, q); 2594 if (!q->nr_hw_queues) 2595 goto err_hctxs; 2596 2597 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2598 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2599 2600 q->nr_queues = nr_cpu_ids; 2601 2602 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2603 2604 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2605 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 2606 2607 q->sg_reserved_size = INT_MAX; 2608 2609 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2610 INIT_LIST_HEAD(&q->requeue_list); 2611 spin_lock_init(&q->requeue_lock); 2612 2613 blk_queue_make_request(q, blk_mq_make_request); 2614 if (q->mq_ops->poll) 2615 q->poll_fn = blk_mq_poll; 2616 2617 /* 2618 * Do this after blk_queue_make_request() overrides it... 2619 */ 2620 q->nr_requests = set->queue_depth; 2621 2622 /* 2623 * Default to classic polling 2624 */ 2625 q->poll_nsec = -1; 2626 2627 if (set->ops->complete) 2628 blk_queue_softirq_done(q, set->ops->complete); 2629 2630 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2631 blk_mq_add_queue_tag_set(set, q); 2632 blk_mq_map_swqueue(q); 2633 2634 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2635 int ret; 2636 2637 ret = elevator_init_mq(q); 2638 if (ret) 2639 return ERR_PTR(ret); 2640 } 2641 2642 return q; 2643 2644 err_hctxs: 2645 kfree(q->queue_hw_ctx); 2646 err_percpu: 2647 free_percpu(q->queue_ctx); 2648 err_exit: 2649 q->mq_ops = NULL; 2650 return ERR_PTR(-ENOMEM); 2651 } 2652 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2653 2654 void blk_mq_free_queue(struct request_queue *q) 2655 { 2656 struct blk_mq_tag_set *set = q->tag_set; 2657 2658 blk_mq_del_queue_tag_set(q); 2659 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2660 } 2661 2662 /* Basically redo blk_mq_init_queue with queue frozen */ 2663 static void blk_mq_queue_reinit(struct request_queue *q) 2664 { 2665 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2666 2667 blk_mq_debugfs_unregister_hctxs(q); 2668 blk_mq_sysfs_unregister(q); 2669 2670 /* 2671 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2672 * we should change hctx numa_node according to the new topology (this 2673 * involves freeing and re-allocating memory, worth doing?) 2674 */ 2675 blk_mq_map_swqueue(q); 2676 2677 blk_mq_sysfs_register(q); 2678 blk_mq_debugfs_register_hctxs(q); 2679 } 2680 2681 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2682 { 2683 int i; 2684 2685 for (i = 0; i < set->nr_hw_queues; i++) 2686 if (!__blk_mq_alloc_rq_map(set, i)) 2687 goto out_unwind; 2688 2689 return 0; 2690 2691 out_unwind: 2692 while (--i >= 0) 2693 blk_mq_free_rq_map(set->tags[i]); 2694 2695 return -ENOMEM; 2696 } 2697 2698 /* 2699 * Allocate the request maps associated with this tag_set. Note that this 2700 * may reduce the depth asked for, if memory is tight. set->queue_depth 2701 * will be updated to reflect the allocated depth. 2702 */ 2703 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2704 { 2705 unsigned int depth; 2706 int err; 2707 2708 depth = set->queue_depth; 2709 do { 2710 err = __blk_mq_alloc_rq_maps(set); 2711 if (!err) 2712 break; 2713 2714 set->queue_depth >>= 1; 2715 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2716 err = -ENOMEM; 2717 break; 2718 } 2719 } while (set->queue_depth); 2720 2721 if (!set->queue_depth || err) { 2722 pr_err("blk-mq: failed to allocate request map\n"); 2723 return -ENOMEM; 2724 } 2725 2726 if (depth != set->queue_depth) 2727 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2728 depth, set->queue_depth); 2729 2730 return 0; 2731 } 2732 2733 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2734 { 2735 if (set->ops->map_queues) { 2736 /* 2737 * transport .map_queues is usually done in the following 2738 * way: 2739 * 2740 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2741 * mask = get_cpu_mask(queue) 2742 * for_each_cpu(cpu, mask) 2743 * set->mq_map[cpu] = queue; 2744 * } 2745 * 2746 * When we need to remap, the table has to be cleared for 2747 * killing stale mapping since one CPU may not be mapped 2748 * to any hw queue. 2749 */ 2750 blk_mq_clear_mq_map(set); 2751 2752 return set->ops->map_queues(set); 2753 } else 2754 return blk_mq_map_queues(set); 2755 } 2756 2757 /* 2758 * Alloc a tag set to be associated with one or more request queues. 2759 * May fail with EINVAL for various error conditions. May adjust the 2760 * requested depth down, if it's too large. In that case, the set 2761 * value will be stored in set->queue_depth. 2762 */ 2763 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2764 { 2765 int ret; 2766 2767 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2768 2769 if (!set->nr_hw_queues) 2770 return -EINVAL; 2771 if (!set->queue_depth) 2772 return -EINVAL; 2773 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2774 return -EINVAL; 2775 2776 if (!set->ops->queue_rq) 2777 return -EINVAL; 2778 2779 if (!set->ops->get_budget ^ !set->ops->put_budget) 2780 return -EINVAL; 2781 2782 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2783 pr_info("blk-mq: reduced tag depth to %u\n", 2784 BLK_MQ_MAX_DEPTH); 2785 set->queue_depth = BLK_MQ_MAX_DEPTH; 2786 } 2787 2788 /* 2789 * If a crashdump is active, then we are potentially in a very 2790 * memory constrained environment. Limit us to 1 queue and 2791 * 64 tags to prevent using too much memory. 2792 */ 2793 if (is_kdump_kernel()) { 2794 set->nr_hw_queues = 1; 2795 set->queue_depth = min(64U, set->queue_depth); 2796 } 2797 /* 2798 * There is no use for more h/w queues than cpus. 2799 */ 2800 if (set->nr_hw_queues > nr_cpu_ids) 2801 set->nr_hw_queues = nr_cpu_ids; 2802 2803 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *), 2804 GFP_KERNEL, set->numa_node); 2805 if (!set->tags) 2806 return -ENOMEM; 2807 2808 ret = -ENOMEM; 2809 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map), 2810 GFP_KERNEL, set->numa_node); 2811 if (!set->mq_map) 2812 goto out_free_tags; 2813 2814 ret = blk_mq_update_queue_map(set); 2815 if (ret) 2816 goto out_free_mq_map; 2817 2818 ret = blk_mq_alloc_rq_maps(set); 2819 if (ret) 2820 goto out_free_mq_map; 2821 2822 mutex_init(&set->tag_list_lock); 2823 INIT_LIST_HEAD(&set->tag_list); 2824 2825 return 0; 2826 2827 out_free_mq_map: 2828 kfree(set->mq_map); 2829 set->mq_map = NULL; 2830 out_free_tags: 2831 kfree(set->tags); 2832 set->tags = NULL; 2833 return ret; 2834 } 2835 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2836 2837 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2838 { 2839 int i; 2840 2841 for (i = 0; i < nr_cpu_ids; i++) 2842 blk_mq_free_map_and_requests(set, i); 2843 2844 kfree(set->mq_map); 2845 set->mq_map = NULL; 2846 2847 kfree(set->tags); 2848 set->tags = NULL; 2849 } 2850 EXPORT_SYMBOL(blk_mq_free_tag_set); 2851 2852 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2853 { 2854 struct blk_mq_tag_set *set = q->tag_set; 2855 struct blk_mq_hw_ctx *hctx; 2856 int i, ret; 2857 2858 if (!set) 2859 return -EINVAL; 2860 2861 blk_mq_freeze_queue(q); 2862 blk_mq_quiesce_queue(q); 2863 2864 ret = 0; 2865 queue_for_each_hw_ctx(q, hctx, i) { 2866 if (!hctx->tags) 2867 continue; 2868 /* 2869 * If we're using an MQ scheduler, just update the scheduler 2870 * queue depth. This is similar to what the old code would do. 2871 */ 2872 if (!hctx->sched_tags) { 2873 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2874 false); 2875 } else { 2876 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2877 nr, true); 2878 } 2879 if (ret) 2880 break; 2881 } 2882 2883 if (!ret) 2884 q->nr_requests = nr; 2885 2886 blk_mq_unquiesce_queue(q); 2887 blk_mq_unfreeze_queue(q); 2888 2889 return ret; 2890 } 2891 2892 /* 2893 * request_queue and elevator_type pair. 2894 * It is just used by __blk_mq_update_nr_hw_queues to cache 2895 * the elevator_type associated with a request_queue. 2896 */ 2897 struct blk_mq_qe_pair { 2898 struct list_head node; 2899 struct request_queue *q; 2900 struct elevator_type *type; 2901 }; 2902 2903 /* 2904 * Cache the elevator_type in qe pair list and switch the 2905 * io scheduler to 'none' 2906 */ 2907 static bool blk_mq_elv_switch_none(struct list_head *head, 2908 struct request_queue *q) 2909 { 2910 struct blk_mq_qe_pair *qe; 2911 2912 if (!q->elevator) 2913 return true; 2914 2915 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 2916 if (!qe) 2917 return false; 2918 2919 INIT_LIST_HEAD(&qe->node); 2920 qe->q = q; 2921 qe->type = q->elevator->type; 2922 list_add(&qe->node, head); 2923 2924 mutex_lock(&q->sysfs_lock); 2925 /* 2926 * After elevator_switch_mq, the previous elevator_queue will be 2927 * released by elevator_release. The reference of the io scheduler 2928 * module get by elevator_get will also be put. So we need to get 2929 * a reference of the io scheduler module here to prevent it to be 2930 * removed. 2931 */ 2932 __module_get(qe->type->elevator_owner); 2933 elevator_switch_mq(q, NULL); 2934 mutex_unlock(&q->sysfs_lock); 2935 2936 return true; 2937 } 2938 2939 static void blk_mq_elv_switch_back(struct list_head *head, 2940 struct request_queue *q) 2941 { 2942 struct blk_mq_qe_pair *qe; 2943 struct elevator_type *t = NULL; 2944 2945 list_for_each_entry(qe, head, node) 2946 if (qe->q == q) { 2947 t = qe->type; 2948 break; 2949 } 2950 2951 if (!t) 2952 return; 2953 2954 list_del(&qe->node); 2955 kfree(qe); 2956 2957 mutex_lock(&q->sysfs_lock); 2958 elevator_switch_mq(q, t); 2959 mutex_unlock(&q->sysfs_lock); 2960 } 2961 2962 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2963 int nr_hw_queues) 2964 { 2965 struct request_queue *q; 2966 LIST_HEAD(head); 2967 2968 lockdep_assert_held(&set->tag_list_lock); 2969 2970 if (nr_hw_queues > nr_cpu_ids) 2971 nr_hw_queues = nr_cpu_ids; 2972 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2973 return; 2974 2975 list_for_each_entry(q, &set->tag_list, tag_set_list) 2976 blk_mq_freeze_queue(q); 2977 /* 2978 * Sync with blk_mq_queue_tag_busy_iter. 2979 */ 2980 synchronize_rcu(); 2981 /* 2982 * Switch IO scheduler to 'none', cleaning up the data associated 2983 * with the previous scheduler. We will switch back once we are done 2984 * updating the new sw to hw queue mappings. 2985 */ 2986 list_for_each_entry(q, &set->tag_list, tag_set_list) 2987 if (!blk_mq_elv_switch_none(&head, q)) 2988 goto switch_back; 2989 2990 set->nr_hw_queues = nr_hw_queues; 2991 blk_mq_update_queue_map(set); 2992 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2993 blk_mq_realloc_hw_ctxs(set, q); 2994 blk_mq_queue_reinit(q); 2995 } 2996 2997 switch_back: 2998 list_for_each_entry(q, &set->tag_list, tag_set_list) 2999 blk_mq_elv_switch_back(&head, q); 3000 3001 list_for_each_entry(q, &set->tag_list, tag_set_list) 3002 blk_mq_unfreeze_queue(q); 3003 } 3004 3005 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3006 { 3007 mutex_lock(&set->tag_list_lock); 3008 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3009 mutex_unlock(&set->tag_list_lock); 3010 } 3011 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3012 3013 /* Enable polling stats and return whether they were already enabled. */ 3014 static bool blk_poll_stats_enable(struct request_queue *q) 3015 { 3016 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3017 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3018 return true; 3019 blk_stat_add_callback(q, q->poll_cb); 3020 return false; 3021 } 3022 3023 static void blk_mq_poll_stats_start(struct request_queue *q) 3024 { 3025 /* 3026 * We don't arm the callback if polling stats are not enabled or the 3027 * callback is already active. 3028 */ 3029 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3030 blk_stat_is_active(q->poll_cb)) 3031 return; 3032 3033 blk_stat_activate_msecs(q->poll_cb, 100); 3034 } 3035 3036 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3037 { 3038 struct request_queue *q = cb->data; 3039 int bucket; 3040 3041 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3042 if (cb->stat[bucket].nr_samples) 3043 q->poll_stat[bucket] = cb->stat[bucket]; 3044 } 3045 } 3046 3047 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3048 struct blk_mq_hw_ctx *hctx, 3049 struct request *rq) 3050 { 3051 unsigned long ret = 0; 3052 int bucket; 3053 3054 /* 3055 * If stats collection isn't on, don't sleep but turn it on for 3056 * future users 3057 */ 3058 if (!blk_poll_stats_enable(q)) 3059 return 0; 3060 3061 /* 3062 * As an optimistic guess, use half of the mean service time 3063 * for this type of request. We can (and should) make this smarter. 3064 * For instance, if the completion latencies are tight, we can 3065 * get closer than just half the mean. This is especially 3066 * important on devices where the completion latencies are longer 3067 * than ~10 usec. We do use the stats for the relevant IO size 3068 * if available which does lead to better estimates. 3069 */ 3070 bucket = blk_mq_poll_stats_bkt(rq); 3071 if (bucket < 0) 3072 return ret; 3073 3074 if (q->poll_stat[bucket].nr_samples) 3075 ret = (q->poll_stat[bucket].mean + 1) / 2; 3076 3077 return ret; 3078 } 3079 3080 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3081 struct blk_mq_hw_ctx *hctx, 3082 struct request *rq) 3083 { 3084 struct hrtimer_sleeper hs; 3085 enum hrtimer_mode mode; 3086 unsigned int nsecs; 3087 ktime_t kt; 3088 3089 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3090 return false; 3091 3092 /* 3093 * poll_nsec can be: 3094 * 3095 * -1: don't ever hybrid sleep 3096 * 0: use half of prev avg 3097 * >0: use this specific value 3098 */ 3099 if (q->poll_nsec == -1) 3100 return false; 3101 else if (q->poll_nsec > 0) 3102 nsecs = q->poll_nsec; 3103 else 3104 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3105 3106 if (!nsecs) 3107 return false; 3108 3109 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3110 3111 /* 3112 * This will be replaced with the stats tracking code, using 3113 * 'avg_completion_time / 2' as the pre-sleep target. 3114 */ 3115 kt = nsecs; 3116 3117 mode = HRTIMER_MODE_REL; 3118 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3119 hrtimer_set_expires(&hs.timer, kt); 3120 3121 hrtimer_init_sleeper(&hs, current); 3122 do { 3123 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3124 break; 3125 set_current_state(TASK_UNINTERRUPTIBLE); 3126 hrtimer_start_expires(&hs.timer, mode); 3127 if (hs.task) 3128 io_schedule(); 3129 hrtimer_cancel(&hs.timer); 3130 mode = HRTIMER_MODE_ABS; 3131 } while (hs.task && !signal_pending(current)); 3132 3133 __set_current_state(TASK_RUNNING); 3134 destroy_hrtimer_on_stack(&hs.timer); 3135 return true; 3136 } 3137 3138 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 3139 { 3140 struct request_queue *q = hctx->queue; 3141 long state; 3142 3143 /* 3144 * If we sleep, have the caller restart the poll loop to reset 3145 * the state. Like for the other success return cases, the 3146 * caller is responsible for checking if the IO completed. If 3147 * the IO isn't complete, we'll get called again and will go 3148 * straight to the busy poll loop. 3149 */ 3150 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3151 return true; 3152 3153 hctx->poll_considered++; 3154 3155 state = current->state; 3156 while (!need_resched()) { 3157 int ret; 3158 3159 hctx->poll_invoked++; 3160 3161 ret = q->mq_ops->poll(hctx, rq->tag); 3162 if (ret > 0) { 3163 hctx->poll_success++; 3164 set_current_state(TASK_RUNNING); 3165 return true; 3166 } 3167 3168 if (signal_pending_state(state, current)) 3169 set_current_state(TASK_RUNNING); 3170 3171 if (current->state == TASK_RUNNING) 3172 return true; 3173 if (ret < 0) 3174 break; 3175 cpu_relax(); 3176 } 3177 3178 __set_current_state(TASK_RUNNING); 3179 return false; 3180 } 3181 3182 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3183 { 3184 struct blk_mq_hw_ctx *hctx; 3185 struct request *rq; 3186 3187 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3188 return false; 3189 3190 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3191 if (!blk_qc_t_is_internal(cookie)) 3192 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3193 else { 3194 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3195 /* 3196 * With scheduling, if the request has completed, we'll 3197 * get a NULL return here, as we clear the sched tag when 3198 * that happens. The request still remains valid, like always, 3199 * so we should be safe with just the NULL check. 3200 */ 3201 if (!rq) 3202 return false; 3203 } 3204 3205 return __blk_mq_poll(hctx, rq); 3206 } 3207 3208 static int __init blk_mq_init(void) 3209 { 3210 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3211 blk_mq_hctx_notify_dead); 3212 return 0; 3213 } 3214 subsys_initcall(blk_mq_init); 3215