xref: /openbmc/linux/block/blk-mq.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	/*
99 	 * index[0] counts the specific partition that was asked for. index[1]
100 	 * counts the ones that are active on the whole device, so increment
101 	 * that if mi->part is indeed a partition, and not a whole device.
102 	 */
103 	if (rq->part == mi->part)
104 		mi->inflight[0]++;
105 	if (mi->part->partno)
106 		mi->inflight[1]++;
107 }
108 
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 		      unsigned int inflight[2])
111 {
112 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
113 
114 	inflight[0] = inflight[1] = 0;
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117 
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 				     struct request *rq, void *priv,
120 				     bool reserved)
121 {
122 	struct mq_inflight *mi = priv;
123 
124 	if (rq->part == mi->part)
125 		mi->inflight[rq_data_dir(rq)]++;
126 }
127 
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 			 unsigned int inflight[2])
130 {
131 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
132 
133 	inflight[0] = inflight[1] = 0;
134 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136 
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 	int freeze_depth;
140 
141 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 	if (freeze_depth == 1) {
143 		percpu_ref_kill(&q->q_usage_counter);
144 		if (q->mq_ops)
145 			blk_mq_run_hw_queues(q, false);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	if (!q->mq_ops)
180 		blk_drain_queue(q);
181 	blk_mq_freeze_queue_wait(q);
182 }
183 
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 	/*
187 	 * ...just an alias to keep freeze and unfreeze actions balanced
188 	 * in the blk_mq_* namespace
189 	 */
190 	blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	int freeze_depth;
197 
198 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 	WARN_ON_ONCE(freeze_depth < 0);
200 	if (!freeze_depth) {
201 		percpu_ref_reinit(&q->q_usage_counter);
202 		wake_up_all(&q->mq_freeze_wq);
203 	}
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206 
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216 
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 	struct blk_mq_hw_ctx *hctx;
229 	unsigned int i;
230 	bool rcu = false;
231 
232 	blk_mq_quiesce_queue_nowait(q);
233 
234 	queue_for_each_hw_ctx(q, hctx, i) {
235 		if (hctx->flags & BLK_MQ_F_BLOCKING)
236 			synchronize_srcu(hctx->srcu);
237 		else
238 			rcu = true;
239 	}
240 	if (rcu)
241 		synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244 
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255 
256 	/* dispatch requests which are inserted during quiescing */
257 	blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260 
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 	struct blk_mq_hw_ctx *hctx;
264 	unsigned int i;
265 
266 	queue_for_each_hw_ctx(q, hctx, i)
267 		if (blk_mq_hw_queue_mapped(hctx))
268 			blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270 
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 	return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, unsigned int op)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 	req_flags_t rq_flags = 0;
283 
284 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 		rq->tag = -1;
286 		rq->internal_tag = tag;
287 	} else {
288 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289 			rq_flags = RQF_MQ_INFLIGHT;
290 			atomic_inc(&data->hctx->nr_active);
291 		}
292 		rq->tag = tag;
293 		rq->internal_tag = -1;
294 		data->hctx->tags->rqs[rq->tag] = rq;
295 	}
296 
297 	/* csd/requeue_work/fifo_time is initialized before use */
298 	rq->q = data->q;
299 	rq->mq_ctx = data->ctx;
300 	rq->rq_flags = rq_flags;
301 	rq->cpu = -1;
302 	rq->cmd_flags = op;
303 	if (data->flags & BLK_MQ_REQ_PREEMPT)
304 		rq->rq_flags |= RQF_PREEMPT;
305 	if (blk_queue_io_stat(data->q))
306 		rq->rq_flags |= RQF_IO_STAT;
307 	INIT_LIST_HEAD(&rq->queuelist);
308 	INIT_HLIST_NODE(&rq->hash);
309 	RB_CLEAR_NODE(&rq->rb_node);
310 	rq->rq_disk = NULL;
311 	rq->part = NULL;
312 	rq->start_time_ns = ktime_get_ns();
313 	rq->io_start_time_ns = 0;
314 	rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 	rq->nr_integrity_segments = 0;
317 #endif
318 	rq->special = NULL;
319 	/* tag was already set */
320 	rq->extra_len = 0;
321 	rq->__deadline = 0;
322 
323 	INIT_LIST_HEAD(&rq->timeout_list);
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 	rq->next_rq = NULL;
329 
330 #ifdef CONFIG_BLK_CGROUP
331 	rq->rl = NULL;
332 #endif
333 
334 	data->ctx->rq_dispatched[op_is_sync(op)]++;
335 	refcount_set(&rq->ref, 1);
336 	return rq;
337 }
338 
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 		struct bio *bio, unsigned int op,
341 		struct blk_mq_alloc_data *data)
342 {
343 	struct elevator_queue *e = q->elevator;
344 	struct request *rq;
345 	unsigned int tag;
346 	bool put_ctx_on_error = false;
347 
348 	blk_queue_enter_live(q);
349 	data->q = q;
350 	if (likely(!data->ctx)) {
351 		data->ctx = blk_mq_get_ctx(q);
352 		put_ctx_on_error = true;
353 	}
354 	if (likely(!data->hctx))
355 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 	if (op & REQ_NOWAIT)
357 		data->flags |= BLK_MQ_REQ_NOWAIT;
358 
359 	if (e) {
360 		data->flags |= BLK_MQ_REQ_INTERNAL;
361 
362 		/*
363 		 * Flush requests are special and go directly to the
364 		 * dispatch list. Don't include reserved tags in the
365 		 * limiting, as it isn't useful.
366 		 */
367 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.mq.limit_depth(op, data);
370 	} else {
371 		blk_mq_tag_busy(data->hctx);
372 	}
373 
374 	tag = blk_mq_get_tag(data);
375 	if (tag == BLK_MQ_TAG_FAIL) {
376 		if (put_ctx_on_error) {
377 			blk_mq_put_ctx(data->ctx);
378 			data->ctx = NULL;
379 		}
380 		blk_queue_exit(q);
381 		return NULL;
382 	}
383 
384 	rq = blk_mq_rq_ctx_init(data, tag, op);
385 	if (!op_is_flush(op)) {
386 		rq->elv.icq = NULL;
387 		if (e && e->type->ops.mq.prepare_request) {
388 			if (e->type->icq_cache && rq_ioc(bio))
389 				blk_mq_sched_assign_ioc(rq, bio);
390 
391 			e->type->ops.mq.prepare_request(rq, bio);
392 			rq->rq_flags |= RQF_ELVPRIV;
393 		}
394 	}
395 	data->hctx->queued++;
396 	return rq;
397 }
398 
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 		blk_mq_req_flags_t flags)
401 {
402 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
403 	struct request *rq;
404 	int ret;
405 
406 	ret = blk_queue_enter(q, flags);
407 	if (ret)
408 		return ERR_PTR(ret);
409 
410 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411 	blk_queue_exit(q);
412 
413 	if (!rq)
414 		return ERR_PTR(-EWOULDBLOCK);
415 
416 	blk_mq_put_ctx(alloc_data.ctx);
417 
418 	rq->__data_len = 0;
419 	rq->__sector = (sector_t) -1;
420 	rq->bio = rq->biotail = NULL;
421 	return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424 
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
429 	struct request *rq;
430 	unsigned int cpu;
431 	int ret;
432 
433 	/*
434 	 * If the tag allocator sleeps we could get an allocation for a
435 	 * different hardware context.  No need to complicate the low level
436 	 * allocator for this for the rare use case of a command tied to
437 	 * a specific queue.
438 	 */
439 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 		return ERR_PTR(-EINVAL);
441 
442 	if (hctx_idx >= q->nr_hw_queues)
443 		return ERR_PTR(-EIO);
444 
445 	ret = blk_queue_enter(q, flags);
446 	if (ret)
447 		return ERR_PTR(ret);
448 
449 	/*
450 	 * Check if the hardware context is actually mapped to anything.
451 	 * If not tell the caller that it should skip this queue.
452 	 */
453 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 		blk_queue_exit(q);
456 		return ERR_PTR(-EXDEV);
457 	}
458 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460 
461 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462 	blk_queue_exit(q);
463 
464 	if (!rq)
465 		return ERR_PTR(-EWOULDBLOCK);
466 
467 	return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470 
471 static void __blk_mq_free_request(struct request *rq)
472 {
473 	struct request_queue *q = rq->q;
474 	struct blk_mq_ctx *ctx = rq->mq_ctx;
475 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476 	const int sched_tag = rq->internal_tag;
477 
478 	if (rq->tag != -1)
479 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480 	if (sched_tag != -1)
481 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482 	blk_mq_sched_restart(hctx);
483 	blk_queue_exit(q);
484 }
485 
486 void blk_mq_free_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 	struct elevator_queue *e = q->elevator;
490 	struct blk_mq_ctx *ctx = rq->mq_ctx;
491 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
492 
493 	if (rq->rq_flags & RQF_ELVPRIV) {
494 		if (e && e->type->ops.mq.finish_request)
495 			e->type->ops.mq.finish_request(rq);
496 		if (rq->elv.icq) {
497 			put_io_context(rq->elv.icq->ioc);
498 			rq->elv.icq = NULL;
499 		}
500 	}
501 
502 	ctx->rq_completed[rq_is_sync(rq)]++;
503 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 		atomic_dec(&hctx->nr_active);
505 
506 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 		laptop_io_completion(q->backing_dev_info);
508 
509 	rq_qos_done(q, rq);
510 
511 	if (blk_rq_rl(rq))
512 		blk_put_rl(blk_rq_rl(rq));
513 
514 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 	if (refcount_dec_and_test(&rq->ref))
516 		__blk_mq_free_request(rq);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519 
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 	u64 now = ktime_get_ns();
523 
524 	if (rq->rq_flags & RQF_STATS) {
525 		blk_mq_poll_stats_start(rq->q);
526 		blk_stat_add(rq, now);
527 	}
528 
529 	blk_account_io_done(rq, now);
530 
531 	if (rq->end_io) {
532 		rq_qos_done(rq->q, rq);
533 		rq->end_io(rq, error);
534 	} else {
535 		if (unlikely(blk_bidi_rq(rq)))
536 			blk_mq_free_request(rq->next_rq);
537 		blk_mq_free_request(rq);
538 	}
539 }
540 EXPORT_SYMBOL(__blk_mq_end_request);
541 
542 void blk_mq_end_request(struct request *rq, blk_status_t error)
543 {
544 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545 		BUG();
546 	__blk_mq_end_request(rq, error);
547 }
548 EXPORT_SYMBOL(blk_mq_end_request);
549 
550 static void __blk_mq_complete_request_remote(void *data)
551 {
552 	struct request *rq = data;
553 
554 	rq->q->softirq_done_fn(rq);
555 }
556 
557 static void __blk_mq_complete_request(struct request *rq)
558 {
559 	struct blk_mq_ctx *ctx = rq->mq_ctx;
560 	bool shared = false;
561 	int cpu;
562 
563 	if (!blk_mq_mark_complete(rq))
564 		return;
565 	if (rq->internal_tag != -1)
566 		blk_mq_sched_completed_request(rq);
567 
568 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 		rq->q->softirq_done_fn(rq);
570 		return;
571 	}
572 
573 	cpu = get_cpu();
574 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 		shared = cpus_share_cache(cpu, ctx->cpu);
576 
577 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 		rq->csd.func = __blk_mq_complete_request_remote;
579 		rq->csd.info = rq;
580 		rq->csd.flags = 0;
581 		smp_call_function_single_async(ctx->cpu, &rq->csd);
582 	} else {
583 		rq->q->softirq_done_fn(rq);
584 	}
585 	put_cpu();
586 }
587 
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 	__releases(hctx->srcu)
590 {
591 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 		rcu_read_unlock();
593 	else
594 		srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596 
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 	__acquires(hctx->srcu)
599 {
600 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 		/* shut up gcc false positive */
602 		*srcu_idx = 0;
603 		rcu_read_lock();
604 	} else
605 		*srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607 
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:		the request being processed
611  *
612  * Description:
613  *	Ends all I/O on a request. It does not handle partial completions.
614  *	The actual completion happens out-of-order, through a IPI handler.
615  **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618 	if (unlikely(blk_should_fake_timeout(rq->q)))
619 		return;
620 	__blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623 
624 int blk_mq_request_started(struct request *rq)
625 {
626 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629 
630 void blk_mq_start_request(struct request *rq)
631 {
632 	struct request_queue *q = rq->q;
633 
634 	blk_mq_sched_started_request(rq);
635 
636 	trace_block_rq_issue(q, rq);
637 
638 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 		rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 		rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 		rq->rq_flags |= RQF_STATS;
644 		rq_qos_issue(q, rq);
645 	}
646 
647 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648 
649 	blk_add_timer(rq);
650 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 
652 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
653 		/*
654 		 * Make sure space for the drain appears.  We know we can do
655 		 * this because max_hw_segments has been adjusted to be one
656 		 * fewer than the device can handle.
657 		 */
658 		rq->nr_phys_segments++;
659 	}
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662 
663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665 	struct request_queue *q = rq->q;
666 
667 	blk_mq_put_driver_tag(rq);
668 
669 	trace_block_rq_requeue(q, rq);
670 	rq_qos_requeue(q, rq);
671 
672 	if (blk_mq_request_started(rq)) {
673 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 		rq->rq_flags &= ~RQF_TIMED_OUT;
675 		if (q->dma_drain_size && blk_rq_bytes(rq))
676 			rq->nr_phys_segments--;
677 	}
678 }
679 
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682 	__blk_mq_requeue_request(rq);
683 
684 	/* this request will be re-inserted to io scheduler queue */
685 	blk_mq_sched_requeue_request(rq);
686 
687 	BUG_ON(blk_queued_rq(rq));
688 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691 
692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694 	struct request_queue *q =
695 		container_of(work, struct request_queue, requeue_work.work);
696 	LIST_HEAD(rq_list);
697 	struct request *rq, *next;
698 
699 	spin_lock_irq(&q->requeue_lock);
700 	list_splice_init(&q->requeue_list, &rq_list);
701 	spin_unlock_irq(&q->requeue_lock);
702 
703 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 			continue;
706 
707 		rq->rq_flags &= ~RQF_SOFTBARRIER;
708 		list_del_init(&rq->queuelist);
709 		blk_mq_sched_insert_request(rq, true, false, false);
710 	}
711 
712 	while (!list_empty(&rq_list)) {
713 		rq = list_entry(rq_list.next, struct request, queuelist);
714 		list_del_init(&rq->queuelist);
715 		blk_mq_sched_insert_request(rq, false, false, false);
716 	}
717 
718 	blk_mq_run_hw_queues(q, false);
719 }
720 
721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
722 				bool kick_requeue_list)
723 {
724 	struct request_queue *q = rq->q;
725 	unsigned long flags;
726 
727 	/*
728 	 * We abuse this flag that is otherwise used by the I/O scheduler to
729 	 * request head insertion from the workqueue.
730 	 */
731 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732 
733 	spin_lock_irqsave(&q->requeue_lock, flags);
734 	if (at_head) {
735 		rq->rq_flags |= RQF_SOFTBARRIER;
736 		list_add(&rq->queuelist, &q->requeue_list);
737 	} else {
738 		list_add_tail(&rq->queuelist, &q->requeue_list);
739 	}
740 	spin_unlock_irqrestore(&q->requeue_lock, flags);
741 
742 	if (kick_requeue_list)
743 		blk_mq_kick_requeue_list(q);
744 }
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
746 
747 void blk_mq_kick_requeue_list(struct request_queue *q)
748 {
749 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 }
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
752 
753 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
754 				    unsigned long msecs)
755 {
756 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
757 				    msecs_to_jiffies(msecs));
758 }
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
760 
761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
762 {
763 	if (tag < tags->nr_tags) {
764 		prefetch(tags->rqs[tag]);
765 		return tags->rqs[tag];
766 	}
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(blk_mq_tag_to_rq);
771 
772 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773 {
774 	req->rq_flags |= RQF_TIMED_OUT;
775 	if (req->q->mq_ops->timeout) {
776 		enum blk_eh_timer_return ret;
777 
778 		ret = req->q->mq_ops->timeout(req, reserved);
779 		if (ret == BLK_EH_DONE)
780 			return;
781 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782 	}
783 
784 	blk_add_timer(req);
785 }
786 
787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
788 {
789 	unsigned long deadline;
790 
791 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
792 		return false;
793 	if (rq->rq_flags & RQF_TIMED_OUT)
794 		return false;
795 
796 	deadline = blk_rq_deadline(rq);
797 	if (time_after_eq(jiffies, deadline))
798 		return true;
799 
800 	if (*next == 0)
801 		*next = deadline;
802 	else if (time_after(*next, deadline))
803 		*next = deadline;
804 	return false;
805 }
806 
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 		struct request *rq, void *priv, bool reserved)
809 {
810 	unsigned long *next = priv;
811 
812 	/*
813 	 * Just do a quick check if it is expired before locking the request in
814 	 * so we're not unnecessarilly synchronizing across CPUs.
815 	 */
816 	if (!blk_mq_req_expired(rq, next))
817 		return;
818 
819 	/*
820 	 * We have reason to believe the request may be expired. Take a
821 	 * reference on the request to lock this request lifetime into its
822 	 * currently allocated context to prevent it from being reallocated in
823 	 * the event the completion by-passes this timeout handler.
824 	 *
825 	 * If the reference was already released, then the driver beat the
826 	 * timeout handler to posting a natural completion.
827 	 */
828 	if (!refcount_inc_not_zero(&rq->ref))
829 		return;
830 
831 	/*
832 	 * The request is now locked and cannot be reallocated underneath the
833 	 * timeout handler's processing. Re-verify this exact request is truly
834 	 * expired; if it is not expired, then the request was completed and
835 	 * reallocated as a new request.
836 	 */
837 	if (blk_mq_req_expired(rq, next))
838 		blk_mq_rq_timed_out(rq, reserved);
839 	if (refcount_dec_and_test(&rq->ref))
840 		__blk_mq_free_request(rq);
841 }
842 
843 static void blk_mq_timeout_work(struct work_struct *work)
844 {
845 	struct request_queue *q =
846 		container_of(work, struct request_queue, timeout_work);
847 	unsigned long next = 0;
848 	struct blk_mq_hw_ctx *hctx;
849 	int i;
850 
851 	/* A deadlock might occur if a request is stuck requiring a
852 	 * timeout at the same time a queue freeze is waiting
853 	 * completion, since the timeout code would not be able to
854 	 * acquire the queue reference here.
855 	 *
856 	 * That's why we don't use blk_queue_enter here; instead, we use
857 	 * percpu_ref_tryget directly, because we need to be able to
858 	 * obtain a reference even in the short window between the queue
859 	 * starting to freeze, by dropping the first reference in
860 	 * blk_freeze_queue_start, and the moment the last request is
861 	 * consumed, marked by the instant q_usage_counter reaches
862 	 * zero.
863 	 */
864 	if (!percpu_ref_tryget(&q->q_usage_counter))
865 		return;
866 
867 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
868 
869 	if (next != 0) {
870 		mod_timer(&q->timeout, next);
871 	} else {
872 		/*
873 		 * Request timeouts are handled as a forward rolling timer. If
874 		 * we end up here it means that no requests are pending and
875 		 * also that no request has been pending for a while. Mark
876 		 * each hctx as idle.
877 		 */
878 		queue_for_each_hw_ctx(q, hctx, i) {
879 			/* the hctx may be unmapped, so check it here */
880 			if (blk_mq_hw_queue_mapped(hctx))
881 				blk_mq_tag_idle(hctx);
882 		}
883 	}
884 	blk_queue_exit(q);
885 }
886 
887 struct flush_busy_ctx_data {
888 	struct blk_mq_hw_ctx *hctx;
889 	struct list_head *list;
890 };
891 
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893 {
894 	struct flush_busy_ctx_data *flush_data = data;
895 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897 
898 	spin_lock(&ctx->lock);
899 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
900 	sbitmap_clear_bit(sb, bitnr);
901 	spin_unlock(&ctx->lock);
902 	return true;
903 }
904 
905 /*
906  * Process software queues that have been marked busy, splicing them
907  * to the for-dispatch
908  */
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910 {
911 	struct flush_busy_ctx_data data = {
912 		.hctx = hctx,
913 		.list = list,
914 	};
915 
916 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917 }
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919 
920 struct dispatch_rq_data {
921 	struct blk_mq_hw_ctx *hctx;
922 	struct request *rq;
923 };
924 
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926 		void *data)
927 {
928 	struct dispatch_rq_data *dispatch_data = data;
929 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931 
932 	spin_lock(&ctx->lock);
933 	if (!list_empty(&ctx->rq_list)) {
934 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 		list_del_init(&dispatch_data->rq->queuelist);
936 		if (list_empty(&ctx->rq_list))
937 			sbitmap_clear_bit(sb, bitnr);
938 	}
939 	spin_unlock(&ctx->lock);
940 
941 	return !dispatch_data->rq;
942 }
943 
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 					struct blk_mq_ctx *start)
946 {
947 	unsigned off = start ? start->index_hw : 0;
948 	struct dispatch_rq_data data = {
949 		.hctx = hctx,
950 		.rq   = NULL,
951 	};
952 
953 	__sbitmap_for_each_set(&hctx->ctx_map, off,
954 			       dispatch_rq_from_ctx, &data);
955 
956 	return data.rq;
957 }
958 
959 static inline unsigned int queued_to_index(unsigned int queued)
960 {
961 	if (!queued)
962 		return 0;
963 
964 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 }
966 
967 bool blk_mq_get_driver_tag(struct request *rq)
968 {
969 	struct blk_mq_alloc_data data = {
970 		.q = rq->q,
971 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
972 		.flags = BLK_MQ_REQ_NOWAIT,
973 	};
974 	bool shared;
975 
976 	if (rq->tag != -1)
977 		goto done;
978 
979 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 		data.flags |= BLK_MQ_REQ_RESERVED;
981 
982 	shared = blk_mq_tag_busy(data.hctx);
983 	rq->tag = blk_mq_get_tag(&data);
984 	if (rq->tag >= 0) {
985 		if (shared) {
986 			rq->rq_flags |= RQF_MQ_INFLIGHT;
987 			atomic_inc(&data.hctx->nr_active);
988 		}
989 		data.hctx->tags->rqs[rq->tag] = rq;
990 	}
991 
992 done:
993 	return rq->tag != -1;
994 }
995 
996 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
997 				int flags, void *key)
998 {
999 	struct blk_mq_hw_ctx *hctx;
1000 
1001 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1002 
1003 	spin_lock(&hctx->dispatch_wait_lock);
1004 	list_del_init(&wait->entry);
1005 	spin_unlock(&hctx->dispatch_wait_lock);
1006 
1007 	blk_mq_run_hw_queue(hctx, true);
1008 	return 1;
1009 }
1010 
1011 /*
1012  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1014  * restart. For both cases, take care to check the condition again after
1015  * marking us as waiting.
1016  */
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1018 				 struct request *rq)
1019 {
1020 	struct wait_queue_head *wq;
1021 	wait_queue_entry_t *wait;
1022 	bool ret;
1023 
1024 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1025 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1026 			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1027 
1028 		/*
1029 		 * It's possible that a tag was freed in the window between the
1030 		 * allocation failure and adding the hardware queue to the wait
1031 		 * queue.
1032 		 *
1033 		 * Don't clear RESTART here, someone else could have set it.
1034 		 * At most this will cost an extra queue run.
1035 		 */
1036 		return blk_mq_get_driver_tag(rq);
1037 	}
1038 
1039 	wait = &hctx->dispatch_wait;
1040 	if (!list_empty_careful(&wait->entry))
1041 		return false;
1042 
1043 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1044 
1045 	spin_lock_irq(&wq->lock);
1046 	spin_lock(&hctx->dispatch_wait_lock);
1047 	if (!list_empty(&wait->entry)) {
1048 		spin_unlock(&hctx->dispatch_wait_lock);
1049 		spin_unlock_irq(&wq->lock);
1050 		return false;
1051 	}
1052 
1053 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1054 	__add_wait_queue(wq, wait);
1055 
1056 	/*
1057 	 * It's possible that a tag was freed in the window between the
1058 	 * allocation failure and adding the hardware queue to the wait
1059 	 * queue.
1060 	 */
1061 	ret = blk_mq_get_driver_tag(rq);
1062 	if (!ret) {
1063 		spin_unlock(&hctx->dispatch_wait_lock);
1064 		spin_unlock_irq(&wq->lock);
1065 		return false;
1066 	}
1067 
1068 	/*
1069 	 * We got a tag, remove ourselves from the wait queue to ensure
1070 	 * someone else gets the wakeup.
1071 	 */
1072 	list_del_init(&wait->entry);
1073 	spin_unlock(&hctx->dispatch_wait_lock);
1074 	spin_unlock_irq(&wq->lock);
1075 
1076 	return true;
1077 }
1078 
1079 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1080 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1081 /*
1082  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1083  * - EWMA is one simple way to compute running average value
1084  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1085  * - take 4 as factor for avoiding to get too small(0) result, and this
1086  *   factor doesn't matter because EWMA decreases exponentially
1087  */
1088 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1089 {
1090 	unsigned int ewma;
1091 
1092 	if (hctx->queue->elevator)
1093 		return;
1094 
1095 	ewma = hctx->dispatch_busy;
1096 
1097 	if (!ewma && !busy)
1098 		return;
1099 
1100 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1101 	if (busy)
1102 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1103 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1104 
1105 	hctx->dispatch_busy = ewma;
1106 }
1107 
1108 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1109 
1110 /*
1111  * Returns true if we did some work AND can potentially do more.
1112  */
1113 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1114 			     bool got_budget)
1115 {
1116 	struct blk_mq_hw_ctx *hctx;
1117 	struct request *rq, *nxt;
1118 	bool no_tag = false;
1119 	int errors, queued;
1120 	blk_status_t ret = BLK_STS_OK;
1121 
1122 	if (list_empty(list))
1123 		return false;
1124 
1125 	WARN_ON(!list_is_singular(list) && got_budget);
1126 
1127 	/*
1128 	 * Now process all the entries, sending them to the driver.
1129 	 */
1130 	errors = queued = 0;
1131 	do {
1132 		struct blk_mq_queue_data bd;
1133 
1134 		rq = list_first_entry(list, struct request, queuelist);
1135 
1136 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1137 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1138 			break;
1139 
1140 		if (!blk_mq_get_driver_tag(rq)) {
1141 			/*
1142 			 * The initial allocation attempt failed, so we need to
1143 			 * rerun the hardware queue when a tag is freed. The
1144 			 * waitqueue takes care of that. If the queue is run
1145 			 * before we add this entry back on the dispatch list,
1146 			 * we'll re-run it below.
1147 			 */
1148 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1149 				blk_mq_put_dispatch_budget(hctx);
1150 				/*
1151 				 * For non-shared tags, the RESTART check
1152 				 * will suffice.
1153 				 */
1154 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1155 					no_tag = true;
1156 				break;
1157 			}
1158 		}
1159 
1160 		list_del_init(&rq->queuelist);
1161 
1162 		bd.rq = rq;
1163 
1164 		/*
1165 		 * Flag last if we have no more requests, or if we have more
1166 		 * but can't assign a driver tag to it.
1167 		 */
1168 		if (list_empty(list))
1169 			bd.last = true;
1170 		else {
1171 			nxt = list_first_entry(list, struct request, queuelist);
1172 			bd.last = !blk_mq_get_driver_tag(nxt);
1173 		}
1174 
1175 		ret = q->mq_ops->queue_rq(hctx, &bd);
1176 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1177 			/*
1178 			 * If an I/O scheduler has been configured and we got a
1179 			 * driver tag for the next request already, free it
1180 			 * again.
1181 			 */
1182 			if (!list_empty(list)) {
1183 				nxt = list_first_entry(list, struct request, queuelist);
1184 				blk_mq_put_driver_tag(nxt);
1185 			}
1186 			list_add(&rq->queuelist, list);
1187 			__blk_mq_requeue_request(rq);
1188 			break;
1189 		}
1190 
1191 		if (unlikely(ret != BLK_STS_OK)) {
1192 			errors++;
1193 			blk_mq_end_request(rq, BLK_STS_IOERR);
1194 			continue;
1195 		}
1196 
1197 		queued++;
1198 	} while (!list_empty(list));
1199 
1200 	hctx->dispatched[queued_to_index(queued)]++;
1201 
1202 	/*
1203 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1204 	 * that is where we will continue on next queue run.
1205 	 */
1206 	if (!list_empty(list)) {
1207 		bool needs_restart;
1208 
1209 		spin_lock(&hctx->lock);
1210 		list_splice_init(list, &hctx->dispatch);
1211 		spin_unlock(&hctx->lock);
1212 
1213 		/*
1214 		 * If SCHED_RESTART was set by the caller of this function and
1215 		 * it is no longer set that means that it was cleared by another
1216 		 * thread and hence that a queue rerun is needed.
1217 		 *
1218 		 * If 'no_tag' is set, that means that we failed getting
1219 		 * a driver tag with an I/O scheduler attached. If our dispatch
1220 		 * waitqueue is no longer active, ensure that we run the queue
1221 		 * AFTER adding our entries back to the list.
1222 		 *
1223 		 * If no I/O scheduler has been configured it is possible that
1224 		 * the hardware queue got stopped and restarted before requests
1225 		 * were pushed back onto the dispatch list. Rerun the queue to
1226 		 * avoid starvation. Notes:
1227 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1228 		 *   been stopped before rerunning a queue.
1229 		 * - Some but not all block drivers stop a queue before
1230 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1231 		 *   and dm-rq.
1232 		 *
1233 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1234 		 * bit is set, run queue after a delay to avoid IO stalls
1235 		 * that could otherwise occur if the queue is idle.
1236 		 */
1237 		needs_restart = blk_mq_sched_needs_restart(hctx);
1238 		if (!needs_restart ||
1239 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1240 			blk_mq_run_hw_queue(hctx, true);
1241 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1242 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1243 
1244 		blk_mq_update_dispatch_busy(hctx, true);
1245 		return false;
1246 	} else
1247 		blk_mq_update_dispatch_busy(hctx, false);
1248 
1249 	/*
1250 	 * If the host/device is unable to accept more work, inform the
1251 	 * caller of that.
1252 	 */
1253 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1254 		return false;
1255 
1256 	return (queued + errors) != 0;
1257 }
1258 
1259 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1260 {
1261 	int srcu_idx;
1262 
1263 	/*
1264 	 * We should be running this queue from one of the CPUs that
1265 	 * are mapped to it.
1266 	 *
1267 	 * There are at least two related races now between setting
1268 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1269 	 * __blk_mq_run_hw_queue():
1270 	 *
1271 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1272 	 *   but later it becomes online, then this warning is harmless
1273 	 *   at all
1274 	 *
1275 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1276 	 *   but later it becomes offline, then the warning can't be
1277 	 *   triggered, and we depend on blk-mq timeout handler to
1278 	 *   handle dispatched requests to this hctx
1279 	 */
1280 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1281 		cpu_online(hctx->next_cpu)) {
1282 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1283 			raw_smp_processor_id(),
1284 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1285 		dump_stack();
1286 	}
1287 
1288 	/*
1289 	 * We can't run the queue inline with ints disabled. Ensure that
1290 	 * we catch bad users of this early.
1291 	 */
1292 	WARN_ON_ONCE(in_interrupt());
1293 
1294 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1295 
1296 	hctx_lock(hctx, &srcu_idx);
1297 	blk_mq_sched_dispatch_requests(hctx);
1298 	hctx_unlock(hctx, srcu_idx);
1299 }
1300 
1301 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1302 {
1303 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1304 
1305 	if (cpu >= nr_cpu_ids)
1306 		cpu = cpumask_first(hctx->cpumask);
1307 	return cpu;
1308 }
1309 
1310 /*
1311  * It'd be great if the workqueue API had a way to pass
1312  * in a mask and had some smarts for more clever placement.
1313  * For now we just round-robin here, switching for every
1314  * BLK_MQ_CPU_WORK_BATCH queued items.
1315  */
1316 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1317 {
1318 	bool tried = false;
1319 	int next_cpu = hctx->next_cpu;
1320 
1321 	if (hctx->queue->nr_hw_queues == 1)
1322 		return WORK_CPU_UNBOUND;
1323 
1324 	if (--hctx->next_cpu_batch <= 0) {
1325 select_cpu:
1326 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1327 				cpu_online_mask);
1328 		if (next_cpu >= nr_cpu_ids)
1329 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1330 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1331 	}
1332 
1333 	/*
1334 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1335 	 * and it should only happen in the path of handling CPU DEAD.
1336 	 */
1337 	if (!cpu_online(next_cpu)) {
1338 		if (!tried) {
1339 			tried = true;
1340 			goto select_cpu;
1341 		}
1342 
1343 		/*
1344 		 * Make sure to re-select CPU next time once after CPUs
1345 		 * in hctx->cpumask become online again.
1346 		 */
1347 		hctx->next_cpu = next_cpu;
1348 		hctx->next_cpu_batch = 1;
1349 		return WORK_CPU_UNBOUND;
1350 	}
1351 
1352 	hctx->next_cpu = next_cpu;
1353 	return next_cpu;
1354 }
1355 
1356 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1357 					unsigned long msecs)
1358 {
1359 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1360 		return;
1361 
1362 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1363 		int cpu = get_cpu();
1364 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1365 			__blk_mq_run_hw_queue(hctx);
1366 			put_cpu();
1367 			return;
1368 		}
1369 
1370 		put_cpu();
1371 	}
1372 
1373 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1374 				    msecs_to_jiffies(msecs));
1375 }
1376 
1377 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1378 {
1379 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1380 }
1381 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1382 
1383 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1384 {
1385 	int srcu_idx;
1386 	bool need_run;
1387 
1388 	/*
1389 	 * When queue is quiesced, we may be switching io scheduler, or
1390 	 * updating nr_hw_queues, or other things, and we can't run queue
1391 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1392 	 *
1393 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1394 	 * quiesced.
1395 	 */
1396 	hctx_lock(hctx, &srcu_idx);
1397 	need_run = !blk_queue_quiesced(hctx->queue) &&
1398 		blk_mq_hctx_has_pending(hctx);
1399 	hctx_unlock(hctx, srcu_idx);
1400 
1401 	if (need_run) {
1402 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1403 		return true;
1404 	}
1405 
1406 	return false;
1407 }
1408 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1409 
1410 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1411 {
1412 	struct blk_mq_hw_ctx *hctx;
1413 	int i;
1414 
1415 	queue_for_each_hw_ctx(q, hctx, i) {
1416 		if (blk_mq_hctx_stopped(hctx))
1417 			continue;
1418 
1419 		blk_mq_run_hw_queue(hctx, async);
1420 	}
1421 }
1422 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1423 
1424 /**
1425  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1426  * @q: request queue.
1427  *
1428  * The caller is responsible for serializing this function against
1429  * blk_mq_{start,stop}_hw_queue().
1430  */
1431 bool blk_mq_queue_stopped(struct request_queue *q)
1432 {
1433 	struct blk_mq_hw_ctx *hctx;
1434 	int i;
1435 
1436 	queue_for_each_hw_ctx(q, hctx, i)
1437 		if (blk_mq_hctx_stopped(hctx))
1438 			return true;
1439 
1440 	return false;
1441 }
1442 EXPORT_SYMBOL(blk_mq_queue_stopped);
1443 
1444 /*
1445  * This function is often used for pausing .queue_rq() by driver when
1446  * there isn't enough resource or some conditions aren't satisfied, and
1447  * BLK_STS_RESOURCE is usually returned.
1448  *
1449  * We do not guarantee that dispatch can be drained or blocked
1450  * after blk_mq_stop_hw_queue() returns. Please use
1451  * blk_mq_quiesce_queue() for that requirement.
1452  */
1453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1454 {
1455 	cancel_delayed_work(&hctx->run_work);
1456 
1457 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1458 }
1459 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1460 
1461 /*
1462  * This function is often used for pausing .queue_rq() by driver when
1463  * there isn't enough resource or some conditions aren't satisfied, and
1464  * BLK_STS_RESOURCE is usually returned.
1465  *
1466  * We do not guarantee that dispatch can be drained or blocked
1467  * after blk_mq_stop_hw_queues() returns. Please use
1468  * blk_mq_quiesce_queue() for that requirement.
1469  */
1470 void blk_mq_stop_hw_queues(struct request_queue *q)
1471 {
1472 	struct blk_mq_hw_ctx *hctx;
1473 	int i;
1474 
1475 	queue_for_each_hw_ctx(q, hctx, i)
1476 		blk_mq_stop_hw_queue(hctx);
1477 }
1478 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1479 
1480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1481 {
1482 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1483 
1484 	blk_mq_run_hw_queue(hctx, false);
1485 }
1486 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1487 
1488 void blk_mq_start_hw_queues(struct request_queue *q)
1489 {
1490 	struct blk_mq_hw_ctx *hctx;
1491 	int i;
1492 
1493 	queue_for_each_hw_ctx(q, hctx, i)
1494 		blk_mq_start_hw_queue(hctx);
1495 }
1496 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1497 
1498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1499 {
1500 	if (!blk_mq_hctx_stopped(hctx))
1501 		return;
1502 
1503 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1504 	blk_mq_run_hw_queue(hctx, async);
1505 }
1506 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1507 
1508 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1509 {
1510 	struct blk_mq_hw_ctx *hctx;
1511 	int i;
1512 
1513 	queue_for_each_hw_ctx(q, hctx, i)
1514 		blk_mq_start_stopped_hw_queue(hctx, async);
1515 }
1516 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1517 
1518 static void blk_mq_run_work_fn(struct work_struct *work)
1519 {
1520 	struct blk_mq_hw_ctx *hctx;
1521 
1522 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1523 
1524 	/*
1525 	 * If we are stopped, don't run the queue.
1526 	 */
1527 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1528 		return;
1529 
1530 	__blk_mq_run_hw_queue(hctx);
1531 }
1532 
1533 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1534 					    struct request *rq,
1535 					    bool at_head)
1536 {
1537 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1538 
1539 	lockdep_assert_held(&ctx->lock);
1540 
1541 	trace_block_rq_insert(hctx->queue, rq);
1542 
1543 	if (at_head)
1544 		list_add(&rq->queuelist, &ctx->rq_list);
1545 	else
1546 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1547 }
1548 
1549 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1550 			     bool at_head)
1551 {
1552 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1553 
1554 	lockdep_assert_held(&ctx->lock);
1555 
1556 	__blk_mq_insert_req_list(hctx, rq, at_head);
1557 	blk_mq_hctx_mark_pending(hctx, ctx);
1558 }
1559 
1560 /*
1561  * Should only be used carefully, when the caller knows we want to
1562  * bypass a potential IO scheduler on the target device.
1563  */
1564 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1565 {
1566 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1567 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1568 
1569 	spin_lock(&hctx->lock);
1570 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1571 	spin_unlock(&hctx->lock);
1572 
1573 	if (run_queue)
1574 		blk_mq_run_hw_queue(hctx, false);
1575 }
1576 
1577 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1578 			    struct list_head *list)
1579 
1580 {
1581 	struct request *rq;
1582 
1583 	/*
1584 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1585 	 * offline now
1586 	 */
1587 	list_for_each_entry(rq, list, queuelist) {
1588 		BUG_ON(rq->mq_ctx != ctx);
1589 		trace_block_rq_insert(hctx->queue, rq);
1590 	}
1591 
1592 	spin_lock(&ctx->lock);
1593 	list_splice_tail_init(list, &ctx->rq_list);
1594 	blk_mq_hctx_mark_pending(hctx, ctx);
1595 	spin_unlock(&ctx->lock);
1596 }
1597 
1598 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1599 {
1600 	struct request *rqa = container_of(a, struct request, queuelist);
1601 	struct request *rqb = container_of(b, struct request, queuelist);
1602 
1603 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1604 		 (rqa->mq_ctx == rqb->mq_ctx &&
1605 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1606 }
1607 
1608 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1609 {
1610 	struct blk_mq_ctx *this_ctx;
1611 	struct request_queue *this_q;
1612 	struct request *rq;
1613 	LIST_HEAD(list);
1614 	LIST_HEAD(ctx_list);
1615 	unsigned int depth;
1616 
1617 	list_splice_init(&plug->mq_list, &list);
1618 
1619 	list_sort(NULL, &list, plug_ctx_cmp);
1620 
1621 	this_q = NULL;
1622 	this_ctx = NULL;
1623 	depth = 0;
1624 
1625 	while (!list_empty(&list)) {
1626 		rq = list_entry_rq(list.next);
1627 		list_del_init(&rq->queuelist);
1628 		BUG_ON(!rq->q);
1629 		if (rq->mq_ctx != this_ctx) {
1630 			if (this_ctx) {
1631 				trace_block_unplug(this_q, depth, !from_schedule);
1632 				blk_mq_sched_insert_requests(this_q, this_ctx,
1633 								&ctx_list,
1634 								from_schedule);
1635 			}
1636 
1637 			this_ctx = rq->mq_ctx;
1638 			this_q = rq->q;
1639 			depth = 0;
1640 		}
1641 
1642 		depth++;
1643 		list_add_tail(&rq->queuelist, &ctx_list);
1644 	}
1645 
1646 	/*
1647 	 * If 'this_ctx' is set, we know we have entries to complete
1648 	 * on 'ctx_list'. Do those.
1649 	 */
1650 	if (this_ctx) {
1651 		trace_block_unplug(this_q, depth, !from_schedule);
1652 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1653 						from_schedule);
1654 	}
1655 }
1656 
1657 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1658 {
1659 	blk_init_request_from_bio(rq, bio);
1660 
1661 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1662 
1663 	blk_account_io_start(rq, true);
1664 }
1665 
1666 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1667 {
1668 	if (rq->tag != -1)
1669 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1670 
1671 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1672 }
1673 
1674 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1675 					    struct request *rq,
1676 					    blk_qc_t *cookie)
1677 {
1678 	struct request_queue *q = rq->q;
1679 	struct blk_mq_queue_data bd = {
1680 		.rq = rq,
1681 		.last = true,
1682 	};
1683 	blk_qc_t new_cookie;
1684 	blk_status_t ret;
1685 
1686 	new_cookie = request_to_qc_t(hctx, rq);
1687 
1688 	/*
1689 	 * For OK queue, we are done. For error, caller may kill it.
1690 	 * Any other error (busy), just add it to our list as we
1691 	 * previously would have done.
1692 	 */
1693 	ret = q->mq_ops->queue_rq(hctx, &bd);
1694 	switch (ret) {
1695 	case BLK_STS_OK:
1696 		blk_mq_update_dispatch_busy(hctx, false);
1697 		*cookie = new_cookie;
1698 		break;
1699 	case BLK_STS_RESOURCE:
1700 	case BLK_STS_DEV_RESOURCE:
1701 		blk_mq_update_dispatch_busy(hctx, true);
1702 		__blk_mq_requeue_request(rq);
1703 		break;
1704 	default:
1705 		blk_mq_update_dispatch_busy(hctx, false);
1706 		*cookie = BLK_QC_T_NONE;
1707 		break;
1708 	}
1709 
1710 	return ret;
1711 }
1712 
1713 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1714 						struct request *rq,
1715 						blk_qc_t *cookie,
1716 						bool bypass_insert)
1717 {
1718 	struct request_queue *q = rq->q;
1719 	bool run_queue = true;
1720 
1721 	/*
1722 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1723 	 *
1724 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1725 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1726 	 * and avoid driver to try to dispatch again.
1727 	 */
1728 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1729 		run_queue = false;
1730 		bypass_insert = false;
1731 		goto insert;
1732 	}
1733 
1734 	if (q->elevator && !bypass_insert)
1735 		goto insert;
1736 
1737 	if (!blk_mq_get_dispatch_budget(hctx))
1738 		goto insert;
1739 
1740 	if (!blk_mq_get_driver_tag(rq)) {
1741 		blk_mq_put_dispatch_budget(hctx);
1742 		goto insert;
1743 	}
1744 
1745 	return __blk_mq_issue_directly(hctx, rq, cookie);
1746 insert:
1747 	if (bypass_insert)
1748 		return BLK_STS_RESOURCE;
1749 
1750 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1751 	return BLK_STS_OK;
1752 }
1753 
1754 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1755 		struct request *rq, blk_qc_t *cookie)
1756 {
1757 	blk_status_t ret;
1758 	int srcu_idx;
1759 
1760 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1761 
1762 	hctx_lock(hctx, &srcu_idx);
1763 
1764 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1765 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1766 		blk_mq_sched_insert_request(rq, false, true, false);
1767 	else if (ret != BLK_STS_OK)
1768 		blk_mq_end_request(rq, ret);
1769 
1770 	hctx_unlock(hctx, srcu_idx);
1771 }
1772 
1773 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1774 {
1775 	blk_status_t ret;
1776 	int srcu_idx;
1777 	blk_qc_t unused_cookie;
1778 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1779 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1780 
1781 	hctx_lock(hctx, &srcu_idx);
1782 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1783 	hctx_unlock(hctx, srcu_idx);
1784 
1785 	return ret;
1786 }
1787 
1788 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1789 		struct list_head *list)
1790 {
1791 	while (!list_empty(list)) {
1792 		blk_status_t ret;
1793 		struct request *rq = list_first_entry(list, struct request,
1794 				queuelist);
1795 
1796 		list_del_init(&rq->queuelist);
1797 		ret = blk_mq_request_issue_directly(rq);
1798 		if (ret != BLK_STS_OK) {
1799 			if (ret == BLK_STS_RESOURCE ||
1800 					ret == BLK_STS_DEV_RESOURCE) {
1801 				list_add(&rq->queuelist, list);
1802 				break;
1803 			}
1804 			blk_mq_end_request(rq, ret);
1805 		}
1806 	}
1807 }
1808 
1809 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1810 {
1811 	const int is_sync = op_is_sync(bio->bi_opf);
1812 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1813 	struct blk_mq_alloc_data data = { .flags = 0 };
1814 	struct request *rq;
1815 	unsigned int request_count = 0;
1816 	struct blk_plug *plug;
1817 	struct request *same_queue_rq = NULL;
1818 	blk_qc_t cookie;
1819 
1820 	blk_queue_bounce(q, &bio);
1821 
1822 	blk_queue_split(q, &bio);
1823 
1824 	if (!bio_integrity_prep(bio))
1825 		return BLK_QC_T_NONE;
1826 
1827 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1828 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1829 		return BLK_QC_T_NONE;
1830 
1831 	if (blk_mq_sched_bio_merge(q, bio))
1832 		return BLK_QC_T_NONE;
1833 
1834 	rq_qos_throttle(q, bio, NULL);
1835 
1836 	trace_block_getrq(q, bio, bio->bi_opf);
1837 
1838 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1839 	if (unlikely(!rq)) {
1840 		rq_qos_cleanup(q, bio);
1841 		if (bio->bi_opf & REQ_NOWAIT)
1842 			bio_wouldblock_error(bio);
1843 		return BLK_QC_T_NONE;
1844 	}
1845 
1846 	rq_qos_track(q, rq, bio);
1847 
1848 	cookie = request_to_qc_t(data.hctx, rq);
1849 
1850 	plug = current->plug;
1851 	if (unlikely(is_flush_fua)) {
1852 		blk_mq_put_ctx(data.ctx);
1853 		blk_mq_bio_to_request(rq, bio);
1854 
1855 		/* bypass scheduler for flush rq */
1856 		blk_insert_flush(rq);
1857 		blk_mq_run_hw_queue(data.hctx, true);
1858 	} else if (plug && q->nr_hw_queues == 1) {
1859 		struct request *last = NULL;
1860 
1861 		blk_mq_put_ctx(data.ctx);
1862 		blk_mq_bio_to_request(rq, bio);
1863 
1864 		/*
1865 		 * @request_count may become stale because of schedule
1866 		 * out, so check the list again.
1867 		 */
1868 		if (list_empty(&plug->mq_list))
1869 			request_count = 0;
1870 		else if (blk_queue_nomerges(q))
1871 			request_count = blk_plug_queued_count(q);
1872 
1873 		if (!request_count)
1874 			trace_block_plug(q);
1875 		else
1876 			last = list_entry_rq(plug->mq_list.prev);
1877 
1878 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1879 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1880 			blk_flush_plug_list(plug, false);
1881 			trace_block_plug(q);
1882 		}
1883 
1884 		list_add_tail(&rq->queuelist, &plug->mq_list);
1885 	} else if (plug && !blk_queue_nomerges(q)) {
1886 		blk_mq_bio_to_request(rq, bio);
1887 
1888 		/*
1889 		 * We do limited plugging. If the bio can be merged, do that.
1890 		 * Otherwise the existing request in the plug list will be
1891 		 * issued. So the plug list will have one request at most
1892 		 * The plug list might get flushed before this. If that happens,
1893 		 * the plug list is empty, and same_queue_rq is invalid.
1894 		 */
1895 		if (list_empty(&plug->mq_list))
1896 			same_queue_rq = NULL;
1897 		if (same_queue_rq)
1898 			list_del_init(&same_queue_rq->queuelist);
1899 		list_add_tail(&rq->queuelist, &plug->mq_list);
1900 
1901 		blk_mq_put_ctx(data.ctx);
1902 
1903 		if (same_queue_rq) {
1904 			data.hctx = blk_mq_map_queue(q,
1905 					same_queue_rq->mq_ctx->cpu);
1906 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1907 					&cookie);
1908 		}
1909 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1910 			!data.hctx->dispatch_busy)) {
1911 		blk_mq_put_ctx(data.ctx);
1912 		blk_mq_bio_to_request(rq, bio);
1913 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1914 	} else {
1915 		blk_mq_put_ctx(data.ctx);
1916 		blk_mq_bio_to_request(rq, bio);
1917 		blk_mq_sched_insert_request(rq, false, true, true);
1918 	}
1919 
1920 	return cookie;
1921 }
1922 
1923 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1924 		     unsigned int hctx_idx)
1925 {
1926 	struct page *page;
1927 
1928 	if (tags->rqs && set->ops->exit_request) {
1929 		int i;
1930 
1931 		for (i = 0; i < tags->nr_tags; i++) {
1932 			struct request *rq = tags->static_rqs[i];
1933 
1934 			if (!rq)
1935 				continue;
1936 			set->ops->exit_request(set, rq, hctx_idx);
1937 			tags->static_rqs[i] = NULL;
1938 		}
1939 	}
1940 
1941 	while (!list_empty(&tags->page_list)) {
1942 		page = list_first_entry(&tags->page_list, struct page, lru);
1943 		list_del_init(&page->lru);
1944 		/*
1945 		 * Remove kmemleak object previously allocated in
1946 		 * blk_mq_init_rq_map().
1947 		 */
1948 		kmemleak_free(page_address(page));
1949 		__free_pages(page, page->private);
1950 	}
1951 }
1952 
1953 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1954 {
1955 	kfree(tags->rqs);
1956 	tags->rqs = NULL;
1957 	kfree(tags->static_rqs);
1958 	tags->static_rqs = NULL;
1959 
1960 	blk_mq_free_tags(tags);
1961 }
1962 
1963 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1964 					unsigned int hctx_idx,
1965 					unsigned int nr_tags,
1966 					unsigned int reserved_tags)
1967 {
1968 	struct blk_mq_tags *tags;
1969 	int node;
1970 
1971 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1972 	if (node == NUMA_NO_NODE)
1973 		node = set->numa_node;
1974 
1975 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1976 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1977 	if (!tags)
1978 		return NULL;
1979 
1980 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1981 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1982 				 node);
1983 	if (!tags->rqs) {
1984 		blk_mq_free_tags(tags);
1985 		return NULL;
1986 	}
1987 
1988 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1989 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1990 					node);
1991 	if (!tags->static_rqs) {
1992 		kfree(tags->rqs);
1993 		blk_mq_free_tags(tags);
1994 		return NULL;
1995 	}
1996 
1997 	return tags;
1998 }
1999 
2000 static size_t order_to_size(unsigned int order)
2001 {
2002 	return (size_t)PAGE_SIZE << order;
2003 }
2004 
2005 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2006 			       unsigned int hctx_idx, int node)
2007 {
2008 	int ret;
2009 
2010 	if (set->ops->init_request) {
2011 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2012 		if (ret)
2013 			return ret;
2014 	}
2015 
2016 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2017 	return 0;
2018 }
2019 
2020 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2021 		     unsigned int hctx_idx, unsigned int depth)
2022 {
2023 	unsigned int i, j, entries_per_page, max_order = 4;
2024 	size_t rq_size, left;
2025 	int node;
2026 
2027 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2028 	if (node == NUMA_NO_NODE)
2029 		node = set->numa_node;
2030 
2031 	INIT_LIST_HEAD(&tags->page_list);
2032 
2033 	/*
2034 	 * rq_size is the size of the request plus driver payload, rounded
2035 	 * to the cacheline size
2036 	 */
2037 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2038 				cache_line_size());
2039 	left = rq_size * depth;
2040 
2041 	for (i = 0; i < depth; ) {
2042 		int this_order = max_order;
2043 		struct page *page;
2044 		int to_do;
2045 		void *p;
2046 
2047 		while (this_order && left < order_to_size(this_order - 1))
2048 			this_order--;
2049 
2050 		do {
2051 			page = alloc_pages_node(node,
2052 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2053 				this_order);
2054 			if (page)
2055 				break;
2056 			if (!this_order--)
2057 				break;
2058 			if (order_to_size(this_order) < rq_size)
2059 				break;
2060 		} while (1);
2061 
2062 		if (!page)
2063 			goto fail;
2064 
2065 		page->private = this_order;
2066 		list_add_tail(&page->lru, &tags->page_list);
2067 
2068 		p = page_address(page);
2069 		/*
2070 		 * Allow kmemleak to scan these pages as they contain pointers
2071 		 * to additional allocations like via ops->init_request().
2072 		 */
2073 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2074 		entries_per_page = order_to_size(this_order) / rq_size;
2075 		to_do = min(entries_per_page, depth - i);
2076 		left -= to_do * rq_size;
2077 		for (j = 0; j < to_do; j++) {
2078 			struct request *rq = p;
2079 
2080 			tags->static_rqs[i] = rq;
2081 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2082 				tags->static_rqs[i] = NULL;
2083 				goto fail;
2084 			}
2085 
2086 			p += rq_size;
2087 			i++;
2088 		}
2089 	}
2090 	return 0;
2091 
2092 fail:
2093 	blk_mq_free_rqs(set, tags, hctx_idx);
2094 	return -ENOMEM;
2095 }
2096 
2097 /*
2098  * 'cpu' is going away. splice any existing rq_list entries from this
2099  * software queue to the hw queue dispatch list, and ensure that it
2100  * gets run.
2101  */
2102 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2103 {
2104 	struct blk_mq_hw_ctx *hctx;
2105 	struct blk_mq_ctx *ctx;
2106 	LIST_HEAD(tmp);
2107 
2108 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2109 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2110 
2111 	spin_lock(&ctx->lock);
2112 	if (!list_empty(&ctx->rq_list)) {
2113 		list_splice_init(&ctx->rq_list, &tmp);
2114 		blk_mq_hctx_clear_pending(hctx, ctx);
2115 	}
2116 	spin_unlock(&ctx->lock);
2117 
2118 	if (list_empty(&tmp))
2119 		return 0;
2120 
2121 	spin_lock(&hctx->lock);
2122 	list_splice_tail_init(&tmp, &hctx->dispatch);
2123 	spin_unlock(&hctx->lock);
2124 
2125 	blk_mq_run_hw_queue(hctx, true);
2126 	return 0;
2127 }
2128 
2129 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2130 {
2131 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2132 					    &hctx->cpuhp_dead);
2133 }
2134 
2135 /* hctx->ctxs will be freed in queue's release handler */
2136 static void blk_mq_exit_hctx(struct request_queue *q,
2137 		struct blk_mq_tag_set *set,
2138 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2139 {
2140 	blk_mq_debugfs_unregister_hctx(hctx);
2141 
2142 	if (blk_mq_hw_queue_mapped(hctx))
2143 		blk_mq_tag_idle(hctx);
2144 
2145 	if (set->ops->exit_request)
2146 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2147 
2148 	if (set->ops->exit_hctx)
2149 		set->ops->exit_hctx(hctx, hctx_idx);
2150 
2151 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2152 		cleanup_srcu_struct(hctx->srcu);
2153 
2154 	blk_mq_remove_cpuhp(hctx);
2155 	blk_free_flush_queue(hctx->fq);
2156 	sbitmap_free(&hctx->ctx_map);
2157 }
2158 
2159 static void blk_mq_exit_hw_queues(struct request_queue *q,
2160 		struct blk_mq_tag_set *set, int nr_queue)
2161 {
2162 	struct blk_mq_hw_ctx *hctx;
2163 	unsigned int i;
2164 
2165 	queue_for_each_hw_ctx(q, hctx, i) {
2166 		if (i == nr_queue)
2167 			break;
2168 		blk_mq_exit_hctx(q, set, hctx, i);
2169 	}
2170 }
2171 
2172 static int blk_mq_init_hctx(struct request_queue *q,
2173 		struct blk_mq_tag_set *set,
2174 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2175 {
2176 	int node;
2177 
2178 	node = hctx->numa_node;
2179 	if (node == NUMA_NO_NODE)
2180 		node = hctx->numa_node = set->numa_node;
2181 
2182 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2183 	spin_lock_init(&hctx->lock);
2184 	INIT_LIST_HEAD(&hctx->dispatch);
2185 	hctx->queue = q;
2186 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2187 
2188 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2189 
2190 	hctx->tags = set->tags[hctx_idx];
2191 
2192 	/*
2193 	 * Allocate space for all possible cpus to avoid allocation at
2194 	 * runtime
2195 	 */
2196 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2197 					GFP_KERNEL, node);
2198 	if (!hctx->ctxs)
2199 		goto unregister_cpu_notifier;
2200 
2201 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2202 			      node))
2203 		goto free_ctxs;
2204 
2205 	hctx->nr_ctx = 0;
2206 
2207 	spin_lock_init(&hctx->dispatch_wait_lock);
2208 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2209 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2210 
2211 	if (set->ops->init_hctx &&
2212 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2213 		goto free_bitmap;
2214 
2215 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2216 	if (!hctx->fq)
2217 		goto exit_hctx;
2218 
2219 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2220 		goto free_fq;
2221 
2222 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2223 		init_srcu_struct(hctx->srcu);
2224 
2225 	blk_mq_debugfs_register_hctx(q, hctx);
2226 
2227 	return 0;
2228 
2229  free_fq:
2230 	kfree(hctx->fq);
2231  exit_hctx:
2232 	if (set->ops->exit_hctx)
2233 		set->ops->exit_hctx(hctx, hctx_idx);
2234  free_bitmap:
2235 	sbitmap_free(&hctx->ctx_map);
2236  free_ctxs:
2237 	kfree(hctx->ctxs);
2238  unregister_cpu_notifier:
2239 	blk_mq_remove_cpuhp(hctx);
2240 	return -1;
2241 }
2242 
2243 static void blk_mq_init_cpu_queues(struct request_queue *q,
2244 				   unsigned int nr_hw_queues)
2245 {
2246 	unsigned int i;
2247 
2248 	for_each_possible_cpu(i) {
2249 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2250 		struct blk_mq_hw_ctx *hctx;
2251 
2252 		__ctx->cpu = i;
2253 		spin_lock_init(&__ctx->lock);
2254 		INIT_LIST_HEAD(&__ctx->rq_list);
2255 		__ctx->queue = q;
2256 
2257 		/*
2258 		 * Set local node, IFF we have more than one hw queue. If
2259 		 * not, we remain on the home node of the device
2260 		 */
2261 		hctx = blk_mq_map_queue(q, i);
2262 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2263 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2264 	}
2265 }
2266 
2267 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2268 {
2269 	int ret = 0;
2270 
2271 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2272 					set->queue_depth, set->reserved_tags);
2273 	if (!set->tags[hctx_idx])
2274 		return false;
2275 
2276 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2277 				set->queue_depth);
2278 	if (!ret)
2279 		return true;
2280 
2281 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2282 	set->tags[hctx_idx] = NULL;
2283 	return false;
2284 }
2285 
2286 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2287 					 unsigned int hctx_idx)
2288 {
2289 	if (set->tags[hctx_idx]) {
2290 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2291 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2292 		set->tags[hctx_idx] = NULL;
2293 	}
2294 }
2295 
2296 static void blk_mq_map_swqueue(struct request_queue *q)
2297 {
2298 	unsigned int i, hctx_idx;
2299 	struct blk_mq_hw_ctx *hctx;
2300 	struct blk_mq_ctx *ctx;
2301 	struct blk_mq_tag_set *set = q->tag_set;
2302 
2303 	/*
2304 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2305 	 */
2306 	mutex_lock(&q->sysfs_lock);
2307 
2308 	queue_for_each_hw_ctx(q, hctx, i) {
2309 		cpumask_clear(hctx->cpumask);
2310 		hctx->nr_ctx = 0;
2311 		hctx->dispatch_from = NULL;
2312 	}
2313 
2314 	/*
2315 	 * Map software to hardware queues.
2316 	 *
2317 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2318 	 */
2319 	for_each_possible_cpu(i) {
2320 		hctx_idx = q->mq_map[i];
2321 		/* unmapped hw queue can be remapped after CPU topo changed */
2322 		if (!set->tags[hctx_idx] &&
2323 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2324 			/*
2325 			 * If tags initialization fail for some hctx,
2326 			 * that hctx won't be brought online.  In this
2327 			 * case, remap the current ctx to hctx[0] which
2328 			 * is guaranteed to always have tags allocated
2329 			 */
2330 			q->mq_map[i] = 0;
2331 		}
2332 
2333 		ctx = per_cpu_ptr(q->queue_ctx, i);
2334 		hctx = blk_mq_map_queue(q, i);
2335 
2336 		cpumask_set_cpu(i, hctx->cpumask);
2337 		ctx->index_hw = hctx->nr_ctx;
2338 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2339 	}
2340 
2341 	mutex_unlock(&q->sysfs_lock);
2342 
2343 	queue_for_each_hw_ctx(q, hctx, i) {
2344 		/*
2345 		 * If no software queues are mapped to this hardware queue,
2346 		 * disable it and free the request entries.
2347 		 */
2348 		if (!hctx->nr_ctx) {
2349 			/* Never unmap queue 0.  We need it as a
2350 			 * fallback in case of a new remap fails
2351 			 * allocation
2352 			 */
2353 			if (i && set->tags[i])
2354 				blk_mq_free_map_and_requests(set, i);
2355 
2356 			hctx->tags = NULL;
2357 			continue;
2358 		}
2359 
2360 		hctx->tags = set->tags[i];
2361 		WARN_ON(!hctx->tags);
2362 
2363 		/*
2364 		 * Set the map size to the number of mapped software queues.
2365 		 * This is more accurate and more efficient than looping
2366 		 * over all possibly mapped software queues.
2367 		 */
2368 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2369 
2370 		/*
2371 		 * Initialize batch roundrobin counts
2372 		 */
2373 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2374 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2375 	}
2376 }
2377 
2378 /*
2379  * Caller needs to ensure that we're either frozen/quiesced, or that
2380  * the queue isn't live yet.
2381  */
2382 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2383 {
2384 	struct blk_mq_hw_ctx *hctx;
2385 	int i;
2386 
2387 	queue_for_each_hw_ctx(q, hctx, i) {
2388 		if (shared)
2389 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2390 		else
2391 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2392 	}
2393 }
2394 
2395 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2396 					bool shared)
2397 {
2398 	struct request_queue *q;
2399 
2400 	lockdep_assert_held(&set->tag_list_lock);
2401 
2402 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2403 		blk_mq_freeze_queue(q);
2404 		queue_set_hctx_shared(q, shared);
2405 		blk_mq_unfreeze_queue(q);
2406 	}
2407 }
2408 
2409 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2410 {
2411 	struct blk_mq_tag_set *set = q->tag_set;
2412 
2413 	mutex_lock(&set->tag_list_lock);
2414 	list_del_rcu(&q->tag_set_list);
2415 	if (list_is_singular(&set->tag_list)) {
2416 		/* just transitioned to unshared */
2417 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2418 		/* update existing queue */
2419 		blk_mq_update_tag_set_depth(set, false);
2420 	}
2421 	mutex_unlock(&set->tag_list_lock);
2422 	INIT_LIST_HEAD(&q->tag_set_list);
2423 }
2424 
2425 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2426 				     struct request_queue *q)
2427 {
2428 	q->tag_set = set;
2429 
2430 	mutex_lock(&set->tag_list_lock);
2431 
2432 	/*
2433 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2434 	 */
2435 	if (!list_empty(&set->tag_list) &&
2436 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2437 		set->flags |= BLK_MQ_F_TAG_SHARED;
2438 		/* update existing queue */
2439 		blk_mq_update_tag_set_depth(set, true);
2440 	}
2441 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2442 		queue_set_hctx_shared(q, true);
2443 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2444 
2445 	mutex_unlock(&set->tag_list_lock);
2446 }
2447 
2448 /*
2449  * It is the actual release handler for mq, but we do it from
2450  * request queue's release handler for avoiding use-after-free
2451  * and headache because q->mq_kobj shouldn't have been introduced,
2452  * but we can't group ctx/kctx kobj without it.
2453  */
2454 void blk_mq_release(struct request_queue *q)
2455 {
2456 	struct blk_mq_hw_ctx *hctx;
2457 	unsigned int i;
2458 
2459 	/* hctx kobj stays in hctx */
2460 	queue_for_each_hw_ctx(q, hctx, i) {
2461 		if (!hctx)
2462 			continue;
2463 		kobject_put(&hctx->kobj);
2464 	}
2465 
2466 	q->mq_map = NULL;
2467 
2468 	kfree(q->queue_hw_ctx);
2469 
2470 	/*
2471 	 * release .mq_kobj and sw queue's kobject now because
2472 	 * both share lifetime with request queue.
2473 	 */
2474 	blk_mq_sysfs_deinit(q);
2475 
2476 	free_percpu(q->queue_ctx);
2477 }
2478 
2479 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2480 {
2481 	struct request_queue *uninit_q, *q;
2482 
2483 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2484 	if (!uninit_q)
2485 		return ERR_PTR(-ENOMEM);
2486 
2487 	q = blk_mq_init_allocated_queue(set, uninit_q);
2488 	if (IS_ERR(q))
2489 		blk_cleanup_queue(uninit_q);
2490 
2491 	return q;
2492 }
2493 EXPORT_SYMBOL(blk_mq_init_queue);
2494 
2495 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2496 {
2497 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2498 
2499 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2500 			   __alignof__(struct blk_mq_hw_ctx)) !=
2501 		     sizeof(struct blk_mq_hw_ctx));
2502 
2503 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2504 		hw_ctx_size += sizeof(struct srcu_struct);
2505 
2506 	return hw_ctx_size;
2507 }
2508 
2509 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2510 						struct request_queue *q)
2511 {
2512 	int i, j;
2513 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2514 
2515 	blk_mq_sysfs_unregister(q);
2516 
2517 	/* protect against switching io scheduler  */
2518 	mutex_lock(&q->sysfs_lock);
2519 	for (i = 0; i < set->nr_hw_queues; i++) {
2520 		int node;
2521 
2522 		if (hctxs[i])
2523 			continue;
2524 
2525 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2526 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2527 					GFP_KERNEL, node);
2528 		if (!hctxs[i])
2529 			break;
2530 
2531 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2532 						node)) {
2533 			kfree(hctxs[i]);
2534 			hctxs[i] = NULL;
2535 			break;
2536 		}
2537 
2538 		atomic_set(&hctxs[i]->nr_active, 0);
2539 		hctxs[i]->numa_node = node;
2540 		hctxs[i]->queue_num = i;
2541 
2542 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2543 			free_cpumask_var(hctxs[i]->cpumask);
2544 			kfree(hctxs[i]);
2545 			hctxs[i] = NULL;
2546 			break;
2547 		}
2548 		blk_mq_hctx_kobj_init(hctxs[i]);
2549 	}
2550 	for (j = i; j < q->nr_hw_queues; j++) {
2551 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2552 
2553 		if (hctx) {
2554 			if (hctx->tags)
2555 				blk_mq_free_map_and_requests(set, j);
2556 			blk_mq_exit_hctx(q, set, hctx, j);
2557 			kobject_put(&hctx->kobj);
2558 			hctxs[j] = NULL;
2559 
2560 		}
2561 	}
2562 	q->nr_hw_queues = i;
2563 	mutex_unlock(&q->sysfs_lock);
2564 	blk_mq_sysfs_register(q);
2565 }
2566 
2567 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2568 						  struct request_queue *q)
2569 {
2570 	/* mark the queue as mq asap */
2571 	q->mq_ops = set->ops;
2572 
2573 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2574 					     blk_mq_poll_stats_bkt,
2575 					     BLK_MQ_POLL_STATS_BKTS, q);
2576 	if (!q->poll_cb)
2577 		goto err_exit;
2578 
2579 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2580 	if (!q->queue_ctx)
2581 		goto err_exit;
2582 
2583 	/* init q->mq_kobj and sw queues' kobjects */
2584 	blk_mq_sysfs_init(q);
2585 
2586 	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2587 						GFP_KERNEL, set->numa_node);
2588 	if (!q->queue_hw_ctx)
2589 		goto err_percpu;
2590 
2591 	q->mq_map = set->mq_map;
2592 
2593 	blk_mq_realloc_hw_ctxs(set, q);
2594 	if (!q->nr_hw_queues)
2595 		goto err_hctxs;
2596 
2597 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2598 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2599 
2600 	q->nr_queues = nr_cpu_ids;
2601 
2602 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2603 
2604 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2605 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2606 
2607 	q->sg_reserved_size = INT_MAX;
2608 
2609 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2610 	INIT_LIST_HEAD(&q->requeue_list);
2611 	spin_lock_init(&q->requeue_lock);
2612 
2613 	blk_queue_make_request(q, blk_mq_make_request);
2614 	if (q->mq_ops->poll)
2615 		q->poll_fn = blk_mq_poll;
2616 
2617 	/*
2618 	 * Do this after blk_queue_make_request() overrides it...
2619 	 */
2620 	q->nr_requests = set->queue_depth;
2621 
2622 	/*
2623 	 * Default to classic polling
2624 	 */
2625 	q->poll_nsec = -1;
2626 
2627 	if (set->ops->complete)
2628 		blk_queue_softirq_done(q, set->ops->complete);
2629 
2630 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2631 	blk_mq_add_queue_tag_set(set, q);
2632 	blk_mq_map_swqueue(q);
2633 
2634 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2635 		int ret;
2636 
2637 		ret = elevator_init_mq(q);
2638 		if (ret)
2639 			return ERR_PTR(ret);
2640 	}
2641 
2642 	return q;
2643 
2644 err_hctxs:
2645 	kfree(q->queue_hw_ctx);
2646 err_percpu:
2647 	free_percpu(q->queue_ctx);
2648 err_exit:
2649 	q->mq_ops = NULL;
2650 	return ERR_PTR(-ENOMEM);
2651 }
2652 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2653 
2654 void blk_mq_free_queue(struct request_queue *q)
2655 {
2656 	struct blk_mq_tag_set	*set = q->tag_set;
2657 
2658 	blk_mq_del_queue_tag_set(q);
2659 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2660 }
2661 
2662 /* Basically redo blk_mq_init_queue with queue frozen */
2663 static void blk_mq_queue_reinit(struct request_queue *q)
2664 {
2665 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2666 
2667 	blk_mq_debugfs_unregister_hctxs(q);
2668 	blk_mq_sysfs_unregister(q);
2669 
2670 	/*
2671 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2672 	 * we should change hctx numa_node according to the new topology (this
2673 	 * involves freeing and re-allocating memory, worth doing?)
2674 	 */
2675 	blk_mq_map_swqueue(q);
2676 
2677 	blk_mq_sysfs_register(q);
2678 	blk_mq_debugfs_register_hctxs(q);
2679 }
2680 
2681 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2682 {
2683 	int i;
2684 
2685 	for (i = 0; i < set->nr_hw_queues; i++)
2686 		if (!__blk_mq_alloc_rq_map(set, i))
2687 			goto out_unwind;
2688 
2689 	return 0;
2690 
2691 out_unwind:
2692 	while (--i >= 0)
2693 		blk_mq_free_rq_map(set->tags[i]);
2694 
2695 	return -ENOMEM;
2696 }
2697 
2698 /*
2699  * Allocate the request maps associated with this tag_set. Note that this
2700  * may reduce the depth asked for, if memory is tight. set->queue_depth
2701  * will be updated to reflect the allocated depth.
2702  */
2703 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2704 {
2705 	unsigned int depth;
2706 	int err;
2707 
2708 	depth = set->queue_depth;
2709 	do {
2710 		err = __blk_mq_alloc_rq_maps(set);
2711 		if (!err)
2712 			break;
2713 
2714 		set->queue_depth >>= 1;
2715 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2716 			err = -ENOMEM;
2717 			break;
2718 		}
2719 	} while (set->queue_depth);
2720 
2721 	if (!set->queue_depth || err) {
2722 		pr_err("blk-mq: failed to allocate request map\n");
2723 		return -ENOMEM;
2724 	}
2725 
2726 	if (depth != set->queue_depth)
2727 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2728 						depth, set->queue_depth);
2729 
2730 	return 0;
2731 }
2732 
2733 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2734 {
2735 	if (set->ops->map_queues) {
2736 		/*
2737 		 * transport .map_queues is usually done in the following
2738 		 * way:
2739 		 *
2740 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2741 		 * 	mask = get_cpu_mask(queue)
2742 		 * 	for_each_cpu(cpu, mask)
2743 		 * 		set->mq_map[cpu] = queue;
2744 		 * }
2745 		 *
2746 		 * When we need to remap, the table has to be cleared for
2747 		 * killing stale mapping since one CPU may not be mapped
2748 		 * to any hw queue.
2749 		 */
2750 		blk_mq_clear_mq_map(set);
2751 
2752 		return set->ops->map_queues(set);
2753 	} else
2754 		return blk_mq_map_queues(set);
2755 }
2756 
2757 /*
2758  * Alloc a tag set to be associated with one or more request queues.
2759  * May fail with EINVAL for various error conditions. May adjust the
2760  * requested depth down, if it's too large. In that case, the set
2761  * value will be stored in set->queue_depth.
2762  */
2763 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2764 {
2765 	int ret;
2766 
2767 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2768 
2769 	if (!set->nr_hw_queues)
2770 		return -EINVAL;
2771 	if (!set->queue_depth)
2772 		return -EINVAL;
2773 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2774 		return -EINVAL;
2775 
2776 	if (!set->ops->queue_rq)
2777 		return -EINVAL;
2778 
2779 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2780 		return -EINVAL;
2781 
2782 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2783 		pr_info("blk-mq: reduced tag depth to %u\n",
2784 			BLK_MQ_MAX_DEPTH);
2785 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2786 	}
2787 
2788 	/*
2789 	 * If a crashdump is active, then we are potentially in a very
2790 	 * memory constrained environment. Limit us to 1 queue and
2791 	 * 64 tags to prevent using too much memory.
2792 	 */
2793 	if (is_kdump_kernel()) {
2794 		set->nr_hw_queues = 1;
2795 		set->queue_depth = min(64U, set->queue_depth);
2796 	}
2797 	/*
2798 	 * There is no use for more h/w queues than cpus.
2799 	 */
2800 	if (set->nr_hw_queues > nr_cpu_ids)
2801 		set->nr_hw_queues = nr_cpu_ids;
2802 
2803 	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2804 				 GFP_KERNEL, set->numa_node);
2805 	if (!set->tags)
2806 		return -ENOMEM;
2807 
2808 	ret = -ENOMEM;
2809 	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2810 				   GFP_KERNEL, set->numa_node);
2811 	if (!set->mq_map)
2812 		goto out_free_tags;
2813 
2814 	ret = blk_mq_update_queue_map(set);
2815 	if (ret)
2816 		goto out_free_mq_map;
2817 
2818 	ret = blk_mq_alloc_rq_maps(set);
2819 	if (ret)
2820 		goto out_free_mq_map;
2821 
2822 	mutex_init(&set->tag_list_lock);
2823 	INIT_LIST_HEAD(&set->tag_list);
2824 
2825 	return 0;
2826 
2827 out_free_mq_map:
2828 	kfree(set->mq_map);
2829 	set->mq_map = NULL;
2830 out_free_tags:
2831 	kfree(set->tags);
2832 	set->tags = NULL;
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2836 
2837 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2838 {
2839 	int i;
2840 
2841 	for (i = 0; i < nr_cpu_ids; i++)
2842 		blk_mq_free_map_and_requests(set, i);
2843 
2844 	kfree(set->mq_map);
2845 	set->mq_map = NULL;
2846 
2847 	kfree(set->tags);
2848 	set->tags = NULL;
2849 }
2850 EXPORT_SYMBOL(blk_mq_free_tag_set);
2851 
2852 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2853 {
2854 	struct blk_mq_tag_set *set = q->tag_set;
2855 	struct blk_mq_hw_ctx *hctx;
2856 	int i, ret;
2857 
2858 	if (!set)
2859 		return -EINVAL;
2860 
2861 	blk_mq_freeze_queue(q);
2862 	blk_mq_quiesce_queue(q);
2863 
2864 	ret = 0;
2865 	queue_for_each_hw_ctx(q, hctx, i) {
2866 		if (!hctx->tags)
2867 			continue;
2868 		/*
2869 		 * If we're using an MQ scheduler, just update the scheduler
2870 		 * queue depth. This is similar to what the old code would do.
2871 		 */
2872 		if (!hctx->sched_tags) {
2873 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2874 							false);
2875 		} else {
2876 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2877 							nr, true);
2878 		}
2879 		if (ret)
2880 			break;
2881 	}
2882 
2883 	if (!ret)
2884 		q->nr_requests = nr;
2885 
2886 	blk_mq_unquiesce_queue(q);
2887 	blk_mq_unfreeze_queue(q);
2888 
2889 	return ret;
2890 }
2891 
2892 /*
2893  * request_queue and elevator_type pair.
2894  * It is just used by __blk_mq_update_nr_hw_queues to cache
2895  * the elevator_type associated with a request_queue.
2896  */
2897 struct blk_mq_qe_pair {
2898 	struct list_head node;
2899 	struct request_queue *q;
2900 	struct elevator_type *type;
2901 };
2902 
2903 /*
2904  * Cache the elevator_type in qe pair list and switch the
2905  * io scheduler to 'none'
2906  */
2907 static bool blk_mq_elv_switch_none(struct list_head *head,
2908 		struct request_queue *q)
2909 {
2910 	struct blk_mq_qe_pair *qe;
2911 
2912 	if (!q->elevator)
2913 		return true;
2914 
2915 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2916 	if (!qe)
2917 		return false;
2918 
2919 	INIT_LIST_HEAD(&qe->node);
2920 	qe->q = q;
2921 	qe->type = q->elevator->type;
2922 	list_add(&qe->node, head);
2923 
2924 	mutex_lock(&q->sysfs_lock);
2925 	/*
2926 	 * After elevator_switch_mq, the previous elevator_queue will be
2927 	 * released by elevator_release. The reference of the io scheduler
2928 	 * module get by elevator_get will also be put. So we need to get
2929 	 * a reference of the io scheduler module here to prevent it to be
2930 	 * removed.
2931 	 */
2932 	__module_get(qe->type->elevator_owner);
2933 	elevator_switch_mq(q, NULL);
2934 	mutex_unlock(&q->sysfs_lock);
2935 
2936 	return true;
2937 }
2938 
2939 static void blk_mq_elv_switch_back(struct list_head *head,
2940 		struct request_queue *q)
2941 {
2942 	struct blk_mq_qe_pair *qe;
2943 	struct elevator_type *t = NULL;
2944 
2945 	list_for_each_entry(qe, head, node)
2946 		if (qe->q == q) {
2947 			t = qe->type;
2948 			break;
2949 		}
2950 
2951 	if (!t)
2952 		return;
2953 
2954 	list_del(&qe->node);
2955 	kfree(qe);
2956 
2957 	mutex_lock(&q->sysfs_lock);
2958 	elevator_switch_mq(q, t);
2959 	mutex_unlock(&q->sysfs_lock);
2960 }
2961 
2962 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2963 							int nr_hw_queues)
2964 {
2965 	struct request_queue *q;
2966 	LIST_HEAD(head);
2967 
2968 	lockdep_assert_held(&set->tag_list_lock);
2969 
2970 	if (nr_hw_queues > nr_cpu_ids)
2971 		nr_hw_queues = nr_cpu_ids;
2972 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2973 		return;
2974 
2975 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2976 		blk_mq_freeze_queue(q);
2977 	/*
2978 	 * Sync with blk_mq_queue_tag_busy_iter.
2979 	 */
2980 	synchronize_rcu();
2981 	/*
2982 	 * Switch IO scheduler to 'none', cleaning up the data associated
2983 	 * with the previous scheduler. We will switch back once we are done
2984 	 * updating the new sw to hw queue mappings.
2985 	 */
2986 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2987 		if (!blk_mq_elv_switch_none(&head, q))
2988 			goto switch_back;
2989 
2990 	set->nr_hw_queues = nr_hw_queues;
2991 	blk_mq_update_queue_map(set);
2992 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2993 		blk_mq_realloc_hw_ctxs(set, q);
2994 		blk_mq_queue_reinit(q);
2995 	}
2996 
2997 switch_back:
2998 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2999 		blk_mq_elv_switch_back(&head, q);
3000 
3001 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3002 		blk_mq_unfreeze_queue(q);
3003 }
3004 
3005 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3006 {
3007 	mutex_lock(&set->tag_list_lock);
3008 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3009 	mutex_unlock(&set->tag_list_lock);
3010 }
3011 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3012 
3013 /* Enable polling stats and return whether they were already enabled. */
3014 static bool blk_poll_stats_enable(struct request_queue *q)
3015 {
3016 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3017 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3018 		return true;
3019 	blk_stat_add_callback(q, q->poll_cb);
3020 	return false;
3021 }
3022 
3023 static void blk_mq_poll_stats_start(struct request_queue *q)
3024 {
3025 	/*
3026 	 * We don't arm the callback if polling stats are not enabled or the
3027 	 * callback is already active.
3028 	 */
3029 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3030 	    blk_stat_is_active(q->poll_cb))
3031 		return;
3032 
3033 	blk_stat_activate_msecs(q->poll_cb, 100);
3034 }
3035 
3036 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3037 {
3038 	struct request_queue *q = cb->data;
3039 	int bucket;
3040 
3041 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3042 		if (cb->stat[bucket].nr_samples)
3043 			q->poll_stat[bucket] = cb->stat[bucket];
3044 	}
3045 }
3046 
3047 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3048 				       struct blk_mq_hw_ctx *hctx,
3049 				       struct request *rq)
3050 {
3051 	unsigned long ret = 0;
3052 	int bucket;
3053 
3054 	/*
3055 	 * If stats collection isn't on, don't sleep but turn it on for
3056 	 * future users
3057 	 */
3058 	if (!blk_poll_stats_enable(q))
3059 		return 0;
3060 
3061 	/*
3062 	 * As an optimistic guess, use half of the mean service time
3063 	 * for this type of request. We can (and should) make this smarter.
3064 	 * For instance, if the completion latencies are tight, we can
3065 	 * get closer than just half the mean. This is especially
3066 	 * important on devices where the completion latencies are longer
3067 	 * than ~10 usec. We do use the stats for the relevant IO size
3068 	 * if available which does lead to better estimates.
3069 	 */
3070 	bucket = blk_mq_poll_stats_bkt(rq);
3071 	if (bucket < 0)
3072 		return ret;
3073 
3074 	if (q->poll_stat[bucket].nr_samples)
3075 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3076 
3077 	return ret;
3078 }
3079 
3080 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3081 				     struct blk_mq_hw_ctx *hctx,
3082 				     struct request *rq)
3083 {
3084 	struct hrtimer_sleeper hs;
3085 	enum hrtimer_mode mode;
3086 	unsigned int nsecs;
3087 	ktime_t kt;
3088 
3089 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3090 		return false;
3091 
3092 	/*
3093 	 * poll_nsec can be:
3094 	 *
3095 	 * -1:	don't ever hybrid sleep
3096 	 *  0:	use half of prev avg
3097 	 * >0:	use this specific value
3098 	 */
3099 	if (q->poll_nsec == -1)
3100 		return false;
3101 	else if (q->poll_nsec > 0)
3102 		nsecs = q->poll_nsec;
3103 	else
3104 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3105 
3106 	if (!nsecs)
3107 		return false;
3108 
3109 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3110 
3111 	/*
3112 	 * This will be replaced with the stats tracking code, using
3113 	 * 'avg_completion_time / 2' as the pre-sleep target.
3114 	 */
3115 	kt = nsecs;
3116 
3117 	mode = HRTIMER_MODE_REL;
3118 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3119 	hrtimer_set_expires(&hs.timer, kt);
3120 
3121 	hrtimer_init_sleeper(&hs, current);
3122 	do {
3123 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3124 			break;
3125 		set_current_state(TASK_UNINTERRUPTIBLE);
3126 		hrtimer_start_expires(&hs.timer, mode);
3127 		if (hs.task)
3128 			io_schedule();
3129 		hrtimer_cancel(&hs.timer);
3130 		mode = HRTIMER_MODE_ABS;
3131 	} while (hs.task && !signal_pending(current));
3132 
3133 	__set_current_state(TASK_RUNNING);
3134 	destroy_hrtimer_on_stack(&hs.timer);
3135 	return true;
3136 }
3137 
3138 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3139 {
3140 	struct request_queue *q = hctx->queue;
3141 	long state;
3142 
3143 	/*
3144 	 * If we sleep, have the caller restart the poll loop to reset
3145 	 * the state. Like for the other success return cases, the
3146 	 * caller is responsible for checking if the IO completed. If
3147 	 * the IO isn't complete, we'll get called again and will go
3148 	 * straight to the busy poll loop.
3149 	 */
3150 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3151 		return true;
3152 
3153 	hctx->poll_considered++;
3154 
3155 	state = current->state;
3156 	while (!need_resched()) {
3157 		int ret;
3158 
3159 		hctx->poll_invoked++;
3160 
3161 		ret = q->mq_ops->poll(hctx, rq->tag);
3162 		if (ret > 0) {
3163 			hctx->poll_success++;
3164 			set_current_state(TASK_RUNNING);
3165 			return true;
3166 		}
3167 
3168 		if (signal_pending_state(state, current))
3169 			set_current_state(TASK_RUNNING);
3170 
3171 		if (current->state == TASK_RUNNING)
3172 			return true;
3173 		if (ret < 0)
3174 			break;
3175 		cpu_relax();
3176 	}
3177 
3178 	__set_current_state(TASK_RUNNING);
3179 	return false;
3180 }
3181 
3182 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3183 {
3184 	struct blk_mq_hw_ctx *hctx;
3185 	struct request *rq;
3186 
3187 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3188 		return false;
3189 
3190 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3191 	if (!blk_qc_t_is_internal(cookie))
3192 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3193 	else {
3194 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3195 		/*
3196 		 * With scheduling, if the request has completed, we'll
3197 		 * get a NULL return here, as we clear the sched tag when
3198 		 * that happens. The request still remains valid, like always,
3199 		 * so we should be safe with just the NULL check.
3200 		 */
3201 		if (!rq)
3202 			return false;
3203 	}
3204 
3205 	return __blk_mq_poll(hctx, rq);
3206 }
3207 
3208 static int __init blk_mq_init(void)
3209 {
3210 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3211 				blk_mq_hctx_notify_dead);
3212 	return 0;
3213 }
3214 subsys_initcall(blk_mq_init);
3215