xref: /openbmc/linux/block/blk-mq.c (revision 4a3fad70)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 		/*
101 		 * index[0] counts the specific partition that was asked
102 		 * for. index[1] counts the ones that are active on the
103 		 * whole device, so increment that if mi->part is indeed
104 		 * a partition, and not a whole device.
105 		 */
106 		if (rq->part == mi->part)
107 			mi->inflight[0]++;
108 		if (mi->part->partno)
109 			mi->inflight[1]++;
110 	}
111 }
112 
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 		      unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 
118 	inflight[0] = inflight[1] = 0;
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121 
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 	int freeze_depth;
125 
126 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 	if (freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		if (q->mq_ops)
130 			blk_mq_run_hw_queues(q, false);
131 	}
132 }
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134 
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 {
137 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 }
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140 
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 				     unsigned long timeout)
143 {
144 	return wait_event_timeout(q->mq_freeze_wq,
145 					percpu_ref_is_zero(&q->q_usage_counter),
146 					timeout);
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149 
150 /*
151  * Guarantee no request is in use, so we can change any data structure of
152  * the queue afterward.
153  */
154 void blk_freeze_queue(struct request_queue *q)
155 {
156 	/*
157 	 * In the !blk_mq case we are only calling this to kill the
158 	 * q_usage_counter, otherwise this increases the freeze depth
159 	 * and waits for it to return to zero.  For this reason there is
160 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 	 * exported to drivers as the only user for unfreeze is blk_mq.
162 	 */
163 	blk_freeze_queue_start(q);
164 	blk_mq_freeze_queue_wait(q);
165 }
166 
167 void blk_mq_freeze_queue(struct request_queue *q)
168 {
169 	/*
170 	 * ...just an alias to keep freeze and unfreeze actions balanced
171 	 * in the blk_mq_* namespace
172 	 */
173 	blk_freeze_queue(q);
174 }
175 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176 
177 void blk_mq_unfreeze_queue(struct request_queue *q)
178 {
179 	int freeze_depth;
180 
181 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 	WARN_ON_ONCE(freeze_depth < 0);
183 	if (!freeze_depth) {
184 		percpu_ref_reinit(&q->q_usage_counter);
185 		wake_up_all(&q->mq_freeze_wq);
186 	}
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189 
190 /*
191  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192  * mpt3sas driver such that this function can be removed.
193  */
194 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
195 {
196 	unsigned long flags;
197 
198 	spin_lock_irqsave(q->queue_lock, flags);
199 	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 	spin_unlock_irqrestore(q->queue_lock, flags);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
203 
204 /**
205  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206  * @q: request queue.
207  *
208  * Note: this function does not prevent that the struct request end_io()
209  * callback function is invoked. Once this function is returned, we make
210  * sure no dispatch can happen until the queue is unquiesced via
211  * blk_mq_unquiesce_queue().
212  */
213 void blk_mq_quiesce_queue(struct request_queue *q)
214 {
215 	struct blk_mq_hw_ctx *hctx;
216 	unsigned int i;
217 	bool rcu = false;
218 
219 	blk_mq_quiesce_queue_nowait(q);
220 
221 	queue_for_each_hw_ctx(q, hctx, i) {
222 		if (hctx->flags & BLK_MQ_F_BLOCKING)
223 			synchronize_srcu(hctx->queue_rq_srcu);
224 		else
225 			rcu = true;
226 	}
227 	if (rcu)
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
231 
232 /*
233  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234  * @q: request queue.
235  *
236  * This function recovers queue into the state before quiescing
237  * which is done by blk_mq_quiesce_queue.
238  */
239 void blk_mq_unquiesce_queue(struct request_queue *q)
240 {
241 	unsigned long flags;
242 
243 	spin_lock_irqsave(q->queue_lock, flags);
244 	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245 	spin_unlock_irqrestore(q->queue_lock, flags);
246 
247 	/* dispatch requests which are inserted during quiescing */
248 	blk_mq_run_hw_queues(q, true);
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
251 
252 void blk_mq_wake_waiters(struct request_queue *q)
253 {
254 	struct blk_mq_hw_ctx *hctx;
255 	unsigned int i;
256 
257 	queue_for_each_hw_ctx(q, hctx, i)
258 		if (blk_mq_hw_queue_mapped(hctx))
259 			blk_mq_tag_wakeup_all(hctx->tags, true);
260 }
261 
262 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
263 {
264 	return blk_mq_has_free_tags(hctx->tags);
265 }
266 EXPORT_SYMBOL(blk_mq_can_queue);
267 
268 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
269 		unsigned int tag, unsigned int op)
270 {
271 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
272 	struct request *rq = tags->static_rqs[tag];
273 
274 	rq->rq_flags = 0;
275 
276 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 		rq->tag = -1;
278 		rq->internal_tag = tag;
279 	} else {
280 		if (blk_mq_tag_busy(data->hctx)) {
281 			rq->rq_flags = RQF_MQ_INFLIGHT;
282 			atomic_inc(&data->hctx->nr_active);
283 		}
284 		rq->tag = tag;
285 		rq->internal_tag = -1;
286 		data->hctx->tags->rqs[rq->tag] = rq;
287 	}
288 
289 	INIT_LIST_HEAD(&rq->queuelist);
290 	/* csd/requeue_work/fifo_time is initialized before use */
291 	rq->q = data->q;
292 	rq->mq_ctx = data->ctx;
293 	rq->cmd_flags = op;
294 	if (data->flags & BLK_MQ_REQ_PREEMPT)
295 		rq->rq_flags |= RQF_PREEMPT;
296 	if (blk_queue_io_stat(data->q))
297 		rq->rq_flags |= RQF_IO_STAT;
298 	/* do not touch atomic flags, it needs atomic ops against the timer */
299 	rq->cpu = -1;
300 	INIT_HLIST_NODE(&rq->hash);
301 	RB_CLEAR_NODE(&rq->rb_node);
302 	rq->rq_disk = NULL;
303 	rq->part = NULL;
304 	rq->start_time = jiffies;
305 #ifdef CONFIG_BLK_CGROUP
306 	rq->rl = NULL;
307 	set_start_time_ns(rq);
308 	rq->io_start_time_ns = 0;
309 #endif
310 	rq->nr_phys_segments = 0;
311 #if defined(CONFIG_BLK_DEV_INTEGRITY)
312 	rq->nr_integrity_segments = 0;
313 #endif
314 	rq->special = NULL;
315 	/* tag was already set */
316 	rq->extra_len = 0;
317 
318 	INIT_LIST_HEAD(&rq->timeout_list);
319 	rq->timeout = 0;
320 
321 	rq->end_io = NULL;
322 	rq->end_io_data = NULL;
323 	rq->next_rq = NULL;
324 
325 	data->ctx->rq_dispatched[op_is_sync(op)]++;
326 	return rq;
327 }
328 
329 static struct request *blk_mq_get_request(struct request_queue *q,
330 		struct bio *bio, unsigned int op,
331 		struct blk_mq_alloc_data *data)
332 {
333 	struct elevator_queue *e = q->elevator;
334 	struct request *rq;
335 	unsigned int tag;
336 	bool put_ctx_on_error = false;
337 
338 	blk_queue_enter_live(q);
339 	data->q = q;
340 	if (likely(!data->ctx)) {
341 		data->ctx = blk_mq_get_ctx(q);
342 		put_ctx_on_error = true;
343 	}
344 	if (likely(!data->hctx))
345 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 	if (op & REQ_NOWAIT)
347 		data->flags |= BLK_MQ_REQ_NOWAIT;
348 
349 	if (e) {
350 		data->flags |= BLK_MQ_REQ_INTERNAL;
351 
352 		/*
353 		 * Flush requests are special and go directly to the
354 		 * dispatch list.
355 		 */
356 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
357 			e->type->ops.mq.limit_depth(op, data);
358 	}
359 
360 	tag = blk_mq_get_tag(data);
361 	if (tag == BLK_MQ_TAG_FAIL) {
362 		if (put_ctx_on_error) {
363 			blk_mq_put_ctx(data->ctx);
364 			data->ctx = NULL;
365 		}
366 		blk_queue_exit(q);
367 		return NULL;
368 	}
369 
370 	rq = blk_mq_rq_ctx_init(data, tag, op);
371 	if (!op_is_flush(op)) {
372 		rq->elv.icq = NULL;
373 		if (e && e->type->ops.mq.prepare_request) {
374 			if (e->type->icq_cache && rq_ioc(bio))
375 				blk_mq_sched_assign_ioc(rq, bio);
376 
377 			e->type->ops.mq.prepare_request(rq, bio);
378 			rq->rq_flags |= RQF_ELVPRIV;
379 		}
380 	}
381 	data->hctx->queued++;
382 	return rq;
383 }
384 
385 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386 		blk_mq_req_flags_t flags)
387 {
388 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
389 	struct request *rq;
390 	int ret;
391 
392 	ret = blk_queue_enter(q, flags);
393 	if (ret)
394 		return ERR_PTR(ret);
395 
396 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397 	blk_queue_exit(q);
398 
399 	if (!rq)
400 		return ERR_PTR(-EWOULDBLOCK);
401 
402 	blk_mq_put_ctx(alloc_data.ctx);
403 
404 	rq->__data_len = 0;
405 	rq->__sector = (sector_t) -1;
406 	rq->bio = rq->biotail = NULL;
407 	return rq;
408 }
409 EXPORT_SYMBOL(blk_mq_alloc_request);
410 
411 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
413 {
414 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
415 	struct request *rq;
416 	unsigned int cpu;
417 	int ret;
418 
419 	/*
420 	 * If the tag allocator sleeps we could get an allocation for a
421 	 * different hardware context.  No need to complicate the low level
422 	 * allocator for this for the rare use case of a command tied to
423 	 * a specific queue.
424 	 */
425 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
426 		return ERR_PTR(-EINVAL);
427 
428 	if (hctx_idx >= q->nr_hw_queues)
429 		return ERR_PTR(-EIO);
430 
431 	ret = blk_queue_enter(q, flags);
432 	if (ret)
433 		return ERR_PTR(ret);
434 
435 	/*
436 	 * Check if the hardware context is actually mapped to anything.
437 	 * If not tell the caller that it should skip this queue.
438 	 */
439 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
440 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
441 		blk_queue_exit(q);
442 		return ERR_PTR(-EXDEV);
443 	}
444 	cpu = cpumask_first(alloc_data.hctx->cpumask);
445 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
446 
447 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448 	blk_queue_exit(q);
449 
450 	if (!rq)
451 		return ERR_PTR(-EWOULDBLOCK);
452 
453 	return rq;
454 }
455 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
456 
457 void blk_mq_free_request(struct request *rq)
458 {
459 	struct request_queue *q = rq->q;
460 	struct elevator_queue *e = q->elevator;
461 	struct blk_mq_ctx *ctx = rq->mq_ctx;
462 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
463 	const int sched_tag = rq->internal_tag;
464 
465 	if (rq->rq_flags & RQF_ELVPRIV) {
466 		if (e && e->type->ops.mq.finish_request)
467 			e->type->ops.mq.finish_request(rq);
468 		if (rq->elv.icq) {
469 			put_io_context(rq->elv.icq->ioc);
470 			rq->elv.icq = NULL;
471 		}
472 	}
473 
474 	ctx->rq_completed[rq_is_sync(rq)]++;
475 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
476 		atomic_dec(&hctx->nr_active);
477 
478 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
479 		laptop_io_completion(q->backing_dev_info);
480 
481 	wbt_done(q->rq_wb, &rq->issue_stat);
482 
483 	if (blk_rq_rl(rq))
484 		blk_put_rl(blk_rq_rl(rq));
485 
486 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
487 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
488 	if (rq->tag != -1)
489 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
490 	if (sched_tag != -1)
491 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
492 	blk_mq_sched_restart(hctx);
493 	blk_queue_exit(q);
494 }
495 EXPORT_SYMBOL_GPL(blk_mq_free_request);
496 
497 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
498 {
499 	blk_account_io_done(rq);
500 
501 	if (rq->end_io) {
502 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
503 		rq->end_io(rq, error);
504 	} else {
505 		if (unlikely(blk_bidi_rq(rq)))
506 			blk_mq_free_request(rq->next_rq);
507 		blk_mq_free_request(rq);
508 	}
509 }
510 EXPORT_SYMBOL(__blk_mq_end_request);
511 
512 void blk_mq_end_request(struct request *rq, blk_status_t error)
513 {
514 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
515 		BUG();
516 	__blk_mq_end_request(rq, error);
517 }
518 EXPORT_SYMBOL(blk_mq_end_request);
519 
520 static void __blk_mq_complete_request_remote(void *data)
521 {
522 	struct request *rq = data;
523 
524 	rq->q->softirq_done_fn(rq);
525 }
526 
527 static void __blk_mq_complete_request(struct request *rq)
528 {
529 	struct blk_mq_ctx *ctx = rq->mq_ctx;
530 	bool shared = false;
531 	int cpu;
532 
533 	if (rq->internal_tag != -1)
534 		blk_mq_sched_completed_request(rq);
535 	if (rq->rq_flags & RQF_STATS) {
536 		blk_mq_poll_stats_start(rq->q);
537 		blk_stat_add(rq);
538 	}
539 
540 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
541 		rq->q->softirq_done_fn(rq);
542 		return;
543 	}
544 
545 	cpu = get_cpu();
546 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
547 		shared = cpus_share_cache(cpu, ctx->cpu);
548 
549 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
550 		rq->csd.func = __blk_mq_complete_request_remote;
551 		rq->csd.info = rq;
552 		rq->csd.flags = 0;
553 		smp_call_function_single_async(ctx->cpu, &rq->csd);
554 	} else {
555 		rq->q->softirq_done_fn(rq);
556 	}
557 	put_cpu();
558 }
559 
560 /**
561  * blk_mq_complete_request - end I/O on a request
562  * @rq:		the request being processed
563  *
564  * Description:
565  *	Ends all I/O on a request. It does not handle partial completions.
566  *	The actual completion happens out-of-order, through a IPI handler.
567  **/
568 void blk_mq_complete_request(struct request *rq)
569 {
570 	struct request_queue *q = rq->q;
571 
572 	if (unlikely(blk_should_fake_timeout(q)))
573 		return;
574 	if (!blk_mark_rq_complete(rq))
575 		__blk_mq_complete_request(rq);
576 }
577 EXPORT_SYMBOL(blk_mq_complete_request);
578 
579 int blk_mq_request_started(struct request *rq)
580 {
581 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
582 }
583 EXPORT_SYMBOL_GPL(blk_mq_request_started);
584 
585 void blk_mq_start_request(struct request *rq)
586 {
587 	struct request_queue *q = rq->q;
588 
589 	blk_mq_sched_started_request(rq);
590 
591 	trace_block_rq_issue(q, rq);
592 
593 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
594 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
595 		rq->rq_flags |= RQF_STATS;
596 		wbt_issue(q->rq_wb, &rq->issue_stat);
597 	}
598 
599 	blk_add_timer(rq);
600 
601 	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
602 
603 	/*
604 	 * Mark us as started and clear complete. Complete might have been
605 	 * set if requeue raced with timeout, which then marked it as
606 	 * complete. So be sure to clear complete again when we start
607 	 * the request, otherwise we'll ignore the completion event.
608 	 *
609 	 * Ensure that ->deadline is visible before we set STARTED, such that
610 	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
611 	 * it observes STARTED.
612 	 */
613 	smp_wmb();
614 	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
615 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
616 		/*
617 		 * Coherence order guarantees these consecutive stores to a
618 		 * single variable propagate in the specified order. Thus the
619 		 * clear_bit() is ordered _after_ the set bit. See
620 		 * blk_mq_check_expired().
621 		 *
622 		 * (the bits must be part of the same byte for this to be
623 		 * true).
624 		 */
625 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
626 	}
627 
628 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
629 		/*
630 		 * Make sure space for the drain appears.  We know we can do
631 		 * this because max_hw_segments has been adjusted to be one
632 		 * fewer than the device can handle.
633 		 */
634 		rq->nr_phys_segments++;
635 	}
636 }
637 EXPORT_SYMBOL(blk_mq_start_request);
638 
639 /*
640  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
641  * flag isn't set yet, so there may be race with timeout handler,
642  * but given rq->deadline is just set in .queue_rq() under
643  * this situation, the race won't be possible in reality because
644  * rq->timeout should be set as big enough to cover the window
645  * between blk_mq_start_request() called from .queue_rq() and
646  * clearing REQ_ATOM_STARTED here.
647  */
648 static void __blk_mq_requeue_request(struct request *rq)
649 {
650 	struct request_queue *q = rq->q;
651 
652 	blk_mq_put_driver_tag(rq);
653 
654 	trace_block_rq_requeue(q, rq);
655 	wbt_requeue(q->rq_wb, &rq->issue_stat);
656 	blk_mq_sched_requeue_request(rq);
657 
658 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
659 		if (q->dma_drain_size && blk_rq_bytes(rq))
660 			rq->nr_phys_segments--;
661 	}
662 }
663 
664 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
665 {
666 	__blk_mq_requeue_request(rq);
667 
668 	BUG_ON(blk_queued_rq(rq));
669 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
670 }
671 EXPORT_SYMBOL(blk_mq_requeue_request);
672 
673 static void blk_mq_requeue_work(struct work_struct *work)
674 {
675 	struct request_queue *q =
676 		container_of(work, struct request_queue, requeue_work.work);
677 	LIST_HEAD(rq_list);
678 	struct request *rq, *next;
679 
680 	spin_lock_irq(&q->requeue_lock);
681 	list_splice_init(&q->requeue_list, &rq_list);
682 	spin_unlock_irq(&q->requeue_lock);
683 
684 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
685 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
686 			continue;
687 
688 		rq->rq_flags &= ~RQF_SOFTBARRIER;
689 		list_del_init(&rq->queuelist);
690 		blk_mq_sched_insert_request(rq, true, false, false, true);
691 	}
692 
693 	while (!list_empty(&rq_list)) {
694 		rq = list_entry(rq_list.next, struct request, queuelist);
695 		list_del_init(&rq->queuelist);
696 		blk_mq_sched_insert_request(rq, false, false, false, true);
697 	}
698 
699 	blk_mq_run_hw_queues(q, false);
700 }
701 
702 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
703 				bool kick_requeue_list)
704 {
705 	struct request_queue *q = rq->q;
706 	unsigned long flags;
707 
708 	/*
709 	 * We abuse this flag that is otherwise used by the I/O scheduler to
710 	 * request head insertion from the workqueue.
711 	 */
712 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
713 
714 	spin_lock_irqsave(&q->requeue_lock, flags);
715 	if (at_head) {
716 		rq->rq_flags |= RQF_SOFTBARRIER;
717 		list_add(&rq->queuelist, &q->requeue_list);
718 	} else {
719 		list_add_tail(&rq->queuelist, &q->requeue_list);
720 	}
721 	spin_unlock_irqrestore(&q->requeue_lock, flags);
722 
723 	if (kick_requeue_list)
724 		blk_mq_kick_requeue_list(q);
725 }
726 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
727 
728 void blk_mq_kick_requeue_list(struct request_queue *q)
729 {
730 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
731 }
732 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
733 
734 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
735 				    unsigned long msecs)
736 {
737 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
738 				    msecs_to_jiffies(msecs));
739 }
740 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
741 
742 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
743 {
744 	if (tag < tags->nr_tags) {
745 		prefetch(tags->rqs[tag]);
746 		return tags->rqs[tag];
747 	}
748 
749 	return NULL;
750 }
751 EXPORT_SYMBOL(blk_mq_tag_to_rq);
752 
753 struct blk_mq_timeout_data {
754 	unsigned long next;
755 	unsigned int next_set;
756 };
757 
758 void blk_mq_rq_timed_out(struct request *req, bool reserved)
759 {
760 	const struct blk_mq_ops *ops = req->q->mq_ops;
761 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
762 
763 	/*
764 	 * We know that complete is set at this point. If STARTED isn't set
765 	 * anymore, then the request isn't active and the "timeout" should
766 	 * just be ignored. This can happen due to the bitflag ordering.
767 	 * Timeout first checks if STARTED is set, and if it is, assumes
768 	 * the request is active. But if we race with completion, then
769 	 * both flags will get cleared. So check here again, and ignore
770 	 * a timeout event with a request that isn't active.
771 	 */
772 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
773 		return;
774 
775 	if (ops->timeout)
776 		ret = ops->timeout(req, reserved);
777 
778 	switch (ret) {
779 	case BLK_EH_HANDLED:
780 		__blk_mq_complete_request(req);
781 		break;
782 	case BLK_EH_RESET_TIMER:
783 		blk_add_timer(req);
784 		blk_clear_rq_complete(req);
785 		break;
786 	case BLK_EH_NOT_HANDLED:
787 		break;
788 	default:
789 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
790 		break;
791 	}
792 }
793 
794 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
795 		struct request *rq, void *priv, bool reserved)
796 {
797 	struct blk_mq_timeout_data *data = priv;
798 	unsigned long deadline;
799 
800 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
801 		return;
802 
803 	/*
804 	 * Ensures that if we see STARTED we must also see our
805 	 * up-to-date deadline, see blk_mq_start_request().
806 	 */
807 	smp_rmb();
808 
809 	deadline = READ_ONCE(rq->deadline);
810 
811 	/*
812 	 * The rq being checked may have been freed and reallocated
813 	 * out already here, we avoid this race by checking rq->deadline
814 	 * and REQ_ATOM_COMPLETE flag together:
815 	 *
816 	 * - if rq->deadline is observed as new value because of
817 	 *   reusing, the rq won't be timed out because of timing.
818 	 * - if rq->deadline is observed as previous value,
819 	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
820 	 *   because we put a barrier between setting rq->deadline
821 	 *   and clearing the flag in blk_mq_start_request(), so
822 	 *   this rq won't be timed out too.
823 	 */
824 	if (time_after_eq(jiffies, deadline)) {
825 		if (!blk_mark_rq_complete(rq)) {
826 			/*
827 			 * Again coherence order ensures that consecutive reads
828 			 * from the same variable must be in that order. This
829 			 * ensures that if we see COMPLETE clear, we must then
830 			 * see STARTED set and we'll ignore this timeout.
831 			 *
832 			 * (There's also the MB implied by the test_and_clear())
833 			 */
834 			blk_mq_rq_timed_out(rq, reserved);
835 		}
836 	} else if (!data->next_set || time_after(data->next, deadline)) {
837 		data->next = deadline;
838 		data->next_set = 1;
839 	}
840 }
841 
842 static void blk_mq_timeout_work(struct work_struct *work)
843 {
844 	struct request_queue *q =
845 		container_of(work, struct request_queue, timeout_work);
846 	struct blk_mq_timeout_data data = {
847 		.next		= 0,
848 		.next_set	= 0,
849 	};
850 	int i;
851 
852 	/* A deadlock might occur if a request is stuck requiring a
853 	 * timeout at the same time a queue freeze is waiting
854 	 * completion, since the timeout code would not be able to
855 	 * acquire the queue reference here.
856 	 *
857 	 * That's why we don't use blk_queue_enter here; instead, we use
858 	 * percpu_ref_tryget directly, because we need to be able to
859 	 * obtain a reference even in the short window between the queue
860 	 * starting to freeze, by dropping the first reference in
861 	 * blk_freeze_queue_start, and the moment the last request is
862 	 * consumed, marked by the instant q_usage_counter reaches
863 	 * zero.
864 	 */
865 	if (!percpu_ref_tryget(&q->q_usage_counter))
866 		return;
867 
868 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
869 
870 	if (data.next_set) {
871 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
872 		mod_timer(&q->timeout, data.next);
873 	} else {
874 		struct blk_mq_hw_ctx *hctx;
875 
876 		queue_for_each_hw_ctx(q, hctx, i) {
877 			/* the hctx may be unmapped, so check it here */
878 			if (blk_mq_hw_queue_mapped(hctx))
879 				blk_mq_tag_idle(hctx);
880 		}
881 	}
882 	blk_queue_exit(q);
883 }
884 
885 struct flush_busy_ctx_data {
886 	struct blk_mq_hw_ctx *hctx;
887 	struct list_head *list;
888 };
889 
890 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
891 {
892 	struct flush_busy_ctx_data *flush_data = data;
893 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
894 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
895 
896 	sbitmap_clear_bit(sb, bitnr);
897 	spin_lock(&ctx->lock);
898 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
899 	spin_unlock(&ctx->lock);
900 	return true;
901 }
902 
903 /*
904  * Process software queues that have been marked busy, splicing them
905  * to the for-dispatch
906  */
907 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908 {
909 	struct flush_busy_ctx_data data = {
910 		.hctx = hctx,
911 		.list = list,
912 	};
913 
914 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
915 }
916 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
917 
918 struct dispatch_rq_data {
919 	struct blk_mq_hw_ctx *hctx;
920 	struct request *rq;
921 };
922 
923 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
924 		void *data)
925 {
926 	struct dispatch_rq_data *dispatch_data = data;
927 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
928 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
929 
930 	spin_lock(&ctx->lock);
931 	if (unlikely(!list_empty(&ctx->rq_list))) {
932 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
933 		list_del_init(&dispatch_data->rq->queuelist);
934 		if (list_empty(&ctx->rq_list))
935 			sbitmap_clear_bit(sb, bitnr);
936 	}
937 	spin_unlock(&ctx->lock);
938 
939 	return !dispatch_data->rq;
940 }
941 
942 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
943 					struct blk_mq_ctx *start)
944 {
945 	unsigned off = start ? start->index_hw : 0;
946 	struct dispatch_rq_data data = {
947 		.hctx = hctx,
948 		.rq   = NULL,
949 	};
950 
951 	__sbitmap_for_each_set(&hctx->ctx_map, off,
952 			       dispatch_rq_from_ctx, &data);
953 
954 	return data.rq;
955 }
956 
957 static inline unsigned int queued_to_index(unsigned int queued)
958 {
959 	if (!queued)
960 		return 0;
961 
962 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
963 }
964 
965 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
966 			   bool wait)
967 {
968 	struct blk_mq_alloc_data data = {
969 		.q = rq->q,
970 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
971 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
972 	};
973 
974 	might_sleep_if(wait);
975 
976 	if (rq->tag != -1)
977 		goto done;
978 
979 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 		data.flags |= BLK_MQ_REQ_RESERVED;
981 
982 	rq->tag = blk_mq_get_tag(&data);
983 	if (rq->tag >= 0) {
984 		if (blk_mq_tag_busy(data.hctx)) {
985 			rq->rq_flags |= RQF_MQ_INFLIGHT;
986 			atomic_inc(&data.hctx->nr_active);
987 		}
988 		data.hctx->tags->rqs[rq->tag] = rq;
989 	}
990 
991 done:
992 	if (hctx)
993 		*hctx = data.hctx;
994 	return rq->tag != -1;
995 }
996 
997 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
998 				int flags, void *key)
999 {
1000 	struct blk_mq_hw_ctx *hctx;
1001 
1002 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1003 
1004 	list_del_init(&wait->entry);
1005 	blk_mq_run_hw_queue(hctx, true);
1006 	return 1;
1007 }
1008 
1009 /*
1010  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1011  * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1012  * restart. For both caes, take care to check the condition again after
1013  * marking us as waiting.
1014  */
1015 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1016 				 struct request *rq)
1017 {
1018 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1019 	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1020 	struct sbq_wait_state *ws;
1021 	wait_queue_entry_t *wait;
1022 	bool ret;
1023 
1024 	if (!shared_tags) {
1025 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1026 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1027 	} else {
1028 		wait = &this_hctx->dispatch_wait;
1029 		if (!list_empty_careful(&wait->entry))
1030 			return false;
1031 
1032 		spin_lock(&this_hctx->lock);
1033 		if (!list_empty(&wait->entry)) {
1034 			spin_unlock(&this_hctx->lock);
1035 			return false;
1036 		}
1037 
1038 		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1039 		add_wait_queue(&ws->wait, wait);
1040 	}
1041 
1042 	/*
1043 	 * It's possible that a tag was freed in the window between the
1044 	 * allocation failure and adding the hardware queue to the wait
1045 	 * queue.
1046 	 */
1047 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1048 
1049 	if (!shared_tags) {
1050 		/*
1051 		 * Don't clear RESTART here, someone else could have set it.
1052 		 * At most this will cost an extra queue run.
1053 		 */
1054 		return ret;
1055 	} else {
1056 		if (!ret) {
1057 			spin_unlock(&this_hctx->lock);
1058 			return false;
1059 		}
1060 
1061 		/*
1062 		 * We got a tag, remove ourselves from the wait queue to ensure
1063 		 * someone else gets the wakeup.
1064 		 */
1065 		spin_lock_irq(&ws->wait.lock);
1066 		list_del_init(&wait->entry);
1067 		spin_unlock_irq(&ws->wait.lock);
1068 		spin_unlock(&this_hctx->lock);
1069 		return true;
1070 	}
1071 }
1072 
1073 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1074 			     bool got_budget)
1075 {
1076 	struct blk_mq_hw_ctx *hctx;
1077 	struct request *rq, *nxt;
1078 	bool no_tag = false;
1079 	int errors, queued;
1080 
1081 	if (list_empty(list))
1082 		return false;
1083 
1084 	WARN_ON(!list_is_singular(list) && got_budget);
1085 
1086 	/*
1087 	 * Now process all the entries, sending them to the driver.
1088 	 */
1089 	errors = queued = 0;
1090 	do {
1091 		struct blk_mq_queue_data bd;
1092 		blk_status_t ret;
1093 
1094 		rq = list_first_entry(list, struct request, queuelist);
1095 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1096 			/*
1097 			 * The initial allocation attempt failed, so we need to
1098 			 * rerun the hardware queue when a tag is freed. The
1099 			 * waitqueue takes care of that. If the queue is run
1100 			 * before we add this entry back on the dispatch list,
1101 			 * we'll re-run it below.
1102 			 */
1103 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1104 				if (got_budget)
1105 					blk_mq_put_dispatch_budget(hctx);
1106 				/*
1107 				 * For non-shared tags, the RESTART check
1108 				 * will suffice.
1109 				 */
1110 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1111 					no_tag = true;
1112 				break;
1113 			}
1114 		}
1115 
1116 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1117 			blk_mq_put_driver_tag(rq);
1118 			break;
1119 		}
1120 
1121 		list_del_init(&rq->queuelist);
1122 
1123 		bd.rq = rq;
1124 
1125 		/*
1126 		 * Flag last if we have no more requests, or if we have more
1127 		 * but can't assign a driver tag to it.
1128 		 */
1129 		if (list_empty(list))
1130 			bd.last = true;
1131 		else {
1132 			nxt = list_first_entry(list, struct request, queuelist);
1133 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1134 		}
1135 
1136 		ret = q->mq_ops->queue_rq(hctx, &bd);
1137 		if (ret == BLK_STS_RESOURCE) {
1138 			/*
1139 			 * If an I/O scheduler has been configured and we got a
1140 			 * driver tag for the next request already, free it
1141 			 * again.
1142 			 */
1143 			if (!list_empty(list)) {
1144 				nxt = list_first_entry(list, struct request, queuelist);
1145 				blk_mq_put_driver_tag(nxt);
1146 			}
1147 			list_add(&rq->queuelist, list);
1148 			__blk_mq_requeue_request(rq);
1149 			break;
1150 		}
1151 
1152 		if (unlikely(ret != BLK_STS_OK)) {
1153 			errors++;
1154 			blk_mq_end_request(rq, BLK_STS_IOERR);
1155 			continue;
1156 		}
1157 
1158 		queued++;
1159 	} while (!list_empty(list));
1160 
1161 	hctx->dispatched[queued_to_index(queued)]++;
1162 
1163 	/*
1164 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1165 	 * that is where we will continue on next queue run.
1166 	 */
1167 	if (!list_empty(list)) {
1168 		spin_lock(&hctx->lock);
1169 		list_splice_init(list, &hctx->dispatch);
1170 		spin_unlock(&hctx->lock);
1171 
1172 		/*
1173 		 * If SCHED_RESTART was set by the caller of this function and
1174 		 * it is no longer set that means that it was cleared by another
1175 		 * thread and hence that a queue rerun is needed.
1176 		 *
1177 		 * If 'no_tag' is set, that means that we failed getting
1178 		 * a driver tag with an I/O scheduler attached. If our dispatch
1179 		 * waitqueue is no longer active, ensure that we run the queue
1180 		 * AFTER adding our entries back to the list.
1181 		 *
1182 		 * If no I/O scheduler has been configured it is possible that
1183 		 * the hardware queue got stopped and restarted before requests
1184 		 * were pushed back onto the dispatch list. Rerun the queue to
1185 		 * avoid starvation. Notes:
1186 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1187 		 *   been stopped before rerunning a queue.
1188 		 * - Some but not all block drivers stop a queue before
1189 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1190 		 *   and dm-rq.
1191 		 */
1192 		if (!blk_mq_sched_needs_restart(hctx) ||
1193 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1194 			blk_mq_run_hw_queue(hctx, true);
1195 	}
1196 
1197 	return (queued + errors) != 0;
1198 }
1199 
1200 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1201 {
1202 	int srcu_idx;
1203 
1204 	/*
1205 	 * We should be running this queue from one of the CPUs that
1206 	 * are mapped to it.
1207 	 */
1208 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1209 		cpu_online(hctx->next_cpu));
1210 
1211 	/*
1212 	 * We can't run the queue inline with ints disabled. Ensure that
1213 	 * we catch bad users of this early.
1214 	 */
1215 	WARN_ON_ONCE(in_interrupt());
1216 
1217 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1218 		rcu_read_lock();
1219 		blk_mq_sched_dispatch_requests(hctx);
1220 		rcu_read_unlock();
1221 	} else {
1222 		might_sleep();
1223 
1224 		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1225 		blk_mq_sched_dispatch_requests(hctx);
1226 		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1227 	}
1228 }
1229 
1230 /*
1231  * It'd be great if the workqueue API had a way to pass
1232  * in a mask and had some smarts for more clever placement.
1233  * For now we just round-robin here, switching for every
1234  * BLK_MQ_CPU_WORK_BATCH queued items.
1235  */
1236 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1237 {
1238 	if (hctx->queue->nr_hw_queues == 1)
1239 		return WORK_CPU_UNBOUND;
1240 
1241 	if (--hctx->next_cpu_batch <= 0) {
1242 		int next_cpu;
1243 
1244 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1245 		if (next_cpu >= nr_cpu_ids)
1246 			next_cpu = cpumask_first(hctx->cpumask);
1247 
1248 		hctx->next_cpu = next_cpu;
1249 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1250 	}
1251 
1252 	return hctx->next_cpu;
1253 }
1254 
1255 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1256 					unsigned long msecs)
1257 {
1258 	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1259 		return;
1260 
1261 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1262 		return;
1263 
1264 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1265 		int cpu = get_cpu();
1266 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1267 			__blk_mq_run_hw_queue(hctx);
1268 			put_cpu();
1269 			return;
1270 		}
1271 
1272 		put_cpu();
1273 	}
1274 
1275 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1276 					 &hctx->run_work,
1277 					 msecs_to_jiffies(msecs));
1278 }
1279 
1280 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1281 {
1282 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1283 }
1284 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1285 
1286 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1287 {
1288 	if (blk_mq_hctx_has_pending(hctx)) {
1289 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1290 		return true;
1291 	}
1292 
1293 	return false;
1294 }
1295 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1296 
1297 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1298 {
1299 	struct blk_mq_hw_ctx *hctx;
1300 	int i;
1301 
1302 	queue_for_each_hw_ctx(q, hctx, i) {
1303 		if (blk_mq_hctx_stopped(hctx))
1304 			continue;
1305 
1306 		blk_mq_run_hw_queue(hctx, async);
1307 	}
1308 }
1309 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1310 
1311 /**
1312  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1313  * @q: request queue.
1314  *
1315  * The caller is responsible for serializing this function against
1316  * blk_mq_{start,stop}_hw_queue().
1317  */
1318 bool blk_mq_queue_stopped(struct request_queue *q)
1319 {
1320 	struct blk_mq_hw_ctx *hctx;
1321 	int i;
1322 
1323 	queue_for_each_hw_ctx(q, hctx, i)
1324 		if (blk_mq_hctx_stopped(hctx))
1325 			return true;
1326 
1327 	return false;
1328 }
1329 EXPORT_SYMBOL(blk_mq_queue_stopped);
1330 
1331 /*
1332  * This function is often used for pausing .queue_rq() by driver when
1333  * there isn't enough resource or some conditions aren't satisfied, and
1334  * BLK_STS_RESOURCE is usually returned.
1335  *
1336  * We do not guarantee that dispatch can be drained or blocked
1337  * after blk_mq_stop_hw_queue() returns. Please use
1338  * blk_mq_quiesce_queue() for that requirement.
1339  */
1340 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1341 {
1342 	cancel_delayed_work(&hctx->run_work);
1343 
1344 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1345 }
1346 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1347 
1348 /*
1349  * This function is often used for pausing .queue_rq() by driver when
1350  * there isn't enough resource or some conditions aren't satisfied, and
1351  * BLK_STS_RESOURCE is usually returned.
1352  *
1353  * We do not guarantee that dispatch can be drained or blocked
1354  * after blk_mq_stop_hw_queues() returns. Please use
1355  * blk_mq_quiesce_queue() for that requirement.
1356  */
1357 void blk_mq_stop_hw_queues(struct request_queue *q)
1358 {
1359 	struct blk_mq_hw_ctx *hctx;
1360 	int i;
1361 
1362 	queue_for_each_hw_ctx(q, hctx, i)
1363 		blk_mq_stop_hw_queue(hctx);
1364 }
1365 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1366 
1367 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1368 {
1369 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1370 
1371 	blk_mq_run_hw_queue(hctx, false);
1372 }
1373 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1374 
1375 void blk_mq_start_hw_queues(struct request_queue *q)
1376 {
1377 	struct blk_mq_hw_ctx *hctx;
1378 	int i;
1379 
1380 	queue_for_each_hw_ctx(q, hctx, i)
1381 		blk_mq_start_hw_queue(hctx);
1382 }
1383 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1384 
1385 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1386 {
1387 	if (!blk_mq_hctx_stopped(hctx))
1388 		return;
1389 
1390 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1391 	blk_mq_run_hw_queue(hctx, async);
1392 }
1393 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1394 
1395 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1396 {
1397 	struct blk_mq_hw_ctx *hctx;
1398 	int i;
1399 
1400 	queue_for_each_hw_ctx(q, hctx, i)
1401 		blk_mq_start_stopped_hw_queue(hctx, async);
1402 }
1403 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1404 
1405 static void blk_mq_run_work_fn(struct work_struct *work)
1406 {
1407 	struct blk_mq_hw_ctx *hctx;
1408 
1409 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1410 
1411 	/*
1412 	 * If we are stopped, don't run the queue. The exception is if
1413 	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1414 	 * the STOPPED bit and run it.
1415 	 */
1416 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1417 		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1418 			return;
1419 
1420 		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1421 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1422 	}
1423 
1424 	__blk_mq_run_hw_queue(hctx);
1425 }
1426 
1427 
1428 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1429 {
1430 	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1431 		return;
1432 
1433 	/*
1434 	 * Stop the hw queue, then modify currently delayed work.
1435 	 * This should prevent us from running the queue prematurely.
1436 	 * Mark the queue as auto-clearing STOPPED when it runs.
1437 	 */
1438 	blk_mq_stop_hw_queue(hctx);
1439 	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1440 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1441 					&hctx->run_work,
1442 					msecs_to_jiffies(msecs));
1443 }
1444 EXPORT_SYMBOL(blk_mq_delay_queue);
1445 
1446 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1447 					    struct request *rq,
1448 					    bool at_head)
1449 {
1450 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1451 
1452 	lockdep_assert_held(&ctx->lock);
1453 
1454 	trace_block_rq_insert(hctx->queue, rq);
1455 
1456 	if (at_head)
1457 		list_add(&rq->queuelist, &ctx->rq_list);
1458 	else
1459 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1460 }
1461 
1462 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1463 			     bool at_head)
1464 {
1465 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1466 
1467 	lockdep_assert_held(&ctx->lock);
1468 
1469 	__blk_mq_insert_req_list(hctx, rq, at_head);
1470 	blk_mq_hctx_mark_pending(hctx, ctx);
1471 }
1472 
1473 /*
1474  * Should only be used carefully, when the caller knows we want to
1475  * bypass a potential IO scheduler on the target device.
1476  */
1477 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1478 {
1479 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1480 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1481 
1482 	spin_lock(&hctx->lock);
1483 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1484 	spin_unlock(&hctx->lock);
1485 
1486 	if (run_queue)
1487 		blk_mq_run_hw_queue(hctx, false);
1488 }
1489 
1490 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1491 			    struct list_head *list)
1492 
1493 {
1494 	/*
1495 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1496 	 * offline now
1497 	 */
1498 	spin_lock(&ctx->lock);
1499 	while (!list_empty(list)) {
1500 		struct request *rq;
1501 
1502 		rq = list_first_entry(list, struct request, queuelist);
1503 		BUG_ON(rq->mq_ctx != ctx);
1504 		list_del_init(&rq->queuelist);
1505 		__blk_mq_insert_req_list(hctx, rq, false);
1506 	}
1507 	blk_mq_hctx_mark_pending(hctx, ctx);
1508 	spin_unlock(&ctx->lock);
1509 }
1510 
1511 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1512 {
1513 	struct request *rqa = container_of(a, struct request, queuelist);
1514 	struct request *rqb = container_of(b, struct request, queuelist);
1515 
1516 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1517 		 (rqa->mq_ctx == rqb->mq_ctx &&
1518 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1519 }
1520 
1521 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1522 {
1523 	struct blk_mq_ctx *this_ctx;
1524 	struct request_queue *this_q;
1525 	struct request *rq;
1526 	LIST_HEAD(list);
1527 	LIST_HEAD(ctx_list);
1528 	unsigned int depth;
1529 
1530 	list_splice_init(&plug->mq_list, &list);
1531 
1532 	list_sort(NULL, &list, plug_ctx_cmp);
1533 
1534 	this_q = NULL;
1535 	this_ctx = NULL;
1536 	depth = 0;
1537 
1538 	while (!list_empty(&list)) {
1539 		rq = list_entry_rq(list.next);
1540 		list_del_init(&rq->queuelist);
1541 		BUG_ON(!rq->q);
1542 		if (rq->mq_ctx != this_ctx) {
1543 			if (this_ctx) {
1544 				trace_block_unplug(this_q, depth, from_schedule);
1545 				blk_mq_sched_insert_requests(this_q, this_ctx,
1546 								&ctx_list,
1547 								from_schedule);
1548 			}
1549 
1550 			this_ctx = rq->mq_ctx;
1551 			this_q = rq->q;
1552 			depth = 0;
1553 		}
1554 
1555 		depth++;
1556 		list_add_tail(&rq->queuelist, &ctx_list);
1557 	}
1558 
1559 	/*
1560 	 * If 'this_ctx' is set, we know we have entries to complete
1561 	 * on 'ctx_list'. Do those.
1562 	 */
1563 	if (this_ctx) {
1564 		trace_block_unplug(this_q, depth, from_schedule);
1565 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1566 						from_schedule);
1567 	}
1568 }
1569 
1570 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1571 {
1572 	blk_init_request_from_bio(rq, bio);
1573 
1574 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1575 
1576 	blk_account_io_start(rq, true);
1577 }
1578 
1579 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1580 				   struct blk_mq_ctx *ctx,
1581 				   struct request *rq)
1582 {
1583 	spin_lock(&ctx->lock);
1584 	__blk_mq_insert_request(hctx, rq, false);
1585 	spin_unlock(&ctx->lock);
1586 }
1587 
1588 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1589 {
1590 	if (rq->tag != -1)
1591 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1592 
1593 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1594 }
1595 
1596 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1597 					struct request *rq,
1598 					blk_qc_t *cookie, bool may_sleep)
1599 {
1600 	struct request_queue *q = rq->q;
1601 	struct blk_mq_queue_data bd = {
1602 		.rq = rq,
1603 		.last = true,
1604 	};
1605 	blk_qc_t new_cookie;
1606 	blk_status_t ret;
1607 	bool run_queue = true;
1608 
1609 	/* RCU or SRCU read lock is needed before checking quiesced flag */
1610 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1611 		run_queue = false;
1612 		goto insert;
1613 	}
1614 
1615 	if (q->elevator)
1616 		goto insert;
1617 
1618 	if (!blk_mq_get_driver_tag(rq, NULL, false))
1619 		goto insert;
1620 
1621 	if (!blk_mq_get_dispatch_budget(hctx)) {
1622 		blk_mq_put_driver_tag(rq);
1623 		goto insert;
1624 	}
1625 
1626 	new_cookie = request_to_qc_t(hctx, rq);
1627 
1628 	/*
1629 	 * For OK queue, we are done. For error, kill it. Any other
1630 	 * error (busy), just add it to our list as we previously
1631 	 * would have done
1632 	 */
1633 	ret = q->mq_ops->queue_rq(hctx, &bd);
1634 	switch (ret) {
1635 	case BLK_STS_OK:
1636 		*cookie = new_cookie;
1637 		return;
1638 	case BLK_STS_RESOURCE:
1639 		__blk_mq_requeue_request(rq);
1640 		goto insert;
1641 	default:
1642 		*cookie = BLK_QC_T_NONE;
1643 		blk_mq_end_request(rq, ret);
1644 		return;
1645 	}
1646 
1647 insert:
1648 	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1649 }
1650 
1651 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1652 		struct request *rq, blk_qc_t *cookie)
1653 {
1654 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1655 		rcu_read_lock();
1656 		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1657 		rcu_read_unlock();
1658 	} else {
1659 		unsigned int srcu_idx;
1660 
1661 		might_sleep();
1662 
1663 		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1664 		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1665 		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1666 	}
1667 }
1668 
1669 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1670 {
1671 	const int is_sync = op_is_sync(bio->bi_opf);
1672 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1673 	struct blk_mq_alloc_data data = { .flags = 0 };
1674 	struct request *rq;
1675 	unsigned int request_count = 0;
1676 	struct blk_plug *plug;
1677 	struct request *same_queue_rq = NULL;
1678 	blk_qc_t cookie;
1679 	unsigned int wb_acct;
1680 
1681 	blk_queue_bounce(q, &bio);
1682 
1683 	blk_queue_split(q, &bio);
1684 
1685 	if (!bio_integrity_prep(bio))
1686 		return BLK_QC_T_NONE;
1687 
1688 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1689 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1690 		return BLK_QC_T_NONE;
1691 
1692 	if (blk_mq_sched_bio_merge(q, bio))
1693 		return BLK_QC_T_NONE;
1694 
1695 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1696 
1697 	trace_block_getrq(q, bio, bio->bi_opf);
1698 
1699 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1700 	if (unlikely(!rq)) {
1701 		__wbt_done(q->rq_wb, wb_acct);
1702 		if (bio->bi_opf & REQ_NOWAIT)
1703 			bio_wouldblock_error(bio);
1704 		return BLK_QC_T_NONE;
1705 	}
1706 
1707 	wbt_track(&rq->issue_stat, wb_acct);
1708 
1709 	cookie = request_to_qc_t(data.hctx, rq);
1710 
1711 	plug = current->plug;
1712 	if (unlikely(is_flush_fua)) {
1713 		blk_mq_put_ctx(data.ctx);
1714 		blk_mq_bio_to_request(rq, bio);
1715 
1716 		/* bypass scheduler for flush rq */
1717 		blk_insert_flush(rq);
1718 		blk_mq_run_hw_queue(data.hctx, true);
1719 	} else if (plug && q->nr_hw_queues == 1) {
1720 		struct request *last = NULL;
1721 
1722 		blk_mq_put_ctx(data.ctx);
1723 		blk_mq_bio_to_request(rq, bio);
1724 
1725 		/*
1726 		 * @request_count may become stale because of schedule
1727 		 * out, so check the list again.
1728 		 */
1729 		if (list_empty(&plug->mq_list))
1730 			request_count = 0;
1731 		else if (blk_queue_nomerges(q))
1732 			request_count = blk_plug_queued_count(q);
1733 
1734 		if (!request_count)
1735 			trace_block_plug(q);
1736 		else
1737 			last = list_entry_rq(plug->mq_list.prev);
1738 
1739 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1740 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1741 			blk_flush_plug_list(plug, false);
1742 			trace_block_plug(q);
1743 		}
1744 
1745 		list_add_tail(&rq->queuelist, &plug->mq_list);
1746 	} else if (plug && !blk_queue_nomerges(q)) {
1747 		blk_mq_bio_to_request(rq, bio);
1748 
1749 		/*
1750 		 * We do limited plugging. If the bio can be merged, do that.
1751 		 * Otherwise the existing request in the plug list will be
1752 		 * issued. So the plug list will have one request at most
1753 		 * The plug list might get flushed before this. If that happens,
1754 		 * the plug list is empty, and same_queue_rq is invalid.
1755 		 */
1756 		if (list_empty(&plug->mq_list))
1757 			same_queue_rq = NULL;
1758 		if (same_queue_rq)
1759 			list_del_init(&same_queue_rq->queuelist);
1760 		list_add_tail(&rq->queuelist, &plug->mq_list);
1761 
1762 		blk_mq_put_ctx(data.ctx);
1763 
1764 		if (same_queue_rq) {
1765 			data.hctx = blk_mq_map_queue(q,
1766 					same_queue_rq->mq_ctx->cpu);
1767 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1768 					&cookie);
1769 		}
1770 	} else if (q->nr_hw_queues > 1 && is_sync) {
1771 		blk_mq_put_ctx(data.ctx);
1772 		blk_mq_bio_to_request(rq, bio);
1773 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1774 	} else if (q->elevator) {
1775 		blk_mq_put_ctx(data.ctx);
1776 		blk_mq_bio_to_request(rq, bio);
1777 		blk_mq_sched_insert_request(rq, false, true, true, true);
1778 	} else {
1779 		blk_mq_put_ctx(data.ctx);
1780 		blk_mq_bio_to_request(rq, bio);
1781 		blk_mq_queue_io(data.hctx, data.ctx, rq);
1782 		blk_mq_run_hw_queue(data.hctx, true);
1783 	}
1784 
1785 	return cookie;
1786 }
1787 
1788 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1789 		     unsigned int hctx_idx)
1790 {
1791 	struct page *page;
1792 
1793 	if (tags->rqs && set->ops->exit_request) {
1794 		int i;
1795 
1796 		for (i = 0; i < tags->nr_tags; i++) {
1797 			struct request *rq = tags->static_rqs[i];
1798 
1799 			if (!rq)
1800 				continue;
1801 			set->ops->exit_request(set, rq, hctx_idx);
1802 			tags->static_rqs[i] = NULL;
1803 		}
1804 	}
1805 
1806 	while (!list_empty(&tags->page_list)) {
1807 		page = list_first_entry(&tags->page_list, struct page, lru);
1808 		list_del_init(&page->lru);
1809 		/*
1810 		 * Remove kmemleak object previously allocated in
1811 		 * blk_mq_init_rq_map().
1812 		 */
1813 		kmemleak_free(page_address(page));
1814 		__free_pages(page, page->private);
1815 	}
1816 }
1817 
1818 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1819 {
1820 	kfree(tags->rqs);
1821 	tags->rqs = NULL;
1822 	kfree(tags->static_rqs);
1823 	tags->static_rqs = NULL;
1824 
1825 	blk_mq_free_tags(tags);
1826 }
1827 
1828 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1829 					unsigned int hctx_idx,
1830 					unsigned int nr_tags,
1831 					unsigned int reserved_tags)
1832 {
1833 	struct blk_mq_tags *tags;
1834 	int node;
1835 
1836 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1837 	if (node == NUMA_NO_NODE)
1838 		node = set->numa_node;
1839 
1840 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1841 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1842 	if (!tags)
1843 		return NULL;
1844 
1845 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1846 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1847 				 node);
1848 	if (!tags->rqs) {
1849 		blk_mq_free_tags(tags);
1850 		return NULL;
1851 	}
1852 
1853 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1854 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1855 				 node);
1856 	if (!tags->static_rqs) {
1857 		kfree(tags->rqs);
1858 		blk_mq_free_tags(tags);
1859 		return NULL;
1860 	}
1861 
1862 	return tags;
1863 }
1864 
1865 static size_t order_to_size(unsigned int order)
1866 {
1867 	return (size_t)PAGE_SIZE << order;
1868 }
1869 
1870 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1871 		     unsigned int hctx_idx, unsigned int depth)
1872 {
1873 	unsigned int i, j, entries_per_page, max_order = 4;
1874 	size_t rq_size, left;
1875 	int node;
1876 
1877 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1878 	if (node == NUMA_NO_NODE)
1879 		node = set->numa_node;
1880 
1881 	INIT_LIST_HEAD(&tags->page_list);
1882 
1883 	/*
1884 	 * rq_size is the size of the request plus driver payload, rounded
1885 	 * to the cacheline size
1886 	 */
1887 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1888 				cache_line_size());
1889 	left = rq_size * depth;
1890 
1891 	for (i = 0; i < depth; ) {
1892 		int this_order = max_order;
1893 		struct page *page;
1894 		int to_do;
1895 		void *p;
1896 
1897 		while (this_order && left < order_to_size(this_order - 1))
1898 			this_order--;
1899 
1900 		do {
1901 			page = alloc_pages_node(node,
1902 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1903 				this_order);
1904 			if (page)
1905 				break;
1906 			if (!this_order--)
1907 				break;
1908 			if (order_to_size(this_order) < rq_size)
1909 				break;
1910 		} while (1);
1911 
1912 		if (!page)
1913 			goto fail;
1914 
1915 		page->private = this_order;
1916 		list_add_tail(&page->lru, &tags->page_list);
1917 
1918 		p = page_address(page);
1919 		/*
1920 		 * Allow kmemleak to scan these pages as they contain pointers
1921 		 * to additional allocations like via ops->init_request().
1922 		 */
1923 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1924 		entries_per_page = order_to_size(this_order) / rq_size;
1925 		to_do = min(entries_per_page, depth - i);
1926 		left -= to_do * rq_size;
1927 		for (j = 0; j < to_do; j++) {
1928 			struct request *rq = p;
1929 
1930 			tags->static_rqs[i] = rq;
1931 			if (set->ops->init_request) {
1932 				if (set->ops->init_request(set, rq, hctx_idx,
1933 						node)) {
1934 					tags->static_rqs[i] = NULL;
1935 					goto fail;
1936 				}
1937 			}
1938 
1939 			p += rq_size;
1940 			i++;
1941 		}
1942 	}
1943 	return 0;
1944 
1945 fail:
1946 	blk_mq_free_rqs(set, tags, hctx_idx);
1947 	return -ENOMEM;
1948 }
1949 
1950 /*
1951  * 'cpu' is going away. splice any existing rq_list entries from this
1952  * software queue to the hw queue dispatch list, and ensure that it
1953  * gets run.
1954  */
1955 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1956 {
1957 	struct blk_mq_hw_ctx *hctx;
1958 	struct blk_mq_ctx *ctx;
1959 	LIST_HEAD(tmp);
1960 
1961 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1962 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1963 
1964 	spin_lock(&ctx->lock);
1965 	if (!list_empty(&ctx->rq_list)) {
1966 		list_splice_init(&ctx->rq_list, &tmp);
1967 		blk_mq_hctx_clear_pending(hctx, ctx);
1968 	}
1969 	spin_unlock(&ctx->lock);
1970 
1971 	if (list_empty(&tmp))
1972 		return 0;
1973 
1974 	spin_lock(&hctx->lock);
1975 	list_splice_tail_init(&tmp, &hctx->dispatch);
1976 	spin_unlock(&hctx->lock);
1977 
1978 	blk_mq_run_hw_queue(hctx, true);
1979 	return 0;
1980 }
1981 
1982 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1983 {
1984 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1985 					    &hctx->cpuhp_dead);
1986 }
1987 
1988 /* hctx->ctxs will be freed in queue's release handler */
1989 static void blk_mq_exit_hctx(struct request_queue *q,
1990 		struct blk_mq_tag_set *set,
1991 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1992 {
1993 	blk_mq_debugfs_unregister_hctx(hctx);
1994 
1995 	blk_mq_tag_idle(hctx);
1996 
1997 	if (set->ops->exit_request)
1998 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1999 
2000 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2001 
2002 	if (set->ops->exit_hctx)
2003 		set->ops->exit_hctx(hctx, hctx_idx);
2004 
2005 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2006 		cleanup_srcu_struct(hctx->queue_rq_srcu);
2007 
2008 	blk_mq_remove_cpuhp(hctx);
2009 	blk_free_flush_queue(hctx->fq);
2010 	sbitmap_free(&hctx->ctx_map);
2011 }
2012 
2013 static void blk_mq_exit_hw_queues(struct request_queue *q,
2014 		struct blk_mq_tag_set *set, int nr_queue)
2015 {
2016 	struct blk_mq_hw_ctx *hctx;
2017 	unsigned int i;
2018 
2019 	queue_for_each_hw_ctx(q, hctx, i) {
2020 		if (i == nr_queue)
2021 			break;
2022 		blk_mq_exit_hctx(q, set, hctx, i);
2023 	}
2024 }
2025 
2026 static int blk_mq_init_hctx(struct request_queue *q,
2027 		struct blk_mq_tag_set *set,
2028 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2029 {
2030 	int node;
2031 
2032 	node = hctx->numa_node;
2033 	if (node == NUMA_NO_NODE)
2034 		node = hctx->numa_node = set->numa_node;
2035 
2036 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2037 	spin_lock_init(&hctx->lock);
2038 	INIT_LIST_HEAD(&hctx->dispatch);
2039 	hctx->queue = q;
2040 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2041 
2042 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2043 
2044 	hctx->tags = set->tags[hctx_idx];
2045 
2046 	/*
2047 	 * Allocate space for all possible cpus to avoid allocation at
2048 	 * runtime
2049 	 */
2050 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2051 					GFP_KERNEL, node);
2052 	if (!hctx->ctxs)
2053 		goto unregister_cpu_notifier;
2054 
2055 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2056 			      node))
2057 		goto free_ctxs;
2058 
2059 	hctx->nr_ctx = 0;
2060 
2061 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2062 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2063 
2064 	if (set->ops->init_hctx &&
2065 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2066 		goto free_bitmap;
2067 
2068 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2069 		goto exit_hctx;
2070 
2071 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2072 	if (!hctx->fq)
2073 		goto sched_exit_hctx;
2074 
2075 	if (set->ops->init_request &&
2076 	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2077 				   node))
2078 		goto free_fq;
2079 
2080 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2081 		init_srcu_struct(hctx->queue_rq_srcu);
2082 
2083 	blk_mq_debugfs_register_hctx(q, hctx);
2084 
2085 	return 0;
2086 
2087  free_fq:
2088 	kfree(hctx->fq);
2089  sched_exit_hctx:
2090 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2091  exit_hctx:
2092 	if (set->ops->exit_hctx)
2093 		set->ops->exit_hctx(hctx, hctx_idx);
2094  free_bitmap:
2095 	sbitmap_free(&hctx->ctx_map);
2096  free_ctxs:
2097 	kfree(hctx->ctxs);
2098  unregister_cpu_notifier:
2099 	blk_mq_remove_cpuhp(hctx);
2100 	return -1;
2101 }
2102 
2103 static void blk_mq_init_cpu_queues(struct request_queue *q,
2104 				   unsigned int nr_hw_queues)
2105 {
2106 	unsigned int i;
2107 
2108 	for_each_possible_cpu(i) {
2109 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2110 		struct blk_mq_hw_ctx *hctx;
2111 
2112 		__ctx->cpu = i;
2113 		spin_lock_init(&__ctx->lock);
2114 		INIT_LIST_HEAD(&__ctx->rq_list);
2115 		__ctx->queue = q;
2116 
2117 		/* If the cpu isn't present, the cpu is mapped to first hctx */
2118 		if (!cpu_present(i))
2119 			continue;
2120 
2121 		hctx = blk_mq_map_queue(q, i);
2122 
2123 		/*
2124 		 * Set local node, IFF we have more than one hw queue. If
2125 		 * not, we remain on the home node of the device
2126 		 */
2127 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2128 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2129 	}
2130 }
2131 
2132 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2133 {
2134 	int ret = 0;
2135 
2136 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2137 					set->queue_depth, set->reserved_tags);
2138 	if (!set->tags[hctx_idx])
2139 		return false;
2140 
2141 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2142 				set->queue_depth);
2143 	if (!ret)
2144 		return true;
2145 
2146 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2147 	set->tags[hctx_idx] = NULL;
2148 	return false;
2149 }
2150 
2151 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2152 					 unsigned int hctx_idx)
2153 {
2154 	if (set->tags[hctx_idx]) {
2155 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2156 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2157 		set->tags[hctx_idx] = NULL;
2158 	}
2159 }
2160 
2161 static void blk_mq_map_swqueue(struct request_queue *q)
2162 {
2163 	unsigned int i, hctx_idx;
2164 	struct blk_mq_hw_ctx *hctx;
2165 	struct blk_mq_ctx *ctx;
2166 	struct blk_mq_tag_set *set = q->tag_set;
2167 
2168 	/*
2169 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2170 	 */
2171 	mutex_lock(&q->sysfs_lock);
2172 
2173 	queue_for_each_hw_ctx(q, hctx, i) {
2174 		cpumask_clear(hctx->cpumask);
2175 		hctx->nr_ctx = 0;
2176 	}
2177 
2178 	/*
2179 	 * Map software to hardware queues.
2180 	 *
2181 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2182 	 */
2183 	for_each_present_cpu(i) {
2184 		hctx_idx = q->mq_map[i];
2185 		/* unmapped hw queue can be remapped after CPU topo changed */
2186 		if (!set->tags[hctx_idx] &&
2187 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2188 			/*
2189 			 * If tags initialization fail for some hctx,
2190 			 * that hctx won't be brought online.  In this
2191 			 * case, remap the current ctx to hctx[0] which
2192 			 * is guaranteed to always have tags allocated
2193 			 */
2194 			q->mq_map[i] = 0;
2195 		}
2196 
2197 		ctx = per_cpu_ptr(q->queue_ctx, i);
2198 		hctx = blk_mq_map_queue(q, i);
2199 
2200 		cpumask_set_cpu(i, hctx->cpumask);
2201 		ctx->index_hw = hctx->nr_ctx;
2202 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2203 	}
2204 
2205 	mutex_unlock(&q->sysfs_lock);
2206 
2207 	queue_for_each_hw_ctx(q, hctx, i) {
2208 		/*
2209 		 * If no software queues are mapped to this hardware queue,
2210 		 * disable it and free the request entries.
2211 		 */
2212 		if (!hctx->nr_ctx) {
2213 			/* Never unmap queue 0.  We need it as a
2214 			 * fallback in case of a new remap fails
2215 			 * allocation
2216 			 */
2217 			if (i && set->tags[i])
2218 				blk_mq_free_map_and_requests(set, i);
2219 
2220 			hctx->tags = NULL;
2221 			continue;
2222 		}
2223 
2224 		hctx->tags = set->tags[i];
2225 		WARN_ON(!hctx->tags);
2226 
2227 		/*
2228 		 * Set the map size to the number of mapped software queues.
2229 		 * This is more accurate and more efficient than looping
2230 		 * over all possibly mapped software queues.
2231 		 */
2232 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2233 
2234 		/*
2235 		 * Initialize batch roundrobin counts
2236 		 */
2237 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2238 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2239 	}
2240 }
2241 
2242 /*
2243  * Caller needs to ensure that we're either frozen/quiesced, or that
2244  * the queue isn't live yet.
2245  */
2246 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2247 {
2248 	struct blk_mq_hw_ctx *hctx;
2249 	int i;
2250 
2251 	queue_for_each_hw_ctx(q, hctx, i) {
2252 		if (shared) {
2253 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2254 				atomic_inc(&q->shared_hctx_restart);
2255 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2256 		} else {
2257 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2258 				atomic_dec(&q->shared_hctx_restart);
2259 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2260 		}
2261 	}
2262 }
2263 
2264 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2265 					bool shared)
2266 {
2267 	struct request_queue *q;
2268 
2269 	lockdep_assert_held(&set->tag_list_lock);
2270 
2271 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2272 		blk_mq_freeze_queue(q);
2273 		queue_set_hctx_shared(q, shared);
2274 		blk_mq_unfreeze_queue(q);
2275 	}
2276 }
2277 
2278 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2279 {
2280 	struct blk_mq_tag_set *set = q->tag_set;
2281 
2282 	mutex_lock(&set->tag_list_lock);
2283 	list_del_rcu(&q->tag_set_list);
2284 	INIT_LIST_HEAD(&q->tag_set_list);
2285 	if (list_is_singular(&set->tag_list)) {
2286 		/* just transitioned to unshared */
2287 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2288 		/* update existing queue */
2289 		blk_mq_update_tag_set_depth(set, false);
2290 	}
2291 	mutex_unlock(&set->tag_list_lock);
2292 
2293 	synchronize_rcu();
2294 }
2295 
2296 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2297 				     struct request_queue *q)
2298 {
2299 	q->tag_set = set;
2300 
2301 	mutex_lock(&set->tag_list_lock);
2302 
2303 	/*
2304 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2305 	 */
2306 	if (!list_empty(&set->tag_list) &&
2307 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2308 		set->flags |= BLK_MQ_F_TAG_SHARED;
2309 		/* update existing queue */
2310 		blk_mq_update_tag_set_depth(set, true);
2311 	}
2312 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2313 		queue_set_hctx_shared(q, true);
2314 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2315 
2316 	mutex_unlock(&set->tag_list_lock);
2317 }
2318 
2319 /*
2320  * It is the actual release handler for mq, but we do it from
2321  * request queue's release handler for avoiding use-after-free
2322  * and headache because q->mq_kobj shouldn't have been introduced,
2323  * but we can't group ctx/kctx kobj without it.
2324  */
2325 void blk_mq_release(struct request_queue *q)
2326 {
2327 	struct blk_mq_hw_ctx *hctx;
2328 	unsigned int i;
2329 
2330 	/* hctx kobj stays in hctx */
2331 	queue_for_each_hw_ctx(q, hctx, i) {
2332 		if (!hctx)
2333 			continue;
2334 		kobject_put(&hctx->kobj);
2335 	}
2336 
2337 	q->mq_map = NULL;
2338 
2339 	kfree(q->queue_hw_ctx);
2340 
2341 	/*
2342 	 * release .mq_kobj and sw queue's kobject now because
2343 	 * both share lifetime with request queue.
2344 	 */
2345 	blk_mq_sysfs_deinit(q);
2346 
2347 	free_percpu(q->queue_ctx);
2348 }
2349 
2350 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2351 {
2352 	struct request_queue *uninit_q, *q;
2353 
2354 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2355 	if (!uninit_q)
2356 		return ERR_PTR(-ENOMEM);
2357 
2358 	q = blk_mq_init_allocated_queue(set, uninit_q);
2359 	if (IS_ERR(q))
2360 		blk_cleanup_queue(uninit_q);
2361 
2362 	return q;
2363 }
2364 EXPORT_SYMBOL(blk_mq_init_queue);
2365 
2366 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2367 {
2368 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2369 
2370 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2371 			   __alignof__(struct blk_mq_hw_ctx)) !=
2372 		     sizeof(struct blk_mq_hw_ctx));
2373 
2374 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2375 		hw_ctx_size += sizeof(struct srcu_struct);
2376 
2377 	return hw_ctx_size;
2378 }
2379 
2380 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2381 						struct request_queue *q)
2382 {
2383 	int i, j;
2384 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2385 
2386 	blk_mq_sysfs_unregister(q);
2387 	for (i = 0; i < set->nr_hw_queues; i++) {
2388 		int node;
2389 
2390 		if (hctxs[i])
2391 			continue;
2392 
2393 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2394 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2395 					GFP_KERNEL, node);
2396 		if (!hctxs[i])
2397 			break;
2398 
2399 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2400 						node)) {
2401 			kfree(hctxs[i]);
2402 			hctxs[i] = NULL;
2403 			break;
2404 		}
2405 
2406 		atomic_set(&hctxs[i]->nr_active, 0);
2407 		hctxs[i]->numa_node = node;
2408 		hctxs[i]->queue_num = i;
2409 
2410 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2411 			free_cpumask_var(hctxs[i]->cpumask);
2412 			kfree(hctxs[i]);
2413 			hctxs[i] = NULL;
2414 			break;
2415 		}
2416 		blk_mq_hctx_kobj_init(hctxs[i]);
2417 	}
2418 	for (j = i; j < q->nr_hw_queues; j++) {
2419 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2420 
2421 		if (hctx) {
2422 			if (hctx->tags)
2423 				blk_mq_free_map_and_requests(set, j);
2424 			blk_mq_exit_hctx(q, set, hctx, j);
2425 			kobject_put(&hctx->kobj);
2426 			hctxs[j] = NULL;
2427 
2428 		}
2429 	}
2430 	q->nr_hw_queues = i;
2431 	blk_mq_sysfs_register(q);
2432 }
2433 
2434 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2435 						  struct request_queue *q)
2436 {
2437 	/* mark the queue as mq asap */
2438 	q->mq_ops = set->ops;
2439 
2440 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2441 					     blk_mq_poll_stats_bkt,
2442 					     BLK_MQ_POLL_STATS_BKTS, q);
2443 	if (!q->poll_cb)
2444 		goto err_exit;
2445 
2446 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2447 	if (!q->queue_ctx)
2448 		goto err_exit;
2449 
2450 	/* init q->mq_kobj and sw queues' kobjects */
2451 	blk_mq_sysfs_init(q);
2452 
2453 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2454 						GFP_KERNEL, set->numa_node);
2455 	if (!q->queue_hw_ctx)
2456 		goto err_percpu;
2457 
2458 	q->mq_map = set->mq_map;
2459 
2460 	blk_mq_realloc_hw_ctxs(set, q);
2461 	if (!q->nr_hw_queues)
2462 		goto err_hctxs;
2463 
2464 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2465 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2466 
2467 	q->nr_queues = nr_cpu_ids;
2468 
2469 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2470 
2471 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2472 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2473 
2474 	q->sg_reserved_size = INT_MAX;
2475 
2476 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2477 	INIT_LIST_HEAD(&q->requeue_list);
2478 	spin_lock_init(&q->requeue_lock);
2479 
2480 	blk_queue_make_request(q, blk_mq_make_request);
2481 	if (q->mq_ops->poll)
2482 		q->poll_fn = blk_mq_poll;
2483 
2484 	/*
2485 	 * Do this after blk_queue_make_request() overrides it...
2486 	 */
2487 	q->nr_requests = set->queue_depth;
2488 
2489 	/*
2490 	 * Default to classic polling
2491 	 */
2492 	q->poll_nsec = -1;
2493 
2494 	if (set->ops->complete)
2495 		blk_queue_softirq_done(q, set->ops->complete);
2496 
2497 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2498 	blk_mq_add_queue_tag_set(set, q);
2499 	blk_mq_map_swqueue(q);
2500 
2501 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2502 		int ret;
2503 
2504 		ret = blk_mq_sched_init(q);
2505 		if (ret)
2506 			return ERR_PTR(ret);
2507 	}
2508 
2509 	return q;
2510 
2511 err_hctxs:
2512 	kfree(q->queue_hw_ctx);
2513 err_percpu:
2514 	free_percpu(q->queue_ctx);
2515 err_exit:
2516 	q->mq_ops = NULL;
2517 	return ERR_PTR(-ENOMEM);
2518 }
2519 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2520 
2521 void blk_mq_free_queue(struct request_queue *q)
2522 {
2523 	struct blk_mq_tag_set	*set = q->tag_set;
2524 
2525 	blk_mq_del_queue_tag_set(q);
2526 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2527 }
2528 
2529 /* Basically redo blk_mq_init_queue with queue frozen */
2530 static void blk_mq_queue_reinit(struct request_queue *q)
2531 {
2532 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2533 
2534 	blk_mq_debugfs_unregister_hctxs(q);
2535 	blk_mq_sysfs_unregister(q);
2536 
2537 	/*
2538 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2539 	 * we should change hctx numa_node according to the new topology (this
2540 	 * involves freeing and re-allocating memory, worth doing?)
2541 	 */
2542 	blk_mq_map_swqueue(q);
2543 
2544 	blk_mq_sysfs_register(q);
2545 	blk_mq_debugfs_register_hctxs(q);
2546 }
2547 
2548 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2549 {
2550 	int i;
2551 
2552 	for (i = 0; i < set->nr_hw_queues; i++)
2553 		if (!__blk_mq_alloc_rq_map(set, i))
2554 			goto out_unwind;
2555 
2556 	return 0;
2557 
2558 out_unwind:
2559 	while (--i >= 0)
2560 		blk_mq_free_rq_map(set->tags[i]);
2561 
2562 	return -ENOMEM;
2563 }
2564 
2565 /*
2566  * Allocate the request maps associated with this tag_set. Note that this
2567  * may reduce the depth asked for, if memory is tight. set->queue_depth
2568  * will be updated to reflect the allocated depth.
2569  */
2570 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2571 {
2572 	unsigned int depth;
2573 	int err;
2574 
2575 	depth = set->queue_depth;
2576 	do {
2577 		err = __blk_mq_alloc_rq_maps(set);
2578 		if (!err)
2579 			break;
2580 
2581 		set->queue_depth >>= 1;
2582 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2583 			err = -ENOMEM;
2584 			break;
2585 		}
2586 	} while (set->queue_depth);
2587 
2588 	if (!set->queue_depth || err) {
2589 		pr_err("blk-mq: failed to allocate request map\n");
2590 		return -ENOMEM;
2591 	}
2592 
2593 	if (depth != set->queue_depth)
2594 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2595 						depth, set->queue_depth);
2596 
2597 	return 0;
2598 }
2599 
2600 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2601 {
2602 	if (set->ops->map_queues)
2603 		return set->ops->map_queues(set);
2604 	else
2605 		return blk_mq_map_queues(set);
2606 }
2607 
2608 /*
2609  * Alloc a tag set to be associated with one or more request queues.
2610  * May fail with EINVAL for various error conditions. May adjust the
2611  * requested depth down, if if it too large. In that case, the set
2612  * value will be stored in set->queue_depth.
2613  */
2614 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2615 {
2616 	int ret;
2617 
2618 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2619 
2620 	if (!set->nr_hw_queues)
2621 		return -EINVAL;
2622 	if (!set->queue_depth)
2623 		return -EINVAL;
2624 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2625 		return -EINVAL;
2626 
2627 	if (!set->ops->queue_rq)
2628 		return -EINVAL;
2629 
2630 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2631 		return -EINVAL;
2632 
2633 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2634 		pr_info("blk-mq: reduced tag depth to %u\n",
2635 			BLK_MQ_MAX_DEPTH);
2636 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2637 	}
2638 
2639 	/*
2640 	 * If a crashdump is active, then we are potentially in a very
2641 	 * memory constrained environment. Limit us to 1 queue and
2642 	 * 64 tags to prevent using too much memory.
2643 	 */
2644 	if (is_kdump_kernel()) {
2645 		set->nr_hw_queues = 1;
2646 		set->queue_depth = min(64U, set->queue_depth);
2647 	}
2648 	/*
2649 	 * There is no use for more h/w queues than cpus.
2650 	 */
2651 	if (set->nr_hw_queues > nr_cpu_ids)
2652 		set->nr_hw_queues = nr_cpu_ids;
2653 
2654 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2655 				 GFP_KERNEL, set->numa_node);
2656 	if (!set->tags)
2657 		return -ENOMEM;
2658 
2659 	ret = -ENOMEM;
2660 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2661 			GFP_KERNEL, set->numa_node);
2662 	if (!set->mq_map)
2663 		goto out_free_tags;
2664 
2665 	ret = blk_mq_update_queue_map(set);
2666 	if (ret)
2667 		goto out_free_mq_map;
2668 
2669 	ret = blk_mq_alloc_rq_maps(set);
2670 	if (ret)
2671 		goto out_free_mq_map;
2672 
2673 	mutex_init(&set->tag_list_lock);
2674 	INIT_LIST_HEAD(&set->tag_list);
2675 
2676 	return 0;
2677 
2678 out_free_mq_map:
2679 	kfree(set->mq_map);
2680 	set->mq_map = NULL;
2681 out_free_tags:
2682 	kfree(set->tags);
2683 	set->tags = NULL;
2684 	return ret;
2685 }
2686 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2687 
2688 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2689 {
2690 	int i;
2691 
2692 	for (i = 0; i < nr_cpu_ids; i++)
2693 		blk_mq_free_map_and_requests(set, i);
2694 
2695 	kfree(set->mq_map);
2696 	set->mq_map = NULL;
2697 
2698 	kfree(set->tags);
2699 	set->tags = NULL;
2700 }
2701 EXPORT_SYMBOL(blk_mq_free_tag_set);
2702 
2703 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2704 {
2705 	struct blk_mq_tag_set *set = q->tag_set;
2706 	struct blk_mq_hw_ctx *hctx;
2707 	int i, ret;
2708 
2709 	if (!set)
2710 		return -EINVAL;
2711 
2712 	blk_mq_freeze_queue(q);
2713 
2714 	ret = 0;
2715 	queue_for_each_hw_ctx(q, hctx, i) {
2716 		if (!hctx->tags)
2717 			continue;
2718 		/*
2719 		 * If we're using an MQ scheduler, just update the scheduler
2720 		 * queue depth. This is similar to what the old code would do.
2721 		 */
2722 		if (!hctx->sched_tags) {
2723 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2724 							false);
2725 		} else {
2726 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2727 							nr, true);
2728 		}
2729 		if (ret)
2730 			break;
2731 	}
2732 
2733 	if (!ret)
2734 		q->nr_requests = nr;
2735 
2736 	blk_mq_unfreeze_queue(q);
2737 
2738 	return ret;
2739 }
2740 
2741 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2742 							int nr_hw_queues)
2743 {
2744 	struct request_queue *q;
2745 
2746 	lockdep_assert_held(&set->tag_list_lock);
2747 
2748 	if (nr_hw_queues > nr_cpu_ids)
2749 		nr_hw_queues = nr_cpu_ids;
2750 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2751 		return;
2752 
2753 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2754 		blk_mq_freeze_queue(q);
2755 
2756 	set->nr_hw_queues = nr_hw_queues;
2757 	blk_mq_update_queue_map(set);
2758 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2759 		blk_mq_realloc_hw_ctxs(set, q);
2760 		blk_mq_queue_reinit(q);
2761 	}
2762 
2763 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2764 		blk_mq_unfreeze_queue(q);
2765 }
2766 
2767 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2768 {
2769 	mutex_lock(&set->tag_list_lock);
2770 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2771 	mutex_unlock(&set->tag_list_lock);
2772 }
2773 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2774 
2775 /* Enable polling stats and return whether they were already enabled. */
2776 static bool blk_poll_stats_enable(struct request_queue *q)
2777 {
2778 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2779 	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2780 		return true;
2781 	blk_stat_add_callback(q, q->poll_cb);
2782 	return false;
2783 }
2784 
2785 static void blk_mq_poll_stats_start(struct request_queue *q)
2786 {
2787 	/*
2788 	 * We don't arm the callback if polling stats are not enabled or the
2789 	 * callback is already active.
2790 	 */
2791 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2792 	    blk_stat_is_active(q->poll_cb))
2793 		return;
2794 
2795 	blk_stat_activate_msecs(q->poll_cb, 100);
2796 }
2797 
2798 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2799 {
2800 	struct request_queue *q = cb->data;
2801 	int bucket;
2802 
2803 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2804 		if (cb->stat[bucket].nr_samples)
2805 			q->poll_stat[bucket] = cb->stat[bucket];
2806 	}
2807 }
2808 
2809 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2810 				       struct blk_mq_hw_ctx *hctx,
2811 				       struct request *rq)
2812 {
2813 	unsigned long ret = 0;
2814 	int bucket;
2815 
2816 	/*
2817 	 * If stats collection isn't on, don't sleep but turn it on for
2818 	 * future users
2819 	 */
2820 	if (!blk_poll_stats_enable(q))
2821 		return 0;
2822 
2823 	/*
2824 	 * As an optimistic guess, use half of the mean service time
2825 	 * for this type of request. We can (and should) make this smarter.
2826 	 * For instance, if the completion latencies are tight, we can
2827 	 * get closer than just half the mean. This is especially
2828 	 * important on devices where the completion latencies are longer
2829 	 * than ~10 usec. We do use the stats for the relevant IO size
2830 	 * if available which does lead to better estimates.
2831 	 */
2832 	bucket = blk_mq_poll_stats_bkt(rq);
2833 	if (bucket < 0)
2834 		return ret;
2835 
2836 	if (q->poll_stat[bucket].nr_samples)
2837 		ret = (q->poll_stat[bucket].mean + 1) / 2;
2838 
2839 	return ret;
2840 }
2841 
2842 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2843 				     struct blk_mq_hw_ctx *hctx,
2844 				     struct request *rq)
2845 {
2846 	struct hrtimer_sleeper hs;
2847 	enum hrtimer_mode mode;
2848 	unsigned int nsecs;
2849 	ktime_t kt;
2850 
2851 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2852 		return false;
2853 
2854 	/*
2855 	 * poll_nsec can be:
2856 	 *
2857 	 * -1:	don't ever hybrid sleep
2858 	 *  0:	use half of prev avg
2859 	 * >0:	use this specific value
2860 	 */
2861 	if (q->poll_nsec == -1)
2862 		return false;
2863 	else if (q->poll_nsec > 0)
2864 		nsecs = q->poll_nsec;
2865 	else
2866 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2867 
2868 	if (!nsecs)
2869 		return false;
2870 
2871 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2872 
2873 	/*
2874 	 * This will be replaced with the stats tracking code, using
2875 	 * 'avg_completion_time / 2' as the pre-sleep target.
2876 	 */
2877 	kt = nsecs;
2878 
2879 	mode = HRTIMER_MODE_REL;
2880 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2881 	hrtimer_set_expires(&hs.timer, kt);
2882 
2883 	hrtimer_init_sleeper(&hs, current);
2884 	do {
2885 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2886 			break;
2887 		set_current_state(TASK_UNINTERRUPTIBLE);
2888 		hrtimer_start_expires(&hs.timer, mode);
2889 		if (hs.task)
2890 			io_schedule();
2891 		hrtimer_cancel(&hs.timer);
2892 		mode = HRTIMER_MODE_ABS;
2893 	} while (hs.task && !signal_pending(current));
2894 
2895 	__set_current_state(TASK_RUNNING);
2896 	destroy_hrtimer_on_stack(&hs.timer);
2897 	return true;
2898 }
2899 
2900 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2901 {
2902 	struct request_queue *q = hctx->queue;
2903 	long state;
2904 
2905 	/*
2906 	 * If we sleep, have the caller restart the poll loop to reset
2907 	 * the state. Like for the other success return cases, the
2908 	 * caller is responsible for checking if the IO completed. If
2909 	 * the IO isn't complete, we'll get called again and will go
2910 	 * straight to the busy poll loop.
2911 	 */
2912 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2913 		return true;
2914 
2915 	hctx->poll_considered++;
2916 
2917 	state = current->state;
2918 	while (!need_resched()) {
2919 		int ret;
2920 
2921 		hctx->poll_invoked++;
2922 
2923 		ret = q->mq_ops->poll(hctx, rq->tag);
2924 		if (ret > 0) {
2925 			hctx->poll_success++;
2926 			set_current_state(TASK_RUNNING);
2927 			return true;
2928 		}
2929 
2930 		if (signal_pending_state(state, current))
2931 			set_current_state(TASK_RUNNING);
2932 
2933 		if (current->state == TASK_RUNNING)
2934 			return true;
2935 		if (ret < 0)
2936 			break;
2937 		cpu_relax();
2938 	}
2939 
2940 	return false;
2941 }
2942 
2943 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2944 {
2945 	struct blk_mq_hw_ctx *hctx;
2946 	struct request *rq;
2947 
2948 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2949 		return false;
2950 
2951 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2952 	if (!blk_qc_t_is_internal(cookie))
2953 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2954 	else {
2955 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2956 		/*
2957 		 * With scheduling, if the request has completed, we'll
2958 		 * get a NULL return here, as we clear the sched tag when
2959 		 * that happens. The request still remains valid, like always,
2960 		 * so we should be safe with just the NULL check.
2961 		 */
2962 		if (!rq)
2963 			return false;
2964 	}
2965 
2966 	return __blk_mq_poll(hctx, rq);
2967 }
2968 
2969 static int __init blk_mq_init(void)
2970 {
2971 	/*
2972 	 * See comment in block/blk.h rq_atomic_flags enum
2973 	 */
2974 	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2975 			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2976 
2977 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2978 				blk_mq_hctx_notify_dead);
2979 	return 0;
2980 }
2981 subsys_initcall(blk_mq_init);
2982