xref: /openbmc/linux/block/blk-mq.c (revision 49c23519)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->part && blk_do_io_stat(rq) &&
97 	    (!mi->part->bd_partno || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 	mutex_lock(&q->mq_freeze_lock);
127 	if (++q->mq_freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		mutex_unlock(&q->mq_freeze_lock);
130 		if (queue_is_mq(q))
131 			blk_mq_run_hw_queues(q, false);
132 	} else {
133 		mutex_unlock(&q->mq_freeze_lock);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 				     unsigned long timeout)
146 {
147 	return wait_event_timeout(q->mq_freeze_wq,
148 					percpu_ref_is_zero(&q->q_usage_counter),
149 					timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152 
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 	/*
160 	 * In the !blk_mq case we are only calling this to kill the
161 	 * q_usage_counter, otherwise this increases the freeze depth
162 	 * and waits for it to return to zero.  For this reason there is
163 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 	 * exported to drivers as the only user for unfreeze is blk_mq.
165 	 */
166 	blk_freeze_queue_start(q);
167 	blk_mq_freeze_queue_wait(q);
168 }
169 
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * ...just an alias to keep freeze and unfreeze actions balanced
174 	 * in the blk_mq_* namespace
175 	 */
176 	blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 	mutex_lock(&q->mq_freeze_lock);
183 	if (force_atomic)
184 		q->q_usage_counter.data->force_atomic = true;
185 	q->mq_freeze_depth--;
186 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 	if (!q->mq_freeze_depth) {
188 		percpu_ref_resurrect(&q->q_usage_counter);
189 		wake_up_all(&q->mq_freeze_wq);
190 	}
191 	mutex_unlock(&q->mq_freeze_lock);
192 }
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	__blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&q->queue_lock, flags);
209 	if (!q->quiesce_depth++)
210 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 	spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 	if (set->flags & BLK_MQ_F_BLOCKING)
227 		synchronize_srcu(set->srcu);
228 	else
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232 
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 	blk_mq_quiesce_queue_nowait(q);
245 	/* nothing to wait for non-mq queues */
246 	if (queue_is_mq(q))
247 		blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	unsigned long flags;
261 	bool run_queue = false;
262 
263 	spin_lock_irqsave(&q->queue_lock, flags);
264 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 		;
266 	} else if (!--q->quiesce_depth) {
267 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 		run_queue = true;
269 	}
270 	spin_unlock_irqrestore(&q->queue_lock, flags);
271 
272 	/* dispatch requests which are inserted during quiescing */
273 	if (run_queue)
274 		blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 	struct request_queue *q;
281 
282 	mutex_lock(&set->tag_list_lock);
283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 		if (!blk_queue_skip_tagset_quiesce(q))
285 			blk_mq_quiesce_queue_nowait(q);
286 	}
287 	blk_mq_wait_quiesce_done(set);
288 	mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 	struct request_queue *q;
295 
296 	mutex_lock(&set->tag_list_lock);
297 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 		if (!blk_queue_skip_tagset_quiesce(q))
299 			blk_mq_unquiesce_queue(q);
300 	}
301 	mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 	struct blk_mq_hw_ctx *hctx;
308 	unsigned long i;
309 
310 	queue_for_each_hw_ctx(q, hctx, i)
311 		if (blk_mq_hw_queue_mapped(hctx))
312 			blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314 
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 	memset(rq, 0, sizeof(*rq));
318 
319 	INIT_LIST_HEAD(&rq->queuelist);
320 	rq->q = q;
321 	rq->__sector = (sector_t) -1;
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->tag = BLK_MQ_NO_TAG;
325 	rq->internal_tag = BLK_MQ_NO_TAG;
326 	rq->start_time_ns = ktime_get_ns();
327 	rq->part = NULL;
328 	blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331 
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 	if (blk_mq_need_time_stamp(rq))
336 		rq->start_time_ns = ktime_get_ns();
337 	else
338 		rq->start_time_ns = 0;
339 
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 	if (blk_queue_rq_alloc_time(rq->q))
342 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 	else
344 		rq->alloc_time_ns = 0;
345 #endif
346 }
347 
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 		struct blk_mq_tags *tags, unsigned int tag)
350 {
351 	struct blk_mq_ctx *ctx = data->ctx;
352 	struct blk_mq_hw_ctx *hctx = data->hctx;
353 	struct request_queue *q = data->q;
354 	struct request *rq = tags->static_rqs[tag];
355 
356 	rq->q = q;
357 	rq->mq_ctx = ctx;
358 	rq->mq_hctx = hctx;
359 	rq->cmd_flags = data->cmd_flags;
360 
361 	if (data->flags & BLK_MQ_REQ_PM)
362 		data->rq_flags |= RQF_PM;
363 	if (blk_queue_io_stat(q))
364 		data->rq_flags |= RQF_IO_STAT;
365 	rq->rq_flags = data->rq_flags;
366 
367 	if (data->rq_flags & RQF_SCHED_TAGS) {
368 		rq->tag = BLK_MQ_NO_TAG;
369 		rq->internal_tag = tag;
370 	} else {
371 		rq->tag = tag;
372 		rq->internal_tag = BLK_MQ_NO_TAG;
373 	}
374 	rq->timeout = 0;
375 
376 	rq->part = NULL;
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_USE_SCHED) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (e->type->ops.prepare_request)
399 			e->type->ops.prepare_request(rq);
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	/* caller already holds a reference, add for remainder */
430 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 	data->nr_tags -= nr;
432 
433 	return rq_list_pop(data->cached_rq);
434 }
435 
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 	struct request_queue *q = data->q;
439 	u64 alloc_time_ns = 0;
440 	struct request *rq;
441 	unsigned int tag;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = ktime_get_ns();
446 
447 	if (data->cmd_flags & REQ_NOWAIT)
448 		data->flags |= BLK_MQ_REQ_NOWAIT;
449 
450 	if (q->elevator) {
451 		/*
452 		 * All requests use scheduler tags when an I/O scheduler is
453 		 * enabled for the queue.
454 		 */
455 		data->rq_flags |= RQF_SCHED_TAGS;
456 
457 		/*
458 		 * Flush/passthrough requests are special and go directly to the
459 		 * dispatch list.
460 		 */
461 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462 		    !blk_op_is_passthrough(data->cmd_flags)) {
463 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
464 
465 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466 
467 			data->rq_flags |= RQF_USE_SCHED;
468 			if (ops->limit_depth)
469 				ops->limit_depth(data->cmd_flags, data);
470 		}
471 	}
472 
473 retry:
474 	data->ctx = blk_mq_get_ctx(q);
475 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476 	if (!(data->rq_flags & RQF_SCHED_TAGS))
477 		blk_mq_tag_busy(data->hctx);
478 
479 	if (data->flags & BLK_MQ_REQ_RESERVED)
480 		data->rq_flags |= RQF_RESV;
481 
482 	/*
483 	 * Try batched alloc if we want more than 1 tag.
484 	 */
485 	if (data->nr_tags > 1) {
486 		rq = __blk_mq_alloc_requests_batch(data);
487 		if (rq) {
488 			blk_mq_rq_time_init(rq, alloc_time_ns);
489 			return rq;
490 		}
491 		data->nr_tags = 1;
492 	}
493 
494 	/*
495 	 * Waiting allocations only fail because of an inactive hctx.  In that
496 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 	 * should have migrated us to an online CPU by now.
498 	 */
499 	tag = blk_mq_get_tag(data);
500 	if (tag == BLK_MQ_NO_TAG) {
501 		if (data->flags & BLK_MQ_REQ_NOWAIT)
502 			return NULL;
503 		/*
504 		 * Give up the CPU and sleep for a random short time to
505 		 * ensure that thread using a realtime scheduling class
506 		 * are migrated off the CPU, and thus off the hctx that
507 		 * is going away.
508 		 */
509 		msleep(3);
510 		goto retry;
511 	}
512 
513 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514 	blk_mq_rq_time_init(rq, alloc_time_ns);
515 	return rq;
516 }
517 
518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519 					    struct blk_plug *plug,
520 					    blk_opf_t opf,
521 					    blk_mq_req_flags_t flags)
522 {
523 	struct blk_mq_alloc_data data = {
524 		.q		= q,
525 		.flags		= flags,
526 		.cmd_flags	= opf,
527 		.nr_tags	= plug->nr_ios,
528 		.cached_rq	= &plug->cached_rq,
529 	};
530 	struct request *rq;
531 
532 	if (blk_queue_enter(q, flags))
533 		return NULL;
534 
535 	plug->nr_ios = 1;
536 
537 	rq = __blk_mq_alloc_requests(&data);
538 	if (unlikely(!rq))
539 		blk_queue_exit(q);
540 	return rq;
541 }
542 
543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544 						   blk_opf_t opf,
545 						   blk_mq_req_flags_t flags)
546 {
547 	struct blk_plug *plug = current->plug;
548 	struct request *rq;
549 
550 	if (!plug)
551 		return NULL;
552 
553 	if (rq_list_empty(plug->cached_rq)) {
554 		if (plug->nr_ios == 1)
555 			return NULL;
556 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557 		if (!rq)
558 			return NULL;
559 	} else {
560 		rq = rq_list_peek(&plug->cached_rq);
561 		if (!rq || rq->q != q)
562 			return NULL;
563 
564 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565 			return NULL;
566 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567 			return NULL;
568 
569 		plug->cached_rq = rq_list_next(rq);
570 		blk_mq_rq_time_init(rq, 0);
571 	}
572 
573 	rq->cmd_flags = opf;
574 	INIT_LIST_HEAD(&rq->queuelist);
575 	return rq;
576 }
577 
578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579 		blk_mq_req_flags_t flags)
580 {
581 	struct request *rq;
582 
583 	rq = blk_mq_alloc_cached_request(q, opf, flags);
584 	if (!rq) {
585 		struct blk_mq_alloc_data data = {
586 			.q		= q,
587 			.flags		= flags,
588 			.cmd_flags	= opf,
589 			.nr_tags	= 1,
590 		};
591 		int ret;
592 
593 		ret = blk_queue_enter(q, flags);
594 		if (ret)
595 			return ERR_PTR(ret);
596 
597 		rq = __blk_mq_alloc_requests(&data);
598 		if (!rq)
599 			goto out_queue_exit;
600 	}
601 	rq->__data_len = 0;
602 	rq->__sector = (sector_t) -1;
603 	rq->bio = rq->biotail = NULL;
604 	return rq;
605 out_queue_exit:
606 	blk_queue_exit(q);
607 	return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610 
611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614 	struct blk_mq_alloc_data data = {
615 		.q		= q,
616 		.flags		= flags,
617 		.cmd_flags	= opf,
618 		.nr_tags	= 1,
619 	};
620 	u64 alloc_time_ns = 0;
621 	struct request *rq;
622 	unsigned int cpu;
623 	unsigned int tag;
624 	int ret;
625 
626 	/* alloc_time includes depth and tag waits */
627 	if (blk_queue_rq_alloc_time(q))
628 		alloc_time_ns = ktime_get_ns();
629 
630 	/*
631 	 * If the tag allocator sleeps we could get an allocation for a
632 	 * different hardware context.  No need to complicate the low level
633 	 * allocator for this for the rare use case of a command tied to
634 	 * a specific queue.
635 	 */
636 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638 		return ERR_PTR(-EINVAL);
639 
640 	if (hctx_idx >= q->nr_hw_queues)
641 		return ERR_PTR(-EIO);
642 
643 	ret = blk_queue_enter(q, flags);
644 	if (ret)
645 		return ERR_PTR(ret);
646 
647 	/*
648 	 * Check if the hardware context is actually mapped to anything.
649 	 * If not tell the caller that it should skip this queue.
650 	 */
651 	ret = -EXDEV;
652 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
653 	if (!blk_mq_hw_queue_mapped(data.hctx))
654 		goto out_queue_exit;
655 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656 	if (cpu >= nr_cpu_ids)
657 		goto out_queue_exit;
658 	data.ctx = __blk_mq_get_ctx(q, cpu);
659 
660 	if (q->elevator)
661 		data.rq_flags |= RQF_SCHED_TAGS;
662 	else
663 		blk_mq_tag_busy(data.hctx);
664 
665 	if (flags & BLK_MQ_REQ_RESERVED)
666 		data.rq_flags |= RQF_RESV;
667 
668 	ret = -EWOULDBLOCK;
669 	tag = blk_mq_get_tag(&data);
670 	if (tag == BLK_MQ_NO_TAG)
671 		goto out_queue_exit;
672 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673 	blk_mq_rq_time_init(rq, alloc_time_ns);
674 	rq->__data_len = 0;
675 	rq->__sector = (sector_t) -1;
676 	rq->bio = rq->biotail = NULL;
677 	return rq;
678 
679 out_queue_exit:
680 	blk_queue_exit(q);
681 	return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684 
685 static void blk_mq_finish_request(struct request *rq)
686 {
687 	struct request_queue *q = rq->q;
688 
689 	if (rq->rq_flags & RQF_USE_SCHED) {
690 		q->elevator->type->ops.finish_request(rq);
691 		/*
692 		 * For postflush request that may need to be
693 		 * completed twice, we should clear this flag
694 		 * to avoid double finish_request() on the rq.
695 		 */
696 		rq->rq_flags &= ~RQF_USE_SCHED;
697 	}
698 }
699 
700 static void __blk_mq_free_request(struct request *rq)
701 {
702 	struct request_queue *q = rq->q;
703 	struct blk_mq_ctx *ctx = rq->mq_ctx;
704 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705 	const int sched_tag = rq->internal_tag;
706 
707 	blk_crypto_free_request(rq);
708 	blk_pm_mark_last_busy(rq);
709 	rq->mq_hctx = NULL;
710 
711 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
712 		__blk_mq_dec_active_requests(hctx);
713 
714 	if (rq->tag != BLK_MQ_NO_TAG)
715 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716 	if (sched_tag != BLK_MQ_NO_TAG)
717 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718 	blk_mq_sched_restart(hctx);
719 	blk_queue_exit(q);
720 }
721 
722 void blk_mq_free_request(struct request *rq)
723 {
724 	struct request_queue *q = rq->q;
725 
726 	blk_mq_finish_request(rq);
727 
728 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729 		laptop_io_completion(q->disk->bdi);
730 
731 	rq_qos_done(q, rq);
732 
733 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734 	if (req_ref_put_and_test(rq))
735 		__blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738 
739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741 	struct request *rq;
742 
743 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744 		blk_mq_free_request(rq);
745 }
746 
747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750 		rq->q->disk ? rq->q->disk->disk_name : "?",
751 		(__force unsigned long long) rq->cmd_flags);
752 
753 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
754 	       (unsigned long long)blk_rq_pos(rq),
755 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
757 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760 
761 static void req_bio_endio(struct request *rq, struct bio *bio,
762 			  unsigned int nbytes, blk_status_t error)
763 {
764 	if (unlikely(error)) {
765 		bio->bi_status = error;
766 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767 		/*
768 		 * Partial zone append completions cannot be supported as the
769 		 * BIO fragments may end up not being written sequentially.
770 		 */
771 		if (bio->bi_iter.bi_size != nbytes)
772 			bio->bi_status = BLK_STS_IOERR;
773 		else
774 			bio->bi_iter.bi_sector = rq->__sector;
775 	}
776 
777 	bio_advance(bio, nbytes);
778 
779 	if (unlikely(rq->rq_flags & RQF_QUIET))
780 		bio_set_flag(bio, BIO_QUIET);
781 	/* don't actually finish bio if it's part of flush sequence */
782 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
783 		bio_endio(bio);
784 }
785 
786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
787 {
788 	if (req->part && blk_do_io_stat(req)) {
789 		const int sgrp = op_stat_group(req_op(req));
790 
791 		part_stat_lock();
792 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
793 		part_stat_unlock();
794 	}
795 }
796 
797 static void blk_print_req_error(struct request *req, blk_status_t status)
798 {
799 	printk_ratelimited(KERN_ERR
800 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
801 		"phys_seg %u prio class %u\n",
802 		blk_status_to_str(status),
803 		req->q->disk ? req->q->disk->disk_name : "?",
804 		blk_rq_pos(req), (__force u32)req_op(req),
805 		blk_op_str(req_op(req)),
806 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
807 		req->nr_phys_segments,
808 		IOPRIO_PRIO_CLASS(req->ioprio));
809 }
810 
811 /*
812  * Fully end IO on a request. Does not support partial completions, or
813  * errors.
814  */
815 static void blk_complete_request(struct request *req)
816 {
817 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
818 	int total_bytes = blk_rq_bytes(req);
819 	struct bio *bio = req->bio;
820 
821 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
822 
823 	if (!bio)
824 		return;
825 
826 #ifdef CONFIG_BLK_DEV_INTEGRITY
827 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
828 		req->q->integrity.profile->complete_fn(req, total_bytes);
829 #endif
830 
831 	/*
832 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
833 	 * bio_endio().  Therefore, the keyslot must be released before that.
834 	 */
835 	blk_crypto_rq_put_keyslot(req);
836 
837 	blk_account_io_completion(req, total_bytes);
838 
839 	do {
840 		struct bio *next = bio->bi_next;
841 
842 		/* Completion has already been traced */
843 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844 
845 		if (req_op(req) == REQ_OP_ZONE_APPEND)
846 			bio->bi_iter.bi_sector = req->__sector;
847 
848 		if (!is_flush)
849 			bio_endio(bio);
850 		bio = next;
851 	} while (bio);
852 
853 	/*
854 	 * Reset counters so that the request stacking driver
855 	 * can find how many bytes remain in the request
856 	 * later.
857 	 */
858 	if (!req->end_io) {
859 		req->bio = NULL;
860 		req->__data_len = 0;
861 	}
862 }
863 
864 /**
865  * blk_update_request - Complete multiple bytes without completing the request
866  * @req:      the request being processed
867  * @error:    block status code
868  * @nr_bytes: number of bytes to complete for @req
869  *
870  * Description:
871  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
872  *     the request structure even if @req doesn't have leftover.
873  *     If @req has leftover, sets it up for the next range of segments.
874  *
875  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876  *     %false return from this function.
877  *
878  * Note:
879  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880  *      except in the consistency check at the end of this function.
881  *
882  * Return:
883  *     %false - this request doesn't have any more data
884  *     %true  - this request has more data
885  **/
886 bool blk_update_request(struct request *req, blk_status_t error,
887 		unsigned int nr_bytes)
888 {
889 	int total_bytes;
890 
891 	trace_block_rq_complete(req, error, nr_bytes);
892 
893 	if (!req->bio)
894 		return false;
895 
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898 	    error == BLK_STS_OK)
899 		req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901 
902 	/*
903 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
904 	 * bio_endio().  Therefore, the keyslot must be released before that.
905 	 */
906 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
907 		__blk_crypto_rq_put_keyslot(req);
908 
909 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
910 		     !(req->rq_flags & RQF_QUIET)) &&
911 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
912 		blk_print_req_error(req, error);
913 		trace_block_rq_error(req, error, nr_bytes);
914 	}
915 
916 	blk_account_io_completion(req, nr_bytes);
917 
918 	total_bytes = 0;
919 	while (req->bio) {
920 		struct bio *bio = req->bio;
921 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922 
923 		if (bio_bytes == bio->bi_iter.bi_size)
924 			req->bio = bio->bi_next;
925 
926 		/* Completion has already been traced */
927 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
928 		req_bio_endio(req, bio, bio_bytes, error);
929 
930 		total_bytes += bio_bytes;
931 		nr_bytes -= bio_bytes;
932 
933 		if (!nr_bytes)
934 			break;
935 	}
936 
937 	/*
938 	 * completely done
939 	 */
940 	if (!req->bio) {
941 		/*
942 		 * Reset counters so that the request stacking driver
943 		 * can find how many bytes remain in the request
944 		 * later.
945 		 */
946 		req->__data_len = 0;
947 		return false;
948 	}
949 
950 	req->__data_len -= total_bytes;
951 
952 	/* update sector only for requests with clear definition of sector */
953 	if (!blk_rq_is_passthrough(req))
954 		req->__sector += total_bytes >> 9;
955 
956 	/* mixed attributes always follow the first bio */
957 	if (req->rq_flags & RQF_MIXED_MERGE) {
958 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
959 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960 	}
961 
962 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963 		/*
964 		 * If total number of sectors is less than the first segment
965 		 * size, something has gone terribly wrong.
966 		 */
967 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
968 			blk_dump_rq_flags(req, "request botched");
969 			req->__data_len = blk_rq_cur_bytes(req);
970 		}
971 
972 		/* recalculate the number of segments */
973 		req->nr_phys_segments = blk_recalc_rq_segments(req);
974 	}
975 
976 	return true;
977 }
978 EXPORT_SYMBOL_GPL(blk_update_request);
979 
980 static inline void blk_account_io_done(struct request *req, u64 now)
981 {
982 	trace_block_io_done(req);
983 
984 	/*
985 	 * Account IO completion.  flush_rq isn't accounted as a
986 	 * normal IO on queueing nor completion.  Accounting the
987 	 * containing request is enough.
988 	 */
989 	if (blk_do_io_stat(req) && req->part &&
990 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
991 		const int sgrp = op_stat_group(req_op(req));
992 
993 		part_stat_lock();
994 		update_io_ticks(req->part, jiffies, true);
995 		part_stat_inc(req->part, ios[sgrp]);
996 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
997 		part_stat_local_dec(req->part,
998 				    in_flight[op_is_write(req_op(req))]);
999 		part_stat_unlock();
1000 	}
1001 }
1002 
1003 static inline void blk_account_io_start(struct request *req)
1004 {
1005 	trace_block_io_start(req);
1006 
1007 	if (blk_do_io_stat(req)) {
1008 		/*
1009 		 * All non-passthrough requests are created from a bio with one
1010 		 * exception: when a flush command that is part of a flush sequence
1011 		 * generated by the state machine in blk-flush.c is cloned onto the
1012 		 * lower device by dm-multipath we can get here without a bio.
1013 		 */
1014 		if (req->bio)
1015 			req->part = req->bio->bi_bdev;
1016 		else
1017 			req->part = req->q->disk->part0;
1018 
1019 		part_stat_lock();
1020 		update_io_ticks(req->part, jiffies, false);
1021 		part_stat_local_inc(req->part,
1022 				    in_flight[op_is_write(req_op(req))]);
1023 		part_stat_unlock();
1024 	}
1025 }
1026 
1027 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1028 {
1029 	if (rq->rq_flags & RQF_STATS)
1030 		blk_stat_add(rq, now);
1031 
1032 	blk_mq_sched_completed_request(rq, now);
1033 	blk_account_io_done(rq, now);
1034 }
1035 
1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037 {
1038 	if (blk_mq_need_time_stamp(rq))
1039 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1040 
1041 	blk_mq_finish_request(rq);
1042 
1043 	if (rq->end_io) {
1044 		rq_qos_done(rq->q, rq);
1045 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1046 			blk_mq_free_request(rq);
1047 	} else {
1048 		blk_mq_free_request(rq);
1049 	}
1050 }
1051 EXPORT_SYMBOL(__blk_mq_end_request);
1052 
1053 void blk_mq_end_request(struct request *rq, blk_status_t error)
1054 {
1055 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1056 		BUG();
1057 	__blk_mq_end_request(rq, error);
1058 }
1059 EXPORT_SYMBOL(blk_mq_end_request);
1060 
1061 #define TAG_COMP_BATCH		32
1062 
1063 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1064 					  int *tag_array, int nr_tags)
1065 {
1066 	struct request_queue *q = hctx->queue;
1067 
1068 	/*
1069 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1070 	 * update hctx->nr_active in batch
1071 	 */
1072 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1073 		__blk_mq_sub_active_requests(hctx, nr_tags);
1074 
1075 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1076 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1077 }
1078 
1079 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1080 {
1081 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1082 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1083 	struct request *rq;
1084 	u64 now = 0;
1085 
1086 	if (iob->need_ts)
1087 		now = ktime_get_ns();
1088 
1089 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1090 		prefetch(rq->bio);
1091 		prefetch(rq->rq_next);
1092 
1093 		blk_complete_request(rq);
1094 		if (iob->need_ts)
1095 			__blk_mq_end_request_acct(rq, now);
1096 
1097 		blk_mq_finish_request(rq);
1098 
1099 		rq_qos_done(rq->q, rq);
1100 
1101 		/*
1102 		 * If end_io handler returns NONE, then it still has
1103 		 * ownership of the request.
1104 		 */
1105 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1106 			continue;
1107 
1108 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1109 		if (!req_ref_put_and_test(rq))
1110 			continue;
1111 
1112 		blk_crypto_free_request(rq);
1113 		blk_pm_mark_last_busy(rq);
1114 
1115 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1116 			if (cur_hctx)
1117 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1118 			nr_tags = 0;
1119 			cur_hctx = rq->mq_hctx;
1120 		}
1121 		tags[nr_tags++] = rq->tag;
1122 	}
1123 
1124 	if (nr_tags)
1125 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1126 }
1127 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1128 
1129 static void blk_complete_reqs(struct llist_head *list)
1130 {
1131 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1132 	struct request *rq, *next;
1133 
1134 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1135 		rq->q->mq_ops->complete(rq);
1136 }
1137 
1138 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1139 {
1140 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1141 }
1142 
1143 static int blk_softirq_cpu_dead(unsigned int cpu)
1144 {
1145 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1146 	return 0;
1147 }
1148 
1149 static void __blk_mq_complete_request_remote(void *data)
1150 {
1151 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1152 }
1153 
1154 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1155 {
1156 	int cpu = raw_smp_processor_id();
1157 
1158 	if (!IS_ENABLED(CONFIG_SMP) ||
1159 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1160 		return false;
1161 	/*
1162 	 * With force threaded interrupts enabled, raising softirq from an SMP
1163 	 * function call will always result in waking the ksoftirqd thread.
1164 	 * This is probably worse than completing the request on a different
1165 	 * cache domain.
1166 	 */
1167 	if (force_irqthreads())
1168 		return false;
1169 
1170 	/* same CPU or cache domain?  Complete locally */
1171 	if (cpu == rq->mq_ctx->cpu ||
1172 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1173 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1174 		return false;
1175 
1176 	/* don't try to IPI to an offline CPU */
1177 	return cpu_online(rq->mq_ctx->cpu);
1178 }
1179 
1180 static void blk_mq_complete_send_ipi(struct request *rq)
1181 {
1182 	unsigned int cpu;
1183 
1184 	cpu = rq->mq_ctx->cpu;
1185 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1187 }
1188 
1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191 	struct llist_head *list;
1192 
1193 	preempt_disable();
1194 	list = this_cpu_ptr(&blk_cpu_done);
1195 	if (llist_add(&rq->ipi_list, list))
1196 		raise_softirq(BLOCK_SOFTIRQ);
1197 	preempt_enable();
1198 }
1199 
1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203 
1204 	/*
1205 	 * For request which hctx has only one ctx mapping,
1206 	 * or a polled request, always complete locally,
1207 	 * it's pointless to redirect the completion.
1208 	 */
1209 	if ((rq->mq_hctx->nr_ctx == 1 &&
1210 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211 	     rq->cmd_flags & REQ_POLLED)
1212 		return false;
1213 
1214 	if (blk_mq_complete_need_ipi(rq)) {
1215 		blk_mq_complete_send_ipi(rq);
1216 		return true;
1217 	}
1218 
1219 	if (rq->q->nr_hw_queues == 1) {
1220 		blk_mq_raise_softirq(rq);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226 
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:		the request being processed
1230  *
1231  * Description:
1232  *	Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 	if (!blk_mq_complete_request_remote(rq))
1237 		rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240 
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	trace_block_rq_issue(rq);
1254 
1255 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256 		rq->io_start_time_ns = ktime_get_ns();
1257 		rq->stats_sectors = blk_rq_sectors(rq);
1258 		rq->rq_flags |= RQF_STATS;
1259 		rq_qos_issue(q, rq);
1260 	}
1261 
1262 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263 
1264 	blk_add_timer(rq);
1265 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266 
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 		q->integrity.profile->prepare_fn(rq);
1270 #endif
1271 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275 
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283 	if (plug->multiple_queues)
1284 		return BLK_MAX_REQUEST_COUNT * 2;
1285 	return BLK_MAX_REQUEST_COUNT;
1286 }
1287 
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290 	struct request *last = rq_list_peek(&plug->mq_list);
1291 
1292 	if (!plug->rq_count) {
1293 		trace_block_plug(rq->q);
1294 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 		   (!blk_queue_nomerges(rq->q) &&
1296 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 		blk_mq_flush_plug_list(plug, false);
1298 		last = NULL;
1299 		trace_block_plug(rq->q);
1300 	}
1301 
1302 	if (!plug->multiple_queues && last && last->q != rq->q)
1303 		plug->multiple_queues = true;
1304 	/*
1305 	 * Any request allocated from sched tags can't be issued to
1306 	 * ->queue_rqs() directly
1307 	 */
1308 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1309 		plug->has_elevator = true;
1310 	rq->rq_next = NULL;
1311 	rq_list_add(&plug->mq_list, rq);
1312 	plug->rq_count++;
1313 }
1314 
1315 /**
1316  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1317  * @rq:		request to insert
1318  * @at_head:    insert request at head or tail of queue
1319  *
1320  * Description:
1321  *    Insert a fully prepared request at the back of the I/O scheduler queue
1322  *    for execution.  Don't wait for completion.
1323  *
1324  * Note:
1325  *    This function will invoke @done directly if the queue is dead.
1326  */
1327 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1328 {
1329 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1330 
1331 	WARN_ON(irqs_disabled());
1332 	WARN_ON(!blk_rq_is_passthrough(rq));
1333 
1334 	blk_account_io_start(rq);
1335 
1336 	/*
1337 	 * As plugging can be enabled for passthrough requests on a zoned
1338 	 * device, directly accessing the plug instead of using blk_mq_plug()
1339 	 * should not have any consequences.
1340 	 */
1341 	if (current->plug && !at_head) {
1342 		blk_add_rq_to_plug(current->plug, rq);
1343 		return;
1344 	}
1345 
1346 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1347 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1348 }
1349 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1350 
1351 struct blk_rq_wait {
1352 	struct completion done;
1353 	blk_status_t ret;
1354 };
1355 
1356 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1357 {
1358 	struct blk_rq_wait *wait = rq->end_io_data;
1359 
1360 	wait->ret = ret;
1361 	complete(&wait->done);
1362 	return RQ_END_IO_NONE;
1363 }
1364 
1365 bool blk_rq_is_poll(struct request *rq)
1366 {
1367 	if (!rq->mq_hctx)
1368 		return false;
1369 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1370 		return false;
1371 	return true;
1372 }
1373 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1374 
1375 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1376 {
1377 	do {
1378 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1379 		cond_resched();
1380 	} while (!completion_done(wait));
1381 }
1382 
1383 /**
1384  * blk_execute_rq - insert a request into queue for execution
1385  * @rq:		request to insert
1386  * @at_head:    insert request at head or tail of queue
1387  *
1388  * Description:
1389  *    Insert a fully prepared request at the back of the I/O scheduler queue
1390  *    for execution and wait for completion.
1391  * Return: The blk_status_t result provided to blk_mq_end_request().
1392  */
1393 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1394 {
1395 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1396 	struct blk_rq_wait wait = {
1397 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1398 	};
1399 
1400 	WARN_ON(irqs_disabled());
1401 	WARN_ON(!blk_rq_is_passthrough(rq));
1402 
1403 	rq->end_io_data = &wait;
1404 	rq->end_io = blk_end_sync_rq;
1405 
1406 	blk_account_io_start(rq);
1407 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1408 	blk_mq_run_hw_queue(hctx, false);
1409 
1410 	if (blk_rq_is_poll(rq)) {
1411 		blk_rq_poll_completion(rq, &wait.done);
1412 	} else {
1413 		/*
1414 		 * Prevent hang_check timer from firing at us during very long
1415 		 * I/O
1416 		 */
1417 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1418 
1419 		if (hang_check)
1420 			while (!wait_for_completion_io_timeout(&wait.done,
1421 					hang_check * (HZ/2)))
1422 				;
1423 		else
1424 			wait_for_completion_io(&wait.done);
1425 	}
1426 
1427 	return wait.ret;
1428 }
1429 EXPORT_SYMBOL(blk_execute_rq);
1430 
1431 static void __blk_mq_requeue_request(struct request *rq)
1432 {
1433 	struct request_queue *q = rq->q;
1434 
1435 	blk_mq_put_driver_tag(rq);
1436 
1437 	trace_block_rq_requeue(rq);
1438 	rq_qos_requeue(q, rq);
1439 
1440 	if (blk_mq_request_started(rq)) {
1441 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1442 		rq->rq_flags &= ~RQF_TIMED_OUT;
1443 	}
1444 }
1445 
1446 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1447 {
1448 	struct request_queue *q = rq->q;
1449 	unsigned long flags;
1450 
1451 	__blk_mq_requeue_request(rq);
1452 
1453 	/* this request will be re-inserted to io scheduler queue */
1454 	blk_mq_sched_requeue_request(rq);
1455 
1456 	spin_lock_irqsave(&q->requeue_lock, flags);
1457 	list_add_tail(&rq->queuelist, &q->requeue_list);
1458 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1459 
1460 	if (kick_requeue_list)
1461 		blk_mq_kick_requeue_list(q);
1462 }
1463 EXPORT_SYMBOL(blk_mq_requeue_request);
1464 
1465 static void blk_mq_requeue_work(struct work_struct *work)
1466 {
1467 	struct request_queue *q =
1468 		container_of(work, struct request_queue, requeue_work.work);
1469 	LIST_HEAD(rq_list);
1470 	LIST_HEAD(flush_list);
1471 	struct request *rq;
1472 
1473 	spin_lock_irq(&q->requeue_lock);
1474 	list_splice_init(&q->requeue_list, &rq_list);
1475 	list_splice_init(&q->flush_list, &flush_list);
1476 	spin_unlock_irq(&q->requeue_lock);
1477 
1478 	while (!list_empty(&rq_list)) {
1479 		rq = list_entry(rq_list.next, struct request, queuelist);
1480 		/*
1481 		 * If RQF_DONTPREP ist set, the request has been started by the
1482 		 * driver already and might have driver-specific data allocated
1483 		 * already.  Insert it into the hctx dispatch list to avoid
1484 		 * block layer merges for the request.
1485 		 */
1486 		if (rq->rq_flags & RQF_DONTPREP) {
1487 			list_del_init(&rq->queuelist);
1488 			blk_mq_request_bypass_insert(rq, 0);
1489 		} else {
1490 			list_del_init(&rq->queuelist);
1491 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1492 		}
1493 	}
1494 
1495 	while (!list_empty(&flush_list)) {
1496 		rq = list_entry(flush_list.next, struct request, queuelist);
1497 		list_del_init(&rq->queuelist);
1498 		blk_mq_insert_request(rq, 0);
1499 	}
1500 
1501 	blk_mq_run_hw_queues(q, false);
1502 }
1503 
1504 void blk_mq_kick_requeue_list(struct request_queue *q)
1505 {
1506 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1507 }
1508 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1509 
1510 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1511 				    unsigned long msecs)
1512 {
1513 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1514 				    msecs_to_jiffies(msecs));
1515 }
1516 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1517 
1518 static bool blk_is_flush_data_rq(struct request *rq)
1519 {
1520 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1521 }
1522 
1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1524 {
1525 	/*
1526 	 * If we find a request that isn't idle we know the queue is busy
1527 	 * as it's checked in the iter.
1528 	 * Return false to stop the iteration.
1529 	 *
1530 	 * In case of queue quiesce, if one flush data request is completed,
1531 	 * don't count it as inflight given the flush sequence is suspended,
1532 	 * and the original flush data request is invisible to driver, just
1533 	 * like other pending requests because of quiesce
1534 	 */
1535 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1536 				blk_is_flush_data_rq(rq) &&
1537 				blk_mq_request_completed(rq))) {
1538 		bool *busy = priv;
1539 
1540 		*busy = true;
1541 		return false;
1542 	}
1543 
1544 	return true;
1545 }
1546 
1547 bool blk_mq_queue_inflight(struct request_queue *q)
1548 {
1549 	bool busy = false;
1550 
1551 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1552 	return busy;
1553 }
1554 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1555 
1556 static void blk_mq_rq_timed_out(struct request *req)
1557 {
1558 	req->rq_flags |= RQF_TIMED_OUT;
1559 	if (req->q->mq_ops->timeout) {
1560 		enum blk_eh_timer_return ret;
1561 
1562 		ret = req->q->mq_ops->timeout(req);
1563 		if (ret == BLK_EH_DONE)
1564 			return;
1565 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1566 	}
1567 
1568 	blk_add_timer(req);
1569 }
1570 
1571 struct blk_expired_data {
1572 	bool has_timedout_rq;
1573 	unsigned long next;
1574 	unsigned long timeout_start;
1575 };
1576 
1577 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1578 {
1579 	unsigned long deadline;
1580 
1581 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1582 		return false;
1583 	if (rq->rq_flags & RQF_TIMED_OUT)
1584 		return false;
1585 
1586 	deadline = READ_ONCE(rq->deadline);
1587 	if (time_after_eq(expired->timeout_start, deadline))
1588 		return true;
1589 
1590 	if (expired->next == 0)
1591 		expired->next = deadline;
1592 	else if (time_after(expired->next, deadline))
1593 		expired->next = deadline;
1594 	return false;
1595 }
1596 
1597 void blk_mq_put_rq_ref(struct request *rq)
1598 {
1599 	if (is_flush_rq(rq)) {
1600 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1601 			blk_mq_free_request(rq);
1602 	} else if (req_ref_put_and_test(rq)) {
1603 		__blk_mq_free_request(rq);
1604 	}
1605 }
1606 
1607 static bool blk_mq_check_expired(struct request *rq, void *priv)
1608 {
1609 	struct blk_expired_data *expired = priv;
1610 
1611 	/*
1612 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1613 	 * be reallocated underneath the timeout handler's processing, then
1614 	 * the expire check is reliable. If the request is not expired, then
1615 	 * it was completed and reallocated as a new request after returning
1616 	 * from blk_mq_check_expired().
1617 	 */
1618 	if (blk_mq_req_expired(rq, expired)) {
1619 		expired->has_timedout_rq = true;
1620 		return false;
1621 	}
1622 	return true;
1623 }
1624 
1625 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1626 {
1627 	struct blk_expired_data *expired = priv;
1628 
1629 	if (blk_mq_req_expired(rq, expired))
1630 		blk_mq_rq_timed_out(rq);
1631 	return true;
1632 }
1633 
1634 static void blk_mq_timeout_work(struct work_struct *work)
1635 {
1636 	struct request_queue *q =
1637 		container_of(work, struct request_queue, timeout_work);
1638 	struct blk_expired_data expired = {
1639 		.timeout_start = jiffies,
1640 	};
1641 	struct blk_mq_hw_ctx *hctx;
1642 	unsigned long i;
1643 
1644 	/* A deadlock might occur if a request is stuck requiring a
1645 	 * timeout at the same time a queue freeze is waiting
1646 	 * completion, since the timeout code would not be able to
1647 	 * acquire the queue reference here.
1648 	 *
1649 	 * That's why we don't use blk_queue_enter here; instead, we use
1650 	 * percpu_ref_tryget directly, because we need to be able to
1651 	 * obtain a reference even in the short window between the queue
1652 	 * starting to freeze, by dropping the first reference in
1653 	 * blk_freeze_queue_start, and the moment the last request is
1654 	 * consumed, marked by the instant q_usage_counter reaches
1655 	 * zero.
1656 	 */
1657 	if (!percpu_ref_tryget(&q->q_usage_counter))
1658 		return;
1659 
1660 	/* check if there is any timed-out request */
1661 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1662 	if (expired.has_timedout_rq) {
1663 		/*
1664 		 * Before walking tags, we must ensure any submit started
1665 		 * before the current time has finished. Since the submit
1666 		 * uses srcu or rcu, wait for a synchronization point to
1667 		 * ensure all running submits have finished
1668 		 */
1669 		blk_mq_wait_quiesce_done(q->tag_set);
1670 
1671 		expired.next = 0;
1672 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1673 	}
1674 
1675 	if (expired.next != 0) {
1676 		mod_timer(&q->timeout, expired.next);
1677 	} else {
1678 		/*
1679 		 * Request timeouts are handled as a forward rolling timer. If
1680 		 * we end up here it means that no requests are pending and
1681 		 * also that no request has been pending for a while. Mark
1682 		 * each hctx as idle.
1683 		 */
1684 		queue_for_each_hw_ctx(q, hctx, i) {
1685 			/* the hctx may be unmapped, so check it here */
1686 			if (blk_mq_hw_queue_mapped(hctx))
1687 				blk_mq_tag_idle(hctx);
1688 		}
1689 	}
1690 	blk_queue_exit(q);
1691 }
1692 
1693 struct flush_busy_ctx_data {
1694 	struct blk_mq_hw_ctx *hctx;
1695 	struct list_head *list;
1696 };
1697 
1698 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1699 {
1700 	struct flush_busy_ctx_data *flush_data = data;
1701 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1702 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1703 	enum hctx_type type = hctx->type;
1704 
1705 	spin_lock(&ctx->lock);
1706 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1707 	sbitmap_clear_bit(sb, bitnr);
1708 	spin_unlock(&ctx->lock);
1709 	return true;
1710 }
1711 
1712 /*
1713  * Process software queues that have been marked busy, splicing them
1714  * to the for-dispatch
1715  */
1716 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1717 {
1718 	struct flush_busy_ctx_data data = {
1719 		.hctx = hctx,
1720 		.list = list,
1721 	};
1722 
1723 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1724 }
1725 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1726 
1727 struct dispatch_rq_data {
1728 	struct blk_mq_hw_ctx *hctx;
1729 	struct request *rq;
1730 };
1731 
1732 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1733 		void *data)
1734 {
1735 	struct dispatch_rq_data *dispatch_data = data;
1736 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1737 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1738 	enum hctx_type type = hctx->type;
1739 
1740 	spin_lock(&ctx->lock);
1741 	if (!list_empty(&ctx->rq_lists[type])) {
1742 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1743 		list_del_init(&dispatch_data->rq->queuelist);
1744 		if (list_empty(&ctx->rq_lists[type]))
1745 			sbitmap_clear_bit(sb, bitnr);
1746 	}
1747 	spin_unlock(&ctx->lock);
1748 
1749 	return !dispatch_data->rq;
1750 }
1751 
1752 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1753 					struct blk_mq_ctx *start)
1754 {
1755 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1756 	struct dispatch_rq_data data = {
1757 		.hctx = hctx,
1758 		.rq   = NULL,
1759 	};
1760 
1761 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1762 			       dispatch_rq_from_ctx, &data);
1763 
1764 	return data.rq;
1765 }
1766 
1767 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1768 {
1769 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1770 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1771 	int tag;
1772 
1773 	blk_mq_tag_busy(rq->mq_hctx);
1774 
1775 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1776 		bt = &rq->mq_hctx->tags->breserved_tags;
1777 		tag_offset = 0;
1778 	} else {
1779 		if (!hctx_may_queue(rq->mq_hctx, bt))
1780 			return false;
1781 	}
1782 
1783 	tag = __sbitmap_queue_get(bt);
1784 	if (tag == BLK_MQ_NO_TAG)
1785 		return false;
1786 
1787 	rq->tag = tag + tag_offset;
1788 	return true;
1789 }
1790 
1791 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1792 {
1793 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1794 		return false;
1795 
1796 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1797 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1798 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1799 		__blk_mq_inc_active_requests(hctx);
1800 	}
1801 	hctx->tags->rqs[rq->tag] = rq;
1802 	return true;
1803 }
1804 
1805 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1806 				int flags, void *key)
1807 {
1808 	struct blk_mq_hw_ctx *hctx;
1809 
1810 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1811 
1812 	spin_lock(&hctx->dispatch_wait_lock);
1813 	if (!list_empty(&wait->entry)) {
1814 		struct sbitmap_queue *sbq;
1815 
1816 		list_del_init(&wait->entry);
1817 		sbq = &hctx->tags->bitmap_tags;
1818 		atomic_dec(&sbq->ws_active);
1819 	}
1820 	spin_unlock(&hctx->dispatch_wait_lock);
1821 
1822 	blk_mq_run_hw_queue(hctx, true);
1823 	return 1;
1824 }
1825 
1826 /*
1827  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1828  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1829  * restart. For both cases, take care to check the condition again after
1830  * marking us as waiting.
1831  */
1832 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1833 				 struct request *rq)
1834 {
1835 	struct sbitmap_queue *sbq;
1836 	struct wait_queue_head *wq;
1837 	wait_queue_entry_t *wait;
1838 	bool ret;
1839 
1840 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1841 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1842 		blk_mq_sched_mark_restart_hctx(hctx);
1843 
1844 		/*
1845 		 * It's possible that a tag was freed in the window between the
1846 		 * allocation failure and adding the hardware queue to the wait
1847 		 * queue.
1848 		 *
1849 		 * Don't clear RESTART here, someone else could have set it.
1850 		 * At most this will cost an extra queue run.
1851 		 */
1852 		return blk_mq_get_driver_tag(rq);
1853 	}
1854 
1855 	wait = &hctx->dispatch_wait;
1856 	if (!list_empty_careful(&wait->entry))
1857 		return false;
1858 
1859 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1860 		sbq = &hctx->tags->breserved_tags;
1861 	else
1862 		sbq = &hctx->tags->bitmap_tags;
1863 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1864 
1865 	spin_lock_irq(&wq->lock);
1866 	spin_lock(&hctx->dispatch_wait_lock);
1867 	if (!list_empty(&wait->entry)) {
1868 		spin_unlock(&hctx->dispatch_wait_lock);
1869 		spin_unlock_irq(&wq->lock);
1870 		return false;
1871 	}
1872 
1873 	atomic_inc(&sbq->ws_active);
1874 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1875 	__add_wait_queue(wq, wait);
1876 
1877 	/*
1878 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1879 	 * not imply barrier in case of failure.
1880 	 *
1881 	 * Order adding us to wait queue and allocating driver tag.
1882 	 *
1883 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1884 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1885 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1886 	 *
1887 	 * Otherwise, re-order of adding wait queue and getting driver tag
1888 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1889 	 * the waitqueue_active() may not observe us in wait queue.
1890 	 */
1891 	smp_mb();
1892 
1893 	/*
1894 	 * It's possible that a tag was freed in the window between the
1895 	 * allocation failure and adding the hardware queue to the wait
1896 	 * queue.
1897 	 */
1898 	ret = blk_mq_get_driver_tag(rq);
1899 	if (!ret) {
1900 		spin_unlock(&hctx->dispatch_wait_lock);
1901 		spin_unlock_irq(&wq->lock);
1902 		return false;
1903 	}
1904 
1905 	/*
1906 	 * We got a tag, remove ourselves from the wait queue to ensure
1907 	 * someone else gets the wakeup.
1908 	 */
1909 	list_del_init(&wait->entry);
1910 	atomic_dec(&sbq->ws_active);
1911 	spin_unlock(&hctx->dispatch_wait_lock);
1912 	spin_unlock_irq(&wq->lock);
1913 
1914 	return true;
1915 }
1916 
1917 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1919 /*
1920  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1921  * - EWMA is one simple way to compute running average value
1922  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1923  * - take 4 as factor for avoiding to get too small(0) result, and this
1924  *   factor doesn't matter because EWMA decreases exponentially
1925  */
1926 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1927 {
1928 	unsigned int ewma;
1929 
1930 	ewma = hctx->dispatch_busy;
1931 
1932 	if (!ewma && !busy)
1933 		return;
1934 
1935 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1936 	if (busy)
1937 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1938 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1939 
1940 	hctx->dispatch_busy = ewma;
1941 }
1942 
1943 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1944 
1945 static void blk_mq_handle_dev_resource(struct request *rq,
1946 				       struct list_head *list)
1947 {
1948 	list_add(&rq->queuelist, list);
1949 	__blk_mq_requeue_request(rq);
1950 }
1951 
1952 static void blk_mq_handle_zone_resource(struct request *rq,
1953 					struct list_head *zone_list)
1954 {
1955 	/*
1956 	 * If we end up here it is because we cannot dispatch a request to a
1957 	 * specific zone due to LLD level zone-write locking or other zone
1958 	 * related resource not being available. In this case, set the request
1959 	 * aside in zone_list for retrying it later.
1960 	 */
1961 	list_add(&rq->queuelist, zone_list);
1962 	__blk_mq_requeue_request(rq);
1963 }
1964 
1965 enum prep_dispatch {
1966 	PREP_DISPATCH_OK,
1967 	PREP_DISPATCH_NO_TAG,
1968 	PREP_DISPATCH_NO_BUDGET,
1969 };
1970 
1971 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1972 						  bool need_budget)
1973 {
1974 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1975 	int budget_token = -1;
1976 
1977 	if (need_budget) {
1978 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1979 		if (budget_token < 0) {
1980 			blk_mq_put_driver_tag(rq);
1981 			return PREP_DISPATCH_NO_BUDGET;
1982 		}
1983 		blk_mq_set_rq_budget_token(rq, budget_token);
1984 	}
1985 
1986 	if (!blk_mq_get_driver_tag(rq)) {
1987 		/*
1988 		 * The initial allocation attempt failed, so we need to
1989 		 * rerun the hardware queue when a tag is freed. The
1990 		 * waitqueue takes care of that. If the queue is run
1991 		 * before we add this entry back on the dispatch list,
1992 		 * we'll re-run it below.
1993 		 */
1994 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1995 			/*
1996 			 * All budgets not got from this function will be put
1997 			 * together during handling partial dispatch
1998 			 */
1999 			if (need_budget)
2000 				blk_mq_put_dispatch_budget(rq->q, budget_token);
2001 			return PREP_DISPATCH_NO_TAG;
2002 		}
2003 	}
2004 
2005 	return PREP_DISPATCH_OK;
2006 }
2007 
2008 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2009 static void blk_mq_release_budgets(struct request_queue *q,
2010 		struct list_head *list)
2011 {
2012 	struct request *rq;
2013 
2014 	list_for_each_entry(rq, list, queuelist) {
2015 		int budget_token = blk_mq_get_rq_budget_token(rq);
2016 
2017 		if (budget_token >= 0)
2018 			blk_mq_put_dispatch_budget(q, budget_token);
2019 	}
2020 }
2021 
2022 /*
2023  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2024  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2025  * details)
2026  * Attention, we should explicitly call this in unusual cases:
2027  *  1) did not queue everything initially scheduled to queue
2028  *  2) the last attempt to queue a request failed
2029  */
2030 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2031 			      bool from_schedule)
2032 {
2033 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2034 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2035 		hctx->queue->mq_ops->commit_rqs(hctx);
2036 	}
2037 }
2038 
2039 /*
2040  * Returns true if we did some work AND can potentially do more.
2041  */
2042 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2043 			     unsigned int nr_budgets)
2044 {
2045 	enum prep_dispatch prep;
2046 	struct request_queue *q = hctx->queue;
2047 	struct request *rq;
2048 	int queued;
2049 	blk_status_t ret = BLK_STS_OK;
2050 	LIST_HEAD(zone_list);
2051 	bool needs_resource = false;
2052 
2053 	if (list_empty(list))
2054 		return false;
2055 
2056 	/*
2057 	 * Now process all the entries, sending them to the driver.
2058 	 */
2059 	queued = 0;
2060 	do {
2061 		struct blk_mq_queue_data bd;
2062 
2063 		rq = list_first_entry(list, struct request, queuelist);
2064 
2065 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2066 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2067 		if (prep != PREP_DISPATCH_OK)
2068 			break;
2069 
2070 		list_del_init(&rq->queuelist);
2071 
2072 		bd.rq = rq;
2073 		bd.last = list_empty(list);
2074 
2075 		/*
2076 		 * once the request is queued to lld, no need to cover the
2077 		 * budget any more
2078 		 */
2079 		if (nr_budgets)
2080 			nr_budgets--;
2081 		ret = q->mq_ops->queue_rq(hctx, &bd);
2082 		switch (ret) {
2083 		case BLK_STS_OK:
2084 			queued++;
2085 			break;
2086 		case BLK_STS_RESOURCE:
2087 			needs_resource = true;
2088 			fallthrough;
2089 		case BLK_STS_DEV_RESOURCE:
2090 			blk_mq_handle_dev_resource(rq, list);
2091 			goto out;
2092 		case BLK_STS_ZONE_RESOURCE:
2093 			/*
2094 			 * Move the request to zone_list and keep going through
2095 			 * the dispatch list to find more requests the drive can
2096 			 * accept.
2097 			 */
2098 			blk_mq_handle_zone_resource(rq, &zone_list);
2099 			needs_resource = true;
2100 			break;
2101 		default:
2102 			blk_mq_end_request(rq, ret);
2103 		}
2104 	} while (!list_empty(list));
2105 out:
2106 	if (!list_empty(&zone_list))
2107 		list_splice_tail_init(&zone_list, list);
2108 
2109 	/* If we didn't flush the entire list, we could have told the driver
2110 	 * there was more coming, but that turned out to be a lie.
2111 	 */
2112 	if (!list_empty(list) || ret != BLK_STS_OK)
2113 		blk_mq_commit_rqs(hctx, queued, false);
2114 
2115 	/*
2116 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2117 	 * that is where we will continue on next queue run.
2118 	 */
2119 	if (!list_empty(list)) {
2120 		bool needs_restart;
2121 		/* For non-shared tags, the RESTART check will suffice */
2122 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2123 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2124 			blk_mq_is_shared_tags(hctx->flags));
2125 
2126 		if (nr_budgets)
2127 			blk_mq_release_budgets(q, list);
2128 
2129 		spin_lock(&hctx->lock);
2130 		list_splice_tail_init(list, &hctx->dispatch);
2131 		spin_unlock(&hctx->lock);
2132 
2133 		/*
2134 		 * Order adding requests to hctx->dispatch and checking
2135 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2136 		 * in blk_mq_sched_restart(). Avoid restart code path to
2137 		 * miss the new added requests to hctx->dispatch, meantime
2138 		 * SCHED_RESTART is observed here.
2139 		 */
2140 		smp_mb();
2141 
2142 		/*
2143 		 * If SCHED_RESTART was set by the caller of this function and
2144 		 * it is no longer set that means that it was cleared by another
2145 		 * thread and hence that a queue rerun is needed.
2146 		 *
2147 		 * If 'no_tag' is set, that means that we failed getting
2148 		 * a driver tag with an I/O scheduler attached. If our dispatch
2149 		 * waitqueue is no longer active, ensure that we run the queue
2150 		 * AFTER adding our entries back to the list.
2151 		 *
2152 		 * If no I/O scheduler has been configured it is possible that
2153 		 * the hardware queue got stopped and restarted before requests
2154 		 * were pushed back onto the dispatch list. Rerun the queue to
2155 		 * avoid starvation. Notes:
2156 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2157 		 *   been stopped before rerunning a queue.
2158 		 * - Some but not all block drivers stop a queue before
2159 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2160 		 *   and dm-rq.
2161 		 *
2162 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2163 		 * bit is set, run queue after a delay to avoid IO stalls
2164 		 * that could otherwise occur if the queue is idle.  We'll do
2165 		 * similar if we couldn't get budget or couldn't lock a zone
2166 		 * and SCHED_RESTART is set.
2167 		 */
2168 		needs_restart = blk_mq_sched_needs_restart(hctx);
2169 		if (prep == PREP_DISPATCH_NO_BUDGET)
2170 			needs_resource = true;
2171 		if (!needs_restart ||
2172 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2173 			blk_mq_run_hw_queue(hctx, true);
2174 		else if (needs_resource)
2175 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2176 
2177 		blk_mq_update_dispatch_busy(hctx, true);
2178 		return false;
2179 	}
2180 
2181 	blk_mq_update_dispatch_busy(hctx, false);
2182 	return true;
2183 }
2184 
2185 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2186 {
2187 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2188 
2189 	if (cpu >= nr_cpu_ids)
2190 		cpu = cpumask_first(hctx->cpumask);
2191 	return cpu;
2192 }
2193 
2194 /*
2195  * It'd be great if the workqueue API had a way to pass
2196  * in a mask and had some smarts for more clever placement.
2197  * For now we just round-robin here, switching for every
2198  * BLK_MQ_CPU_WORK_BATCH queued items.
2199  */
2200 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2201 {
2202 	bool tried = false;
2203 	int next_cpu = hctx->next_cpu;
2204 
2205 	if (hctx->queue->nr_hw_queues == 1)
2206 		return WORK_CPU_UNBOUND;
2207 
2208 	if (--hctx->next_cpu_batch <= 0) {
2209 select_cpu:
2210 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2211 				cpu_online_mask);
2212 		if (next_cpu >= nr_cpu_ids)
2213 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2214 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2215 	}
2216 
2217 	/*
2218 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2219 	 * and it should only happen in the path of handling CPU DEAD.
2220 	 */
2221 	if (!cpu_online(next_cpu)) {
2222 		if (!tried) {
2223 			tried = true;
2224 			goto select_cpu;
2225 		}
2226 
2227 		/*
2228 		 * Make sure to re-select CPU next time once after CPUs
2229 		 * in hctx->cpumask become online again.
2230 		 */
2231 		hctx->next_cpu = next_cpu;
2232 		hctx->next_cpu_batch = 1;
2233 		return WORK_CPU_UNBOUND;
2234 	}
2235 
2236 	hctx->next_cpu = next_cpu;
2237 	return next_cpu;
2238 }
2239 
2240 /**
2241  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2242  * @hctx: Pointer to the hardware queue to run.
2243  * @msecs: Milliseconds of delay to wait before running the queue.
2244  *
2245  * Run a hardware queue asynchronously with a delay of @msecs.
2246  */
2247 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2248 {
2249 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2250 		return;
2251 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2252 				    msecs_to_jiffies(msecs));
2253 }
2254 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2255 
2256 /**
2257  * blk_mq_run_hw_queue - Start to run a hardware queue.
2258  * @hctx: Pointer to the hardware queue to run.
2259  * @async: If we want to run the queue asynchronously.
2260  *
2261  * Check if the request queue is not in a quiesced state and if there are
2262  * pending requests to be sent. If this is true, run the queue to send requests
2263  * to hardware.
2264  */
2265 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2266 {
2267 	bool need_run;
2268 
2269 	/*
2270 	 * We can't run the queue inline with interrupts disabled.
2271 	 */
2272 	WARN_ON_ONCE(!async && in_interrupt());
2273 
2274 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2275 
2276 	/*
2277 	 * When queue is quiesced, we may be switching io scheduler, or
2278 	 * updating nr_hw_queues, or other things, and we can't run queue
2279 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2280 	 *
2281 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2282 	 * quiesced.
2283 	 */
2284 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2285 		need_run = !blk_queue_quiesced(hctx->queue) &&
2286 		blk_mq_hctx_has_pending(hctx));
2287 
2288 	if (!need_run)
2289 		return;
2290 
2291 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2292 		blk_mq_delay_run_hw_queue(hctx, 0);
2293 		return;
2294 	}
2295 
2296 	blk_mq_run_dispatch_ops(hctx->queue,
2297 				blk_mq_sched_dispatch_requests(hctx));
2298 }
2299 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2300 
2301 /*
2302  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2303  * scheduler.
2304  */
2305 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2306 {
2307 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2308 	/*
2309 	 * If the IO scheduler does not respect hardware queues when
2310 	 * dispatching, we just don't bother with multiple HW queues and
2311 	 * dispatch from hctx for the current CPU since running multiple queues
2312 	 * just causes lock contention inside the scheduler and pointless cache
2313 	 * bouncing.
2314 	 */
2315 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2316 
2317 	if (!blk_mq_hctx_stopped(hctx))
2318 		return hctx;
2319 	return NULL;
2320 }
2321 
2322 /**
2323  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2324  * @q: Pointer to the request queue to run.
2325  * @async: If we want to run the queue asynchronously.
2326  */
2327 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2328 {
2329 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2330 	unsigned long i;
2331 
2332 	sq_hctx = NULL;
2333 	if (blk_queue_sq_sched(q))
2334 		sq_hctx = blk_mq_get_sq_hctx(q);
2335 	queue_for_each_hw_ctx(q, hctx, i) {
2336 		if (blk_mq_hctx_stopped(hctx))
2337 			continue;
2338 		/*
2339 		 * Dispatch from this hctx either if there's no hctx preferred
2340 		 * by IO scheduler or if it has requests that bypass the
2341 		 * scheduler.
2342 		 */
2343 		if (!sq_hctx || sq_hctx == hctx ||
2344 		    !list_empty_careful(&hctx->dispatch))
2345 			blk_mq_run_hw_queue(hctx, async);
2346 	}
2347 }
2348 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2349 
2350 /**
2351  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2352  * @q: Pointer to the request queue to run.
2353  * @msecs: Milliseconds of delay to wait before running the queues.
2354  */
2355 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2356 {
2357 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2358 	unsigned long i;
2359 
2360 	sq_hctx = NULL;
2361 	if (blk_queue_sq_sched(q))
2362 		sq_hctx = blk_mq_get_sq_hctx(q);
2363 	queue_for_each_hw_ctx(q, hctx, i) {
2364 		if (blk_mq_hctx_stopped(hctx))
2365 			continue;
2366 		/*
2367 		 * If there is already a run_work pending, leave the
2368 		 * pending delay untouched. Otherwise, a hctx can stall
2369 		 * if another hctx is re-delaying the other's work
2370 		 * before the work executes.
2371 		 */
2372 		if (delayed_work_pending(&hctx->run_work))
2373 			continue;
2374 		/*
2375 		 * Dispatch from this hctx either if there's no hctx preferred
2376 		 * by IO scheduler or if it has requests that bypass the
2377 		 * scheduler.
2378 		 */
2379 		if (!sq_hctx || sq_hctx == hctx ||
2380 		    !list_empty_careful(&hctx->dispatch))
2381 			blk_mq_delay_run_hw_queue(hctx, msecs);
2382 	}
2383 }
2384 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2385 
2386 /*
2387  * This function is often used for pausing .queue_rq() by driver when
2388  * there isn't enough resource or some conditions aren't satisfied, and
2389  * BLK_STS_RESOURCE is usually returned.
2390  *
2391  * We do not guarantee that dispatch can be drained or blocked
2392  * after blk_mq_stop_hw_queue() returns. Please use
2393  * blk_mq_quiesce_queue() for that requirement.
2394  */
2395 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2396 {
2397 	cancel_delayed_work(&hctx->run_work);
2398 
2399 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2400 }
2401 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2402 
2403 /*
2404  * This function is often used for pausing .queue_rq() by driver when
2405  * there isn't enough resource or some conditions aren't satisfied, and
2406  * BLK_STS_RESOURCE is usually returned.
2407  *
2408  * We do not guarantee that dispatch can be drained or blocked
2409  * after blk_mq_stop_hw_queues() returns. Please use
2410  * blk_mq_quiesce_queue() for that requirement.
2411  */
2412 void blk_mq_stop_hw_queues(struct request_queue *q)
2413 {
2414 	struct blk_mq_hw_ctx *hctx;
2415 	unsigned long i;
2416 
2417 	queue_for_each_hw_ctx(q, hctx, i)
2418 		blk_mq_stop_hw_queue(hctx);
2419 }
2420 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2421 
2422 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2423 {
2424 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2425 
2426 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2427 }
2428 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2429 
2430 void blk_mq_start_hw_queues(struct request_queue *q)
2431 {
2432 	struct blk_mq_hw_ctx *hctx;
2433 	unsigned long i;
2434 
2435 	queue_for_each_hw_ctx(q, hctx, i)
2436 		blk_mq_start_hw_queue(hctx);
2437 }
2438 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2439 
2440 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2441 {
2442 	if (!blk_mq_hctx_stopped(hctx))
2443 		return;
2444 
2445 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2446 	blk_mq_run_hw_queue(hctx, async);
2447 }
2448 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2449 
2450 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2451 {
2452 	struct blk_mq_hw_ctx *hctx;
2453 	unsigned long i;
2454 
2455 	queue_for_each_hw_ctx(q, hctx, i)
2456 		blk_mq_start_stopped_hw_queue(hctx, async ||
2457 					(hctx->flags & BLK_MQ_F_BLOCKING));
2458 }
2459 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2460 
2461 static void blk_mq_run_work_fn(struct work_struct *work)
2462 {
2463 	struct blk_mq_hw_ctx *hctx =
2464 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2465 
2466 	blk_mq_run_dispatch_ops(hctx->queue,
2467 				blk_mq_sched_dispatch_requests(hctx));
2468 }
2469 
2470 /**
2471  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2472  * @rq: Pointer to request to be inserted.
2473  * @flags: BLK_MQ_INSERT_*
2474  *
2475  * Should only be used carefully, when the caller knows we want to
2476  * bypass a potential IO scheduler on the target device.
2477  */
2478 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2479 {
2480 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2481 
2482 	spin_lock(&hctx->lock);
2483 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2484 		list_add(&rq->queuelist, &hctx->dispatch);
2485 	else
2486 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2487 	spin_unlock(&hctx->lock);
2488 }
2489 
2490 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2491 		struct blk_mq_ctx *ctx, struct list_head *list,
2492 		bool run_queue_async)
2493 {
2494 	struct request *rq;
2495 	enum hctx_type type = hctx->type;
2496 
2497 	/*
2498 	 * Try to issue requests directly if the hw queue isn't busy to save an
2499 	 * extra enqueue & dequeue to the sw queue.
2500 	 */
2501 	if (!hctx->dispatch_busy && !run_queue_async) {
2502 		blk_mq_run_dispatch_ops(hctx->queue,
2503 			blk_mq_try_issue_list_directly(hctx, list));
2504 		if (list_empty(list))
2505 			goto out;
2506 	}
2507 
2508 	/*
2509 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2510 	 * offline now
2511 	 */
2512 	list_for_each_entry(rq, list, queuelist) {
2513 		BUG_ON(rq->mq_ctx != ctx);
2514 		trace_block_rq_insert(rq);
2515 		if (rq->cmd_flags & REQ_NOWAIT)
2516 			run_queue_async = true;
2517 	}
2518 
2519 	spin_lock(&ctx->lock);
2520 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2521 	blk_mq_hctx_mark_pending(hctx, ctx);
2522 	spin_unlock(&ctx->lock);
2523 out:
2524 	blk_mq_run_hw_queue(hctx, run_queue_async);
2525 }
2526 
2527 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2528 {
2529 	struct request_queue *q = rq->q;
2530 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2531 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2532 
2533 	if (blk_rq_is_passthrough(rq)) {
2534 		/*
2535 		 * Passthrough request have to be added to hctx->dispatch
2536 		 * directly.  The device may be in a situation where it can't
2537 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2538 		 * them, which gets them added to hctx->dispatch.
2539 		 *
2540 		 * If a passthrough request is required to unblock the queues,
2541 		 * and it is added to the scheduler queue, there is no chance to
2542 		 * dispatch it given we prioritize requests in hctx->dispatch.
2543 		 */
2544 		blk_mq_request_bypass_insert(rq, flags);
2545 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2546 		/*
2547 		 * Firstly normal IO request is inserted to scheduler queue or
2548 		 * sw queue, meantime we add flush request to dispatch queue(
2549 		 * hctx->dispatch) directly and there is at most one in-flight
2550 		 * flush request for each hw queue, so it doesn't matter to add
2551 		 * flush request to tail or front of the dispatch queue.
2552 		 *
2553 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2554 		 * command, and queueing it will fail when there is any
2555 		 * in-flight normal IO request(NCQ command). When adding flush
2556 		 * rq to the front of hctx->dispatch, it is easier to introduce
2557 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2558 		 * compared with adding to the tail of dispatch queue, then
2559 		 * chance of flush merge is increased, and less flush requests
2560 		 * will be issued to controller. It is observed that ~10% time
2561 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2562 		 * drive when adding flush rq to the front of hctx->dispatch.
2563 		 *
2564 		 * Simply queue flush rq to the front of hctx->dispatch so that
2565 		 * intensive flush workloads can benefit in case of NCQ HW.
2566 		 */
2567 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2568 	} else if (q->elevator) {
2569 		LIST_HEAD(list);
2570 
2571 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2572 
2573 		list_add(&rq->queuelist, &list);
2574 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2575 	} else {
2576 		trace_block_rq_insert(rq);
2577 
2578 		spin_lock(&ctx->lock);
2579 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2580 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2581 		else
2582 			list_add_tail(&rq->queuelist,
2583 				      &ctx->rq_lists[hctx->type]);
2584 		blk_mq_hctx_mark_pending(hctx, ctx);
2585 		spin_unlock(&ctx->lock);
2586 	}
2587 }
2588 
2589 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2590 		unsigned int nr_segs)
2591 {
2592 	int err;
2593 
2594 	if (bio->bi_opf & REQ_RAHEAD)
2595 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2596 
2597 	rq->__sector = bio->bi_iter.bi_sector;
2598 	blk_rq_bio_prep(rq, bio, nr_segs);
2599 
2600 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2601 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2602 	WARN_ON_ONCE(err);
2603 
2604 	blk_account_io_start(rq);
2605 }
2606 
2607 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2608 					    struct request *rq, bool last)
2609 {
2610 	struct request_queue *q = rq->q;
2611 	struct blk_mq_queue_data bd = {
2612 		.rq = rq,
2613 		.last = last,
2614 	};
2615 	blk_status_t ret;
2616 
2617 	/*
2618 	 * For OK queue, we are done. For error, caller may kill it.
2619 	 * Any other error (busy), just add it to our list as we
2620 	 * previously would have done.
2621 	 */
2622 	ret = q->mq_ops->queue_rq(hctx, &bd);
2623 	switch (ret) {
2624 	case BLK_STS_OK:
2625 		blk_mq_update_dispatch_busy(hctx, false);
2626 		break;
2627 	case BLK_STS_RESOURCE:
2628 	case BLK_STS_DEV_RESOURCE:
2629 		blk_mq_update_dispatch_busy(hctx, true);
2630 		__blk_mq_requeue_request(rq);
2631 		break;
2632 	default:
2633 		blk_mq_update_dispatch_busy(hctx, false);
2634 		break;
2635 	}
2636 
2637 	return ret;
2638 }
2639 
2640 static bool blk_mq_get_budget_and_tag(struct request *rq)
2641 {
2642 	int budget_token;
2643 
2644 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2645 	if (budget_token < 0)
2646 		return false;
2647 	blk_mq_set_rq_budget_token(rq, budget_token);
2648 	if (!blk_mq_get_driver_tag(rq)) {
2649 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2650 		return false;
2651 	}
2652 	return true;
2653 }
2654 
2655 /**
2656  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2657  * @hctx: Pointer of the associated hardware queue.
2658  * @rq: Pointer to request to be sent.
2659  *
2660  * If the device has enough resources to accept a new request now, send the
2661  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2662  * we can try send it another time in the future. Requests inserted at this
2663  * queue have higher priority.
2664  */
2665 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2666 		struct request *rq)
2667 {
2668 	blk_status_t ret;
2669 
2670 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2671 		blk_mq_insert_request(rq, 0);
2672 		return;
2673 	}
2674 
2675 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2676 		blk_mq_insert_request(rq, 0);
2677 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2678 		return;
2679 	}
2680 
2681 	ret = __blk_mq_issue_directly(hctx, rq, true);
2682 	switch (ret) {
2683 	case BLK_STS_OK:
2684 		break;
2685 	case BLK_STS_RESOURCE:
2686 	case BLK_STS_DEV_RESOURCE:
2687 		blk_mq_request_bypass_insert(rq, 0);
2688 		blk_mq_run_hw_queue(hctx, false);
2689 		break;
2690 	default:
2691 		blk_mq_end_request(rq, ret);
2692 		break;
2693 	}
2694 }
2695 
2696 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2697 {
2698 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2699 
2700 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2701 		blk_mq_insert_request(rq, 0);
2702 		return BLK_STS_OK;
2703 	}
2704 
2705 	if (!blk_mq_get_budget_and_tag(rq))
2706 		return BLK_STS_RESOURCE;
2707 	return __blk_mq_issue_directly(hctx, rq, last);
2708 }
2709 
2710 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2711 {
2712 	struct blk_mq_hw_ctx *hctx = NULL;
2713 	struct request *rq;
2714 	int queued = 0;
2715 	blk_status_t ret = BLK_STS_OK;
2716 
2717 	while ((rq = rq_list_pop(&plug->mq_list))) {
2718 		bool last = rq_list_empty(plug->mq_list);
2719 
2720 		if (hctx != rq->mq_hctx) {
2721 			if (hctx) {
2722 				blk_mq_commit_rqs(hctx, queued, false);
2723 				queued = 0;
2724 			}
2725 			hctx = rq->mq_hctx;
2726 		}
2727 
2728 		ret = blk_mq_request_issue_directly(rq, last);
2729 		switch (ret) {
2730 		case BLK_STS_OK:
2731 			queued++;
2732 			break;
2733 		case BLK_STS_RESOURCE:
2734 		case BLK_STS_DEV_RESOURCE:
2735 			blk_mq_request_bypass_insert(rq, 0);
2736 			blk_mq_run_hw_queue(hctx, false);
2737 			goto out;
2738 		default:
2739 			blk_mq_end_request(rq, ret);
2740 			break;
2741 		}
2742 	}
2743 
2744 out:
2745 	if (ret != BLK_STS_OK)
2746 		blk_mq_commit_rqs(hctx, queued, false);
2747 }
2748 
2749 static void __blk_mq_flush_plug_list(struct request_queue *q,
2750 				     struct blk_plug *plug)
2751 {
2752 	if (blk_queue_quiesced(q))
2753 		return;
2754 	q->mq_ops->queue_rqs(&plug->mq_list);
2755 }
2756 
2757 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2758 {
2759 	struct blk_mq_hw_ctx *this_hctx = NULL;
2760 	struct blk_mq_ctx *this_ctx = NULL;
2761 	struct request *requeue_list = NULL;
2762 	struct request **requeue_lastp = &requeue_list;
2763 	unsigned int depth = 0;
2764 	bool is_passthrough = false;
2765 	LIST_HEAD(list);
2766 
2767 	do {
2768 		struct request *rq = rq_list_pop(&plug->mq_list);
2769 
2770 		if (!this_hctx) {
2771 			this_hctx = rq->mq_hctx;
2772 			this_ctx = rq->mq_ctx;
2773 			is_passthrough = blk_rq_is_passthrough(rq);
2774 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2775 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2776 			rq_list_add_tail(&requeue_lastp, rq);
2777 			continue;
2778 		}
2779 		list_add(&rq->queuelist, &list);
2780 		depth++;
2781 	} while (!rq_list_empty(plug->mq_list));
2782 
2783 	plug->mq_list = requeue_list;
2784 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2785 
2786 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2787 	/* passthrough requests should never be issued to the I/O scheduler */
2788 	if (is_passthrough) {
2789 		spin_lock(&this_hctx->lock);
2790 		list_splice_tail_init(&list, &this_hctx->dispatch);
2791 		spin_unlock(&this_hctx->lock);
2792 		blk_mq_run_hw_queue(this_hctx, from_sched);
2793 	} else if (this_hctx->queue->elevator) {
2794 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2795 				&list, 0);
2796 		blk_mq_run_hw_queue(this_hctx, from_sched);
2797 	} else {
2798 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2799 	}
2800 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2801 }
2802 
2803 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2804 {
2805 	struct request *rq;
2806 
2807 	/*
2808 	 * We may have been called recursively midway through handling
2809 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2810 	 * To avoid mq_list changing under our feet, clear rq_count early and
2811 	 * bail out specifically if rq_count is 0 rather than checking
2812 	 * whether the mq_list is empty.
2813 	 */
2814 	if (plug->rq_count == 0)
2815 		return;
2816 	plug->rq_count = 0;
2817 
2818 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2819 		struct request_queue *q;
2820 
2821 		rq = rq_list_peek(&plug->mq_list);
2822 		q = rq->q;
2823 
2824 		/*
2825 		 * Peek first request and see if we have a ->queue_rqs() hook.
2826 		 * If we do, we can dispatch the whole plug list in one go. We
2827 		 * already know at this point that all requests belong to the
2828 		 * same queue, caller must ensure that's the case.
2829 		 *
2830 		 * Since we pass off the full list to the driver at this point,
2831 		 * we do not increment the active request count for the queue.
2832 		 * Bypass shared tags for now because of that.
2833 		 */
2834 		if (q->mq_ops->queue_rqs &&
2835 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2836 			blk_mq_run_dispatch_ops(q,
2837 				__blk_mq_flush_plug_list(q, plug));
2838 			if (rq_list_empty(plug->mq_list))
2839 				return;
2840 		}
2841 
2842 		blk_mq_run_dispatch_ops(q,
2843 				blk_mq_plug_issue_direct(plug));
2844 		if (rq_list_empty(plug->mq_list))
2845 			return;
2846 	}
2847 
2848 	do {
2849 		blk_mq_dispatch_plug_list(plug, from_schedule);
2850 	} while (!rq_list_empty(plug->mq_list));
2851 }
2852 
2853 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2854 		struct list_head *list)
2855 {
2856 	int queued = 0;
2857 	blk_status_t ret = BLK_STS_OK;
2858 
2859 	while (!list_empty(list)) {
2860 		struct request *rq = list_first_entry(list, struct request,
2861 				queuelist);
2862 
2863 		list_del_init(&rq->queuelist);
2864 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2865 		switch (ret) {
2866 		case BLK_STS_OK:
2867 			queued++;
2868 			break;
2869 		case BLK_STS_RESOURCE:
2870 		case BLK_STS_DEV_RESOURCE:
2871 			blk_mq_request_bypass_insert(rq, 0);
2872 			if (list_empty(list))
2873 				blk_mq_run_hw_queue(hctx, false);
2874 			goto out;
2875 		default:
2876 			blk_mq_end_request(rq, ret);
2877 			break;
2878 		}
2879 	}
2880 
2881 out:
2882 	if (ret != BLK_STS_OK)
2883 		blk_mq_commit_rqs(hctx, queued, false);
2884 }
2885 
2886 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2887 				     struct bio *bio, unsigned int nr_segs)
2888 {
2889 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2890 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2891 			return true;
2892 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2893 			return true;
2894 	}
2895 	return false;
2896 }
2897 
2898 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2899 					       struct blk_plug *plug,
2900 					       struct bio *bio,
2901 					       unsigned int nsegs)
2902 {
2903 	struct blk_mq_alloc_data data = {
2904 		.q		= q,
2905 		.nr_tags	= 1,
2906 		.cmd_flags	= bio->bi_opf,
2907 	};
2908 	struct request *rq;
2909 
2910 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2911 		return NULL;
2912 
2913 	rq_qos_throttle(q, bio);
2914 
2915 	if (plug) {
2916 		data.nr_tags = plug->nr_ios;
2917 		plug->nr_ios = 1;
2918 		data.cached_rq = &plug->cached_rq;
2919 	}
2920 
2921 	rq = __blk_mq_alloc_requests(&data);
2922 	if (rq)
2923 		return rq;
2924 	rq_qos_cleanup(q, bio);
2925 	if (bio->bi_opf & REQ_NOWAIT)
2926 		bio_wouldblock_error(bio);
2927 	return NULL;
2928 }
2929 
2930 /* return true if this @rq can be used for @bio */
2931 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2932 		struct bio *bio)
2933 {
2934 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2935 	enum hctx_type hctx_type = rq->mq_hctx->type;
2936 
2937 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2938 
2939 	if (type != hctx_type &&
2940 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2941 		return false;
2942 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2943 		return false;
2944 
2945 	/*
2946 	 * If any qos ->throttle() end up blocking, we will have flushed the
2947 	 * plug and hence killed the cached_rq list as well. Pop this entry
2948 	 * before we throttle.
2949 	 */
2950 	plug->cached_rq = rq_list_next(rq);
2951 	rq_qos_throttle(rq->q, bio);
2952 
2953 	blk_mq_rq_time_init(rq, 0);
2954 	rq->cmd_flags = bio->bi_opf;
2955 	INIT_LIST_HEAD(&rq->queuelist);
2956 	return true;
2957 }
2958 
2959 static void bio_set_ioprio(struct bio *bio)
2960 {
2961 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2962 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2963 		bio->bi_ioprio = get_current_ioprio();
2964 	blkcg_set_ioprio(bio);
2965 }
2966 
2967 /**
2968  * blk_mq_submit_bio - Create and send a request to block device.
2969  * @bio: Bio pointer.
2970  *
2971  * Builds up a request structure from @q and @bio and send to the device. The
2972  * request may not be queued directly to hardware if:
2973  * * This request can be merged with another one
2974  * * We want to place request at plug queue for possible future merging
2975  * * There is an IO scheduler active at this queue
2976  *
2977  * It will not queue the request if there is an error with the bio, or at the
2978  * request creation.
2979  */
2980 void blk_mq_submit_bio(struct bio *bio)
2981 {
2982 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2983 	struct blk_plug *plug = blk_mq_plug(bio);
2984 	const int is_sync = op_is_sync(bio->bi_opf);
2985 	struct blk_mq_hw_ctx *hctx;
2986 	struct request *rq = NULL;
2987 	unsigned int nr_segs = 1;
2988 	blk_status_t ret;
2989 
2990 	bio = blk_queue_bounce(bio, q);
2991 	bio_set_ioprio(bio);
2992 
2993 	if (plug) {
2994 		rq = rq_list_peek(&plug->cached_rq);
2995 		if (rq && rq->q != q)
2996 			rq = NULL;
2997 	}
2998 	if (rq) {
2999 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3000 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3001 			if (!bio)
3002 				return;
3003 		}
3004 		if (!bio_integrity_prep(bio))
3005 			return;
3006 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3007 			return;
3008 		if (blk_mq_can_use_cached_rq(rq, plug, bio))
3009 			goto done;
3010 		percpu_ref_get(&q->q_usage_counter);
3011 	} else {
3012 		if (unlikely(bio_queue_enter(bio)))
3013 			return;
3014 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3015 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3016 			if (!bio)
3017 				goto fail;
3018 		}
3019 		if (!bio_integrity_prep(bio))
3020 			goto fail;
3021 	}
3022 
3023 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3024 	if (unlikely(!rq)) {
3025 fail:
3026 		blk_queue_exit(q);
3027 		return;
3028 	}
3029 
3030 done:
3031 	trace_block_getrq(bio);
3032 
3033 	rq_qos_track(q, rq, bio);
3034 
3035 	blk_mq_bio_to_request(rq, bio, nr_segs);
3036 
3037 	ret = blk_crypto_rq_get_keyslot(rq);
3038 	if (ret != BLK_STS_OK) {
3039 		bio->bi_status = ret;
3040 		bio_endio(bio);
3041 		blk_mq_free_request(rq);
3042 		return;
3043 	}
3044 
3045 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3046 		return;
3047 
3048 	if (plug) {
3049 		blk_add_rq_to_plug(plug, rq);
3050 		return;
3051 	}
3052 
3053 	hctx = rq->mq_hctx;
3054 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3055 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3056 		blk_mq_insert_request(rq, 0);
3057 		blk_mq_run_hw_queue(hctx, true);
3058 	} else {
3059 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3060 	}
3061 }
3062 
3063 #ifdef CONFIG_BLK_MQ_STACKING
3064 /**
3065  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3066  * @rq: the request being queued
3067  */
3068 blk_status_t blk_insert_cloned_request(struct request *rq)
3069 {
3070 	struct request_queue *q = rq->q;
3071 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3072 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3073 	blk_status_t ret;
3074 
3075 	if (blk_rq_sectors(rq) > max_sectors) {
3076 		/*
3077 		 * SCSI device does not have a good way to return if
3078 		 * Write Same/Zero is actually supported. If a device rejects
3079 		 * a non-read/write command (discard, write same,etc.) the
3080 		 * low-level device driver will set the relevant queue limit to
3081 		 * 0 to prevent blk-lib from issuing more of the offending
3082 		 * operations. Commands queued prior to the queue limit being
3083 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3084 		 * errors being propagated to upper layers.
3085 		 */
3086 		if (max_sectors == 0)
3087 			return BLK_STS_NOTSUPP;
3088 
3089 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3090 			__func__, blk_rq_sectors(rq), max_sectors);
3091 		return BLK_STS_IOERR;
3092 	}
3093 
3094 	/*
3095 	 * The queue settings related to segment counting may differ from the
3096 	 * original queue.
3097 	 */
3098 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3099 	if (rq->nr_phys_segments > max_segments) {
3100 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3101 			__func__, rq->nr_phys_segments, max_segments);
3102 		return BLK_STS_IOERR;
3103 	}
3104 
3105 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3106 		return BLK_STS_IOERR;
3107 
3108 	ret = blk_crypto_rq_get_keyslot(rq);
3109 	if (ret != BLK_STS_OK)
3110 		return ret;
3111 
3112 	blk_account_io_start(rq);
3113 
3114 	/*
3115 	 * Since we have a scheduler attached on the top device,
3116 	 * bypass a potential scheduler on the bottom device for
3117 	 * insert.
3118 	 */
3119 	blk_mq_run_dispatch_ops(q,
3120 			ret = blk_mq_request_issue_directly(rq, true));
3121 	if (ret)
3122 		blk_account_io_done(rq, ktime_get_ns());
3123 	return ret;
3124 }
3125 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3126 
3127 /**
3128  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3129  * @rq: the clone request to be cleaned up
3130  *
3131  * Description:
3132  *     Free all bios in @rq for a cloned request.
3133  */
3134 void blk_rq_unprep_clone(struct request *rq)
3135 {
3136 	struct bio *bio;
3137 
3138 	while ((bio = rq->bio) != NULL) {
3139 		rq->bio = bio->bi_next;
3140 
3141 		bio_put(bio);
3142 	}
3143 }
3144 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3145 
3146 /**
3147  * blk_rq_prep_clone - Helper function to setup clone request
3148  * @rq: the request to be setup
3149  * @rq_src: original request to be cloned
3150  * @bs: bio_set that bios for clone are allocated from
3151  * @gfp_mask: memory allocation mask for bio
3152  * @bio_ctr: setup function to be called for each clone bio.
3153  *           Returns %0 for success, non %0 for failure.
3154  * @data: private data to be passed to @bio_ctr
3155  *
3156  * Description:
3157  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3158  *     Also, pages which the original bios are pointing to are not copied
3159  *     and the cloned bios just point same pages.
3160  *     So cloned bios must be completed before original bios, which means
3161  *     the caller must complete @rq before @rq_src.
3162  */
3163 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3164 		      struct bio_set *bs, gfp_t gfp_mask,
3165 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3166 		      void *data)
3167 {
3168 	struct bio *bio, *bio_src;
3169 
3170 	if (!bs)
3171 		bs = &fs_bio_set;
3172 
3173 	__rq_for_each_bio(bio_src, rq_src) {
3174 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3175 				      bs);
3176 		if (!bio)
3177 			goto free_and_out;
3178 
3179 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3180 			goto free_and_out;
3181 
3182 		if (rq->bio) {
3183 			rq->biotail->bi_next = bio;
3184 			rq->biotail = bio;
3185 		} else {
3186 			rq->bio = rq->biotail = bio;
3187 		}
3188 		bio = NULL;
3189 	}
3190 
3191 	/* Copy attributes of the original request to the clone request. */
3192 	rq->__sector = blk_rq_pos(rq_src);
3193 	rq->__data_len = blk_rq_bytes(rq_src);
3194 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3195 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3196 		rq->special_vec = rq_src->special_vec;
3197 	}
3198 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3199 	rq->ioprio = rq_src->ioprio;
3200 
3201 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3202 		goto free_and_out;
3203 
3204 	return 0;
3205 
3206 free_and_out:
3207 	if (bio)
3208 		bio_put(bio);
3209 	blk_rq_unprep_clone(rq);
3210 
3211 	return -ENOMEM;
3212 }
3213 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3214 #endif /* CONFIG_BLK_MQ_STACKING */
3215 
3216 /*
3217  * Steal bios from a request and add them to a bio list.
3218  * The request must not have been partially completed before.
3219  */
3220 void blk_steal_bios(struct bio_list *list, struct request *rq)
3221 {
3222 	if (rq->bio) {
3223 		if (list->tail)
3224 			list->tail->bi_next = rq->bio;
3225 		else
3226 			list->head = rq->bio;
3227 		list->tail = rq->biotail;
3228 
3229 		rq->bio = NULL;
3230 		rq->biotail = NULL;
3231 	}
3232 
3233 	rq->__data_len = 0;
3234 }
3235 EXPORT_SYMBOL_GPL(blk_steal_bios);
3236 
3237 static size_t order_to_size(unsigned int order)
3238 {
3239 	return (size_t)PAGE_SIZE << order;
3240 }
3241 
3242 /* called before freeing request pool in @tags */
3243 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3244 				    struct blk_mq_tags *tags)
3245 {
3246 	struct page *page;
3247 	unsigned long flags;
3248 
3249 	/*
3250 	 * There is no need to clear mapping if driver tags is not initialized
3251 	 * or the mapping belongs to the driver tags.
3252 	 */
3253 	if (!drv_tags || drv_tags == tags)
3254 		return;
3255 
3256 	list_for_each_entry(page, &tags->page_list, lru) {
3257 		unsigned long start = (unsigned long)page_address(page);
3258 		unsigned long end = start + order_to_size(page->private);
3259 		int i;
3260 
3261 		for (i = 0; i < drv_tags->nr_tags; i++) {
3262 			struct request *rq = drv_tags->rqs[i];
3263 			unsigned long rq_addr = (unsigned long)rq;
3264 
3265 			if (rq_addr >= start && rq_addr < end) {
3266 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3267 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3268 			}
3269 		}
3270 	}
3271 
3272 	/*
3273 	 * Wait until all pending iteration is done.
3274 	 *
3275 	 * Request reference is cleared and it is guaranteed to be observed
3276 	 * after the ->lock is released.
3277 	 */
3278 	spin_lock_irqsave(&drv_tags->lock, flags);
3279 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3280 }
3281 
3282 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3283 		     unsigned int hctx_idx)
3284 {
3285 	struct blk_mq_tags *drv_tags;
3286 	struct page *page;
3287 
3288 	if (list_empty(&tags->page_list))
3289 		return;
3290 
3291 	if (blk_mq_is_shared_tags(set->flags))
3292 		drv_tags = set->shared_tags;
3293 	else
3294 		drv_tags = set->tags[hctx_idx];
3295 
3296 	if (tags->static_rqs && set->ops->exit_request) {
3297 		int i;
3298 
3299 		for (i = 0; i < tags->nr_tags; i++) {
3300 			struct request *rq = tags->static_rqs[i];
3301 
3302 			if (!rq)
3303 				continue;
3304 			set->ops->exit_request(set, rq, hctx_idx);
3305 			tags->static_rqs[i] = NULL;
3306 		}
3307 	}
3308 
3309 	blk_mq_clear_rq_mapping(drv_tags, tags);
3310 
3311 	while (!list_empty(&tags->page_list)) {
3312 		page = list_first_entry(&tags->page_list, struct page, lru);
3313 		list_del_init(&page->lru);
3314 		/*
3315 		 * Remove kmemleak object previously allocated in
3316 		 * blk_mq_alloc_rqs().
3317 		 */
3318 		kmemleak_free(page_address(page));
3319 		__free_pages(page, page->private);
3320 	}
3321 }
3322 
3323 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3324 {
3325 	kfree(tags->rqs);
3326 	tags->rqs = NULL;
3327 	kfree(tags->static_rqs);
3328 	tags->static_rqs = NULL;
3329 
3330 	blk_mq_free_tags(tags);
3331 }
3332 
3333 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3334 		unsigned int hctx_idx)
3335 {
3336 	int i;
3337 
3338 	for (i = 0; i < set->nr_maps; i++) {
3339 		unsigned int start = set->map[i].queue_offset;
3340 		unsigned int end = start + set->map[i].nr_queues;
3341 
3342 		if (hctx_idx >= start && hctx_idx < end)
3343 			break;
3344 	}
3345 
3346 	if (i >= set->nr_maps)
3347 		i = HCTX_TYPE_DEFAULT;
3348 
3349 	return i;
3350 }
3351 
3352 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3353 		unsigned int hctx_idx)
3354 {
3355 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3356 
3357 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3358 }
3359 
3360 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3361 					       unsigned int hctx_idx,
3362 					       unsigned int nr_tags,
3363 					       unsigned int reserved_tags)
3364 {
3365 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3366 	struct blk_mq_tags *tags;
3367 
3368 	if (node == NUMA_NO_NODE)
3369 		node = set->numa_node;
3370 
3371 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3372 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3373 	if (!tags)
3374 		return NULL;
3375 
3376 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3377 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3378 				 node);
3379 	if (!tags->rqs)
3380 		goto err_free_tags;
3381 
3382 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3383 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3384 					node);
3385 	if (!tags->static_rqs)
3386 		goto err_free_rqs;
3387 
3388 	return tags;
3389 
3390 err_free_rqs:
3391 	kfree(tags->rqs);
3392 err_free_tags:
3393 	blk_mq_free_tags(tags);
3394 	return NULL;
3395 }
3396 
3397 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3398 			       unsigned int hctx_idx, int node)
3399 {
3400 	int ret;
3401 
3402 	if (set->ops->init_request) {
3403 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3404 		if (ret)
3405 			return ret;
3406 	}
3407 
3408 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3409 	return 0;
3410 }
3411 
3412 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3413 			    struct blk_mq_tags *tags,
3414 			    unsigned int hctx_idx, unsigned int depth)
3415 {
3416 	unsigned int i, j, entries_per_page, max_order = 4;
3417 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3418 	size_t rq_size, left;
3419 
3420 	if (node == NUMA_NO_NODE)
3421 		node = set->numa_node;
3422 
3423 	INIT_LIST_HEAD(&tags->page_list);
3424 
3425 	/*
3426 	 * rq_size is the size of the request plus driver payload, rounded
3427 	 * to the cacheline size
3428 	 */
3429 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3430 				cache_line_size());
3431 	left = rq_size * depth;
3432 
3433 	for (i = 0; i < depth; ) {
3434 		int this_order = max_order;
3435 		struct page *page;
3436 		int to_do;
3437 		void *p;
3438 
3439 		while (this_order && left < order_to_size(this_order - 1))
3440 			this_order--;
3441 
3442 		do {
3443 			page = alloc_pages_node(node,
3444 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3445 				this_order);
3446 			if (page)
3447 				break;
3448 			if (!this_order--)
3449 				break;
3450 			if (order_to_size(this_order) < rq_size)
3451 				break;
3452 		} while (1);
3453 
3454 		if (!page)
3455 			goto fail;
3456 
3457 		page->private = this_order;
3458 		list_add_tail(&page->lru, &tags->page_list);
3459 
3460 		p = page_address(page);
3461 		/*
3462 		 * Allow kmemleak to scan these pages as they contain pointers
3463 		 * to additional allocations like via ops->init_request().
3464 		 */
3465 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3466 		entries_per_page = order_to_size(this_order) / rq_size;
3467 		to_do = min(entries_per_page, depth - i);
3468 		left -= to_do * rq_size;
3469 		for (j = 0; j < to_do; j++) {
3470 			struct request *rq = p;
3471 
3472 			tags->static_rqs[i] = rq;
3473 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3474 				tags->static_rqs[i] = NULL;
3475 				goto fail;
3476 			}
3477 
3478 			p += rq_size;
3479 			i++;
3480 		}
3481 	}
3482 	return 0;
3483 
3484 fail:
3485 	blk_mq_free_rqs(set, tags, hctx_idx);
3486 	return -ENOMEM;
3487 }
3488 
3489 struct rq_iter_data {
3490 	struct blk_mq_hw_ctx *hctx;
3491 	bool has_rq;
3492 };
3493 
3494 static bool blk_mq_has_request(struct request *rq, void *data)
3495 {
3496 	struct rq_iter_data *iter_data = data;
3497 
3498 	if (rq->mq_hctx != iter_data->hctx)
3499 		return true;
3500 	iter_data->has_rq = true;
3501 	return false;
3502 }
3503 
3504 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3505 {
3506 	struct blk_mq_tags *tags = hctx->sched_tags ?
3507 			hctx->sched_tags : hctx->tags;
3508 	struct rq_iter_data data = {
3509 		.hctx	= hctx,
3510 	};
3511 
3512 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3513 	return data.has_rq;
3514 }
3515 
3516 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3517 		struct blk_mq_hw_ctx *hctx)
3518 {
3519 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3520 		return false;
3521 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3522 		return false;
3523 	return true;
3524 }
3525 
3526 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3527 {
3528 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3529 			struct blk_mq_hw_ctx, cpuhp_online);
3530 
3531 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3532 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3533 		return 0;
3534 
3535 	/*
3536 	 * Prevent new request from being allocated on the current hctx.
3537 	 *
3538 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3539 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3540 	 * seen once we return from the tag allocator.
3541 	 */
3542 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3543 	smp_mb__after_atomic();
3544 
3545 	/*
3546 	 * Try to grab a reference to the queue and wait for any outstanding
3547 	 * requests.  If we could not grab a reference the queue has been
3548 	 * frozen and there are no requests.
3549 	 */
3550 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3551 		while (blk_mq_hctx_has_requests(hctx))
3552 			msleep(5);
3553 		percpu_ref_put(&hctx->queue->q_usage_counter);
3554 	}
3555 
3556 	return 0;
3557 }
3558 
3559 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3560 {
3561 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3562 			struct blk_mq_hw_ctx, cpuhp_online);
3563 
3564 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3565 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3566 	return 0;
3567 }
3568 
3569 /*
3570  * 'cpu' is going away. splice any existing rq_list entries from this
3571  * software queue to the hw queue dispatch list, and ensure that it
3572  * gets run.
3573  */
3574 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3575 {
3576 	struct blk_mq_hw_ctx *hctx;
3577 	struct blk_mq_ctx *ctx;
3578 	LIST_HEAD(tmp);
3579 	enum hctx_type type;
3580 
3581 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3582 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3583 		return 0;
3584 
3585 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3586 	type = hctx->type;
3587 
3588 	spin_lock(&ctx->lock);
3589 	if (!list_empty(&ctx->rq_lists[type])) {
3590 		list_splice_init(&ctx->rq_lists[type], &tmp);
3591 		blk_mq_hctx_clear_pending(hctx, ctx);
3592 	}
3593 	spin_unlock(&ctx->lock);
3594 
3595 	if (list_empty(&tmp))
3596 		return 0;
3597 
3598 	spin_lock(&hctx->lock);
3599 	list_splice_tail_init(&tmp, &hctx->dispatch);
3600 	spin_unlock(&hctx->lock);
3601 
3602 	blk_mq_run_hw_queue(hctx, true);
3603 	return 0;
3604 }
3605 
3606 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3607 {
3608 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3609 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3610 						    &hctx->cpuhp_online);
3611 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3612 					    &hctx->cpuhp_dead);
3613 }
3614 
3615 /*
3616  * Before freeing hw queue, clearing the flush request reference in
3617  * tags->rqs[] for avoiding potential UAF.
3618  */
3619 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3620 		unsigned int queue_depth, struct request *flush_rq)
3621 {
3622 	int i;
3623 	unsigned long flags;
3624 
3625 	/* The hw queue may not be mapped yet */
3626 	if (!tags)
3627 		return;
3628 
3629 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3630 
3631 	for (i = 0; i < queue_depth; i++)
3632 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3633 
3634 	/*
3635 	 * Wait until all pending iteration is done.
3636 	 *
3637 	 * Request reference is cleared and it is guaranteed to be observed
3638 	 * after the ->lock is released.
3639 	 */
3640 	spin_lock_irqsave(&tags->lock, flags);
3641 	spin_unlock_irqrestore(&tags->lock, flags);
3642 }
3643 
3644 /* hctx->ctxs will be freed in queue's release handler */
3645 static void blk_mq_exit_hctx(struct request_queue *q,
3646 		struct blk_mq_tag_set *set,
3647 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3648 {
3649 	struct request *flush_rq = hctx->fq->flush_rq;
3650 
3651 	if (blk_mq_hw_queue_mapped(hctx))
3652 		blk_mq_tag_idle(hctx);
3653 
3654 	if (blk_queue_init_done(q))
3655 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3656 				set->queue_depth, flush_rq);
3657 	if (set->ops->exit_request)
3658 		set->ops->exit_request(set, flush_rq, hctx_idx);
3659 
3660 	if (set->ops->exit_hctx)
3661 		set->ops->exit_hctx(hctx, hctx_idx);
3662 
3663 	blk_mq_remove_cpuhp(hctx);
3664 
3665 	xa_erase(&q->hctx_table, hctx_idx);
3666 
3667 	spin_lock(&q->unused_hctx_lock);
3668 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3669 	spin_unlock(&q->unused_hctx_lock);
3670 }
3671 
3672 static void blk_mq_exit_hw_queues(struct request_queue *q,
3673 		struct blk_mq_tag_set *set, int nr_queue)
3674 {
3675 	struct blk_mq_hw_ctx *hctx;
3676 	unsigned long i;
3677 
3678 	queue_for_each_hw_ctx(q, hctx, i) {
3679 		if (i == nr_queue)
3680 			break;
3681 		blk_mq_exit_hctx(q, set, hctx, i);
3682 	}
3683 }
3684 
3685 static int blk_mq_init_hctx(struct request_queue *q,
3686 		struct blk_mq_tag_set *set,
3687 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3688 {
3689 	hctx->queue_num = hctx_idx;
3690 
3691 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3692 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3693 				&hctx->cpuhp_online);
3694 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3695 
3696 	hctx->tags = set->tags[hctx_idx];
3697 
3698 	if (set->ops->init_hctx &&
3699 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3700 		goto unregister_cpu_notifier;
3701 
3702 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3703 				hctx->numa_node))
3704 		goto exit_hctx;
3705 
3706 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3707 		goto exit_flush_rq;
3708 
3709 	return 0;
3710 
3711  exit_flush_rq:
3712 	if (set->ops->exit_request)
3713 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3714  exit_hctx:
3715 	if (set->ops->exit_hctx)
3716 		set->ops->exit_hctx(hctx, hctx_idx);
3717  unregister_cpu_notifier:
3718 	blk_mq_remove_cpuhp(hctx);
3719 	return -1;
3720 }
3721 
3722 static struct blk_mq_hw_ctx *
3723 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3724 		int node)
3725 {
3726 	struct blk_mq_hw_ctx *hctx;
3727 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3728 
3729 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3730 	if (!hctx)
3731 		goto fail_alloc_hctx;
3732 
3733 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3734 		goto free_hctx;
3735 
3736 	atomic_set(&hctx->nr_active, 0);
3737 	if (node == NUMA_NO_NODE)
3738 		node = set->numa_node;
3739 	hctx->numa_node = node;
3740 
3741 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3742 	spin_lock_init(&hctx->lock);
3743 	INIT_LIST_HEAD(&hctx->dispatch);
3744 	hctx->queue = q;
3745 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3746 
3747 	INIT_LIST_HEAD(&hctx->hctx_list);
3748 
3749 	/*
3750 	 * Allocate space for all possible cpus to avoid allocation at
3751 	 * runtime
3752 	 */
3753 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3754 			gfp, node);
3755 	if (!hctx->ctxs)
3756 		goto free_cpumask;
3757 
3758 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3759 				gfp, node, false, false))
3760 		goto free_ctxs;
3761 	hctx->nr_ctx = 0;
3762 
3763 	spin_lock_init(&hctx->dispatch_wait_lock);
3764 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3765 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3766 
3767 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3768 	if (!hctx->fq)
3769 		goto free_bitmap;
3770 
3771 	blk_mq_hctx_kobj_init(hctx);
3772 
3773 	return hctx;
3774 
3775  free_bitmap:
3776 	sbitmap_free(&hctx->ctx_map);
3777  free_ctxs:
3778 	kfree(hctx->ctxs);
3779  free_cpumask:
3780 	free_cpumask_var(hctx->cpumask);
3781  free_hctx:
3782 	kfree(hctx);
3783  fail_alloc_hctx:
3784 	return NULL;
3785 }
3786 
3787 static void blk_mq_init_cpu_queues(struct request_queue *q,
3788 				   unsigned int nr_hw_queues)
3789 {
3790 	struct blk_mq_tag_set *set = q->tag_set;
3791 	unsigned int i, j;
3792 
3793 	for_each_possible_cpu(i) {
3794 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3795 		struct blk_mq_hw_ctx *hctx;
3796 		int k;
3797 
3798 		__ctx->cpu = i;
3799 		spin_lock_init(&__ctx->lock);
3800 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3801 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3802 
3803 		__ctx->queue = q;
3804 
3805 		/*
3806 		 * Set local node, IFF we have more than one hw queue. If
3807 		 * not, we remain on the home node of the device
3808 		 */
3809 		for (j = 0; j < set->nr_maps; j++) {
3810 			hctx = blk_mq_map_queue_type(q, j, i);
3811 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3812 				hctx->numa_node = cpu_to_node(i);
3813 		}
3814 	}
3815 }
3816 
3817 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3818 					     unsigned int hctx_idx,
3819 					     unsigned int depth)
3820 {
3821 	struct blk_mq_tags *tags;
3822 	int ret;
3823 
3824 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3825 	if (!tags)
3826 		return NULL;
3827 
3828 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3829 	if (ret) {
3830 		blk_mq_free_rq_map(tags);
3831 		return NULL;
3832 	}
3833 
3834 	return tags;
3835 }
3836 
3837 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3838 				       int hctx_idx)
3839 {
3840 	if (blk_mq_is_shared_tags(set->flags)) {
3841 		set->tags[hctx_idx] = set->shared_tags;
3842 
3843 		return true;
3844 	}
3845 
3846 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3847 						       set->queue_depth);
3848 
3849 	return set->tags[hctx_idx];
3850 }
3851 
3852 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3853 			     struct blk_mq_tags *tags,
3854 			     unsigned int hctx_idx)
3855 {
3856 	if (tags) {
3857 		blk_mq_free_rqs(set, tags, hctx_idx);
3858 		blk_mq_free_rq_map(tags);
3859 	}
3860 }
3861 
3862 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3863 				      unsigned int hctx_idx)
3864 {
3865 	if (!blk_mq_is_shared_tags(set->flags))
3866 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3867 
3868 	set->tags[hctx_idx] = NULL;
3869 }
3870 
3871 static void blk_mq_map_swqueue(struct request_queue *q)
3872 {
3873 	unsigned int j, hctx_idx;
3874 	unsigned long i;
3875 	struct blk_mq_hw_ctx *hctx;
3876 	struct blk_mq_ctx *ctx;
3877 	struct blk_mq_tag_set *set = q->tag_set;
3878 
3879 	queue_for_each_hw_ctx(q, hctx, i) {
3880 		cpumask_clear(hctx->cpumask);
3881 		hctx->nr_ctx = 0;
3882 		hctx->dispatch_from = NULL;
3883 	}
3884 
3885 	/*
3886 	 * Map software to hardware queues.
3887 	 *
3888 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3889 	 */
3890 	for_each_possible_cpu(i) {
3891 
3892 		ctx = per_cpu_ptr(q->queue_ctx, i);
3893 		for (j = 0; j < set->nr_maps; j++) {
3894 			if (!set->map[j].nr_queues) {
3895 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3896 						HCTX_TYPE_DEFAULT, i);
3897 				continue;
3898 			}
3899 			hctx_idx = set->map[j].mq_map[i];
3900 			/* unmapped hw queue can be remapped after CPU topo changed */
3901 			if (!set->tags[hctx_idx] &&
3902 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3903 				/*
3904 				 * If tags initialization fail for some hctx,
3905 				 * that hctx won't be brought online.  In this
3906 				 * case, remap the current ctx to hctx[0] which
3907 				 * is guaranteed to always have tags allocated
3908 				 */
3909 				set->map[j].mq_map[i] = 0;
3910 			}
3911 
3912 			hctx = blk_mq_map_queue_type(q, j, i);
3913 			ctx->hctxs[j] = hctx;
3914 			/*
3915 			 * If the CPU is already set in the mask, then we've
3916 			 * mapped this one already. This can happen if
3917 			 * devices share queues across queue maps.
3918 			 */
3919 			if (cpumask_test_cpu(i, hctx->cpumask))
3920 				continue;
3921 
3922 			cpumask_set_cpu(i, hctx->cpumask);
3923 			hctx->type = j;
3924 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3925 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3926 
3927 			/*
3928 			 * If the nr_ctx type overflows, we have exceeded the
3929 			 * amount of sw queues we can support.
3930 			 */
3931 			BUG_ON(!hctx->nr_ctx);
3932 		}
3933 
3934 		for (; j < HCTX_MAX_TYPES; j++)
3935 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3936 					HCTX_TYPE_DEFAULT, i);
3937 	}
3938 
3939 	queue_for_each_hw_ctx(q, hctx, i) {
3940 		/*
3941 		 * If no software queues are mapped to this hardware queue,
3942 		 * disable it and free the request entries.
3943 		 */
3944 		if (!hctx->nr_ctx) {
3945 			/* Never unmap queue 0.  We need it as a
3946 			 * fallback in case of a new remap fails
3947 			 * allocation
3948 			 */
3949 			if (i)
3950 				__blk_mq_free_map_and_rqs(set, i);
3951 
3952 			hctx->tags = NULL;
3953 			continue;
3954 		}
3955 
3956 		hctx->tags = set->tags[i];
3957 		WARN_ON(!hctx->tags);
3958 
3959 		/*
3960 		 * Set the map size to the number of mapped software queues.
3961 		 * This is more accurate and more efficient than looping
3962 		 * over all possibly mapped software queues.
3963 		 */
3964 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3965 
3966 		/*
3967 		 * Initialize batch roundrobin counts
3968 		 */
3969 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3970 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3971 	}
3972 }
3973 
3974 /*
3975  * Caller needs to ensure that we're either frozen/quiesced, or that
3976  * the queue isn't live yet.
3977  */
3978 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3979 {
3980 	struct blk_mq_hw_ctx *hctx;
3981 	unsigned long i;
3982 
3983 	queue_for_each_hw_ctx(q, hctx, i) {
3984 		if (shared) {
3985 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3986 		} else {
3987 			blk_mq_tag_idle(hctx);
3988 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3989 		}
3990 	}
3991 }
3992 
3993 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3994 					 bool shared)
3995 {
3996 	struct request_queue *q;
3997 
3998 	lockdep_assert_held(&set->tag_list_lock);
3999 
4000 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4001 		blk_mq_freeze_queue(q);
4002 		queue_set_hctx_shared(q, shared);
4003 		blk_mq_unfreeze_queue(q);
4004 	}
4005 }
4006 
4007 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4008 {
4009 	struct blk_mq_tag_set *set = q->tag_set;
4010 
4011 	mutex_lock(&set->tag_list_lock);
4012 	list_del(&q->tag_set_list);
4013 	if (list_is_singular(&set->tag_list)) {
4014 		/* just transitioned to unshared */
4015 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4016 		/* update existing queue */
4017 		blk_mq_update_tag_set_shared(set, false);
4018 	}
4019 	mutex_unlock(&set->tag_list_lock);
4020 	INIT_LIST_HEAD(&q->tag_set_list);
4021 }
4022 
4023 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4024 				     struct request_queue *q)
4025 {
4026 	mutex_lock(&set->tag_list_lock);
4027 
4028 	/*
4029 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4030 	 */
4031 	if (!list_empty(&set->tag_list) &&
4032 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4033 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4034 		/* update existing queue */
4035 		blk_mq_update_tag_set_shared(set, true);
4036 	}
4037 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4038 		queue_set_hctx_shared(q, true);
4039 	list_add_tail(&q->tag_set_list, &set->tag_list);
4040 
4041 	mutex_unlock(&set->tag_list_lock);
4042 }
4043 
4044 /* All allocations will be freed in release handler of q->mq_kobj */
4045 static int blk_mq_alloc_ctxs(struct request_queue *q)
4046 {
4047 	struct blk_mq_ctxs *ctxs;
4048 	int cpu;
4049 
4050 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4051 	if (!ctxs)
4052 		return -ENOMEM;
4053 
4054 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4055 	if (!ctxs->queue_ctx)
4056 		goto fail;
4057 
4058 	for_each_possible_cpu(cpu) {
4059 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4060 		ctx->ctxs = ctxs;
4061 	}
4062 
4063 	q->mq_kobj = &ctxs->kobj;
4064 	q->queue_ctx = ctxs->queue_ctx;
4065 
4066 	return 0;
4067  fail:
4068 	kfree(ctxs);
4069 	return -ENOMEM;
4070 }
4071 
4072 /*
4073  * It is the actual release handler for mq, but we do it from
4074  * request queue's release handler for avoiding use-after-free
4075  * and headache because q->mq_kobj shouldn't have been introduced,
4076  * but we can't group ctx/kctx kobj without it.
4077  */
4078 void blk_mq_release(struct request_queue *q)
4079 {
4080 	struct blk_mq_hw_ctx *hctx, *next;
4081 	unsigned long i;
4082 
4083 	queue_for_each_hw_ctx(q, hctx, i)
4084 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4085 
4086 	/* all hctx are in .unused_hctx_list now */
4087 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4088 		list_del_init(&hctx->hctx_list);
4089 		kobject_put(&hctx->kobj);
4090 	}
4091 
4092 	xa_destroy(&q->hctx_table);
4093 
4094 	/*
4095 	 * release .mq_kobj and sw queue's kobject now because
4096 	 * both share lifetime with request queue.
4097 	 */
4098 	blk_mq_sysfs_deinit(q);
4099 }
4100 
4101 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4102 		void *queuedata)
4103 {
4104 	struct request_queue *q;
4105 	int ret;
4106 
4107 	q = blk_alloc_queue(set->numa_node);
4108 	if (!q)
4109 		return ERR_PTR(-ENOMEM);
4110 	q->queuedata = queuedata;
4111 	ret = blk_mq_init_allocated_queue(set, q);
4112 	if (ret) {
4113 		blk_put_queue(q);
4114 		return ERR_PTR(ret);
4115 	}
4116 	return q;
4117 }
4118 
4119 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4120 {
4121 	return blk_mq_init_queue_data(set, NULL);
4122 }
4123 EXPORT_SYMBOL(blk_mq_init_queue);
4124 
4125 /**
4126  * blk_mq_destroy_queue - shutdown a request queue
4127  * @q: request queue to shutdown
4128  *
4129  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4130  * requests will be failed with -ENODEV. The caller is responsible for dropping
4131  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4132  *
4133  * Context: can sleep
4134  */
4135 void blk_mq_destroy_queue(struct request_queue *q)
4136 {
4137 	WARN_ON_ONCE(!queue_is_mq(q));
4138 	WARN_ON_ONCE(blk_queue_registered(q));
4139 
4140 	might_sleep();
4141 
4142 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4143 	blk_queue_start_drain(q);
4144 	blk_mq_freeze_queue_wait(q);
4145 
4146 	blk_sync_queue(q);
4147 	blk_mq_cancel_work_sync(q);
4148 	blk_mq_exit_queue(q);
4149 }
4150 EXPORT_SYMBOL(blk_mq_destroy_queue);
4151 
4152 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4153 		struct lock_class_key *lkclass)
4154 {
4155 	struct request_queue *q;
4156 	struct gendisk *disk;
4157 
4158 	q = blk_mq_init_queue_data(set, queuedata);
4159 	if (IS_ERR(q))
4160 		return ERR_CAST(q);
4161 
4162 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4163 	if (!disk) {
4164 		blk_mq_destroy_queue(q);
4165 		blk_put_queue(q);
4166 		return ERR_PTR(-ENOMEM);
4167 	}
4168 	set_bit(GD_OWNS_QUEUE, &disk->state);
4169 	return disk;
4170 }
4171 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4172 
4173 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4174 		struct lock_class_key *lkclass)
4175 {
4176 	struct gendisk *disk;
4177 
4178 	if (!blk_get_queue(q))
4179 		return NULL;
4180 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4181 	if (!disk)
4182 		blk_put_queue(q);
4183 	return disk;
4184 }
4185 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4186 
4187 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4188 		struct blk_mq_tag_set *set, struct request_queue *q,
4189 		int hctx_idx, int node)
4190 {
4191 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4192 
4193 	/* reuse dead hctx first */
4194 	spin_lock(&q->unused_hctx_lock);
4195 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4196 		if (tmp->numa_node == node) {
4197 			hctx = tmp;
4198 			break;
4199 		}
4200 	}
4201 	if (hctx)
4202 		list_del_init(&hctx->hctx_list);
4203 	spin_unlock(&q->unused_hctx_lock);
4204 
4205 	if (!hctx)
4206 		hctx = blk_mq_alloc_hctx(q, set, node);
4207 	if (!hctx)
4208 		goto fail;
4209 
4210 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4211 		goto free_hctx;
4212 
4213 	return hctx;
4214 
4215  free_hctx:
4216 	kobject_put(&hctx->kobj);
4217  fail:
4218 	return NULL;
4219 }
4220 
4221 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4222 						struct request_queue *q)
4223 {
4224 	struct blk_mq_hw_ctx *hctx;
4225 	unsigned long i, j;
4226 
4227 	/* protect against switching io scheduler  */
4228 	mutex_lock(&q->sysfs_lock);
4229 	for (i = 0; i < set->nr_hw_queues; i++) {
4230 		int old_node;
4231 		int node = blk_mq_get_hctx_node(set, i);
4232 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4233 
4234 		if (old_hctx) {
4235 			old_node = old_hctx->numa_node;
4236 			blk_mq_exit_hctx(q, set, old_hctx, i);
4237 		}
4238 
4239 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4240 			if (!old_hctx)
4241 				break;
4242 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4243 					node, old_node);
4244 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4245 			WARN_ON_ONCE(!hctx);
4246 		}
4247 	}
4248 	/*
4249 	 * Increasing nr_hw_queues fails. Free the newly allocated
4250 	 * hctxs and keep the previous q->nr_hw_queues.
4251 	 */
4252 	if (i != set->nr_hw_queues) {
4253 		j = q->nr_hw_queues;
4254 	} else {
4255 		j = i;
4256 		q->nr_hw_queues = set->nr_hw_queues;
4257 	}
4258 
4259 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4260 		blk_mq_exit_hctx(q, set, hctx, j);
4261 	mutex_unlock(&q->sysfs_lock);
4262 }
4263 
4264 static void blk_mq_update_poll_flag(struct request_queue *q)
4265 {
4266 	struct blk_mq_tag_set *set = q->tag_set;
4267 
4268 	if (set->nr_maps > HCTX_TYPE_POLL &&
4269 	    set->map[HCTX_TYPE_POLL].nr_queues)
4270 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4271 	else
4272 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4273 }
4274 
4275 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4276 		struct request_queue *q)
4277 {
4278 	/* mark the queue as mq asap */
4279 	q->mq_ops = set->ops;
4280 
4281 	if (blk_mq_alloc_ctxs(q))
4282 		goto err_exit;
4283 
4284 	/* init q->mq_kobj and sw queues' kobjects */
4285 	blk_mq_sysfs_init(q);
4286 
4287 	INIT_LIST_HEAD(&q->unused_hctx_list);
4288 	spin_lock_init(&q->unused_hctx_lock);
4289 
4290 	xa_init(&q->hctx_table);
4291 
4292 	blk_mq_realloc_hw_ctxs(set, q);
4293 	if (!q->nr_hw_queues)
4294 		goto err_hctxs;
4295 
4296 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4297 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4298 
4299 	q->tag_set = set;
4300 
4301 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4302 	blk_mq_update_poll_flag(q);
4303 
4304 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4305 	INIT_LIST_HEAD(&q->flush_list);
4306 	INIT_LIST_HEAD(&q->requeue_list);
4307 	spin_lock_init(&q->requeue_lock);
4308 
4309 	q->nr_requests = set->queue_depth;
4310 
4311 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4312 	blk_mq_add_queue_tag_set(set, q);
4313 	blk_mq_map_swqueue(q);
4314 	return 0;
4315 
4316 err_hctxs:
4317 	blk_mq_release(q);
4318 err_exit:
4319 	q->mq_ops = NULL;
4320 	return -ENOMEM;
4321 }
4322 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4323 
4324 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4325 void blk_mq_exit_queue(struct request_queue *q)
4326 {
4327 	struct blk_mq_tag_set *set = q->tag_set;
4328 
4329 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4330 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4331 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4332 	blk_mq_del_queue_tag_set(q);
4333 }
4334 
4335 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4336 {
4337 	int i;
4338 
4339 	if (blk_mq_is_shared_tags(set->flags)) {
4340 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4341 						BLK_MQ_NO_HCTX_IDX,
4342 						set->queue_depth);
4343 		if (!set->shared_tags)
4344 			return -ENOMEM;
4345 	}
4346 
4347 	for (i = 0; i < set->nr_hw_queues; i++) {
4348 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4349 			goto out_unwind;
4350 		cond_resched();
4351 	}
4352 
4353 	return 0;
4354 
4355 out_unwind:
4356 	while (--i >= 0)
4357 		__blk_mq_free_map_and_rqs(set, i);
4358 
4359 	if (blk_mq_is_shared_tags(set->flags)) {
4360 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4361 					BLK_MQ_NO_HCTX_IDX);
4362 	}
4363 
4364 	return -ENOMEM;
4365 }
4366 
4367 /*
4368  * Allocate the request maps associated with this tag_set. Note that this
4369  * may reduce the depth asked for, if memory is tight. set->queue_depth
4370  * will be updated to reflect the allocated depth.
4371  */
4372 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4373 {
4374 	unsigned int depth;
4375 	int err;
4376 
4377 	depth = set->queue_depth;
4378 	do {
4379 		err = __blk_mq_alloc_rq_maps(set);
4380 		if (!err)
4381 			break;
4382 
4383 		set->queue_depth >>= 1;
4384 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4385 			err = -ENOMEM;
4386 			break;
4387 		}
4388 	} while (set->queue_depth);
4389 
4390 	if (!set->queue_depth || err) {
4391 		pr_err("blk-mq: failed to allocate request map\n");
4392 		return -ENOMEM;
4393 	}
4394 
4395 	if (depth != set->queue_depth)
4396 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4397 						depth, set->queue_depth);
4398 
4399 	return 0;
4400 }
4401 
4402 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4403 {
4404 	/*
4405 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4406 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4407 	 * number of hardware queues.
4408 	 */
4409 	if (set->nr_maps == 1)
4410 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4411 
4412 	if (set->ops->map_queues && !is_kdump_kernel()) {
4413 		int i;
4414 
4415 		/*
4416 		 * transport .map_queues is usually done in the following
4417 		 * way:
4418 		 *
4419 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4420 		 * 	mask = get_cpu_mask(queue)
4421 		 * 	for_each_cpu(cpu, mask)
4422 		 * 		set->map[x].mq_map[cpu] = queue;
4423 		 * }
4424 		 *
4425 		 * When we need to remap, the table has to be cleared for
4426 		 * killing stale mapping since one CPU may not be mapped
4427 		 * to any hw queue.
4428 		 */
4429 		for (i = 0; i < set->nr_maps; i++)
4430 			blk_mq_clear_mq_map(&set->map[i]);
4431 
4432 		set->ops->map_queues(set);
4433 	} else {
4434 		BUG_ON(set->nr_maps > 1);
4435 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4436 	}
4437 }
4438 
4439 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4440 				       int new_nr_hw_queues)
4441 {
4442 	struct blk_mq_tags **new_tags;
4443 	int i;
4444 
4445 	if (set->nr_hw_queues >= new_nr_hw_queues)
4446 		goto done;
4447 
4448 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4449 				GFP_KERNEL, set->numa_node);
4450 	if (!new_tags)
4451 		return -ENOMEM;
4452 
4453 	if (set->tags)
4454 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4455 		       sizeof(*set->tags));
4456 	kfree(set->tags);
4457 	set->tags = new_tags;
4458 
4459 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4460 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4461 			while (--i >= set->nr_hw_queues)
4462 				__blk_mq_free_map_and_rqs(set, i);
4463 			return -ENOMEM;
4464 		}
4465 		cond_resched();
4466 	}
4467 
4468 done:
4469 	set->nr_hw_queues = new_nr_hw_queues;
4470 	return 0;
4471 }
4472 
4473 /*
4474  * Alloc a tag set to be associated with one or more request queues.
4475  * May fail with EINVAL for various error conditions. May adjust the
4476  * requested depth down, if it's too large. In that case, the set
4477  * value will be stored in set->queue_depth.
4478  */
4479 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4480 {
4481 	int i, ret;
4482 
4483 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4484 
4485 	if (!set->nr_hw_queues)
4486 		return -EINVAL;
4487 	if (!set->queue_depth)
4488 		return -EINVAL;
4489 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4490 		return -EINVAL;
4491 
4492 	if (!set->ops->queue_rq)
4493 		return -EINVAL;
4494 
4495 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4496 		return -EINVAL;
4497 
4498 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4499 		pr_info("blk-mq: reduced tag depth to %u\n",
4500 			BLK_MQ_MAX_DEPTH);
4501 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4502 	}
4503 
4504 	if (!set->nr_maps)
4505 		set->nr_maps = 1;
4506 	else if (set->nr_maps > HCTX_MAX_TYPES)
4507 		return -EINVAL;
4508 
4509 	/*
4510 	 * If a crashdump is active, then we are potentially in a very
4511 	 * memory constrained environment. Limit us to 1 queue and
4512 	 * 64 tags to prevent using too much memory.
4513 	 */
4514 	if (is_kdump_kernel()) {
4515 		set->nr_hw_queues = 1;
4516 		set->nr_maps = 1;
4517 		set->queue_depth = min(64U, set->queue_depth);
4518 	}
4519 	/*
4520 	 * There is no use for more h/w queues than cpus if we just have
4521 	 * a single map
4522 	 */
4523 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4524 		set->nr_hw_queues = nr_cpu_ids;
4525 
4526 	if (set->flags & BLK_MQ_F_BLOCKING) {
4527 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4528 		if (!set->srcu)
4529 			return -ENOMEM;
4530 		ret = init_srcu_struct(set->srcu);
4531 		if (ret)
4532 			goto out_free_srcu;
4533 	}
4534 
4535 	ret = -ENOMEM;
4536 	set->tags = kcalloc_node(set->nr_hw_queues,
4537 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4538 				 set->numa_node);
4539 	if (!set->tags)
4540 		goto out_cleanup_srcu;
4541 
4542 	for (i = 0; i < set->nr_maps; i++) {
4543 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4544 						  sizeof(set->map[i].mq_map[0]),
4545 						  GFP_KERNEL, set->numa_node);
4546 		if (!set->map[i].mq_map)
4547 			goto out_free_mq_map;
4548 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4549 	}
4550 
4551 	blk_mq_update_queue_map(set);
4552 
4553 	ret = blk_mq_alloc_set_map_and_rqs(set);
4554 	if (ret)
4555 		goto out_free_mq_map;
4556 
4557 	mutex_init(&set->tag_list_lock);
4558 	INIT_LIST_HEAD(&set->tag_list);
4559 
4560 	return 0;
4561 
4562 out_free_mq_map:
4563 	for (i = 0; i < set->nr_maps; i++) {
4564 		kfree(set->map[i].mq_map);
4565 		set->map[i].mq_map = NULL;
4566 	}
4567 	kfree(set->tags);
4568 	set->tags = NULL;
4569 out_cleanup_srcu:
4570 	if (set->flags & BLK_MQ_F_BLOCKING)
4571 		cleanup_srcu_struct(set->srcu);
4572 out_free_srcu:
4573 	if (set->flags & BLK_MQ_F_BLOCKING)
4574 		kfree(set->srcu);
4575 	return ret;
4576 }
4577 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4578 
4579 /* allocate and initialize a tagset for a simple single-queue device */
4580 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4581 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4582 		unsigned int set_flags)
4583 {
4584 	memset(set, 0, sizeof(*set));
4585 	set->ops = ops;
4586 	set->nr_hw_queues = 1;
4587 	set->nr_maps = 1;
4588 	set->queue_depth = queue_depth;
4589 	set->numa_node = NUMA_NO_NODE;
4590 	set->flags = set_flags;
4591 	return blk_mq_alloc_tag_set(set);
4592 }
4593 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4594 
4595 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4596 {
4597 	int i, j;
4598 
4599 	for (i = 0; i < set->nr_hw_queues; i++)
4600 		__blk_mq_free_map_and_rqs(set, i);
4601 
4602 	if (blk_mq_is_shared_tags(set->flags)) {
4603 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4604 					BLK_MQ_NO_HCTX_IDX);
4605 	}
4606 
4607 	for (j = 0; j < set->nr_maps; j++) {
4608 		kfree(set->map[j].mq_map);
4609 		set->map[j].mq_map = NULL;
4610 	}
4611 
4612 	kfree(set->tags);
4613 	set->tags = NULL;
4614 	if (set->flags & BLK_MQ_F_BLOCKING) {
4615 		cleanup_srcu_struct(set->srcu);
4616 		kfree(set->srcu);
4617 	}
4618 }
4619 EXPORT_SYMBOL(blk_mq_free_tag_set);
4620 
4621 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4622 {
4623 	struct blk_mq_tag_set *set = q->tag_set;
4624 	struct blk_mq_hw_ctx *hctx;
4625 	int ret;
4626 	unsigned long i;
4627 
4628 	if (!set)
4629 		return -EINVAL;
4630 
4631 	if (q->nr_requests == nr)
4632 		return 0;
4633 
4634 	blk_mq_freeze_queue(q);
4635 	blk_mq_quiesce_queue(q);
4636 
4637 	ret = 0;
4638 	queue_for_each_hw_ctx(q, hctx, i) {
4639 		if (!hctx->tags)
4640 			continue;
4641 		/*
4642 		 * If we're using an MQ scheduler, just update the scheduler
4643 		 * queue depth. This is similar to what the old code would do.
4644 		 */
4645 		if (hctx->sched_tags) {
4646 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4647 						      nr, true);
4648 		} else {
4649 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4650 						      false);
4651 		}
4652 		if (ret)
4653 			break;
4654 		if (q->elevator && q->elevator->type->ops.depth_updated)
4655 			q->elevator->type->ops.depth_updated(hctx);
4656 	}
4657 	if (!ret) {
4658 		q->nr_requests = nr;
4659 		if (blk_mq_is_shared_tags(set->flags)) {
4660 			if (q->elevator)
4661 				blk_mq_tag_update_sched_shared_tags(q);
4662 			else
4663 				blk_mq_tag_resize_shared_tags(set, nr);
4664 		}
4665 	}
4666 
4667 	blk_mq_unquiesce_queue(q);
4668 	blk_mq_unfreeze_queue(q);
4669 
4670 	return ret;
4671 }
4672 
4673 /*
4674  * request_queue and elevator_type pair.
4675  * It is just used by __blk_mq_update_nr_hw_queues to cache
4676  * the elevator_type associated with a request_queue.
4677  */
4678 struct blk_mq_qe_pair {
4679 	struct list_head node;
4680 	struct request_queue *q;
4681 	struct elevator_type *type;
4682 };
4683 
4684 /*
4685  * Cache the elevator_type in qe pair list and switch the
4686  * io scheduler to 'none'
4687  */
4688 static bool blk_mq_elv_switch_none(struct list_head *head,
4689 		struct request_queue *q)
4690 {
4691 	struct blk_mq_qe_pair *qe;
4692 
4693 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4694 	if (!qe)
4695 		return false;
4696 
4697 	/* q->elevator needs protection from ->sysfs_lock */
4698 	mutex_lock(&q->sysfs_lock);
4699 
4700 	/* the check has to be done with holding sysfs_lock */
4701 	if (!q->elevator) {
4702 		kfree(qe);
4703 		goto unlock;
4704 	}
4705 
4706 	INIT_LIST_HEAD(&qe->node);
4707 	qe->q = q;
4708 	qe->type = q->elevator->type;
4709 	/* keep a reference to the elevator module as we'll switch back */
4710 	__elevator_get(qe->type);
4711 	list_add(&qe->node, head);
4712 	elevator_disable(q);
4713 unlock:
4714 	mutex_unlock(&q->sysfs_lock);
4715 
4716 	return true;
4717 }
4718 
4719 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4720 						struct request_queue *q)
4721 {
4722 	struct blk_mq_qe_pair *qe;
4723 
4724 	list_for_each_entry(qe, head, node)
4725 		if (qe->q == q)
4726 			return qe;
4727 
4728 	return NULL;
4729 }
4730 
4731 static void blk_mq_elv_switch_back(struct list_head *head,
4732 				  struct request_queue *q)
4733 {
4734 	struct blk_mq_qe_pair *qe;
4735 	struct elevator_type *t;
4736 
4737 	qe = blk_lookup_qe_pair(head, q);
4738 	if (!qe)
4739 		return;
4740 	t = qe->type;
4741 	list_del(&qe->node);
4742 	kfree(qe);
4743 
4744 	mutex_lock(&q->sysfs_lock);
4745 	elevator_switch(q, t);
4746 	/* drop the reference acquired in blk_mq_elv_switch_none */
4747 	elevator_put(t);
4748 	mutex_unlock(&q->sysfs_lock);
4749 }
4750 
4751 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4752 							int nr_hw_queues)
4753 {
4754 	struct request_queue *q;
4755 	LIST_HEAD(head);
4756 	int prev_nr_hw_queues = set->nr_hw_queues;
4757 	int i;
4758 
4759 	lockdep_assert_held(&set->tag_list_lock);
4760 
4761 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4762 		nr_hw_queues = nr_cpu_ids;
4763 	if (nr_hw_queues < 1)
4764 		return;
4765 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4766 		return;
4767 
4768 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4769 		blk_mq_freeze_queue(q);
4770 	/*
4771 	 * Switch IO scheduler to 'none', cleaning up the data associated
4772 	 * with the previous scheduler. We will switch back once we are done
4773 	 * updating the new sw to hw queue mappings.
4774 	 */
4775 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4776 		if (!blk_mq_elv_switch_none(&head, q))
4777 			goto switch_back;
4778 
4779 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4780 		blk_mq_debugfs_unregister_hctxs(q);
4781 		blk_mq_sysfs_unregister_hctxs(q);
4782 	}
4783 
4784 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4785 		goto reregister;
4786 
4787 fallback:
4788 	blk_mq_update_queue_map(set);
4789 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4790 		blk_mq_realloc_hw_ctxs(set, q);
4791 		blk_mq_update_poll_flag(q);
4792 		if (q->nr_hw_queues != set->nr_hw_queues) {
4793 			int i = prev_nr_hw_queues;
4794 
4795 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4796 					nr_hw_queues, prev_nr_hw_queues);
4797 			for (; i < set->nr_hw_queues; i++)
4798 				__blk_mq_free_map_and_rqs(set, i);
4799 
4800 			set->nr_hw_queues = prev_nr_hw_queues;
4801 			goto fallback;
4802 		}
4803 		blk_mq_map_swqueue(q);
4804 	}
4805 
4806 reregister:
4807 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4808 		blk_mq_sysfs_register_hctxs(q);
4809 		blk_mq_debugfs_register_hctxs(q);
4810 	}
4811 
4812 switch_back:
4813 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4814 		blk_mq_elv_switch_back(&head, q);
4815 
4816 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4817 		blk_mq_unfreeze_queue(q);
4818 
4819 	/* Free the excess tags when nr_hw_queues shrink. */
4820 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4821 		__blk_mq_free_map_and_rqs(set, i);
4822 }
4823 
4824 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4825 {
4826 	mutex_lock(&set->tag_list_lock);
4827 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4828 	mutex_unlock(&set->tag_list_lock);
4829 }
4830 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4831 
4832 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4833 			 struct io_comp_batch *iob, unsigned int flags)
4834 {
4835 	long state = get_current_state();
4836 	int ret;
4837 
4838 	do {
4839 		ret = q->mq_ops->poll(hctx, iob);
4840 		if (ret > 0) {
4841 			__set_current_state(TASK_RUNNING);
4842 			return ret;
4843 		}
4844 
4845 		if (signal_pending_state(state, current))
4846 			__set_current_state(TASK_RUNNING);
4847 		if (task_is_running(current))
4848 			return 1;
4849 
4850 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4851 			break;
4852 		cpu_relax();
4853 	} while (!need_resched());
4854 
4855 	__set_current_state(TASK_RUNNING);
4856 	return 0;
4857 }
4858 
4859 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4860 		struct io_comp_batch *iob, unsigned int flags)
4861 {
4862 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4863 
4864 	return blk_hctx_poll(q, hctx, iob, flags);
4865 }
4866 
4867 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4868 		unsigned int poll_flags)
4869 {
4870 	struct request_queue *q = rq->q;
4871 	int ret;
4872 
4873 	if (!blk_rq_is_poll(rq))
4874 		return 0;
4875 	if (!percpu_ref_tryget(&q->q_usage_counter))
4876 		return 0;
4877 
4878 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4879 	blk_queue_exit(q);
4880 
4881 	return ret;
4882 }
4883 EXPORT_SYMBOL_GPL(blk_rq_poll);
4884 
4885 unsigned int blk_mq_rq_cpu(struct request *rq)
4886 {
4887 	return rq->mq_ctx->cpu;
4888 }
4889 EXPORT_SYMBOL(blk_mq_rq_cpu);
4890 
4891 void blk_mq_cancel_work_sync(struct request_queue *q)
4892 {
4893 	struct blk_mq_hw_ctx *hctx;
4894 	unsigned long i;
4895 
4896 	cancel_delayed_work_sync(&q->requeue_work);
4897 
4898 	queue_for_each_hw_ctx(q, hctx, i)
4899 		cancel_delayed_work_sync(&hctx->run_work);
4900 }
4901 
4902 static int __init blk_mq_init(void)
4903 {
4904 	int i;
4905 
4906 	for_each_possible_cpu(i)
4907 		init_llist_head(&per_cpu(blk_cpu_done, i));
4908 	for_each_possible_cpu(i)
4909 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4910 			 __blk_mq_complete_request_remote, NULL);
4911 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4912 
4913 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4914 				  "block/softirq:dead", NULL,
4915 				  blk_softirq_cpu_dead);
4916 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4917 				blk_mq_hctx_notify_dead);
4918 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4919 				blk_mq_hctx_notify_online,
4920 				blk_mq_hctx_notify_offline);
4921 	return 0;
4922 }
4923 subsys_initcall(blk_mq_init);
4924