xref: /openbmc/linux/block/blk-mq.c (revision 47edc84f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PM)
298 		rq->rq_flags |= RQF_PM;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    e->type->ops.limit_depth &&
370 		    !(data->flags & BLK_MQ_REQ_RESERVED))
371 			e->type->ops.limit_depth(data->cmd_flags, data);
372 	}
373 
374 retry:
375 	data->ctx = blk_mq_get_ctx(q);
376 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377 	if (!e)
378 		blk_mq_tag_busy(data->hctx);
379 
380 	/*
381 	 * Waiting allocations only fail because of an inactive hctx.  In that
382 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
383 	 * should have migrated us to an online CPU by now.
384 	 */
385 	tag = blk_mq_get_tag(data);
386 	if (tag == BLK_MQ_NO_TAG) {
387 		if (data->flags & BLK_MQ_REQ_NOWAIT)
388 			return NULL;
389 
390 		/*
391 		 * Give up the CPU and sleep for a random short time to ensure
392 		 * that thread using a realtime scheduling class are migrated
393 		 * off the CPU, and thus off the hctx that is going away.
394 		 */
395 		msleep(3);
396 		goto retry;
397 	}
398 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400 
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402 		blk_mq_req_flags_t flags)
403 {
404 	struct blk_mq_alloc_data data = {
405 		.q		= q,
406 		.flags		= flags,
407 		.cmd_flags	= op,
408 	};
409 	struct request *rq;
410 	int ret;
411 
412 	ret = blk_queue_enter(q, flags);
413 	if (ret)
414 		return ERR_PTR(ret);
415 
416 	rq = __blk_mq_alloc_request(&data);
417 	if (!rq)
418 		goto out_queue_exit;
419 	rq->__data_len = 0;
420 	rq->__sector = (sector_t) -1;
421 	rq->bio = rq->biotail = NULL;
422 	return rq;
423 out_queue_exit:
424 	blk_queue_exit(q);
425 	return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428 
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432 	struct blk_mq_alloc_data data = {
433 		.q		= q,
434 		.flags		= flags,
435 		.cmd_flags	= op,
436 	};
437 	u64 alloc_time_ns = 0;
438 	unsigned int cpu;
439 	unsigned int tag;
440 	int ret;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = ktime_get_ns();
445 
446 	/*
447 	 * If the tag allocator sleeps we could get an allocation for a
448 	 * different hardware context.  No need to complicate the low level
449 	 * allocator for this for the rare use case of a command tied to
450 	 * a specific queue.
451 	 */
452 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453 		return ERR_PTR(-EINVAL);
454 
455 	if (hctx_idx >= q->nr_hw_queues)
456 		return ERR_PTR(-EIO);
457 
458 	ret = blk_queue_enter(q, flags);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 	/*
463 	 * Check if the hardware context is actually mapped to anything.
464 	 * If not tell the caller that it should skip this queue.
465 	 */
466 	ret = -EXDEV;
467 	data.hctx = q->queue_hw_ctx[hctx_idx];
468 	if (!blk_mq_hw_queue_mapped(data.hctx))
469 		goto out_queue_exit;
470 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471 	data.ctx = __blk_mq_get_ctx(q, cpu);
472 
473 	if (!q->elevator)
474 		blk_mq_tag_busy(data.hctx);
475 
476 	ret = -EWOULDBLOCK;
477 	tag = blk_mq_get_tag(&data);
478 	if (tag == BLK_MQ_NO_TAG)
479 		goto out_queue_exit;
480 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481 
482 out_queue_exit:
483 	blk_queue_exit(q);
484 	return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487 
488 static void __blk_mq_free_request(struct request *rq)
489 {
490 	struct request_queue *q = rq->q;
491 	struct blk_mq_ctx *ctx = rq->mq_ctx;
492 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 	const int sched_tag = rq->internal_tag;
494 
495 	blk_crypto_free_request(rq);
496 	blk_pm_mark_last_busy(rq);
497 	rq->mq_hctx = NULL;
498 	if (rq->tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500 	if (sched_tag != BLK_MQ_NO_TAG)
501 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502 	blk_mq_sched_restart(hctx);
503 	blk_queue_exit(q);
504 }
505 
506 void blk_mq_free_request(struct request *rq)
507 {
508 	struct request_queue *q = rq->q;
509 	struct elevator_queue *e = q->elevator;
510 	struct blk_mq_ctx *ctx = rq->mq_ctx;
511 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512 
513 	if (rq->rq_flags & RQF_ELVPRIV) {
514 		if (e && e->type->ops.finish_request)
515 			e->type->ops.finish_request(rq);
516 		if (rq->elv.icq) {
517 			put_io_context(rq->elv.icq->ioc);
518 			rq->elv.icq = NULL;
519 		}
520 	}
521 
522 	ctx->rq_completed[rq_is_sync(rq)]++;
523 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
524 		__blk_mq_dec_active_requests(hctx);
525 
526 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527 		laptop_io_completion(q->backing_dev_info);
528 
529 	rq_qos_done(q, rq);
530 
531 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532 	if (refcount_dec_and_test(&rq->ref))
533 		__blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536 
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539 	u64 now = 0;
540 
541 	if (blk_mq_need_time_stamp(rq))
542 		now = ktime_get_ns();
543 
544 	if (rq->rq_flags & RQF_STATS) {
545 		blk_mq_poll_stats_start(rq->q);
546 		blk_stat_add(rq, now);
547 	}
548 
549 	blk_mq_sched_completed_request(rq, now);
550 
551 	blk_account_io_done(rq, now);
552 
553 	if (rq->end_io) {
554 		rq_qos_done(rq->q, rq);
555 		rq->end_io(rq, error);
556 	} else {
557 		blk_mq_free_request(rq);
558 	}
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561 
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 		BUG();
566 	__blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569 
570 static void blk_complete_reqs(struct llist_head *list)
571 {
572 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
573 	struct request *rq, *next;
574 
575 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
576 		rq->q->mq_ops->complete(rq);
577 }
578 
579 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
580 {
581 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
582 }
583 
584 static int blk_softirq_cpu_dead(unsigned int cpu)
585 {
586 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
587 	return 0;
588 }
589 
590 static void __blk_mq_complete_request_remote(void *data)
591 {
592 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
593 }
594 
595 static inline bool blk_mq_complete_need_ipi(struct request *rq)
596 {
597 	int cpu = raw_smp_processor_id();
598 
599 	if (!IS_ENABLED(CONFIG_SMP) ||
600 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
601 		return false;
602 	/*
603 	 * With force threaded interrupts enabled, raising softirq from an SMP
604 	 * function call will always result in waking the ksoftirqd thread.
605 	 * This is probably worse than completing the request on a different
606 	 * cache domain.
607 	 */
608 	if (force_irqthreads)
609 		return false;
610 
611 	/* same CPU or cache domain?  Complete locally */
612 	if (cpu == rq->mq_ctx->cpu ||
613 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
614 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
615 		return false;
616 
617 	/* don't try to IPI to an offline CPU */
618 	return cpu_online(rq->mq_ctx->cpu);
619 }
620 
621 static void blk_mq_complete_send_ipi(struct request *rq)
622 {
623 	struct llist_head *list;
624 	unsigned int cpu;
625 
626 	cpu = rq->mq_ctx->cpu;
627 	list = &per_cpu(blk_cpu_done, cpu);
628 	if (llist_add(&rq->ipi_list, list)) {
629 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
630 		smp_call_function_single_async(cpu, &rq->csd);
631 	}
632 }
633 
634 static void blk_mq_raise_softirq(struct request *rq)
635 {
636 	struct llist_head *list;
637 
638 	preempt_disable();
639 	list = this_cpu_ptr(&blk_cpu_done);
640 	if (llist_add(&rq->ipi_list, list))
641 		raise_softirq(BLOCK_SOFTIRQ);
642 	preempt_enable();
643 }
644 
645 bool blk_mq_complete_request_remote(struct request *rq)
646 {
647 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
648 
649 	/*
650 	 * For a polled request, always complete locallly, it's pointless
651 	 * to redirect the completion.
652 	 */
653 	if (rq->cmd_flags & REQ_HIPRI)
654 		return false;
655 
656 	if (blk_mq_complete_need_ipi(rq)) {
657 		blk_mq_complete_send_ipi(rq);
658 		return true;
659 	}
660 
661 	if (rq->q->nr_hw_queues == 1) {
662 		blk_mq_raise_softirq(rq);
663 		return true;
664 	}
665 	return false;
666 }
667 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
668 
669 /**
670  * blk_mq_complete_request - end I/O on a request
671  * @rq:		the request being processed
672  *
673  * Description:
674  *	Complete a request by scheduling the ->complete_rq operation.
675  **/
676 void blk_mq_complete_request(struct request *rq)
677 {
678 	if (!blk_mq_complete_request_remote(rq))
679 		rq->q->mq_ops->complete(rq);
680 }
681 EXPORT_SYMBOL(blk_mq_complete_request);
682 
683 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
684 	__releases(hctx->srcu)
685 {
686 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
687 		rcu_read_unlock();
688 	else
689 		srcu_read_unlock(hctx->srcu, srcu_idx);
690 }
691 
692 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
693 	__acquires(hctx->srcu)
694 {
695 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
696 		/* shut up gcc false positive */
697 		*srcu_idx = 0;
698 		rcu_read_lock();
699 	} else
700 		*srcu_idx = srcu_read_lock(hctx->srcu);
701 }
702 
703 /**
704  * blk_mq_start_request - Start processing a request
705  * @rq: Pointer to request to be started
706  *
707  * Function used by device drivers to notify the block layer that a request
708  * is going to be processed now, so blk layer can do proper initializations
709  * such as starting the timeout timer.
710  */
711 void blk_mq_start_request(struct request *rq)
712 {
713 	struct request_queue *q = rq->q;
714 
715 	trace_block_rq_issue(rq);
716 
717 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
718 		rq->io_start_time_ns = ktime_get_ns();
719 		rq->stats_sectors = blk_rq_sectors(rq);
720 		rq->rq_flags |= RQF_STATS;
721 		rq_qos_issue(q, rq);
722 	}
723 
724 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
725 
726 	blk_add_timer(rq);
727 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
728 
729 #ifdef CONFIG_BLK_DEV_INTEGRITY
730 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
731 		q->integrity.profile->prepare_fn(rq);
732 #endif
733 }
734 EXPORT_SYMBOL(blk_mq_start_request);
735 
736 static void __blk_mq_requeue_request(struct request *rq)
737 {
738 	struct request_queue *q = rq->q;
739 
740 	blk_mq_put_driver_tag(rq);
741 
742 	trace_block_rq_requeue(rq);
743 	rq_qos_requeue(q, rq);
744 
745 	if (blk_mq_request_started(rq)) {
746 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
747 		rq->rq_flags &= ~RQF_TIMED_OUT;
748 	}
749 }
750 
751 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
752 {
753 	__blk_mq_requeue_request(rq);
754 
755 	/* this request will be re-inserted to io scheduler queue */
756 	blk_mq_sched_requeue_request(rq);
757 
758 	BUG_ON(!list_empty(&rq->queuelist));
759 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
760 }
761 EXPORT_SYMBOL(blk_mq_requeue_request);
762 
763 static void blk_mq_requeue_work(struct work_struct *work)
764 {
765 	struct request_queue *q =
766 		container_of(work, struct request_queue, requeue_work.work);
767 	LIST_HEAD(rq_list);
768 	struct request *rq, *next;
769 
770 	spin_lock_irq(&q->requeue_lock);
771 	list_splice_init(&q->requeue_list, &rq_list);
772 	spin_unlock_irq(&q->requeue_lock);
773 
774 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
775 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
776 			continue;
777 
778 		rq->rq_flags &= ~RQF_SOFTBARRIER;
779 		list_del_init(&rq->queuelist);
780 		/*
781 		 * If RQF_DONTPREP, rq has contained some driver specific
782 		 * data, so insert it to hctx dispatch list to avoid any
783 		 * merge.
784 		 */
785 		if (rq->rq_flags & RQF_DONTPREP)
786 			blk_mq_request_bypass_insert(rq, false, false);
787 		else
788 			blk_mq_sched_insert_request(rq, true, false, false);
789 	}
790 
791 	while (!list_empty(&rq_list)) {
792 		rq = list_entry(rq_list.next, struct request, queuelist);
793 		list_del_init(&rq->queuelist);
794 		blk_mq_sched_insert_request(rq, false, false, false);
795 	}
796 
797 	blk_mq_run_hw_queues(q, false);
798 }
799 
800 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
801 				bool kick_requeue_list)
802 {
803 	struct request_queue *q = rq->q;
804 	unsigned long flags;
805 
806 	/*
807 	 * We abuse this flag that is otherwise used by the I/O scheduler to
808 	 * request head insertion from the workqueue.
809 	 */
810 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
811 
812 	spin_lock_irqsave(&q->requeue_lock, flags);
813 	if (at_head) {
814 		rq->rq_flags |= RQF_SOFTBARRIER;
815 		list_add(&rq->queuelist, &q->requeue_list);
816 	} else {
817 		list_add_tail(&rq->queuelist, &q->requeue_list);
818 	}
819 	spin_unlock_irqrestore(&q->requeue_lock, flags);
820 
821 	if (kick_requeue_list)
822 		blk_mq_kick_requeue_list(q);
823 }
824 
825 void blk_mq_kick_requeue_list(struct request_queue *q)
826 {
827 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
828 }
829 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
830 
831 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
832 				    unsigned long msecs)
833 {
834 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
835 				    msecs_to_jiffies(msecs));
836 }
837 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
838 
839 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
840 {
841 	if (tag < tags->nr_tags) {
842 		prefetch(tags->rqs[tag]);
843 		return tags->rqs[tag];
844 	}
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(blk_mq_tag_to_rq);
849 
850 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
851 			       void *priv, bool reserved)
852 {
853 	/*
854 	 * If we find a request that isn't idle and the queue matches,
855 	 * we know the queue is busy. Return false to stop the iteration.
856 	 */
857 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
858 		bool *busy = priv;
859 
860 		*busy = true;
861 		return false;
862 	}
863 
864 	return true;
865 }
866 
867 bool blk_mq_queue_inflight(struct request_queue *q)
868 {
869 	bool busy = false;
870 
871 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
872 	return busy;
873 }
874 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
875 
876 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
877 {
878 	req->rq_flags |= RQF_TIMED_OUT;
879 	if (req->q->mq_ops->timeout) {
880 		enum blk_eh_timer_return ret;
881 
882 		ret = req->q->mq_ops->timeout(req, reserved);
883 		if (ret == BLK_EH_DONE)
884 			return;
885 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
886 	}
887 
888 	blk_add_timer(req);
889 }
890 
891 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
892 {
893 	unsigned long deadline;
894 
895 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
896 		return false;
897 	if (rq->rq_flags & RQF_TIMED_OUT)
898 		return false;
899 
900 	deadline = READ_ONCE(rq->deadline);
901 	if (time_after_eq(jiffies, deadline))
902 		return true;
903 
904 	if (*next == 0)
905 		*next = deadline;
906 	else if (time_after(*next, deadline))
907 		*next = deadline;
908 	return false;
909 }
910 
911 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
912 		struct request *rq, void *priv, bool reserved)
913 {
914 	unsigned long *next = priv;
915 
916 	/*
917 	 * Just do a quick check if it is expired before locking the request in
918 	 * so we're not unnecessarilly synchronizing across CPUs.
919 	 */
920 	if (!blk_mq_req_expired(rq, next))
921 		return true;
922 
923 	/*
924 	 * We have reason to believe the request may be expired. Take a
925 	 * reference on the request to lock this request lifetime into its
926 	 * currently allocated context to prevent it from being reallocated in
927 	 * the event the completion by-passes this timeout handler.
928 	 *
929 	 * If the reference was already released, then the driver beat the
930 	 * timeout handler to posting a natural completion.
931 	 */
932 	if (!refcount_inc_not_zero(&rq->ref))
933 		return true;
934 
935 	/*
936 	 * The request is now locked and cannot be reallocated underneath the
937 	 * timeout handler's processing. Re-verify this exact request is truly
938 	 * expired; if it is not expired, then the request was completed and
939 	 * reallocated as a new request.
940 	 */
941 	if (blk_mq_req_expired(rq, next))
942 		blk_mq_rq_timed_out(rq, reserved);
943 
944 	if (is_flush_rq(rq, hctx))
945 		rq->end_io(rq, 0);
946 	else if (refcount_dec_and_test(&rq->ref))
947 		__blk_mq_free_request(rq);
948 
949 	return true;
950 }
951 
952 static void blk_mq_timeout_work(struct work_struct *work)
953 {
954 	struct request_queue *q =
955 		container_of(work, struct request_queue, timeout_work);
956 	unsigned long next = 0;
957 	struct blk_mq_hw_ctx *hctx;
958 	int i;
959 
960 	/* A deadlock might occur if a request is stuck requiring a
961 	 * timeout at the same time a queue freeze is waiting
962 	 * completion, since the timeout code would not be able to
963 	 * acquire the queue reference here.
964 	 *
965 	 * That's why we don't use blk_queue_enter here; instead, we use
966 	 * percpu_ref_tryget directly, because we need to be able to
967 	 * obtain a reference even in the short window between the queue
968 	 * starting to freeze, by dropping the first reference in
969 	 * blk_freeze_queue_start, and the moment the last request is
970 	 * consumed, marked by the instant q_usage_counter reaches
971 	 * zero.
972 	 */
973 	if (!percpu_ref_tryget(&q->q_usage_counter))
974 		return;
975 
976 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
977 
978 	if (next != 0) {
979 		mod_timer(&q->timeout, next);
980 	} else {
981 		/*
982 		 * Request timeouts are handled as a forward rolling timer. If
983 		 * we end up here it means that no requests are pending and
984 		 * also that no request has been pending for a while. Mark
985 		 * each hctx as idle.
986 		 */
987 		queue_for_each_hw_ctx(q, hctx, i) {
988 			/* the hctx may be unmapped, so check it here */
989 			if (blk_mq_hw_queue_mapped(hctx))
990 				blk_mq_tag_idle(hctx);
991 		}
992 	}
993 	blk_queue_exit(q);
994 }
995 
996 struct flush_busy_ctx_data {
997 	struct blk_mq_hw_ctx *hctx;
998 	struct list_head *list;
999 };
1000 
1001 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1002 {
1003 	struct flush_busy_ctx_data *flush_data = data;
1004 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1005 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1006 	enum hctx_type type = hctx->type;
1007 
1008 	spin_lock(&ctx->lock);
1009 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1010 	sbitmap_clear_bit(sb, bitnr);
1011 	spin_unlock(&ctx->lock);
1012 	return true;
1013 }
1014 
1015 /*
1016  * Process software queues that have been marked busy, splicing them
1017  * to the for-dispatch
1018  */
1019 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1020 {
1021 	struct flush_busy_ctx_data data = {
1022 		.hctx = hctx,
1023 		.list = list,
1024 	};
1025 
1026 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1027 }
1028 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1029 
1030 struct dispatch_rq_data {
1031 	struct blk_mq_hw_ctx *hctx;
1032 	struct request *rq;
1033 };
1034 
1035 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1036 		void *data)
1037 {
1038 	struct dispatch_rq_data *dispatch_data = data;
1039 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1040 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1041 	enum hctx_type type = hctx->type;
1042 
1043 	spin_lock(&ctx->lock);
1044 	if (!list_empty(&ctx->rq_lists[type])) {
1045 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1046 		list_del_init(&dispatch_data->rq->queuelist);
1047 		if (list_empty(&ctx->rq_lists[type]))
1048 			sbitmap_clear_bit(sb, bitnr);
1049 	}
1050 	spin_unlock(&ctx->lock);
1051 
1052 	return !dispatch_data->rq;
1053 }
1054 
1055 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1056 					struct blk_mq_ctx *start)
1057 {
1058 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1059 	struct dispatch_rq_data data = {
1060 		.hctx = hctx,
1061 		.rq   = NULL,
1062 	};
1063 
1064 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1065 			       dispatch_rq_from_ctx, &data);
1066 
1067 	return data.rq;
1068 }
1069 
1070 static inline unsigned int queued_to_index(unsigned int queued)
1071 {
1072 	if (!queued)
1073 		return 0;
1074 
1075 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1076 }
1077 
1078 static bool __blk_mq_get_driver_tag(struct request *rq)
1079 {
1080 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1081 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1082 	int tag;
1083 
1084 	blk_mq_tag_busy(rq->mq_hctx);
1085 
1086 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1087 		bt = rq->mq_hctx->tags->breserved_tags;
1088 		tag_offset = 0;
1089 	} else {
1090 		if (!hctx_may_queue(rq->mq_hctx, bt))
1091 			return false;
1092 	}
1093 
1094 	tag = __sbitmap_queue_get(bt);
1095 	if (tag == BLK_MQ_NO_TAG)
1096 		return false;
1097 
1098 	rq->tag = tag + tag_offset;
1099 	return true;
1100 }
1101 
1102 static bool blk_mq_get_driver_tag(struct request *rq)
1103 {
1104 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1105 
1106 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1107 		return false;
1108 
1109 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1110 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1111 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1112 		__blk_mq_inc_active_requests(hctx);
1113 	}
1114 	hctx->tags->rqs[rq->tag] = rq;
1115 	return true;
1116 }
1117 
1118 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1119 				int flags, void *key)
1120 {
1121 	struct blk_mq_hw_ctx *hctx;
1122 
1123 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1124 
1125 	spin_lock(&hctx->dispatch_wait_lock);
1126 	if (!list_empty(&wait->entry)) {
1127 		struct sbitmap_queue *sbq;
1128 
1129 		list_del_init(&wait->entry);
1130 		sbq = hctx->tags->bitmap_tags;
1131 		atomic_dec(&sbq->ws_active);
1132 	}
1133 	spin_unlock(&hctx->dispatch_wait_lock);
1134 
1135 	blk_mq_run_hw_queue(hctx, true);
1136 	return 1;
1137 }
1138 
1139 /*
1140  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1141  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1142  * restart. For both cases, take care to check the condition again after
1143  * marking us as waiting.
1144  */
1145 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1146 				 struct request *rq)
1147 {
1148 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1149 	struct wait_queue_head *wq;
1150 	wait_queue_entry_t *wait;
1151 	bool ret;
1152 
1153 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1154 		blk_mq_sched_mark_restart_hctx(hctx);
1155 
1156 		/*
1157 		 * It's possible that a tag was freed in the window between the
1158 		 * allocation failure and adding the hardware queue to the wait
1159 		 * queue.
1160 		 *
1161 		 * Don't clear RESTART here, someone else could have set it.
1162 		 * At most this will cost an extra queue run.
1163 		 */
1164 		return blk_mq_get_driver_tag(rq);
1165 	}
1166 
1167 	wait = &hctx->dispatch_wait;
1168 	if (!list_empty_careful(&wait->entry))
1169 		return false;
1170 
1171 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1172 
1173 	spin_lock_irq(&wq->lock);
1174 	spin_lock(&hctx->dispatch_wait_lock);
1175 	if (!list_empty(&wait->entry)) {
1176 		spin_unlock(&hctx->dispatch_wait_lock);
1177 		spin_unlock_irq(&wq->lock);
1178 		return false;
1179 	}
1180 
1181 	atomic_inc(&sbq->ws_active);
1182 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1183 	__add_wait_queue(wq, wait);
1184 
1185 	/*
1186 	 * It's possible that a tag was freed in the window between the
1187 	 * allocation failure and adding the hardware queue to the wait
1188 	 * queue.
1189 	 */
1190 	ret = blk_mq_get_driver_tag(rq);
1191 	if (!ret) {
1192 		spin_unlock(&hctx->dispatch_wait_lock);
1193 		spin_unlock_irq(&wq->lock);
1194 		return false;
1195 	}
1196 
1197 	/*
1198 	 * We got a tag, remove ourselves from the wait queue to ensure
1199 	 * someone else gets the wakeup.
1200 	 */
1201 	list_del_init(&wait->entry);
1202 	atomic_dec(&sbq->ws_active);
1203 	spin_unlock(&hctx->dispatch_wait_lock);
1204 	spin_unlock_irq(&wq->lock);
1205 
1206 	return true;
1207 }
1208 
1209 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1211 /*
1212  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1213  * - EWMA is one simple way to compute running average value
1214  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1215  * - take 4 as factor for avoiding to get too small(0) result, and this
1216  *   factor doesn't matter because EWMA decreases exponentially
1217  */
1218 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1219 {
1220 	unsigned int ewma;
1221 
1222 	if (hctx->queue->elevator)
1223 		return;
1224 
1225 	ewma = hctx->dispatch_busy;
1226 
1227 	if (!ewma && !busy)
1228 		return;
1229 
1230 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1231 	if (busy)
1232 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1233 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1234 
1235 	hctx->dispatch_busy = ewma;
1236 }
1237 
1238 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1239 
1240 static void blk_mq_handle_dev_resource(struct request *rq,
1241 				       struct list_head *list)
1242 {
1243 	struct request *next =
1244 		list_first_entry_or_null(list, struct request, queuelist);
1245 
1246 	/*
1247 	 * If an I/O scheduler has been configured and we got a driver tag for
1248 	 * the next request already, free it.
1249 	 */
1250 	if (next)
1251 		blk_mq_put_driver_tag(next);
1252 
1253 	list_add(&rq->queuelist, list);
1254 	__blk_mq_requeue_request(rq);
1255 }
1256 
1257 static void blk_mq_handle_zone_resource(struct request *rq,
1258 					struct list_head *zone_list)
1259 {
1260 	/*
1261 	 * If we end up here it is because we cannot dispatch a request to a
1262 	 * specific zone due to LLD level zone-write locking or other zone
1263 	 * related resource not being available. In this case, set the request
1264 	 * aside in zone_list for retrying it later.
1265 	 */
1266 	list_add(&rq->queuelist, zone_list);
1267 	__blk_mq_requeue_request(rq);
1268 }
1269 
1270 enum prep_dispatch {
1271 	PREP_DISPATCH_OK,
1272 	PREP_DISPATCH_NO_TAG,
1273 	PREP_DISPATCH_NO_BUDGET,
1274 };
1275 
1276 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1277 						  bool need_budget)
1278 {
1279 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1280 	int budget_token = -1;
1281 
1282 	if (need_budget) {
1283 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1284 		if (budget_token < 0) {
1285 			blk_mq_put_driver_tag(rq);
1286 			return PREP_DISPATCH_NO_BUDGET;
1287 		}
1288 		blk_mq_set_rq_budget_token(rq, budget_token);
1289 	}
1290 
1291 	if (!blk_mq_get_driver_tag(rq)) {
1292 		/*
1293 		 * The initial allocation attempt failed, so we need to
1294 		 * rerun the hardware queue when a tag is freed. The
1295 		 * waitqueue takes care of that. If the queue is run
1296 		 * before we add this entry back on the dispatch list,
1297 		 * we'll re-run it below.
1298 		 */
1299 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1300 			/*
1301 			 * All budgets not got from this function will be put
1302 			 * together during handling partial dispatch
1303 			 */
1304 			if (need_budget)
1305 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1306 			return PREP_DISPATCH_NO_TAG;
1307 		}
1308 	}
1309 
1310 	return PREP_DISPATCH_OK;
1311 }
1312 
1313 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1314 static void blk_mq_release_budgets(struct request_queue *q,
1315 		struct list_head *list)
1316 {
1317 	struct request *rq;
1318 
1319 	list_for_each_entry(rq, list, queuelist) {
1320 		int budget_token = blk_mq_get_rq_budget_token(rq);
1321 
1322 		if (budget_token >= 0)
1323 			blk_mq_put_dispatch_budget(q, budget_token);
1324 	}
1325 }
1326 
1327 /*
1328  * Returns true if we did some work AND can potentially do more.
1329  */
1330 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1331 			     unsigned int nr_budgets)
1332 {
1333 	enum prep_dispatch prep;
1334 	struct request_queue *q = hctx->queue;
1335 	struct request *rq, *nxt;
1336 	int errors, queued;
1337 	blk_status_t ret = BLK_STS_OK;
1338 	LIST_HEAD(zone_list);
1339 
1340 	if (list_empty(list))
1341 		return false;
1342 
1343 	/*
1344 	 * Now process all the entries, sending them to the driver.
1345 	 */
1346 	errors = queued = 0;
1347 	do {
1348 		struct blk_mq_queue_data bd;
1349 
1350 		rq = list_first_entry(list, struct request, queuelist);
1351 
1352 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1353 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1354 		if (prep != PREP_DISPATCH_OK)
1355 			break;
1356 
1357 		list_del_init(&rq->queuelist);
1358 
1359 		bd.rq = rq;
1360 
1361 		/*
1362 		 * Flag last if we have no more requests, or if we have more
1363 		 * but can't assign a driver tag to it.
1364 		 */
1365 		if (list_empty(list))
1366 			bd.last = true;
1367 		else {
1368 			nxt = list_first_entry(list, struct request, queuelist);
1369 			bd.last = !blk_mq_get_driver_tag(nxt);
1370 		}
1371 
1372 		/*
1373 		 * once the request is queued to lld, no need to cover the
1374 		 * budget any more
1375 		 */
1376 		if (nr_budgets)
1377 			nr_budgets--;
1378 		ret = q->mq_ops->queue_rq(hctx, &bd);
1379 		switch (ret) {
1380 		case BLK_STS_OK:
1381 			queued++;
1382 			break;
1383 		case BLK_STS_RESOURCE:
1384 		case BLK_STS_DEV_RESOURCE:
1385 			blk_mq_handle_dev_resource(rq, list);
1386 			goto out;
1387 		case BLK_STS_ZONE_RESOURCE:
1388 			/*
1389 			 * Move the request to zone_list and keep going through
1390 			 * the dispatch list to find more requests the drive can
1391 			 * accept.
1392 			 */
1393 			blk_mq_handle_zone_resource(rq, &zone_list);
1394 			break;
1395 		default:
1396 			errors++;
1397 			blk_mq_end_request(rq, ret);
1398 		}
1399 	} while (!list_empty(list));
1400 out:
1401 	if (!list_empty(&zone_list))
1402 		list_splice_tail_init(&zone_list, list);
1403 
1404 	hctx->dispatched[queued_to_index(queued)]++;
1405 
1406 	/* If we didn't flush the entire list, we could have told the driver
1407 	 * there was more coming, but that turned out to be a lie.
1408 	 */
1409 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1410 		q->mq_ops->commit_rqs(hctx);
1411 	/*
1412 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1413 	 * that is where we will continue on next queue run.
1414 	 */
1415 	if (!list_empty(list)) {
1416 		bool needs_restart;
1417 		/* For non-shared tags, the RESTART check will suffice */
1418 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1419 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1420 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1421 
1422 		if (nr_budgets)
1423 			blk_mq_release_budgets(q, list);
1424 
1425 		spin_lock(&hctx->lock);
1426 		list_splice_tail_init(list, &hctx->dispatch);
1427 		spin_unlock(&hctx->lock);
1428 
1429 		/*
1430 		 * Order adding requests to hctx->dispatch and checking
1431 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1432 		 * in blk_mq_sched_restart(). Avoid restart code path to
1433 		 * miss the new added requests to hctx->dispatch, meantime
1434 		 * SCHED_RESTART is observed here.
1435 		 */
1436 		smp_mb();
1437 
1438 		/*
1439 		 * If SCHED_RESTART was set by the caller of this function and
1440 		 * it is no longer set that means that it was cleared by another
1441 		 * thread and hence that a queue rerun is needed.
1442 		 *
1443 		 * If 'no_tag' is set, that means that we failed getting
1444 		 * a driver tag with an I/O scheduler attached. If our dispatch
1445 		 * waitqueue is no longer active, ensure that we run the queue
1446 		 * AFTER adding our entries back to the list.
1447 		 *
1448 		 * If no I/O scheduler has been configured it is possible that
1449 		 * the hardware queue got stopped and restarted before requests
1450 		 * were pushed back onto the dispatch list. Rerun the queue to
1451 		 * avoid starvation. Notes:
1452 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1453 		 *   been stopped before rerunning a queue.
1454 		 * - Some but not all block drivers stop a queue before
1455 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1456 		 *   and dm-rq.
1457 		 *
1458 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1459 		 * bit is set, run queue after a delay to avoid IO stalls
1460 		 * that could otherwise occur if the queue is idle.  We'll do
1461 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1462 		 */
1463 		needs_restart = blk_mq_sched_needs_restart(hctx);
1464 		if (!needs_restart ||
1465 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1466 			blk_mq_run_hw_queue(hctx, true);
1467 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1468 					   no_budget_avail))
1469 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1470 
1471 		blk_mq_update_dispatch_busy(hctx, true);
1472 		return false;
1473 	} else
1474 		blk_mq_update_dispatch_busy(hctx, false);
1475 
1476 	return (queued + errors) != 0;
1477 }
1478 
1479 /**
1480  * __blk_mq_run_hw_queue - Run a hardware queue.
1481  * @hctx: Pointer to the hardware queue to run.
1482  *
1483  * Send pending requests to the hardware.
1484  */
1485 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1486 {
1487 	int srcu_idx;
1488 
1489 	/*
1490 	 * We can't run the queue inline with ints disabled. Ensure that
1491 	 * we catch bad users of this early.
1492 	 */
1493 	WARN_ON_ONCE(in_interrupt());
1494 
1495 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1496 
1497 	hctx_lock(hctx, &srcu_idx);
1498 	blk_mq_sched_dispatch_requests(hctx);
1499 	hctx_unlock(hctx, srcu_idx);
1500 }
1501 
1502 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1503 {
1504 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1505 
1506 	if (cpu >= nr_cpu_ids)
1507 		cpu = cpumask_first(hctx->cpumask);
1508 	return cpu;
1509 }
1510 
1511 /*
1512  * It'd be great if the workqueue API had a way to pass
1513  * in a mask and had some smarts for more clever placement.
1514  * For now we just round-robin here, switching for every
1515  * BLK_MQ_CPU_WORK_BATCH queued items.
1516  */
1517 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1518 {
1519 	bool tried = false;
1520 	int next_cpu = hctx->next_cpu;
1521 
1522 	if (hctx->queue->nr_hw_queues == 1)
1523 		return WORK_CPU_UNBOUND;
1524 
1525 	if (--hctx->next_cpu_batch <= 0) {
1526 select_cpu:
1527 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1528 				cpu_online_mask);
1529 		if (next_cpu >= nr_cpu_ids)
1530 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1531 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1532 	}
1533 
1534 	/*
1535 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1536 	 * and it should only happen in the path of handling CPU DEAD.
1537 	 */
1538 	if (!cpu_online(next_cpu)) {
1539 		if (!tried) {
1540 			tried = true;
1541 			goto select_cpu;
1542 		}
1543 
1544 		/*
1545 		 * Make sure to re-select CPU next time once after CPUs
1546 		 * in hctx->cpumask become online again.
1547 		 */
1548 		hctx->next_cpu = next_cpu;
1549 		hctx->next_cpu_batch = 1;
1550 		return WORK_CPU_UNBOUND;
1551 	}
1552 
1553 	hctx->next_cpu = next_cpu;
1554 	return next_cpu;
1555 }
1556 
1557 /**
1558  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1559  * @hctx: Pointer to the hardware queue to run.
1560  * @async: If we want to run the queue asynchronously.
1561  * @msecs: Milliseconds of delay to wait before running the queue.
1562  *
1563  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1564  * with a delay of @msecs.
1565  */
1566 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1567 					unsigned long msecs)
1568 {
1569 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1570 		return;
1571 
1572 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1573 		int cpu = get_cpu();
1574 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1575 			__blk_mq_run_hw_queue(hctx);
1576 			put_cpu();
1577 			return;
1578 		}
1579 
1580 		put_cpu();
1581 	}
1582 
1583 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1584 				    msecs_to_jiffies(msecs));
1585 }
1586 
1587 /**
1588  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1589  * @hctx: Pointer to the hardware queue to run.
1590  * @msecs: Milliseconds of delay to wait before running the queue.
1591  *
1592  * Run a hardware queue asynchronously with a delay of @msecs.
1593  */
1594 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1595 {
1596 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1597 }
1598 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1599 
1600 /**
1601  * blk_mq_run_hw_queue - Start to run a hardware queue.
1602  * @hctx: Pointer to the hardware queue to run.
1603  * @async: If we want to run the queue asynchronously.
1604  *
1605  * Check if the request queue is not in a quiesced state and if there are
1606  * pending requests to be sent. If this is true, run the queue to send requests
1607  * to hardware.
1608  */
1609 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1610 {
1611 	int srcu_idx;
1612 	bool need_run;
1613 
1614 	/*
1615 	 * When queue is quiesced, we may be switching io scheduler, or
1616 	 * updating nr_hw_queues, or other things, and we can't run queue
1617 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1618 	 *
1619 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1620 	 * quiesced.
1621 	 */
1622 	hctx_lock(hctx, &srcu_idx);
1623 	need_run = !blk_queue_quiesced(hctx->queue) &&
1624 		blk_mq_hctx_has_pending(hctx);
1625 	hctx_unlock(hctx, srcu_idx);
1626 
1627 	if (need_run)
1628 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1629 }
1630 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1631 
1632 /*
1633  * Is the request queue handled by an IO scheduler that does not respect
1634  * hardware queues when dispatching?
1635  */
1636 static bool blk_mq_has_sqsched(struct request_queue *q)
1637 {
1638 	struct elevator_queue *e = q->elevator;
1639 
1640 	if (e && e->type->ops.dispatch_request &&
1641 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1642 		return true;
1643 	return false;
1644 }
1645 
1646 /*
1647  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1648  * scheduler.
1649  */
1650 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1651 {
1652 	struct blk_mq_hw_ctx *hctx;
1653 
1654 	/*
1655 	 * If the IO scheduler does not respect hardware queues when
1656 	 * dispatching, we just don't bother with multiple HW queues and
1657 	 * dispatch from hctx for the current CPU since running multiple queues
1658 	 * just causes lock contention inside the scheduler and pointless cache
1659 	 * bouncing.
1660 	 */
1661 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1662 				     raw_smp_processor_id());
1663 	if (!blk_mq_hctx_stopped(hctx))
1664 		return hctx;
1665 	return NULL;
1666 }
1667 
1668 /**
1669  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1670  * @q: Pointer to the request queue to run.
1671  * @async: If we want to run the queue asynchronously.
1672  */
1673 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1674 {
1675 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1676 	int i;
1677 
1678 	sq_hctx = NULL;
1679 	if (blk_mq_has_sqsched(q))
1680 		sq_hctx = blk_mq_get_sq_hctx(q);
1681 	queue_for_each_hw_ctx(q, hctx, i) {
1682 		if (blk_mq_hctx_stopped(hctx))
1683 			continue;
1684 		/*
1685 		 * Dispatch from this hctx either if there's no hctx preferred
1686 		 * by IO scheduler or if it has requests that bypass the
1687 		 * scheduler.
1688 		 */
1689 		if (!sq_hctx || sq_hctx == hctx ||
1690 		    !list_empty_careful(&hctx->dispatch))
1691 			blk_mq_run_hw_queue(hctx, async);
1692 	}
1693 }
1694 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1695 
1696 /**
1697  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1698  * @q: Pointer to the request queue to run.
1699  * @msecs: Milliseconds of delay to wait before running the queues.
1700  */
1701 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1702 {
1703 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1704 	int i;
1705 
1706 	sq_hctx = NULL;
1707 	if (blk_mq_has_sqsched(q))
1708 		sq_hctx = blk_mq_get_sq_hctx(q);
1709 	queue_for_each_hw_ctx(q, hctx, i) {
1710 		if (blk_mq_hctx_stopped(hctx))
1711 			continue;
1712 		/*
1713 		 * Dispatch from this hctx either if there's no hctx preferred
1714 		 * by IO scheduler or if it has requests that bypass the
1715 		 * scheduler.
1716 		 */
1717 		if (!sq_hctx || sq_hctx == hctx ||
1718 		    !list_empty_careful(&hctx->dispatch))
1719 			blk_mq_delay_run_hw_queue(hctx, msecs);
1720 	}
1721 }
1722 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1723 
1724 /**
1725  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1726  * @q: request queue.
1727  *
1728  * The caller is responsible for serializing this function against
1729  * blk_mq_{start,stop}_hw_queue().
1730  */
1731 bool blk_mq_queue_stopped(struct request_queue *q)
1732 {
1733 	struct blk_mq_hw_ctx *hctx;
1734 	int i;
1735 
1736 	queue_for_each_hw_ctx(q, hctx, i)
1737 		if (blk_mq_hctx_stopped(hctx))
1738 			return true;
1739 
1740 	return false;
1741 }
1742 EXPORT_SYMBOL(blk_mq_queue_stopped);
1743 
1744 /*
1745  * This function is often used for pausing .queue_rq() by driver when
1746  * there isn't enough resource or some conditions aren't satisfied, and
1747  * BLK_STS_RESOURCE is usually returned.
1748  *
1749  * We do not guarantee that dispatch can be drained or blocked
1750  * after blk_mq_stop_hw_queue() returns. Please use
1751  * blk_mq_quiesce_queue() for that requirement.
1752  */
1753 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1754 {
1755 	cancel_delayed_work(&hctx->run_work);
1756 
1757 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1758 }
1759 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1760 
1761 /*
1762  * This function is often used for pausing .queue_rq() by driver when
1763  * there isn't enough resource or some conditions aren't satisfied, and
1764  * BLK_STS_RESOURCE is usually returned.
1765  *
1766  * We do not guarantee that dispatch can be drained or blocked
1767  * after blk_mq_stop_hw_queues() returns. Please use
1768  * blk_mq_quiesce_queue() for that requirement.
1769  */
1770 void blk_mq_stop_hw_queues(struct request_queue *q)
1771 {
1772 	struct blk_mq_hw_ctx *hctx;
1773 	int i;
1774 
1775 	queue_for_each_hw_ctx(q, hctx, i)
1776 		blk_mq_stop_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1779 
1780 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1781 {
1782 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1783 
1784 	blk_mq_run_hw_queue(hctx, false);
1785 }
1786 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1787 
1788 void blk_mq_start_hw_queues(struct request_queue *q)
1789 {
1790 	struct blk_mq_hw_ctx *hctx;
1791 	int i;
1792 
1793 	queue_for_each_hw_ctx(q, hctx, i)
1794 		blk_mq_start_hw_queue(hctx);
1795 }
1796 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1797 
1798 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1799 {
1800 	if (!blk_mq_hctx_stopped(hctx))
1801 		return;
1802 
1803 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1804 	blk_mq_run_hw_queue(hctx, async);
1805 }
1806 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1807 
1808 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1809 {
1810 	struct blk_mq_hw_ctx *hctx;
1811 	int i;
1812 
1813 	queue_for_each_hw_ctx(q, hctx, i)
1814 		blk_mq_start_stopped_hw_queue(hctx, async);
1815 }
1816 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1817 
1818 static void blk_mq_run_work_fn(struct work_struct *work)
1819 {
1820 	struct blk_mq_hw_ctx *hctx;
1821 
1822 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1823 
1824 	/*
1825 	 * If we are stopped, don't run the queue.
1826 	 */
1827 	if (blk_mq_hctx_stopped(hctx))
1828 		return;
1829 
1830 	__blk_mq_run_hw_queue(hctx);
1831 }
1832 
1833 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1834 					    struct request *rq,
1835 					    bool at_head)
1836 {
1837 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1838 	enum hctx_type type = hctx->type;
1839 
1840 	lockdep_assert_held(&ctx->lock);
1841 
1842 	trace_block_rq_insert(rq);
1843 
1844 	if (at_head)
1845 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1846 	else
1847 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1848 }
1849 
1850 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1851 			     bool at_head)
1852 {
1853 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1854 
1855 	lockdep_assert_held(&ctx->lock);
1856 
1857 	__blk_mq_insert_req_list(hctx, rq, at_head);
1858 	blk_mq_hctx_mark_pending(hctx, ctx);
1859 }
1860 
1861 /**
1862  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1863  * @rq: Pointer to request to be inserted.
1864  * @at_head: true if the request should be inserted at the head of the list.
1865  * @run_queue: If we should run the hardware queue after inserting the request.
1866  *
1867  * Should only be used carefully, when the caller knows we want to
1868  * bypass a potential IO scheduler on the target device.
1869  */
1870 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1871 				  bool run_queue)
1872 {
1873 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1874 
1875 	spin_lock(&hctx->lock);
1876 	if (at_head)
1877 		list_add(&rq->queuelist, &hctx->dispatch);
1878 	else
1879 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1880 	spin_unlock(&hctx->lock);
1881 
1882 	if (run_queue)
1883 		blk_mq_run_hw_queue(hctx, false);
1884 }
1885 
1886 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1887 			    struct list_head *list)
1888 
1889 {
1890 	struct request *rq;
1891 	enum hctx_type type = hctx->type;
1892 
1893 	/*
1894 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1895 	 * offline now
1896 	 */
1897 	list_for_each_entry(rq, list, queuelist) {
1898 		BUG_ON(rq->mq_ctx != ctx);
1899 		trace_block_rq_insert(rq);
1900 	}
1901 
1902 	spin_lock(&ctx->lock);
1903 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1904 	blk_mq_hctx_mark_pending(hctx, ctx);
1905 	spin_unlock(&ctx->lock);
1906 }
1907 
1908 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1909 {
1910 	struct request *rqa = container_of(a, struct request, queuelist);
1911 	struct request *rqb = container_of(b, struct request, queuelist);
1912 
1913 	if (rqa->mq_ctx != rqb->mq_ctx)
1914 		return rqa->mq_ctx > rqb->mq_ctx;
1915 	if (rqa->mq_hctx != rqb->mq_hctx)
1916 		return rqa->mq_hctx > rqb->mq_hctx;
1917 
1918 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1919 }
1920 
1921 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1922 {
1923 	LIST_HEAD(list);
1924 
1925 	if (list_empty(&plug->mq_list))
1926 		return;
1927 	list_splice_init(&plug->mq_list, &list);
1928 
1929 	if (plug->rq_count > 2 && plug->multiple_queues)
1930 		list_sort(NULL, &list, plug_rq_cmp);
1931 
1932 	plug->rq_count = 0;
1933 
1934 	do {
1935 		struct list_head rq_list;
1936 		struct request *rq, *head_rq = list_entry_rq(list.next);
1937 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1938 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1939 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1940 		unsigned int depth = 1;
1941 
1942 		list_for_each_continue(pos, &list) {
1943 			rq = list_entry_rq(pos);
1944 			BUG_ON(!rq->q);
1945 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1946 				break;
1947 			depth++;
1948 		}
1949 
1950 		list_cut_before(&rq_list, &list, pos);
1951 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1952 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1953 						from_schedule);
1954 	} while(!list_empty(&list));
1955 }
1956 
1957 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1958 		unsigned int nr_segs)
1959 {
1960 	int err;
1961 
1962 	if (bio->bi_opf & REQ_RAHEAD)
1963 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1964 
1965 	rq->__sector = bio->bi_iter.bi_sector;
1966 	rq->write_hint = bio->bi_write_hint;
1967 	blk_rq_bio_prep(rq, bio, nr_segs);
1968 
1969 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1970 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1971 	WARN_ON_ONCE(err);
1972 
1973 	blk_account_io_start(rq);
1974 }
1975 
1976 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1977 					    struct request *rq,
1978 					    blk_qc_t *cookie, bool last)
1979 {
1980 	struct request_queue *q = rq->q;
1981 	struct blk_mq_queue_data bd = {
1982 		.rq = rq,
1983 		.last = last,
1984 	};
1985 	blk_qc_t new_cookie;
1986 	blk_status_t ret;
1987 
1988 	new_cookie = request_to_qc_t(hctx, rq);
1989 
1990 	/*
1991 	 * For OK queue, we are done. For error, caller may kill it.
1992 	 * Any other error (busy), just add it to our list as we
1993 	 * previously would have done.
1994 	 */
1995 	ret = q->mq_ops->queue_rq(hctx, &bd);
1996 	switch (ret) {
1997 	case BLK_STS_OK:
1998 		blk_mq_update_dispatch_busy(hctx, false);
1999 		*cookie = new_cookie;
2000 		break;
2001 	case BLK_STS_RESOURCE:
2002 	case BLK_STS_DEV_RESOURCE:
2003 		blk_mq_update_dispatch_busy(hctx, true);
2004 		__blk_mq_requeue_request(rq);
2005 		break;
2006 	default:
2007 		blk_mq_update_dispatch_busy(hctx, false);
2008 		*cookie = BLK_QC_T_NONE;
2009 		break;
2010 	}
2011 
2012 	return ret;
2013 }
2014 
2015 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2016 						struct request *rq,
2017 						blk_qc_t *cookie,
2018 						bool bypass_insert, bool last)
2019 {
2020 	struct request_queue *q = rq->q;
2021 	bool run_queue = true;
2022 	int budget_token;
2023 
2024 	/*
2025 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2026 	 *
2027 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2028 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2029 	 * and avoid driver to try to dispatch again.
2030 	 */
2031 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2032 		run_queue = false;
2033 		bypass_insert = false;
2034 		goto insert;
2035 	}
2036 
2037 	if (q->elevator && !bypass_insert)
2038 		goto insert;
2039 
2040 	budget_token = blk_mq_get_dispatch_budget(q);
2041 	if (budget_token < 0)
2042 		goto insert;
2043 
2044 	blk_mq_set_rq_budget_token(rq, budget_token);
2045 
2046 	if (!blk_mq_get_driver_tag(rq)) {
2047 		blk_mq_put_dispatch_budget(q, budget_token);
2048 		goto insert;
2049 	}
2050 
2051 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2052 insert:
2053 	if (bypass_insert)
2054 		return BLK_STS_RESOURCE;
2055 
2056 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2057 
2058 	return BLK_STS_OK;
2059 }
2060 
2061 /**
2062  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2063  * @hctx: Pointer of the associated hardware queue.
2064  * @rq: Pointer to request to be sent.
2065  * @cookie: Request queue cookie.
2066  *
2067  * If the device has enough resources to accept a new request now, send the
2068  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2069  * we can try send it another time in the future. Requests inserted at this
2070  * queue have higher priority.
2071  */
2072 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2073 		struct request *rq, blk_qc_t *cookie)
2074 {
2075 	blk_status_t ret;
2076 	int srcu_idx;
2077 
2078 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2079 
2080 	hctx_lock(hctx, &srcu_idx);
2081 
2082 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2083 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2084 		blk_mq_request_bypass_insert(rq, false, true);
2085 	else if (ret != BLK_STS_OK)
2086 		blk_mq_end_request(rq, ret);
2087 
2088 	hctx_unlock(hctx, srcu_idx);
2089 }
2090 
2091 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2092 {
2093 	blk_status_t ret;
2094 	int srcu_idx;
2095 	blk_qc_t unused_cookie;
2096 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2097 
2098 	hctx_lock(hctx, &srcu_idx);
2099 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2100 	hctx_unlock(hctx, srcu_idx);
2101 
2102 	return ret;
2103 }
2104 
2105 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2106 		struct list_head *list)
2107 {
2108 	int queued = 0;
2109 	int errors = 0;
2110 
2111 	while (!list_empty(list)) {
2112 		blk_status_t ret;
2113 		struct request *rq = list_first_entry(list, struct request,
2114 				queuelist);
2115 
2116 		list_del_init(&rq->queuelist);
2117 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2118 		if (ret != BLK_STS_OK) {
2119 			if (ret == BLK_STS_RESOURCE ||
2120 					ret == BLK_STS_DEV_RESOURCE) {
2121 				blk_mq_request_bypass_insert(rq, false,
2122 							list_empty(list));
2123 				break;
2124 			}
2125 			blk_mq_end_request(rq, ret);
2126 			errors++;
2127 		} else
2128 			queued++;
2129 	}
2130 
2131 	/*
2132 	 * If we didn't flush the entire list, we could have told
2133 	 * the driver there was more coming, but that turned out to
2134 	 * be a lie.
2135 	 */
2136 	if ((!list_empty(list) || errors) &&
2137 	     hctx->queue->mq_ops->commit_rqs && queued)
2138 		hctx->queue->mq_ops->commit_rqs(hctx);
2139 }
2140 
2141 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2142 {
2143 	list_add_tail(&rq->queuelist, &plug->mq_list);
2144 	plug->rq_count++;
2145 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2146 		struct request *tmp;
2147 
2148 		tmp = list_first_entry(&plug->mq_list, struct request,
2149 						queuelist);
2150 		if (tmp->q != rq->q)
2151 			plug->multiple_queues = true;
2152 	}
2153 }
2154 
2155 /**
2156  * blk_mq_submit_bio - Create and send a request to block device.
2157  * @bio: Bio pointer.
2158  *
2159  * Builds up a request structure from @q and @bio and send to the device. The
2160  * request may not be queued directly to hardware if:
2161  * * This request can be merged with another one
2162  * * We want to place request at plug queue for possible future merging
2163  * * There is an IO scheduler active at this queue
2164  *
2165  * It will not queue the request if there is an error with the bio, or at the
2166  * request creation.
2167  *
2168  * Returns: Request queue cookie.
2169  */
2170 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2171 {
2172 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2173 	const int is_sync = op_is_sync(bio->bi_opf);
2174 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2175 	struct blk_mq_alloc_data data = {
2176 		.q		= q,
2177 	};
2178 	struct request *rq;
2179 	struct blk_plug *plug;
2180 	struct request *same_queue_rq = NULL;
2181 	unsigned int nr_segs;
2182 	blk_qc_t cookie;
2183 	blk_status_t ret;
2184 	bool hipri;
2185 
2186 	blk_queue_bounce(q, &bio);
2187 	__blk_queue_split(&bio, &nr_segs);
2188 
2189 	if (!bio_integrity_prep(bio))
2190 		goto queue_exit;
2191 
2192 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2193 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2194 		goto queue_exit;
2195 
2196 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2197 		goto queue_exit;
2198 
2199 	rq_qos_throttle(q, bio);
2200 
2201 	hipri = bio->bi_opf & REQ_HIPRI;
2202 
2203 	data.cmd_flags = bio->bi_opf;
2204 	rq = __blk_mq_alloc_request(&data);
2205 	if (unlikely(!rq)) {
2206 		rq_qos_cleanup(q, bio);
2207 		if (bio->bi_opf & REQ_NOWAIT)
2208 			bio_wouldblock_error(bio);
2209 		goto queue_exit;
2210 	}
2211 
2212 	trace_block_getrq(bio);
2213 
2214 	rq_qos_track(q, rq, bio);
2215 
2216 	cookie = request_to_qc_t(data.hctx, rq);
2217 
2218 	blk_mq_bio_to_request(rq, bio, nr_segs);
2219 
2220 	ret = blk_crypto_init_request(rq);
2221 	if (ret != BLK_STS_OK) {
2222 		bio->bi_status = ret;
2223 		bio_endio(bio);
2224 		blk_mq_free_request(rq);
2225 		return BLK_QC_T_NONE;
2226 	}
2227 
2228 	plug = blk_mq_plug(q, bio);
2229 	if (unlikely(is_flush_fua)) {
2230 		/* Bypass scheduler for flush requests */
2231 		blk_insert_flush(rq);
2232 		blk_mq_run_hw_queue(data.hctx, true);
2233 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2234 				!blk_queue_nonrot(q))) {
2235 		/*
2236 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2237 		 * we know the driver uses bd->last in a smart fashion.
2238 		 *
2239 		 * Use normal plugging if this disk is slow HDD, as sequential
2240 		 * IO may benefit a lot from plug merging.
2241 		 */
2242 		unsigned int request_count = plug->rq_count;
2243 		struct request *last = NULL;
2244 
2245 		if (!request_count)
2246 			trace_block_plug(q);
2247 		else
2248 			last = list_entry_rq(plug->mq_list.prev);
2249 
2250 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2251 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2252 			blk_flush_plug_list(plug, false);
2253 			trace_block_plug(q);
2254 		}
2255 
2256 		blk_add_rq_to_plug(plug, rq);
2257 	} else if (q->elevator) {
2258 		/* Insert the request at the IO scheduler queue */
2259 		blk_mq_sched_insert_request(rq, false, true, true);
2260 	} else if (plug && !blk_queue_nomerges(q)) {
2261 		/*
2262 		 * We do limited plugging. If the bio can be merged, do that.
2263 		 * Otherwise the existing request in the plug list will be
2264 		 * issued. So the plug list will have one request at most
2265 		 * The plug list might get flushed before this. If that happens,
2266 		 * the plug list is empty, and same_queue_rq is invalid.
2267 		 */
2268 		if (list_empty(&plug->mq_list))
2269 			same_queue_rq = NULL;
2270 		if (same_queue_rq) {
2271 			list_del_init(&same_queue_rq->queuelist);
2272 			plug->rq_count--;
2273 		}
2274 		blk_add_rq_to_plug(plug, rq);
2275 		trace_block_plug(q);
2276 
2277 		if (same_queue_rq) {
2278 			data.hctx = same_queue_rq->mq_hctx;
2279 			trace_block_unplug(q, 1, true);
2280 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2281 					&cookie);
2282 		}
2283 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2284 			!data.hctx->dispatch_busy) {
2285 		/*
2286 		 * There is no scheduler and we can try to send directly
2287 		 * to the hardware.
2288 		 */
2289 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2290 	} else {
2291 		/* Default case. */
2292 		blk_mq_sched_insert_request(rq, false, true, true);
2293 	}
2294 
2295 	if (!hipri)
2296 		return BLK_QC_T_NONE;
2297 	return cookie;
2298 queue_exit:
2299 	blk_queue_exit(q);
2300 	return BLK_QC_T_NONE;
2301 }
2302 
2303 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2304 		     unsigned int hctx_idx)
2305 {
2306 	struct page *page;
2307 
2308 	if (tags->rqs && set->ops->exit_request) {
2309 		int i;
2310 
2311 		for (i = 0; i < tags->nr_tags; i++) {
2312 			struct request *rq = tags->static_rqs[i];
2313 
2314 			if (!rq)
2315 				continue;
2316 			set->ops->exit_request(set, rq, hctx_idx);
2317 			tags->static_rqs[i] = NULL;
2318 		}
2319 	}
2320 
2321 	while (!list_empty(&tags->page_list)) {
2322 		page = list_first_entry(&tags->page_list, struct page, lru);
2323 		list_del_init(&page->lru);
2324 		/*
2325 		 * Remove kmemleak object previously allocated in
2326 		 * blk_mq_alloc_rqs().
2327 		 */
2328 		kmemleak_free(page_address(page));
2329 		__free_pages(page, page->private);
2330 	}
2331 }
2332 
2333 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2334 {
2335 	kfree(tags->rqs);
2336 	tags->rqs = NULL;
2337 	kfree(tags->static_rqs);
2338 	tags->static_rqs = NULL;
2339 
2340 	blk_mq_free_tags(tags, flags);
2341 }
2342 
2343 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2344 					unsigned int hctx_idx,
2345 					unsigned int nr_tags,
2346 					unsigned int reserved_tags,
2347 					unsigned int flags)
2348 {
2349 	struct blk_mq_tags *tags;
2350 	int node;
2351 
2352 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2353 	if (node == NUMA_NO_NODE)
2354 		node = set->numa_node;
2355 
2356 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2357 	if (!tags)
2358 		return NULL;
2359 
2360 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2361 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2362 				 node);
2363 	if (!tags->rqs) {
2364 		blk_mq_free_tags(tags, flags);
2365 		return NULL;
2366 	}
2367 
2368 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2369 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2370 					node);
2371 	if (!tags->static_rqs) {
2372 		kfree(tags->rqs);
2373 		blk_mq_free_tags(tags, flags);
2374 		return NULL;
2375 	}
2376 
2377 	return tags;
2378 }
2379 
2380 static size_t order_to_size(unsigned int order)
2381 {
2382 	return (size_t)PAGE_SIZE << order;
2383 }
2384 
2385 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2386 			       unsigned int hctx_idx, int node)
2387 {
2388 	int ret;
2389 
2390 	if (set->ops->init_request) {
2391 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2392 		if (ret)
2393 			return ret;
2394 	}
2395 
2396 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2397 	return 0;
2398 }
2399 
2400 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2401 		     unsigned int hctx_idx, unsigned int depth)
2402 {
2403 	unsigned int i, j, entries_per_page, max_order = 4;
2404 	size_t rq_size, left;
2405 	int node;
2406 
2407 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2408 	if (node == NUMA_NO_NODE)
2409 		node = set->numa_node;
2410 
2411 	INIT_LIST_HEAD(&tags->page_list);
2412 
2413 	/*
2414 	 * rq_size is the size of the request plus driver payload, rounded
2415 	 * to the cacheline size
2416 	 */
2417 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2418 				cache_line_size());
2419 	left = rq_size * depth;
2420 
2421 	for (i = 0; i < depth; ) {
2422 		int this_order = max_order;
2423 		struct page *page;
2424 		int to_do;
2425 		void *p;
2426 
2427 		while (this_order && left < order_to_size(this_order - 1))
2428 			this_order--;
2429 
2430 		do {
2431 			page = alloc_pages_node(node,
2432 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2433 				this_order);
2434 			if (page)
2435 				break;
2436 			if (!this_order--)
2437 				break;
2438 			if (order_to_size(this_order) < rq_size)
2439 				break;
2440 		} while (1);
2441 
2442 		if (!page)
2443 			goto fail;
2444 
2445 		page->private = this_order;
2446 		list_add_tail(&page->lru, &tags->page_list);
2447 
2448 		p = page_address(page);
2449 		/*
2450 		 * Allow kmemleak to scan these pages as they contain pointers
2451 		 * to additional allocations like via ops->init_request().
2452 		 */
2453 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2454 		entries_per_page = order_to_size(this_order) / rq_size;
2455 		to_do = min(entries_per_page, depth - i);
2456 		left -= to_do * rq_size;
2457 		for (j = 0; j < to_do; j++) {
2458 			struct request *rq = p;
2459 
2460 			tags->static_rqs[i] = rq;
2461 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2462 				tags->static_rqs[i] = NULL;
2463 				goto fail;
2464 			}
2465 
2466 			p += rq_size;
2467 			i++;
2468 		}
2469 	}
2470 	return 0;
2471 
2472 fail:
2473 	blk_mq_free_rqs(set, tags, hctx_idx);
2474 	return -ENOMEM;
2475 }
2476 
2477 struct rq_iter_data {
2478 	struct blk_mq_hw_ctx *hctx;
2479 	bool has_rq;
2480 };
2481 
2482 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2483 {
2484 	struct rq_iter_data *iter_data = data;
2485 
2486 	if (rq->mq_hctx != iter_data->hctx)
2487 		return true;
2488 	iter_data->has_rq = true;
2489 	return false;
2490 }
2491 
2492 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2493 {
2494 	struct blk_mq_tags *tags = hctx->sched_tags ?
2495 			hctx->sched_tags : hctx->tags;
2496 	struct rq_iter_data data = {
2497 		.hctx	= hctx,
2498 	};
2499 
2500 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2501 	return data.has_rq;
2502 }
2503 
2504 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2505 		struct blk_mq_hw_ctx *hctx)
2506 {
2507 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2508 		return false;
2509 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2510 		return false;
2511 	return true;
2512 }
2513 
2514 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2515 {
2516 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2517 			struct blk_mq_hw_ctx, cpuhp_online);
2518 
2519 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2520 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2521 		return 0;
2522 
2523 	/*
2524 	 * Prevent new request from being allocated on the current hctx.
2525 	 *
2526 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2527 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2528 	 * seen once we return from the tag allocator.
2529 	 */
2530 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2531 	smp_mb__after_atomic();
2532 
2533 	/*
2534 	 * Try to grab a reference to the queue and wait for any outstanding
2535 	 * requests.  If we could not grab a reference the queue has been
2536 	 * frozen and there are no requests.
2537 	 */
2538 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2539 		while (blk_mq_hctx_has_requests(hctx))
2540 			msleep(5);
2541 		percpu_ref_put(&hctx->queue->q_usage_counter);
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2548 {
2549 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2550 			struct blk_mq_hw_ctx, cpuhp_online);
2551 
2552 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2553 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2554 	return 0;
2555 }
2556 
2557 /*
2558  * 'cpu' is going away. splice any existing rq_list entries from this
2559  * software queue to the hw queue dispatch list, and ensure that it
2560  * gets run.
2561  */
2562 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2563 {
2564 	struct blk_mq_hw_ctx *hctx;
2565 	struct blk_mq_ctx *ctx;
2566 	LIST_HEAD(tmp);
2567 	enum hctx_type type;
2568 
2569 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2570 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2571 		return 0;
2572 
2573 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2574 	type = hctx->type;
2575 
2576 	spin_lock(&ctx->lock);
2577 	if (!list_empty(&ctx->rq_lists[type])) {
2578 		list_splice_init(&ctx->rq_lists[type], &tmp);
2579 		blk_mq_hctx_clear_pending(hctx, ctx);
2580 	}
2581 	spin_unlock(&ctx->lock);
2582 
2583 	if (list_empty(&tmp))
2584 		return 0;
2585 
2586 	spin_lock(&hctx->lock);
2587 	list_splice_tail_init(&tmp, &hctx->dispatch);
2588 	spin_unlock(&hctx->lock);
2589 
2590 	blk_mq_run_hw_queue(hctx, true);
2591 	return 0;
2592 }
2593 
2594 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2595 {
2596 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2597 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2598 						    &hctx->cpuhp_online);
2599 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2600 					    &hctx->cpuhp_dead);
2601 }
2602 
2603 /* hctx->ctxs will be freed in queue's release handler */
2604 static void blk_mq_exit_hctx(struct request_queue *q,
2605 		struct blk_mq_tag_set *set,
2606 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2607 {
2608 	if (blk_mq_hw_queue_mapped(hctx))
2609 		blk_mq_tag_idle(hctx);
2610 
2611 	if (set->ops->exit_request)
2612 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2613 
2614 	if (set->ops->exit_hctx)
2615 		set->ops->exit_hctx(hctx, hctx_idx);
2616 
2617 	blk_mq_remove_cpuhp(hctx);
2618 
2619 	spin_lock(&q->unused_hctx_lock);
2620 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2621 	spin_unlock(&q->unused_hctx_lock);
2622 }
2623 
2624 static void blk_mq_exit_hw_queues(struct request_queue *q,
2625 		struct blk_mq_tag_set *set, int nr_queue)
2626 {
2627 	struct blk_mq_hw_ctx *hctx;
2628 	unsigned int i;
2629 
2630 	queue_for_each_hw_ctx(q, hctx, i) {
2631 		if (i == nr_queue)
2632 			break;
2633 		blk_mq_debugfs_unregister_hctx(hctx);
2634 		blk_mq_exit_hctx(q, set, hctx, i);
2635 	}
2636 }
2637 
2638 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2639 {
2640 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2641 
2642 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2643 			   __alignof__(struct blk_mq_hw_ctx)) !=
2644 		     sizeof(struct blk_mq_hw_ctx));
2645 
2646 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2647 		hw_ctx_size += sizeof(struct srcu_struct);
2648 
2649 	return hw_ctx_size;
2650 }
2651 
2652 static int blk_mq_init_hctx(struct request_queue *q,
2653 		struct blk_mq_tag_set *set,
2654 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2655 {
2656 	hctx->queue_num = hctx_idx;
2657 
2658 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2659 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2660 				&hctx->cpuhp_online);
2661 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2662 
2663 	hctx->tags = set->tags[hctx_idx];
2664 
2665 	if (set->ops->init_hctx &&
2666 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2667 		goto unregister_cpu_notifier;
2668 
2669 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2670 				hctx->numa_node))
2671 		goto exit_hctx;
2672 	return 0;
2673 
2674  exit_hctx:
2675 	if (set->ops->exit_hctx)
2676 		set->ops->exit_hctx(hctx, hctx_idx);
2677  unregister_cpu_notifier:
2678 	blk_mq_remove_cpuhp(hctx);
2679 	return -1;
2680 }
2681 
2682 static struct blk_mq_hw_ctx *
2683 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2684 		int node)
2685 {
2686 	struct blk_mq_hw_ctx *hctx;
2687 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2688 
2689 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2690 	if (!hctx)
2691 		goto fail_alloc_hctx;
2692 
2693 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2694 		goto free_hctx;
2695 
2696 	atomic_set(&hctx->nr_active, 0);
2697 	if (node == NUMA_NO_NODE)
2698 		node = set->numa_node;
2699 	hctx->numa_node = node;
2700 
2701 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2702 	spin_lock_init(&hctx->lock);
2703 	INIT_LIST_HEAD(&hctx->dispatch);
2704 	hctx->queue = q;
2705 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2706 
2707 	INIT_LIST_HEAD(&hctx->hctx_list);
2708 
2709 	/*
2710 	 * Allocate space for all possible cpus to avoid allocation at
2711 	 * runtime
2712 	 */
2713 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2714 			gfp, node);
2715 	if (!hctx->ctxs)
2716 		goto free_cpumask;
2717 
2718 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2719 				gfp, node, false, false))
2720 		goto free_ctxs;
2721 	hctx->nr_ctx = 0;
2722 
2723 	spin_lock_init(&hctx->dispatch_wait_lock);
2724 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2725 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2726 
2727 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2728 	if (!hctx->fq)
2729 		goto free_bitmap;
2730 
2731 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2732 		init_srcu_struct(hctx->srcu);
2733 	blk_mq_hctx_kobj_init(hctx);
2734 
2735 	return hctx;
2736 
2737  free_bitmap:
2738 	sbitmap_free(&hctx->ctx_map);
2739  free_ctxs:
2740 	kfree(hctx->ctxs);
2741  free_cpumask:
2742 	free_cpumask_var(hctx->cpumask);
2743  free_hctx:
2744 	kfree(hctx);
2745  fail_alloc_hctx:
2746 	return NULL;
2747 }
2748 
2749 static void blk_mq_init_cpu_queues(struct request_queue *q,
2750 				   unsigned int nr_hw_queues)
2751 {
2752 	struct blk_mq_tag_set *set = q->tag_set;
2753 	unsigned int i, j;
2754 
2755 	for_each_possible_cpu(i) {
2756 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2757 		struct blk_mq_hw_ctx *hctx;
2758 		int k;
2759 
2760 		__ctx->cpu = i;
2761 		spin_lock_init(&__ctx->lock);
2762 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2763 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2764 
2765 		__ctx->queue = q;
2766 
2767 		/*
2768 		 * Set local node, IFF we have more than one hw queue. If
2769 		 * not, we remain on the home node of the device
2770 		 */
2771 		for (j = 0; j < set->nr_maps; j++) {
2772 			hctx = blk_mq_map_queue_type(q, j, i);
2773 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2774 				hctx->numa_node = cpu_to_node(i);
2775 		}
2776 	}
2777 }
2778 
2779 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2780 					int hctx_idx)
2781 {
2782 	unsigned int flags = set->flags;
2783 	int ret = 0;
2784 
2785 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2786 					set->queue_depth, set->reserved_tags, flags);
2787 	if (!set->tags[hctx_idx])
2788 		return false;
2789 
2790 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2791 				set->queue_depth);
2792 	if (!ret)
2793 		return true;
2794 
2795 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2796 	set->tags[hctx_idx] = NULL;
2797 	return false;
2798 }
2799 
2800 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2801 					 unsigned int hctx_idx)
2802 {
2803 	unsigned int flags = set->flags;
2804 
2805 	if (set->tags && set->tags[hctx_idx]) {
2806 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2807 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2808 		set->tags[hctx_idx] = NULL;
2809 	}
2810 }
2811 
2812 static void blk_mq_map_swqueue(struct request_queue *q)
2813 {
2814 	unsigned int i, j, hctx_idx;
2815 	struct blk_mq_hw_ctx *hctx;
2816 	struct blk_mq_ctx *ctx;
2817 	struct blk_mq_tag_set *set = q->tag_set;
2818 
2819 	queue_for_each_hw_ctx(q, hctx, i) {
2820 		cpumask_clear(hctx->cpumask);
2821 		hctx->nr_ctx = 0;
2822 		hctx->dispatch_from = NULL;
2823 	}
2824 
2825 	/*
2826 	 * Map software to hardware queues.
2827 	 *
2828 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2829 	 */
2830 	for_each_possible_cpu(i) {
2831 
2832 		ctx = per_cpu_ptr(q->queue_ctx, i);
2833 		for (j = 0; j < set->nr_maps; j++) {
2834 			if (!set->map[j].nr_queues) {
2835 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2836 						HCTX_TYPE_DEFAULT, i);
2837 				continue;
2838 			}
2839 			hctx_idx = set->map[j].mq_map[i];
2840 			/* unmapped hw queue can be remapped after CPU topo changed */
2841 			if (!set->tags[hctx_idx] &&
2842 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2843 				/*
2844 				 * If tags initialization fail for some hctx,
2845 				 * that hctx won't be brought online.  In this
2846 				 * case, remap the current ctx to hctx[0] which
2847 				 * is guaranteed to always have tags allocated
2848 				 */
2849 				set->map[j].mq_map[i] = 0;
2850 			}
2851 
2852 			hctx = blk_mq_map_queue_type(q, j, i);
2853 			ctx->hctxs[j] = hctx;
2854 			/*
2855 			 * If the CPU is already set in the mask, then we've
2856 			 * mapped this one already. This can happen if
2857 			 * devices share queues across queue maps.
2858 			 */
2859 			if (cpumask_test_cpu(i, hctx->cpumask))
2860 				continue;
2861 
2862 			cpumask_set_cpu(i, hctx->cpumask);
2863 			hctx->type = j;
2864 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2865 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2866 
2867 			/*
2868 			 * If the nr_ctx type overflows, we have exceeded the
2869 			 * amount of sw queues we can support.
2870 			 */
2871 			BUG_ON(!hctx->nr_ctx);
2872 		}
2873 
2874 		for (; j < HCTX_MAX_TYPES; j++)
2875 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2876 					HCTX_TYPE_DEFAULT, i);
2877 	}
2878 
2879 	queue_for_each_hw_ctx(q, hctx, i) {
2880 		/*
2881 		 * If no software queues are mapped to this hardware queue,
2882 		 * disable it and free the request entries.
2883 		 */
2884 		if (!hctx->nr_ctx) {
2885 			/* Never unmap queue 0.  We need it as a
2886 			 * fallback in case of a new remap fails
2887 			 * allocation
2888 			 */
2889 			if (i && set->tags[i])
2890 				blk_mq_free_map_and_requests(set, i);
2891 
2892 			hctx->tags = NULL;
2893 			continue;
2894 		}
2895 
2896 		hctx->tags = set->tags[i];
2897 		WARN_ON(!hctx->tags);
2898 
2899 		/*
2900 		 * Set the map size to the number of mapped software queues.
2901 		 * This is more accurate and more efficient than looping
2902 		 * over all possibly mapped software queues.
2903 		 */
2904 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2905 
2906 		/*
2907 		 * Initialize batch roundrobin counts
2908 		 */
2909 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2910 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2911 	}
2912 }
2913 
2914 /*
2915  * Caller needs to ensure that we're either frozen/quiesced, or that
2916  * the queue isn't live yet.
2917  */
2918 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2919 {
2920 	struct blk_mq_hw_ctx *hctx;
2921 	int i;
2922 
2923 	queue_for_each_hw_ctx(q, hctx, i) {
2924 		if (shared)
2925 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2926 		else
2927 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2928 	}
2929 }
2930 
2931 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2932 					 bool shared)
2933 {
2934 	struct request_queue *q;
2935 
2936 	lockdep_assert_held(&set->tag_list_lock);
2937 
2938 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2939 		blk_mq_freeze_queue(q);
2940 		queue_set_hctx_shared(q, shared);
2941 		blk_mq_unfreeze_queue(q);
2942 	}
2943 }
2944 
2945 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2946 {
2947 	struct blk_mq_tag_set *set = q->tag_set;
2948 
2949 	mutex_lock(&set->tag_list_lock);
2950 	list_del(&q->tag_set_list);
2951 	if (list_is_singular(&set->tag_list)) {
2952 		/* just transitioned to unshared */
2953 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2954 		/* update existing queue */
2955 		blk_mq_update_tag_set_shared(set, false);
2956 	}
2957 	mutex_unlock(&set->tag_list_lock);
2958 	INIT_LIST_HEAD(&q->tag_set_list);
2959 }
2960 
2961 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2962 				     struct request_queue *q)
2963 {
2964 	mutex_lock(&set->tag_list_lock);
2965 
2966 	/*
2967 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2968 	 */
2969 	if (!list_empty(&set->tag_list) &&
2970 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2971 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2972 		/* update existing queue */
2973 		blk_mq_update_tag_set_shared(set, true);
2974 	}
2975 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2976 		queue_set_hctx_shared(q, true);
2977 	list_add_tail(&q->tag_set_list, &set->tag_list);
2978 
2979 	mutex_unlock(&set->tag_list_lock);
2980 }
2981 
2982 /* All allocations will be freed in release handler of q->mq_kobj */
2983 static int blk_mq_alloc_ctxs(struct request_queue *q)
2984 {
2985 	struct blk_mq_ctxs *ctxs;
2986 	int cpu;
2987 
2988 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2989 	if (!ctxs)
2990 		return -ENOMEM;
2991 
2992 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2993 	if (!ctxs->queue_ctx)
2994 		goto fail;
2995 
2996 	for_each_possible_cpu(cpu) {
2997 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2998 		ctx->ctxs = ctxs;
2999 	}
3000 
3001 	q->mq_kobj = &ctxs->kobj;
3002 	q->queue_ctx = ctxs->queue_ctx;
3003 
3004 	return 0;
3005  fail:
3006 	kfree(ctxs);
3007 	return -ENOMEM;
3008 }
3009 
3010 /*
3011  * It is the actual release handler for mq, but we do it from
3012  * request queue's release handler for avoiding use-after-free
3013  * and headache because q->mq_kobj shouldn't have been introduced,
3014  * but we can't group ctx/kctx kobj without it.
3015  */
3016 void blk_mq_release(struct request_queue *q)
3017 {
3018 	struct blk_mq_hw_ctx *hctx, *next;
3019 	int i;
3020 
3021 	queue_for_each_hw_ctx(q, hctx, i)
3022 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3023 
3024 	/* all hctx are in .unused_hctx_list now */
3025 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3026 		list_del_init(&hctx->hctx_list);
3027 		kobject_put(&hctx->kobj);
3028 	}
3029 
3030 	kfree(q->queue_hw_ctx);
3031 
3032 	/*
3033 	 * release .mq_kobj and sw queue's kobject now because
3034 	 * both share lifetime with request queue.
3035 	 */
3036 	blk_mq_sysfs_deinit(q);
3037 }
3038 
3039 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3040 		void *queuedata)
3041 {
3042 	struct request_queue *uninit_q, *q;
3043 
3044 	uninit_q = blk_alloc_queue(set->numa_node);
3045 	if (!uninit_q)
3046 		return ERR_PTR(-ENOMEM);
3047 	uninit_q->queuedata = queuedata;
3048 
3049 	/*
3050 	 * Initialize the queue without an elevator. device_add_disk() will do
3051 	 * the initialization.
3052 	 */
3053 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3054 	if (IS_ERR(q))
3055 		blk_cleanup_queue(uninit_q);
3056 
3057 	return q;
3058 }
3059 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3060 
3061 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3062 {
3063 	return blk_mq_init_queue_data(set, NULL);
3064 }
3065 EXPORT_SYMBOL(blk_mq_init_queue);
3066 
3067 /*
3068  * Helper for setting up a queue with mq ops, given queue depth, and
3069  * the passed in mq ops flags.
3070  */
3071 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3072 					   const struct blk_mq_ops *ops,
3073 					   unsigned int queue_depth,
3074 					   unsigned int set_flags)
3075 {
3076 	struct request_queue *q;
3077 	int ret;
3078 
3079 	memset(set, 0, sizeof(*set));
3080 	set->ops = ops;
3081 	set->nr_hw_queues = 1;
3082 	set->nr_maps = 1;
3083 	set->queue_depth = queue_depth;
3084 	set->numa_node = NUMA_NO_NODE;
3085 	set->flags = set_flags;
3086 
3087 	ret = blk_mq_alloc_tag_set(set);
3088 	if (ret)
3089 		return ERR_PTR(ret);
3090 
3091 	q = blk_mq_init_queue(set);
3092 	if (IS_ERR(q)) {
3093 		blk_mq_free_tag_set(set);
3094 		return q;
3095 	}
3096 
3097 	return q;
3098 }
3099 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3100 
3101 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3102 		struct blk_mq_tag_set *set, struct request_queue *q,
3103 		int hctx_idx, int node)
3104 {
3105 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3106 
3107 	/* reuse dead hctx first */
3108 	spin_lock(&q->unused_hctx_lock);
3109 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3110 		if (tmp->numa_node == node) {
3111 			hctx = tmp;
3112 			break;
3113 		}
3114 	}
3115 	if (hctx)
3116 		list_del_init(&hctx->hctx_list);
3117 	spin_unlock(&q->unused_hctx_lock);
3118 
3119 	if (!hctx)
3120 		hctx = blk_mq_alloc_hctx(q, set, node);
3121 	if (!hctx)
3122 		goto fail;
3123 
3124 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3125 		goto free_hctx;
3126 
3127 	return hctx;
3128 
3129  free_hctx:
3130 	kobject_put(&hctx->kobj);
3131  fail:
3132 	return NULL;
3133 }
3134 
3135 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3136 						struct request_queue *q)
3137 {
3138 	int i, j, end;
3139 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3140 
3141 	if (q->nr_hw_queues < set->nr_hw_queues) {
3142 		struct blk_mq_hw_ctx **new_hctxs;
3143 
3144 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3145 				       sizeof(*new_hctxs), GFP_KERNEL,
3146 				       set->numa_node);
3147 		if (!new_hctxs)
3148 			return;
3149 		if (hctxs)
3150 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3151 			       sizeof(*hctxs));
3152 		q->queue_hw_ctx = new_hctxs;
3153 		kfree(hctxs);
3154 		hctxs = new_hctxs;
3155 	}
3156 
3157 	/* protect against switching io scheduler  */
3158 	mutex_lock(&q->sysfs_lock);
3159 	for (i = 0; i < set->nr_hw_queues; i++) {
3160 		int node;
3161 		struct blk_mq_hw_ctx *hctx;
3162 
3163 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3164 		/*
3165 		 * If the hw queue has been mapped to another numa node,
3166 		 * we need to realloc the hctx. If allocation fails, fallback
3167 		 * to use the previous one.
3168 		 */
3169 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3170 			continue;
3171 
3172 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3173 		if (hctx) {
3174 			if (hctxs[i])
3175 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3176 			hctxs[i] = hctx;
3177 		} else {
3178 			if (hctxs[i])
3179 				pr_warn("Allocate new hctx on node %d fails,\
3180 						fallback to previous one on node %d\n",
3181 						node, hctxs[i]->numa_node);
3182 			else
3183 				break;
3184 		}
3185 	}
3186 	/*
3187 	 * Increasing nr_hw_queues fails. Free the newly allocated
3188 	 * hctxs and keep the previous q->nr_hw_queues.
3189 	 */
3190 	if (i != set->nr_hw_queues) {
3191 		j = q->nr_hw_queues;
3192 		end = i;
3193 	} else {
3194 		j = i;
3195 		end = q->nr_hw_queues;
3196 		q->nr_hw_queues = set->nr_hw_queues;
3197 	}
3198 
3199 	for (; j < end; j++) {
3200 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3201 
3202 		if (hctx) {
3203 			if (hctx->tags)
3204 				blk_mq_free_map_and_requests(set, j);
3205 			blk_mq_exit_hctx(q, set, hctx, j);
3206 			hctxs[j] = NULL;
3207 		}
3208 	}
3209 	mutex_unlock(&q->sysfs_lock);
3210 }
3211 
3212 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3213 						  struct request_queue *q,
3214 						  bool elevator_init)
3215 {
3216 	/* mark the queue as mq asap */
3217 	q->mq_ops = set->ops;
3218 
3219 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3220 					     blk_mq_poll_stats_bkt,
3221 					     BLK_MQ_POLL_STATS_BKTS, q);
3222 	if (!q->poll_cb)
3223 		goto err_exit;
3224 
3225 	if (blk_mq_alloc_ctxs(q))
3226 		goto err_poll;
3227 
3228 	/* init q->mq_kobj and sw queues' kobjects */
3229 	blk_mq_sysfs_init(q);
3230 
3231 	INIT_LIST_HEAD(&q->unused_hctx_list);
3232 	spin_lock_init(&q->unused_hctx_lock);
3233 
3234 	blk_mq_realloc_hw_ctxs(set, q);
3235 	if (!q->nr_hw_queues)
3236 		goto err_hctxs;
3237 
3238 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3239 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3240 
3241 	q->tag_set = set;
3242 
3243 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3244 	if (set->nr_maps > HCTX_TYPE_POLL &&
3245 	    set->map[HCTX_TYPE_POLL].nr_queues)
3246 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3247 
3248 	q->sg_reserved_size = INT_MAX;
3249 
3250 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3251 	INIT_LIST_HEAD(&q->requeue_list);
3252 	spin_lock_init(&q->requeue_lock);
3253 
3254 	q->nr_requests = set->queue_depth;
3255 
3256 	/*
3257 	 * Default to classic polling
3258 	 */
3259 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3260 
3261 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3262 	blk_mq_add_queue_tag_set(set, q);
3263 	blk_mq_map_swqueue(q);
3264 
3265 	if (elevator_init)
3266 		elevator_init_mq(q);
3267 
3268 	return q;
3269 
3270 err_hctxs:
3271 	kfree(q->queue_hw_ctx);
3272 	q->nr_hw_queues = 0;
3273 	blk_mq_sysfs_deinit(q);
3274 err_poll:
3275 	blk_stat_free_callback(q->poll_cb);
3276 	q->poll_cb = NULL;
3277 err_exit:
3278 	q->mq_ops = NULL;
3279 	return ERR_PTR(-ENOMEM);
3280 }
3281 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3282 
3283 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3284 void blk_mq_exit_queue(struct request_queue *q)
3285 {
3286 	struct blk_mq_tag_set	*set = q->tag_set;
3287 
3288 	blk_mq_del_queue_tag_set(q);
3289 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3290 }
3291 
3292 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3293 {
3294 	int i;
3295 
3296 	for (i = 0; i < set->nr_hw_queues; i++) {
3297 		if (!__blk_mq_alloc_map_and_request(set, i))
3298 			goto out_unwind;
3299 		cond_resched();
3300 	}
3301 
3302 	return 0;
3303 
3304 out_unwind:
3305 	while (--i >= 0)
3306 		blk_mq_free_map_and_requests(set, i);
3307 
3308 	return -ENOMEM;
3309 }
3310 
3311 /*
3312  * Allocate the request maps associated with this tag_set. Note that this
3313  * may reduce the depth asked for, if memory is tight. set->queue_depth
3314  * will be updated to reflect the allocated depth.
3315  */
3316 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3317 {
3318 	unsigned int depth;
3319 	int err;
3320 
3321 	depth = set->queue_depth;
3322 	do {
3323 		err = __blk_mq_alloc_rq_maps(set);
3324 		if (!err)
3325 			break;
3326 
3327 		set->queue_depth >>= 1;
3328 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3329 			err = -ENOMEM;
3330 			break;
3331 		}
3332 	} while (set->queue_depth);
3333 
3334 	if (!set->queue_depth || err) {
3335 		pr_err("blk-mq: failed to allocate request map\n");
3336 		return -ENOMEM;
3337 	}
3338 
3339 	if (depth != set->queue_depth)
3340 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3341 						depth, set->queue_depth);
3342 
3343 	return 0;
3344 }
3345 
3346 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3347 {
3348 	/*
3349 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3350 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3351 	 * number of hardware queues.
3352 	 */
3353 	if (set->nr_maps == 1)
3354 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3355 
3356 	if (set->ops->map_queues && !is_kdump_kernel()) {
3357 		int i;
3358 
3359 		/*
3360 		 * transport .map_queues is usually done in the following
3361 		 * way:
3362 		 *
3363 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3364 		 * 	mask = get_cpu_mask(queue)
3365 		 * 	for_each_cpu(cpu, mask)
3366 		 * 		set->map[x].mq_map[cpu] = queue;
3367 		 * }
3368 		 *
3369 		 * When we need to remap, the table has to be cleared for
3370 		 * killing stale mapping since one CPU may not be mapped
3371 		 * to any hw queue.
3372 		 */
3373 		for (i = 0; i < set->nr_maps; i++)
3374 			blk_mq_clear_mq_map(&set->map[i]);
3375 
3376 		return set->ops->map_queues(set);
3377 	} else {
3378 		BUG_ON(set->nr_maps > 1);
3379 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3380 	}
3381 }
3382 
3383 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3384 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3385 {
3386 	struct blk_mq_tags **new_tags;
3387 
3388 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3389 		return 0;
3390 
3391 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3392 				GFP_KERNEL, set->numa_node);
3393 	if (!new_tags)
3394 		return -ENOMEM;
3395 
3396 	if (set->tags)
3397 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3398 		       sizeof(*set->tags));
3399 	kfree(set->tags);
3400 	set->tags = new_tags;
3401 	set->nr_hw_queues = new_nr_hw_queues;
3402 
3403 	return 0;
3404 }
3405 
3406 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3407 				int new_nr_hw_queues)
3408 {
3409 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3410 }
3411 
3412 /*
3413  * Alloc a tag set to be associated with one or more request queues.
3414  * May fail with EINVAL for various error conditions. May adjust the
3415  * requested depth down, if it's too large. In that case, the set
3416  * value will be stored in set->queue_depth.
3417  */
3418 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3419 {
3420 	int i, ret;
3421 
3422 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3423 
3424 	if (!set->nr_hw_queues)
3425 		return -EINVAL;
3426 	if (!set->queue_depth)
3427 		return -EINVAL;
3428 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3429 		return -EINVAL;
3430 
3431 	if (!set->ops->queue_rq)
3432 		return -EINVAL;
3433 
3434 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3435 		return -EINVAL;
3436 
3437 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3438 		pr_info("blk-mq: reduced tag depth to %u\n",
3439 			BLK_MQ_MAX_DEPTH);
3440 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3441 	}
3442 
3443 	if (!set->nr_maps)
3444 		set->nr_maps = 1;
3445 	else if (set->nr_maps > HCTX_MAX_TYPES)
3446 		return -EINVAL;
3447 
3448 	/*
3449 	 * If a crashdump is active, then we are potentially in a very
3450 	 * memory constrained environment. Limit us to 1 queue and
3451 	 * 64 tags to prevent using too much memory.
3452 	 */
3453 	if (is_kdump_kernel()) {
3454 		set->nr_hw_queues = 1;
3455 		set->nr_maps = 1;
3456 		set->queue_depth = min(64U, set->queue_depth);
3457 	}
3458 	/*
3459 	 * There is no use for more h/w queues than cpus if we just have
3460 	 * a single map
3461 	 */
3462 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3463 		set->nr_hw_queues = nr_cpu_ids;
3464 
3465 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3466 		return -ENOMEM;
3467 
3468 	ret = -ENOMEM;
3469 	for (i = 0; i < set->nr_maps; i++) {
3470 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3471 						  sizeof(set->map[i].mq_map[0]),
3472 						  GFP_KERNEL, set->numa_node);
3473 		if (!set->map[i].mq_map)
3474 			goto out_free_mq_map;
3475 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3476 	}
3477 
3478 	ret = blk_mq_update_queue_map(set);
3479 	if (ret)
3480 		goto out_free_mq_map;
3481 
3482 	ret = blk_mq_alloc_map_and_requests(set);
3483 	if (ret)
3484 		goto out_free_mq_map;
3485 
3486 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3487 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3488 
3489 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3490 			ret = -ENOMEM;
3491 			goto out_free_mq_rq_maps;
3492 		}
3493 	}
3494 
3495 	mutex_init(&set->tag_list_lock);
3496 	INIT_LIST_HEAD(&set->tag_list);
3497 
3498 	return 0;
3499 
3500 out_free_mq_rq_maps:
3501 	for (i = 0; i < set->nr_hw_queues; i++)
3502 		blk_mq_free_map_and_requests(set, i);
3503 out_free_mq_map:
3504 	for (i = 0; i < set->nr_maps; i++) {
3505 		kfree(set->map[i].mq_map);
3506 		set->map[i].mq_map = NULL;
3507 	}
3508 	kfree(set->tags);
3509 	set->tags = NULL;
3510 	return ret;
3511 }
3512 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3513 
3514 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3515 {
3516 	int i, j;
3517 
3518 	for (i = 0; i < set->nr_hw_queues; i++)
3519 		blk_mq_free_map_and_requests(set, i);
3520 
3521 	if (blk_mq_is_sbitmap_shared(set->flags))
3522 		blk_mq_exit_shared_sbitmap(set);
3523 
3524 	for (j = 0; j < set->nr_maps; j++) {
3525 		kfree(set->map[j].mq_map);
3526 		set->map[j].mq_map = NULL;
3527 	}
3528 
3529 	kfree(set->tags);
3530 	set->tags = NULL;
3531 }
3532 EXPORT_SYMBOL(blk_mq_free_tag_set);
3533 
3534 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3535 {
3536 	struct blk_mq_tag_set *set = q->tag_set;
3537 	struct blk_mq_hw_ctx *hctx;
3538 	int i, ret;
3539 
3540 	if (!set)
3541 		return -EINVAL;
3542 
3543 	if (q->nr_requests == nr)
3544 		return 0;
3545 
3546 	blk_mq_freeze_queue(q);
3547 	blk_mq_quiesce_queue(q);
3548 
3549 	ret = 0;
3550 	queue_for_each_hw_ctx(q, hctx, i) {
3551 		if (!hctx->tags)
3552 			continue;
3553 		/*
3554 		 * If we're using an MQ scheduler, just update the scheduler
3555 		 * queue depth. This is similar to what the old code would do.
3556 		 */
3557 		if (!hctx->sched_tags) {
3558 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3559 							false);
3560 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3561 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3562 		} else {
3563 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3564 							nr, true);
3565 		}
3566 		if (ret)
3567 			break;
3568 		if (q->elevator && q->elevator->type->ops.depth_updated)
3569 			q->elevator->type->ops.depth_updated(hctx);
3570 	}
3571 
3572 	if (!ret)
3573 		q->nr_requests = nr;
3574 
3575 	blk_mq_unquiesce_queue(q);
3576 	blk_mq_unfreeze_queue(q);
3577 
3578 	return ret;
3579 }
3580 
3581 /*
3582  * request_queue and elevator_type pair.
3583  * It is just used by __blk_mq_update_nr_hw_queues to cache
3584  * the elevator_type associated with a request_queue.
3585  */
3586 struct blk_mq_qe_pair {
3587 	struct list_head node;
3588 	struct request_queue *q;
3589 	struct elevator_type *type;
3590 };
3591 
3592 /*
3593  * Cache the elevator_type in qe pair list and switch the
3594  * io scheduler to 'none'
3595  */
3596 static bool blk_mq_elv_switch_none(struct list_head *head,
3597 		struct request_queue *q)
3598 {
3599 	struct blk_mq_qe_pair *qe;
3600 
3601 	if (!q->elevator)
3602 		return true;
3603 
3604 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3605 	if (!qe)
3606 		return false;
3607 
3608 	INIT_LIST_HEAD(&qe->node);
3609 	qe->q = q;
3610 	qe->type = q->elevator->type;
3611 	list_add(&qe->node, head);
3612 
3613 	mutex_lock(&q->sysfs_lock);
3614 	/*
3615 	 * After elevator_switch_mq, the previous elevator_queue will be
3616 	 * released by elevator_release. The reference of the io scheduler
3617 	 * module get by elevator_get will also be put. So we need to get
3618 	 * a reference of the io scheduler module here to prevent it to be
3619 	 * removed.
3620 	 */
3621 	__module_get(qe->type->elevator_owner);
3622 	elevator_switch_mq(q, NULL);
3623 	mutex_unlock(&q->sysfs_lock);
3624 
3625 	return true;
3626 }
3627 
3628 static void blk_mq_elv_switch_back(struct list_head *head,
3629 		struct request_queue *q)
3630 {
3631 	struct blk_mq_qe_pair *qe;
3632 	struct elevator_type *t = NULL;
3633 
3634 	list_for_each_entry(qe, head, node)
3635 		if (qe->q == q) {
3636 			t = qe->type;
3637 			break;
3638 		}
3639 
3640 	if (!t)
3641 		return;
3642 
3643 	list_del(&qe->node);
3644 	kfree(qe);
3645 
3646 	mutex_lock(&q->sysfs_lock);
3647 	elevator_switch_mq(q, t);
3648 	mutex_unlock(&q->sysfs_lock);
3649 }
3650 
3651 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3652 							int nr_hw_queues)
3653 {
3654 	struct request_queue *q;
3655 	LIST_HEAD(head);
3656 	int prev_nr_hw_queues;
3657 
3658 	lockdep_assert_held(&set->tag_list_lock);
3659 
3660 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3661 		nr_hw_queues = nr_cpu_ids;
3662 	if (nr_hw_queues < 1)
3663 		return;
3664 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3665 		return;
3666 
3667 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3668 		blk_mq_freeze_queue(q);
3669 	/*
3670 	 * Switch IO scheduler to 'none', cleaning up the data associated
3671 	 * with the previous scheduler. We will switch back once we are done
3672 	 * updating the new sw to hw queue mappings.
3673 	 */
3674 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3675 		if (!blk_mq_elv_switch_none(&head, q))
3676 			goto switch_back;
3677 
3678 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3679 		blk_mq_debugfs_unregister_hctxs(q);
3680 		blk_mq_sysfs_unregister(q);
3681 	}
3682 
3683 	prev_nr_hw_queues = set->nr_hw_queues;
3684 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3685 	    0)
3686 		goto reregister;
3687 
3688 	set->nr_hw_queues = nr_hw_queues;
3689 fallback:
3690 	blk_mq_update_queue_map(set);
3691 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3692 		blk_mq_realloc_hw_ctxs(set, q);
3693 		if (q->nr_hw_queues != set->nr_hw_queues) {
3694 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3695 					nr_hw_queues, prev_nr_hw_queues);
3696 			set->nr_hw_queues = prev_nr_hw_queues;
3697 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3698 			goto fallback;
3699 		}
3700 		blk_mq_map_swqueue(q);
3701 	}
3702 
3703 reregister:
3704 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3705 		blk_mq_sysfs_register(q);
3706 		blk_mq_debugfs_register_hctxs(q);
3707 	}
3708 
3709 switch_back:
3710 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3711 		blk_mq_elv_switch_back(&head, q);
3712 
3713 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3714 		blk_mq_unfreeze_queue(q);
3715 }
3716 
3717 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3718 {
3719 	mutex_lock(&set->tag_list_lock);
3720 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3721 	mutex_unlock(&set->tag_list_lock);
3722 }
3723 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3724 
3725 /* Enable polling stats and return whether they were already enabled. */
3726 static bool blk_poll_stats_enable(struct request_queue *q)
3727 {
3728 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3729 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3730 		return true;
3731 	blk_stat_add_callback(q, q->poll_cb);
3732 	return false;
3733 }
3734 
3735 static void blk_mq_poll_stats_start(struct request_queue *q)
3736 {
3737 	/*
3738 	 * We don't arm the callback if polling stats are not enabled or the
3739 	 * callback is already active.
3740 	 */
3741 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3742 	    blk_stat_is_active(q->poll_cb))
3743 		return;
3744 
3745 	blk_stat_activate_msecs(q->poll_cb, 100);
3746 }
3747 
3748 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3749 {
3750 	struct request_queue *q = cb->data;
3751 	int bucket;
3752 
3753 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3754 		if (cb->stat[bucket].nr_samples)
3755 			q->poll_stat[bucket] = cb->stat[bucket];
3756 	}
3757 }
3758 
3759 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3760 				       struct request *rq)
3761 {
3762 	unsigned long ret = 0;
3763 	int bucket;
3764 
3765 	/*
3766 	 * If stats collection isn't on, don't sleep but turn it on for
3767 	 * future users
3768 	 */
3769 	if (!blk_poll_stats_enable(q))
3770 		return 0;
3771 
3772 	/*
3773 	 * As an optimistic guess, use half of the mean service time
3774 	 * for this type of request. We can (and should) make this smarter.
3775 	 * For instance, if the completion latencies are tight, we can
3776 	 * get closer than just half the mean. This is especially
3777 	 * important on devices where the completion latencies are longer
3778 	 * than ~10 usec. We do use the stats for the relevant IO size
3779 	 * if available which does lead to better estimates.
3780 	 */
3781 	bucket = blk_mq_poll_stats_bkt(rq);
3782 	if (bucket < 0)
3783 		return ret;
3784 
3785 	if (q->poll_stat[bucket].nr_samples)
3786 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3787 
3788 	return ret;
3789 }
3790 
3791 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3792 				     struct request *rq)
3793 {
3794 	struct hrtimer_sleeper hs;
3795 	enum hrtimer_mode mode;
3796 	unsigned int nsecs;
3797 	ktime_t kt;
3798 
3799 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3800 		return false;
3801 
3802 	/*
3803 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3804 	 *
3805 	 *  0:	use half of prev avg
3806 	 * >0:	use this specific value
3807 	 */
3808 	if (q->poll_nsec > 0)
3809 		nsecs = q->poll_nsec;
3810 	else
3811 		nsecs = blk_mq_poll_nsecs(q, rq);
3812 
3813 	if (!nsecs)
3814 		return false;
3815 
3816 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3817 
3818 	/*
3819 	 * This will be replaced with the stats tracking code, using
3820 	 * 'avg_completion_time / 2' as the pre-sleep target.
3821 	 */
3822 	kt = nsecs;
3823 
3824 	mode = HRTIMER_MODE_REL;
3825 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3826 	hrtimer_set_expires(&hs.timer, kt);
3827 
3828 	do {
3829 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3830 			break;
3831 		set_current_state(TASK_UNINTERRUPTIBLE);
3832 		hrtimer_sleeper_start_expires(&hs, mode);
3833 		if (hs.task)
3834 			io_schedule();
3835 		hrtimer_cancel(&hs.timer);
3836 		mode = HRTIMER_MODE_ABS;
3837 	} while (hs.task && !signal_pending(current));
3838 
3839 	__set_current_state(TASK_RUNNING);
3840 	destroy_hrtimer_on_stack(&hs.timer);
3841 	return true;
3842 }
3843 
3844 static bool blk_mq_poll_hybrid(struct request_queue *q,
3845 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3846 {
3847 	struct request *rq;
3848 
3849 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3850 		return false;
3851 
3852 	if (!blk_qc_t_is_internal(cookie))
3853 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3854 	else {
3855 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3856 		/*
3857 		 * With scheduling, if the request has completed, we'll
3858 		 * get a NULL return here, as we clear the sched tag when
3859 		 * that happens. The request still remains valid, like always,
3860 		 * so we should be safe with just the NULL check.
3861 		 */
3862 		if (!rq)
3863 			return false;
3864 	}
3865 
3866 	return blk_mq_poll_hybrid_sleep(q, rq);
3867 }
3868 
3869 /**
3870  * blk_poll - poll for IO completions
3871  * @q:  the queue
3872  * @cookie: cookie passed back at IO submission time
3873  * @spin: whether to spin for completions
3874  *
3875  * Description:
3876  *    Poll for completions on the passed in queue. Returns number of
3877  *    completed entries found. If @spin is true, then blk_poll will continue
3878  *    looping until at least one completion is found, unless the task is
3879  *    otherwise marked running (or we need to reschedule).
3880  */
3881 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3882 {
3883 	struct blk_mq_hw_ctx *hctx;
3884 	long state;
3885 
3886 	if (!blk_qc_t_valid(cookie) ||
3887 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3888 		return 0;
3889 
3890 	if (current->plug)
3891 		blk_flush_plug_list(current->plug, false);
3892 
3893 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3894 
3895 	/*
3896 	 * If we sleep, have the caller restart the poll loop to reset
3897 	 * the state. Like for the other success return cases, the
3898 	 * caller is responsible for checking if the IO completed. If
3899 	 * the IO isn't complete, we'll get called again and will go
3900 	 * straight to the busy poll loop. If specified not to spin,
3901 	 * we also should not sleep.
3902 	 */
3903 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3904 		return 1;
3905 
3906 	hctx->poll_considered++;
3907 
3908 	state = current->state;
3909 	do {
3910 		int ret;
3911 
3912 		hctx->poll_invoked++;
3913 
3914 		ret = q->mq_ops->poll(hctx);
3915 		if (ret > 0) {
3916 			hctx->poll_success++;
3917 			__set_current_state(TASK_RUNNING);
3918 			return ret;
3919 		}
3920 
3921 		if (signal_pending_state(state, current))
3922 			__set_current_state(TASK_RUNNING);
3923 
3924 		if (current->state == TASK_RUNNING)
3925 			return 1;
3926 		if (ret < 0 || !spin)
3927 			break;
3928 		cpu_relax();
3929 	} while (!need_resched());
3930 
3931 	__set_current_state(TASK_RUNNING);
3932 	return 0;
3933 }
3934 EXPORT_SYMBOL_GPL(blk_poll);
3935 
3936 unsigned int blk_mq_rq_cpu(struct request *rq)
3937 {
3938 	return rq->mq_ctx->cpu;
3939 }
3940 EXPORT_SYMBOL(blk_mq_rq_cpu);
3941 
3942 static int __init blk_mq_init(void)
3943 {
3944 	int i;
3945 
3946 	for_each_possible_cpu(i)
3947 		init_llist_head(&per_cpu(blk_cpu_done, i));
3948 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3949 
3950 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3951 				  "block/softirq:dead", NULL,
3952 				  blk_softirq_cpu_dead);
3953 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3954 				blk_mq_hctx_notify_dead);
3955 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3956 				blk_mq_hctx_notify_online,
3957 				blk_mq_hctx_notify_offline);
3958 	return 0;
3959 }
3960 subsys_initcall(blk_mq_init);
3961