1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #include <linux/blk-mq.h> 27 #include "blk.h" 28 #include "blk-mq.h" 29 #include "blk-mq-tag.h" 30 31 static DEFINE_MUTEX(all_q_mutex); 32 static LIST_HEAD(all_q_list); 33 34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 35 36 /* 37 * Check if any of the ctx's have pending work in this hardware queue 38 */ 39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 40 { 41 unsigned int i; 42 43 for (i = 0; i < hctx->ctx_map.map_size; i++) 44 if (hctx->ctx_map.map[i].word) 45 return true; 46 47 return false; 48 } 49 50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 51 struct blk_mq_ctx *ctx) 52 { 53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 54 } 55 56 #define CTX_TO_BIT(hctx, ctx) \ 57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 58 59 /* 60 * Mark this ctx as having pending work in this hardware queue 61 */ 62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 63 struct blk_mq_ctx *ctx) 64 { 65 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 66 67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 69 } 70 71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 72 struct blk_mq_ctx *ctx) 73 { 74 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 75 76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 77 } 78 79 static int blk_mq_queue_enter(struct request_queue *q) 80 { 81 int ret; 82 83 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000); 84 smp_wmb(); 85 86 /* we have problems freezing the queue if it's initializing */ 87 if (!blk_queue_dying(q) && 88 (!blk_queue_bypass(q) || !blk_queue_init_done(q))) 89 return 0; 90 91 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000); 92 93 spin_lock_irq(q->queue_lock); 94 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq, 95 !blk_queue_bypass(q) || blk_queue_dying(q), 96 *q->queue_lock); 97 /* inc usage with lock hold to avoid freeze_queue runs here */ 98 if (!ret && !blk_queue_dying(q)) 99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000); 100 else if (blk_queue_dying(q)) 101 ret = -ENODEV; 102 spin_unlock_irq(q->queue_lock); 103 104 return ret; 105 } 106 107 static void blk_mq_queue_exit(struct request_queue *q) 108 { 109 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000); 110 } 111 112 void blk_mq_drain_queue(struct request_queue *q) 113 { 114 while (true) { 115 s64 count; 116 117 spin_lock_irq(q->queue_lock); 118 count = percpu_counter_sum(&q->mq_usage_counter); 119 spin_unlock_irq(q->queue_lock); 120 121 if (count == 0) 122 break; 123 blk_mq_start_hw_queues(q); 124 msleep(10); 125 } 126 } 127 128 /* 129 * Guarantee no request is in use, so we can change any data structure of 130 * the queue afterward. 131 */ 132 static void blk_mq_freeze_queue(struct request_queue *q) 133 { 134 bool drain; 135 136 spin_lock_irq(q->queue_lock); 137 drain = !q->bypass_depth++; 138 queue_flag_set(QUEUE_FLAG_BYPASS, q); 139 spin_unlock_irq(q->queue_lock); 140 141 if (drain) 142 blk_mq_drain_queue(q); 143 } 144 145 static void blk_mq_unfreeze_queue(struct request_queue *q) 146 { 147 bool wake = false; 148 149 spin_lock_irq(q->queue_lock); 150 if (!--q->bypass_depth) { 151 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 152 wake = true; 153 } 154 WARN_ON_ONCE(q->bypass_depth < 0); 155 spin_unlock_irq(q->queue_lock); 156 if (wake) 157 wake_up_all(&q->mq_freeze_wq); 158 } 159 160 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 161 { 162 return blk_mq_has_free_tags(hctx->tags); 163 } 164 EXPORT_SYMBOL(blk_mq_can_queue); 165 166 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 167 struct request *rq, unsigned int rw_flags) 168 { 169 if (blk_queue_io_stat(q)) 170 rw_flags |= REQ_IO_STAT; 171 172 INIT_LIST_HEAD(&rq->queuelist); 173 /* csd/requeue_work/fifo_time is initialized before use */ 174 rq->q = q; 175 rq->mq_ctx = ctx; 176 rq->cmd_flags |= rw_flags; 177 /* do not touch atomic flags, it needs atomic ops against the timer */ 178 rq->cpu = -1; 179 INIT_HLIST_NODE(&rq->hash); 180 RB_CLEAR_NODE(&rq->rb_node); 181 rq->rq_disk = NULL; 182 rq->part = NULL; 183 rq->start_time = jiffies; 184 #ifdef CONFIG_BLK_CGROUP 185 rq->rl = NULL; 186 set_start_time_ns(rq); 187 rq->io_start_time_ns = 0; 188 #endif 189 rq->nr_phys_segments = 0; 190 #if defined(CONFIG_BLK_DEV_INTEGRITY) 191 rq->nr_integrity_segments = 0; 192 #endif 193 rq->special = NULL; 194 /* tag was already set */ 195 rq->errors = 0; 196 197 rq->extra_len = 0; 198 rq->sense_len = 0; 199 rq->resid_len = 0; 200 rq->sense = NULL; 201 202 INIT_LIST_HEAD(&rq->timeout_list); 203 rq->timeout = 0; 204 205 rq->end_io = NULL; 206 rq->end_io_data = NULL; 207 rq->next_rq = NULL; 208 209 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 210 } 211 212 static struct request * 213 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 214 { 215 struct request *rq; 216 unsigned int tag; 217 218 tag = blk_mq_get_tag(data); 219 if (tag != BLK_MQ_TAG_FAIL) { 220 rq = data->hctx->tags->rqs[tag]; 221 222 rq->cmd_flags = 0; 223 if (blk_mq_tag_busy(data->hctx)) { 224 rq->cmd_flags = REQ_MQ_INFLIGHT; 225 atomic_inc(&data->hctx->nr_active); 226 } 227 228 rq->tag = tag; 229 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 230 return rq; 231 } 232 233 return NULL; 234 } 235 236 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 237 bool reserved) 238 { 239 struct blk_mq_ctx *ctx; 240 struct blk_mq_hw_ctx *hctx; 241 struct request *rq; 242 struct blk_mq_alloc_data alloc_data; 243 244 if (blk_mq_queue_enter(q)) 245 return NULL; 246 247 ctx = blk_mq_get_ctx(q); 248 hctx = q->mq_ops->map_queue(q, ctx->cpu); 249 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 250 reserved, ctx, hctx); 251 252 rq = __blk_mq_alloc_request(&alloc_data, rw); 253 if (!rq && (gfp & __GFP_WAIT)) { 254 __blk_mq_run_hw_queue(hctx); 255 blk_mq_put_ctx(ctx); 256 257 ctx = blk_mq_get_ctx(q); 258 hctx = q->mq_ops->map_queue(q, ctx->cpu); 259 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 260 hctx); 261 rq = __blk_mq_alloc_request(&alloc_data, rw); 262 ctx = alloc_data.ctx; 263 } 264 blk_mq_put_ctx(ctx); 265 return rq; 266 } 267 EXPORT_SYMBOL(blk_mq_alloc_request); 268 269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 270 struct blk_mq_ctx *ctx, struct request *rq) 271 { 272 const int tag = rq->tag; 273 struct request_queue *q = rq->q; 274 275 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 276 atomic_dec(&hctx->nr_active); 277 278 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 279 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 280 blk_mq_queue_exit(q); 281 } 282 283 void blk_mq_free_request(struct request *rq) 284 { 285 struct blk_mq_ctx *ctx = rq->mq_ctx; 286 struct blk_mq_hw_ctx *hctx; 287 struct request_queue *q = rq->q; 288 289 ctx->rq_completed[rq_is_sync(rq)]++; 290 291 hctx = q->mq_ops->map_queue(q, ctx->cpu); 292 __blk_mq_free_request(hctx, ctx, rq); 293 } 294 295 /* 296 * Clone all relevant state from a request that has been put on hold in 297 * the flush state machine into the preallocated flush request that hangs 298 * off the request queue. 299 * 300 * For a driver the flush request should be invisible, that's why we are 301 * impersonating the original request here. 302 */ 303 void blk_mq_clone_flush_request(struct request *flush_rq, 304 struct request *orig_rq) 305 { 306 struct blk_mq_hw_ctx *hctx = 307 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu); 308 309 flush_rq->mq_ctx = orig_rq->mq_ctx; 310 flush_rq->tag = orig_rq->tag; 311 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq), 312 hctx->cmd_size); 313 } 314 315 inline void __blk_mq_end_io(struct request *rq, int error) 316 { 317 blk_account_io_done(rq); 318 319 if (rq->end_io) { 320 rq->end_io(rq, error); 321 } else { 322 if (unlikely(blk_bidi_rq(rq))) 323 blk_mq_free_request(rq->next_rq); 324 blk_mq_free_request(rq); 325 } 326 } 327 EXPORT_SYMBOL(__blk_mq_end_io); 328 329 void blk_mq_end_io(struct request *rq, int error) 330 { 331 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 332 BUG(); 333 __blk_mq_end_io(rq, error); 334 } 335 EXPORT_SYMBOL(blk_mq_end_io); 336 337 static void __blk_mq_complete_request_remote(void *data) 338 { 339 struct request *rq = data; 340 341 rq->q->softirq_done_fn(rq); 342 } 343 344 static void blk_mq_ipi_complete_request(struct request *rq) 345 { 346 struct blk_mq_ctx *ctx = rq->mq_ctx; 347 bool shared = false; 348 int cpu; 349 350 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 351 rq->q->softirq_done_fn(rq); 352 return; 353 } 354 355 cpu = get_cpu(); 356 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 357 shared = cpus_share_cache(cpu, ctx->cpu); 358 359 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 360 rq->csd.func = __blk_mq_complete_request_remote; 361 rq->csd.info = rq; 362 rq->csd.flags = 0; 363 smp_call_function_single_async(ctx->cpu, &rq->csd); 364 } else { 365 rq->q->softirq_done_fn(rq); 366 } 367 put_cpu(); 368 } 369 370 void __blk_mq_complete_request(struct request *rq) 371 { 372 struct request_queue *q = rq->q; 373 374 if (!q->softirq_done_fn) 375 blk_mq_end_io(rq, rq->errors); 376 else 377 blk_mq_ipi_complete_request(rq); 378 } 379 380 /** 381 * blk_mq_complete_request - end I/O on a request 382 * @rq: the request being processed 383 * 384 * Description: 385 * Ends all I/O on a request. It does not handle partial completions. 386 * The actual completion happens out-of-order, through a IPI handler. 387 **/ 388 void blk_mq_complete_request(struct request *rq) 389 { 390 struct request_queue *q = rq->q; 391 392 if (unlikely(blk_should_fake_timeout(q))) 393 return; 394 if (!blk_mark_rq_complete(rq)) 395 __blk_mq_complete_request(rq); 396 } 397 EXPORT_SYMBOL(blk_mq_complete_request); 398 399 static void blk_mq_start_request(struct request *rq, bool last) 400 { 401 struct request_queue *q = rq->q; 402 403 trace_block_rq_issue(q, rq); 404 405 rq->resid_len = blk_rq_bytes(rq); 406 if (unlikely(blk_bidi_rq(rq))) 407 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 408 409 blk_add_timer(rq); 410 411 /* 412 * Mark us as started and clear complete. Complete might have been 413 * set if requeue raced with timeout, which then marked it as 414 * complete. So be sure to clear complete again when we start 415 * the request, otherwise we'll ignore the completion event. 416 */ 417 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 418 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 419 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 420 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 421 422 if (q->dma_drain_size && blk_rq_bytes(rq)) { 423 /* 424 * Make sure space for the drain appears. We know we can do 425 * this because max_hw_segments has been adjusted to be one 426 * fewer than the device can handle. 427 */ 428 rq->nr_phys_segments++; 429 } 430 431 /* 432 * Flag the last request in the series so that drivers know when IO 433 * should be kicked off, if they don't do it on a per-request basis. 434 * 435 * Note: the flag isn't the only condition drivers should do kick off. 436 * If drive is busy, the last request might not have the bit set. 437 */ 438 if (last) 439 rq->cmd_flags |= REQ_END; 440 } 441 442 static void __blk_mq_requeue_request(struct request *rq) 443 { 444 struct request_queue *q = rq->q; 445 446 trace_block_rq_requeue(q, rq); 447 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 448 449 rq->cmd_flags &= ~REQ_END; 450 451 if (q->dma_drain_size && blk_rq_bytes(rq)) 452 rq->nr_phys_segments--; 453 } 454 455 void blk_mq_requeue_request(struct request *rq) 456 { 457 __blk_mq_requeue_request(rq); 458 blk_clear_rq_complete(rq); 459 460 BUG_ON(blk_queued_rq(rq)); 461 blk_mq_add_to_requeue_list(rq, true); 462 } 463 EXPORT_SYMBOL(blk_mq_requeue_request); 464 465 static void blk_mq_requeue_work(struct work_struct *work) 466 { 467 struct request_queue *q = 468 container_of(work, struct request_queue, requeue_work); 469 LIST_HEAD(rq_list); 470 struct request *rq, *next; 471 unsigned long flags; 472 473 spin_lock_irqsave(&q->requeue_lock, flags); 474 list_splice_init(&q->requeue_list, &rq_list); 475 spin_unlock_irqrestore(&q->requeue_lock, flags); 476 477 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 478 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 479 continue; 480 481 rq->cmd_flags &= ~REQ_SOFTBARRIER; 482 list_del_init(&rq->queuelist); 483 blk_mq_insert_request(rq, true, false, false); 484 } 485 486 while (!list_empty(&rq_list)) { 487 rq = list_entry(rq_list.next, struct request, queuelist); 488 list_del_init(&rq->queuelist); 489 blk_mq_insert_request(rq, false, false, false); 490 } 491 492 blk_mq_run_queues(q, false); 493 } 494 495 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 496 { 497 struct request_queue *q = rq->q; 498 unsigned long flags; 499 500 /* 501 * We abuse this flag that is otherwise used by the I/O scheduler to 502 * request head insertation from the workqueue. 503 */ 504 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 505 506 spin_lock_irqsave(&q->requeue_lock, flags); 507 if (at_head) { 508 rq->cmd_flags |= REQ_SOFTBARRIER; 509 list_add(&rq->queuelist, &q->requeue_list); 510 } else { 511 list_add_tail(&rq->queuelist, &q->requeue_list); 512 } 513 spin_unlock_irqrestore(&q->requeue_lock, flags); 514 } 515 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 516 517 void blk_mq_kick_requeue_list(struct request_queue *q) 518 { 519 kblockd_schedule_work(&q->requeue_work); 520 } 521 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 522 523 static inline bool is_flush_request(struct request *rq, unsigned int tag) 524 { 525 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 526 rq->q->flush_rq->tag == tag); 527 } 528 529 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 530 { 531 struct request *rq = tags->rqs[tag]; 532 533 if (!is_flush_request(rq, tag)) 534 return rq; 535 536 return rq->q->flush_rq; 537 } 538 EXPORT_SYMBOL(blk_mq_tag_to_rq); 539 540 struct blk_mq_timeout_data { 541 struct blk_mq_hw_ctx *hctx; 542 unsigned long *next; 543 unsigned int *next_set; 544 }; 545 546 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags) 547 { 548 struct blk_mq_timeout_data *data = __data; 549 struct blk_mq_hw_ctx *hctx = data->hctx; 550 unsigned int tag; 551 552 /* It may not be in flight yet (this is where 553 * the REQ_ATOMIC_STARTED flag comes in). The requests are 554 * statically allocated, so we know it's always safe to access the 555 * memory associated with a bit offset into ->rqs[]. 556 */ 557 tag = 0; 558 do { 559 struct request *rq; 560 561 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag); 562 if (tag >= hctx->tags->nr_tags) 563 break; 564 565 rq = blk_mq_tag_to_rq(hctx->tags, tag++); 566 if (rq->q != hctx->queue) 567 continue; 568 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 569 continue; 570 571 blk_rq_check_expired(rq, data->next, data->next_set); 572 } while (1); 573 } 574 575 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx, 576 unsigned long *next, 577 unsigned int *next_set) 578 { 579 struct blk_mq_timeout_data data = { 580 .hctx = hctx, 581 .next = next, 582 .next_set = next_set, 583 }; 584 585 /* 586 * Ask the tagging code to iterate busy requests, so we can 587 * check them for timeout. 588 */ 589 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data); 590 } 591 592 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq) 593 { 594 struct request_queue *q = rq->q; 595 596 /* 597 * We know that complete is set at this point. If STARTED isn't set 598 * anymore, then the request isn't active and the "timeout" should 599 * just be ignored. This can happen due to the bitflag ordering. 600 * Timeout first checks if STARTED is set, and if it is, assumes 601 * the request is active. But if we race with completion, then 602 * we both flags will get cleared. So check here again, and ignore 603 * a timeout event with a request that isn't active. 604 */ 605 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 606 return BLK_EH_NOT_HANDLED; 607 608 if (!q->mq_ops->timeout) 609 return BLK_EH_RESET_TIMER; 610 611 return q->mq_ops->timeout(rq); 612 } 613 614 static void blk_mq_rq_timer(unsigned long data) 615 { 616 struct request_queue *q = (struct request_queue *) data; 617 struct blk_mq_hw_ctx *hctx; 618 unsigned long next = 0; 619 int i, next_set = 0; 620 621 queue_for_each_hw_ctx(q, hctx, i) { 622 /* 623 * If not software queues are currently mapped to this 624 * hardware queue, there's nothing to check 625 */ 626 if (!hctx->nr_ctx || !hctx->tags) 627 continue; 628 629 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set); 630 } 631 632 if (next_set) { 633 next = blk_rq_timeout(round_jiffies_up(next)); 634 mod_timer(&q->timeout, next); 635 } else { 636 queue_for_each_hw_ctx(q, hctx, i) 637 blk_mq_tag_idle(hctx); 638 } 639 } 640 641 /* 642 * Reverse check our software queue for entries that we could potentially 643 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 644 * too much time checking for merges. 645 */ 646 static bool blk_mq_attempt_merge(struct request_queue *q, 647 struct blk_mq_ctx *ctx, struct bio *bio) 648 { 649 struct request *rq; 650 int checked = 8; 651 652 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 653 int el_ret; 654 655 if (!checked--) 656 break; 657 658 if (!blk_rq_merge_ok(rq, bio)) 659 continue; 660 661 el_ret = blk_try_merge(rq, bio); 662 if (el_ret == ELEVATOR_BACK_MERGE) { 663 if (bio_attempt_back_merge(q, rq, bio)) { 664 ctx->rq_merged++; 665 return true; 666 } 667 break; 668 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 669 if (bio_attempt_front_merge(q, rq, bio)) { 670 ctx->rq_merged++; 671 return true; 672 } 673 break; 674 } 675 } 676 677 return false; 678 } 679 680 /* 681 * Process software queues that have been marked busy, splicing them 682 * to the for-dispatch 683 */ 684 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 685 { 686 struct blk_mq_ctx *ctx; 687 int i; 688 689 for (i = 0; i < hctx->ctx_map.map_size; i++) { 690 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 691 unsigned int off, bit; 692 693 if (!bm->word) 694 continue; 695 696 bit = 0; 697 off = i * hctx->ctx_map.bits_per_word; 698 do { 699 bit = find_next_bit(&bm->word, bm->depth, bit); 700 if (bit >= bm->depth) 701 break; 702 703 ctx = hctx->ctxs[bit + off]; 704 clear_bit(bit, &bm->word); 705 spin_lock(&ctx->lock); 706 list_splice_tail_init(&ctx->rq_list, list); 707 spin_unlock(&ctx->lock); 708 709 bit++; 710 } while (1); 711 } 712 } 713 714 /* 715 * Run this hardware queue, pulling any software queues mapped to it in. 716 * Note that this function currently has various problems around ordering 717 * of IO. In particular, we'd like FIFO behaviour on handling existing 718 * items on the hctx->dispatch list. Ignore that for now. 719 */ 720 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 721 { 722 struct request_queue *q = hctx->queue; 723 struct request *rq; 724 LIST_HEAD(rq_list); 725 int queued; 726 727 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 728 729 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 730 return; 731 732 hctx->run++; 733 734 /* 735 * Touch any software queue that has pending entries. 736 */ 737 flush_busy_ctxs(hctx, &rq_list); 738 739 /* 740 * If we have previous entries on our dispatch list, grab them 741 * and stuff them at the front for more fair dispatch. 742 */ 743 if (!list_empty_careful(&hctx->dispatch)) { 744 spin_lock(&hctx->lock); 745 if (!list_empty(&hctx->dispatch)) 746 list_splice_init(&hctx->dispatch, &rq_list); 747 spin_unlock(&hctx->lock); 748 } 749 750 /* 751 * Now process all the entries, sending them to the driver. 752 */ 753 queued = 0; 754 while (!list_empty(&rq_list)) { 755 int ret; 756 757 rq = list_first_entry(&rq_list, struct request, queuelist); 758 list_del_init(&rq->queuelist); 759 760 blk_mq_start_request(rq, list_empty(&rq_list)); 761 762 ret = q->mq_ops->queue_rq(hctx, rq); 763 switch (ret) { 764 case BLK_MQ_RQ_QUEUE_OK: 765 queued++; 766 continue; 767 case BLK_MQ_RQ_QUEUE_BUSY: 768 list_add(&rq->queuelist, &rq_list); 769 __blk_mq_requeue_request(rq); 770 break; 771 default: 772 pr_err("blk-mq: bad return on queue: %d\n", ret); 773 case BLK_MQ_RQ_QUEUE_ERROR: 774 rq->errors = -EIO; 775 blk_mq_end_io(rq, rq->errors); 776 break; 777 } 778 779 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 780 break; 781 } 782 783 if (!queued) 784 hctx->dispatched[0]++; 785 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 786 hctx->dispatched[ilog2(queued) + 1]++; 787 788 /* 789 * Any items that need requeuing? Stuff them into hctx->dispatch, 790 * that is where we will continue on next queue run. 791 */ 792 if (!list_empty(&rq_list)) { 793 spin_lock(&hctx->lock); 794 list_splice(&rq_list, &hctx->dispatch); 795 spin_unlock(&hctx->lock); 796 } 797 } 798 799 /* 800 * It'd be great if the workqueue API had a way to pass 801 * in a mask and had some smarts for more clever placement. 802 * For now we just round-robin here, switching for every 803 * BLK_MQ_CPU_WORK_BATCH queued items. 804 */ 805 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 806 { 807 int cpu = hctx->next_cpu; 808 809 if (--hctx->next_cpu_batch <= 0) { 810 int next_cpu; 811 812 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 813 if (next_cpu >= nr_cpu_ids) 814 next_cpu = cpumask_first(hctx->cpumask); 815 816 hctx->next_cpu = next_cpu; 817 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 818 } 819 820 return cpu; 821 } 822 823 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 824 { 825 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 826 return; 827 828 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask)) 829 __blk_mq_run_hw_queue(hctx); 830 else if (hctx->queue->nr_hw_queues == 1) 831 kblockd_schedule_delayed_work(&hctx->run_work, 0); 832 else { 833 unsigned int cpu; 834 835 cpu = blk_mq_hctx_next_cpu(hctx); 836 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); 837 } 838 } 839 840 void blk_mq_run_queues(struct request_queue *q, bool async) 841 { 842 struct blk_mq_hw_ctx *hctx; 843 int i; 844 845 queue_for_each_hw_ctx(q, hctx, i) { 846 if ((!blk_mq_hctx_has_pending(hctx) && 847 list_empty_careful(&hctx->dispatch)) || 848 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 849 continue; 850 851 preempt_disable(); 852 blk_mq_run_hw_queue(hctx, async); 853 preempt_enable(); 854 } 855 } 856 EXPORT_SYMBOL(blk_mq_run_queues); 857 858 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 859 { 860 cancel_delayed_work(&hctx->run_work); 861 cancel_delayed_work(&hctx->delay_work); 862 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 863 } 864 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 865 866 void blk_mq_stop_hw_queues(struct request_queue *q) 867 { 868 struct blk_mq_hw_ctx *hctx; 869 int i; 870 871 queue_for_each_hw_ctx(q, hctx, i) 872 blk_mq_stop_hw_queue(hctx); 873 } 874 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 875 876 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 877 { 878 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 879 880 preempt_disable(); 881 blk_mq_run_hw_queue(hctx, false); 882 preempt_enable(); 883 } 884 EXPORT_SYMBOL(blk_mq_start_hw_queue); 885 886 void blk_mq_start_hw_queues(struct request_queue *q) 887 { 888 struct blk_mq_hw_ctx *hctx; 889 int i; 890 891 queue_for_each_hw_ctx(q, hctx, i) 892 blk_mq_start_hw_queue(hctx); 893 } 894 EXPORT_SYMBOL(blk_mq_start_hw_queues); 895 896 897 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 898 { 899 struct blk_mq_hw_ctx *hctx; 900 int i; 901 902 queue_for_each_hw_ctx(q, hctx, i) { 903 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 904 continue; 905 906 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 907 preempt_disable(); 908 blk_mq_run_hw_queue(hctx, async); 909 preempt_enable(); 910 } 911 } 912 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 913 914 static void blk_mq_run_work_fn(struct work_struct *work) 915 { 916 struct blk_mq_hw_ctx *hctx; 917 918 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 919 920 __blk_mq_run_hw_queue(hctx); 921 } 922 923 static void blk_mq_delay_work_fn(struct work_struct *work) 924 { 925 struct blk_mq_hw_ctx *hctx; 926 927 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 928 929 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 930 __blk_mq_run_hw_queue(hctx); 931 } 932 933 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 934 { 935 unsigned long tmo = msecs_to_jiffies(msecs); 936 937 if (hctx->queue->nr_hw_queues == 1) 938 kblockd_schedule_delayed_work(&hctx->delay_work, tmo); 939 else { 940 unsigned int cpu; 941 942 cpu = blk_mq_hctx_next_cpu(hctx); 943 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); 944 } 945 } 946 EXPORT_SYMBOL(blk_mq_delay_queue); 947 948 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 949 struct request *rq, bool at_head) 950 { 951 struct blk_mq_ctx *ctx = rq->mq_ctx; 952 953 trace_block_rq_insert(hctx->queue, rq); 954 955 if (at_head) 956 list_add(&rq->queuelist, &ctx->rq_list); 957 else 958 list_add_tail(&rq->queuelist, &ctx->rq_list); 959 960 blk_mq_hctx_mark_pending(hctx, ctx); 961 } 962 963 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 964 bool async) 965 { 966 struct request_queue *q = rq->q; 967 struct blk_mq_hw_ctx *hctx; 968 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 969 970 current_ctx = blk_mq_get_ctx(q); 971 if (!cpu_online(ctx->cpu)) 972 rq->mq_ctx = ctx = current_ctx; 973 974 hctx = q->mq_ops->map_queue(q, ctx->cpu); 975 976 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) && 977 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) { 978 blk_insert_flush(rq); 979 } else { 980 spin_lock(&ctx->lock); 981 __blk_mq_insert_request(hctx, rq, at_head); 982 spin_unlock(&ctx->lock); 983 } 984 985 if (run_queue) 986 blk_mq_run_hw_queue(hctx, async); 987 988 blk_mq_put_ctx(current_ctx); 989 } 990 991 static void blk_mq_insert_requests(struct request_queue *q, 992 struct blk_mq_ctx *ctx, 993 struct list_head *list, 994 int depth, 995 bool from_schedule) 996 997 { 998 struct blk_mq_hw_ctx *hctx; 999 struct blk_mq_ctx *current_ctx; 1000 1001 trace_block_unplug(q, depth, !from_schedule); 1002 1003 current_ctx = blk_mq_get_ctx(q); 1004 1005 if (!cpu_online(ctx->cpu)) 1006 ctx = current_ctx; 1007 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1008 1009 /* 1010 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1011 * offline now 1012 */ 1013 spin_lock(&ctx->lock); 1014 while (!list_empty(list)) { 1015 struct request *rq; 1016 1017 rq = list_first_entry(list, struct request, queuelist); 1018 list_del_init(&rq->queuelist); 1019 rq->mq_ctx = ctx; 1020 __blk_mq_insert_request(hctx, rq, false); 1021 } 1022 spin_unlock(&ctx->lock); 1023 1024 blk_mq_run_hw_queue(hctx, from_schedule); 1025 blk_mq_put_ctx(current_ctx); 1026 } 1027 1028 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1029 { 1030 struct request *rqa = container_of(a, struct request, queuelist); 1031 struct request *rqb = container_of(b, struct request, queuelist); 1032 1033 return !(rqa->mq_ctx < rqb->mq_ctx || 1034 (rqa->mq_ctx == rqb->mq_ctx && 1035 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1036 } 1037 1038 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1039 { 1040 struct blk_mq_ctx *this_ctx; 1041 struct request_queue *this_q; 1042 struct request *rq; 1043 LIST_HEAD(list); 1044 LIST_HEAD(ctx_list); 1045 unsigned int depth; 1046 1047 list_splice_init(&plug->mq_list, &list); 1048 1049 list_sort(NULL, &list, plug_ctx_cmp); 1050 1051 this_q = NULL; 1052 this_ctx = NULL; 1053 depth = 0; 1054 1055 while (!list_empty(&list)) { 1056 rq = list_entry_rq(list.next); 1057 list_del_init(&rq->queuelist); 1058 BUG_ON(!rq->q); 1059 if (rq->mq_ctx != this_ctx) { 1060 if (this_ctx) { 1061 blk_mq_insert_requests(this_q, this_ctx, 1062 &ctx_list, depth, 1063 from_schedule); 1064 } 1065 1066 this_ctx = rq->mq_ctx; 1067 this_q = rq->q; 1068 depth = 0; 1069 } 1070 1071 depth++; 1072 list_add_tail(&rq->queuelist, &ctx_list); 1073 } 1074 1075 /* 1076 * If 'this_ctx' is set, we know we have entries to complete 1077 * on 'ctx_list'. Do those. 1078 */ 1079 if (this_ctx) { 1080 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1081 from_schedule); 1082 } 1083 } 1084 1085 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1086 { 1087 init_request_from_bio(rq, bio); 1088 1089 if (blk_do_io_stat(rq)) 1090 blk_account_io_start(rq, 1); 1091 } 1092 1093 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1094 struct blk_mq_ctx *ctx, 1095 struct request *rq, struct bio *bio) 1096 { 1097 struct request_queue *q = hctx->queue; 1098 1099 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) { 1100 blk_mq_bio_to_request(rq, bio); 1101 spin_lock(&ctx->lock); 1102 insert_rq: 1103 __blk_mq_insert_request(hctx, rq, false); 1104 spin_unlock(&ctx->lock); 1105 return false; 1106 } else { 1107 spin_lock(&ctx->lock); 1108 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1109 blk_mq_bio_to_request(rq, bio); 1110 goto insert_rq; 1111 } 1112 1113 spin_unlock(&ctx->lock); 1114 __blk_mq_free_request(hctx, ctx, rq); 1115 return true; 1116 } 1117 } 1118 1119 struct blk_map_ctx { 1120 struct blk_mq_hw_ctx *hctx; 1121 struct blk_mq_ctx *ctx; 1122 }; 1123 1124 static struct request *blk_mq_map_request(struct request_queue *q, 1125 struct bio *bio, 1126 struct blk_map_ctx *data) 1127 { 1128 struct blk_mq_hw_ctx *hctx; 1129 struct blk_mq_ctx *ctx; 1130 struct request *rq; 1131 int rw = bio_data_dir(bio); 1132 struct blk_mq_alloc_data alloc_data; 1133 1134 if (unlikely(blk_mq_queue_enter(q))) { 1135 bio_endio(bio, -EIO); 1136 return NULL; 1137 } 1138 1139 ctx = blk_mq_get_ctx(q); 1140 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1141 1142 if (rw_is_sync(bio->bi_rw)) 1143 rw |= REQ_SYNC; 1144 1145 trace_block_getrq(q, bio, rw); 1146 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1147 hctx); 1148 rq = __blk_mq_alloc_request(&alloc_data, rw); 1149 if (unlikely(!rq)) { 1150 __blk_mq_run_hw_queue(hctx); 1151 blk_mq_put_ctx(ctx); 1152 trace_block_sleeprq(q, bio, rw); 1153 1154 ctx = blk_mq_get_ctx(q); 1155 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1156 blk_mq_set_alloc_data(&alloc_data, q, 1157 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1158 rq = __blk_mq_alloc_request(&alloc_data, rw); 1159 ctx = alloc_data.ctx; 1160 hctx = alloc_data.hctx; 1161 } 1162 1163 hctx->queued++; 1164 data->hctx = hctx; 1165 data->ctx = ctx; 1166 return rq; 1167 } 1168 1169 /* 1170 * Multiple hardware queue variant. This will not use per-process plugs, 1171 * but will attempt to bypass the hctx queueing if we can go straight to 1172 * hardware for SYNC IO. 1173 */ 1174 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1175 { 1176 const int is_sync = rw_is_sync(bio->bi_rw); 1177 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1178 struct blk_map_ctx data; 1179 struct request *rq; 1180 1181 blk_queue_bounce(q, &bio); 1182 1183 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1184 bio_endio(bio, -EIO); 1185 return; 1186 } 1187 1188 rq = blk_mq_map_request(q, bio, &data); 1189 if (unlikely(!rq)) 1190 return; 1191 1192 if (unlikely(is_flush_fua)) { 1193 blk_mq_bio_to_request(rq, bio); 1194 blk_insert_flush(rq); 1195 goto run_queue; 1196 } 1197 1198 if (is_sync) { 1199 int ret; 1200 1201 blk_mq_bio_to_request(rq, bio); 1202 blk_mq_start_request(rq, true); 1203 1204 /* 1205 * For OK queue, we are done. For error, kill it. Any other 1206 * error (busy), just add it to our list as we previously 1207 * would have done 1208 */ 1209 ret = q->mq_ops->queue_rq(data.hctx, rq); 1210 if (ret == BLK_MQ_RQ_QUEUE_OK) 1211 goto done; 1212 else { 1213 __blk_mq_requeue_request(rq); 1214 1215 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1216 rq->errors = -EIO; 1217 blk_mq_end_io(rq, rq->errors); 1218 goto done; 1219 } 1220 } 1221 } 1222 1223 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1224 /* 1225 * For a SYNC request, send it to the hardware immediately. For 1226 * an ASYNC request, just ensure that we run it later on. The 1227 * latter allows for merging opportunities and more efficient 1228 * dispatching. 1229 */ 1230 run_queue: 1231 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1232 } 1233 done: 1234 blk_mq_put_ctx(data.ctx); 1235 } 1236 1237 /* 1238 * Single hardware queue variant. This will attempt to use any per-process 1239 * plug for merging and IO deferral. 1240 */ 1241 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1242 { 1243 const int is_sync = rw_is_sync(bio->bi_rw); 1244 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1245 unsigned int use_plug, request_count = 0; 1246 struct blk_map_ctx data; 1247 struct request *rq; 1248 1249 /* 1250 * If we have multiple hardware queues, just go directly to 1251 * one of those for sync IO. 1252 */ 1253 use_plug = !is_flush_fua && !is_sync; 1254 1255 blk_queue_bounce(q, &bio); 1256 1257 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1258 bio_endio(bio, -EIO); 1259 return; 1260 } 1261 1262 if (use_plug && !blk_queue_nomerges(q) && 1263 blk_attempt_plug_merge(q, bio, &request_count)) 1264 return; 1265 1266 rq = blk_mq_map_request(q, bio, &data); 1267 if (unlikely(!rq)) 1268 return; 1269 1270 if (unlikely(is_flush_fua)) { 1271 blk_mq_bio_to_request(rq, bio); 1272 blk_insert_flush(rq); 1273 goto run_queue; 1274 } 1275 1276 /* 1277 * A task plug currently exists. Since this is completely lockless, 1278 * utilize that to temporarily store requests until the task is 1279 * either done or scheduled away. 1280 */ 1281 if (use_plug) { 1282 struct blk_plug *plug = current->plug; 1283 1284 if (plug) { 1285 blk_mq_bio_to_request(rq, bio); 1286 if (list_empty(&plug->mq_list)) 1287 trace_block_plug(q); 1288 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1289 blk_flush_plug_list(plug, false); 1290 trace_block_plug(q); 1291 } 1292 list_add_tail(&rq->queuelist, &plug->mq_list); 1293 blk_mq_put_ctx(data.ctx); 1294 return; 1295 } 1296 } 1297 1298 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1299 /* 1300 * For a SYNC request, send it to the hardware immediately. For 1301 * an ASYNC request, just ensure that we run it later on. The 1302 * latter allows for merging opportunities and more efficient 1303 * dispatching. 1304 */ 1305 run_queue: 1306 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1307 } 1308 1309 blk_mq_put_ctx(data.ctx); 1310 } 1311 1312 /* 1313 * Default mapping to a software queue, since we use one per CPU. 1314 */ 1315 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1316 { 1317 return q->queue_hw_ctx[q->mq_map[cpu]]; 1318 } 1319 EXPORT_SYMBOL(blk_mq_map_queue); 1320 1321 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1322 struct blk_mq_tags *tags, unsigned int hctx_idx) 1323 { 1324 struct page *page; 1325 1326 if (tags->rqs && set->ops->exit_request) { 1327 int i; 1328 1329 for (i = 0; i < tags->nr_tags; i++) { 1330 if (!tags->rqs[i]) 1331 continue; 1332 set->ops->exit_request(set->driver_data, tags->rqs[i], 1333 hctx_idx, i); 1334 } 1335 } 1336 1337 while (!list_empty(&tags->page_list)) { 1338 page = list_first_entry(&tags->page_list, struct page, lru); 1339 list_del_init(&page->lru); 1340 __free_pages(page, page->private); 1341 } 1342 1343 kfree(tags->rqs); 1344 1345 blk_mq_free_tags(tags); 1346 } 1347 1348 static size_t order_to_size(unsigned int order) 1349 { 1350 return (size_t)PAGE_SIZE << order; 1351 } 1352 1353 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1354 unsigned int hctx_idx) 1355 { 1356 struct blk_mq_tags *tags; 1357 unsigned int i, j, entries_per_page, max_order = 4; 1358 size_t rq_size, left; 1359 1360 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1361 set->numa_node); 1362 if (!tags) 1363 return NULL; 1364 1365 INIT_LIST_HEAD(&tags->page_list); 1366 1367 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *), 1368 GFP_KERNEL, set->numa_node); 1369 if (!tags->rqs) { 1370 blk_mq_free_tags(tags); 1371 return NULL; 1372 } 1373 1374 /* 1375 * rq_size is the size of the request plus driver payload, rounded 1376 * to the cacheline size 1377 */ 1378 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1379 cache_line_size()); 1380 left = rq_size * set->queue_depth; 1381 1382 for (i = 0; i < set->queue_depth; ) { 1383 int this_order = max_order; 1384 struct page *page; 1385 int to_do; 1386 void *p; 1387 1388 while (left < order_to_size(this_order - 1) && this_order) 1389 this_order--; 1390 1391 do { 1392 page = alloc_pages_node(set->numa_node, GFP_KERNEL, 1393 this_order); 1394 if (page) 1395 break; 1396 if (!this_order--) 1397 break; 1398 if (order_to_size(this_order) < rq_size) 1399 break; 1400 } while (1); 1401 1402 if (!page) 1403 goto fail; 1404 1405 page->private = this_order; 1406 list_add_tail(&page->lru, &tags->page_list); 1407 1408 p = page_address(page); 1409 entries_per_page = order_to_size(this_order) / rq_size; 1410 to_do = min(entries_per_page, set->queue_depth - i); 1411 left -= to_do * rq_size; 1412 for (j = 0; j < to_do; j++) { 1413 tags->rqs[i] = p; 1414 if (set->ops->init_request) { 1415 if (set->ops->init_request(set->driver_data, 1416 tags->rqs[i], hctx_idx, i, 1417 set->numa_node)) 1418 goto fail; 1419 } 1420 1421 p += rq_size; 1422 i++; 1423 } 1424 } 1425 1426 return tags; 1427 1428 fail: 1429 pr_warn("%s: failed to allocate requests\n", __func__); 1430 blk_mq_free_rq_map(set, tags, hctx_idx); 1431 return NULL; 1432 } 1433 1434 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1435 { 1436 kfree(bitmap->map); 1437 } 1438 1439 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1440 { 1441 unsigned int bpw = 8, total, num_maps, i; 1442 1443 bitmap->bits_per_word = bpw; 1444 1445 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1446 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1447 GFP_KERNEL, node); 1448 if (!bitmap->map) 1449 return -ENOMEM; 1450 1451 bitmap->map_size = num_maps; 1452 1453 total = nr_cpu_ids; 1454 for (i = 0; i < num_maps; i++) { 1455 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1456 total -= bitmap->map[i].depth; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1463 { 1464 struct request_queue *q = hctx->queue; 1465 struct blk_mq_ctx *ctx; 1466 LIST_HEAD(tmp); 1467 1468 /* 1469 * Move ctx entries to new CPU, if this one is going away. 1470 */ 1471 ctx = __blk_mq_get_ctx(q, cpu); 1472 1473 spin_lock(&ctx->lock); 1474 if (!list_empty(&ctx->rq_list)) { 1475 list_splice_init(&ctx->rq_list, &tmp); 1476 blk_mq_hctx_clear_pending(hctx, ctx); 1477 } 1478 spin_unlock(&ctx->lock); 1479 1480 if (list_empty(&tmp)) 1481 return NOTIFY_OK; 1482 1483 ctx = blk_mq_get_ctx(q); 1484 spin_lock(&ctx->lock); 1485 1486 while (!list_empty(&tmp)) { 1487 struct request *rq; 1488 1489 rq = list_first_entry(&tmp, struct request, queuelist); 1490 rq->mq_ctx = ctx; 1491 list_move_tail(&rq->queuelist, &ctx->rq_list); 1492 } 1493 1494 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1495 blk_mq_hctx_mark_pending(hctx, ctx); 1496 1497 spin_unlock(&ctx->lock); 1498 1499 blk_mq_run_hw_queue(hctx, true); 1500 blk_mq_put_ctx(ctx); 1501 return NOTIFY_OK; 1502 } 1503 1504 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1505 { 1506 struct request_queue *q = hctx->queue; 1507 struct blk_mq_tag_set *set = q->tag_set; 1508 1509 if (set->tags[hctx->queue_num]) 1510 return NOTIFY_OK; 1511 1512 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1513 if (!set->tags[hctx->queue_num]) 1514 return NOTIFY_STOP; 1515 1516 hctx->tags = set->tags[hctx->queue_num]; 1517 return NOTIFY_OK; 1518 } 1519 1520 static int blk_mq_hctx_notify(void *data, unsigned long action, 1521 unsigned int cpu) 1522 { 1523 struct blk_mq_hw_ctx *hctx = data; 1524 1525 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1526 return blk_mq_hctx_cpu_offline(hctx, cpu); 1527 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1528 return blk_mq_hctx_cpu_online(hctx, cpu); 1529 1530 return NOTIFY_OK; 1531 } 1532 1533 static void blk_mq_exit_hw_queues(struct request_queue *q, 1534 struct blk_mq_tag_set *set, int nr_queue) 1535 { 1536 struct blk_mq_hw_ctx *hctx; 1537 unsigned int i; 1538 1539 queue_for_each_hw_ctx(q, hctx, i) { 1540 if (i == nr_queue) 1541 break; 1542 1543 blk_mq_tag_idle(hctx); 1544 1545 if (set->ops->exit_hctx) 1546 set->ops->exit_hctx(hctx, i); 1547 1548 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1549 kfree(hctx->ctxs); 1550 blk_mq_free_bitmap(&hctx->ctx_map); 1551 } 1552 1553 } 1554 1555 static void blk_mq_free_hw_queues(struct request_queue *q, 1556 struct blk_mq_tag_set *set) 1557 { 1558 struct blk_mq_hw_ctx *hctx; 1559 unsigned int i; 1560 1561 queue_for_each_hw_ctx(q, hctx, i) { 1562 free_cpumask_var(hctx->cpumask); 1563 kfree(hctx); 1564 } 1565 } 1566 1567 static int blk_mq_init_hw_queues(struct request_queue *q, 1568 struct blk_mq_tag_set *set) 1569 { 1570 struct blk_mq_hw_ctx *hctx; 1571 unsigned int i; 1572 1573 /* 1574 * Initialize hardware queues 1575 */ 1576 queue_for_each_hw_ctx(q, hctx, i) { 1577 int node; 1578 1579 node = hctx->numa_node; 1580 if (node == NUMA_NO_NODE) 1581 node = hctx->numa_node = set->numa_node; 1582 1583 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1584 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1585 spin_lock_init(&hctx->lock); 1586 INIT_LIST_HEAD(&hctx->dispatch); 1587 hctx->queue = q; 1588 hctx->queue_num = i; 1589 hctx->flags = set->flags; 1590 hctx->cmd_size = set->cmd_size; 1591 1592 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1593 blk_mq_hctx_notify, hctx); 1594 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1595 1596 hctx->tags = set->tags[i]; 1597 1598 /* 1599 * Allocate space for all possible cpus to avoid allocation in 1600 * runtime 1601 */ 1602 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1603 GFP_KERNEL, node); 1604 if (!hctx->ctxs) 1605 break; 1606 1607 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1608 break; 1609 1610 hctx->nr_ctx = 0; 1611 1612 if (set->ops->init_hctx && 1613 set->ops->init_hctx(hctx, set->driver_data, i)) 1614 break; 1615 } 1616 1617 if (i == q->nr_hw_queues) 1618 return 0; 1619 1620 /* 1621 * Init failed 1622 */ 1623 blk_mq_exit_hw_queues(q, set, i); 1624 1625 return 1; 1626 } 1627 1628 static void blk_mq_init_cpu_queues(struct request_queue *q, 1629 unsigned int nr_hw_queues) 1630 { 1631 unsigned int i; 1632 1633 for_each_possible_cpu(i) { 1634 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1635 struct blk_mq_hw_ctx *hctx; 1636 1637 memset(__ctx, 0, sizeof(*__ctx)); 1638 __ctx->cpu = i; 1639 spin_lock_init(&__ctx->lock); 1640 INIT_LIST_HEAD(&__ctx->rq_list); 1641 __ctx->queue = q; 1642 1643 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1644 if (!cpu_online(i)) 1645 continue; 1646 1647 hctx = q->mq_ops->map_queue(q, i); 1648 cpumask_set_cpu(i, hctx->cpumask); 1649 hctx->nr_ctx++; 1650 1651 /* 1652 * Set local node, IFF we have more than one hw queue. If 1653 * not, we remain on the home node of the device 1654 */ 1655 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1656 hctx->numa_node = cpu_to_node(i); 1657 } 1658 } 1659 1660 static void blk_mq_map_swqueue(struct request_queue *q) 1661 { 1662 unsigned int i; 1663 struct blk_mq_hw_ctx *hctx; 1664 struct blk_mq_ctx *ctx; 1665 1666 queue_for_each_hw_ctx(q, hctx, i) { 1667 cpumask_clear(hctx->cpumask); 1668 hctx->nr_ctx = 0; 1669 } 1670 1671 /* 1672 * Map software to hardware queues 1673 */ 1674 queue_for_each_ctx(q, ctx, i) { 1675 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1676 if (!cpu_online(i)) 1677 continue; 1678 1679 hctx = q->mq_ops->map_queue(q, i); 1680 cpumask_set_cpu(i, hctx->cpumask); 1681 ctx->index_hw = hctx->nr_ctx; 1682 hctx->ctxs[hctx->nr_ctx++] = ctx; 1683 } 1684 1685 queue_for_each_hw_ctx(q, hctx, i) { 1686 /* 1687 * If not software queues are mapped to this hardware queue, 1688 * disable it and free the request entries 1689 */ 1690 if (!hctx->nr_ctx) { 1691 struct blk_mq_tag_set *set = q->tag_set; 1692 1693 if (set->tags[i]) { 1694 blk_mq_free_rq_map(set, set->tags[i], i); 1695 set->tags[i] = NULL; 1696 hctx->tags = NULL; 1697 } 1698 continue; 1699 } 1700 1701 /* 1702 * Initialize batch roundrobin counts 1703 */ 1704 hctx->next_cpu = cpumask_first(hctx->cpumask); 1705 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1706 } 1707 } 1708 1709 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1710 { 1711 struct blk_mq_hw_ctx *hctx; 1712 struct request_queue *q; 1713 bool shared; 1714 int i; 1715 1716 if (set->tag_list.next == set->tag_list.prev) 1717 shared = false; 1718 else 1719 shared = true; 1720 1721 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1722 blk_mq_freeze_queue(q); 1723 1724 queue_for_each_hw_ctx(q, hctx, i) { 1725 if (shared) 1726 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1727 else 1728 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1729 } 1730 blk_mq_unfreeze_queue(q); 1731 } 1732 } 1733 1734 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1735 { 1736 struct blk_mq_tag_set *set = q->tag_set; 1737 1738 blk_mq_freeze_queue(q); 1739 1740 mutex_lock(&set->tag_list_lock); 1741 list_del_init(&q->tag_set_list); 1742 blk_mq_update_tag_set_depth(set); 1743 mutex_unlock(&set->tag_list_lock); 1744 1745 blk_mq_unfreeze_queue(q); 1746 } 1747 1748 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1749 struct request_queue *q) 1750 { 1751 q->tag_set = set; 1752 1753 mutex_lock(&set->tag_list_lock); 1754 list_add_tail(&q->tag_set_list, &set->tag_list); 1755 blk_mq_update_tag_set_depth(set); 1756 mutex_unlock(&set->tag_list_lock); 1757 } 1758 1759 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1760 { 1761 struct blk_mq_hw_ctx **hctxs; 1762 struct blk_mq_ctx __percpu *ctx; 1763 struct request_queue *q; 1764 unsigned int *map; 1765 int i; 1766 1767 ctx = alloc_percpu(struct blk_mq_ctx); 1768 if (!ctx) 1769 return ERR_PTR(-ENOMEM); 1770 1771 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1772 set->numa_node); 1773 1774 if (!hctxs) 1775 goto err_percpu; 1776 1777 map = blk_mq_make_queue_map(set); 1778 if (!map) 1779 goto err_map; 1780 1781 for (i = 0; i < set->nr_hw_queues; i++) { 1782 int node = blk_mq_hw_queue_to_node(map, i); 1783 1784 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1785 GFP_KERNEL, node); 1786 if (!hctxs[i]) 1787 goto err_hctxs; 1788 1789 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL)) 1790 goto err_hctxs; 1791 1792 atomic_set(&hctxs[i]->nr_active, 0); 1793 hctxs[i]->numa_node = node; 1794 hctxs[i]->queue_num = i; 1795 } 1796 1797 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1798 if (!q) 1799 goto err_hctxs; 1800 1801 if (percpu_counter_init(&q->mq_usage_counter, 0)) 1802 goto err_map; 1803 1804 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1805 blk_queue_rq_timeout(q, 30000); 1806 1807 q->nr_queues = nr_cpu_ids; 1808 q->nr_hw_queues = set->nr_hw_queues; 1809 q->mq_map = map; 1810 1811 q->queue_ctx = ctx; 1812 q->queue_hw_ctx = hctxs; 1813 1814 q->mq_ops = set->ops; 1815 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1816 1817 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1818 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1819 1820 q->sg_reserved_size = INT_MAX; 1821 1822 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1823 INIT_LIST_HEAD(&q->requeue_list); 1824 spin_lock_init(&q->requeue_lock); 1825 1826 if (q->nr_hw_queues > 1) 1827 blk_queue_make_request(q, blk_mq_make_request); 1828 else 1829 blk_queue_make_request(q, blk_sq_make_request); 1830 1831 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out); 1832 if (set->timeout) 1833 blk_queue_rq_timeout(q, set->timeout); 1834 1835 /* 1836 * Do this after blk_queue_make_request() overrides it... 1837 */ 1838 q->nr_requests = set->queue_depth; 1839 1840 if (set->ops->complete) 1841 blk_queue_softirq_done(q, set->ops->complete); 1842 1843 blk_mq_init_flush(q); 1844 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1845 1846 q->flush_rq = kzalloc(round_up(sizeof(struct request) + 1847 set->cmd_size, cache_line_size()), 1848 GFP_KERNEL); 1849 if (!q->flush_rq) 1850 goto err_hw; 1851 1852 if (blk_mq_init_hw_queues(q, set)) 1853 goto err_flush_rq; 1854 1855 mutex_lock(&all_q_mutex); 1856 list_add_tail(&q->all_q_node, &all_q_list); 1857 mutex_unlock(&all_q_mutex); 1858 1859 blk_mq_add_queue_tag_set(set, q); 1860 1861 blk_mq_map_swqueue(q); 1862 1863 return q; 1864 1865 err_flush_rq: 1866 kfree(q->flush_rq); 1867 err_hw: 1868 blk_cleanup_queue(q); 1869 err_hctxs: 1870 kfree(map); 1871 for (i = 0; i < set->nr_hw_queues; i++) { 1872 if (!hctxs[i]) 1873 break; 1874 free_cpumask_var(hctxs[i]->cpumask); 1875 kfree(hctxs[i]); 1876 } 1877 err_map: 1878 kfree(hctxs); 1879 err_percpu: 1880 free_percpu(ctx); 1881 return ERR_PTR(-ENOMEM); 1882 } 1883 EXPORT_SYMBOL(blk_mq_init_queue); 1884 1885 void blk_mq_free_queue(struct request_queue *q) 1886 { 1887 struct blk_mq_tag_set *set = q->tag_set; 1888 1889 blk_mq_del_queue_tag_set(q); 1890 1891 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 1892 blk_mq_free_hw_queues(q, set); 1893 1894 percpu_counter_destroy(&q->mq_usage_counter); 1895 1896 free_percpu(q->queue_ctx); 1897 kfree(q->queue_hw_ctx); 1898 kfree(q->mq_map); 1899 1900 q->queue_ctx = NULL; 1901 q->queue_hw_ctx = NULL; 1902 q->mq_map = NULL; 1903 1904 mutex_lock(&all_q_mutex); 1905 list_del_init(&q->all_q_node); 1906 mutex_unlock(&all_q_mutex); 1907 } 1908 1909 /* Basically redo blk_mq_init_queue with queue frozen */ 1910 static void blk_mq_queue_reinit(struct request_queue *q) 1911 { 1912 blk_mq_freeze_queue(q); 1913 1914 blk_mq_sysfs_unregister(q); 1915 1916 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 1917 1918 /* 1919 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 1920 * we should change hctx numa_node according to new topology (this 1921 * involves free and re-allocate memory, worthy doing?) 1922 */ 1923 1924 blk_mq_map_swqueue(q); 1925 1926 blk_mq_sysfs_register(q); 1927 1928 blk_mq_unfreeze_queue(q); 1929 } 1930 1931 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 1932 unsigned long action, void *hcpu) 1933 { 1934 struct request_queue *q; 1935 1936 /* 1937 * Before new mappings are established, hotadded cpu might already 1938 * start handling requests. This doesn't break anything as we map 1939 * offline CPUs to first hardware queue. We will re-init the queue 1940 * below to get optimal settings. 1941 */ 1942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 1943 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 1944 return NOTIFY_OK; 1945 1946 mutex_lock(&all_q_mutex); 1947 list_for_each_entry(q, &all_q_list, all_q_node) 1948 blk_mq_queue_reinit(q); 1949 mutex_unlock(&all_q_mutex); 1950 return NOTIFY_OK; 1951 } 1952 1953 /* 1954 * Alloc a tag set to be associated with one or more request queues. 1955 * May fail with EINVAL for various error conditions. May adjust the 1956 * requested depth down, if if it too large. In that case, the set 1957 * value will be stored in set->queue_depth. 1958 */ 1959 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 1960 { 1961 int i; 1962 1963 if (!set->nr_hw_queues) 1964 return -EINVAL; 1965 if (!set->queue_depth) 1966 return -EINVAL; 1967 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 1968 return -EINVAL; 1969 1970 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 1971 return -EINVAL; 1972 1973 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 1974 pr_info("blk-mq: reduced tag depth to %u\n", 1975 BLK_MQ_MAX_DEPTH); 1976 set->queue_depth = BLK_MQ_MAX_DEPTH; 1977 } 1978 1979 set->tags = kmalloc_node(set->nr_hw_queues * 1980 sizeof(struct blk_mq_tags *), 1981 GFP_KERNEL, set->numa_node); 1982 if (!set->tags) 1983 goto out; 1984 1985 for (i = 0; i < set->nr_hw_queues; i++) { 1986 set->tags[i] = blk_mq_init_rq_map(set, i); 1987 if (!set->tags[i]) 1988 goto out_unwind; 1989 } 1990 1991 mutex_init(&set->tag_list_lock); 1992 INIT_LIST_HEAD(&set->tag_list); 1993 1994 return 0; 1995 1996 out_unwind: 1997 while (--i >= 0) 1998 blk_mq_free_rq_map(set, set->tags[i], i); 1999 out: 2000 return -ENOMEM; 2001 } 2002 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2003 2004 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2005 { 2006 int i; 2007 2008 for (i = 0; i < set->nr_hw_queues; i++) { 2009 if (set->tags[i]) 2010 blk_mq_free_rq_map(set, set->tags[i], i); 2011 } 2012 2013 kfree(set->tags); 2014 } 2015 EXPORT_SYMBOL(blk_mq_free_tag_set); 2016 2017 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2018 { 2019 struct blk_mq_tag_set *set = q->tag_set; 2020 struct blk_mq_hw_ctx *hctx; 2021 int i, ret; 2022 2023 if (!set || nr > set->queue_depth) 2024 return -EINVAL; 2025 2026 ret = 0; 2027 queue_for_each_hw_ctx(q, hctx, i) { 2028 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2029 if (ret) 2030 break; 2031 } 2032 2033 if (!ret) 2034 q->nr_requests = nr; 2035 2036 return ret; 2037 } 2038 2039 void blk_mq_disable_hotplug(void) 2040 { 2041 mutex_lock(&all_q_mutex); 2042 } 2043 2044 void blk_mq_enable_hotplug(void) 2045 { 2046 mutex_unlock(&all_q_mutex); 2047 } 2048 2049 static int __init blk_mq_init(void) 2050 { 2051 blk_mq_cpu_init(); 2052 2053 /* Must be called after percpu_counter_hotcpu_callback() */ 2054 hotcpu_notifier(blk_mq_queue_reinit_notify, -10); 2055 2056 return 0; 2057 } 2058 subsys_initcall(blk_mq_init); 2059